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Abstract

Deviance information criterion (DIC) has been extensively used for making Bayesian
model selection. It is a Bayesian version of AIC and chooses a model that gives the small-
est expected Kullback-Leibler divergence between the data generating process (DGP) and
a predictive distribution asymptotically. We show that when the plug-in predictive dis-
tribution is used, DIC can have a rigorous decision-theoretic justification under regularity
conditions. An alternative expression for DIC, based on the Bayesian predictive distribu-
tion, is proposed. The new DIC has a smaller penalty term than the original DIC and is
very easy to compute from the MCMC output. It is invariant to reparameterization and
yields a smaller frequentist risk than the original DIC asymptotically.

JEL classification: C11, C12, G12
Keywords: AIC; DIC; Bayesian Predictive Distribution; Plug-in Predictive Distribution;
Loss Function; Bayesian Model Comparison; Frequentist Risk

1 Introduction

A highly important statistical inference often faced by model builders and empirical re-
searchers is model selection (Phillips, 1995, 1996). Many penalty-based information criteria
have been proposed to select from candidate models. In the frequentist statistical framework,

the most popular information criteria are AIC and BIC. Arguably one of the most important
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Wuhan, China 430072. Li gratefully acknowledges the financial support of the Chinese Natural Science Fund
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developments in the Bayesian literature in recent years is the deviance information criterion
(DIC) of Spiegelhalter, et al (2002) for model selection.® DIC is a Bayesian version of AIC.
Like AIC, it trades off a measure of model adequacy against a measure of complexity and is
concerned with how replicate data predict the observed data. Unlike AIC, DIC takes prior
information into account.

DIC is constructed based on the posterior distribution of the log-likelihood or the deviance,
and has several desirable features. Firstly, DIC is easy to calculate when the likelihood
function is available in closed-form and the posterior distributions of the models are obtained
by Markov chain Monte Carlo (MCMC) simulation. Secondly, it is applicable to a wide
range of statistical models. Thirdly, unlike the Bayes factors (BF), it is not subject to the
Jeffreys-Lindley’s paradox and can be calculated when noninformative or improper priors are
used.

However, as acknowledged in Spiegelhalter, et al (2002, 2014), the decision-theoretic justi-
fication of DIC is not rigorous in the literature and DIC is not invariant to reparameterization.
The first contribution of the present paper is to provide a rigorous decision-theoretic justifi-
cation to DIC when the standard Bayesian large sample theory is valid and when the data
are not necessarily independent. It can be shown that DIC is an asymptotically unbiased
estimator of the expected Kullback-Leibler (KL) divergence between the data generating pro-
cess (DGP) and the plug-in predictive distribution, when the Bayesian estimate is used. This
justification is the same as how AIC has been justified.

In the Bayesian framework, an alterative predictive distribution to the plug-in predictive
distribution is the Bayesian predictive distribution. Naturally, the KL divergence between
the DGP and the Bayesian predictive distribution can be used as the loss function which
can in turn be used to derive a new information criterion for model comparison. Unlike the
plug-in predictive distribution, the Bayesian predictive distribution is invariant to reparame-
terization. Recently Ando and Tsay (2010) developed an information criterion that provides
asymptotically unbiased estimation to the new expected KL divergence in the independent
and identically distributed (iid) environment. The second contribution of the present paper is
to develop a new information criterion that provides an asymptotically unbiased estimation to
the new expected KL divergence under a general framework. Relaxing the iid assumption is
important because the iid assumption is often violated in practice. Moreover, compared with
the information criterion developed in Ando and Tsay (2010), our information criterion has
a simpler expression. It is easier to compare our information criterion with other information
criteria. Furthermore, it is trivial to compute from DIC.

Our theoretical results shows that asymptotically the frequentist risk implied by the

! According to, Spiegelhalter et al. (2014), Spiegelhalter et al. (2002) was the third most cited paper in
international mathematical sciences between 1998 and 2008. Up to January 2017, it has received 4318 citations
on the Web of Knowledge and over 7587 on Google Scholar.



Bayesian predictive distribution is smaller than that implied by the plug-in predictive distri-
bution. Hence, from the predictive viewpoint, the Bayesian predictive distribution is a better
predictive distribution. This represents another important advantage of using the Bayesian
predictive distribution and hence our new information criterion.

The paper is organized as follows. Section 2 explains how to treat the model selection
as a decision problem and gives a simple review about the decision-theoretic justification of
AIC. Section 3 provides a rigorous decision-theoretic justification to DIC of Spiegelhalter, et
al (2002) under a set of regularity conditions, and shows that why DIC can be explained as
Bayesian version of AIC. In Section 4, based on the Bayesian predictive distribution, a new
information criterion is proposed. Its theoretical properties are established and comparisons
with other information criteria are also made in this section. Section 5 concludes the paper.

The Appendix collects the proof of the theoretical results in the paper.

2 Decision-theoretic Justification of AIC

There are essentially two strands of literature on model selection.? The first strand aims
to answer the following question — which model best explains the observed data? The BF
(Kass and Raftery, 1995) and its variations belong to this strand. They compare models
by examining “posterior probabilities” given the observed data and search for the “true”
model. BIC is a large sample approximation to BF although it is based on the likelihood
function. The second strand aims to answer the following question — which model give the
best predictions of future observations generated by the same mechanism that gives rise to
the observed data? Clearly this is a utility-based approach where the utility is set to be the
prediction. Ideally, we would like to choose the model that gives the best overall predictions
of future values. Some cross validation-based criteria have been developed where the original
sample into a training and a validation set (Vehtari and Lampinen, 2002; Zhang and Yang,
2015). Unfortunately, different ways of sample splitting often lead to different outcomes.
Alternatively, based on hypothetically replicate data generated by the same mechanism that
gives rise to the observed data, some predictive information criteria have been proposed for
model selection. They minimize a loss function associated with the predictive decisions. AIC
and DIC are two well-known criteria in this framework. After the decision is made about
which model should be used for prediction, a unique prediction action for future observations

can be obtained to fulfill the original goal. This last approach is what we follow in the present

paper.

*For more information about the literature, see Vehtari and Ojanen (2012) and Burnham and Anderson
(2002).



2.1 Predictive model selection as a decision problem

Assuming that the probabilistic behavior of observed data, y € Y, is described by a set of
probabilistic models such as {Mk}szl = {p (y|0, Mk)}szl where parameter 6y, is the set of
parameters in model My. Formally, the model selection problem can be taken as a decision
problem to select a model among {Mk}?zl where the action space has K elements, namely,
{dk}ﬁil, where dj, means M, is selected.

For the decision problem, a loss function, L£(y,d), which measures the loss of decision
dy, as a function of y, must be specified. Given the loss function, the frequentist risk can be
defined as (Berger, 1985)

Rish(d) = By [£v.0)] = [ £(v.dg(y)y.

where ¢(y) is the DGP of y. Hence, the model selection problem is equivalent to optimizing

the statistical decision,
k* = arg mkin Risk(dy).

Based on the set of candidate models {Mk}szl, the model My« with the decision dp« is
selected.

Let y,ep be the replicate data independently generated by the same mechanism that gives
rise to the observed data y. Assume the sample size in y,., is the same as that in y. Consider
the predictive density of this replicate experiment for a candidate model M. The plug-in
predictive density can be expressed as p (yr€p|ék(y),Mk) for M}, where ak(y) is the quasi
maximum likelihood (QML) estimate of 8y, obtained from y and defined by

ak(y) = argrrbaxlnp(y\ek,Mk) .

k

The quantity that has been used to measure the quality of the candidate model in terms of
its ability to make predictions is the KL divergence between ¢ (yrep) and p (y%p\ék(y), Mk)
multiplied by 2,

9 (Yrep)
p <Y7‘ep‘ék‘<y)7 Mk)

2% KL [g (5rep) 0 (yreplO(3), My )| = 2By, |In

g\ Yre
= 2/ In (A p) g(yrep) dyrep-
p (YTepwk(Y)a Mkz)

Naturally the loss function associated with decision dj, is

L(y,dy) =2x KL [g (Yrep) s (yreplék(y),Mkﬂ :



As a result, the model selection problem is,
E* = arg mkin Risk(dy) = arg mlgn Ey [L(y,dy)]

9 (Yrep)
P (¥repl0(y). M)

= arg mkin {EyEyrep 2Ing (YTep)] + EyEyTep |:_2 Inp (YTep’ék(Y)a Mk)i| } .

= arg mkin 2 x EyEy In

rep

Since g (yrep) is the DGP, Ey . [2Ing (yrep)] is the same across all candidate models, and,

hence, is dropped from the above equation. Consequently, we have
k* = arg mkin Risk(dy) = arg mkin EyEy,., [—2 Inp (yrep|ék(y), Mk)} .

The smaller the Risk(dy), the better the candidate model performs when using p(yT€p|ék (y), My)
to predict ¢ (yrep). The optimal decision makes it necessary to evaluate the risk. AIC provides

an asymptotically unbiased estimation of Ey Ey, [—2 Inp (}’rep‘ék (y), Mkﬂ .

2.2 AIC for predictive model selection

To show that AIC provides an unbiased estimation of EyEy, [—2111 D (yrep|ék(y),Mk)}
asymptotically, let us first fix some notations. When there is no confusion, we simply write
candidate model p (y|0x, My) as p(y|@) where @ = (61,...,0p) € ® C RF. Under the iid as-
sumption, let y = (y1,y2, -+ ,yn)" denote the observed data, yrep = (Y1,rep, - » Yn,rep) denote
the replicate data, and n be the sample size in both sets of data. Although —2Inp (y\a(y))

is a natural estimate of Ey, (—21n p(ymp\@(y)>, it is asymptotically biased because y has

been used twice. Let

() = By,., (~2lnp (yrsl0()) ) = (~2p (v6(3)) ) - M

Under a set of regularity conditions, one can show that Ey (c(y)) — 2P. Hence, if we let AIC
= —2Inp (y|§(y)) + 2P, then, as n — oo,

By (AIC) - Ey By, (~21np (y,ep/8(y) ) ) = 0.
To see why a penalty term, 2P, is needed in AIC, let
o1
0' = argmin = KL[g(y), p(y|0)] @)

~

be the pseudo-true parameter value; 0 (y,.p) be the QML estimate of @ obtained from y,p;



p(y|@) be a “good approximation” to the DGP. Note that

EyE,,, (—2 Inp (yreplg(y)»

= _EyEyrep (_21np (YTep’/e\ (yrep))>:|
) (T1)
+ :EyEyTep (_QIDP (yrepwt)) - EyEyrep (—21np <YTep‘/9\(YTep)))}
(12)
+ :EyEYrep (‘21111’ (yTepla(Y))) — EyEy,,, (—2Inp (yT€p|9t))}
(1'3)

Clearly, the term in T'1 is the same as Fy <—2lnp (y\b\(y))) The term in 72 is the ex-
pectation of the likelihood ratio statistic based on the replicate data. Under a set of regularity
conditions that ensure y/n-consistency and asymptotic normality of the QML estimate, we
have T2 = T3 + o(1). To approximate the term in 73, if a(y) is a consistent estimate of ',

we have

Yrep

T3 = Ey{—2E 5

Oy (vrsl®')” ) et)] }

) (é(y) B ot)/ 92 1nge(g;fp\9t) (g(y) _ gt) } +o(1).

By the definition of 8%, we have Ey,., [8 Inp (yrep|0t) / 80] = 0, implying that

(Mpggepw) (5(y) - Ht)] } = 2By, <ah1pg;6p|0)> Ey (5(y> a 0t> -0

Ey {—ZEymp

Consequently, under the same regularity conditions for approximating 72, we have

O’ Inp (yrep|6")
0000’

Yrep

T3:tr{E

o~ ~ !/
E, [— (6v) - 0") (6(y) - 0") ] } = P+o(1),
where tr denotes the trace of a matrix. Following Burnham and Anderson (2002), we have

EyE,,. (—21np (ympya(y))) — B, (—21n » (y\é(y)) + 2P> +o(1) = By (AIC) + o(1),

that is, AIC is an unbiased estimator of Ey Fy, (—2 Inp (yrep\a(y)» asymptotically. From
the decision viewpoint, among candidate models, AIC selects a model which minimizes the
frequentist risk when the plug-in predictive distribution is used for making predictions.

It is clear that the decision-theoretic justification of AIC requires a careful choice of the KL

divergence function, the use of QML estimation, and a set of regularity conditions that ensure



the y/n-consistency and the asymptotic normality of the QML estimates. The penalty term
in AIC arises from two sources. First, the pseudo-true value has to be estimated. Second,
the estimate obtained from the observed data is not the same as that from the replicate
data. Moreover, as pointed out in Burnham and Anderson (2002), the justification of AIC
requires the candidate model be a “good approximation” to the DGP for the trace to be P
asymptotically in 7'3. However, Burnham and Anderson (2002) did not provide the formal

definition of “good approximation”.

3 Decision-theoretic Justification of DIC
3.1 DIC

Spiegelhalter, et al (2002) proposed DIC for Bayesian model selection. The criterion is based

on the deviance
D(0) = —2Inp(y|6),

and takes the form of

DIC = D(6) + Pp. (3)

The first term, interpreted as a Bayesian measure of model fit, is defined as the posterior

expectation of the deviance, that is,

D(0) = Eg,,[D(0)] = Eg,,[-2lnp(y|6)]

The better the model fits the data, the larger the log-likelihood value and hence the smaller
the value for D(0). The second term, used to measure the model complexity and also known
as “effective number of parameters”, is defined as the difference between the posterior mean

of the deviance and the deviance evaluated at the posterior mean of the parameters:

Pp=D(8) - D (8(y)) = -2 [ [lnp(y[6) - np (+16(y))] p(6ly)de, (4)

where (y) is the Bayesian estimator based on y, and more precisely the posterior mean of
0, [0p(6]y)d0. When there is no confusion, we simple write 8(y) as 6.

DIC can be rewritten by in another two equivalent forms:
DIC = D (6) + 2Pp, (5)

and

DIC = 2D(0) — D () = —4Eg, [Inp(y|0)] +21np (y(6) . (6)



DIC defined in Equation (5) bears similarity to AIC of Akaike (1973) and can be inter-
preted as a classical “plug-in” measure of fit plus a measure of complexity (i.e., 2Pp, also
known as the penalty term). In Equation (3) the Bayesian measure, D(8), is the same as
D (9_) + Pp which already includes a penalty term for model complexity and, thus, could be
better thought of as a measure of model adequacy rather than pure goodness of fit.

However, as acknowledged in Spiegelhalter et al. (2002) (Section 7.3 on Page 603 and
the first paragraph on Page 605), the justification of DIC is informal and heuristic. In this
section, we provide a rigorous decision-theoretic justification of DIC, in the same spirit as
the justification of AIC. We show that, when a proper loss function is selected, DIC is an

asymptotically unbiased estimator of the loss function.

3.2 Decision-theoretic justification of DIC

When developing DIC, Spiegelhalter, et al (2002) did not explicitly specify the KL divergence
function. However, from Equation (33) on Page 602, the loss function defined in the first
paragraph on Page 603, and Equation (40) on Page 603 in their paper, one may deduce that
the following KL divergence?

P (Yrep|@) ] 7)

KL [p(yrepl0),p (yrepl0(y))] = E In 7
[P (77e016) . (yrer 8(3))] yrem@[ P (vrenlO(3))
was used. Hence,

2x KL [p (YTep|0) »D (YTep|0_(Y))] =2X Eymp\e (lnp (YTepw)) + Eymp|0 (_2 Inp (YTepw_(Y))) .
(8)

In Equation (33), Spiegelhalter, et al dealt with E, .0 (—2Inp (yrep|B(y))) only and ignored
the first term in the right hand side of Equation (8). On Page 604, they argued that, if

c(v,0,0(y)) =E, 9 [(-2Inp(yrep|0(y)) — (—2Inp(y0(y)))] .

then
/ {Eg‘y [c(v,0,0(y))] - 2PD}p(y)dy — 0, (9)

where p(y) = [ p(y|0)p(0)d6. This leads to DIC = D(0) + 2Pp. The convergence in (9) was
proved without specifying any conditions. Most importantly, an implicit assumption made
in this heuristic argument is that the first term in the right hand side of Equation (8) is
constant across candidate models and thus dropped from (8). While the treatment mimics

the development of AIC, unfortunately, one cannot claim that Eymp|9 (Inp (yrep|@)) is the

3In Equation (33) of Spiegelhalter, et al (2002), the expectation is taken with respect to y,ep|6® which
corresponds to the candidate model. In AIC, the expectation is taken with respect to yrep which corresponds
to the DGP.



same across all candidate models. This is because, as Spiegelhalter, et al. (2002) stated in the
second paragraph on Page 604, “we are taking a Bayesian perspective” and “we replace the
pseudo-true value by a random quantity”. As a result, @ in the first term in the right hand
side of Equation (8) is model dependent and in general E, .0 (Inp (yrep|@)) takes a different
value for each candidate model. Furthermore, as in AIC, the candidate model is required
to be a “good approximation” to the DGP. However, as in Burnham and Anderson (2002),
Spiegelhalter et al. (2002) did not provide the formal definition of “good approximation”.
From the discussion above, clearly KL [p (Yrepl®) ,p (yrep\g_(y))] is not a proper KL di-
vergence function to justify DIC. A new KL divergence is needed. Asin AIC, we first consider

the plug-in predictive distribution p (yrep\e_(y)) in the following KL divergence

n g (YTe_p) ]
p (YTep‘e(Y)) ‘

The corresponding frequentist risk function of a statistical decision dj for model selection is

g (Yrep)
2in p (yrep‘e_k(Y)7 Mk) ] }

= EyEYTep [2 Ing (Yrep)] + EyEY'r‘ep [—QIHP (YTep|ék(Y)a Mk)] .

KL [9 (YTep) P (YTepw_(Y))] = Ey7-ep

Yrep

Risk(dy) = Ey {E

Since EyEy, . [2Ing (yrep)] is the same across candidate models, minimizing the frequentist

risk function Risk(dy) is equivalent to minimizing

EyE}’rep [721111) (yrep|§k(y),Mk)] .

Denote the selected model by Mj+. Then p (yrep\ék*(y),Mk*) is used to generate future
observations where 8+ (y) is the posterior mean of 8 in Mj:.

We are now in the position to provide a rigorous decision-theoretic justification of DIC
based on a set of regularity conditions. Let y' := (y1,...,4:). Define [; () = Inp(y'|0) —
Inp(y'~!|@) to be the conditional log-likelihood for the ¢ observation and V71 () to be the
4t derivative of I; (8), V71; (8) = I; (6) when j = 0. We suppress the superscript when j = 1,

and

n t i 21, t t

s(y'.0) = P10 _ 51 (), iy 0) = TIEVID) 5 gg).
=1 =1

s¢(0) := V1, (8) =s(y",0) —s(y'™1,0), h(0) :=V?,(0) =h(y",0) —h(y'1,0),

1 — . 1 —

— 1, (0)] ,H,(0) := =) hy(6),

NG Z Vi )] ) - ; (0)

t=1
L,(0) :==Inp(@ly), LY (6) := &' Inp(Bly)/06".

B, (0) :=Var

We further denote and H,,(8) = [ H,(0)g (y) dy.

In this paper, we impose the following regularity conditions.



*

Assumption 1: There exists a finite sample size n* such that for n > n* there exists

a local maximum of the posterior density L, (@) at ‘9" that satisfies S <<§>) = 0 and
Lg) (?) is negative definite.
-1
Assumption 2: The largest eigenvalue of [—Lg) (?)} goes to zero in probability as
n — oo.

Assumption 3: For any € > 0, there exists an integer n** and some § > 0 such that for
any n > max{n*,n**} and 8 € H (?,5) = {0 |0 — ?H < 6}, Lﬁf)(e) exists and satisfies

—A(e) < LP(0)L;? (W) —Ip < A(e)

n

in probability, where Ip is a P x P identity matrix, A(e) a P x P positive semi-definite
symmetric matrix whose largest eigenvalue goes to zero as ¢ — 0. A < B means that
Aij < Bij for all Z,]

Assumption 4: For any 6 > 0, as n — oo,

. (97O = 1),

where © is the support space of 6.

Assumption 5: For any element of 6; or 0;, i,5 =1,,---, P, we have

/efp(e)de < oo,/@?@?p(@)d@ < oo.

Assumption 6: Let 8' € ® C R” be the pseudo-true value that minimizes the KL loss
between the DGP and the candidate model,

1 9(y)
0! = argmin lim — /ln g(y)dy,
g n~on )  p(yl6) )

where 6 is the unique minimizer.

Assumption 7: 6" € int (©) where © is a compact, separable metric space.

Assumption 8: {y;},°, is strong mixing with the mixing coefficient o (m) = O (m = 75)
for some € > 0 and r > 2.

Assumption 9: [; (0) satisfies the standard measurability and the second order differen-
tiability conditions on F! __x © where F' = o (yt,yt—1, ).

Assumption 10: There exists a function M;(y?) such that for 0 < j < 3, all @ € G
where G is an open, convex set containing @, /I, (@) exists, SUPgcg ijlt (O)H < My(yh),
and sup, £ HMt(yt)HME < M < oo for some § > 0.

Assumption 11: {771, (0)} is La-near epoch dependent with respect to {y;} of size —1
for0<j<1and —% for 5 = 2,3 uniformly on ©.

Assumption 12: lim, o 2 327 | [ /71, (0) g (y) dy exists for all # € © and 0 < j < 3.

10



Assumption 13: For all 0,6 € ©, ijlt (0) — 71y (9’)H < ¢ (yt) HO - B’H for 0 <
j < 3 in probability, where ¢; (yt) is a positive random variable, sup, F Hct (yt) H < oo and
limy,— oo % Yoty (e — Ecy) 2.

Assumption 14: H (Bt) = lim,, o H, (Ot) exists and is negative definite. B (Ot) =
lim,, o By, (Bt) exist and is positive definite.

Assumption 15: H, (6") = —B,, (0") + o(1).

Remark 3.1 Assumptions 1-4 have been used in the literature to develop the standard Bayesian
large sample theory; see, for example, Chen (1985), Kim (1994, 1998), Geweke (2005). Under
Conditions 1-4, Chen (1985) shows that the posterior distribution converges to a normal dis-
tribution with the posterior mode being the mean and with the inverse of the second derivative
of the log-posterior distribution evaluated at the mode being its covariance. Assumption 5 is

used to ensure that the first and the second moments of the posterior distribution exist.

Remark 3.2 Assumptions 6-14 are the regularity conditions for the QML theory for de-
pendent and heterogeneous data; see, for example, Andrews (1987, 1988), White (1996),
Wooldridge (1994). If the data are iid, Assumption 6 is reduced to @' := arg miny %KL[g(y),p(yW)],
the definition in (2). For the iid data, Ey,,, [0Inp (yrep|0') /O8] = 0. Unfortunately, in gen-

eral Ey,,, [0Inp (yrep|0') /060] # 0 for dependent data because the conditional likelihood, 14(0),
generally depends on yt, the entire history of the observed data. This property renders the
proof of asymptotic unbiasedness of DIC more challenging. That is why we need Assumption

11 to control the time dependence in 1,(0) and its derivatives (Gallant and White, 1988).

Remark 3.3 Assumption 15 gives the exact definition of “good approrimation”. Combining
with Assumption 1/ that assumes lim, .. H, (Ot) =H (Ht) and B (Ot) = lim,,— o By, (Bt),
this condition entails the asymptotic validity of the information matriz identity, i.e., H (Ot) =
-B (Bt). When the candidate model is correctly specified, the condition is satisfied, but not
vice versa. In fact, even if H, (Gt) =-B, (Bt), the model can be misspecified.

Example 3.1 Assumption 15 assumes that the information matriz identity holds asymptot-
ically, but may not hold for any given sample size n. The following example to explain this
point. Let the DGP be

id )
yr = x1P0 + TaYo + €4, E|T1e, Tt < N(0,07).

Following Claeskens and Hjort (2003), assume that v = 6o/n'/2, where 8 is an unknown

constant. Let the candidate model be

i
yr = 14 + ve, ve| g < N(0702)-

11



the quasi-likelihood function is

L (37, 5116) = 2w — Dng? - Ly ez
n ) 1 9 B nt:l 202 ,

where 6 = (5’,02)/, y" = (Y1, .., Yn) and Xy = (x11, ..., T1n). In this case, it is easy to show

that the pseudo true value is @' = (,6’6,0%),. For the candidate model, the negative Hessian

matrizc is
n E(x3,) E(z11w2¢)70
1 73 (o2)°
-H, (9 ) = E ; ’}’OE(IEIt;mt) 1 S+ 'y(()]E(thx:?t)’yo
- (o3) 2(3) (o8)
while the information matriz is
B, (6")
" E(ﬂﬁi) n E[(mﬂo)%i] _ B(zum2t)%0 n 3E[9€1t9€2t70}+E[961t(ﬂf2t’vo)3]
_ 1 % (o3)° 2(o3)” 2(03)”
~ n - _ 0E(z1pw2) n SUSE[’Yoxuxzt}-i-E[(xzwo)gxu] 1 B(z2m)® I 602 E(z2¢70) >+ E(za:70)?
=1 2(03)’ 2(o2) 2(02)  2(o2)’ 1(2)"
n o E(z16220)] E(Iltwt)WoE[(@wo)z]
1 (o3)° 2(o3)”
n — E[(I%'YO)Q]'VOE(IltiEQt) (E[(962t70)2])2
= 2(o)’ A(3)"
Since vo = 6o/n'/?, we have
. E(x2 )
lim s~ y 0
lim B, (8") = lim —H, (') = e el o .
n—00 n—00 0

2(73)”

This means that H,, (Ht) =-B, (Bt) + 0(1). However, we do not have H, (Ot) =-B, (Ot)

for any finite n.

Lemma 3.1 Under Assumptions 1-15, we have

g:=E0ly] = 0 +o0,(n"1/?),
V(@) =£[(0-7) (- F) b] -1 (7) + 07

Remark 3.4 Under different reqularity conditions, the Bernstein-von Mises theorem shows
that the posterior distribution converges to a normal distribution with the QML estimator as
its mean and the inverse of the second derivative of the log-likelihood function evaluated at
the QML estimator as its covariance. Based on Bernstein-von Mises theorem, Ghosh and
Ramamoorthi (2003) developed the same results as in Lemma 3.1 for the iid case. We extend

the results of Ghosh and Ramamoorthi (2003) to more general cases.
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Theorem 3.1 Under Assumptions 1-15, when the prior of 6 is O,(1), we have,
EyEY’I‘ep [—21np (Yrepw_(Y)ﬂ = Ey [DIC + Op(l)] =Ey [DIC] + o(1).

Remark 3.5 Like AIC, DIC is an unbiased estimator of EyEy, . [—2Inp (y,ep|0(y))] asymp-
totically, according to Theorem 3.1. Hence, the decision-theoretic justification to DIC is that
DIC selects a model that minimizes the frequentist risk, which is the expected KL divergence
between the DGP and the plug-in predictive distribution p (yrepw_(y)) where the expectation
is taken with respect to the DGP. A key difference between AIC and DIC is that the plug-in
predictive distribution is based on different estimators. In AIC the QML estimate, é(y), 18

used while in DIC the Bayesian posterior mean, 0(y), is used.

Remark 3.6 The justification of DIC remains valid if the posterior mean replaced with the
posterior mode or with the QML estimate and Pp is replaced with P. This is because the
justification of DIC requires that the information matriz identity holds true asymptotically,
and that the posterior distribution converges to a normal distribution (the posterior mean
converges to the posterior mode and the posterior variance converges to zero). That is why

DIC is explained as the Bayesian version of AIC.

Remark 3.7 In AIC, the number of degrees of freedom, P, is used to measure the model
complezity. In the Bayesian framework, the prior information often imposes additional re-
strictions on the parameter space and, hence, the degrees of freedom may be reduced by the
usage of a prior. In this case, Pp may not be close to P for a finite n. A useful contribution
of DIC is to provide a way to measure the model complexity when the prior information is

incorporated; see Brooks (2002).

Remark 3.8 As pointed out in Spiegelhalter, et al (2014), the consistency of BF requires that
there is a “true model” and the “true model” is among the candidate models. However, AIC
and DIC are prediction-based criteria which are designed to find the best model for making
predictions among candidate models. Neither AIC nor DIC makes attempt to find the “true

model”.

Remark 3.9 If p(y|0@) has a closed-form expression, DIC is trivially computable from the
MCMC output. The computational tractability, together with the versatility of MCMC and
the fact that DIC is incorporated into a Bayesian software, WinBUGS, allows DIC to enjoy

a very wide range of applications.

4 DIC Based on Bayesian Predictive Distribution

The above decision-theoretic justification of DIC is based on the loss function constructed

from the plug-in predictive distribution. Unfortunately, the plug-in predictive distribution

13



is not invariant to parameterization and, hence, the corresponding DIC can be sensitive to
parameterization. From the pure Bayesian viewpoint, only the Bayesian predictive distribu-
tion, but not the plug-in predictive distribution, is a full proper predictive distribution. The
Bayesian predictive distribution is invariant to reparameterization. Hence, the loss function
and the corresponding information criterion will be invariant to reparameterization; see Ando
and Tsai (2010), Spiegelhalter, et al (2014).

Let p(¥reply,My) be the Bayesian predictive distribution, that is,

p(Yrepb”Mk:) = /p(YTepwaMk)p(GYaMk)do'

The KL divergence based on the Bayesian predictive distribution is

KL [g (YTep) » P (YTep‘Y7Mk)] = Eyrep (lng (YTep)) - Eyr‘ep (hlp (YTep|y7Mk)) . (10)

The frequentist risk for a statistical decision dj that selects Model My, is

Rlsk‘(dk) = Ey {2 x KL [g (YTep) y P (YTep|Y7Mk)]}
= Ey {Eymp (2lng (yrep))} + Ey {EYTep (—2p (yrep|y7Mk))} .

A better model is expected to yield a smaller value for the Risk(dy). Since Ey, ., (2Ing (yrep))
is the same across all candidate models, it is dropped from (10) when comparing models. As
a result, we propose to choose a model that gives the smallest value of (again we suppress Mj,

for notational simplicity)

EYEYTep (—21np (yrep|Y)) = //_21np (yrep|Y) g (YTep) g(Y)dYTepdy~

Let the selected model be M« (i.e. the optimal decision is dj+). Then p(yyep|y, My~ ), which is
the closest to g (yrep) in terms of the expected KL divergence, is used to generate predictions

of future observations.

4.1 ICyup

Under the iid assumption, Ando and Tsai (2010) showed that

ByBy,., [=21p (yreply)] = By {~2p(yly) + tr [I34 (0ar) Lur (8ar) |} + (1),

where

6 o7 = argmax 21n p(y|0) + Inp(8),
Oco

I [P Iné(w]0) 1~ [0Iné(y:|60) OIn&(y|0)
Jar(0) = —n; {6089’} a7 (0) = n;{ 20 20 },

with In&(y|0) = Inp(y|0) + Inp(0)/(2n) for t =1,--- ,n.

14



Remark 4.1 Ando and Tsai (2010) defined the following information criterion
ICAr = —2Inp(yly) + tr [IZ; (éAT) Jar (éAT)} . (11)

Since ICaT is constructed based on the Bayesian predictive distribution, it is invariant to
reparameterization. Interestingly, the first term in ICap is different from that in AIC or
DIC. To compute the first term in ICysr from the MCMC output, note that

—2Inp(yly) = —2In </p(y|e)p(9|y)de> ~ —2In ;ip <y|9<j>> 7
j=1

Y J
where {B(J)} - are J effective random samples drawn from the posterior distribution p(0y).
j:

To compute the penalty term tr [I;} (éAT) Jar (éAT)} , one first needs to obtain éAT- In

general, O a7 is not available analytically and hence, one has to use a numerical optimizer to
find O a7. Then one needs to calculate I47(0) and J 47 (0) and to invert 147 (0).

Remark 4.2 Under the assumptions that the prior is O,(1) and that the candidate model

encompasses the DGP, Ando and Tsai simplified the information criterion as
ICyr = —2Inp(yly) + P. (12)

In this case, the second term has a very simple expression as it is the same as the number of

degrees of freedom, which no longer depends on the prior information.

4.2 DICPH?

Using —2Inp(yly) as the first term makes it difficult to compare with DIC, AIC or BIC. In
this paper, we propose a Bayesian predictive distribution-based information criterion whose
first term is the same as DIC, i.e., D (0_) It turns out such a choice leads to a simple penalty
term and facilitates comparison with DIC, AIC or BIC. In the following theorem we propose
a new information criterion based on the KL divergence between the DGP and the Bayesian

predictive distribution and show the asymptotic unbiasedness.

Theorem 4.1 Define the information criterion based on the Bayesian predictive distribution

DICPY = D () + (1+In2)Pp, (13)

where Pp is defined in (4). Under Assumptions 1-15 and when the prior of 0 is Op(1), we

have

EyE

Yrep

[—2Inp (Yreply)] = Ey [DICPF] + o(1).

15



Remark 4.3 The justification of DICBY remains valid if the posterior mean is replaced with
the posterior mode or with the QML estimate and if Pp is replaced with P. Clearly, the penalty
term in DICPY is smaller than that in DIC, AIC, and BIC (i.e., (1 +n2)Pp ~ (1 +In2)P
as opposed to 2Pp in DIC, 2P in AIC, and Plnn in BIC).

Remark 4.4 It can be shown that DICPY =1Car+0,(1) and Ey [DICPY| = Ey(ICar)+0(1).
Clearly (14+1In2)Pp =~ (1 +In2)P > P, implying —21Inp (y|0_) < 2Inp(yly). To see why
this is the case, note that p (y|0) = p(y| ([ 0p(8ly)dd)), and p(yly) = [p(y|0)p(0y)d6.
Under Assumptions 2-15, p(0|y) is approximately Gaussian and concave. The inequality

—2lnp (y|9_) < =2lnp(yly) follows from Jensen’s inequality.

Remark 4.5 As ICar, DICPY is based on the Bayesian predictive distribution and hence, is
invariant to reparameterization. There are several good properties for DICBY . First, DICPY
is developed without resorting the iid assumption. Second, DICPT is easier to compute. When
the MCMC output is available, ICsT needs to evaluate

J

Inp(yly) = In </p(>'|9)p(9|y)d9> ~ In %Zp (y\G(j)) :

J=1

while DICEPY needs to evaluate
1< .
/lnp(y|0)p(9]y)d0 ol Zlnp (y’g(3)> _
i=1

Numerically, the log-likelihood function is usually much more stable than the likelihood func-

tion. Thus, for the same value of J, the accuracy in % ijl Inp <y|0(j)) is often much higher

than that in In (% Z;-Izlp <y|0(j))). Moreover, DICPT is as easy to compute as DIC. Since
DIC is monitored in WinBUGS, no additional effort is needed for calculating DICBY . Third,
like DIC, the penalty term depends on the prior information. As pointed out by Brooks (2002),

a useful contribution of DIC is to provide a way to measure the model complexity when the

prior information is incorporated. This property is shared by DICPT.

Remark 4.6 A recent literature suggests the minimization of the posterior mean of the KL

divergence between g (Yrep) D (Yrepl@), i.e.,

/ [/ In g(y”‘*’))g(yrep)dy,,ep} p(O]y)do

P (Yrepl®
= /lng (YTep) g (YTep) dYrep — // [Inp (ywp|0) g (YTep) dywp] p(0ly) db.

Hence, the corresponding frequentist risk for a statistical decision dy is

Risk(dy) = Ey {/ [/ In ng(%ep)dymp} p (O|y,My) de}

= /lng (yrep) g (yrep) dyrep — Ly {//lnp (YTep‘eka) g (yreza) Ay repp (Oly,My) dO} .
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Since the first term is constant across different models, van der Linde (2005, 2012), Plum-
mer (2008), Ando (2007) and Ando (2012) proposed to choose a model to minimize

By { [ 122100 5110) 5 (51 ] pOly) 0 |

Under the iid assumption, it was shown that

By | [ [ 210 50016) (570 vl (611 8] ~ By [ ) + 375

leading to an information criterion called BPIC by Ando (2007). Clearly, the target is different
here from that under DIC and also from that under DICBY. According to Spiegelhalter, et
al (2014), BPIC chooses an “average target” rather than a “representative target”. More
importantly, although BPIC can select a model, it cannot tell the user how to actually predict

the future observations.

Remark 4.7 To understand why the penalty term in BPIC is larger than that in DICPT,
note that the loss employed by BPIC is

//_2ln (p (YTepw))g(YTep)p(0|Y)d0dYTep
- / / 210 (p (¥repl8)) D(B]y) 40 (¥rep) Ay rep,

while the loss by DICBT is

/—21n </p(ymp|0)p(9|y)d9> 9 (Yrep) dYrep-

By Jensen’s inequality,

oIn ( / p(yrepw)p(ey)de) < [ 2w lo) o) ®.

Hence, the frequentist risk in DICBY is smaller than that in BPIC for the same candidate

model.

4.3 Frequentist Risk of DIC and DIC?”

From the decision viewpoint, DIC and DICB® lead to different statistical decisions. If the
optimal model selected by DIC is different from that selected by DICEF the two statistical
decisions are obviously different. Even when DIC and DICB? select the same model , the
two statistical decisions are still different because the predictions come from two different
distributions, namely p (yrep|0_(y),Mk) versus p (Yrep|y, Mj). In both cases, therefore, the
frequentist risk implied by DIC and DICB? is different. Although it is known that the Bayesian

predictive distribution is a full predictive distribution and invariant to parameterization, the
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[43

questions such as “which predictive distribution should be used for making predictions?” and

“is there any difference in using the two predictive distributions for making predictions?”

CBP allows us to

remain unanswered in the literature. The theoretical development of DI
answer these two important questions.

With the two information criteria, the action space is larger than before. Denote the action
space by {djo, dk1}£(:1 where dia (a € (0,1)) means My, is selected, and the predictions come
from p (Yrep|Ok(y), My) if a = 0 (i.e., DIC is the corresponding information criterion) but the

CBP

predictions come from p (yreply, My) if a = 1 (i.e., DI is the corresponding information

criterion). Let the two KL divergence functions be represented uniformly as

‘C(ya dk“) =2x KL [g (.YT‘ep) ap(YTEP‘Ya dk“))] )

where p (Yrep|y, dio) 1= P (Yrep|Ok(y), M), and p (Yreply, dit) := P (Yreply, Mi). The frequen-
tist risk associated with dja is

Risk(dye) = Ey (L(y, dye)) = /ﬁ(y, da)g(y)dy.

Hence, the model selection problem is equivalent to the following statistical decision,

i i Risk (dge). 14
DT ke o FHEsk (die) 14

According to Equation (19) in Appendix, Pp = P + 0p(1). Since P > 0 and In2+ 1 < 2,
for any model My, we have DIC > DICB? with probability approaching one (w.p.a.1). As a
result, Ey (DIC) > Ej (DICBP) w.p.a.l. Following Theorem 3.1 and Theorem 4.1, w.p.a.l,

we have

EyFEy,., [_2111]) (YTeplgk(Y)a Mk)] > FEyEy,., [—2Inp (YTep‘yU My)],

2EyEyrepg(y7‘€p) - EyEyTep [2 1np (y'f’ep|ék‘(y)’ Mk})] > QEYEYTepg(yrep) - EyEyTep [2 lnp(yT€p|Y7 Mk’)] )

and
Risk (dyo) = By (£ (ydo)) > By (£ (y,dya)) = Rish (dg) (15)
Hence, w.p.a.l,
kE{Ilr,lil-/l,K} Risk(dyo) > ke{q}-ifl,K} Risk (d1) . (16)
and
arg min min  Risk(dga)| = 1.

ac{0,1} [ke{l,- K}
This means that the optimal solution to the statistical decision problem given in Section 2.1
is obtained by DICB? w.p.a.1. This is true even in case where arg Minge(y ... g} Risk(dyo) =
arg minge(y ... gy Risk(dj1). Therefore, as far as the frequentist risk is concerned, the Bayesian
predictive distribution but not the plug-in predictive distribution should be used for making

predictions.
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5 Conclusion

This paper provides a rigorous decision-theoretic justification of DIC based on a set of regular-
ity conditions but without requiring the iid assumption. The candidate model is not required
to encompassed the DGP. It is shown that DIC is an asymptotically unbiased estimator of
the expected KL divergence between the DGP and the plug-in predictive distribution.

Based on the Bayesian predictive distribution, a new information criterion (DICBF) is
constructed for model selection. The first term has the same expression as that in DIC,
but the penalty term is smaller than that in DIC. The asymptotic justification of DICBY is
provided, in the same way as how DIC has been justified. The frequentist risk of DICB? is
compared with that of DIC and BPIC. It is shown that as n — oo, DICE? leads to the smaller
frequentist risk than DIC and BPIC. From the decision viewpoint, the Bayesian predictive
distribution and DICB? but not the plug-in predictive distribution or DIC leads to the optimal
decision action.

Although the theoretic framework under which we justify DIC and DICB? are general, it
requires the consistency of the posterior mean, the asymptotic normal approximation to the
posterior distribution, and the asymptotic normality to the QML estimator. When there are
latent variables in the candidate model under which the number of latent variables grows as
n grows and when the parameter space is enlarged to include latent variables, the consistency
and the asymptotic normality may not hold true. As a result, DIC and DICB? are not
justified. Moreover, when the data are nonstationary, the asymptotic normality may not hold

true. In this case, it remains unknown whether or not DIC and DICE? are still justified.

Appendix
Notations
= definitional Equality W posterior mode
o(1)  tend to zero 0 QML estimate
op(1) tend to zero in probability K pseudo true parameter
LS converge in probability 67 argmax of 2Inp(y|@) + Inp(6)
0 posterior mean (7] arg max of Inp (yrep|@) +Inp(y|0) +1np (0)

Proof of Lemma 3.1

Under Assumptions 1-5, for any € > 0, let n > max{n*,n**} and § > 0. For any 0 €
H (W,é) = {0 110 — ?H < 5}, we have

<

Inp(@ly) = lnp(
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where 6 lies on the segment between 6 and 9", The Taylor expansion for a random function
is justified by Lemma 3 of Jennrich (1969). It follows that

o) = (Tly) e |5 (0 ) £ (61) (0- 9)].

Let w = /n (9 - W), J(0) = —%L,(f)(e). For given € and ¢ such that Q = {w : ||w|| <
V/nd}, we have 8 € H (

,5). It can be shown that

L 0-7) 1(3) 0 )] -3 (3) )

Letting ¢}, = [ exp [—%w/J (51) w|dw, cp = [ exp [—%wlj (W) w} dw, we have

n~/‘wy—ﬂﬂ
- /Q |

1

Cn
1

Cn JO

<;{/Q

p(wly) o exp

}
127

dw

1 1
— €xp [—wJ 0,)w — —exp [—ij )w
Cn

|
Coxp |57 (81) ] exp | ' (7)) |

en— exp [—;w J (01> w} + exp [—2w J <01) w

Cn

]; exp [~ () ]|
MEIOR RMELG

€

cp —C

7’*1 exp [wj<;1>w] dc.u—i—/Q

*
C’I’L

len — | 1 1/ /= 1/ e
< ="Ml = _Z _ _Z
< o +cn . exp 2wJ<01>w exp 2wJ(0>w dw
< 2 ex —lw,J (é ) —ex —lw,,] (?) dw
= e Jg p B P
2 1
< — exp{—w } 1| exp [—w J w] dw.
Cp, Q 2
When Q = {w : ||w|| < /nd}, we haveOEH(? 9) and —A(e) < [J(él) J1 (?)—Ip]g
A(€). Define

=,

oo {4 [1(8) ()]} -

exp [—;w/J (W) w} dw.
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By the Holder inequality, we have

lim @, = lim
n—oo n—oo Q

where
D = n11_>ngo Qexp [—;w,J ?) w] dw,
Do =t [ exp {5 [1(82) 17 () = 1] 1 (F) o pesp |- o' (7)) ]
= ILm exp [—;wlj 51) w} dw,
n—oo Jq

(
Dot [ exp{-w [1(8) 5 () 1] 5 (T ) exp |50 (T) ]

It can be shown that Dy = lim,,_yo0 ¢, = (27T)P/2]J <<§>> |_1/2. Following the proof of Lemma
2.1 and Theorem 2.1 of Chen (1985), we have D, < Dy < D;, D3y < D3 < D; and

\Ip — A(e)|1/2/ exp [—12’2] dz,
1Z]|<sn 2

|Ip + A(e)|—1/2/ exp [—12’2] dz,
1Z|<tn 2

)
)

D =|J (W) Ry 2A(e)y—1/2/ exp {—;Z/Z} dz,
)

l1Z]]<s7,

—1/2
/ up+2A(e)y—1/2/

1
exp [—Z’Z] dZ,
l1zl1<t, 2

where s, = 6(1 — e*(€))/2/a%, t, = 6(1 + e*(€))/2 /0y, s, = (1 — 2¢*(€))Y/? /o and t/, =
5(1 + 2¢*(€))/?/op; 02 and o2 is the largest and smallest eigenvalue of {J (?)} ; e(e)
and e*(e) is the largest and the smallest eigenvalue of A(e). Under the regularity conditions,

when n — 00, 8, —= 00, t,, = 00, s, — 00, th — co. If e = 0, we get

lim |Ip £+ A(e)| =1, lim |Ip £ 2A(e)| = 1,
n—00 n—00

1
lim exp {—Z’Z} dz = (2m)"/?,
=2 J)|Z||<sn 2

1
lim exp [—Z’Z] dZ = (2n)F/2,
= J)|z||<tn 2
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P AV e —-1/2 . . . .
Then, we can show that Dy = Dy = D3 = (27) /2 ’J ( 7] ) ‘ which implies that lim,, oo Qn =
0 and lim,,_,oc P, = 0.
Fori,7=1,2,---, P, it can be shown that

/ { (wI.V)—CieXp [—;wJ(W) w]}dw‘
- - S ()
Ji =Sl [ oy

+ nh—>Igocln/Q|wl| exp{—;w [J <§1> —J(?)] w} -1

By Assumption 5, we have

lim
n—oo

N

IN

‘Cn_cm

[ lptwlyiiw 250,

By Holder’s inequality, we have
wi| [exp q —=w [ }w}

[ e {3 [ (5 ) 7(7)
Cn / |wi | w
Q

U LR M EUE }
{20

= /Ew?(ED; — 2EDy + ED3)Y? — 0,

IN

where
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Hence, we have

Note that

n—oo Q

1 1

nh_{rgo Qwiwj {Cn exp [—2w J (

where J;; <0> is the (i,7)"" element of J~ (
E (wwl|y) =J- (W) + 0p(1) which imply that

E[(6- )] =opn 28| (0-9) (0-F) Iy| = -1, (F) + oyt ),

Proof of Theorem 3.1

Following Bester and Hansen (2006), under Assumption 1-15, we have

D (y) =0(y) + 0, (n71).

Then we can show that

0(y)=6"+0, (nil/Z) ,

_ alnp(}’re ’015) d
= 17 P\Jrepl™ ] N T 1
B T AN 0D, (17)

and
C /2 /n (B(y) — 6') —% N (0, 1), (18)
where C,, = HanH,jl. When there is no confusion, we write H,, (Ot) as H, and B, (Ot) as

B,.
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Note that

ByEy,., (—2Inp (y,ep[0(y)))

= [EyEy'r"ep (_2 Inp (YTep@ (ywp)))]
(Th)

+ [EyEy,., (—2I0p (y,/6")) — EyEy,., (—210p (Yrep|6 (Yrep)))]
(T2)

+ [ByBy,., (—2np (yrep|0(y))) — Ey Ey,., (—21np (yrep|6°))]-
(T5)

Now let us analyze T and 735. First expand Inp (y’l“ep|0t) at 0 (Yrep),

= Omp (yrepl® (Yrep))' -
np (Yrepl0) = Inp (Yrepl@ (yrep)) + ( 8}2 rep) (6" =0 (yrep))

Olnp (yrep|@ (Yrep) _
, (aage/ £ ) (ot - 0 (Y’I’ep)) + Op (1)

. _ 8lnp Yre E Yre
= Inp (YTepw (Yre’p>) + (Ot -0 (yrep))/ (89?9/( p)>

+ (0" =6 (yrep))

(et - a (YTeP)) + Op (1) .

Then we have

n = EyEyTep [—21np (Yrepwt) +2Ilnp (yTEP‘a(yTGP))]

BBy, |~ (8(y,) — 0" 202 %’;g’g,(y rer)) (6 (Yrep) — 6") +0p (1)]
— Eyrep _ (5 (y7‘6p) o Ot)’ alnp (YTep‘g (YTep)) (E (YTep) o et) + 0(1)

9000’

= B |- (@) - o) PRI (6(y) - 0| o).

by Assumption 10 and the dominated convergence theorem. Next, we expand In p (yrep@(y))
at 0%

dlnp (}’repwt), o)

Inp (yf‘ep‘g(Y)) = Inp (yfepwt) + o0 (O(Y) - at)
21n rep ty .
+1 (E(y)—eﬁ)’a P (Yrep|6") (B(y) — 6') + 0, (1).

2 0606’

24



Substituting the above expansion into T3, we have

T3 = EyEyrep(_zlnp (YTep@(Y))) - EyEYT'ep(_2lnp (YTepwt))
/

Olnp (yre wt - azlnp Yre ’015 -
= By, |22V G ) — (o) — oy T2l iy gy o, 1)
dlnp (yrep|0t)"
- EyE}’Tep _2(80p’) (a(y) - Ot)
_ 0?Inp (yrep|0') —
BBy, | (8) -0 TPl iy gy o)

Oln repet ' _ .
- o, (p(g’e')) B, [(6y) - 0]

21 rep 0 B t
- (0(y) -0 By, (a 1 ga(ge’ ’ )> (667 -9

+Ey +o(1)

10*Inp(y|6")

= By |-V @) - 05, (1)) i B - 6] + o)

_pp(3repl0)’ (B(y) - 6"

00 =F

Yrep

228 g ((6y) - )] = o(1)

by (17), (18), and the dominated convergence theorem.
Note that

10%Inp (y|§(y)) 10%Inp (y|0t)
n 0006 =&y | o000 +op (1),

under Assumption 6-15 and by the uniform law of large number. Hence, we get

o= By |- @) -0 YO0 Gy g | 1o
2 n t _
= By |-va(8ly) - 6") By (;‘“ag;g,"”)m<y>—et>+op<n +o(1)
= T3+ o0(1).
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So we only need to analyze T5. Note that

Ty = B, :—\/ﬁ <§(y) ~ 0t>/Ey (—iW) Jn <§(y) — ot)] +o(1)

— By |V (60 - 0') (1) Vi () - ) | + 0 (1)

= B | (erva (B) - 01)) b2 (1) 0l i (B) - 07) | + o)

= B {or ot i (b) - o) Vi (B) - o) 002 | o)

= wlemcs, (o (0w - o) vi (o) - o) o e} o)
= w{m) e, o (80) - o) vi (0) - o) o] e+ o,

Then, we have

By |C2/n (8(y) - 0") Vi (0(y) = 0) €| = Ip 4+ 0(1).

Ty = tr ((—Hn) 031/2071/2) to(1) = tr((—Hy) C) +0(1)

= tr ((=Hp) (—Ha) ™ By (=Ha) ™) + 0 (1) = tr (=Hp) (—Hy) ™ Bu (—Ho) ™) +0(1)

and

By [By,, (=210 (e 03))] = By [By,op (~2100 (v7l8 (97e0)))] + 265 (B (=Ha) ") + 0 (1)
= By [By(~2lnp(y[8(y)))] + 2tr (Bn (—Hn)_1> +o(1)
= By(~2Inp(y[8(y))) + 26x ( By (~H,) ") +o0(1)
= Ey(-2mp(y[B(y)) +2P) +o(1),

under the condition that B, = —H,, + o(1). If the candidate model is correctly specified,
B, = —H,, for each n, then the condition is automatically satisfied.

In the light of Lemma 3.1, by the Taylor expansion, we get

N\ ~
i) = (19) - "0 (o9 Loy B g
= np (y19) + 0p(n/2)0y(n ") + Opln)Op(m)oy(n ™)

= np (y['9") + 0,(n~1/2),

where 52 lies on the segment between 6 and ‘9.
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Following Lemma 3.1, we get
Pp :/_2 [Inp(y|6) —Inp (y]6)] p(6ly)d6
= /—2 [lnp(y\e) —Inp (y\?)] p(0ly)d0 +21Inp (y\?) —2Inp (y[O_)

n @) , 0%1n 0
_ _2“]”(3“’) (6-)- [(o-7) W(eﬁ)pwmdawm

p)
= 0,(1) — / (9 . W)’Lg) (63) (0 . ?) p(8y)de + / (0 . W)' mna];g,gg) (0 . W) p(6]y)de

_ —/(G_W)'Lgp @) (00 ) p(01y)d0 + 0,(1) + Op(n ™)

where 53 lies on the segment between 6 and ‘9.

Finally, we have

EyEy,., [-2Inp (yrep|0(y))] = Ey [-2Inp(y[0) + 2P + 0,(1)]
— By [D(8) + 2P +0,(1)] = By [DIC1 + 0,(1)] = Ey [DIC4] + of1),

by Assumption 10 and the dominated convergence theorem.

Proof of Theorem 4.1

Denote

0 .= argmeaxlnp(yrep|0) +Inp(y|@)+1np(0).

Let

lnp Y\G th yta hlp YTep|0 th ytrepa

and l; (y¢,0) and 72l; (¢, @) be the first and the second order derivatives of Iy (3¢, 8). Then

we have the following lemma under the condition that y and y,¢, are independent:

Lemma 5.1 Under Assumptions 1-15, if the prior of 8 is Op(1), N
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Proof. The proof follows the argument in Theorem 4.2 in Wooldridge (1994) and in Bester
and Hansen (2006). Let Qn, (6) = n = >0 1 (y,0) +n S0 Ui (Yt reps 0) +n 7 Inp () and
Qn (0) = E[Qy (0)]. Then we need to show that, for each & > 0,

P

sup |Qn (8) — Qn (0)] > 5] — 0 as n — oo.
Oco

Let § > 0 be a number to be set later. Because © is compact, there exists a finite number of
spheres of radius § about 6; say (5(6;), j = 1,...,K (), which cover ©. Set (; = (5 (6;),
K = K (§). Because © C UK ' 1¢j, it follows that

P P 1Qn (0) — Qn (0)] > 8] < P 1r<n]a<>§(gug |Qn (8) — Qn (0)] > E]
K —
< ) P |sup|Qn (0 Qn(e)\>a].
j=1 BGCJ
For all 6 € (j,
< %Z”t (yta yt» | + = Z”t Yt repa (yt T€p70])|
t=1
1 « . 1« .
D (e (0, 0) = 1 (8)) | + |~ D (e (erep: 0) — 1 (6))
t=1 t=1
no B noo ~ ] 0
+% Z ‘lt (yt, 9) — lt (0])| -+ % Z ‘lt (ytyrep, 0) — lt (0])‘ -+ Ilpn( ) ’
t=1 t=1

where I; (0;) :== E [l (y1,0)] = E [l (Yt.rep, 8)]- By Assumption 13, for all 8 € ¢,

|l (yt, 0) — U (yt,05)] < i (yr) [|0-0;] < der (y1) -
and
It (ye, 0) — 1 (8;)] < E[ex (1) 0-6,]l] < oc,
where ¢; = E'[¢; (y¢)] = E [¢t (Yt,rep)]. Similarly we have

‘lt (yt,rep> 9) - lt (yt,rep, )| < 5Ct (yt rep }lt Yt,rep, 0) - Zt (9])‘ < 6Et .
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Thus, we have

_ § — 1 0
sup |Qn _Qn(e)‘ < *th(yt *Z (L (ye,0) — 1: (8;)) | + Zét
Oc¢; i3 nia Lt
0 — 1 & § —
+*th (ytrep *Z lt ytre;m — 1l (gj)) + = Ct
gt L L
1 0
L |np(6) ’
n
§ — 1 & 1 &
< 2—2}—1—5— (ct (yt) — ) *th Yt, 0 9))‘
nis L gt
§ — 1 & _ -
+2ﬁ ﬁ Z Ct yt rep C + E Z lt yt rep7 l (0 ))
t=1 t=1 t=1
1 0
L |np(6) ’
n
< 450+5li(6t( —Ct li lt yt 0))‘
Py n n )
t=1 t=1
1 — 1 — Inp (6
+9 o Z (ct (Ytrep) ﬁ Z (1t Wirep, 0) — 1 (85)) | + n( )
t=1 t=1
where n=1 3 | & < C < oo by Assumption 13. It follows that
P [ max Q. (6) - Q. (6)] > e]
06@
[ S|ES0 (e (y) — )| + |20, (I (yt, 9) —1:(6y))]
< P 1 - 1 xn hlp(e) ~ |-
+9 ’ﬁ Zt:l (Ct (yt,rep) - Ct)‘ + ‘ﬁ Zt:l (lt (yt,rep7 0) ’ + > e —46C
Now choose § < 1 such that (5 — 256’) > ¢/2, then
P | sup ‘Qn —Qn (0)| > €
Hecj
|5 2oy (e (ye) — )| + |5 iy (I (s 0) —1:(6))]
< P n _ n Inp(0 .
B + ‘% Zt:l (ct (Yt rep) — Ct)‘ + ‘% Zt:l (lt (Yt,reps 0) — )| + p( )’ >e/2

Next, choose ng so that

|5 2ot (e (ye) = @)| + |5 vy (L (yt79) —1:(8)))] c
P _ Inp(0 <=
LT @ ) 0] [ ) @)+ |2 52 | < &

for all n > ng, and all j =1,... , K by Assumptions 5-15 since K is finite. Hence, for n > ng

P |sup |Qn () — Qn ()] > 6] <e.

Oco
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It then follows that @, () satisfies a uniform weak law of large numbers and the consistency

of 8 followed by the usual argument. m
Lemma 5.2 Under Assumptions 1-15, \/n (5 — Bt) 4N (O, — (2H (Ot))A).

Proof. The proof follows from Bester and Hansen (2006). By Lemma 5.1, we have,
1 - _ 1 _
0O = -— Z [vlt (yt, 0) + v (yt,Tep, 9)} + —1Inp (0)
i n
1< .
- E Z [Vlt (yt7 0 ) + vlt (yt,rep, Gt)] +

o (6)

n

Z [V2lt (yt,54) + V2lt (yt,rep763>:| <5 - Ot)

t=1

1 n
;:

+

where 54 is an intermediate value between @ and 6. Tt follows that

" -1
(0-0) = (03 [on () + 9 ()] )
( 1/22 Vit (v, 0") + Vit (Yerep 0')] +n~/1np (6)> :

Under the assumptions, we have

n~Y2mp (5) =o0,(1), — n! z”: wvall (%754) 5 -H (at) )

t=1

—1 ZVQZt (?#,04) - —-H (Qt n! ZVQlt (yt Tep’e ) P _H (0,:) :

t=1 t=1

Wzvzt v, 0') %5 N (0,—H (67)), Wszt (Yt.rep, 0°) > N (0, —H (8")) .

Note that lim,,_,», Var (n*1/2 Z?zl Vit (yt,Bt)) = -H (Gt). By the central limit theorem
and the Cramer-Wold device, we get

Vi (6-6') 4 N (0,(-2(6") ") or v2n (6-6") 4 N (0, (-H (69) ).

Lemma 5.3 Under Assumption 1-15, the asymptotic joint distribution of \/n (5 — Ot) and

Vi (0 -6 is
) R =)
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Proof. By Lemma 5.2, we have

i -1

#(0-0) = (135 (08 + 4 (109
=1

X <n—1/2 i [l (y1,0°) + Vli (Yt.reps 0°)] + w2 inp <6)> ’

t=1

and

(T 0) = (g ()] (S ) 0 5))

t=1 t=1

where 65 is an intermediate value between W and 0'. Hence, we have
Cov (ﬁ ('é _ ot) n (‘7 _ 9f>)

(o) e (v o))

{=n=1 30 [V (4, 0) + 721 (Ytreps )]}_1 “2sr <l (yt,6")
x [n=12 50wl (ytae)]/( Y V2 (v, 01)) !

= (—2H(0")) ' (-H(6")) (-H(6")) " +0, (1)

= (-2H(0") " +0, (1)

= F +0p (1)

Then we have
Va(e-0) \ (1o [ (e (-
(w(?et) ) (o] Cmlo e ])
Under Assumptions 1-15, it can be shown that,

EyBy,., (~210p (yreply)) = By [~21np (y197) + (14 m2) P +0(1).

By the Laplace approximation (Tierney et al., 1989 and Kass et al., 1990) and Lemma

5.2, we have

2 (yrepl®)p (y|0)p (0) dO
[p(yl0)p(6)dd

 Jexpenny@nde [T (8)] e (<ui (9)) |
— fexi (—nh]; (9)) do ’VQhD ((7)) ‘—1/2 exp (_nhD (?)) <1 + OP <n>> )

p(Yrepb’) = /p(yrep|0)p(0|y) dO=

where

i (8) =~ (0p (y1cy6) +Inp (y16) +Inp (6)),
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i (6) =~ (Inp (y/6) + 10 (6)).

‘We know

{ o (9) o i () |
o ()| s (oo ()
- [ )]0 (9)]) + o 3) i ()]

The first term is

~5 (10[v2 (8)] - m|v2hs (7))
1 1 Olnp <yTep|6> 1 Olnp (y\é) 19np (5)
= T T aeae w0000’ n 0000

1 19Inp <y] 0) 181np (H)
n 9600’ n 0000’

_ —%ln|—H(0t)—H(Gt)|+§ln‘—H(0t)}—i—op(l)
= 5 In|-2H (0%)] + L n|H (6)] + 0, (1)
— _%ln(QP‘—H(Ot)l)+%ln’—H(0t)‘+0p(1):—éPIHQ—{—Op(l). (20)

Here we can see how In 2 shows up in the penalty term.

The second term is

—nhy (0 ( ) + nhp ( )
= lnp(y p\B)—I—lnp( §)+lnp< ) 1np(y]<7)—lnp<<7>
= lnp( rep\e)—klnp(y ) 1np<y| 0)+op(1)

= Inp (}’rep‘?) + 1np< pl9) Inp (y ep| 0 ) +Inp (Y\5> —Inp (347) +op(1).

We can decompose Inp (yrep\e) —Inp (yTEp’ 0 ) as

~ 3
Inp <YTep|0) —Inp <YTep| (7] )
-~ v
= Inp (y,,ep\e) —Inp (yTep|0t) +1Inp (yrep\et) —1Inp (yrep] (7] ) = D1 + Ds.
For D, we have

1 81np(}’rep‘0t)/\/ﬁ (5_0t>+1\/5(6_0t)/1(wﬂ<5—9t>+0 (1)
2 n 8

Dy = ——— 2T )
T n 96 96006’
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Following Assumption 5-15 and Lemma 5.3, we have

1 Olnp (yreplet) !
vn 00

N (W (Yrep) — ot)' <—n1 tzn; 2 (Yereps 0t)> NG ('é - at) +0,(1)
(‘0 vrep) — 0) (-H(8)) Vi (8- 6) +0, (1)
r [(—H (0)) Vit (0 - 0) Vit (' (300) - ot)’} o, (1)
Vi (W (yrep) — ') (-H (61))'? (— H(6")) " (—H(6")) (—2H (6) "
—2H (6"))" Vi (8- 6') + 0,1
27112 [( H (69)" Vi (0 (yrer) - ef)}’ (~2H (6)* v (8- 6) + 0, (1),

(o)

(~H(6)"” Vi (G (yrp) — 0')] (-28(8)" v (6 - 6')
n -1 n
(—H (6%))"/* <_n1 > 72 (sren 'éﬁ)> 02N "l (Yereps Bt)]
_ t=1
-1
o (_2H 1/2 ( - Z 2lt yt + let (yt,repv 0”)
X [n_1/2 Z Vi (ye,0") + n~? Z Vi (Ye,rep: et)]

[(—H (et))‘1/2 n-1/2 ZH: Vi (yt,rep, et)] (—2H (gt))—1/2

t=1

x [n‘w >l (9.0) + 072y Tl (Yrep, 0°) | + 0 (1)

t=1 t=1

(-H (015))71/2 n=/2 zn: Vi (Yereps Ot)] (—2H (lﬁ’t))fl/2 n~1/? z”: Vi (1, 6")

t=1 t=1

PR [<H (69) 023 Gl (e et)] (~H ()

t=1

xn 2N "l (Yerep, 0') + 0p (1),
t=1

with 6 lying between ‘@ (Yrep) — 0", and

[(—H (6) 2 n71? i Vit (Yerep, Ot)] (~H(6") 0t Zn: Ve (erep, 0') 5 X (P).

t=1 t=1

(21)
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Thus, we have

EyE,,., ([(—H (6)) n*lﬂivlt (yt,rep,ot)] (—2H (")) n*lﬂzn:vlt (yt79t)> =0,
t=1 t=1
(22)

since y and y,¢p are independent. Hence, we have

1 Jlnp (yr€p|9t) !
Vn 00

= BB, [2—1/2 [(E(0) Vi (0 (yrep) - at)}' (—2H(6")"* Vi (8- 0') +0, (1)}

EyE

Yrep

(o)

n ! n
= B (27RO S )| 20 )

t=1 t=1

_ _ -1/2 _ n ' —1/2
L 1/29-1/2 [(_H (6M)) P12y i (yt,r:pﬁt)] (—H(6")) +o(1)
xn V230l (Yereps 07)
_ % P+o(l).
Moreover,
1 ~ ' 10Inp (yrepwt) 9 t
2V (0-0) L Goawr " (09

_ _%\/ﬁ (6-6) (-1 (6") v (8-0") +0,(1)
= v (00 (om (0)F (om (0) " (- (01) (2w (0) " (-2 (01)
X/ (’é— 0f) +o0p (1)
= [ @) v (8-0)] (-2m () v (6 - 0) + 0, (1)
where

(-2 (69)" v (6 - 6)] (~2H(6)" v (8- 8) % 32 (). (23)

For D5, we have

1 8l rep|0Y)’
Dy =Inp (YTep‘et) —Inp (YTep‘et) - \/HDPS’BM) Vn (? — Ht)
1 /e . /8lnp(yrep]0t) PRI "
—7<9 —0) L (0 —9)+op(1).
Since
o\ Olnp (yrep|6') S ot 42
_(0_9> 9006’ (0 9)_”((]3)’ (24)
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1 Olnp (yrepl0) |
Ey,., (ﬁ@é’) =o(1), (25)

from (21), (22), (23), (24), and (25), we have
r = 1 1 1
Ey By, (00 (yreol8) =109 (000 ) ) = (5= 5+ 5 ) P (26)
Similarly, we can decompose —Inp <y|<7>) +Inp (y|§) as

—1Inp (y|<?>) +1Inp (y|6> = —Inp (y\?) +1Inp (y\@t) +1Inp (y]é) —Inp (y|0t)

= Inp (y\§> —Inp (y]@t) +Inp (y[@t) —Inp (y|<7> .

From the discussion above, Inp (y|6> —Inp (y\Ot) has the same asymptotic property as

Inp (yrepré) —Inp (yrep|0t). Hence

Inp (y|6") —Inp (y!W)

/
(i)« L) o)
(7 oy LT m;g’;', i )\/ﬁ<<§> 0) —p (1F) 401, 2D
where
AN /
ol
o
(7o) T (o) 4
Then
EyEy.., <1np (y]é) —1Inp (y\?)) = <1 L 1> P (28)
Note that

6="0 +o0,(n/?),
by Lemma 3.1. Mimicking the proof of Theorem 3.1, we get

EyEy,.  Inp (yrep|<?>) =Ey [lnp (y|<§>>} - P. (29)
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With (20), (26), (28) and (29), we have

Ey [Eymp Inp (YTep|Y)]
~1/2

nn [ [T @ e (i () (10,(1))
‘Vzhp (?) ‘71/2 exp (—nhD (?)) "
(e[ )] ] (7))
+EyEy,., [lnp (}%ep!?) +1Inp (YVep‘§> —Inp (yT’ep‘?) +1Inp (y]é) —Inp (y\?)]
+o (1)

_ BB, (lnp(yrea )+ (3- 52 2)P>+o<1>
P

1n2
= EyEy Inp (yrep] 0 ) < _ =

In 2
= E EYTep lnp (}’rep|<?>) + < - n) P+0(1)

1+1In2

— B, [np(ye) - p} +o(1).

Therefore, —2Inp (y[6) + (1 +In2) P is an unbiased estimator of Ey,., (—2Inp (yreply))

asymptotically.
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