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Risk Minimization of Disjunctive Temporal

Problem with Uncertainty

Hoong Chuin Lau and Tuan Anh Hoang

School of Information Systems, Singapore Management University

Abstract. The Disjunctive Temporal Problem with Uncertainty (DTPU)
is a fundamental problem that expresses temporal reasoning with both
disjunctive constraints and contingency. A recent work (Peintner et al,
2007) develops a complete algorithm for determining Strong Controlla-
bility of a DTPU. Such a notion that guarantees 100% confidence of
execution may be too conservative in practice. In this paper, following
the idea of (Tsamardinos 2002), we are interested to find a schedule that
minimizes the risk (i.e. probability of failure) of executing a DTPU. We
present a problem decomposition scheme that enables us to compute the
probability of failure efficiently, followed by a hill-climbing local search
to search among feasible solutions. We show experimentally that our
approach effectively produces solutions which are near-optimal.

1 Introduction

Expressive and efficient temporal reasoning is a significant task in planning and
scheduling. A typical assumption is that all time points or temporal events such
as starting and ending actions are under the complete control of the execu-
tion agent, and this can be modeled by the simplest and widely used Simple
Temporal Network. The Simple Temporal Problem (STP) and the Disjunctive
Temporal Problem (DTP) (that allows for disjunctive constraints) are concerned
with checking temporal consistency of a given temporal network. While STP is
polynomial-time solvable [1], solving DTP is known to be NP-hard [7] in general.

In real world practice, there are often needs to perform inference on events
in the presence of exogenous factors (often referred as ”Nature”) which cannot
be directly controlled by the agent, whose realization can only be observed.
Due to these so-called ”observable” time points, uncertainty is introduced into
the above problems. Correspondingly, we have the Simple Temporal Problem
with Uncertainty (STPU) and Disjunctive Temporal Problem with Uncertainty
(DTPU), and the concept of temporal consistency is extended by varying notions
of controllability, such as Strong, Weak and Dynamic Controllability, depending
on how ”observable” events affect controllable events.

Most works on temporal constraint problems with uncertainty focus on ex-
ecution with 100% confidence. From the practical standpoint, this may lead to
wasteful resource allocation or even infeasible networks. A interesting approach
to deal with this is to take a probabilistic perspective. In [9], the Probabilistic
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Simple Temporal Problem (PSTP) was introduced by representing each uncon-
trollable event as a probability density function (PDF), where the goal was to find
a schedule that maximizes the probability of execution under strong controlla-
bility (i.e. a one-size-fits-all schedule that maximizes the probability of successful
execution against all possible realizations of uncertain events. [11] then presented
heuristic techniques for determining the probability of executing a dynamically
controllable strategy for PSTP. The concept of Robust Controllability was pro-
posed in [2] to ensure the dynamic controllability of STPU within a specified
degree of risk.

The Disjunctive Temporal Problem with Uncertainty (DTPU) was first de-
fined in [12] for the purpose of modeling and solving planning and scheduling
problems that feature both disjunctive constraints and contingency. [5] investi-
gated the semantics of DTPU constraints and proposed a way to check if Strong
Controllability holds. That work focused on checking if there exists a solution
that ensures all constraints will be satisfied regardless of Nature’s realization of
uncontrollable events. Since dealing with execution under 100% confidence might
be too conservative, a logical extension is in finding solutions that minimizes the
risk of failure instead.

This paper is concerned with executing a DTPU from a risk minimization
perspective as presented in [9]. Given a DTPU instance where the contingent
constraints are modeled as random variables of known distributions, we are inter-
ested to find a solution that minimizes execution risk - or put in more positively,
maximizes the probability of successful execution - that all temporal constraints
will be satisfied. We propose a method for decomposing a DTPU into compo-
nents so that the probability of success can be efficiently computed. Following
that, we propose a computationally efficient hill-climbing local search that en-
ables near-optimal solutions to be obtained.

2 Background and Literature Review

In this section, we briefly review the preliminaries and recent literature on the
temporal constraint problem.

2.1 Temporal Constraint Problems

An STP [1] is defined as a pair < V, S >, where V is a set of temporal variables
representing temporal events or time points, and S is a set of constraints between
points, each taking the form vj−vi ∈ [a, b], where vi, vj ∈ V and a and b are some
constants. Since STP contains only binary constraints, it can be represented by a
weighted graph whose variables are represented as nodes and each directed edge
(vi, vj) is labeled by an interval [a, b]. An STP is consistent iff there exists at least
one solution (an assignment to all temporal variables) such that all constraints
in S are satisfied, which can be determined in polynomial time [1].

A DTP [7] extends an STP by admitting disjunctive constraints. A DTP
constraint consists of a disjunction of STP constraints of the form: vj1 − vi1 ∈
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[ai1j1, bi1j1]
∨

vj2 − vi2 ∈ [ai2j2, bi2j2]...
∨

vjk − vik ∈ [aikjk, bikjk]. A DTP in-
stance is consistent iff it contains at least a consistent component STP obtained
by selecting one disjunct from each constraint. Efficient solvers for this NP-hard
problem have been developed (e.g. Epilitis in [10]) to search through the meta
space of component STPs. A number of pruning techniques are embedded in
DTP solvers to reduce the search space, including conflict-directed backjump-
ing, removal of subsumed variables, semantic branching, and no-good recording.
[3] applied local search to DTP to generate solutions with minimal constraint
violation and the operation is within the total assignment space of the underly-
ing CSP rather than the partial assignment space of the related meta-CSP. [8]
showed how their end-point ordering model can be used to express the qualita-
tive interval algebra in a quantitative constraint solver with finite domains, and
how to convert an interval algebra network into an equivalent non-binary CSP
with finite integer domains. They observed that the relative positions of interval
endpoints in an interval algebra network can be used to determine consistency.

2.2 Temporal Constraint Problems with Uncertainty

To model uncertainty, two classes of temporal variables are defined: executable Ve

controlled by the execution agent, and uncontrollable Vu controlled by Nature. In
addition to the deterministic constraints S defined above, Se and Sc respectively
denote the sets of executable and contingent constraints. Se model execution
requirements in response to uncertain events (e.g.,”Activity can only be started
(controllable) at least 30 minutes after the rain stops (uncontrollable)”). Hence,
each executable constraint takes the form y−x ∈ [a, b], where y ∈ Ve and x ∈ Vu.
Sc model the temporal behavior of an uncontrollable event (e.g.,”The dinner
will be ready (uncontrollable) between 20 and 30 minutes after cooking starts
(controllable)”). They are used usually to model durational uncertainty whose
values are controlled by Nature and can only be observed by the agent. In our
paper, each contingent constraint takes the form x−y = d̃, where y ∈ Ve, x ∈ Vu

and d̃ is a random variable with a certain probability distribution.
Based on different conditions of guaranteeing all constraints will be satisfied,

three standard levels of controllability have been defined in the literature: Strong
Controllability (i.e. existence of a universal solution), Weak Controllability (i.e.
existence of a solution for each scenario), and Dynamic Controllability (i.e. ex-
istence of a solution that can always be built incrementally based on outcomes
of contingent edges in the past). Tractable algorithms for checking them were
provided in [13]. [4] proposed a pseudo-polynomial algorithm to handle dynamic
controllability of STPUs based on constraint satisfaction. In [14], techniques were
proposed to optimize the bounds on durations of contingent edges such that the
resulting STPU is dynamic controllable.

Another line of work to deal with temporal uncertainty takes on a probabilis-
tic context, i.e. allowing for probabilistic violation of constraints. [2] modeled
contingent edges as random variables. Under some assumptions on the relation-
ship between controllable and uncontrollable points, they provided an efficient
polynomial-time approach based on second-order cone programming to check
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if an STPU is Robust Controllable, i.e., can be executed dynamically within a
given level of risk. [9] dealt with the problem of maximizing the probability of
successful execution of PSTP (Probabilistic STPU) that models STPUs with
continuous conditional PDF for each uncontrollable event. He formulated and
solved the problem as a non-linear constrained optimization problem, and in
general, the approach does not guarantee finding a globally optimal solution.
[11] proposed heuristic techniques for approximating upper and lower bounds on
the probability of executing a dynamically controllable strategy for PSTP.

3 Problem Definition

Definition 1. A Disjunctive Temporal Problem with Uncertainty is a tuple
< Ve, Vu, C, Cu, P > where

– Ve = {y1, ..., yn}, Vu = {x1, ..., xm} respectively denote the sets of executable
(or controllable) and observable (or uncontrollable) variables (or temporal
events, time points) taking real values;

– C is the set of controllable temporal constraints on Ve and Vu. In the follow-
ing, we describe five different types of constraints {S, Se, D, De, Dmix}. (For
brevity, the reader may skip this and come back for more details later.)

• S : set of standard STP constraints between controllable points;

• Se: set of executable STPU constraints, each specifying the temporal
requirement between an uncontrollable and a controllable point;

• D : set of DTP constraints, each being a disjunction of two or more STP
constraints S ;

• De : set of disjunctions of two or more executable STPU constraints;

• Dmix: set of disjunctions of a mix of STP and executable STPU con-
straints.

– Cu is the set of contingent constraints, one for each uncontrollable time
point in Vu, representing duration uncertainty determined by Nature. Each
contingent constraint in a DTPU links an uncontrollable time point xj to
a unique parent executable time point, denoted pa(xj), and is expressed as
a disjunction of Kj random variables taking nonnegative values. Hence, a
contingent constraint can be expressed algebraically as xj−pa(xj) = d1

j∨...∨

d
Kj

j . In plain terms, this means that the point xj takes a value that Nature
would determine, which is a realization of one of the random variables in

{d1
j , ..., d

Kj

j }; and this value gives the duration of the event whose start time
is given by the executable time point pa(xj). For consistency of notations
with controllable constraints, we write Cu = {Sc, Dc}, where Sc and Dc

denote the set of contingent STPU and DTPU constraints respectively.

– P is a set of continuous PDFs, one for each random variable d̃ providing
the probability distribution over time duration of the uncontrollable event
xj occurring after the executable point pa(xj) is started. The probability
distributions are assumed to be independent of each other.
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Fig. 1. DTPU Example.

Figure 1 gives an example of DTPU with four executable variables y1 to y4

(representing the start times of Tasks 1 to 4, where Task 1 is the dummy Time
Reference point with no duration uncertainty), plus two observable variables x1

and x2 (representing the uncertain durations, i.e. uncontrollable events of Tasks
2 and 4’s end times respectively). The constraint between executable events,
such as that between y1 and y4, means that Task 4 is to start between 5 to
10 time units after y1. The contingent constraint between y4 and x2 means the
duration of Task 4 is controlled by Nature whose value follows a certain proba-
bility distribution. According to Definition 1, these constraints are classified as
follows.

S : y2 − y1 ∈ [0,∞] y4 − y1 ∈ [5, 10]
Se : y3 − x1 ∈ [3, 7] y3 − x2 ∈ [2, 5]

Dmix : y2 − x2 ∈ [1, 2]∨ y4 − y2 ∈ [3, 8]
Sc : x2 − y4 = d̃3

Dc : x1 − y2 = d̃1 ∨ x1 − y2 = d̃2

As a side note, we like to comment that in practice, the number of disjuncts
for disjunctive constraints in C and Cu is typically very small. For C, disjunctions
are used to model scheduling constraints such as either x occurs before y or y
before x and hence the number of disjuncts is 2. For Cu, disjunctions can be
used to model rare events where a duration can either assume a usual (albeit
uncertain) length or occasionally take an unusually long time, and hence the
number of disjunct is again equal to 2.

In this paper, we use probability distributions to model contingent durations.
This frees us from the requirement for bounded intervals, which we believe is less
realistic, since it is hard to provide bounds for the nature-controlled temporal
events and there is always a non-zero probability that exogenous factors may
cause an event to occur outside the bounds.

Given a DTPU, a schedule (or solution) is an assignment to all executable
time points in Ve.

Definition 2. The Risk-Minimal DTP problem (RDTP) is defined as: given
a DTPU instance, find a solution such that the probability that all constraints
are satisfied is maximized.
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This problem belongs to the class of ”inequality constrained discrete MIN-
MAX problem” [6] in optimization theory, which is known to be notoriously hard
to solve computationally.

4 Solution Approach

First, we show how to decompose the original DTPU into different sub-problems.
We then discuss how the success probability of each sub-problem can be com-
puted. This leads us to the next section where we discuss our proposed local
search scheme that makes use this computation.

4.1 Problem Decomposition

Note that for each disjunctive contingency constraint in Dc, since Nature will
dictate which disjunct will ultimately be chosen and which value for that single
disjunct will be realized during execution, the planner need to take into consid-
eration ALL combinations of disjuncts that Nature may choose. On the other
hand, since the planner has the right to decide on the values of the executable
variables, an assignment that satisfies ANY of the disjunct of a disjunctive con-
straint in{D, De, Dmix} is deemed to have satisfied that constraint. For this
reason, one can imagine decomposing the DTPU into component DTPUs which
can be solved independently and in parallel. Hence, we propose to split the con-
straint set into two categories {S, Se, Sc, D, De, Dmix} (termed the Canonical
set) and {Dc}.

Intuitively, our idea is to decompose the problem as an MAX/MIN tree where
we seek the maxima over the branches of the Canonical constraints, each of which
is in turn computed as the minima over the branches of the disjunctive contingent
constraint set Dc (since Nature can pick any of these branches). Details are given
as follows.

Definition 3. Component DTPU (C-DTPU). Given a DTPU, a C-
DTPU is a DTPU with the set of temporal variables Ve ∪ Vu, the set of dis-
junctive contingent constraints Dc, and a set of STPU constraints comprising
the non-disjunctive constraints {S, Se, Sc} plus constraints obtained by selecting
one disjunct from each constraint of the set {D, De, Dmix}. (In other words, a
C-DTPU is a DTPU defined by < Ve, Vu, Scan, Dc, P >, where Scan is an STPU
comprising a unique disjunct combination derived from the canonical set of the
original DTPU. To avoid ambiguity, we also term this STPU as a canonical

STPU.)
Given a C-DTPU, in order to handle the disjunctive contingent constraints

Dc, we further decompose into Component STPUs (as the MIN branches):
Definition 4. Component STPU (C-STPU). Given a C-DTPU

< Ve, Vu, SCan, Dc, P >, a C-STPU is an STPU with the set of temporal vari-
ables Ve∪Vu, the entire set of SCan (defined above), a combination of contingent
STPU constraints obtained by selecting one disjunct from each constraint of the
set Dc, i.e. it is an STPU defined by < Ve, Vu, Scan, SDc

, P >, where SDc
is
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Fig. 2. DTPU Decomposition.

an STPU comprising a unique contingent disjunct combination from Dc of the
original DTPU.

A pictorial representation of the decomposition is given in Figure 2.

4.2 Computing Probability of Success

Consider a DTPU T composed of ϕ(T ) number of C-DTPUs Tl (l = 1, ..., ϕ(T )).
For each Tl, we are interested to find an optimal schedule (denoted as s∗l ) that
maximizes its success probability (i.e. the probability that all temporal con-
straints will be satisfied during execution if controllable points are executed fol-
lowing the schedule). Let P (Tl|sl) represent the success probability of Tl when
committing to schedule sl (i.e. an assignment to all executable points of Tl), an
optimal schedule can then be defined as, s∗ = arg maxsmaxl(P (Tl|s)).

Let θ(Tl) denote the total number of decomposed C-STPUs of Tl; Tlk denote
the kth C-STPU, and P (Tlk|slk) denote the success probability of Tlk with sched-
ule slk (l = 1, ..., ϕ(T ) and k = 1, ..., θ(Tl)). For simplicity, we will henceforth
rewrite sl and slk as s where there is no ambiguity.

As noted above, since Nature will select the disjunct combination of con-
straints Dc to realize, we adopt a worst-case approach in determining an opti-
mal schedule s∗ for a given Tl. Given a schedule s, the worst-case probability for
Tl to be successfully executed when committing to s is equivalently the mini-
mum success probability of all its C-STPUs, i.e. P (Tl|s) = minkP (Tlk|s), where
k = 1, ..., θ(Tl). Therefore, the optimization problem of determining an optimal
schedule s∗ that maximizes the success probability of C-DTPU Tl is:

P (Tl|s
∗) = maxsP (Tl|s) = maxsminkP (Tlk|s) (1)

subject to the standard STP constraints.
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We now show how we compute the success probability for a single C-DTPU.
For simplicity, we will drop the subscript l and write the C-DTPU as T and the
C-STPU Tlk as Tk. The core computational part of our algorithm is to compute
the success probability P (T |s) of C-DTPU T when committing to schedule s. We
first consider the success probability of C-STPU Tk and adopt the idea presented
in (Tsamardinos, 2002) that deals with executing a PSTP so that the success
probability is maximized. The difference is that in our work, the probability
distribution is assumed with respect to a contingent constraint rather than an
observable time point.

Recall that for a C-STPU Tk, three types of temporal constraints are in-
volved: STP constraints, executable STPU constraints of the form yi−xj ≤ bxjyi

or xj−yi ≤ byixj

1, and contingent STPU constraints of the form xj−pa(xj) = dj.
STP constraints are standard constraints that must be satisfied as hard con-
straints. Contingent constraints are instantiations of random variables deter-
mined by Nature. Thus, given a schedule s, the success probability is equal to
the probability that the executable STPU constraints are satisfied given the
probability distributions associated with the random variables.

Consider first an arbitrary observable variable x and its parent pa(x). The
success probability of C-STPU Tk associated with this x when committing to
schedule s can be computed as the probability that all the executable STPU
constraints linked to x are satisfied:

P (Tk|s) = P ((
∧

i

yi − x ≤ bxyi
) ∧ (

∧

i

x − yi ≤ byix) (2)

Since x − pa(x) = d̃, we can rewrite the above as:

P (Tk|s) = P (Ls(d) ≤ d ≤ Us(d)|s) (3)

where Ls(d) = Maxi(yi − bxyi
) − pa(x) is the lower bound for the contingent

constraint to be satisfied for a given solution s, while Us(d) = Mini(yi + byix)−
pa(x) is the upper bound.

Extending to the general case when multiple observable variables are involved
and letting d̃j denote the random variable associated with the jth contingent
constraint, the above probability equation becomes:

P (Tk|s) = P (
∧

j

Ls(d̃j) ≤ d̃j ≤ Us(d̃j)|s) (4)

Since all executable variables have been fixed with a given schedule s, the val-
ues of Ls(d̃j) and Us(d̃j)|s) are fixed for each contingent constraint j and not
dependent on any other random variables. Also, the probability distribution for
different contingent durations represented with random variables d̃j are assumed
to be independent of each other. Hence, we have,

P (Tk|s) =
∏

j

P (Ls(d̃j) ≤ d̃j ≤ Us(d̃j)|s) (5)

1 Note that the original form of the constraint yi − xj ∈ [axjyi , bxj yi ] has been re-
written by the two inequalities above for notational simplicity.
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Thus, the success probability P (T |s) of C-DTPU T when committing to schedule
s can be represented as:

P (T |s) = mink

∏

j

P (Ls(d̃kj) ≤ d̃kj ≤ Us(d̃kj)|s) (6)

where k = 1, ..., θ(T ) and ˜dkj is the jth contingent constraint of C-STPU Tk.

5 Local Search

In this section, we discuss our proposed local search algorithm to solve RDTP.
Our search process is conducted on multiple C-DTPUs simultaneously and in-
dependently, and the one the gives the best solution will be returned. Note that
such computations can occur in parallel without affecting the correctness of the
solution. In the following, we therefore discuss our proposed local search algo-
rithm to solve the problem associated with a single C-DTPU.

5.1 Search Space

A C-DTPU is made up of an STPU plus the Dc constraints. We perform search
in the space of feasible solutions which comprise schedules that do not violate
any of the STP constraints in S. Note that for a C-DTPU, every executable
constraint is a simple (i.e. non-disjunctive) constraint. This means, for each
executable variable, we can calculate its minimal domain using the algorithm in
[1] in polynomial time, which is also can be used to find a feasible solution the
minimal domain.

5.2 Neighborhood Generation

The initial solution denoted as s0 = {s0
1, ...s

0
n} is randomly selected from the fea-

sible space, which is an assignment of all n executable variables. From equation
(6) given in the previous section, we see that the overall probability of success of
a solution s is a function of the probabilities that the individual random variables
(representing the contingent constraints) will be realized within their respective
interval bounds (lower and upper bounds) when committing to that schedule.
Hence, the intuition for our proposed local search neighborhood is to adjust the
value of one executable variable of s at a time in such a way that these proba-
bilities might be increased while maintaining schedule feasibility. The following
provides the neighborhood construction in detail.

We first make some observations any random variable d, before discussing
the neighbor structure.

– For any interval I ⊆ R, P (d ∈ I) is not necessarily proportional to the length
of I, and its value may vary, i.e., increase or decrease, when I is slided to
the left or right.

– For any two intervals I1 and I2, we have P (d ∈ I1) ≥ P (d ∈ I2) if I2 ⊆ I1.
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Fig. 3. An uncontrollable variable and its relatives in a C-DTPU

Therefore, at each local search iteration, the intuition is to explore candidate
neighbors that will either: (a) slide the interval [Ls(d̃j), Us(d̃j)] to one where the

area under the probability density function of d̃j over that interval has an equal

or higher value; or (b) expand the interval [Ls(d̃j), Us(d̃j)] as much as possible.
In both cases, care must be exercised to ensure the resulting schedule is still
feasible. This hill-climbing process will lead us to iteratively improve the overall
value of the success probability.

Assume that s = {s1, ...sn} is a feasible schedule a certain C-DTPU in ques-
tion. For each yi ∈ Ve, denote:

δ−(yi) = max{δ > 0 : s′ = (s1, ..., yi − δ, ..., sn) is a feasible solution}
δ+(yi) = max{δ > 0 : s′ = (s1, ..., yi + δ, ..., sn) is a feasible solution}

That is, δ−(yi) and δ+(yi) provide the limits, when all other executable variables
are fixed, on how much the value of yi can be decreased or increased such that
the resulting schedule is still feasible.

Since we must deal disjunctive contingent constraints (each of them compris-
ing one or more random variables), rather than considering individual random
variables, we instead focus on each uncontrollable variable. We say that two
variables are said to be related if there is at least one constraint between them.
Figure 3 gives an example of the relatives of an uncontrollable variable x. For
each uncontrollable variable xj, the bound interval [Ls(xj), Us(xj)] of xj may be
slided to the left or right by shifting the value of its parent variable pa(xj) along
the interval [pa(xj)− δ−(pa(xj)), pa(xj) + δ+(pa(xj))]. Similarly, the bound in-
terval may be expanded by shifting the values of the executable variables yi

emanating from xj. In order to understand which of these variables to shift, we
first provide the following definitions.

Definition 7. Optimal Relatives for an Uncontrollable Variable.
Given a feasible solution s, the Optimal Relatives for an uncontrollable vari-
able xj (j = 1, ...m) are the controllable variables yl

j and yu
j related with xj that

maximize the interval bounds of xj when committing to s,i.e.,
yl

j = argmaxyi
{(yi − bxjyi

)|s}
yu

j = argminyi
{(yi + byixj

)|s}
where yi’s are the controllable variables related with xj.
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In other words, when pa(xj) is fixed, the expanded bounds of xj ([Ls(xj), Us(xj)])
for the executable constraints emanating from xj (see Figure 3) to remain sat-
isfied under the solution s is given by [yl

j − bxjyl
j
− pa(xj), y

u
j + byu

j
xj

− pa(xj)].

Definition 8. Optimal Relatives for an Executable Variable. Given a
feasible solution s, the Optimal Relatives for an executable (controllable) variable
yi (i = 1, ...n) are the controllable variables Y l

i and Y u
i related with yi that

satisfy:
Y l

i = argmaxyj
{yj − ayiyj

|s}
Y u

i = argminyj
{yj + ayjyi

|s}
where yj ’s are the controllable points related with yi.
Then, δ−(yi) and δ+(yi) for yi can be derived from its Optimal Relatives,

i.e. δ−(yi) = yi − Y l
i + ayiY l

i
and δ+(yi) = Y u

i + aY u
i

yi
− yi.

With the above definitions, we are ready to define the neighboring solutions
of s. For each j = 1, ..., m we can obtain new neighboring solutions by the two
following operators:

– Operator O1: Decrease or increase the value of the corresponding parent to
get two neighbors:

sl
O1

= (s1, · · · , pa(xj) − δ−(pa(xj)), · · · , sn)
su
O1

= (s1, · · · , pa(xj) + δ+(pa(xj)), · · · , sn)
which are also feasible and may improve the probability of success as they
slide the interval of d̃j.

– Operator O2: Decrease or increase the value of the corresponding optimal
relatives to get two neighbors:

sl
O2

= (s1, · · · , yl
j − δ−(yl

j), · · · , sn)
su
O2

= (s1, · · · , yu
j + δ+(yu

j ), · · · , sn)
which are also feasible and may improve the probability of success since they
expand the interval of d̃j.

At each iteration, the neighbors of the current solution is constructed by changing
either the parent or an optimal relative of a uncontrollable variable to the value
that guarantees the largest interval while keeping the other elements fixed.

5.3 Algorithm

Now we formally describe one local search iteration that moves from a current
solution s = (s1, · · · , sn) to the next by calculating the Optimal Relatives Y l

i

and Y u
i for each yi, and yl

j and yu
j for each xi. Our local search neighborhood

generation algorithm can be summarized as in Algorithm 1.
We have three variants of the Algorithm 1 by applying either one or both

of the operators O1 and O2. We will show in Section 6 the comparison among
those variants.

The analysis of worst-case computational complexity is given as follows. Since
we compute Y l

i and Y u
i for each yi, and yl

j and yu
j for each xj for the initiate

solution, the cost for initial phase is O((n+m)r), where n and m are the number
of controllable and uncontrollable variables respectively, r is maximum number
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Algorithm 1 Searching for the Best Neighbor in a Component DTPU

Input: Component DTPU T and feasible schedule s.
Output: BN , the best neighbor of s.
1: Initialize BN ← s

2: for each uncontrollable variable x do

3: Apply O1 to get two neighbors sl
O1

and su
O1

4: if P (T |sl
O1

) > P (T |s) then BN ← sl
O1

;
5: end if

6: if P (T |su
O1

) > P (T |s) then BN ← su
O1

;
7: end if

8: Apply O2 to get two neighbors sl
O2

and su
O2

9: if P (T |sl
O2

) > P (T |s) then BN ← sl
O2

;
10: end if

11: if P (T |su
O2

) > P (T |s) then BN ← su
O2

;
12: end if

13: end for

14: return BN

of related (adjacent) variables (which is the max degree of the graph). The cost
for computing the probability of success is O(mK) where K is the maximum
number of disjunctions in a disjunctive contingent constraint (which is typically
a small value). Since each solution keeps information about Y l

i and Y u
i for each

yi, and yl
j and yu

j for each xj , the cost for updating one of them when we change
the value of a yj is constant. Therefore, the cost for the optimal relative update
step is O(r). Consequently, the cost for a local search move is O(mr). Finally,
the complexity of our local search algorithm is O((n + m)r) + O(Lm(r + K))
where L is the number of local search iterations.

6 Experimental Analysis

In this section, we present experimental results that verify the performance of
our proposed local search algorithm. We implemented our algorithm in C# on
a Core(TM) 2 Duo CPU 2.33GHz processor under Windows7 operating system
with a main memory of 2GB.

6.1 DTPU Instance Generation

In general, to evaluate the performance of a heuristic optimization algorithm,
it would be ideal to have baselines such as the exact optimal solutions for a
set of problem instances. But since there are no DTPU benchmark problems in
the literature and it is impractical to optimally solve reasonably large instances,
we resort to using reasonably tight lower bounds. More precisely, we generate
problem instances which satisfy the condition that there is at least one feasible
solution with the probability of success of at least 1 − ε for a given threshold
value ε between 0 and 1. On small values of ε (e.g., 0.2, 0.1, or 0.05), the value
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1 − ε provides a tight lower bound for the optimal solution, and our aim is to
show that our algorithm produces a solution very near to 1 − ε.

For our experiments, we restrict to two disjunctions per disjunctive con-
straint. As described in the Problem Definition section, this is a reasonable
setting in modeling real-world uncertainty.

With the above considerations in mind, we apply the following steps to gen-
erate the problem instances with nc controllable variables, nu uncontrollable
variables, mc controllable (i.e. STP) constraints, 2 · nc executable constraints,
and roughly q ·mc disjunctive constraints. q is a small value between 0 and 1 to
ensure that the number of disjunctive constraints is small.

Generating a DTP To ensure that a generated instance has at least one
feasible solution, we reverse-engineer the problem generation; that is, we first
generate a schedule s′ and then generate the set of constraints that are satisfied
given s′. More precisely, we employ the following steps:

1. Generate a connected graph G with nc nodes variables and mc edges.
2. Schedule s′: assign 0 to the Time Reference point and assign uniformly

distributed random values to other nodes.
3. If (yi, yj) is an edge in G, and values assigned to yi and yj are val(yi)and

val(yj ) respectively, and if val(ji) < val(yj ) then:
– construct a constraint yj − yi ∈ [U(0, val(yj) − val(yi)), U(val(yj ) −

val(yi), 2(val(yj)− val(yi)))]. (This is to ensure that the generated con-
straint is satisfied.)

– with probability q, construct the disjunction constraint between yi and
yj in a similar fashion.

Generating uncontrollable variables, executable and contingent con-
straints Executable constraints and contingent constraints are generated in a
similar fashion as above. That is, we first generate a realization of all uncontrol-
lable variables. Based on this realization, we generate the executable constraints
that are satisfied given s′(generated in the DTP generation phrase) and the
realization. The set of contingent constraints are generated such that for each
uncontrollable variable x, the set of generated executable constraints related to
x is satisfied with probability ε̂ = (1 − ε)1/nu. To ensure that the generated
instance has the probability of success given s′ is (ε̂)nu = 1 − ε, we employ the
following steps:

1. Assign random number U(1, maxi{val(yi)}) to each uncontrollable variable.
2. For each uncontrollable variable x with assigned number val(x):

– Randomly choose two controllable variables yi and yj such that val(yi) >
val(x) and val(yj ) > val(x), then construct executable constraints be-
tween x and yi, as well as x and yj .

– Randomly choose a variable y such that val(y) < val(x) as pa(x)
– Compute Ls(x) and Us(x) associated with s′.
– Randomly generate p ∈ (0, 1), and set the two distributions d̃1, d̃2 such

that the probability that pd̃1 + (1 − p)d̃2 ∈ [Ls(x), Us(x)] is ε̂.
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In the case that d̃1 and d̃2 are of normal distributions with deviations σ1 and
σ2, if the probability that the realization falls within the interval [Ls, Us] is ε̂,
we have the following:

ε̂ = p · [Φ(Us−µ1

σ1

) − Φ(Ls−µ1

σ1

)]+

+(1 − p) · [Φ(Us−µ2

σ2

) − Φ(Ls−µ2

σ2

)]
(7)

where Φ is cumulative function for the standard normal distribution. A simple
way to solve this equation is to set both [Φ(Us−µ1

σ1

)−Φ(Ls−µ1

σ1

)] and [Φ(Us−µ2

σ2

)−

Φ(Ls−µ2

σ2

)] equal to ε̂. That is,

Φ(Us−µ1

σ1

) = 1 − ν · (1 − ε̂)

Φ(Ls−µ1

σ1

) = (1 − ν) · (1 − ε̂)

Φ(Us−µ2

σ2

) = 1 − τ · (1 − ε̂)

Φ(Ls−µ2

σ2

) = (1 − τ ) · (1 − ε̂)

(8)

where ν and τ are random numbers in (0, 1).
In the case that d̃1 and d̃2 are of uniform distributions, for the purpose of

simplicity, we may let both P (d̃1 ∈ [Ls, Us]) and P (d̃2 ∈ [Ls, Us]) equal to ε̂, and
Ls and Us are the lower bound of d̃1 and upper bound of d̃2 respectively. This
leads to the following:

d̃1 ∼ U [Ls, U1] where U1 = Ls + (Us − Ls)/ε̂

d̃2 ∼ U [L2, Us] where L2 = Us − (Us − Ls)/ε̂
(9)

6.2 Results and Analysis

We ran experiments on 3 sets of random DTPU instances generated with pa-
rameter settings given in Table 1. For each setting, we generate 100 instances
whose random variables follow the normal distribution, and 100 instances follow
the uniform distribution.

Set 1 Set 2 Set 3

#Controllable variables 15 20 30

#Uncontrollable variables 5 10 10

#DTP constraints 50 75 100

#Executable constraints 10 20 20

#Contingent constraints 4-6 6-12 6-12
Table 1. Parameters used in instance generation

For every instance, we generated random initial feasible solutions and applied
three variants of our proposed local search: O1 denotes using only the operator
O1 is applied to search for the best neighbor; O2 denotes using only operator
O2; and O1+ O1 denotes using both operators. We then computed the mean
and variance of the probabilities of success obtained by our three local search
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variants on each set of problem instances. And as a benchmark comparison, we
also show the mean probability of success of the best random initial solutions.2

In addition, to show the actual quality of solutions, we show the number of times
the obtained probability exceeds the tight lower bound 1−ε (for ε = 0.2, 0.1 and
0.05). The results are summarized in Table 2.

Set 1

Normal distribution Uniform distribution

ε 0.2 0.1 0.05 0.2 0.1 0.05

Mean of best initial solutions 0.60 0.69 0.78 0.65 0.69 0.67

O1

Mean 0.82 0.90 0.95 0.94 0.94 0.91
Variance 0.07 0.11 0.06 0.08 0.10 0.13

#Instances exceeding 1 − ε 85 74 87 93 84 55

O2

Mean 0.79 0.89 0.93 0.85 0.86 0.85
Variance 0.12 0.10 0.12 0.16 0.15 0.18

#Instances exceeding 1 − ε 73 72 70 74 51 33

O1 +O2

Mean 0.86 0.94 0.97 0.97 0.97 0.97

Variance 0.03 0.01 0.01 0.05 0.06 0.06

#Instances exceeding 1 − ε 98 100 99 95 89 80

Set 2

Mean of best initial solutions 0.57 0.69 0.80 0.50 0.49 0.50

O1

Mean 0.80 0.88 0.93 0.81 0.80 0.81
Variance 0.07 0.06 0.05 0.15 0.13 0.13

#Instances exceeding 1 − ε 64 55 40 61 24 8

O2

Mean 0.77 0.88 0.93 0.72 0.73 0.72
Variance 0.14 0.06 0.07 0.17 0.16 0.17

#Instances exceeding 1 − ε 63 58 54 35 15 5

O1 +O2

Mean 0.86 0.93 0.97 0.93 0.92 0.91

Variance 0.02 0.01 0.01 0.10 0.09 0.08

#Instances exceeding 1 − ε 98 98 97 91 69 39

Set 3

Mean of best initial solutions 0.52 0.65 0.70 0.45 0.46 0.45

O1

Mean 0.80 0.88 0.93 0.81 0.80 0.81
Variance 0.07 0.06 0.05 0.15 0.13 0.13

#Instances exceeding 1 − ε 64 55 40 61 24 8

O2

Mean 0.75 0.85 0.90 0.68 0.67 0.68
Variance 0.14 0.11 0.16 0.19 0.17 0.16

#Instances exceeding 1 − ε 45 41 38 25 8 2

O1 +O2

Mean 0.86 0.93 0.96 0.91 0.90 0.89

Variance 0.03 0.02 0.03 0.11 0.10 0.11

#Instances exceeding 1 − ε 98 96 93 90 59 39

Table 2. Performance of Local Search

2 We generated one random initial feasible solution for each C-DTPU, and these figures
are based on the best solutions generated. It is noteworthy that many of the initial
solutions have very low probability of success, almost near to zero.
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Fig. 4. Results for running O1+O2 on Set 1 instances under normal distribution.

0 50 100
0.4

0.5

0.6

0.7

0.8

0.9

1
1 − ε = 0.8

0 50 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
1 − ε = 0.9

0 50 100

0.4

0.5

0.6

0.7

0.8

0.9

1
1 − ε = 0.95

Fig. 5. Results for running O1+O2 on Set 3 instances under uniform distribution.

We observe that all local search variants performed well in general, since
they generate solutions which are reasonably close to the value 1 − ε whereas
the initial solutions are not so. This observation is consistent across all problem
instance sets tested with different parameters and under both the normal and
uniform distributions. Table 2 also clearly shows that, while the performance of
O1 and O2 are not significantly different, the combined approach O1+O2 always
gives the best solutions. Moreover, the solutions obtained by O1 + O2 are more
reliable, in the sense that they are closer to the optimal solutions (having the
highest mean of probability of success among the three variants) and have the
smallest variance.

Figure 4 shows the detailed results on the actual distribution of the 100
solution values obtained from running O1+O1 on Set 1 instances with contingent
variables that follow the normal distribution. Similarly, Figure 5 shows results
obtained from running O1+O2 on Set 3 instances with contingent variables that
follow the uniform distribution. Both these figures illustrate that most solutions
obtained by our algorithm O1+O2 are indeed very close to the optimal solutions
(or more precisely, the respective tight lower bounds).
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7 Conclusion

In this paper, we presented what we believe to be the first efficient scheme to
tackle the optimization problem associated with DTPUs, based on a decomposi-
tion mechanism and local search. Experimental results demonstrate the compu-
tational efficiency of our approach on a range of problem instances. We believe
it is possible to make the search process more effectively with more powerful
local search algorithms. For future works, it is interesting to relax the assump-
tion of independence among the random variables, which we inherited from [9],
since such events are seldom independent. It is a challenging analytical and
computational task to compute the probability of successful execution taking
the correlation of random variables into consideration.
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