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Abstract 
Our paper focuses on strategic decision making in layered business ecosystems, highlighting the 
role of cross-layer interactions in shaping choices about product design and platform governance. 
Based on evidence from the cloud computing ecosystem, we analyze how concerns about 
architectural control and expectations regarding future value migration influence the design of 
product interfaces and the degree of openness to external contributions. We draw on qualitative 
longitudinal data to trace the development of two open-source platforms for managing cloud-
based computing resources. We focus in particular on the emergence of a layered "stack" in 
which these platforms must compete with both vertically integrated service providers and 
horizontally focused commercial software vendors. We find that the two platforms adopt 
distinctly different strategies, which presents an intriguing puzzle since their functionalities are 
nearly identical. Building on prior theory, we explain these differences in terms of the structure 
of interdependencies between each platform's lead sponsor and the firms operating in adjacent 
layers of the ecosystem. While our findings are preliminary due to the ongoing nature of the 
research, we speculate about their implications for the literatures on modularity and innovation, 
technology and industry evolution, and strategy in business ecosystems. 
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1. Introduction 

In industries that produce modular systems, architectural choices have strategic consequences 

(Langlois and Robertson, 1992; Baldwin and Clark, 2000; Schilling, 2000). These consequences 

are especially acute for system components that serve as platforms for complementary products 

and services (Bresnahan and Greenstein, 1999; Gawer and Cusumano, 2002; Iansiti and Levien, 

2004). Architectural control is a particularly salient issue in platform-based competition (Morris 

and Ferguson, 1993), where the ability to create and capture economic value depends heavily on 

striking an appropriate balance between “open” and proprietary strategies (West, 2003; 

Boudreau, 2010; Parker and Van Alstyne, 2013). 

 

Consider the decision by Twitter, the operator of the popular social networking service, to 

provide an application programming interface (API) to third-party software developers.1 This 

move, which came only months after the service launched in 2006, allowed developers to extend 

Twitter’s functionality, which in turn increased the attractiveness of the service to the company’s 

rapidly growing user base. Dozens of new software clients and Twitter-enabled web applications 

soon appeared, complementing Twitter’s official offerings and opening the Twitter platform to 

broad participation by a variety of firms.2 However, as the company’s strategy shifted toward 

generating revenue from advertisements, the third-party clients began to pose a threat as they 

competed with Twitter’s official clients but did not allow Twitter to directly control the display 

of ads. In response, Twitter revised its API and terms of service in mid-2012 to impose both 

technical and legal barriers to high-volume clients.3 This example illustrates the delicate balance 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 http://blog.twitter.com/2006/introducing-twitter-api 
2 http://blog.twitter.com/2010/twitter-platform 
3 http://dev.twitter.com/blog/changes-coming-to-twitter-api 
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firms must strike between openness and control, and the strategic impact of seemingly minor 

design decisions. 

 

While existing literature has made progress in understanding the structure and dynamics of 

platform competition, much of the prior theoretical work focuses on the relationships between a 

single platform and its complementors (e.g., Parker and Van Alstyne, 2005) or between two 

competing platforms (e.g., Rochet and Tirole, 2003; Casadesus-Masanell and Yoffie, 2007; Zhu 

and Iansiti, 2011). These are no doubt important cases, both in theory and in practice, but many 

settings are characterized by multiple platforms (and potential platforms) that interact with each 

other through loosely coupled interdependencies in a layered modular architecture (Gawer and 

Henderson, 2007; Yoo et al. 2010). In these settings, some of the strategic levers emphasized in 

the theoretical literature, such as pricing and cross-subsidization, are of secondary importance to 

the basic concern of staking out a viable position in a crowded and confusing competitive space. 

Moreover, the standard assumption of rational profit-maximizing behavior is simply untenable 

due to the high degree of uncertainty and limited foresight of the players. 

 

These challenging environments are well described by the literature on nascent markets and 

sensemaking (Kaplan and Tripsas, 2008; Santos and Eisenhardt, 2009), as well as the concept of 

an “era of ferment” from the innovation literature (Anderson and Tushman, 1990). Likewise, the 

dynamic capabilities literature has highlighted the importance of learning and adaptation when 

competing in complex environments where high interdependence creates uncertainty about the 

strategic impact of a firm’s actions (Teece et al., 1997; Eisenhardt and Martin, 2000; Helfat and 

Peteraf, 2003). The growing literature on business ecosystems has also articulated principles for 
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managing relationships between stakeholders, ensuring the “health” of the ecosystem, and 

matching a firm’s strategy to its ecosystem (Moore, 1996; Iansiti and Levien, 2004; Adner, 

2006). While all of these literatures contribute valuable insights for firms in multi-platform, 

multi-layered ecosystems such as mobile communication, digital content distribution, social 

networking, and enterprise application software, they do not address the specific strategic 

challenges posed by competing in an evolving modular architecture. Despite the significant 

attention devoted to these ecosystems by academic researchers, industry practitioners, and the 

popular press, we still lack robust insights about how their layered structure emerges or what 

firms can do to influence their evolution in pursuit of sustainable competitive advantage. 

 

To address this gap, this paper presents an inductive study of firms’ strategic decision making in 

the cloud computing ecosystem. The layered architecture of this ecosystem has begun to stabilize 

at a high level of abstraction (Liu et al., 2011) but remains very much in flux at the more 

concrete level that is strategically relevant to firms engaged in developing cloud-based products 

and services. Drawing on evidence from an ongoing case study of two open-source software 

platforms for managing cloud computing resources, we analyze how the two platforms’ 

corporate sponsors strategically shape the design of their architectural neighborhood: the layers 

in which they participate directly, the adjacent layers linked by technological interdependencies, 

and the layers in which their competitors and complementors participate. We use qualitative 

longitudinal data to trace the emergence of a layered “stack” in which the focal platforms must 

compete with both vertically integrated service providers and horizontally focused commercial 

software vendors. 
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We find that the two platforms adopt distinctly different strategies, which presents an intriguing 

puzzle since their functionalities are nearly identical. In the remainder of the paper, we seek to 

explain these differences in terms of observable characteristics of the firms and software artifacts 

involved. Consistent with prior theory and a sizable body of practitioner literature, we find that 

architectural control—especially the threat of control by others—is a salient concern for both 

platform sponsors, although the focus of their concern differs due to the fact that they participate 

in different layers of the cloud architecture. While we find little evidence of strategic pricing 

behavior, we observe that expectations about future value migration (Slywotzky, 1996; Jacobides 

and Tae, 2012) play an important role in the firms’ strategic decisions—in particular, the extent 

to which certain layers may become commoditized or “de-commoditized” over time (Christensen 

and Raynor, 2003). Finally, we examine the strategic levers by which the firms attempt to shape 

their ecosystem to their advantage. As in Garud et al.’s (2002) study of Sun Microsystems’ Java 

technology, institutional entrepreneurship plays a central role in both firms’ strategies. We also 

observed “architectural entrepreneurship” in the form of design moves intended primarily to 

influence the technological trajectory of the ecosystem rather than achieve a functional goal.4 

 

Although these findings are still preliminary due to the ongoing nature of the research, we 

believe they can contribute to the existing literature by shedding light on the antecedents of 

strategically significant architectural design choices. While further research is needed to 

understand the consequences of these choices at the firm level, their impact on the cloud 

computing ecosystem is already becoming apparent. This suggests that it may be fruitful to 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Note that our conceptualization of architectural entrepreneurship differs from Richard and Devinney (2005), who 
focus on “the firm’s architectural knowledge to cast the supply chain more efficiently than would be achieved 
through the price-driven market”. 
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theorize more generally about the role of strategic design moves in the emergence of layered 

modular architectures. 

 

The rest of the paper is organized as follows. Section 2 describes our data sources and research 

methods. Section 3 describes our research setting in more detail, providing background on the 

two focal platforms we studied (OpenStack and CloudStack) and brief profiles of the firms that 

play key roles in the architectural neighborhood of these platforms (Amazon.com, VMware, 

Rackspace, Citrix, and Eucalyptus). Section 4 presents our case evidence, including a summary 

of the institutional and architectural design moves we observed, and interpretive comments from 

our industry informants. Section 5 concludes by summarizing our findings and discussing their 

implications, as well as the limitations of the study and our plans for future work. 

 

2. Data Sources, Setting, Methods 

Our study focuses on software development in an emerging technological field known as cloud 

computing. Generally, cloud computing refers to computing resources being delivered as a 

network-based service. We chose this as our overall setting for several reasons. First, services in 

the area of cloud computing can be represented as a layered modular architecture (or “stack” in 

software engineering terms), which allows us to systematically observe how design choices 

affect the overall technological architecture. Second, although the cloud computing ecosystem is 

evolving rapidly, much of this evolution occurs through observable design moves that result in 

discrete changes to the stack architecture that can be traced over time. The process is more 

tractable in open source software initiatives (our main focus), as the overall development process 

is documented and readily accessible. Third, the dynamics of value migration in this ecosystem 
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are at a relatively early stage, providing a useful contrast to more mature industry ecosystems 

such as personal computers, automobiles, and semiconductors. 

 

Our case evidence is drawn from a combination of archival and interview data. We collected 

several types of archival data: press releases of relevant firms, official company weblogs, as well 

as a selected set of industry-focused websites covering cloud computing.5 Using an approach 

similar to Woodard et al. (2013) we coded events to create a systematic overview of the various 

design moves made by the firms we observe. This analysis was an iterative process consisting of 

several steps. First, one of the authors collected a set of articles related to “infrastructure-as-a-

service” cloud computing initiatives. Next, this set of articles was analyzed by a research 

assistant, focusing on several dimensions: a summary of the event, the firms involved in this 

event, its strategic rationale underlying, and implications for technical compatibility. After this 

information was collected in a spreadsheet, the authors then selected several key events to 

analyze in further detail, providing the main input for the empirical section of the paper. The set 

of selected events co-evolved with our general theoretical framework and our understanding of 

the setting. The initial focus of the project centered broadly on ecosystem strategies in open-

source cloud computing initiatives. As the project continued, we narrowed the focus to the issues 

of standardization and compatibility, and value migration. 

 

In addition to our archival data, we have conducted several interviews to date with informants 

actively involved in the design of and strategy concerning the two key initiatives we focused on. 

Interviews were done face-to-face when possible, and through video conferencing or telephone 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 The industry-focused websites included CloudAve, Forbes CIO Network, Forrester Research, Gartner Blog 
Network, GigaOM Cloud, ReadWriteCloud, and Talkin’ Cloud. By using a variety of sources, we aimed to ensure 
coverage of the major events relevant to our setting. 
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when a personal meeting was not possible. The interviews, which were transcribed by a 

professional transcription firm, served two main purposes. First, they allowed us to get a better 

understanding of the motivations underlying the decisions we observed through public sources. 

Individual quotes (anonymized as agreed with interviewees) were also included to illustrate 

firm’s decision making. Second, it enabled us to discuss our understanding of various events 

with informants and adjust our overall framework where necessary. The interviews, combined 

with our archival data, also helped us in building the overall layered stack depicted in Figure 1. 

  

3. Empirical Setting: Cloud Management Platforms 

Our empirical setting examines an emerging market in the computer industry referred to as 

"cloud computing". One well-known example of cloud computing is Dropbox, which provides 

firms or individual end-users with network based storage. Our study focuses on a less visible 

segment of cloud computing referred to as “infrastructure-as-a-service” (typically abbreviated as 

“IaaS”). Within IaaS we focus on two initiatives offering IaaS as an on open-source development 

project, OpenStack and CloudStack, led by two different firms (Rackspace and Citrix 

respectively). 

 

We focus on in particular on the software layers responsible for orchestrating cloud-based 

computing resources such as processing power, network bandwidth, and storage capacity. This 

software layer is also referred to as Cloud Management Platforms (CMP).6 At the time of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Gartner, a well known IT research company defines Cloud Management Platforms as “integrated products that 
provide for the management of public, private and hybrid cloud environments. The minimum requirements to be 
included in this category are products that incorporate self-service interfaces, provision system images, enable 
metering and billing, and provide for some degree of workload optimization through established policies. More-
advanced offerings may also integrate with external enterprise management systems, include service catalogs, 
support the configuration of storage and network resources, allow for enhanced resource management via service 
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writing, several commercial products and commercially sponsored open-source projects were 

competing for adoption. The two most prominent open-source projects, OpenStack and 

CloudStack, are sponsored by firms with very different commercial interests. OpenStack is 

sponsored by Rackspace, a hosted services provider that sees Amazon.com as a primary 

competitor. CloudStack is sponsored by Citrix, a software company that perceives the VMware 

division of EMC as a greater threat. 

 

Particular to both initiatives is the goal to define the entire “value stack”, in contrast to most 

other industry consortia that focus on a particular subsystem (or layer). Therefore, our research 

setting is distinctive in two ways. First, the initiative is not confined to a single product category 

or standard but spans multiple architectural layers. Second, the interactions within the ecosystem 

take place against a backdrop of significant competitive pressures, both within layers and with 

respect to vertically integrated rivals. 

 

To better understand our two focal projects, we provide a brief sketch of the competitive 

landscape in which CloudStack and OpenStack are situated. Three offerings, Amazon Web 

Services (also referred to as AWS) and VMware (in particular their vCloud product suite), are 

especially relevant to our focal projects. While Amazon is known mostly for its online retail 

activities, it has also built a considerable business in providing web services to other firms. Its 

AWS portfolio comprises a variety of products; the two most relevant ones in this context are 

Elastic Compute Cloud (EC2) and Simple Storage Service (S3). Amazon EC2 lets their 

customers run software applications without having to set up their own physical computers. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
governors and provide advanced monitoring for improved “guest” performance and availability.” 
http://www.gartner.com/it-glossary/cloud-management-platforms (May 30, 2013) 
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Instead, EC2 delivers additional virtual servers as required, and charges fees based on time and 

resource usage. Amazon S3 lets customers store data remotely, again sidestepping the need for 

physical storage. For both services, the customers are usually not individual end-users but other 

businesses, such as Dropbox and Netflix. 

 

Besides Amazon, VMware (owned by EMC) is another relevant competitor in cloud computing. 

Generally, VMware focuses on virtualization software. This allows customers to run, for 

example, a Windows operating system on an Apple computer. Similar products are also available 

for server and storage hardware, facilitating storage in local corporate data centers known as 

“private clouds” (as the data is stored on premise, not in a remote (i.e. “public”) location). 

VMware offers a proprietary cloud computing operating system called vCloud. It joined 

OpenStack in October 2012, and extended OpenStack support for its ESX hypervisor (which 

appears to be done in part to drive sales for VMware’s other products, such as vSphere).7 

Figure 1 depicts the IaaS segment of the cloud computing ecosystem. The major layers, from 

bottom to top, include hosting services, hardware, virtualization software (also called 

hypervisors), resource orchestration, and the application programming interfaces (APIs) used by 

developers of cloud-aware applications and services.  

 

Finally, another CMP is Eucalyptus, offered by Eucalyptus Systems Inc. Eucalyptus started as a 

university research project at the University of California, Santa Barbara in 2007, and was 

commercialized as an open source company in 2009. The Eucalyptus cloud platform is 

compatible with various Amazon AWS services, including EC2 and S3.8   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7   http://www.networkworld.com/news/2012/101712-vmware-openstack-263473.html 
8 http://www.eucalyptus.com/faq and http://www.eucalyptus.com/about/story 
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Main cases: OpenStack and CloudStack 

Our focal cases are OpenStack and CloudStack, two open source CMPs sponsored by two 

commercial firms (Rackspace and Citrix respectively). In 2010, Rackspace (jointly with NASA) 

launched an initiative called OpenStack to develop a suite of open-source software for the 

resource orchestration layer, which provides tools to manage cloud-based computing resources 

such as virtual machines, object storage, and network connectivity. Initially unbeknownst to each 

organization, both NASA and Rackspace were developing technologies similar to Amazon’s 

EC2 and S3. NASA was working on a project called Nova, which basically mimicked Amazon’s 

EC2 service. In turn, Rackspace’s Swift project was similar to Amazon’s S3. Coincidentally, 

project members from each team connected, and subsequently decided to work together as part 

of the OpenStack project.9 

 

Our second focal project, CloudStack, began as a software suite developed by a startup company 

called Cloud.com, which was purchased by Citrix in 2011 and donated to the Apache Foundation 

in 2012. Citrix also acquired the Xen hypervisor (which it subsequently released in open-source 

and commercial versions) with its purchase of XenSource in 2007. 

 

<< insert Figure 1 about here >> 

 

Figure 1 provides a schematic overview of the IaaS ecosystem, focusing on the firms’ services 

summarized above. In this figure arrows indicate dependence; nesting indicates compatibility 

(i.e., nested boxes are interchangeable with respect to modules that depend on their enclosing 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 See http://www.wired.com/wiredenterprise/2012/04/openstack/ for more details on OpenStack’s founding. 
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boxes). Qualitatively, the figure shows that Amazon Web Services is a fully integrated set of 

offerings that include hosting services, while VMware offers separate products at each layer 

except hosting; these products may be purchased separately or bundled.  

 

4. Key Strategic Moves in Architecture and Governance 

This section focuses on the key strategic moves Rackspace and Citrix made in relation to their 

respective CMPs. Figure 2 provides a timeline of key events related to our focal projects 

(CloudStack and OpenStack) and the competitive landscape in which they operate.  

 

<< insert Figure 2 about here >> 

 

OpenStack launch 

OpenStack generated widespread publicity in the industry upon its announcement. One 

interviewee previously working with OpenStack reflects on its momentum as follows: 

 

I suspect it had something to do with the momentum that OpenStack had, but OpenStack 

is this crazy, crazy phenomenon that has the most buzz generated about it for anything 

anyone’s ever seen.  So it’s really kind of shocking, and surprising, and exciting all at the 

same time. 

 

Motivation underlying Openstack launch 

An obvious question that arises is, why would Rackspace, a pure-play hosting services company, 

invest in an open-source cloud orchestration project? The stack represented in Figure 1 suggests 
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two plausible motives: (a) to draw customers away from its direct competitor Amazon’s fully 

integrated offerings, and (b) to make it more difficult for any other firm (notably Citrix or 

VMware) to secure a dominant position in the orchestration layer. 

 

The first motive is consistent with the idea that open standards can soften competition between 

vertical bundles (cf. Baldwin and Woodard, 2007); by making it possible for other firms to mix 

and match orchestration software with modules from other layers, Rackspace avoids the direct 

escalation of price competition that would have occurred if it had simply launched its own 

proprietary alternative to Amazon Web Services.  

 

The second motive, known in the software industry as “commoditize your complements” (cf. 

Shapiro and Varian, 1998, p. 279), raises more difficult questions. This tactic is equivalent to 

eliminating a layer of the architecture because prices in that layer get driven toward zero, which 

diminishes their ability to affect pricing decisions in other layers. System prices fall, but 

aggregate industry profits may go up or down depending on how the pre- and post-

commoditization system prices compare to the price that would be set by a fully integrated 

monopoly (“one big firm”). Moreover, when the intent of commoditization is to deprive a firm’s 

complementors of profits that could be used to attack it (e.g., through “platform envelopment”, 

cf. Eisenmann et al., 2011), the result tends to promote the emergence of layer monopolies. 

 

One interviewee reflects on potential commoditization of lower levels in the stack, such as 

hypervisors, as follows: 
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Amazon came and showed everyone how you can make money off the cloud and use the 

cloud, people came around and started selling their own mostly open core, open source 

model type cloud solutions (…). And we’re getting to where there’s actually quite a few 

orchestration layers out there for people to choose from and they’re all open source.  

They all work with all the hypervisors. They’re all […] becoming a commodity. 

 

Awareness of commoditization of existing components in the stack may prompt a strategic 

reorientation for some firms. On the issue of value migration, another interviewee discusses this 

in terms of the perceived longer term value of service delivery: 

 

So I think the ultimate value of this is in the customer experience that's delivered at the 

top, and, of course, then there's the operational efficiencies and so on that one can get 

through the horizontal scalability, and the automation provided through the platform, but 

I think that part will be commoditized faster. And the part that will remain the most 

valuable is, what are the organizations and technology combinations, together, that can 

deliver the best service for the customers? I mean, that's where the real value's going to 

end up being. 

 

Motivation underlying CloudStack launch 

To complicate matters further, Citrix and Rackspace appear to be engaging in similar strategies 

but with important differences. Rackspace has made no secret of its view that Amazon represents 

the biggest threat to open standards for cloud computing, which led it to develop its own API for 
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OpenStack.10 Citrix, on the other hand, is perceived by industry observers to fear VMware more 

than Amazon, leading it to adopt Amazon’s APIs but continue to invest in a commercial 

hypervisor (Xen) to rival VMware’s (ESX) — even though the major hypervisors are all largely 

compatible with each other, leaving little room for architectural lock-in.11 These differences, 

which led Citrix to drop its support for OpenStack when it contributed CloudStack to Apache,12 

cast doubt on the idea that any simple coordination mechanism (e.g., a traditional standards-

setting organization) could bring about convergence to the kind of profitable open-standards 

equilibrium envisioned in the analytical model introduced in Baldwin and Woodard (2007). And 

yet, these are hardly scorched-earth tactics either. It thus remains plausible that the overall cloud 

computing ecosystem will ultimately avoid the extremes of vicious price wars (ruinous in the 

short term) or “Wintelism” (Borrus and Zysman 1998). The latter is potentially ruinous in the 

longer term as responsibility for innovation becomes too concentrated, creating openings for new 

entrants like Google and vertically integrated rivals like Apple. 

 

Competitive dynamics and expectations 

Competition between the various cloud offerings is not straightforward, given differences not 

only between proprietary and open-source based solutions, but also differences in the activities 

of the stack the various firms are engaged in. One interviewee expects that in relation to open 

source based cloud solutions, one initiative will prevail: 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 http://blogs.gartner.com/lydia_leong/2012/04/06/ecosystems-in-conflict-amazon-vs-vmware-and-
openstak/#comment-7859 
11 http://blogs.gartner.com/lydia_leong/2012/04/06/ecosystems-in-conflict-amazon-vs-vmware-and-
openstak/#comment-7859 
12 http://gigaom.com/cloud/5-takeaways-from-the-cloudstack-openstack-dustup/ 
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We think there will be probably a Microsoft-driven cloud, probably another proprietary 

cloud, possibly VMware, and we think there will be one open-source cloud standard. And 

we want to be that latter one (…). So we think there's definitely room for a couple of 

proprietary offerings, and one open-source offering. We think one. We think probably not 

two, because we can't see a reason why the market would support two competing open-

source cloud offerings, rather than having the advantage of having one standardized 

open-source offering. 

  

Comparing CMPs: governance differences 

Besides these cross-layer interdependencies, we observe important differences between 

CloudStack and OpenStack in terms of organization (e.g., project governance) and technology 

(e.g., APIs). Citrix turned over the governance of its project to the Apache Foundation, a well-

established forum for independently managed open source projects. Furthermore, it chose to 

implement Amazon’s APIs, in particular in relation to two key components of Amazon’s Web 

Services, EC2 and S3. This has diminished technological independence of CloudStack, and by 

extension Citrix, as it does not directly control the development of interfaces for future 

development of the platform. By contrast, OpenStack’s governance was initially mostly led by 

Rackspace. Only recently it has introduced an independent—albeit tiered—foundation to manage 

the overall project, allowing other firms to influence the direction of the project.  

 

Comparing CMPs: interface (API) differences 

In terms of design choices, the difference in implementation between OpenStack and CloudStack 

and their compatibility with Amazon’s APIs reveals several important differences. Given the 
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widespread diffusion of AWS, it is important for other services, including CloudStack and 

OpenStack, to be compatible with Amazon’s APIs. However, a close inspection of how these 

projects have realized compatibility with AWS, shows subtle differences with important 

implications. While both services are compatible, OpenStack’s API’s are not “natively” 

compatible. Instead, OpenStack’s native API’s are designed in a way that it “offers non-native 

‘AWS API Compatibility Modules’ for EC2 and S3”.13 As a result of this design choice, 

OpenStack is more autonomous in terms of future development in case Amazon makes technical 

changes to its API’s, or if it changes the conditions surrounding their usage. On the differences 

between CloudStack and OpenStack, one informant perceives the issue of API compatibility as 

follows: 

 

With CloudStack now being open, I think there’s a number of major differentiators; one  

is that it’s aligned in terms of API compatibility with AWS, which is the world’s biggest 

cloud and OpenStack isn’t—that’s a key differentiator. 

 

Another interviewee further illustrates how firms engage with Amazon’s APIs as follows: 

 

Amazon is the de facto standard, and many organizations, technologies try to provide a 

translation layer that allows the Amazon syntax to be used across to their own API so 

CloudStack does that. There's a number of API abstraction projects out there that allow 

you to have a common API in translation but create, destroy, reboot instances across 

cloud providers is important. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 http://blogs.gartner.com/lydia_leong/2012/04/06/ecosystems-in-conflict-amazon-vs-vmware-and-
openstak/#comment-7859 
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Compatibility with AWS (or “Amazon-style architectures”) has been used to promote cloud 

services. However, how exactly compatibility is defined and how it applies to the various cloud 

services is an area of contention.14 Besides CloudStack and OpenStack, other services have also 

emphasized their compatibility with AWS. For example, in March 2012 Eucalyptus announced 

an agreement with Amazon that: 

 

… enables customers to more efficiently migrate workloads between their existing data  

centers and AWS while using the same management tools and skills across both 

environments. As part of this agreement, AWS will support Eucalyptus as they continue to 

extend compatibility with AWS APIs and customer use cases. Customers can run 

applications in their existing datacenters that are compatible with popular Amazon Web 

Services such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple 

Storage Service (Amazon S3).15 

 

The strategic importance of APIs was further emphasized by another interviewee: 

 

But building a real ecosystem around the APIs, so that it’s very difficult for anyone else 

to compete, I think that’s a sustainable advantage. And secondly, building the 

combination of technologies and the organization that can deliver the best customer 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 http://blogs.gartner.com/lydia_leong/2012/04/06/ecosystems-in-conflict-amazon-vs-vmware-and-openstak/, 
http://gigaom.com/2012/04/07/true-or-false-citrix-is-more-compatible-with-aws/ 
15 http://www.eucalyptus.com/news/amazon-web-services-and-eucalyptus-partner, 
http://www.forbes.com/sites/danwoods/2012/04/04/questions-amazon-should-answer-about-its-cloud-strategy/ 
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service, I think that's another sustainable competitive advantage that you'll get. I mean, 

that's kind of in the longer term. 

 

Antecedents driving interface (API) differences 

We can distinguish several antecedents to these decisions. Some can be traced back to 

technological differences; more importantly, other differences seem to be rooted in the firm’s 

position in the innovation ecosystem and their ability to capture value. From a technological 

perspective, there are important differences in the histories of the projects. CloudStack is based 

on a commercial product (initially known as Cloud.com) built by a small entrepreneurial firm. 

As such, it has a more monolithic source code compared to large scale distributed projects (cf. 

MacCormack et al. 2012). By contrast, from the outset OpenStack has been based on subsystems 

developed by a variety of organizations (in particular Rackspace and NASA). As such, the 

technological architecture has been more modular from the beginning. While these technological 

differences can explain some of the contrasts highlighted above (e.g. project governance), 

strategic motivations appear to be an overriding factor. In particular, as mentioned earlier, there 

are important differences in the location in the ecosystem of the firms backing CloudStack and 

OpenStack. As a result, they compete with different firms in the ecosystem and also use different 

ways to create and capture value. OpenStack’s main sponsor, Rackspace, competes primarily 

with Amazon and their various web services. By contrast, CloudStack’s main sponsor, Citrix, 

competes primarily with VMware’s products. 

 

Overall, our data reveal a dynamic, highly interdependent setting where participants show 

divergence both in their perception of the competitive landscape and their resulting strategies. In 
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turn, these strategies are reflected in the design choices firms make, affecting both the structure 

of the business ecosystem as well as the longer term evolution of the industry. Table 1 

summarizes the design moves made by each project in terms of the timing of various key events 

and their underlying motivations. 

 

<< insert Table 1 about here >> 

 

5. Discussion and Concluding Remarks 

At least since Teece’s (1986) work on complementary assets and their role in how firms profit 

from innovations, we know of the strategic importance of interdependence. More recent work 

has extended Teece’s framework by highlighting how firms might strategically shape the 

structure of complementarity, for example by becoming an industry “bottleneck”, thereby 

facilitating value capture (Jacobides et al., 2006). Empirical work in this area has also shown 

how the location of technological bottlenecks might affect innovation, with important 

implications for market share of incumbents and challengers (Adner and Kapoor, 2010). Our 

study extends existing work by considering how firms strategize in dynamic, complex 

environments, such as the multi-layer stack that characterizes our empirical setting. In particular, 

we have focused on the drivers of a firm’s architectural design choices. Our case suggests that in 

such interdependent settings, firms’ design choices are far less straightforward compared to 

settings where the competitive parameters are fewer and more clearly defined. 

 

In particular, we highlight two related issues that arose from our inductive study on the drivers of 

a firm’s architectural design choices. First, we observe how differing expectations regarding 
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industry-wide value migration is reflected in variations in design moves. In multi-layered stacks, 

different firms are (by definition) located in distinct parts of the value chain. As such, assuming a 

firm’s strategy is path-dependent (Nelson and Winter, 1982), we also observe how their 

subsequent design moves differ according to their existing position in the industry architecture. 

Second, and in relation to the issue of value migration, such expectations in turn inform choices 

regarding compatibility with existing services. As our empirical analysis shows, firms have a 

range of options in relation to compatibility. Most interestingly in this setting, besides the choice 

of being at all compatible with services from other firms (some of which are direct rivals, while 

others serve more as complements), firms can also choose how to be compatible with other 

services. While the economic impact of compatibility is well known (see e.g. Farrell and Saloner, 

1985; Katz and Shapiro, 1985), there has been much less work on the strategic design of 

standards and compatibility choices, individual exceptions notwithstanding (e.g. Besen and 

Farrell, 1994; Garud et al., 2002; Woodard and West, 2011). Our study points to the fact that 

choosing how to be compatible may be a strategic choice itself. A related perspective on 

architectural design has also been introduced in recent work that has pointed to decomposition as 

a strategic variable (e.g., Baldwin and Henkel’s (2011) work on intellectual property and 

modularity). While such differences may seem relatively minor, they reflect differences in firms’ 

perception of the evolution of the competitive landscape, and can have important implications for 

lock-in, innovation and value capture. 

 

Overall, the firm behaviors we observe appear to be driven by two related factors, architectural 

control and expected value migration. First, firms wish to retain architectural control by ensuring 

that adjacent layers in the stack are not controlled by a single dominant vendor. As the firms 
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sponsoring the focal cases are located in different parts of the ecosystem, their competitive 

responses differ in key technological choices (e.g. interface compatibility). Second, as firms 

observe how value migrates to different parts of the stack, they attempt to commoditize those 

layers on which their ability to capture value depends. The various design moves we observe can 

be characterized as “architectural entrepreneurship”: actions intended primarily to strategically 

influence the technological trajectory of the ecosystem rather than achieve a particular functional 

goal. While our findings are preliminary due to the ongoing nature of the research, we offer 

several speculations about their implications for the literatures on strategy in business 

ecosystems, technology and industry evolution, and modularity and innovation. 

 

First, our study may provide several implications for the emerging literature on business 

ecosystems and value migration. The idea that designers “see and seek value” is axiomatic in the 

literature on design evolution and modular systems (cf. Baldwin and Clark, 2000). However, few 

studies have, to our knowledge, analyzed how firms strategize to attain value in complex 

business ecosystems such as our setting. By analyzing in-depth decision making, our study 

highlights how value might migrate across different layers due to commoditization and de-

commoditization; how firms compete through strategic design moves, in particular in relation to 

compatibility; and how standards might be beneficial (in terms of value creation and value 

capture) for firms operating in such innovation ecosystems (Adner and Kapoor, 2010). 

 

Second, our findings might also inform the literature on industry evolution and technology 

lifecycles. Our setting is characterized by endogenous innovation (i.e., not arising out of 

processes exogenous to an individual firm, such as technological breakthroughs or new 
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knowledge16). Instead of a “natural” co-evolution characterized by selection of competing 

variants (Anderson and Tushman, 1990; Murmann and Frenken, 2006), we see pro-active 

attempts to shape the overall design of the architecture, instead of more straightforward 

competition between architecturally similar systems. The dynamics observed in our setting also 

clearly depart from the model depicted in the disruptive innovation literature (Christensen, 

1997), which contrasts the strategies of resource rich incumbents to resource constrained 

entrepreneurial firms. In contrast, no firm in our setting is clearly an incumbent or challenger, as 

each is active and leading in different parts of the stack.17 As such, the competing initiatives we 

observe involve more complex behavior based on judicious strategies in relation to technological 

compatibility and organization. For example, some of the initiatives we observed attempt to 

shape the industry trajectory by promoting technology that avoids lock-in through proprietary 

standards. Such strategies may in part reflect learning on behalf of the various industry 

participants, some which have suffered from existing industry architectures (Jacobides et al., 

2006), for example the dominance of Microsoft in the PC industry.  

 

Third, our paper may contribute to recent work that has studied the alignment between the design 

of products and organizations. In particular, recent work has invoked the notion of “mirroring” 

between a product’s architecture and its subsequent organization (Henderson and Clark, 1990; 

Colfer and Baldwin, 2010; Cabigiosu and Camuffo, 2012). This case highlights how strategy 

might be reflected in organizational (especially in relation to project governance) and product 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 In contrast, the technologies and services observed in our setting arise from incremental improvements (e.g., in 
network speed and availability), not a clear technological discontinuity. 
17 To give an indication of the respective sizes of our focal cases, the total revenues in 2012 were: Citrix $2.20 bn 
(2011), Rackspace $1.31 bn, VMware $4.61 bn (its parent company EMC $20.01 bn), and Amazon $61.09 bn 
(however its cloud business has been valued at less than $10 bn, see e.g. http://seekingalpha.com/article/1038151-
what-is-amazon-web-services-really-worth). 
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choices (in particular technological dependence in terms of compatibility). However, the existing 

technological architecture does not necessarily mirror governance choice. In our case the more 

modular project (OpenStack) was initially characterized by a governance model dominated by a 

single firm, whereas the more integrated architecture (CloudStack) had a more distributed 

governance model. These results add further support for the idea that mirroring is contingent, and 

cannot simply be derived from technological structure. While in some settings knowledge has 

been suggested to be a key driver of product and organizational architecture (Brusoni and 

Prencipe, 2006), our setting highlights the role of compatibility and value migration. 

 

Finally, it is important to note that our study has several important limitations. First, as an 

inductive, qualitative study our results may not be generalizable to other settings. Depending on 

data availability, future work might quantitatively test our findings in other settings. Second, we 

have purposively chosen a fast-moving setting. As a result, we have little conclusively 

knowledge in terms of competitive outcomes. Therefore, it is important to note that our findings 

have no normative implications for firm strategy, for example in relation the way in which 

compatibility is achieved.  Future work may also examine how the issue of compatibility plays 

out in settings beyond software development. 
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Figure 1: Layered structure of the infrastructure-as-a-service (IaaS) segment of the cloud 
computing ecosystem 
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Figure 2: Timeline of key events related to CloudStack and OpenStack 
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OpenStack – Design Moves 
 

Date Event Description Motivation 
July 2010 Creation of OpenStack 

(Co-founded by 
Rackspace and NASA) 

Facilitate development of 
open-source cloud 
orchestration software 

Allows variety of 
stakeholders to compete 
with Amazon’s 
increasing dominance of 
cloud computing market 

 Compatibility with AWS 
API’s 

CloudStack’s APIs 
independent of Amazon’s 
(non-native 
compatibility) 

Decrease dependence on 
third-party API’s 
(including AWS) 

May 2011 Project Olympus initiated Merging the codebases of 
the Cloud.com and 
OpenStack projects 

Combine strengths of 
respective projects and 
build market share 

April 2012 Cancellation Project 
Olympus 

Merging of codebases 
halted due to CloudStack 
submission to Apache 
Foundation  

Citrix focus on 
CloudStack as more 
mature solution 

April 2012 OpenStack foundation 
initiated 

Creation of OpenStack 
Foundation with tiered 
membership levels 

Decrease (perceived) 
dominance of Rackspace  
governance 

Oct 2012 VMware joining 
OpenStack 

VMware joins OpenStack 
as gold member 

Joining of cross-layer 
competitor 

Oct 2012 ESX hypervisor support VMware extends support 
for ESX hypervisor in 
OpenStack 

VMware wants 
OpenStack customers to 
use vSphere 

 

CloudStack – Design Moves 
 

Date Event Description Motivation 
May 2010 Cloud.com launch Development of 

commercial cloud 
orchestration software 

Commercial rival to 
Amazon and other cloud 
computing solutions 

July 2011 Cloud.com acquisition 
by Citrix 

Cloud.com team and 
product portfolio 
acquired by Citrix 

Allows Citrix to enter 
cloud orchestration 
software market 

April 2012 Cancellation Project 
Olympus 

Merging of codebases 
halted due to CloudStack 
submission to Apache 
Foundation 

Citrix focus on 
CloudStack as more 
mature solution 

April 2012 CloudStack submission 
to Apache Foundation 

Facilitate development of 
open-source cloud 
orchestration software 

Allows variety of 
stakeholders to compete 
with VMware’s vSphere 

 
Table 1: Design moves of the OpenStack and CloudStack projects 
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Appendix: Interview Guide 
 
Our preliminary interviews followed a semi-structured approach. We outlined several general 
themes (underlined below), each of which consisted of several topics (listed in bullet points 
below the themes). Depending on the response of the interviewee we asked follow-up questions, 
either for clarification or if the answer prompted further ideas related to the topic.  
 
General ecosystem issues 

• What do you consider to be the key functionalities in the overall cloud architecture 
(stack)? 

• What are the key challenges (both strategic and design related) moving forward? 
• What are your expectations of how the cloud computing ecosystem will develop? 

  
Business model and open source development 

• Why did you decide to pursue an open source-based development model? 
• What are the specific challenges to OSS-based development? 
• How does your business model work in terms of value creation and value capture? 

  
Project governance and collaboration 

• Can you elaborate on the sequence of decision making in relation to creating or joining  
OpenStack and/or CloudStack? 

• What is your view on Amazon's AWS APIs and how does it affect the development of 
your project? 

• Who do you consider to be your key partners and key competitors? 
• Are there any further issues you think that are relevant for our research project? 
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