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Yong Li
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Tao Zeng
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Abstract

Deviance information criterion (DIC) has been extensively used for making Bayesian
model selection. It is a Bayesian version of AIC and chooses a model that gives the small-
est expected Kullback-Leibler divergence between the data generating process (DGP) and
a predictive distribution asymptotically. We show that when the plug-in predictive dis-
tribution is used, DIC can have a rigorous decision-theoretic justification under regularity
conditions. An alternative expression for DIC, based on the Bayesian predictive distribu-
tion, is proposed. The new DIC has a smaller penalty term than the original DIC and is
very easy to compute from the MCMC output. It is invariant to reparameterization and
yields a smaller frequentist risk than the original DIC asymptotically.

JEL classification: C11, C12, G12
Keywords: AIC; DIC; Bayesian Predictive Distribution; Plug-in Predictive Distribution;
Loss Function; Bayesian Model Comparison; Frequentist Risk

1 Introduction

A highly important statistical inference often faced by model builders and empirical re-

searchers is model selection (Phillips, 1995, 1996). Many penalty-based information criteria

have been proposed to select from candidate models. In the frequentist statistical framework,

the most popular information criteria are AIC and BIC. Arguably one of the most important

∗We wish to thank Eric Renault, Peter Phillips and David Spiegelhalter for their helpful comments.
Yong Li, Hanqing Advanced Institute of Economics and Finance, Renmin University of China, Beijing,
100872, P.R. China. Jun Yu, School of Economics and Lee Kong Chian School of Business, Singapore
Management University, 90 Stamford Rd, Singapore 178903. Email for Jun Yu: yujun@smu.edu.sg. URL:
http://www.mysmu.edu/faculty/yujun/. Tao Zeng, Economics and Management School, Wuhan University,
Wuhan, China 430072. Li gratefully acknowledges the financial support of the Chinese Natural Science Fund
(No. 71271221), Program for New Century Excellent Talents in University.
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developments in the Bayesian literature in recent years is the deviance information criterion

(DIC) of Spiegelhalter, et al (2002) for model selection.1 DIC is a Bayesian version of AIC.

Like AIC, it trades off a measure of model adequacy against a measure of complexity and is

concerned with how replicate data predict the observed data. Unlike AIC, DIC takes prior

information into account.

DIC is constructed based on the posterior distribution of the log-likelihood or the deviance,

and has several desirable features. Firstly, DIC is easy to calculate when the likelihood

function is available in closed-form and the posterior distributions of the models are obtained

by Markov chain Monte Carlo (MCMC) simulation. Secondly, it is applicable to a wide

range of statistical models. Thirdly, unlike the Bayes factors (BF), it is not subject to the

Jeffreys-Lindley’s paradox and can be calculated when noninformative or improper priors are

used.

However, as acknowledged in Spiegelhalter, et al (2002, 2014), the decision-theoretic justi-

fication of DIC is not rigorous in the literature and DIC is not invariant to reparameterization.

The first contribution of the present paper is to provide a rigorous decision-theoretic justifi-

cation to DIC when the standard Bayesian large sample theory is valid and when the data

are not necessarily independent. It can be shown that DIC is an asymptotically unbiased

estimator of the expected Kullback-Leibler (KL) divergence between the data generating pro-

cess (DGP) and the plug-in predictive distribution, when the Bayesian estimate is used. This

justification is the same as how AIC has been justified.

In the Bayesian framework, an alterative predictive distribution to the plug-in predictive

distribution is the Bayesian predictive distribution. Naturally, the KL divergence between

the DGP and the Bayesian predictive distribution can be used as the loss function which

can in turn be used to derive a new information criterion for model comparison. Unlike the

plug-in predictive distribution, the Bayesian predictive distribution is invariant to reparame-

terization. Recently Ando and Tsay (2010) developed an information criterion that provides

asymptotically unbiased estimation to the new expected KL divergence in the independent

and identically distributed (iid) environment. The second contribution of the present paper is

to develop a new information criterion that provides an asymptotically unbiased estimation to

the new expected KL divergence under a general framework. Relaxing the iid assumption is

important because the iid assumption is often violated in practice. Moreover, compared with

the information criterion developed in Ando and Tsay (2010), our information criterion has

a simpler expression. It is easier to compare our information criterion with other information

criteria. Furthermore, it is trivial to compute from DIC.

Our theoretical results shows that asymptotically the frequentist risk implied by the

1According to, Spiegelhalter et al. (2014), Spiegelhalter et al. (2002) was the third most cited paper in
international mathematical sciences between 1998 and 2008. Up to January 2017, it has received 4318 citations
on the Web of Knowledge and over 7587 on Google Scholar.
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Bayesian predictive distribution is smaller than that implied by the plug-in predictive distri-

bution. Hence, from the predictive viewpoint, the Bayesian predictive distribution is a better

predictive distribution. This represents another important advantage of using the Bayesian

predictive distribution and hence our new information criterion.

The paper is organized as follows. Section 2 explains how to treat the model selection

as a decision problem and gives a simple review about the decision-theoretic justification of

AIC. Section 3 provides a rigorous decision-theoretic justification to DIC of Spiegelhalter, et

al (2002) under a set of regularity conditions, and shows that why DIC can be explained as

Bayesian version of AIC. In Section 4, based on the Bayesian predictive distribution, a new

information criterion is proposed. Its theoretical properties are established and comparisons

with other information criteria are also made in this section. Section 5 concludes the paper.

The Appendix collects the proof of the theoretical results in the paper.

2 Decision-theoretic Justification of AIC

There are essentially two strands of literature on model selection.2 The first strand aims

to answer the following question – which model best explains the observed data? The BF

(Kass and Raftery, 1995) and its variations belong to this strand. They compare models

by examining “posterior probabilities” given the observed data and search for the “true”

model. BIC is a large sample approximation to BF although it is based on the likelihood

function. The second strand aims to answer the following question – which model give the

best predictions of future observations generated by the same mechanism that gives rise to

the observed data? Clearly this is a utility-based approach where the utility is set to be the

prediction. Ideally, we would like to choose the model that gives the best overall predictions

of future values. Some cross validation-based criteria have been developed where the original

sample into a training and a validation set (Vehtari and Lampinen, 2002; Zhang and Yang,

2015). Unfortunately, different ways of sample splitting often lead to different outcomes.

Alternatively, based on hypothetically replicate data generated by the same mechanism that

gives rise to the observed data, some predictive information criteria have been proposed for

model selection. They minimize a loss function associated with the predictive decisions. AIC

and DIC are two well-known criteria in this framework. After the decision is made about

which model should be used for prediction, a unique prediction action for future observations

can be obtained to fulfill the original goal. This last approach is what we follow in the present

paper.

2For more information about the literature, see Vehtari and Ojanen (2012) and Burnham and Anderson
(2002).
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2.1 Predictive model selection as a decision problem

Assuming that the probabilistic behavior of observed data, y ∈ Y, is described by a set of

probabilistic models such as {Mk}Kk=1 := {p (y|θk,Mk)}Kk=1 where parameter θk is the set of

parameters in model Mk. Formally, the model selection problem can be taken as a decision

problem to select a model among {Mk}Kk=1 where the action space has K elements, namely,

{dk}Kk=1, where dk means Mk is selected.

For the decision problem, a loss function, L(y, dk), which measures the loss of decision

dk as a function of y, must be specified. Given the loss function, the frequentist risk can be

defined as (Berger, 1985)

Risk(dk) = Ey [L(y, dk)] =

∫
L(y, dk)g(y)dy,

where g(y) is the DGP of y. Hence, the model selection problem is equivalent to optimizing

the statistical decision,

k∗ = arg min
k
Risk(dk).

Based on the set of candidate models {Mk}Kk=1, the model Mk∗ with the decision dk∗ is

selected.

Let yrep be the replicate data independently generated by the same mechanism that gives

rise to the observed data y. Assume the sample size in yrep is the same as that in y. Consider

the predictive density of this replicate experiment for a candidate model Mk. The plug-in

predictive density can be expressed as p
(
yrep|θ̂k(y),Mk

)
for Mk where θ̂k(y) is the quasi

maximum likelihood (QML) estimate of θk, obtained from y and defined by

θ̂k(y) = arg max
θk

ln p (y|θk,Mk) .

The quantity that has been used to measure the quality of the candidate model in terms of

its ability to make predictions is the KL divergence between g (yrep) and p
(
yrep|θ̂k(y),Mk

)
multiplied by 2,

2×KL
[
g (yrep) , p

(
yrep|θ̂k(y),Mk

)]
= 2Eyrep

ln
g (yrep)

p
(
yrep|θ̂k(y),Mk

)


= 2

∫ ln
g (yrep)

p
(
yrep|θ̂k(y),Mk

)
 g (yrep) dyrep.

Naturally the loss function associated with decision dk is

L(y, dk) = 2×KL
[
g (yrep) , p

(
yrep|θ̂k(y),Mk

)]
.
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As a result, the model selection problem is,

k∗ = arg min
k
Risk(dk) = arg min

k
Ey [L(y, dk)]

= arg min
k

2× EyEyrep

ln
g (yrep)

p
(
yrep|θ̂k(y),Mk

)


= arg min
k

{
EyEyrep [2 ln g (yrep)] + EyEyrep

[
−2 ln p

(
yrep|θ̂k(y),Mk

)]}
.

Since g (yrep) is the DGP, Eyrep [2 ln g (yrep)] is the same across all candidate models, and,

hence, is dropped from the above equation. Consequently, we have

k∗ = arg min
k
Risk(dk) = arg min

k
EyEyrep

[
−2 ln p

(
yrep|θ̂k(y),Mk

)]
.

The smaller theRisk(dk), the better the candidate model performs when using p(yrep|θ̂k(y),Mk)

to predict g (yrep). The optimal decision makes it necessary to evaluate the risk. AIC provides

an asymptotically unbiased estimation of EyEyrep

[
−2 ln p

(
yrep|θ̂k(y),Mk

)]
.

2.2 AIC for predictive model selection

To show that AIC provides an unbiased estimation of EyEyrep

[
−2 ln p

(
yrep|θ̂k(y),Mk

)]
asymptotically, let us first fix some notations. When there is no confusion, we simply write

candidate model p (y|θk,Mk) as p(y|θ) where θ = (θ1, . . . , θP )′ ∈ Θ ⊆ RP . Under the iid as-

sumption, let y = (y1, y2, · · · , yn)′ denote the observed data, yrep = (y1,rep, · · · , yn,rep)′ denote

the replicate data, and n be the sample size in both sets of data. Although −2 ln p
(
y|θ̂(y)

)
is a natural estimate of Eyrep

(
−2 ln p(yrep|θ̂(y)

)
, it is asymptotically biased because y has

been used twice. Let

c(y) = Eyrep

(
−2 ln p

(
yrep|θ̂(y)

))
−
(
−2 ln p

(
y|θ̂(y)

))
. (1)

Under a set of regularity conditions, one can show that Ey (c(y))→ 2P . Hence, if we let AIC

= −2 ln p
(
y|θ̂(y)

)
+ 2P , then, as n→∞,

Ey(AIC)− EyEyrep

(
−2 ln p

(
yrep|θ̂(y)

))
→ 0.

To see why a penalty term, 2P , is needed in AIC, let

θt := arg min
θ

1

n
KL[g(y), p(y|θ)] (2)

be the pseudo-true parameter value; θ̂ (yrep) be the QML estimate of θ obtained from yrep;
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p(y|θ) be a “good approximation” to the DGP. Note that

EyEyrep

(
−2 ln p

(
yrep|θ̂(y)

))
=

[
EyEyrep

(
−2 ln p

(
yrep|θ̂ (yrep)

))]
(T1)

+
[
EyEyrep

(
−2 ln p

(
yrep|θt

))
− EyEyrep

(
−2 ln p

(
yrep|θ̂ (yrep)

))]
(T2)

+
[
EyEyrep

(
−2 ln p

(
yrep|θ̂(y)

))
− EyEyrep

(
−2 ln p

(
yrep|θt

))]
(T3)

.

Clearly, the term in T1 is the same as Ey

(
−2 ln p

(
y|θ̂(y)

))
. The term in T2 is the ex-

pectation of the likelihood ratio statistic based on the replicate data. Under a set of regularity

conditions that ensure
√
n-consistency and asymptotic normality of the QML estimate, we

have T2 = T3 + o(1). To approximate the term in T3, if θ̂(y) is a consistent estimate of θt,

we have

T3 = Ey

{
−2Eyrep

[
∂ ln p

(
yrep|θt

)
∂θ

′ (
θ̂(y)− θt

)]}

+Ey

{
Eyrep

[
−
(
θ̂(y)− θt

)′ ∂2 ln p
(
yrep|θt

)
∂θ∂θ′

(
θ̂(y)− θt

)]}
+ o(1).

By the definition of θt, we have Eyrep

[
∂ ln p

(
yrep|θt

)
/∂θ

]
= 0, implying that

Ey

{
−2Eyrep

[
∂ ln p

(
yrep|θt

)
∂θ

′ (
θ̂(y)− θt

)]}
= −2Eyrep

(
∂ ln p

(
yrep|θt

)
∂θ

)′
Ey

(
θ̂(y)− θt

)
= 0.

Consequently, under the same regularity conditions for approximating T2, we have

T3 = tr

{
Eyrep

[
∂2 ln p

(
yrep|θt

)
∂θ∂θ′

]
Ey

[
−
(
θ̂(y)− θt

)(
θ̂(y)− θt

)′]}
= P + o(1),

where tr denotes the trace of a matrix. Following Burnham and Anderson (2002), we have

EyEyrep

(
−2 ln p

(
yrep|θ̂(y)

))
= Ey

(
−2 ln p

(
y|θ̂(y)

)
+ 2P

)
+ o(1) = Ey (AIC) + o(1),

that is, AIC is an unbiased estimator of EyEyrep

(
−2 ln p

(
yrep|θ̂(y)

))
asymptotically. From

the decision viewpoint, among candidate models, AIC selects a model which minimizes the

frequentist risk when the plug-in predictive distribution is used for making predictions.

It is clear that the decision-theoretic justification of AIC requires a careful choice of the KL

divergence function, the use of QML estimation, and a set of regularity conditions that ensure
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the
√
n-consistency and the asymptotic normality of the QML estimates. The penalty term

in AIC arises from two sources. First, the pseudo-true value has to be estimated. Second,

the estimate obtained from the observed data is not the same as that from the replicate

data. Moreover, as pointed out in Burnham and Anderson (2002), the justification of AIC

requires the candidate model be a “good approximation” to the DGP for the trace to be P

asymptotically in T3. However, Burnham and Anderson (2002) did not provide the formal

definition of “good approximation”.

3 Decision-theoretic Justification of DIC

3.1 DIC

Spiegelhalter, et al (2002) proposed DIC for Bayesian model selection. The criterion is based

on the deviance

D(θ) = −2 ln p(y|θ),

and takes the form of

DIC = D(θ) + PD. (3)

The first term, interpreted as a Bayesian measure of model fit, is defined as the posterior

expectation of the deviance, that is,

D(θ) = Eθ|y[D(θ)] = Eθ|y[−2 ln p(y|θ)].

The better the model fits the data, the larger the log-likelihood value and hence the smaller

the value for D(θ). The second term, used to measure the model complexity and also known

as “effective number of parameters”, is defined as the difference between the posterior mean

of the deviance and the deviance evaluated at the posterior mean of the parameters:

PD = D(θ)−D
(
θ̄(y)

)
= −2

∫ [
ln p(y|θ)− ln p

(
y|θ̄(y)

)]
p(θ|y)dθ, (4)

where θ̄(y) is the Bayesian estimator based on y, and more precisely the posterior mean of

θ,
∫
θp(θ|y)dθ. When there is no confusion, we simple write θ̄(y) as θ̄.

DIC can be rewritten by in another two equivalent forms:

DIC = D
(
θ̄
)

+ 2PD, (5)

and

DIC = 2D(θ)−D
(
θ̄
)

= −4Eθ|y[ln p(y|θ)] + 2 ln p
(
y|θ̄
)
. (6)
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DIC defined in Equation (5) bears similarity to AIC of Akaike (1973) and can be inter-

preted as a classical “plug-in” measure of fit plus a measure of complexity (i.e., 2PD, also

known as the penalty term). In Equation (3) the Bayesian measure, D(θ), is the same as

D
(
θ̄
)

+ PD which already includes a penalty term for model complexity and, thus, could be

better thought of as a measure of model adequacy rather than pure goodness of fit.

However, as acknowledged in Spiegelhalter et al. (2002) (Section 7.3 on Page 603 and

the first paragraph on Page 605), the justification of DIC is informal and heuristic. In this

section, we provide a rigorous decision-theoretic justification of DIC, in the same spirit as

the justification of AIC. We show that, when a proper loss function is selected, DIC is an

asymptotically unbiased estimator of the loss function.

3.2 Decision-theoretic justification of DIC

When developing DIC, Spiegelhalter, et al (2002) did not explicitly specify the KL divergence

function. However, from Equation (33) on Page 602, the loss function defined in the first

paragraph on Page 603, and Equation (40) on Page 603 in their paper, one may deduce that

the following KL divergence3

KL
[
p (yrep|θ) , p

(
yrep|θ̄(y)

)]
= Eyrep|θ

[
ln

p (yrep|θ)

p
(
yrep|θ̄(y)

)] (7)

was used. Hence,

2×KL
[
p (yrep|θ) , p

(
yrep|θ̄(y)

)]
= 2× Eyrep|θ (ln p (yrep|θ)) + Eyrep|θ

(
−2 ln p

(
yrep|θ̄(y)

))
.

(8)

In Equation (33), Spiegelhalter, et al dealt with Eyrep|θ
(
−2 ln p

(
yrep|θ̄(y)

))
only and ignored

the first term in the right hand side of Equation (8). On Page 604, they argued that, if

c
(
y,θ, θ̄(y)

)
:= Eyrep|θ

[(
−2 ln p(yrep|θ̄(y)

)
−
(
−2 ln p(y|θ̄(y))

)]
,

then ∫ {
Eθ|y

[
c
(
y,θ, θ̄(y)

)]
− 2PD

}
p(y)dy→ 0, (9)

where p(y) =
∫
p(y|θ)p(θ)dθ. This leads to DIC = D(θ̄) + 2PD. The convergence in (9) was

proved without specifying any conditions. Most importantly, an implicit assumption made

in this heuristic argument is that the first term in the right hand side of Equation (8) is

constant across candidate models and thus dropped from (8). While the treatment mimics

the development of AIC, unfortunately, one cannot claim that Eyrep|θ (ln p (yrep|θ)) is the

3In Equation (33) of Spiegelhalter, et al (2002), the expectation is taken with respect to yrep|θt which
corresponds to the candidate model. In AIC, the expectation is taken with respect to yrep which corresponds
to the DGP.
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same across all candidate models. This is because, as Spiegelhalter, et al. (2002) stated in the

second paragraph on Page 604, “we are taking a Bayesian perspective” and “we replace the

pseudo-true value by a random quantity”. As a result, θ in the first term in the right hand

side of Equation (8) is model dependent and in general Eyrep|θ (ln p (yrep|θ)) takes a different

value for each candidate model. Furthermore, as in AIC, the candidate model is required

to be a “good approximation” to the DGP. However, as in Burnham and Anderson (2002),

Spiegelhalter et al. (2002) did not provide the formal definition of “good approximation”.

From the discussion above, clearly KL
[
p (yrep|θ) , p

(
yrep|θ̄(y)

)]
is not a proper KL di-

vergence function to justify DIC. A new KL divergence is needed. As in AIC, we first consider

the plug-in predictive distribution p
(
yrep|θ̄(y)

)
in the following KL divergence

KL
[
g (yrep) , p

(
yrep|θ̄(y)

)]
= Eyrep

[
ln

g (yrep)

p
(
yrep|θ̄(y)

)] .
The corresponding frequentist risk function of a statistical decision dk for model selection is

Risk(dk) = Ey

{
Eyrep

[
2 ln

g (yrep)

p
(
yrep|θ̄k(y),Mk

)]}
= EyEyrep [2 ln g (yrep)] + EyEyrep

[
−2 ln p

(
yrep|θ̄k(y),Mk

)]
.

Since EyEyrep [2 ln g (yrep)] is the same across candidate models, minimizing the frequentist

risk function Risk(dk) is equivalent to minimizing

EyEyrep

[
−2 ln p

(
yrep|θ̄k(y),Mk

)]
.

Denote the selected model by Mk∗ . Then p
(
yrep|θ̄k∗(y),Mk∗

)
is used to generate future

observations where θ̄k∗(y) is the posterior mean of θ in Mk∗ .

We are now in the position to provide a rigorous decision-theoretic justification of DIC

based on a set of regularity conditions. Let yt := (y1, . . . , yt). Define lt (θ) = ln p(yt|θ) −
ln p(yt−1|θ) to be the conditional log-likelihood for the tth observation and ∇jlt (θ) to be the

jth derivative of lt (θ), ∇jlt (θ) = lt (θ) when j = 0. We suppress the superscript when j = 1,

and

s(yt,θ) :=
∂ ln p(yt|θ)

∂θ
=

t∑
i=1

∇li (θ) , h(yt,θ) :=
∂2 ln p(yt|θ)

∂θ∂θ′
=

t∑
i=1

∇2li (θ) ,

st(θ) := ∇lt (θ) = s(yt,θ)− s(yt−1,θ), ht(θ) := ∇2lt (θ) = h(yt,θ)− h(yt−1,θ),

Bn (θ) := V ar

[
1√
n

n∑
t=1

5lt (θ)

]
, Ĥn(θ) :=

1

n

n∑
t=1

ht(θ),

Ln(θ) := ln p(θ|y), L(j)
n (θ) := ∂j ln p(θ|y)/∂θj .

We further denote and Hn(θ) =
∫

Ĥn(θ)g (y) dy.

In this paper, we impose the following regularity conditions.
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Assumption 1: There exists a finite sample size n∗ such that for n > n∗ there exists

a local maximum of the posterior density Ln(θ) at
←→
θ that satisfies L

(1)
n

(←→
θ
)

= 0 and

L
(2)
n

(←→
θ
)

is negative definite.

Assumption 2: The largest eigenvalue of
[
−L(2)

n

(←→
θ
)]−1

goes to zero in probability as

n→∞.

Assumption 3: For any ε > 0, there exists an integer n∗∗ and some δ > 0 such that for

any n > max{n∗, n∗∗} and θ ∈ H
(←→
θ , δ

)
=
{
θ : ||θ −←→θ || ≤ δ

}
, L

(2)
n (θ) exists and satisfies

−A(ε) ≤ L(2)
n (θ)L−(2)

n

(←→
θ
)
− IP ≤ A(ε)

in probability, where IP is a P × P identity matrix, A(ε) a P × P positive semi-definite

symmetric matrix whose largest eigenvalue goes to zero as ε → 0. A ≤ B means that

Aij ≤ Bij for all i, j.

Assumption 4: For any δ > 0, as n→∞,∫
Θ−H

(←→
θ ,δ

) p (θ|y) dθ = op (1) ,

where Θ is the support space of θ.

Assumption 5: For any element of θi or θj , i, j = 1, , · · · , P , we have∫
θ2
i p(θ)dθ <∞,

∫
θ2
i θ

2
jp(θ)dθ <∞.

Assumption 6: Let θt ∈ Θ ⊂ RP be the pseudo-true value that minimizes the KL loss

between the DGP and the candidate model,

θt = arg min
θ

lim
n→∞

1

n

∫
ln

g(y)

p(y|θ)
g(y)dy,

where θt is the unique minimizer.

Assumption 7: θt ∈ int (Θ) where Θ is a compact, separable metric space.

Assumption 8: {yt}∞t=1 is strong mixing with the mixing coefficient α (m) = O
(
m
−2r
r−2
−ε
)

for some ε > 0 and r > 2.

Assumption 9: lt (θ) satisfies the standard measurability and the second order differen-

tiability conditions on F t−∞× Θ where F t−∞ = σ (yt, yt−1, · · · ).
Assumption 10: There exists a function Mt(y

t) such that for 0 6 j 6 3, all θ ∈ G
where G is an open, convex set containing Θ, 5jlt (θ) exists, supθ∈G

∥∥5jlt (θ)
∥∥ 6 Mt(y

t),

and suptE
∥∥Mt(y

t)
∥∥r+δ ≤M <∞ for some δ > 0.

Assumption 11:
{
5jlt (θ)

}
is L2-near epoch dependent with respect to {yt} of size −1

for 0 6 j 6 1 and −1
2 for j = 2, 3 uniformly on Θ.

Assumption 12: limn→∞
1
n

∑n
t=1

∫
5jlt (θ) g (y) dy exists for all θ ∈ Θ and 0 6 j 6 3.
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Assumption 13: For all θ,θ′ ∈ Θ,
∥∥5jlt (θ)−5jlt

(
θ′
)∥∥ ≤ ct

(
yt
) ∥∥θ − θ′∥∥ for 0 6

j 6 3 in probability, where ct
(
yt
)

is a positive random variable, suptE
∥∥ct (yt)∥∥ < ∞ and

limn→∞
1
n

∑n
t=1 (ct − Ect)

p→ 0.

Assumption 14: H
(
θt
)

= limn→∞Hn

(
θt
)

exists and is negative definite. B
(
θt
)

=

limn→∞Bn

(
θt
)

exist and is positive definite.

Assumption 15: Hn

(
θt
)

= −Bn

(
θt
)

+ o (1).

Remark 3.1 Assumptions 1-4 have been used in the literature to develop the standard Bayesian

large sample theory; see, for example, Chen (1985), Kim (1994, 1998), Geweke (2005). Under

Conditions 1-4, Chen (1985) shows that the posterior distribution converges to a normal dis-

tribution with the posterior mode being the mean and with the inverse of the second derivative

of the log-posterior distribution evaluated at the mode being its covariance. Assumption 5 is

used to ensure that the first and the second moments of the posterior distribution exist.

Remark 3.2 Assumptions 6-14 are the regularity conditions for the QML theory for de-

pendent and heterogeneous data; see, for example, Andrews (1987, 1988), White (1996),

Wooldridge (1994). If the data are iid, Assumption 6 is reduced to θt := arg minθ
1
nKL[g(y), p(y|θ)],

the definition in (2). For the iid data, Eyrep

[
∂ ln p

(
yrep|θt

)
/∂θ

]
= 0. Unfortunately, in gen-

eral Eyrep

[
∂ ln p

(
yrep|θt

)
/∂θ

]
6= 0 for dependent data because the conditional likelihood, lt(θ),

generally depends on yt, the entire history of the observed data. This property renders the

proof of asymptotic unbiasedness of DIC more challenging. That is why we need Assumption

11 to control the time dependence in lt(θ) and its derivatives (Gallant and White, 1988).

Remark 3.3 Assumption 15 gives the exact definition of “good approximation”. Combining

with Assumption 14 that assumes limn→∞Hn

(
θt
)

= H
(
θt
)

and B
(
θt
)

= limn→∞Bn

(
θt
)
,

this condition entails the asymptotic validity of the information matrix identity, i.e., H
(
θt
)

=

−B
(
θt
)
. When the candidate model is correctly specified, the condition is satisfied, but not

vice versa. In fact, even if Hn

(
θt
)

= −Bn

(
θt
)
, the model can be misspecified.

Example 3.1 Assumption 15 assumes that the information matrix identity holds asymptot-

ically, but may not hold for any given sample size n. The following example to explain this

point. Let the DGP be

yt = x1tβ0 + x2tγ0 + εt, εt|x1t, x2t
iid∼ N(0, σ2).

Following Claeskens and Hjort (2003), assume that γ0 = δ0/n
1/2, where δ0 is an unknown

constant. Let the candidate model be

yt = x1tβ + vt, vt|x1t
iid∼ N(0, σ2).

11



the quasi-likelihood function is

Ln (yn,xn1 |θ) = −n
2

ln 2π − n

2
lnσ2 − 1

n

n∑
t=1

(yt − x1tβ)2

2σ2
,

where θ =
(
β′, σ2

)′
, yn = (y1, ..., yn) and xn1 = (x11, ..., x1n). In this case, it is easy to show

that the pseudo true value is θt =
(
β′0, σ

2
0

)′
. For the candidate model, the negative Hessian

matrix is

−Hn

(
θt
)

=
1

n

n∑
t=1

 E(x21t)
σ2
0

E(x1tx2t)γ0

(σ2
0)

2

γ0E(x1tx2t)

(σ2
0)

2
1

2(σ2
0)

2 + γ0E(x2tx2t)γ0

(σ2
0)

3


while the information matrix is

Bn

(
θt
)

=
1

n

n∑
t=1


E(x21t)
σ2
0

+
E[(x2tγ0)2x21t]

(σ2
0)

2 −E(x1tx2t)γ0

2(σ2
0)

2 +
3E[x1tx2tγ0]+E[x1t(x2tγ0)3]

2(σ2
0)

2

−γ0E(x1tx2t)

2(σ2
0)

2 +
3σ2

0E[γ0x1tx2t]+E[(x2tγ0)3x1t]
2(σ2

0)
3

1

2(σ2
0)

2 − E(x2tγ0)2

2(σ2
0)

3 +
6σ2

0E(x2tγ0)2+E(x2tγ0)4

4(σ2
0)

4



− 1

n

n∑
t=1

 [γ0E(x1tx2t)]
2

(σ2
0)

2

E(x1tx2t)γ0E[(x2tγ0)2]
2(σ2

0)
3

E[(x2tγ0)2]γ0E(x1tx2t)

2(σ2
0)

3

(E[(x2tγ0)2])
2

4(σ2
0)

4

 .
Since γ0 = δ0/n

1/2, we have

lim
n→∞

Bn

(
θt
)

= lim
n→∞

−Hn

(
θt
)

=

 limn→∞
1
n

∑n
t=1

E(x21t)
σ2
0

0

0 1

2(σ2
0)

2

 .
This means that Hn

(
θt
)

= −Bn

(
θt
)

+ o (1). However, we do not have Hn

(
θt
)

= −Bn

(
θt
)

for any finite n.

Lemma 3.1 Under Assumptions 1-15, we have

θ̄ := E [θ|y] =
←→
θ + op(n

−1/2),

V
(←→
θ
)

:= E

[(
θ −←→θ

)(
θ −←→θ

)′
|y
]

= −L−(2)
n

(←→
θ
)

+ op(n
−1).

Remark 3.4 Under different regularity conditions, the Bernstein-von Mises theorem shows

that the posterior distribution converges to a normal distribution with the QML estimator as

its mean and the inverse of the second derivative of the log-likelihood function evaluated at

the QML estimator as its covariance. Based on Bernstein-von Mises theorem, Ghosh and

Ramamoorthi (2003) developed the same results as in Lemma 3.1 for the iid case. We extend

the results of Ghosh and Ramamoorthi (2003) to more general cases.

12



Theorem 3.1 Under Assumptions 1-15, when the prior of θ is Op(1), we have,

EyEyrep

[
−2 ln p

(
yrep|θ̄(y)

)]
= Ey [DIC + op(1)] = Ey [DIC] + o(1).

Remark 3.5 Like AIC, DIC is an unbiased estimator of EyEyrep

[
−2 ln p

(
yrep|θ̄(y)

)]
asymp-

totically, according to Theorem 3.1. Hence, the decision-theoretic justification to DIC is that

DIC selects a model that minimizes the frequentist risk, which is the expected KL divergence

between the DGP and the plug-in predictive distribution p
(
yrep|θ̄(y)

)
where the expectation

is taken with respect to the DGP. A key difference between AIC and DIC is that the plug-in

predictive distribution is based on different estimators. In AIC the QML estimate, θ̂(y), is

used while in DIC the Bayesian posterior mean, θ̄(y), is used.

Remark 3.6 The justification of DIC remains valid if the posterior mean replaced with the

posterior mode or with the QML estimate and PD is replaced with P . This is because the

justification of DIC requires that the information matrix identity holds true asymptotically,

and that the posterior distribution converges to a normal distribution (the posterior mean

converges to the posterior mode and the posterior variance converges to zero). That is why

DIC is explained as the Bayesian version of AIC.

Remark 3.7 In AIC, the number of degrees of freedom, P , is used to measure the model

complexity. In the Bayesian framework, the prior information often imposes additional re-

strictions on the parameter space and, hence, the degrees of freedom may be reduced by the

usage of a prior. In this case, PD may not be close to P for a finite n. A useful contribution

of DIC is to provide a way to measure the model complexity when the prior information is

incorporated; see Brooks (2002).

Remark 3.8 As pointed out in Spiegelhalter, et al (2014), the consistency of BF requires that

there is a “true model” and the “true model” is among the candidate models. However, AIC

and DIC are prediction-based criteria which are designed to find the best model for making

predictions among candidate models. Neither AIC nor DIC makes attempt to find the “true

model”.

Remark 3.9 If p(y|θ) has a closed-form expression, DIC is trivially computable from the

MCMC output. The computational tractability, together with the versatility of MCMC and

the fact that DIC is incorporated into a Bayesian software, WinBUGS, allows DIC to enjoy

a very wide range of applications.

4 DIC Based on Bayesian Predictive Distribution

The above decision-theoretic justification of DIC is based on the loss function constructed

from the plug-in predictive distribution. Unfortunately, the plug-in predictive distribution
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is not invariant to parameterization and, hence, the corresponding DIC can be sensitive to

parameterization. From the pure Bayesian viewpoint, only the Bayesian predictive distribu-

tion, but not the plug-in predictive distribution, is a full proper predictive distribution. The

Bayesian predictive distribution is invariant to reparameterization. Hence, the loss function

and the corresponding information criterion will be invariant to reparameterization; see Ando

and Tsai (2010), Spiegelhalter, et al (2014).

Let p(yrep|y,Mk) be the Bayesian predictive distribution, that is,

p(yrep|y,Mk) =

∫
p(yrep|θ,Mk)p(θ|y,Mk)dθ.

The KL divergence based on the Bayesian predictive distribution is

KL [g (yrep) , p (yrep|y,Mk)] = Eyrep (ln g (yrep))− Eyrep (ln p (yrep|y,Mk)) . (10)

The frequentist risk for a statistical decision dk that selects Model Mk is

Risk(dk) = Ey {2×KL [g (yrep) , p (yrep|y,Mk)]}

= Ey

{
Eyrep (2 ln g (yrep))

}
+ Ey

{
Eyrep (−2p (yrep|y,Mk))

}
.

A better model is expected to yield a smaller value for theRisk(dk). Since Eyrep (2 ln g (yrep))

is the same across all candidate models, it is dropped from (10) when comparing models. As

a result, we propose to choose a model that gives the smallest value of (again we suppress Mk

for notational simplicity)

EyEyrep (−2 ln p (yrep|y)) =

∫ ∫
−2 ln p (yrep|y) g (yrep) g(y)dyrepdy.

Let the selected model be Mk∗ (i.e. the optimal decision is dk∗). Then p(yrep|y,Mk∗), which is

the closest to g (yrep) in terms of the expected KL divergence, is used to generate predictions

of future observations.

4.1 ICAT

Under the iid assumption, Ando and Tsai (2010) showed that

EyEyrep [−2 ln p (yrep|y)] = Ey

{
−2 ln p(y|y) + tr

[
J−1
AT

(
θ̂AT

)
IAT

(
θ̂AT

)]}
+ o(1),

where

θ̂AT = arg max
θ∈Θ

2 ln p(y|θ) + ln p(θ),

JAT (θ) = − 1

n

n∑
t=1

{
∂2 ln ξ(yt|θ)

∂θ∂θ′

}
, IAT (θ) =

1

n

n∑
t=1

{
∂ ln ξ(yt|θ)

∂θ

∂ ln ξ(yt|θ)

∂θ′

}
,

with ln ξ(yt|θ) = ln p(yt|θ) + ln p(θ)/(2n) for t = 1, · · · , n.
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Remark 4.1 Ando and Tsai (2010) defined the following information criterion

ICAT = −2 ln p(y|y) + tr
[
I−1
AT

(
θ̂AT

)
JAT

(
θ̂AT

)]
. (11)

Since ICAT is constructed based on the Bayesian predictive distribution, it is invariant to

reparameterization. Interestingly, the first term in ICAT is different from that in AIC or

DIC. To compute the first term in ICAT from the MCMC output, note that

−2 ln p(y|y) = −2 ln

(∫
p(y|θ)p(θ|y)dθ

)
≈ −2 ln

 1

J

J∑
j=1

p
(
y|θ(j)

) ,

where
{
θ(j)

}J
j=1

are J effective random samples drawn from the posterior distribution p(θ|y).

To compute the penalty term tr
[
I−1
AT

(
θ̂AT

)
JAT

(
θ̂AT

)]
, one first needs to obtain θ̂AT . In

general, θ̂AT is not available analytically and hence, one has to use a numerical optimizer to

find θ̂AT . Then one needs to calculate IAT (θ) and JAT (θ) and to invert IAT (θ).

Remark 4.2 Under the assumptions that the prior is Op(1) and that the candidate model

encompasses the DGP, Ando and Tsai simplified the information criterion as

ICAT = −2 ln p(y|y) + P. (12)

In this case, the second term has a very simple expression as it is the same as the number of

degrees of freedom, which no longer depends on the prior information.

4.2 DICBP

Using −2 ln p(y|y) as the first term makes it difficult to compare with DIC, AIC or BIC. In

this paper, we propose a Bayesian predictive distribution-based information criterion whose

first term is the same as DIC, i.e., D
(
θ̄
)
. It turns out such a choice leads to a simple penalty

term and facilitates comparison with DIC, AIC or BIC. In the following theorem we propose

a new information criterion based on the KL divergence between the DGP and the Bayesian

predictive distribution and show the asymptotic unbiasedness.

Theorem 4.1 Define the information criterion based on the Bayesian predictive distribution

as

DICBP = D
(
θ̄
)

+ (1 + ln 2)PD, (13)

where PD is defined in (4). Under Assumptions 1-15 and when the prior of θ is Op(1), we

have

EyEyrep [−2 ln p (yrep|y)] = Ey

[
DICBP

]
+ o(1).
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Remark 4.3 The justification of DICBP remains valid if the posterior mean is replaced with

the posterior mode or with the QML estimate and if PD is replaced with P . Clearly, the penalty

term in DICBP is smaller than that in DIC, AIC, and BIC (i.e., (1 + ln 2)PD ≈ (1 + ln 2)P

as opposed to 2PD in DIC, 2P in AIC, and P lnn in BIC).

Remark 4.4 It can be shown that DICBP =ICAT+op(1) and Ey

[
DICBP

]
= Ey(ICAT )+o(1).

Clearly (1 + ln 2)PD ≈ (1 + ln 2)P > P , implying −2 ln p
(
y|θ̄
)
< −2 ln p(y|y). To see why

this is the case, note that p
(
y|θ̄
)

= p
(
y|
(∫
θp(θ|y)dθ

))
, and p(y|y) =

∫
p(y|θ)p(θ|y)dθ.

Under Assumptions 2-15, p(θ|y) is approximately Gaussian and concave. The inequality

−2 ln p
(
y|θ̄
)
< −2 ln p(y|y) follows from Jensen’s inequality.

Remark 4.5 As ICAT , DICBP is based on the Bayesian predictive distribution and hence, is

invariant to reparameterization. There are several good properties for DICBP . First, DICBP

is developed without resorting the iid assumption. Second, DICBP is easier to compute. When

the MCMC output is available, ICAT needs to evaluate

ln p(y|y) = ln

(∫
p(y|θ)p(θ|y)dθ

)
≈ ln

 1

J

J∑
j=1

p
(
y|θ(j)

) ,

while DICBP needs to evaluate∫
ln p(y|θ)p(θ|y)dθ ≈ 1

J

J∑
j=1

ln p
(
y|θ(j)

)
.

Numerically, the log-likelihood function is usually much more stable than the likelihood func-

tion. Thus, for the same value of J , the accuracy in 1
J

∑J
j=1 ln p

(
y|θ(j)

)
is often much higher

than that in ln
(

1
J

∑J
j=1 p

(
y|θ(j)

))
. Moreover, DICBP is as easy to compute as DIC. Since

DIC is monitored in WinBUGS, no additional effort is needed for calculating DICBP . Third,

like DIC, the penalty term depends on the prior information. As pointed out by Brooks (2002),

a useful contribution of DIC is to provide a way to measure the model complexity when the

prior information is incorporated. This property is shared by DICBP .

Remark 4.6 A recent literature suggests the minimization of the posterior mean of the KL

divergence between g (yrep) p (yrep|θ), i.e.,∫ [∫
ln

g (yrep)

p (yrep|θ)
g(yrep)dyrep

]
p(θ|y)dθ

=

∫
ln g (yrep) g (yrep) dyrep −

∫ ∫
[ln p (yrep|θ) g (yrep) dyrep] p (θ|y) dθ.

Hence, the corresponding frequentist risk for a statistical decision dk is

Risk(dk) = Ey

{∫ [∫
ln

g (yrep)

p (yrep|θ,Mk)
g(yrep)dyrep

]
p (θ|y,Mk) dθ

}
=

∫
ln g (yrep) g (yrep) dyrep − Ey

{∫ ∫
ln p (yrep|θ,Mk) g (yrep) dyrepp (θ|y,Mk) dθ

}
.
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Since the first term is constant across different models, van der Linde (2005, 2012), Plum-

mer (2008), Ando (2007) and Ando (2012) proposed to choose a model to minimize

Ey

{∫ ∫
[−2 ln p (yrep|θ) g (yrep) dyrep] p (θ|y) dθ

}
.

Under the iid assumption, it was shown that

Ey

[∫ ∫
[−2 ln p (yrep|θ) g (yrep) dyrep] p(θ|y)dθ

]
≈ Ey

[
D
(
θ̄
)

+ 3PD
]
,

leading to an information criterion called BPIC by Ando (2007). Clearly, the target is different

here from that under DIC and also from that under DICBP . According to Spiegelhalter, et

al (2014), BPIC chooses an “average target” rather than a “representative target”. More

importantly, although BPIC can select a model, it cannot tell the user how to actually predict

the future observations.

Remark 4.7 To understand why the penalty term in BPIC is larger than that in DICBP ,

note that the loss employed by BPIC is∫ ∫
−2 ln (p (yrep|θ)) g (yrep) p(θ|y)dθdyrep

=

∫ ∫
−2 ln (p (yrep|θ)) p(θ|y)dθg (yrep) dyrep,

while the loss by DICBP is∫
−2 ln

(∫
p (yrep|θ) p(θ|y)dθ

)
g (yrep) dyrep.

By Jensen’s inequality,

−2 ln

(∫
p (yrep|θ) p(θ|y)dθ

)
<

∫
−2 ln (p (yrep|θ)) p(θ|y)dθ.

Hence, the frequentist risk in DICBP is smaller than that in BPIC for the same candidate

model.

4.3 Frequentist Risk of DIC and DICBP

From the decision viewpoint, DIC and DICBP lead to different statistical decisions. If the

optimal model selected by DIC is different from that selected by DICBP , the two statistical

decisions are obviously different. Even when DIC and DICBP select the same model , the

two statistical decisions are still different because the predictions come from two different

distributions, namely p
(
yrep|θ̄(y),Mk

)
versus p (yrep|y,Mk). In both cases, therefore, the

frequentist risk implied by DIC and DICBP is different. Although it is known that the Bayesian

predictive distribution is a full predictive distribution and invariant to parameterization, the
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questions such as “which predictive distribution should be used for making predictions?” and

“is there any difference in using the two predictive distributions for making predictions?”

remain unanswered in the literature. The theoretical development of DICBP allows us to

answer these two important questions.

With the two information criteria, the action space is larger than before. Denote the action

space by {dk0 , dk1}Kk=1 where dka (a ∈ (0, 1)) means Mk is selected, and the predictions come

from p
(
yrep|θ̄k(y),Mk

)
if a = 0 (i.e., DIC is the corresponding information criterion) but the

predictions come from p (yrep|y,Mk) if a = 1 (i.e., DICBP is the corresponding information

criterion). Let the two KL divergence functions be represented uniformly as

L(y, dka) = 2×KL [g (yrep) , p (yrep|y, dka))] ,

where p (yrep|y, dk0) := p
(
yrep|θ̄k(y),Mk

)
, and p (yrep|y, dk1) := p (yrep|y,Mk). The frequen-

tist risk associated with dka is

Risk(dka) = Ey (L(y, dka)) =

∫
L(y, dka)g(y)dy.

Hence, the model selection problem is equivalent to the following statistical decision,

min
a∈{0,1}

min
k∈{1,··· ,K}

Risk (dka) . (14)

According to Equation (19) in Appendix, PD = P + op(1). Since P > 0 and ln 2 + 1 < 2,

for any model Mk, we have DIC > DICBP with probability approaching one (w.p.a.1). As a

result, Ey (DIC) > Ey

(
DICBP

)
w.p.a.1. Following Theorem 3.1 and Theorem 4.1, w.p.a.1,

we have

EyEyrep

[
−2 ln p

(
yrep|θ̄k(y),Mk

)]
> EyEyrep [−2 ln p (yrep|y,Mk)] ,

2EyEyrepg(yrep)− EyEyrep

[
2 ln p

(
yrep|θ̄k(y),Mk

)]
> 2EyEyrepg(yrep)− EyEyrep [2 ln p (yrep|y,Mk)] ,

and

Risk (dk0) = Ey (L (y, dk0)) > Ey (L (y, dk1)) = Risk (dk1) . (15)

Hence, w.p.a.1,

min
k∈{1,··· ,K}

Risk(dk0) > min
k∈{1,··· ,K}

Risk (dk1) . (16)

and

arg min
a∈{0,1}

[
min

k∈{1,··· ,K}
Risk(dka)

]
= 1.

This means that the optimal solution to the statistical decision problem given in Section 2.1

is obtained by DICBP w.p.a.1. This is true even in case where arg mink∈{1,··· ,K}Risk(dk0) =

arg mink∈{1,··· ,K}Risk(dk1). Therefore, as far as the frequentist risk is concerned, the Bayesian

predictive distribution but not the plug-in predictive distribution should be used for making

predictions.
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5 Conclusion

This paper provides a rigorous decision-theoretic justification of DIC based on a set of regular-

ity conditions but without requiring the iid assumption. The candidate model is not required

to encompassed the DGP. It is shown that DIC is an asymptotically unbiased estimator of

the expected KL divergence between the DGP and the plug-in predictive distribution.

Based on the Bayesian predictive distribution, a new information criterion (DICBP ) is

constructed for model selection. The first term has the same expression as that in DIC,

but the penalty term is smaller than that in DIC. The asymptotic justification of DICBP is

provided, in the same way as how DIC has been justified. The frequentist risk of DICBP is

compared with that of DIC and BPIC. It is shown that as n→∞, DICBP leads to the smaller

frequentist risk than DIC and BPIC. From the decision viewpoint, the Bayesian predictive

distribution and DICBP but not the plug-in predictive distribution or DIC leads to the optimal

decision action.

Although the theoretic framework under which we justify DIC and DICBP are general, it

requires the consistency of the posterior mean, the asymptotic normal approximation to the

posterior distribution, and the asymptotic normality to the QML estimator. When there are

latent variables in the candidate model under which the number of latent variables grows as

n grows and when the parameter space is enlarged to include latent variables, the consistency

and the asymptotic normality may not hold true. As a result, DIC and DICBP are not

justified. Moreover, when the data are nonstationary, the asymptotic normality may not hold

true. In this case, it remains unknown whether or not DIC and DICBP are still justified.

Appendix

Notations

:= definitional Equality
←→
θ posterior mode

o(1) tend to zero θ̂ QML estimate
op(1) tend to zero in probability θt pseudo true parameter
p→ converge in probability θ̂AT arg max of 2 ln p(y|θ) + ln p(θ)

θ posterior mean θ̃ arg max of ln p (yrep|θ) + ln p (y|θ) + ln p (θ)

Proof of Lemma 3.1

Under Assumptions 1-5, for any ε > 0, let n > max{n∗, n∗∗} and δ > 0. For any θ ∈
H
(←→
θ , δ

)
=
{
θ : ||θ −←→θ || ≤ δ

}
, we have

ln p(θ|y) = ln p
(←→
θ |y

)
+ L(1)

n

(←→
θ
)′ (

θ −←→θ
)

+
1

2

(
θ −←→θ

)′
L(2)
n

(
θ̃1

)(
θ −←→θ

)
= ln p

(←→
θ |y

)
+

1

2

(
θ −←→θ

)′
L(2)
n

(
θ̃1

)(
θ −←→θ

)
,
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where θ̃1 lies on the segment between θ and
←→
θ . The Taylor expansion for a random function

is justified by Lemma 3 of Jennrich (1969). It follows that

p(θ|y) = p
(←→
θ |y

)
exp

[
1

2

(
θ −←→θ

)′
L(2)
n

(
θ̃1

)(
θ −←→θ

)]
.

Let ω =
√
n
(
θ −←→θ

)
, J(θ) = − 1

nL
(2)
n (θ). For given ε and δ such that Ω = {ω : ||ω|| <

√
nδ}, we have θ ∈ H

(←→
θ , δ

)
. It can be shown that

p(ω|y) ∝ exp

[
1

2

(
θ −←→θ

)′
L(2)
n

(
θ̃1

)(
θ −←→θ

)]
= exp

{
−1

2
ω
′
J
(
θ̃1

)
ω

}
.

Letting c∗n =
∫

Ω exp
[
−1

2ω
′
J
(
θ̃1

)
ω
]

dω, cn =
∫

Ω exp
[
−1

2ω
′
J
(←→
θ
)
ω
]

dω, we have

Pn :=

∫
Ω

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]∣∣∣∣ dω
=

∫
Ω

∣∣∣∣ 1

c∗n
exp

[
−1

2
ω
′
J
(
θ̃1

)
ω

]
− 1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]∣∣∣∣ dω
=

1

cn

∫
Ω

∣∣∣∣cnc∗n exp

[
−1

2
ω
′
J
(
θ̃1

)
ω

]
− exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]∣∣∣∣ dω
=

1

cn

∫
Ω

∣∣∣∣cn − c∗nc∗n
exp

[
−1

2
ω
′
J
(
θ̃1

)
ω

]
+ exp

[
−1

2
ω
′
J
(
θ̃1

)
ω

]
− exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]∣∣∣∣ dω
≤ 1

cn


∫

Ω

∣∣∣∣cn − c∗nc∗n

∣∣∣∣ exp

−ω′J
(
θ̃1

)
ω

2

dω +

∫
Ω

∣∣∣∣∣∣exp

ω′J
(
θ̃1

)
ω

2

− exp

−ω′J
(←→
θ
)
ω

2

∣∣∣∣∣∣dω


≤ |cn − c∗n|
cn

+
1

cn

∫
Ω

∣∣∣∣exp

[
−1

2
ω
′
J
(
θ̃1

)
ω

]
− exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]∣∣∣∣ dω
≤ 2

cn

∫
Ω

∣∣∣∣exp

[
−1

2
ω
′
J
(
θ̃1

)
ω

]
− exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]∣∣∣∣dω
≤ 2

cn

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J
(
θ̃1

)
− J

(←→
θ
)]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω.

When Ω = {ω : ||ω|| <
√
nδ}, we have θ ∈ H(

←→
θ , δ) and −A(ε) ≤ [J

(
θ̃1

)
J−1

(←→
θ
)
− IP ] ≤

A(ε). Define

Qn =

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J
(
θ̃1

)
− J

(←→
θ
)]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω.
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By the Hölder inequality, we have

lim
n→∞

Qn = lim
n→∞

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J
(
θ̃1

)
− J

(←→
θ
)]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω

= lim
n→∞

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J
(
θ̃1

)
J−1

(←→
θ
)
− IP

]
J
(←→
θ
)
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω

≤ lim
n→∞

cn


∫

Ω

∣∣∣∣∣∣exp

−ω
′
[
J
(
θ̃1

)
J−1

(←→
θ
)
− IP

]
J
(←→
θ
)
ω

2

− 1

∣∣∣∣∣∣
2

1

cn
exp

−ω′J
(←→
θ
)
ω

2

dω


1/2

= D
1/2
1 (D1 − 2D2 +D3)1/2,

where

D1 = lim
n→∞

∫
Ω

exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω,

D2 = lim
n→∞

∫
Ω

exp

{
−1

2
ω
′
[
J
(
θ̃1

)
J−1

(←→
θ
)
− IP

]
J
(←→
θ
)
ω

}
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω

= lim
n→∞

∫
Ω

exp

[
−1

2
ω
′
J
(
θ̃1

)
ω

]
dω,

D3 = lim
n→∞

∫
Ω

exp
{
−ω′

[
J
(
θ̃1

)
J−1

(←→
θ
)
− IP

]
J
(←→
θ
)
ω
}

exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω.

It can be shown that D1 = limn→∞ cn = (2π)P/2|J
(←→
θ
)
|−1/2. Following the proof of Lemma

2.1 and Theorem 2.1 of Chen (1985), we have D−2 ≤ D2 ≤ D+
2 , D

−
3 ≤ D3 ≤ D+

3 and

D+
2 =

∣∣∣J (←→θ )∣∣∣−1/2
|IP −A(ε)|−1/2

∫
||Z||<sn

exp

[
−1

2
Z ′Z

]
dZ,

D−2 =
∣∣∣J (←→θ )∣∣∣−1/2

|IP +A(ε)|−1/2

∫
||Z||<tn

exp

[
−1

2
Z ′Z

]
dZ,

D+
3 =

∣∣∣J (←→θ )∣∣∣−1/2
|IP − 2A(ε)|−1/2

∫
||Z||<s′n

exp

[
−1

2
Z ′Z

]
dZ,

D−3 =
∣∣∣J (←→θ )∣∣∣−1/2

|IP + 2A(ε)|−1/2

∫
||Z||<t′n

exp

[
−1

2
Z ′Z

]
dZ,

where sn = δ(1 − e∗(ε))1/2/σ∗n, tn = δ(1 + e∗(ε))1/2/σn, s′n = δ(1 − 2e∗(ε))1/2/σ∗n and t′n =

δ(1 + 2e∗(ε))1/2/σn; σ2
n and σ∗2n is the largest and smallest eigenvalue of

{
J
(←→
θ
)}−1

; e(ε)

and e∗(ε) is the largest and the smallest eigenvalue of A(ε). Under the regularity conditions,

when n→∞, sn →∞, tn →∞, s′n →∞, t′n →∞. If ε→ 0, we get

lim
n→∞

|IP ±A(ε)| = 1, lim
n→∞

|IP ± 2A(ε)| = 1,

lim
n→∞

∫
||Z||<sn

exp

[
−1

2
Z ′Z

]
dZ = (2π)P/2,

lim
n→∞

∫
||Z||<tn

exp

[
−1

2
Z ′Z

]
dZ = (2π)P/2.
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Then, we can show thatD1 = D2 = D3 = (2π)P/2
∣∣∣J (←→θ )∣∣∣−1/2

which implies that limn→∞Qn =

0 and limn→∞ Pn = 0.

For i, j = 1, 2, · · · , P , it can be shown that

lim
n→∞

∣∣∣∣∫
Ω
ωi

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]}
dω

∣∣∣∣
≤ lim

n→∞

∫
Ω

∣∣∣∣ωi{p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]}∣∣∣∣ dω
≤ lim

n→∞

|cn − c∗n|
cn

∫
|ωi|p(ω|y)dω

+ lim
n→∞

1

cn

∫
Ω
|ωi|

∣∣∣∣exp

{
−1

2
ω
′
[
J
(
θ̃1

)
− J

(←→
θ
)]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω.

By Assumption 5, we have

|cn − c∗n|
cn

∫
|ωi|p(ω|y)dω

p−→ 0.

By Hölder’s inequality, we have∫
Ω
|ωi|

∣∣∣∣exp

{
−1

2
ω
′
[
J
(
θ̃1

)
− J

(←→
θ
)]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω

= cn

∫
Ω
|ωi|

∣∣∣∣exp

{
−1

2
ω
′
[
J
(
θ̃1

)
− J

(←→
θ
)]
ω

}
− 1

∣∣∣∣ 1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω

≤


∫

Ω

∣∣∣∣∣∣exp

−ω
′
[
J
(
θ̃1

)
J−1

(←→
θ
)
− IP

]
J
(←→
θ
)
ω

2

− 1

∣∣∣∣∣∣
2

exp

−ω′J
(←→
θ
)
ω

2

dω


1
2

×


∫

Ω
ω2
i exp

−ω′J
(←→
θ
)
ω

2

dω


1
2

=
√
Eω2

i (ED1 − 2ED2 + ED3)1/2 −→ 0,

where

E (D1) =

∫
Ω

exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω,

E (D2) =

∫
Ω

exp

{
−1

2
ω
′
[
J
(
θ̃1

)
J−1

(←→
θ
)
− IP

]
J
(←→
θ
)
ω

}
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω

=

∫
Ω

exp

[
−1

2
ω
′
J
(
θ̃1

)
ω

]
dω,

E (D3) =

∫
Ω
ω2
i exp

{
−ω′

[
J
(
θ̃1

)
J−1

(←→
θ
)
− IP

]
J
(←→
θ
)
ω
}

exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]
dω

=

∫
Ω
ω2
i exp

{
−1

2
ω
′
[
2J
(
θ̃1

)
− J

(←→
θ
)]
J
(←→
θ
)
ω

}
dω

and E (D1)− 2E (D2) + E (D3) −→ 0
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Hence, we have ∣∣∣∣∫
Ω
ωi

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]}
dω

∣∣∣∣
≤

∫
Ω
|ωi|

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]∣∣∣∣ dω p−→ 0.

Similarly, we also can show that∣∣∣∣∫
Ω
ωiωj

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]}
dω

∣∣∣∣
≤

∫
Ω
|ωiωj |

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]∣∣∣∣ dω p−→ 0.

Note that

lim
n→∞

∫
Ω
ωi

{
1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]}
dω = 0,

lim
n→∞

∫
Ω
ωiωj

{
1

cn
exp

[
−1

2
ω
′
J
(←→
θ
)
ω

]}
dω = J−1

ij

(←→
θ
)
,

where J−1
ij

(←→
θ
)

is the (i, j)th element of J−1
(←→
θ
)

. Hence, E(ω|y) = 0 + op(1) and

E
(
ωω

′ |y
)

= J−1
(←→
θ
)

+ op(1) which imply that

E
[(
θ −←→θ

)
|y
]

= op(n
−1/2), E

[(
θ −←→θ

)(
θ −←→θ

)′
|y
]

= −L−(2)
n

(←→
θ
)

+ op(n
−1).

Proof of Theorem 3.1

Following Bester and Hansen (2006), under Assumption 1-15, we have

←→
θ (y) = θ(y) +Op

(
n−1

)
.

Then we can show that

θ(y) = θt +Op

(
n−1/2

)
,

1√
n
B−1
n

∂ ln p(yrep|θt)
∂θ

d→ N (0, I) , (17)

and

C−1/2
n

√
n
(
θ(y)− θt

) d−→ N (0, IP ) , (18)

where Cn = HnBnH
−1
n . When there is no confusion, we write Hn

(
θt
)

as Hn and Bn
(
θt
)

as

Bn.
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Note that

EyEyrep

(
−2 ln p

(
yrep|θ(y)

))
=

[
EyEyrep

(
−2 ln p

(
yrep|θ (yrep)

))]
(T1)

+
[
EyEyrep

(
−2 ln p

(
yrep|θt

))
− EyEyrep

(
−2 ln p

(
yrep|θ (yrep)

))]
(T2)

+
[
EyEyrep

(
−2 ln p

(
yrep|θ(y)

))
− EyEyrep

(
−2 ln p

(
yrep|θt

))]
(T3)

.

Now let us analyze T2 and T3. First expand ln p
(
yrep|θt

)
at θ (yrep),

ln p
(
yrep|θt

)
= ln p

(
yrep|θ (yrep)

)
+
∂ ln p

(
yrep|θ (yrep)

)
∂θ

′ (
θt − θ (yrep)

)
+
(
θt − θ (yrep)

)′ ∂ ln p
(
yrep|θ (yrep)

)
∂θ∂θ′

(
θt − θ (yrep)

)
+ op (1)

= ln p
(
yrep|θ (yrep)

)
+
(
θt − θ (yrep)

)′ ∂ ln p
(
yrep|θ (yrep)

)
∂θ∂θ′

(
θt − θ (yrep)

)
+ op (1) .

Then we have

T2 = EyEyrep

[
−2 ln p

(
yrep|θt

)
+ 2 ln p

(
yrep|θ (yrep)

)]
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(
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)′ ∂ ln p
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∂θ∂θ′
(
θ(y)− θt
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+ o (1) ,

by Assumption 10 and the dominated convergence theorem. Next, we expand ln p
(
yrep|θ(y)

)
at θt:

ln p
(
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= ln p
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yrep|θt

)
+
∂ ln p
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)
∂θ

′ (
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+

1

2

(
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)′ ∂2 ln p
(
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)
∂θ∂θ′

(
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)
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Substituting the above expansion into T3, we have

T3 = EyEyrep(−2 ln p
(
yrep|θ(y)

)
)− EyEyrep(−2 ln p

(
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)
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∂ ln p
(
yrep|θt

)
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Note that

1

n

∂2 ln p
(
y|θ(y)

)
∂θ∂θ′
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(
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under Assumption 6-15 and by the uniform law of large number. Hence, we get
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So we only need to analyze T3. Note that
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√
n
(
θ̂(y)− θt

)]
+ o (1)

= Ey

[(
C−1/2
n

√
n
(
θ̂(y)− θt

))′
C1/2
n (−Hn)C1/2

n C−1/2
n

√
n
(
θ̂(y)− θt

)]
+ o (1)

= Ey

{
tr

[
HnC

1/2
n C−1/2

n

√
n
(
θ̂(y)− θt

)√
n
(
θ̂(y)− θt

)′
C−1/2
n C1/2

n

]}
+ o (1)

= tr

{
(−Hn)C1/2

n Ey

[
C−1/2
n

√
n
(
θ̂(y)− θt

)√
n
(
θ̂(y)− θt

)′
C−1/2
n

]
C1/2
n

}
+ o (1)

= tr

{
(−Hn)C1/2

n Ey

[
C−1/2
n

√
n
(
θ̂(y)− θt

)√
n
(
θ̂(y)− θt

)′
C−1/2
n

]
C1/2
n

}
+ o (1) ,

Then, we have

Ey

[
C−1/2
n

√
n
(
θ(y)− θt

)√
n
(
θ(y)− θt

)′
C−1/2
n

]
= IP + o (1) .

Hence,

T3 = tr
(

(−Hn)C1/2
n C1/2

n

)
+ o (1) = tr ((−Hn)Cn) + o (1)

= tr
(

(−Hn) (−Hn)−1Bn (−Hn)−1
)

+ o (1) = tr
(

(−Hn) (−Hn)−1Bn (−Hn)−1
)

+ o (1)

= tr
(
Bn (−Hn)−1

)
+ o (1) ,

and

Ey

[
Eyrep(−2 ln p

(
yrep|θ(y)

)
)
]

= Ey

[
Eyrep(−2 ln p

(
yrep|θ (yrep)

)
)
]

+ 2tr
(
Bn (−Hn)−1

)
+ o (1)

= Ey

[
Ey(−2 ln p(y|θ(y)))

]
+ 2tr

(
Bn (−Hn)−1

)
+ o (1)

= Ey(−2 ln p(y|θ(y))) + 2tr
(
Bn (−Hn)−1

)
+ o (1)

= Ey(−2 ln p(y|θ(y)) + 2P ) + o (1) ,

under the condition that Bn = −Hn + o (1). If the candidate model is correctly specified,

Bn = −Hn for each n, then the condition is automatically satisfied.

In the light of Lemma 3.1, by the Taylor expansion, we get

ln p
(
y|θ̄
)

= ln p
(
y|←→θ

)
+
∂ ln p

(
y|←→θ

)
∂θ

′ (
θ̄ −←→θ

)
+

1

2

(
θ̄ −←→θ

)′ ∂2 ln p
(
y|θ̃2

)
∂θθ′

(
θ̄ −←→θ

)
= ln p

(
y|←→θ

)
+Op(n

1/2)Op(n
−1) +Op(n

−1)Op(n)op(n
−1)

= ln p
(
y|←→θ

)
+Op(n

−1/2),

where θ̃2 lies on the segment between θ̄ and
←→
θ .
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Following Lemma 3.1, we get

PD =

∫
−2
[
ln p(y|θ)− ln p

(
y|θ̄
)]
p(θ|y)dθ

=

∫
−2
[
ln p(y|θ)− ln p

(
y|←→θ

)]
p(θ|y)dθ + 2 ln p

(
y|←→θ

)
− 2 ln p

(
y|θ̄
)

= −2
∂ ln p

(
y|←→θ

)
∂θ

′ (
θ̄ −←→θ

)
−
∫ (

θ −←→θ
)′ ∂2 ln p

(
y|θ̃3

)
∂θθ′

(
θ −←→θ

)
p(θ|y)dθ + op(1)

= op(1)−
∫ (

θ −←→θ
)′
L(2)
n

(
θ̃3

)(
θ −←→θ

)
p(θ|y)dθ +

∫ (
θ −←→θ

)′ ∂ ln p
(
θ̃3

)
∂θθ′

(
θ −←→θ

)
p(θ|y)dθ

= −
∫ (

θ −←→θ
)′
L(2)
n

(←→
θ
)(
θ −←→θ

)
p(θ|y)dθ + op(1) +Op(n

−1)

= −tr
{
L2
n

(←→
θ
)
V
(←→
θ
)}

+ op(1)

= tr
{
L(2)
n

(←→
θ
) [
L−(2)
n

(←→
θ
)

+ op(n
−1)
]}

= tr
[
L−(2)
n

(←→
θ
)
L−(2)
n

(←→
θ
)]

+ tr
[
L(2)
n

(←→
θ
)
op(n

−1)
]

= P + op(1), (19)

where θ̃3 lies on the segment between θ and
←→
θ .

Finally, we have

EyEyrep

[
−2 ln p

(
yrep|θ(y)

)]
= Ey

[
−2 ln p(y|θ) + 2P + op(1)

]
= Ey

[
D
(
θ
)

+ 2PD + op(1)
]

= Ey [DIC1 + op(1)] = Ey [DIC1] + o(1),

by Assumption 10 and the dominated convergence theorem.

Proof of Theorem 4.1

Denote

θ̃ := arg max
θ

ln p (yrep|θ) + ln p (y|θ) + ln p (θ) .

Let

ln p (y|θ) =

n∑
t=1

lt (yt,θ) , ln p (yrep|θ) =
n∑
t=1

lt (yt,rep,θ) ,

and 5lt (yt,θ) and 52lt (yt,θ) be the first and the second order derivatives of lt (yt,θ). Then

we have the following lemma under the condition that y and yrep are independent:

Lemma 5.1 Under Assumptions 1-15, if the prior of θ is Op(1), θ̃
p→ θt.
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Proof. The proof follows the argument in Theorem 4.2 in Wooldridge (1994) and in Bester

and Hansen (2006). Let Qn (θ) = n−1
∑n

t=1 lt (yt,θ)+n−1
∑n

t=1 lt (yt,rep,θ)+n−1 ln p (θ) and

Q̄n (θ) = E [Qn (θ)]. Then we need to show that, for each ε > 0,

P

[
sup
θ∈Θ

∣∣Qn (θ)− Q̄n (θ)
∣∣ > ε

]
→ 0 as n→∞.

Let δ > 0 be a number to be set later. Because Θ is compact, there exists a finite number of

spheres of radius δ about θj say ζδ (θj), j = 1, . . . ,K (δ), which cover Θ. Set ζj = ζδ (θj),

K = K (δ). Because Θ ⊂ ∪Kj=1ζj , it follows that

P

[
sup
θ∈Θ

∣∣Qn (θ)− Q̄n (θ)
∣∣ > ε

]
≤ P

[
max

1≤j≤K
sup
θ∈ζj

∣∣Qn (θ)− Q̄n (θ)
∣∣ > ε

]

≤
K∑
j=1

P

[
sup
θ∈ζj

∣∣Qn (θ)− Q̄n (θ)
∣∣ > ε

]
.

For all θ ∈ ζj ,∣∣Qn (θ)− Q̄n (θ)
∣∣ ≤ |Qn (θ)−Qn (θj)|+

∣∣Qn (θj)− Q̄n (θj)
∣∣+
∣∣Q̄n (θj)− Q̄n (θ)

∣∣
≤ 1

n

n∑
t=1

|lt (yt,θ)− lt (yt,θj)|+
1

n

n∑
t=1

|lt (yt,rep,θ)− lt (yt,rep,θj)|

+

∣∣∣∣∣ 1n
n∑
t=1

(
lt (yt,θ)− l̄t (θj)

)∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
t=1

(
lt (yt,rep,θ)− l̄t (θj)

)∣∣∣∣∣
+

1

n

n∑
t=1

∣∣l̄t (yt,θ)− l̄t (θj)
∣∣+

1

n

n∑
t=1

∣∣l̄t (yt,rep,θ)− l̄t (θj)
∣∣+

∣∣∣∣ ln p (θ)

n

∣∣∣∣ ,
where l̄t (θj) := E [lt (yt,θ)] = E [lt (yt,rep,θ)]. By Assumption 13, for all θ ∈ ζj ,

|lt (yt,θ)− lt (yt,θj)| ≤ ct (yt) ‖θ−θj‖ ≤ δct (yt) .

and ∣∣l̄t (yt,θ)− l̄t (θj)
∣∣ ≤ E [ct (yt) ‖θ−θj‖] ≤ δc̄t,

where c̄t = E [ct (yt)] = E [ct (yt,rep)]. Similarly we have

|lt (yt,rep,θ)− lt (yt,rep,θj)| ≤ δct (yt,rep) ,
∣∣l̄t (yt,rep,θ)− l̄t (θj)

∣∣ ≤ δc̄t .
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Thus, we have

sup
θ∈ζj

∣∣Qn (θ)− Q̄n (θ)
∣∣ ≤ δ

n

n∑
t=1

ct (yt) +

∣∣∣∣∣ 1n
n∑
t=1

(
lt (yt,θ)− l̄t (θj)

)∣∣∣∣∣+
δ

n

n∑
t=1

c̄t

+
δ

n

n∑
t=1

ct (yt,rep) +

∣∣∣∣∣ 1n
n∑
t=1

(
lt (yt,rep,θ)− l̄t (θj)

)∣∣∣∣∣+
δ

n

n∑
t=1

c̄t

+

∣∣∣∣ ln p (θ)

n

∣∣∣∣
≤ 2

δ

n

n∑
t=1

c̄t + δ

∣∣∣∣∣ 1n
n∑
t=1

(ct (yt)− c̄t)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
t=1

(
lt (yt,θ)− l̄t (θj)

)∣∣∣∣∣
+2

δ

n

n∑
t=1

c̄t + δ

∣∣∣∣∣ 1n
n∑
t=1

(ct (yt,rep)− c̄t)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
t=1

(
lt (yt,rep,θ)− l̄t (θj)

)∣∣∣∣∣
+

∣∣∣∣ ln p (θ)

n

∣∣∣∣
≤ 4δC̄ + δ

∣∣∣∣∣ 1n
n∑
t=1

(ct (yt)− c̄t)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
t=1

(
lt (yt,θ)− l̄t (θj)

)∣∣∣∣∣
+δ

∣∣∣∣∣ 1n
n∑
t=1

(ct (yt,rep)− c̄t)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
t=1

(
lt (yt,rep,θ)− l̄t (θj)

)∣∣∣∣∣+

∣∣∣∣ ln p (θ)

n

∣∣∣∣ ,
where n−1

∑n
t=1 c̄t ≤ C̄ <∞ by Assumption 13. It follows that

P

[
max
θ∈ζj

∣∣Qn (θ)− Q̄n (θ)
∣∣ > ε

]

≤ P

 δ
∣∣ 1
n

∑n
t=1 (ct (yt)− c̄t)

∣∣+
∣∣ 1
n

∑n
t=1

(
lt (yt,θ)− l̄t (θj)

)∣∣
+δ
∣∣ 1
n

∑n
t=1 (ct (yt,rep)− c̄t)

∣∣+
∣∣ 1
n

∑n
t=1

(
lt (yt,rep,θ)− l̄t (θj)

)∣∣+

∣∣∣∣ ln p(θ)
n

∣∣∣∣ > ε− 4δC̄

 .
Now choose δ ≤ 1 such that

(
ε− 2δC̄

)
> ε/2, then

P

[
sup
θ∈ζj

∣∣Qn (θ)− Q̄n (θ)
∣∣ > ε

]

≤ P

 ∣∣ 1
n

∑n
t=1 (ct (yt)− c̄t)

∣∣+
∣∣ 1
n

∑n
t=1

(
lt (yt,θ)− l̄t (θj)

)∣∣
+
∣∣ 1
n

∑n
t=1 (ct (yt,rep)− c̄t)

∣∣+
∣∣ 1
n

∑n
t=1

(
lt (yt,rep,θ)− l̄t (θj)

)∣∣+

∣∣∣∣ ln p(θ)
n

∣∣∣∣ > ε/2

 .
Next, choose n0 so that

P

 ∣∣ 1
n

∑n
t=1 (ct (yt)− c̄t)

∣∣+
∣∣ 1
n

∑n
t=1

(
lt (yt,θ)− l̄t (θj)

)∣∣
+
∣∣ 1
n

∑n
t=1 (ct (yt,rep)− c̄t)

∣∣+
∣∣ 1
n

∑n
t=1

(
lt (yt,rep,θ)− l̄t (θj)

)∣∣+

∣∣∣∣ ln p(θ)
n

∣∣∣∣ > ε/2

 ≤ ε

K

for all n ≥ n0, and all j = 1, . . . ,K by Assumptions 5-15 since K is finite. Hence, for n ≥ n0

P

[
sup
θ∈Θ

∣∣Qn (θ)− Q̄n (θ)
∣∣ > ε

]
≤ ε.
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It then follows that Qn (θ) satisfies a uniform weak law of large numbers and the consistency

of θ̃ followed by the usual argument.

Lemma 5.2 Under Assumptions 1-15,
√
n
(
θ̃ − θt

)
d→ N

(
0,−

(
2H
(
θt
))−1

)
.

Proof. The proof follows from Bester and Hansen (2006). By Lemma 5.1, we have,

0 =
1

n

n∑
t=1

[
5lt

(
yt, θ̃

)
+5lt

(
yt,rep, θ̃

)]
+

1

n
ln p

(
θ̃
)

=
1

n

n∑
t=1

[
5lt

(
yt,θ

t
)

+5lt
(
yt,rep,θ

t
)]

+
1

n

n∑
t=1

[
52lt

(
yt, θ̃4

)
+52lt

(
yt,rep, θ̃3

)](
θ̃ − θt

)

+
ln p

(
θ̃
)

n

where θ̃4 is an intermediate value between θ̃ and θt. It follows that

√
n
(
θ̃ − θt

)
=

(
−n−1

n∑
t=1

[
52lt

(
yt, θ̃4

)
+52lt

(
yt,rep, θ̃4

)])−1

×(
n−1/2

n∑
t=1

[
5lt

(
yt,θ

t
)

+5lt
(
yt,rep,θ

t
)]

+ n−1/2 ln p
(
θ̃
))

.

Under the assumptions, we have

n−1/2 ln p
(
θ̃
)

= op (1) , − n−1
n∑
t=1

52lt

(
yt, θ̃4

)
p→ −H

(
θt
)
,

−n−1
n∑
t=1

52lt

(
yt, θ̃4

)
p→ −H

(
θt
)
,−n−1

n∑
t=1

52lt

(
yt,rep, θ̃4

)
p→ −H

(
θt
)
,

n−1/2
n∑
t=1

5lt
(
yt,θ

t
) d→ N

(
0,−H

(
θt
))
, n−1/2

n∑
t=1

5lt
(
yt,rep,θ

t
) d→ N

(
0,−H

(
θt
))
.

Note that limn→∞ V ar
(
n−1/2

∑n
t=15lt

(
yt,θ

t
))

= −H
(
θt
)
. By the central limit theorem

and the Cramer-Wold device, we get

√
n
(
θ̃ − θt

)
d→ N

(
0,
(
−2H

(
θt
))−1

)
or
√

2n
(
θ̃ − θt

)
d→ N

(
0,
(
−H

(
θt
))−1

)
.

Lemma 5.3 Under Assumption 1-15, the asymptotic joint distribution of
√
n
(
θ̃ − θt

)
and

√
n
(←→
θ − θt

)
is √
n
(
θ̃ − θt

)
√
n
(←→
θ − θt

)  d→ N

([
0
0

]
,

[ (
−2H

(
θt
))−1 (

−2H
(
θt
))−1(

−2H
(
θt
))−1 (

−H
(
θt
))−1

])
.
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Proof. By Lemma 5.2, we have

√
n
(
θ̃ − θt

)
=

(
−n−1

n∑
t=1

[
52lt

(
yt, θ̃4

)
+52lt

(
yt,rep, θ̃4

)])−1

×

(
n−1/2

n∑
t=1

[
5lt

(
yt,θ

t
)

+5lt
(
yt,rep,θ

t
)]

+ n−1/2 ln p
(
θ̃
))

,

and

√
n
(←→
θ − θt

)
=

(
−n−1

n∑
t=1

52lt

(
yt, θ̃5

))−1(
n−1/2

n∑
t=1

5lt
(
yt,θ

t
)

+ n−1/2 ln p
(
θ̃
))

,

where θ̃5 is an intermediate value between
←→
θ and θt. Hence, we have

Cov
(√

n
(
θ̃ − θt

)
,
√
n
(←→
θ − θt

))
= E

(√
n
(
θ̃ − θt

) [√
n
(←→
θ − θt

)]′)
= E

[ {
−n−1

∑n
t=1

[
52lt (yt,θ) +52lt (yt,rep,θ)

]}−1
n−1/2

∑n
t=15lt

(
yt,θ

t
)

×
[
n−1/2

∑n
t=15lt

(
yt,θ

t
)]′ (−n−1

∑n
t=152lt (yt,θ1)

)−1

]
+ op (1)

=
(
−2H

(
θt
))−1 (−H

(
θt
)) (
−H

(
θt
))−1

+ op (1)

=
(
−2H

(
θt
))−1

+ op (1)

Then we have √
n
(
θ̃ − θt

)
√
n
(←→
θ − θt

)  d→ N

([
0
0

]
,

[ (
−2H

(
θt
))−1 (

−2H
(
θt
))−1(

−2H
(
θt
))−1 (

−H
(
θt
))−1

])
.

Under Assumptions 1-15, it can be shown that,

EyEyrep (−2 ln p (yrep|y)) = Ey

[
−2 ln p

(
y|←→θ

)
+ (1 + ln 2)P

]
+ o (1) .

By the Laplace approximation (Tierney et al., 1989 and Kass et al., 1990) and Lemma

5.2, we have

p (yrep|y) =

∫
p (yrep|θ) p (θ|y) dθ=

∫
p (yrep|θ) p (y|θ) p (θ) dθ∫

p (y|θ) p (θ) dθ

=

∫
exp (−nhN (θ)) dθ∫
exp (−nhD (θ)) dθ

=

∣∣∣∇2hN

(
θ̃
)∣∣∣−1/2

exp
(
−nhN

(
θ̃
))

∣∣∣∇2hD

(←→
θ
)∣∣∣−1/2

exp
(
−nhD

(←→
θ
)) (1 +Op

(
1

n

))
,

where

hN (θ) = − 1

n
(ln p (yrep|θ) + ln p (y|θ) + ln p (θ)) ,
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hD (θ) = − 1

n
(ln p (y|θ) + ln p (θ)) .

We know

ln


∣∣∣∇2hN

(
θ̃
)∣∣∣−1/2

exp
(
−nhN

(
θ̃
))

∣∣∣∇2hD

(←→
θ
)∣∣∣−1/2

exp
(
−nhD

(←→
θ
))


= −1

2

(
ln
∣∣∣∇2hN

(
θ̃
)∣∣∣− ln

∣∣∣∇2hD

(←→
θ
)∣∣∣)+

[
−nhN

(
θ̃
)

+ nhD

(←→
θ
)]
.

The first term is

−1

2

(
ln
∣∣∣∇2hN

(
θ̃
)∣∣∣− ln

∣∣∣∇2hD

(←→
θ
)∣∣∣)

= −1

2
ln

∣∣∣∣∣∣− 1

n

∂ ln p
(
yrep|θ̃

)
∂θ∂θ′

− 1

n

∂ ln p
(
y|θ̃
)

∂θ∂θ′
− 1

n

∂ ln p
(
θ̃
)

∂θ∂θ′

∣∣∣∣∣∣
+

1

2
ln

∣∣∣∣∣∣− 1

n

∂ ln p
(
y|←→θ

)
∂θ∂θ′

− 1

n

∂ ln p
(←→
θ
)

∂θ∂θ′

∣∣∣∣∣∣
= −1

2
ln
∣∣−H

(
θt
)
−H

(
θt
)∣∣+

1

2
ln
∣∣−H

(
θt
)∣∣+ op (1)

= −1

2
ln
∣∣−2H

(
θt
)∣∣+

1

2
ln
∣∣−H

(
θt
)∣∣+ op (1)

= −1

2
ln
(
2P
∣∣−H

(
θt
)∣∣)+

1

2
ln
∣∣−H

(
θt
)∣∣+ op (1) = −1

2
P ln 2 + op (1) . (20)

Here we can see how ln 2 shows up in the penalty term.

The second term is

−nĥN
(
θ̃
)

+ nĥD

(←→
θ
)

= ln p
(
yrep|θ̃

)
+ ln p

(
y|θ̃
)

+ ln p
(
θ̃
)
− ln p

(
y|←→θ

)
− ln p

(←→
θ
)

= ln p
(
yrep|θ̃

)
+ ln p

(
y|θ̃
)
− ln p

(
y|←→θ

)
+ op (1)

= ln p
(
yrep|

←→
θ
)

+ ln p
(
yrep|θ̃

)
− ln p

(
yrep|

←→
θ
)

+ ln p
(
y|θ̃
)
− ln p

(
y|←→θ

)
+ op (1) .

We can decompose ln p
(
yrep|θ̃

)
− ln p

(
yrep|

←→
θ
)

as

ln p
(
yrep|θ̃

)
− ln p

(
yrep|

←→
θ
)

= ln p
(
yrep|θ̃

)
− ln p

(
yrep|θt

)
+ ln p

(
yrep|θt

)
− ln p

(
yrep|

←→
θ
)

:= D1 +D2.

For D1, we have

D1 =
1√
n

∂ ln p
(
yrep|θt

)
∂θ

′√
n
(
θ̃ − θt

)
+

1

2

√
n
(
θ̃ − θt

)′ 1

n

∂ ln p
(
yrep|θt

)
∂θ∂θ′

√
n
(
θ̃ − θt

)
+ op (1)
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Following Assumption 5-15 and Lemma 5.3, we have

1√
n

∂ ln p
(
yrep|θt

)
∂θ

′√
n
(
θ̃ − θt

)
=
√
n
(←→
θ (yrep)− θt

)′(
−n−1

n∑
t=1

52lt
(
yt,rep,θ

t
))√

n
(
θ̃ − θt

)
+ op (1)

=
√
n
(←→
θ (yrep)− θt

)′ (
−H

(
θt
))√

n
(
θ̃ − θt

)
+ op (1)

= tr

[(
−H

(
θt
))√

n
(
θ̃ − θt

)√
n
(←→
θ (yrep)− θt

)′]
+ op (1)

=
√
n
(←→
θ (yrep)− θt

)′ (
−H

(
θt
))1/2 (−H

(
θt
))−1/2 (−H

(
θt
)) (
−2H

(
θt
))−1/2

×
(
−2H

(
θt
))1/2√

n
(
θ̃ − θt

)
+ op (1)

= 2−1/2
[(
−H

(
θt
))1/2√

n
(←→
θ (yrep)− θt

)]′ (
−2H

(
θt
))1/2√

n
(
θ̃ − θt

)
+ op (1) .

where [(
−H

(
θt
))1/2√

n
(←→
θ (yrep)− θt

)]′ (
−2H

(
θt
))1/2√

n
(
θ̃ − θt

)
=

(−H
(
θt
))1/2(−n−1

n∑
t=1

52lt

(
yt,rep, θ̃6

))−1

n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)

×
(
−2H

(
θt
))1/2(−n−1

n∑
t=1

[
52lt (yt,θ) +52lt (yt,rep,θ)

])−1

×

[
n−1/2

n∑
t=1

5lt
(
yt,θ

t
)

+ n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)]

=

[(
−H

(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)]′ (
−2H

(
θt
))−1/2

×

[
n−1/2

n∑
t=1

5lt
(
yt,θ

t
)

+ n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)]

+ op (1)

=

[(
−H

(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)]′ (
−2H

(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,θ

t
)

+2−1/2

[(
−H

(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)]′ (
−H

(
θt
))−1/2

×n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)

+ op (1) ,

with θ̃6 lying between
←→
θ (yrep)− θt, and[(

−H
(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)]′ (
−H

(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
) d→ χ2 (P ) .

(21)
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Thus, we have

EyEyrep

([(
−H

(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)]′ (
−2H

(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,θ

t
))

= 0,

(22)

since y and yrep are independent. Hence, we have

EyEyrep

[
1√
n

∂ ln p
(
yrep|θt

)
∂θ

′√
n
(
θ̃ − θt

)]

= EyEyrep

[
2−1/2

[(
−H

(
θt
))1/2√

n
(←→
θ (yrep)− θt

)]′ (
−2H

(
θt
))1/2√

n
(
θ̃ − θt

)
+ op (1)

]
= EyEyrep

(
2−1/2

[(
−H

(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,rep,θ

t
)]′ (
−2H

(
θt
))−1/2

n−1/2
n∑
t=1

5lt
(
yt,θ

t
))

+EyEyrep

[
2−1/22−1/2

[(
−H

(
θt
))−1/2

n−1/2
∑n

t=15lt
(
yt,rep,θ

t
)]′ (
−H

(
θt
))−1/2

×n−1/2
∑n

t=15lt
(
yt,rep,θ

t
)

]
+ o (1)

=
1

2
P + o (1) .

Moreover,

1

2

√
n
(
θ̃ − θt

)′ 1

n

∂ ln p
(
yrep|θt

)
∂θ∂θ′

√
n
(
θ̃ − θt

)
= −1

2

√
n
(
θ̃ − θt

)′ (
−H

(
θt
))√

n
(
θ̃ − θt

)
+ op (1)

= −1

2

√
n
(
θ̃ − θt

)′ (
−2H

(
θt
))1/2 (−2H

(
θt
))−1/2 (−H

(
θt
)) (
−2H

(
θt
))−1/2 (−2H

(
θt
))1/2

×
√
n
(
θ̃ − θt

)
+ op (1)

= −1

4

[(
−2H

(
θt
))1/2√

n
(
θ̃ − θt

)]′ (
−2H

(
θt
))1/2√

n
(
θ̃ − θt

)
+ op (1)

where [(
−2H

(
θt
))1/2√

n
(
θ̃ − θt

)]′ (
−2H

(
θt
))1/2√

n
(
θ̃ − θt

)
d→ χ2 (P ) . (23)

For D2, we have

D2 = ln p
(
yrep|θt

)
− ln p

(
yrep|θt

)
− 1√

n

∂ ln p
(
yrep|θt

)
∂θ

′√
n
(←→
θ − θt

)
−1

2

(←→
θ − θt

)′ ∂ ln p
(
yrep|θt

)
∂θ∂θ′

(←→
θ − θt

)
+ op (1) .

Since

−
(←→
θ − θt

)′ ∂ ln p
(
yrep|θt

)
∂θ∂θ′

(←→
θ − θt

)
d→ χ2 (P ) , (24)
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Eyrep

(
1√
n

∂ ln p
(
yrep|θt

)
∂θ

)
= o (1) , (25)

from (21), (22), (23), (24), and (25), we have

EyEyrep

(
ln p

(
yrep|θ̃

)
− ln p

(
yrep|

←→
θ
))

=

(
1

2
− 1

4
+

1

2

)
P. (26)

Similarly, we can decompose − ln p
(
y|←→θ

)
+ ln p

(
y|θ̃
)

as

− ln p
(
y|←→θ

)
+ ln p

(
y|θ̃
)

= − ln p
(
y|←→θ

)
+ ln p

(
y|θt

)
+ ln p

(
y|θ̃
)
− ln p

(
y|θt

)
= ln p

(
y|θ̃
)
− ln p

(
y|θt

)
+ ln p

(
y|θt

)
− ln p

(
y|←→θ

)
.

From the discussion above, ln p
(
y|θ̃
)
− ln p

(
y|θt

)
has the same asymptotic property as

ln p
(
yrep|θ̃

)
− ln p

(
yrep|θt

)
. Hence

ln p
(
y|θt

)
− ln p

(
y|←→θ

)
= ln p

(
y|←→θ

)
+

1√
n

∂ ln p
(
y|←→θ

)
∂θ

′
√
n
(
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)
+

1

2

√
n
(←→
θ − θt

)′ 1

n

∂2 ln p
(
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∂θ∂θ′

√
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(←→
θ − θt

)
− ln p

(
y|←→θ

)
+ op (1) , (27)

where

1√
n

∂ ln p
(
y|←→θ

)
∂θ

′

= op (1) ,

−
√
n
(←→
θ − θt

)′ 1

n

∂2 ln p
(
y|←→θ

)
∂θ∂θ′

√
n
(←→
θ − θt

)
d→ χ2 (P ) .

Then

EyEyrep

(
ln p

(
y|θ̃
)
− ln p

(
y|←→θ

))
=

(
1

2
− 1

4
− 1

2

)
P. (28)

Note that

θ̄ =
←→
θ + op(n

−1/2),

by Lemma 3.1. Mimicking the proof of Theorem 3.1, we get

EyEyrep ln p
(
yrep|

←→
θ
)

= Ey

[
ln p

(
y|←→θ

)]
− P. (29)
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With (20), (26), (28) and (29), we have

Ey

[
Eyrep ln p (yrep|y)

]
= EyEyrep ln


∣∣∣∇2hN

(
θ̃
)∣∣∣−1/2

exp
(
−nhN

(
θ̃
))

∣∣∣∇2hD

(←→
θ
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exp
(
−nhD

(←→
θ
)) (1 +Op

(
1
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2
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(
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←→
θ
)

+ ln p
(
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)
− ln p

(
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)]
+o (1)

= −P
2

ln 2 + EyEyrep

[
ln p

(
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←→
θ
)]

+ EyEyrep

[
ln p

(
yrep|θ̃

)
− ln p

(
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←→
θ
)]

+EyEyrep

[
ln p

(
y|θ̃
)
− ln p

(
y|←→θ

)]
+ o (1)

= −P
2

ln 2 + EyEyrep

[
ln p

(
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←→
θ
)]

+

(
1

2
− 1

4
+

1

2

)
P +

(
1

2
− 1

4
− 1

2
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P + o (1)

= EyEyrep

(
ln p

(
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←→
θ
)

+

(
1

2
− ln 2
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)
P
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+ o (1)

= EyEyrep ln p
(
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←→
θ
)

+

(
1

2
− ln 2

2

)
P + o (1)

= EyEyrep ln p
(
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←→
θ
)

+

(
1

2
− ln 2

2
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= Ey ln p
(
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− P +
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1

2
− ln 2

2
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= EyEyrep ln p
(
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+

(
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2
− ln 2

2

)
P + o (1)
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[
ln p

(
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− 1 + ln 2

2
P
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+ o (1) ,
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[
ln p

(
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+ op (1)− 1 + ln 2

2
P

]
+ o (1)
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[
ln p

(
y|θ
)
− 1 + ln 2

2
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Therefore, −2 ln p
(
y|θ
)

+ (1 + ln 2)P is an unbiased estimator of Eyrep (−2 ln p (yrep|y))

asymptotically.
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