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How to Describe Objects? ∗

Peng Liu†

March 6, 2017

Abstract

This paper addresses the problem of randomly allocating n indivisible objects to n

agents where each object can be evaluated according to a set of characteristics. The planner
chooses a subset of characteristics and a ranking of them. Then she describes each object as
a list of values according to the ranking of those chosen characteristics. Being informed of
such a description, each agent figures out her preference that is lexicographically separable
according to the characteristics chosen and ranked by the planner. Hence a description of
the objects induces a collection of admissible preferences. We call a description good if
it induces a preference domain that admits an sd-strategy-proof, sd-efficient, and equal-
treatment-of-equals rule.

When problem size n satisfies two technical assumptions, a description is good if and
only if it is a binary tree, i.e., for each feasible combination of values of the top-t ranked
characteristics, the following-up characteristic takes at most two feasible values.1 In addi-
tion, whenever the description is a binary tree, the probabilistic serial rule (Bogomolnaia
and Moulin (2001)) satisfies all three axioms.

Keywords: Random assignment; sd-strategy-proofness; sd-efficiency; equal treatment of
equals; lexicographically separable preferences;

JEL Classification: C78, D71.

1 Introduction

A random assignment problem (Bogomolnaia and Moulin (2001)) deals with the situation
where n indivisible objects are to be allocated to n agents, each agent receiving exactly one
object. Each agent reports a strict preference on objects to a planner and then the planner assigns
a lottery to each agent according to some prescribed (random assignment) rule. Examples of
assignment problems include allocating houses to residents (Shapley and Scarf (1974)), tasks

∗I thank Shurojit Chatterji and Huaxia Zeng for their endless encouragement and detailed suggestions. I also
thank Atsushi Kajii, Takashi Kunimoto, Jingyi Xue, Olivier Bochet, and Jordi Masso.
†School of Economics, Singapore Management University, Singapore. E-mail: pengliu0618@gmail.com
1I provide the proof subject to two technical assumptions in Appendix A. Although I can not verify these two

assumptions analytically, I conjecture them to be true. In addition, I provide Matlab codes to verify them given
specific n and I have verified the assumptions with these codes for all the cases where n 6 1000.
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to workers (Hylland and Zeckhauser (1979)), and college seats to applicants (Gale and Shapley
(1962)).

We are interested in designing a satisfactory random assignment rule to allocate the objects.
Particularly we want the rule to attain some nice properties. Since agents are reporting ordi-
nal preferences on objects but assigned lotteries on the objects, we need to extend the ordinal
preferences on objects to preferences on lotteries before evaluating the lotteries. A standard ap-
proach is to adopt the stochastic dominance extension (or sd-extension), which declares that a
lottery is at least as good as another if the former (first-order) stochastically dominates the latter
according to the ordinal preference on objects. Under the assumption that agents are expected
utility maximizers, the sd-extension is equivalent to saying that an agent prefers a lottery to
another if the former delivers an expected utility as high as the amount delivered by the latter
with whichever the Bernoulli utility that represents the agent’s preference on objects. In this
sense, sd-extension can be seen as a cautious approach.

With sd-extension, properties on rules can be defined. The first important property is sd-
strategy-proofness2, which requires that reporting the true preference always leads to a lottery
at least as good as any lottery delivered by reporting a false preference. A classical rule satis-
fying sd-strategy-proofness is the random serial dictatorship rule (Abdulkadiroğlu and Sönmez
(1998)). However, the random serial dictatorship rule is not sd-efficient (Bogomolnaia and
Moulin (2001)), which is the second property we require on the rule. A rule is sd-efficient if
it always specifies a random assignment which can not be Pareto improved. Bogomolnaia and
Moulin (2001) characterizes an sd-efficient rule to be generated by a simultaneous eating algo-
rithm. Within these sd-efficient rules, one is of special interest since it satisfies a basic fairness
property: equal treatment of equals which requires that whenever two agents report the same
preference they receive the same lottery. This rule is generated by the simultaneous eating algo-
rithm with uniform speed and called the probabilistic serial (PS) rule. We call a rule satisfying
these three properties an acceptable rule.

Unfortunately according to Bogomolnaia and Moulin (2001), when all strict preferences are
admissible and n > 3, there does not exist an acceptable rule.3 Further more, this impossibility
is strengthened progressively by a series of works. Kasajima (2013) proves the impossibility
on the single-peaked domains. Chang and Chun (2016) prove the impossibility on the single-
peaked domains when people have a common peak. Liu and Zeng (2016) prove the impossibil-
ity on any domain which involves a structure what they call elevating property. In addition, Liu
and Zeng (2016) propose a class of domains, restricted tier domains, on which the PS rule is
sd-strategy-proof and hence acceptable by avoiding the structure leading to impossibility. Liu
(2016) then defines another class of preference domains, sequentially dichotomous domains,
which are much larger and more flexible than restricted tier domains. It is shown that on a
sequentially dichotomous domain the PS is sd-strategy-proof and hence acceptable.

From these results, it is the preference domain that constrains the scope for designing an
acceptable rule. In theory, we simply assume what preferences are admissible and a larger

2Henceforth, we add prefix ”sd-” to emphasize that the corresponding property is in ex-ante sense and it’s
established with respect to the notion of stochastic dominance extension.

3When n 6 3 the random serial dictatorship rule is good. Throughout the paper we deal with the situation
where n > 3.
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domain is preferred. It is interesting to ask, in reality, how might preference restrictions arise
and what is implies for the scope of designing acceptable rules. A first observation is that, in
reality, the way people figure out their preferences on the objects is fundamentally affected by
the way these objects are described. Since in reality, when people are required to submit their
preferences on the objects, the information they have is usually a description of the objects.
Take house allocation as an example, people are usually required to express their preferences
on houses before they can really live in the houses and consume the housing service. Rather,
the information they have for them to figure out their preferences is usually a description of the
houses, which is usually provided by the authority who organize the allocation. Take the task
allocation as another example, it is impossible that workers express their preferences on tasks
after they have experienced every task. Rather, the information they have for them to figure out
their preferences is usually a description of the tasks, provided by the manager or their team
leader.

Hence let’s take a closer look on the descriptions of objects in reality and the way descrip-
tions affect agents’ formulation of their preferences on the objects. A frequently seen descrip-
tion in reality is in the following format:

Table 1: A typical description of objects in reality

Characteristic
House #1 #2 #3 #4 #5 #6

1. Type (no. of rooms) 2-Room 2-Room 3-Room 3-Room 4-Room 5-Room

2. floor area (approximately in m2) 30 35 60 65 90 110

3. no. of bedrooms 1 2 3 3 4 3

4. no. of bathrooms 1 2 2 2 3 2

• Source: Website of Housing Development Board of Singapore. See Flat Type.

That is, each object, a house in this setup, is described as a combination of various character-
istic values. Notice that the characteristics presented are deliberately chosen from a much larger
set of characteristics. Essentially a house can be evaluated on many dimensions, for example
how long does it take to the nearest subway station, which floor the house is on, how many
public primary schools those are in the community, etc. In addition, even the characteristics
chosen here can be expressed in different ways. For example, the floor area may be expressed
as a series of binary choices: is the area larger than 30, 40, 50, and so on.

The reason we need to take such a close look on the descriptions of objects is as we men-
tioned, different descriptions induce people to formulate their preferences in different ways.
Observing that objects are described as combinations of various characteristic values, we make
the central behavioral assumption in this paper that people figure out their preferences on ob-
jects that are lexicographically separable with respect to the given description. As illustrated
by the above table, a typical resident tends to compare a pair of houses first by their type and
then floor area if they are of the same type and then number of bedrooms if they have the same
values of both type and area, and so on.

3

http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/types-of-flats


Here are two arguments that support this behavioral assumption. First, in reality sometimes
people are required to submit their marginal preferences immediately when they are informed
of the characteristic values in a sequential way. For example, a frequently observed practice
is as follows. First they choose a specific type on a webpage and then they are redirected to
another webpage where they choose a floor area from a collection of admissible choices which
depend on which type they choose. After they choose a floor area, they are led to a third page
to choose a number of bedrooms and so on until the end of the characteristic list.

Second, the set of feasible combinations of characteristic values is usually very sparse rela-
tive to the whole Cartesian product. For example, in Table 1, the whole Cartesian product has
4 × 6 × 4 × 3 = 288 elements. However, the feasible set has only 6 combinations. In other
words, the characteristics are heavily interdependent. Such interdependence makes our behav-
ioral assumption not as restrictive as it appears. For example, according to Table 1, knowing
that a house with more rooms always has a larger area, there is not much difference in whether
a person compares two houses according to first the number of rooms and then area or first the
area and then the number of rooms.

According to the behavioral assumption, by choosing a specific description of the objects,
i.e., a subset of characteristics and a ranking of them, the planner actually imposes a preference
restriction. In this paper, we model the situation as follows. The set of available objects is a
subset of the Cartesian product of a finite set of characteristics. The planner chooses a specific
description, i.e., a subset of the characteristics and a ranking of them. Facing the description
provided by the planner, the agents report lexicographically separable preferences. Then the
planner assigns a lottery to each agent according to a prescribed rule.

Within this setting, we investigate how choices of descriptions affect the scope for designing
an acceptable rule. Specifically we ask the following three questions one by one.

1. Given an arbitrary object set, does each possible description induces a preference domain
on which an acceptable rule exists?

2. If the answer to the above question is negative, what characterizes a good description so
that an acceptable rule exists on the induced domain?

3. Given a good description, what allocation rule should we use?

Let us examine the questions with a specific object set illustrated in Table 2. That is, each
object can be evaluated according to each of three characteristics, c = {1, 2} c′ = {a, b, c} and
c′′ = {x, y}.

Table 2: An object set

Characteristic
Object

o1 o2 o3 o4 o5

c 1 1 1 2 2

c′ a b c a b

c′′ x y y x y

4



The answer to the first question is obviously negative. Consider the description such that c
and c′ are chosen and c is ranked above c′, illustrated by Table 3.

Table 3: A bad description

Characteristic
Object

o1 o2 o3 o4 o5

1: c 1 1 1 2 2

2: c′ a b c a b

Then according to the behavioral assumption, the following three preferences are admissi-
ble.

o1 � o3 � o2 � o4 � o5

o1 �′ o2 �′ o3 �′ o4 �′ o5

o2 �′′ o1 �′′ o3 �′′ o4 �′′ o5

This domain exhibits the elevating structure by Liu and Zeng (2016) and hence implies
nonexistence of an acceptable rule. We borrow a table from Liu and Zeng (2016) to exhibit the
elevating structure.

Ranking: k k + 1 k + 2

P̄i: · · · · · · · · ·︸ ︷︷ ︸
B(P̄i,a)

� a � c � b � · · · · · · · · ·

q

Pi:

B(Pi, a)︷ ︸︸ ︷
· · · · · · · · ·︸ ︷︷ ︸
B(Pi, a)

� a � b � c � · · · · · · · · ·

q

P̂i:
B(P̂i,b)︷ ︸︸ ︷
· · · · · · · · · � b � a � c � · · · · · · · · ·

Table 4: The Local Elevating Property

We say a domain D exhibits the elevating structure if there are three preferences P̄0, P0, P̂0 ∈
D, three objects a, b, c ∈ A, and three adjacent positions k, k+ 1, k+ 2 such that (1) a, b, c take
positions k, k + 1, k + 2 in all three preferences, (2) a and b take positions k and k + 1 in two
preferences, and (3) in the third preference, a takes position k and b takes position k + 2. For
the formal definition of the elevating structure and impossibility, please refer to Liu and Zeng
(2016).

From the description illustrated by Table 3, it’s evident that a necessary condition for a
description to induce a domain admitting an acceptable rule is that the last characteristic can
not take more than two feasible values, conditional on the previous characteristics.

A simple way to meet this necessary condition is to reverse the ranking of c and c′, as
illustrated by Table 5.
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Table 5: Another bad description

Characteristic
Object

o1 o4 o2 o5 o3

1: c′ a a b b c

2: c 1 2 1 2 1

Now the induced domain will not exhibit the structure illustrated by �, �′, and �′′ above.
Does this domain admits an acceptable rule?

To answer the question, we strengthen the impossibility of Liu and Zeng (2016) in a manner
so that, if n satisfies two technical assumptions ( Assumptions 1 and 2 in Appendix A), then the
three preferences forming the structure below imply nonexistence of an acceptable rule.

E � B � D � C � F

E �′ B �′ C �′ D �′ F

E �′′ C �′′ B �′′ D �′′ F

Specifically, let B,C,D be three nonempty blocks of objects and �,�′,�′′ three admissible
preferences such that (1) B,C,D take consecutive positions in three preferences, (2) B and C
take the first two positions in two preferences, and (3) in the third preference, B takes the first
position and C takes the third position. E is the common upper contour set that can be empty.
Notice that the sizes of three blocks are arbitrary and the ranking of objects within each block
is allowed to be arbitrary across preferences.4

According to this impossibility, we know that the description illustrated by Table 5, i.e.,
c and c′ are chosen and c′ is ranked above c, admits no acceptable rule since the induced do-
main includes three preferences exhibiting the structure that leads to impossibility, as illustrated
below.

{o1, o4} � {o3} � {o2, o5}
{o1, o4} � {o2, o5} � {o3}
{o2, o5} � {o1, o4} � {o3}

What’s more, according to this impossibility, we have a stronger necessary condition on
descriptions that induce domains admitting an acceptable rule. The condition is that, for each
feasible combination of values of the top-t ranked characteristics, the following-up characteris-
tic can take at most two feasible values. Whenever this condition is violated, the induced domain
include three preferences that exhibit the block elevating structure that leads to impossibility.

For the object set illustrated in Table 2, a description that satisfies the necessary condition
is as follows: all three characteristics are chosen and c ranked the first, c′′ the second, and c′ the
last. This description is illustrated by Table 6 below. It’s evident that the necessary condition
is satisfied: the first characteristic c takes two values 1 and 2; conditional on c’s value the

4We provide the proof subject to two technical assumptions in Appendix A. Although we can not prove these
two assumptions analytically, we conjecture them to be true. In addition, we provide Matlab code to verify them
given specific n and we have verified the assumptions with these codes for all the cases where n 6 1000.
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second characteristic c′′ takes two values x and y; conditional on a combination of the first two
characteristics, the last characteristic c′ takes either one value or two values.

Table 6: A good description

Characteristic
Object

o1 o2 o3 o4 o5

1: c 1 1 1 2 2

2: c′′ x y y x y

3: c′ a b c a b

We call a description satisfying this necessary condition a binary tree. The reason we name it
in this way can be seen easily from the following representation of the above table. Particularly,
according to the first characteristic c, objects are divided into two subsets, i.e., {o1, o2, o3} and
{o4, o5}. Then according to the second characteristic, {o1, o2, o3} breaks into {o1} and {o2, o3}
and {o4, o5} breaks into {o4} and o5. Finally, according to the last characteristic, {o2, o3} breaks
into {o2} and {o3}.

o1, o2, o3, o4, o5

o4, o5

o5

o5

o4

o4

o1, o2, o3

o2, o3

o3o2

o1

o1

However since the impossibility justifies the binary tree as only a necessary condition, we
still don’t know whether there is an acceptable rule on the domain induced by the description
in Table 6. To justify the condition as also a sufficient condition, we verify that the PS rule
is sd-strategy-proof on the domain induced by a binary tree. Hence a description induces a
preference domain on which there is an acceptable rule if and only if it is a binary tree, subject
to two technical assumptions. To show sd-strategy-proofness of the PS rule on the domain
induced by a binary tree, we utilize a result in Liu (2016), which shows that the PS rule is sd-
strategy-proof on any sequentially dichotomous domain. It then suffices to show that as long as
the description is a binary tree, the induced domain is covered by a sequentially dichotomous
domain.

The remainder of the paper is organized as follows. The next section presents the model,
both the classical random assignment model and our modeling of descriptions of objects. The
third section presents the results and the fourth section concludes. Omitted proofs are gathered
in the appendix.
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2 Model and Definitions

The first subsection clarifies notations and definitions of the classic random assignment
model and the second subsection defines the descriptions of objects and the domains induced
by descriptions.

2.1 The Random Assignment Model

Let I ≡ {1, · · · , n} be the set of agents and A the set of objects. We assume |I| = |A| =

n > 4. Each agent i is equipped with a strict preference Pi on A, i.e., a complete, transitive and
antisymmetric binary relation on A. Let P denote the set of all strict preferences over A. The
set of admissible preferences is a set D ⊆ P, referred to as the preference domain. Thus, P is
referred to as the universal domain. Given Pi ∈ D and a ∈ A, let rk(Pi), k = 1, . . . , n, denote
the k-th ranked object according to Pi. A preference profile P ≡ (P1, . . . , Pn) ≡ (Pi, P−i) ∈ Dn

is an n-tuple of admissible preferences.
Let ∆(A) denote the set of lotteries, or probability distributions, over A. Given λ ∈ ∆(A),

λa denotes the probability of getting a. A (random) assignment is a bi-stochastic matrix L ≡
[Lia]i∈I,a∈A, namely a non-negative square matrix whose elements in each row and each column
sum to unity, i.e., Lia > 0 for all i ∈ I and a ∈ A,

∑
a∈A Lia = 1 for all i ∈ I , and

∑
i∈I Lia = 1

for all a ∈ A. Evidently, in a bi-stochastic matrix L, each row is a lottery, i.e., Li ∈ ∆(A) for
all i ∈ I . Let L denote the set of all bi-stochastic matrices. Agents assess lotteries according to
(first-order) stochastic dominance. Given Pi ∈ D and lotteries λ, λ′ ∈ ∆(A), λ stochastically
dominates λ′ according to Pi, denoted λ P sd

i λ′, if
∑k

l=1 λrl(Pi) >
∑k

l=1 λ
′
rl(Pi)

for all 1 6 k 6
n. Analogously, given P ∈ Dn, we say an assignment L stochastically dominates L′ according
to P , denoted L P sd L′, if Li P sd

i L′i for all i ∈ I .
A rule is a mapping ϕ : Dn → L. Given P ∈ Dn, ϕia(P ) denotes the probability of agent

i receiving object a, and thus ϕi(P ) denotes the lottery assigned to agent i. Specifically the
probabilistic serial rule is denoted as PS : Dn → L.

We impose three axioms on a rule. First, a rule ϕ : Dn → L is sd-efficient if, for all
P ∈ Dn and all L′ ∈ L, [L′ P sd ϕ(P )] ⇒ [L′ = ϕ(P )]. Second, a rule ϕ : Dn → L is
sd-strategy-proof if for all i ∈ I , Pi, P ′i ∈ D, and P−i ∈ Dn−1, ϕi(Pi, P−i) P sd

i ϕi(P
′
i , P−i).

Last, a rule ϕ : Dn → L satisfies equal treatment of equals if for all P ∈ Dn, [Pi = Pj]⇒
[ϕi(P ) = ϕj(P )]. In summary, we call a rule acceptable if it satisfies all three axioms above.

2.2 Descriptions of Objects and Induced Preference Domains

Let C denote the collection of characteristics, according to each of which an object can be
evaluated. Hence the object set is a subset of a Cartesian product A ⊂

∏
c∈C Ac where Ac is the

collection of all possible values of characteristic c. For each object a ∈ A and each characteristic
c ∈ C, we denote object’s value of characteristic c by ac. Without loss of generality, we assume
no unused characteristic value, i.e., for each c ∈ C and v ∈ Ac there is an object a ∈ A such
that ac = v.
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Given A ⊂
∏

c∈C Ac, the planner chooses a subset of the characteristics and specifies a
ranking of these chosen characteristics. We call the pair of the chosen subset and the ranking of
characteristics a description of the objects. Formally it is defined as below.

Definition 1. A description of the object set A ⊂
∏

c∈C Ac is a pair (C, σ) where

• C ⊂ C is a subset of characteristics such that for each pair of distinct objects x, y ∈ A
there is a characteristic c ∈ C that gives xc 6= yc, and

• σ is an one-to-one mapping σ : C → {1, · · · , |C|}.

The condition imposed on the chosen set of characteristics is requiring that the chosen char-
acteristics be sufficiently informative so that an agent can differentiate each object from the
others according to the description given by the planner.

Given a description (C, σ), an t ∈ {1, · · · , |C|}, and an object a ∈ A, let aσt ≡ aσ−1(t) be
a’s value of the characteristic which is t-th ranked according to σ and let Aσt ≡ Aσ−1(t) be the
admissible value set of the t-th ranked characteristic. In addition, for any t ∈ {2, · · · , |C|} and
any combination of values of the top-(t− 1) ranked characteristics (v1, · · · , vt−1) ∈

∏t−1
τ=1A

σ
τ ,

let Aσt |(v1, · · · , vt−1) ≡ {vt ∈ Aσt |∃a ∈ A s.t. (aσ1 , · · · , aσt−1, a
σ
t ) = (v1, · · · , vt−1, vt)}. For

notational convenience, we write Aσ1 |v0 ≡ Aσ1 .
After choosing a description (C, σ), the planner disclose the information of objects to the

agents. Facing the chosen description of objects, an agent compares each pair of objects lexico-
graphically according to the characteristics in C and the ranking specified by σ. Formally the
preference and the collection of these preferences are defined as below.

Definition 2. Given a description (C, σ) of A ⊂
∏

c∈C Ac, a preference P0 ∈ P is lexicograph-
ically separable with respect to (C, σ) if there is a strict preference P c

0 on each Ac such that
x P0 y if and only if there exists t ∈ {1, · · · , |C|} s.t.

(
xσ1 , · · · , xσt−1

)
=
(
yσ1 , · · · , yσt−1

)
and

xσt P
σ−1(t)
0 yσt .

In addition, let the domain induced by the description (C, σ) be the collection of all lexi-
cographically separable preferences with respect to (C, σ) and denoted as D(C,σ).

The preferences onAc’s that spell a lexicographically separable preference are called marginal
preferences. We now present the example discussed in the introduction in the language just de-
fined.

Example 1. Consider the object set illustrated by Table 2. Let C ≡ {c, c′, c′′}, Ac ≡ {1, 2},
Ac′ ≡ {a, b, c}, and Ac′′ ≡ {x, y}. Now the object set in Table 2 can be expressed as a subset
of
∏

c∈C Ac.
Consider the description illustrated in Table 5. The characteristic subset chosen is C ≡

{c, c′} and the ranking is σ(c′) = 1 and σ(c) = 2. The domain induced by description (C, σ) is
such one that includes P1 to P24 and is described as follows.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

o1 o4 o1 o4 o1 o4 o1 o4 o3 o3 o3 o3

o4 o1 o4 o1 o4 o1 o4 o1 o1 o4 o1 o4

o3 o3 o3 o3 o2 o2 o5 o5 o4 o1 o4 o1

o2 o2 o5 o5 o5 o5 o2 o2 o2 o2 o5 o5

o5 o5 o2 o2 o3 o3 o3 o3 o5 o5 o2 o2

P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24

o3 o3 o3 o3 o2 o2 o5 o5 o2 o2 o5 o5

o2 o2 o5 o5 o5 o5 o2 o2 o5 o5 o2 o2

o5 o5 o2 o2 o3 o3 o3 o3 o1 o4 o1 o4

o1 o4 o1 o4 o1 o4 o1 o4 o4 o1 o4 o1

o4 o1 o4 o1 o4 o1 o4 o1 o3 o3 o3 o3

Consider another description, illustrated in Table 6. Now the description is (C̄, σ̄) where
C̄ ≡ {c, c′, c′′} and σ̄ is such that σ̄(c) = 1, σ̄(c′) = 3, and σ̄(c′′) = 2. Then the domain induced
by this description is such that includes all preferences P̄1 to P̄16 below.

P̄1 P̄2 P̄3 P̄4 P̄5 P̄6 P̄7 P̄8 P̄9 P̄10 P̄11 P̄12 P̄13 P̄14 P̄15 P̄16

o1 o1 o1 o1 o2 o3 o2 o3 o4 o5 o4 o5 o4 o5 o4 o5

o2 o3 o2 o3 o3 o2 o3 o2 o5 o4 o5 o4 o5 o4 o5 o4

o3 o2 o3 o2 o1 o1 o1 o1 o1 o1 o1 o1 o2 o2 o3 o3

o4 o4 o5 o5 o4 o4 o5 o5 o2 o2 o3 o3 o3 o3 o2 o2

o5 o5 o4 o4 o5 o5 o4 o4 o3 o3 o2 o2 o1 o1 o1 o1

3 Result

This subsection presents the following two results. Firstly, whenever the problem size sat-
isfies the two technical assumptions 1 and 2, the objects should be described as a binary tree
since this is the only way the induced domain admits an acceptable rule.

Theorem 1. Let (C, σ) be a description and D(C,σ) the corresponding induced domain. In
addition, let n satisfy the Assumptions 1 and 2. If there is an sd-strategy-proof sd-efficient

and equal-treatment-of-equals rule defined on D(C,σ), then
∣∣∣∣Aσt |(v1, · · · , vt−1)

∣∣∣∣ 6 2 for all t ∈

{1, · · · , |C|} and (v1, · · · , vt−1) ∈
∏t−1

τ=1 A
σ
τ , i.e., the description is a binary tree

In order to prove Theorem 1, we show an impossibility result, which states that whenever
a domain exhibits the ”block elevating” property and two technical assumptions are satisfied,
there is no possibility of finding an acceptable rule. We first formally define the block elevating
property and then the impossibility.

A domain D satisfies the block elevating property if there are three admissible preferences
and three nonempty blocks such that the block (can be empty) ranked above these three blocks
in all three preferences is the same, three blocks are ranked next to each other in all three
preferences, one block is ranked last among the three blocks in two of the three preferences and
the second among the three in the third preference; formally:
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Definition 3. A domain D satisfies the block elevating property if there are three preferences
P̄0, P0, P̂0 ∈ D, three nonempty blocks B,C,D ⊂ A and two blocks E,F ⊂ A which can be
empty such that B ∪ C ∪D ∪ E ∪ F = A and three preferences are as follows

E P̄0 B P̄0 D P̄0 C P̄0 F

E P0 B P0 C P0 D P0 F

E P̂0 C P̂0 B P̂0 D P̂0 F

Table 7: The Block Elevating Property

The block elevating property is a generalization of the elevating property by Liu and Zeng
(2016), which requires all three blocks to be singletons. The impossibility with respect to the
block elevating property is as follows.

Proposition 1. Let D be a domain satisfying block elevating property. If n satisfies Assumptions
1 and 2, then D admits no sd-strategy-proof, sd-efficient, and equal-treatment-of-equals rule.

The proof of Proposition 1 is in Appendix B. The proof is by contradiction, i.e., suppose
D satisfies block elevating property and admits an acceptable rule, then we specify a series of
preference profiles consisting of only three preferences illustrated in Table 7. We characterize
the random assignments of these profiles according to the three axioms. Finally a contradiction
is identified.

The identification of the contradiction relies on two assumptions, each of which compares
zero with an expression of a floor function5, conditional on that the real number is strictly larger
than the integer identified by the floor function for this real number. We are unable to verify
the comparisons analytically. However, we provide two Matlab codes to verify, for a specific
n, whether these two assumptions hold, and we have verified them to be true for all n no larger
than 1000.

Proof of Theorem 1. In stead of showing it directly, we show its contrapositive statement. Let
(C, σ) be a description and D(C,σ) its induced domain, in addition let t∗ ∈ {1, · · · , |C|} and

(v1, · · · , vt∗−1) ∈
∏t∗−1

τ=1 A
σ
τ be such that

∣∣∣∣Aσt∗|(v1, · · · , vt∗−1)

∣∣∣∣ > 3, we show that D(C,σ) satis-

fies the block elevating property.
Pick any three values ut∗ , u′t∗ , u

′′
t∗ ∈ Aσt∗|(v1, · · · , vt∗−1) and letB ≡ {b ∈ A|(bσ1 , · · · , bσt∗−1) =

(v1, · · · , vt∗−1) and bσt∗ = ut∗}, C ≡ {c ∈ A|(cσ1 , · · · , cσt∗−1) = (v1, · · · , vt∗−1) and cσt∗ = u′t∗},
and D ≡ {d ∈ A|(dσ1 , · · · , dσt∗−1) = (v1, · · · , vt∗−1) and dσt∗ = u′′t∗}. Consider the marginal
preferences (P̄ c

0 )c∈C , (P c
0 )c∈C , and (P̂ c

0 )c∈C such that

r1(P̄
σ−1(τ)
0 ) = r1(P

σ−1(τ)
0 ) = r1(P̂

σ−1(τ)
0 ) = vτ for all τ 6 t∗ − 1

ut∗ P̄
σ−1(t∗)
0 u′′t∗ P̄

σ−1(t∗)
0 u′t∗ P̄

σ−1(t∗)
0 vt∗ for all vt∗ ∈ Aσt∗\{ut∗ , u′t∗ , u′′t∗}

ut∗ P
σ−1(t∗)
0 u′t∗ P

σ−1(t∗)
0 u′′t∗ P

σ−1(t∗)
0 vt∗ for all vt∗ ∈ Aσt∗\{ut∗ , u′t∗ , u′′t∗}

u′t∗ P̂
σ−1(t∗)
0 ut∗ P̂

σ−1(t∗)
0 u′′t∗ P̂

σ−1(t∗)
0 vt∗ for all vt∗ ∈ Aσt∗\{ut∗ , u′t∗ , u′′t∗}

5A floor function identifies for a real number the largest integer no larger than the real number itself.
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It’s evident that these marginal preferences give the following preferences P̄0, P0, P̂0 ∈ D(C,σ),
which completes the proof.

B P̄0 D P̄0 C P̄0 A\(B ∪ C ∪D)

B P0 C P0 D P0 A\(B ∪ C ∪D)

C P̂0 B P̂0 D P̂0 A\(B ∪ C ∪D)

Given Theorem 1, an interesting question arises: what rule can we use on a domain induced
by a binary tree? The following result shows that the PS rule is sd-strategy-proof on the domain
induced by a binary tree.

Theorem 2. Let (C, σ) be a description and D(C,σ) the corresponding induced domain. If (C, σ)

is a binary tree, then the PS rule is sd-strategy-proof on D(C,σ).

The proof of Theorem 2 is in Appendix C.
We prove the theorem by showing that when the description is a binary tree, the induced

domain is a sub-domain of a sequentially dichotomous domain. Hence Liu (2016) implies the
desired conclusion.

4 Conclusion

The result in this paper suggests that, if the planner believes that agents report preferences
that are lexicographically separable according to the ranking of the chosen characteristics, she
should make her choice and the ranking of characteristics a binary tree, i.e., given any feasible
values of the top-t ranked characteristics, the following up characteristic can take at most two
feasible values. In addition, due to the fact that the PS rule is sd-strategy-proof and hence
acceptable on the domain induced by a binary tree, she should use the PS rule to allocate the
objects after agents report their preferences.6

However since I assume explicitly that the problem size n satisfies two technical assump-
tions, before following the above suggestions, the planner needs to check these two assump-
tions. Although I can not prove them to be true analytically, I conjecture that they are true. For
applications, a planner can use the Matlab code I provide to check whether these two assump-
tions hold. In addition, if the problem size is smaller than 1000, I have already checked them to
be true so the suggestion above can be adopted directly.
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Appendix

A Two Technical Assumptions

Assumption 1.

f(m1,m2) ≡− n(m1 +m2)

([
m2n

m1 +m2

]
−

)2

+
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]([ m2n

m1 +m2

]
−

)
− n2(n− 1)m2 6 0

for all positive integers m1,m2 such that m1 + m2 < n and m2n
m1+m2

is not an integer, where
[x]− denotes for a real number the largest integer which is no greater than x.

Assumption 2.

g(m1,m2,m3) ≡
m3 − 2(m

n
− m1

n−(n̄5−1)
)− (n̄5 − 1)× γ(n̄5)

n− (n̄5 + 1)
6= m3

n

13



for all positive integers m1,m2,m3 such that m1 +m2 +m3 6 n and m2n
m1+m2

is not an integer.

where n̄5 =

[
m2n

m1 +m2

]
−

+ 1,

γ(k) =
Γ1(k)m1 + Γ2(k)m2 + Γ3(k)m3

n[n4 − 2(k + 1)n3 + (k2 + 5k − 1)n2 − (3k2 + k − 2)n+ 2(k2 − k)]

and Γ1(k) = 2(k − 2)n2 − 2(k2 − k − 2)n+ 2(k2 − k − 2)

Γ2(k) = −2n3 + 4kn2 − 2(k2 + k − 1)n+ 2(k2 − k)

Γ3(k) = n4 − 2(k + 1)n3 + (k2 + 5k − 1)n2 − (3k2 + k − 2)n+ 2(k2 − k)

I attach the Matlab code which can be used to check both assumptions given a fixed n.

• Check f(m1,m2) 6 0 for all positive integers m1,m2 such that m1 +m2 < n and m2n
m1+m2

is not an integer.

c l e a r ; c l c
syms n m1 m2 x
a=sym(’−n ∗ (m1+m2 ) ’ ) ;
b=sym ( ’ ( nˆ2−n +1)∗m1+(2∗ nˆ2−n )∗m2 ’ ) ;
c=sym(’−n ˆ 2∗ ( n−1)∗m2 ’ ) ;
eqn = a∗x ˆ2+ b∗x+c == 0 ;
s o l x = s o l v e ( eqn , x ) ; %s o l v e e q u a t i o n ax ˆ2+ b+c =0 .

n =1000; % Fix an n

f l a g =1;
f o r m1=1: n−2

f o r m2= 1 : ( n−m1−1)
f p r i n t f ( ’ n=%d m1=%d m2=%d ’ , [ n m1 m2 ] )
f p r i n t f ( ’\ n ’ )
x= f l o o r (m2∗n / ( m1+m2 ) ) ;
i f x<m2∗n / ( m1+m2)

i f x<max ( e v a l ( s o l x ) ) && x>min ( e v a l ( s o l x ) )
f l a g =0;
f p r i n t f ( ’ n=%d m1=%d m2=%d x 1 ˆ∗ x 2 ˆ∗ x ’ , [ n m1 m2 min ( e v a l ( s o l x ) ) . . . ,

max ( e v a l ( s o l x ) ) f l o o r (m2∗n / ( m1+m2 ) ) m2∗n / ( m1+m2 ) ] )
f p r i n t f ( ’\ n ’ )
b r e a k

end
end

end
i f f l a g ==0

b r e a k
end

end
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• Check g(m1,m2,m3) 6= m3

n
for all positive integersm1,m2,m3 such thatm1+m2+m3 6

n and m2n
m1+m2

is not an integer.

n =1000; % Fix an n
f o r m1=1: n−2

f o r m2=1: n−m1−1
f o r m3=1: n−m1−m2

f p r i n t f ( ’ n=%d m1=%d m2=%d m3=%d ’ , [ n m1 m2 m3 ] )
f p r i n t f ( ’\ n ’ )
i f f l o o r (m2∗n / ( m1+m2))<m2∗n / ( m1+m2)

nba r5 = f l o o r (m2∗n / ( m1+m2 ) ) + 1 ;
A1=2∗ ( nbar5 −2)∗n ˆ2−2∗( nba r5 ˆ2−nbar5 −2)∗n +2∗ ( nba r5 ˆ2−nbar5 −2);
A2=−2∗n ˆ3+4∗ nba r5 ∗n ˆ2−2∗( nba r5 ˆ2+ nbar5 −1)∗n +2∗ ( nba r5 ˆ2− nbar5 ) ;
A3=n ˆ4−2∗( nba r5 +1)∗ n ˆ 3 + ( nba r5 ˆ2+5∗ nbar5 −1)∗n ˆ 2 . . . ,
−(3∗ nba r5 ˆ2+ nbar5 −2)∗n +2∗ ( nba r5 ˆ2− nbar5 ) ;

gamma=(A1∗m1+A2∗m2+A3∗m3 ) / ( n ˆ ( n ˆ4 −2∗( nba r5 + 1 ) ˆ n ˆ 3 . . . ,
+( nba r5 ˆ2+5∗ nbar5 −1)∗n ˆ2−(3∗ nbar5 ˆ2+ nbar5 −2)∗n +2∗ ( nba r5 ˆ2− nbar5 ) ) ) ;

m=m1+m2+m3 ;
f =(m3−2∗(m/ n−m1 / ( n−( nbar5 −1)))−( nbar5 −1)∗gamma ) / ( n−( nba r5 + 1 ) ) ;
i f abs ( f − m3 / n ) < eps

f p r i n t f ( ’ n=%d m1=%d m2=%d m3=%d nbar5=%f gamma=%f f=%f ’ . . . ,
, [ n m1 m2 m3 nbar5 f ] )

f l a g =0;
b r e a k

end
end

end
i f f l a g ==0

b r e a k
end

end
i f f l a g ==0

b r e a k
end

end

B Proof of Proposition 1

Let E,B,C,D, F ⊂ A with m1 ≡ |B| > 1, m2 ≡ |C| > 1, m3 ≡ |D| > 1. Let
m ≡ m1 +m2 +m3. In addition, given a real number x, [x]− denotes the largest integer which
is smaller or equal to x. Finally given a random assignment L and a subset of objects B ⊂ A,
we denote Li,B =

∑
x∈B Li,x.

Let D ≡ {P̄i, Pi, P̂i} where the preferences are from Table 7. To prove the theorem, it
suffices to prove D admits no good rule. Suppose not, and let ϕ : Dn −→ L be a good rule.

Lemma 1. For any P ∈ Dn, ϕi,B(P ) + ϕi,C(P ) + ϕi,D(P ) = m
n

for all i ∈ I .

This lemma can be proved by applying repeatedly equal treatment of equals and sd-strategy-
proofness. The proof is standard and hence omitted.
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Notice that, since m1n
m1+m2

+ m2n
m1+m2

= n, it’s either both m1n
m1+m2

and m2n
m1+m2

are integers or
neither one of them is an integer. I’ll show two contradictions, one for each case. When m2n

m1+m2

is an integer, the contradiction is identified. While Assumptions 1 and 2 are needed to identify
the contradiction for the cases where m2n

m1+m2
is not an integer.

In the following ,I’ll construct six groups of profiles and characterize the random assign-
ments of B, C, D for each of these profiles. The contradiction for the cases where m2n

m1+m2
is an

integer can be found using profile groups I to IV. To find the contradiction for the cases where
m2n

m1+m2
is not an integer, we need in addition profile groups V and VI.

Firstly I list all profiles.

Profile group I:

P 1,0 = (P1, · · · , Pn)

P 1,1 = (P̂1, P2, · · · , Pn)

...

P 1,k = (P̂1, · · · , P̂k, Pk+1, · · · , Pn)

...

P 1,n̄1 = (P̂1, · · · , P̂n̄1 , Pn̄1+1, · · · , Pn)

where n̄1 = m2n
m1+m2

when m2n
m1+m2

is an integer and n̄1 =
[

m2n
m1+m2

]
−

otherwise.

Profile group II:

P 2,1 = (P1, · · · , Pn−1, P̄n)

P 2,2 = (P̂1, P2 · · · , Pn−1, P̄n)

...

P 2,k = (P̂1, · · · , P̂k−1, Pk, · · · , Pn−1, P̄n)

...

P 2,n̄2 = (P̂1, · · · , P̂n̄2−1, Pn̄2 , · · · , Pn−1, P̄n)

where n̄2 = m2n
m1+m2

when m2n
m1+m2

is an integer and n̄2 =
[

m2n
m1+m2

]
−

+ 1 otherwise.

Profile group III:

P 3,0 = (P̂1, · · · , P̂n)

P 3,1 = (P̂1, · · · , P̂n−1, Pn)

...

P 3,k = (P̂1, · · · , P̂n−k, Pn−k+1, · · · , Pn)

...

P 3,n̄3 = (P̂1, · · · , P̂n−n̄3 , Pn−n̄3+1, · · · , Pn)
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where n̄3 = m1n
m1+m2

when m1n
m1+m2

is an integer and n̄3 =
[

m1n
m1+m2

]
−

otherwise.

Profile group IV:

P 4,1 = (P̂1, · · · , P̂n−1, P̄n)

P 4,2 = (P̂1, · · · , P̂n−2, Pn−1, P̄n)

...

P 4,k = (P̂1, · · · , P̂n−k, Pn−k+1, · · · , Pn−1, P̄n)

...

P 4,n̄4 = (P̂1, · · · , P̂n−n̄4 , Pn−n̄4+1, · · · , Pn−1, P̄n)

where n̄4 = m1n
m1+m2

when m1n
m1+m2

is an integer and n̄4 =
[

m1n
m1+m2

]
−

otherwise.

Profile group V:

P 5,1 = (P1, · · · , Pn−2, P̄n−1, P̄n)

P 5,2 = (P̂1, P2 · · · , Pn−2, P̄n−1, P̄n)

...

P 5,k = (P̂1, · · · , P̂k−1, Pk, · · · , Pn−2, P̄n−1, P̄n)

...

P 5,n̄5 = (P̂1, · · · , P̂n̄5−1, Pn̄5 , · · · , Pn−2, P̄n−1, P̄n)

where n̄5 =
[

m2n
m1+m2

]
−

+ 1 and m2n
m1+m2

is not an integer.

Profile group VI:

P 6,1 = (P̂1, · · · , P̂n−2, Pn−1, P̄n)

P 6,2 = (P̂1, · · · , P̂n−2, P̄n−1, P̄n)

P 6,3 = (P̂1, · · · , P̂n−3, Pn−2, P̄n−1, P̄n)

...

P 6,k = (P̂1, · · · , P̂n−k, Pn−k+1, · · · , Pn−2, P̄n−1, P̄n)

...

P 6,n̄6 = (P̂1, · · · , P̂n−n̄6 , Pn−n̄6+1, · · · , Pn−2, P̄n−1, P̄n)

where n̄6 =
[

m1n
m1+m2

]
−

and m2n
m1+m2

is not an integer.

Now we characterize the random assignments for the preference profiles through a series of
claims.

Claim 1. For each preference profile P 1,k, ϕ(P 1,k) specifies probabilities on B, C, and D as
follows
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B C D

1 0 m1+m2

n
m3

n

...
...

...
...

k 0 m1+m2

n
m3

n

k + 1 m1

n−k
m1+m2

n
− m1

n−k
m3

n

...
...

...
...

n m1

n−k
m1+m2

n
− m1

n−k
m3

n

Proof. Verification of the claim consists of three steps.
Step 1: We show ϕi,D(P 1,k) = m3

n
for all i ∈ I and all k = 0, 1, · · · , n̄1.

First, by equal treatment of equals, ϕi,D(P 1,0) = m3

n
for all i = 1, · · · , n. Second, we

show for all k = 1, · · · , n̄1 if ϕi,D(P 1,k−1) = m3

n
for all i ∈ I , then ϕi,D(P 1,k) = m3

n

for all i ∈ I . Notice that P 1,k and P 1,k−1 are different only in agent k’s preference, i.e.,
P 1,k
k = P̂i and P 1,k−1

k = Pi where P̂i and Pi are from Table 7. Then sd-strategy-proofness
implies ϕk,D(P 1,k) = ϕk,D(P 1,k−1) = m3

n
. Hence by feasibility and equal treatment of equals,

ϕi,D(P 1,k) = m3

n
for all i ∈ I .

Step 2: We show ϕi,B(P 1,k) = 0 for all i = 1, · · · , k and all k = 0, 1, · · · , n̄1. Fix an
k and suppose without loss of generality ϕ1,B(P 1,k) = β > 0. Then sd-efficiency implies
ϕi,C(P 1,k) = 0 for all i = k + 1, · · · , n and equal treatment of equals implies ϕi,C(P 1,k) = m2

k

for all i = 1, · · · , k.

ϕ1,B(P 1,k) + ϕ1,C(P 1,k) + ϕ1,D(P 1,k) = β +
m2

k
+
m3

n

>
m2

k
+
m3

n

>
m

n

where the last inequality comes from k 6 n̄1 6
m2n

m1+m2
: a contradiction against Lemma 1.

Step 3: Lemma 1 and equal treatment of equals imply all other entries.

Claim 2. For each preference profile P 2,k, ϕ(P 2,k) specifies probabilities on B, C, and D as
follows

B C D

1 0 m
n
− α(k) α(k)

...
...

...
...

k − 1 0 m
n
− α(k) α(k)

k m1

n−(k−1)

m2−(k−1)×(m
n
−α(k))

n−k
m3−(m

n
− m1

n−(k−1)
)−(k−1)×α(k)

n−k
...

...
...

...

n− 1 m1

n−(k−1)

m2−(k−1)×(m
n
−α(k))

n−k
m3−(m

n
− m1

n−(k−1)
)−(k−1)×α(k)

n−k

n m1

n−(k−1)
0 m

n
− m1

n−(k−1)
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where α(k) = (k−2)m1−(n−(k−1))m2+(n−1)(n−(k−1))m3

n(n−1)(n−(k−1))
.

Proof. Verification of the claim consists of six steps.
Step 1: We show ϕ(P 2,1) specifies probabilities on B, C, and D as follows

B C D

1 m1

n
m2

n−1
m2+m3

n
− m2

n−1

...
...

...
...

n− 1 m1

n
m2

n−1
m2+m3

n
− m2

n−1

n m1

n
0 m2+m3

n

First notice that P 2,1 and P 1,0 are different only in agent n’s preference, i.e., P 2,1
n = P̄1 and

P 1,0 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-proofness implies ϕn,B(P 2,1) =

ϕn,B(P 1,0) = m1

n
. Hence feasibility and equal treatment of equals imply ϕi,B(P 2,1) = m1

n
for

all i ∈ I .
Second ϕn,C(P 2,1) = 0. Suppose not, then sd-efficiency implies ϕi,D(P 2,1) = 0 for all

i = 1, · · · , n − 1. Hence feasibility implies ϕn,D(P 2,1) = m3 > 1: a contradiction against
Lemma 1.

Last, feasibility and equal treatment of equals imply all other entries.
Step 2: We show ϕn,B(P 2,k) = m1

n−(k−1)
for all k = 2, · · · , n̄2. Fix an k. Notice that P 2,k and

P 1,k−1 are different only in agent n’s preference, i.e., P 2,k
n = P̄i and P 2,k

n = Pi where P̄i and Pi
are from Table 7. Then sd-strategy-proofness implies ϕn,B(P 2,k) = ϕn,B(P 1,k−1) = m1

n−(k−1)
.

Step 3: We show ϕn,C(P 2,k) = 0 for all k = 2, · · · , n̄2. Fix an k and suppose ϕn,C(P 2,k) > 0.
Then sd-efficiency implies ϕi,DP 2,k = 0 for all i = 1, · · · , n − 1 and hence ϕn,DP 2,k = m3: a
contradiction against Lemma 1.
Step 4: We show ϕi,D(P 2,k) = α(k) for all i = 1, · · · , k − 1 and all k = 2, · · · , n̄2.

First we show ϕ1,D(P 2,2) = α(2). Notice that P 2,2 and P 2,1 are different only in agent 1’s
preference, i.e., P 2,2

1 = P̂i and P 2,1
1 = Pi where P̂i and Pi are from Table 7. Then sd-strategy-

proofness implies ϕ1,D(P 2,2) = ϕ1,D(P 2,1) = m2+m3

n
− m2

n−1
.

α(2) =
(2− 2)m1 − (n− (2− 1))m2 + (n− 1)(n− (2− 1))m3

n(n− 1)(n− (2− 1))

=
(n− 1)m3 −m2

n(n− 1)

=
m2 +m3

n
− m2

n− 1
.

Second, we show an induction: If ϕi,D(P 2,k) = α(k) for all i = 1, · · · , k − 1 and an
k ∈ {2, · · · , n̄2−1}, then ϕi,D(P 2,k+1) = α(k+ 1) for all i = 1, · · · , k. Notice that P 2,k+1 and
P 2,k are different only in agent k’s preference, i.e., P 2,k+1

k = P̂i and P 2,k
k = Pi where P̂i and Pi

are from Table 7. Then sd-strategy-proofness implies ϕk,D(P 2,k+1) = ϕk,D(P 2,k). Hence for
all i = 1, · · · , k
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ϕi,D(P 2,k+1) = ϕk,D(P 2,k+1) by equal treatment of equals

= ϕk,D(P 2,k) by sd-strategy-proofness

=
m3−(m

n
− m1

n−(k−1)
)−(k−1)×ϕk−1,D(P 2,k)

n−k by feasibility and equal treatment of equals

=
m3−(m

n
− m1

n−(k−1)
)−(k−1)×α(k)

n−k by induction hypothesis

= α(k + 1) by simplifying expression.

Step 5: We show ϕi,B(P 2,k) = 0 for all i = 1, · · · , k − 1 and all k = 2, · · · , n̄2. Fix an k.
Suppose without loss of generality ϕ1,B(P 2,k) = β > 0. Then equal treatment of equals implies
ϕi,B(P 2,k) = β for all i = 1, · · · , k − 1. Hence Lemma 1 and Step 4 imply ϕi,C(P 2,k) = m

n
−

α(k)−β for all i = 1, · · · , k−1 and sd-efficiency impliesϕi,C(P 2,k) = 0 for all i = k, · · · , n−1.
Now we show (k − 1)× (m

n
− α(k)− β) < m2: a contradiction against feasibility.

(k − 1)× (
m

n
− α(k)− β) < m2

⇐(k − 1)× (
m

n
− α(k)) 6 m2

⇔(k − 1)×
[
m

n
− (k − 2)m1 − (n− (k − 1))m2 + (n− 1)(n− (k − 1))m3

n(n− 1)(n− (k − 1))

]
−m2 6 0

⇔(k − 1)× [(n− 1)(n− (k − 1))(m1 +m2)− (k − 2)m1 + (n− (k − 1))m2]

− n(n− 1)(n− (k − 1))m2 6 0

⇔− n(m1 +m2)(k − 1)2 +
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]
(k − 1)− n2(n− 1)m2 6 0

Let f(θ) = −n(m1+m2)(θ−1)2+[(n2 − n+ 1)m1 + (2n2 − n)m2] (θ−1)−n2(n−1)m2.
To verify the Step, it suffices to show f(θ) 6 0 for all k = 2, · · · , n̄2.

From the functional form of f(θ), we have first-order derivative and the second order deriva-
tive as follows

f ′(θ) = −2n(m1 +m2)(θ − 1) + (n2 − n+ 1)m1 + (2n2 − n)m2

f ′′(θ) = −2n(m1 +m2)

When m2n
m1+m2

is an integer, n̄2 = m2n
m1+m2

.

f(n̄2) =− n(m1 +m2)

(
m2n

m1 +m2

− 1

)2

+
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]( m2n

m1 +m2

− 1

)
− n2(n− 1)m2

=
1

m1 +m2

{−n[(n− 1)m2 −m1]2

+
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]
[(n− 1)m2 −m1]− n2(n− 1)m2(m1 +m2)}

=
1

m1 +m2

[
−(n2 + 1)m2

1 −
(

(n− 1

2
)2 +

3

4

)
m1m2

]
< 0.
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f ′(n̄2) =− 2n(m1 +m2)(
m2n

m1 +m2

− 1) + (n2 − n+ 1)m1 + (2n2 − n)m2

=
1

m1 +m2

[−2n(m1 +m2)((n− 1)m2 −m1) + (n2 − n+ 1)m1(m1 +m2)

+ (2n2 − n)m2(m1 +m2)]

=
1

m1 +m2

[(n2 + n+ 1)m2
1 + nm2

2 + (n2 + 2n+ 1)m1m2] > 0

By f ′′(θ) < 0 and f ′(n̄2) > 0, f ′(θ) > 0 for all θ 6 n̄2, that is f(θ) is increasing through 2

to n̄2. Then f(n̄2) < 0 implies f(θ) < 0 for all θ 6 n̄2, which is what we want.
When m2n

m1+m2
is not an integer, n̄2 =

[
m2n

m1+m2

]
−

+ 1.

f(n̄2) =− n(m1 +m2)

([
m2n

m1 +m2

]
−

)2

+
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]([ m2n

m1 +m2

]
−

)
− n2(n− 1)m2 6 0

where the last inequality comes from Assumption 1 in Appendix A.

f ′(n̄2) =− 2n(m1 +m2)(
m2n

m1 +m2

− δ) + (n2 − n+ 1)m1 + (2n2 − n)m2

=
1

m1 +m2

[−2n(m1 +m2)((n− δ)m2 − δm1) + (n2 − n+ 1)m1(m1 +m2)

+ (2n2 − n)m2(m1 +m2)]

=
1

m1 +m2

[m1n(n− 1) +m2n(m1(n− 2)−m2) +m1m2 +m2
1

+ 2δ(m2
1n+m2

2n+ 2m1m2n)] > 0

where the last inequality comes from m2 6 (n− 2) and m1 > 1.
Step 6: Lemma 1 and equal treatment of equals imply all other entries.

Claim 3. For each preference profile P 3,k, ϕ(P 3,k) specifies probabilities on B, C, and D as
follows

B C D

1 m1+m2

n
− m2

n−k
m2

n−k
m3

n

...
...

...
...

n− k m1+m2

n
− m2

n−k
m2

n−k
m3

n

n− k + 1 m1+m2

n
0 m3

n

...
...

...
...

n m1+m2

n
0 m3

n
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Proof. This claim can be verified by the similar arguments that verify Claim 1.

Claim 4. For each preference profile P 4,k , ϕ(P 4,k) specifies probabilities on B, C, and D as
follows

B C D

1 m1+m2

n
− m2

n−k
m2

n−k
m3

n

...
...

...
...

n− k m1+m2

n
− m2

n−k
m2

n−k
m3

n

n− k + 1 m1+m2

n
0 m3

n

...
...

...
...

n− 1 m1+m2

n
0 m3

n

n m1+m2

n
0 m3

n

Proof. Verification of the claim consists of five steps.
Step 1: We show ϕn,B(P 4,k) = m1+m2

n
for all k = 1, · · · , n̄4. Fix an k. Notice that P 4,k and

P 3,k are different only in agent n’s preference, i.e., P 4,k
n = P̄i and P 3,k

n = Pi where P̄i and Pi
are from Table 7. Then sd-strategy-proofness implies ϕn,B(P 4,k) = ϕn,B(P 3,k) = m1+m2

n
.

Step 2: We show ϕn,C(P 4,k) = 0 and ϕn,D(P 4,k) = m3

n
for all k = 1, · · · , n̄4. Fix an k.

Suppose ϕn,C(P 4,k) > 0, then sd-efficiency implies ϕi,D(P 4,k) = 0 for all i = 1, · · · , n− 1 and
hence ϕn,D(P 4,k) = m3: a contradiction against Lemma 1. Given ϕn,C(P 4,k) = 0, Lemma 1
implies ϕn,D(P 4,k) = m3

n
.

Step 3: We show ϕi,D(P 4,k) = m3

n
for all i = 1, · · · , n − 1 and all k = 1, · · · , n̄4. First equal

treatment of equals and Step 2 imply ϕi,D(P 4,1) = m3

n
for all i = 1, · · · , n − 1. Second we

prove an induction: For any k = 2, · · · , n̄4, if ϕi,D(P 4,k−1) = m3

n
for all i = 1, · · · , n − 1,

then ϕi,D(P 4,k) = m3

n
for all i = 1, · · · , n − 1. Notice that P 4,k−1 and P 4,k are different only

in agent (n − k + 1)’s preference, i.e., P 4,k−1
n−k+1 = P̂i and P 4,k

n−k+1 = Pi where P̂i and Pi are
from Table 7. Then sd-strategy-proofness implies ϕn−k+1,D(P 4,k) = ϕn−k+1,D(P 4,k−1) = m3

n
.

Hence feasibility and equal treatment of equals imply ϕi,D(P 4,k) = m3

n
for all i = 1, · · · , n−1.

Step 4: We show ϕi,C(P 4,k) = 0 for all i = n− k+ 1, · · · , n− 1 and all k = 2, · · · , n̄4. Fix an
k and suppose without loss of generality ϕn−1,C(P 4,k) = β > 0. By equal treatment of equals,
ϕi,C(P 4,k) = β for all i = n−k+1, · · · , n−1. Then Lemma 1 implies ϕi,B(P 4,k) = m1+m2

n
−β

for all i = n−k+1, · · · , n−1 and sd-efficiency implies ϕi,B(P 4,k) = 0 for all i = 1, · · · , n−k.
Then we have a contradiction against feasibility

m1 = (n− k)× 0 + (k − 1)× (
m1 +m2

n
− β) +

m1 +m2

n

< k × m1 +m2

n
6 m1

where the last inequality comes from k 6 n̄4 6
m1n

m1+m2
.

Step 5: Lemma 1 and equal treatment of equals imply all other entries.
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Now we have the contradiction for the cases where m2n
m1+m2

is an integer.

P 2,n̄2 =(P̂1, · · · , P̂ m2n
m1+m2

−1, P m2n
m1+m2

, · · · , Pn−1, P̄n)

P 4,n̄4 =(P̂1, · · · , P̂n− m1n
m1+m2

, Pn− m1n
m1+m2

+1, · · · , Pn−1, P̄n)

=(P̂1, · · · , P̂ m2n
m1+m2

, P m2n
m1+m2

+1, · · · , Pn−1, P̄n)

Hence P 2,n̄2 and P 4,n̄4 are different only in agent m2n
m1+m2

’s preference, i.e., P 2,n̄2
m2n

m1+m2

= Pi

and P 2,n̄2
m2n

m1+m2

= P̂i where Pi and P̂i are from Table 1. Then sd-strategy-proofness implies

ϕ m2n
m1+m2

,D(P 2,n̄2) = ϕ m2n
m1+m2

,D(P 4,n̄4). Now we have the contradiction as the following elabo-
ration:

ϕ m2n
m1+m2

,D(P 2,n̄2) = ϕ m2n
m1+m2

,D(P 4,n̄4)

⇔
m3 − (m

n
− m1

n−(n̄2−1)
)− (n̄2 − 1)× α(n̄2)

n− n̄2

=
m3

n

⇔−m1n(m1 +m2)((n+ 1)m1 +m2) = 0: contradiction!

To find the contradiction for the cases where m2n
m1+m2

is not an integer, we characterize
the assignment of D for the profiles in groups V and VI.

Let k∗ be such that k∗ − 1 = n− m1
m
n
−m3

2

, which is equivalent to m
n
− m1

n−(k∗−1)
− m3

2
= 0. I

first present two types of assignments and later I will show that both assignments are possible
for profiles in group V by Claim 5, 6, and 7.

Assignment 1:
B C D

1 − − γ(k)

...
...

...
...

k − 1 − − γ(k)

k − −
m3−2(m

n
− m1

n−(k−1)
)−(k−1)×γ(k)

n−(k+1)

...
...

...
...

n− 2 − −
m3−2(m

n
− m1

n−(k−1)
)−(k−1)×γ(k)

n−(k+1)

n− 1 m1

n−(k−1)
0 m

n
− m1

n−(k−1)

n m1

n−(k−1)
0 m

n
− m1

n−(k−1)

where γ(k) =
Γ1(k)m1 + Γ2(k)m2 + Γ3(k)m3

n[n4 − 2(k + 1)n3 + (k2 + 5k − 1)n2 − (3k2 + k − 2)n+ 2(k2 − k)]

and Γ1(k) = 2(k − 2)n2 − 2(k2 − k − 2)n+ 2(k2 − k − 2)

Γ2(k) = −2n3 + 4kn2 − 2(k2 + k − 1)n+ 2(k2 − k)

Γ3(k) = n4 − 2(k + 1)n3 + (k2 + 5k − 1)n2 − (3k2 + k − 2)n+ 2(k2 − k)
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Assignment 2:

B C D

1 − − 0

...
...

...
...

k − 1 − − 0

k − − 0

...
...

...
...

n− 2 − − 0

n− 1 m1

n−(k−1)
m
n
− m1

n−(k−1)
− m3

2
m3

2

n m1

n−(k−1)
m
n
− m1

n−(k−1)
− m3

2
m3

2

Claim 5. If m3

m2
> 2

n−2
, ϕ(P 5,k) specifies probabilities on B, C, and D as assignment 1 for all

k = 1, · · · , n̄5.

Proof. Verification of the claim consists of four steps.
Step 1: We show, if m3

m2
> 2

n−2
, ϕ(P 5,1) specifies probabilities on B, C, and D as follows

B C D

1 m1

n
m2

n−2
m2+m3

n
− m2

n−2

...
...

...
...

n− 2 m1

n
m2

n−2
m2+m3

n
− m2

n−2

n− 1 m1

n
0 m2+m3

n

n m1

n
0 m2+m3

n

First notice that P 5,1 and P 2,1 are different only in agent (n− 1)’s preference, i.e., P 5,1
n−1 =

P̄i and P 2,1
n−1 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-proofness implies

ϕn−1,B(P 5,1) = ϕn−1,B(P 2,1) = m1

n
and hence feasibility and equal treatment of equals imply

ϕi,B(P 5,1) = m1

n
for all i ∈ I .

Second we show ϕn−1,C(P 5,1) = ϕn,C(P 5,1) = 0. Suppose not, let β ≡ ϕn−1,C(P 5,1) =

ϕn,C(P 5,1) > 0, then sd-efficiency implies ϕi,D(P 5,1) = 0 for all i = 1, · · · , n − 2 and hence
ϕn−1,D(P 5,1) = ϕn,D(P 5,1) = m3

2
. Then Lemma 1 requires m1+m2+m3

n
= m1

n
+ β + m3

2
. Then

β > 0 implies m1+m2+m3

n
− m1

n
− m3

2
> 0 which is equivalent to m3

m2
< 2

n−2
: contradiction!

All the other entries are implied by Lemma 1 and equal treatment of equals.
Step 2: We show ϕn−1,D(P 2,k) = ϕn,D(P 2,k) = m

n
− m1

n−(k−1)
for all k = 1, · · · , n̄5.

Fix an k. First notice that P 5,k and P 2,k are different only in agent (n − 1)’s preference,
i.e., P 5,k

n−1 = P̄i and P 2,k
n−1 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-proofness

implies ϕn−1,B(P 5,k) = ϕn−1,B(P 2,k) = m1

n−(k−1)
and hence equal treatment of equals implies

ϕn,B(P 5,k) = ϕn−1,B(P 5,k) = m1

n−(k−1)
.
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Second we show ϕn−1,C(P 5,k) = ϕn,C(P 5,k) = 0. Suppose not, let ϕn−1,C(P 5,k) =

ϕn,C(P 5,k) = β > 0, sd-efficiency implies ϕi,D(P 5,k) = 0 for all i = 1, · · · , n − 2 and hence
ϕn−1,DP

5,k = ϕn,DP
5,k = m3

2
. Then we have a contradiction:

ϕn,B(P 5,k) + ϕn,C(P 5,k) + ϕn,D(P 5,k) = ϕn,B(P 5,1) + ϕn,C(P 5,1) + ϕn,D(P 5,1)

⇔ m1

n− (k − 1)
+ β +

m3

2
=
m1

n
+ 0 +

m2 +m3

n
: contradiction!

where the contradiction comes from m1

n−(k−1)
> m1

n
, β > 0, and that m3

m2
> 2

n−2
implies m3

2
>

m2+m3

n
.

Lastly, Lemma 1 implies what we want.
Step 3: We show ϕ1,D(P 5,2) = γ(2). Notice that P 5,2 and P 5,1 are different only in agent

1’s preference, i.e., P 5,2
1 = P̂i and P 5,2

1 = Pi where P̂i and Pi are from Table 7. Then sd-
strategy-proofness implies ϕ1,D(P 5,2) = ϕ1,D(P 5,1) = m2+m3

n
− m2

n−2
= −2m2

n(n−2)
+ m3

n
. Notice

that B(2) = 0, C(2) = −2n3 + 8n2 − 10n+ 4, and D(2) = n4 − 6n3 + 13n2 − 12n+ 4. Then

γ(2) =
0m1 + (−2n3 + 8n2 − 10n+ 4)(k)m2 + (n4 − 6n3 + 13n2 − 12n+ 4)(k)m3

n[n4 − 6n3 + 13n2 − 12n+ 4]

=
−2m2

n(n− 2)
+
m3

n
.

Step 4: We show an induction: For any 2 6 k < n̄5, if ϕi,D(P 5,k) = γ(k) for all i =

1, · · · , k − 1, then ϕi,D(P 5,k+1) = γ(k + 1) for all i = 1, · · · , k. By equal treatment of equals,
it suffices to show ϕk,D(P 5,k+1) = γ(k + 1). Notice that P 5,k+1 and P 5,k are different only in
agent k’s preference, i.e., P 5,k+1

k = P̂i and P 5,k
k = Pi where P̂i and Pi are from Table 7. Then

ϕk,D(P 5,k+1) = ϕk,D(P 5,k) by sd-strategy-proofness

=m3−2×ϕn−1,D(P 5,k)−(k−1)×ϕk−1,D(P 5,k)

n−(k+1)
by feasibility and equal treatment of equals

=
m3−2(m

n
− m1

n−(k−1)
)−(k−1)×γ(k)

n−(k+1)
by Step 2 and hypothesis assumption

=γ(k + 1) by simplifying the expression

Claim 6. If m3

m2
< 2

n−2
and n̄5 < k∗, ϕ(P 5,k) specifies probabilities on B, C, and D as assign-

ment 2 for each k = 1, · · · , n̄5.

Proof. Verification of the claim consists of four steps.
Step 1: We show, if m3

m2
< 2

n−2
, ϕ(P 5,1) specifies probabilities on B, C, and D as follows
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B C D

1 m1

n
m2+m3

n
0

...
...

...
...

n− 2 m1

n
m2+m3

n
0

n− 1 m1

n

m2−(n−2)×m2+m3
n

2
m3

2

n m1

n

m2−(n−2)×m2+m3
n

2
m3

2

First by the same argument showing the Step 1 in Claim 5, ϕi,B(P 5,1) = m1

n
.

Second we show ϕn−1,C(P 5,1) = ϕn−1,C(P 5,1) > 0. Suppose not, ϕ(P 5,1) is specified as by
the Step 1 in Claim 5. Then ϕ1,D(P 5,1) = m2+m3

n
− m2

n−2
> 0: contradicting against m3

m2
< 2

n−2
.

Lastly, sd-efficiency implies ϕi,D(P 5,1) = 0 for all i = 1, · · · , n − 2. All the other entries
are implied by Lemma 1 and equal treatment of equals.

Step 2: We show ϕn−1,B(P 5,k) = ϕn,B(P 5,k) = m1

n−(k−1)
for all k = 1, · · · , n̄5. Fix an

k. Notice that P 5,k and P 2,k are different only in agent (n − 1)’s preference, i.e., P 5,k
n−1 =

P̄i and P 2,k
n−1 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-proofness implies

ϕn−1,B(P 5,k) = ϕn−1,B(P 2,k) = m1

n−(k−1)
and hence equal treatment of equals impliesϕn,B(P 5,k) =

ϕn−1,B(P 5,k) = m1

n−(k−1)
.

Step 3: For any k < k∗, if ϕi,D(P 5,k−1) = 0 for all i = 1, · · · , n − 2, then ϕi,D(P 5,k) = 0

for all i = 1, · · · , n − 2. By sd-efficiency, it suffices to show ϕn−1,C(P 5,k) = ϕn,C(P 5,k) > 0.
Suppose not. First, by Step 2 and Lemma 1, ϕn−1,D(P 5,k) = ϕn,D(P 5,k) = m

n
− m1

n−(k−1)
.

Second, notice that P 5,k and P 5,k−1 are different only in agent k’s preference, i.e., P 5,k
k = P̂i

and P 5,k−1
k = Pi where P̂i and Pi are from Table 7. Then sd-strategy-proofness and equal

treatment of equals imply ϕi,D(P 5,k) = ϕk,D(P 5,k−1) = 0 for all i = 1, · · · , k. Last, feasibility

and equal treatment of equals imply ϕi,D(P 5,k) =
m3−2(m

n
− m1

n−(k−1))
n−(k+1)

. Then by k < k∗, we have

a contradiction: ϕi,D(P 5,k) <
m3−2(m

n
− m1

n−(k∗−1))
n−(k+1)

= 0.

Claim 7. If m3

m2
< 2

n−2
and n̄5 > k∗, ϕ(P 5,k) specifies probabilities on B, C, and D as assign-

ment 2 for each k = 1, · · · , k∗ and as assignment 1 for each k = k∗ + 1, · · · , n̄5.

Proof. Verification of the claim consists of two steps.
By Claim 6, ϕ(P 5,k) specifies probabilities on B, C, and D as assignment 2 for each k =

1, · · · , k∗.
Step 1: ϕ(P 5,k∗) specifies probabilities on B, C, and D as follows.
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B C D

1 − − 0

...
...

...
...

k∗ − 1 − − 0

k∗ − − 0

...
...

...
...

n− 2 − − 0

n− 1 m1

n−(k∗−1)
0 m3

2

n m1

n−(k∗−1)
0 m3

2

Step 2: For any k > k∗, if ϕn−1,C(P 5,k−1) = ϕn,C(P 5,k−1) = 0, then ϕn−1,C(P 5,k) =

ϕn,C(P 5,k) = 0. Suppose not, then ϕi,D(P 5,k) = 0 for all i = 1, · · · , n − 2 and hence
ϕn−1,D(P 5,k) = ϕn,D(P 5,k) = m3

2
. By Step 2 and Lemma 1, ϕn−1,C(P 5,k) = ϕn,C(P 5,k) =

m
n
− m1

n−(k−1)
− m3

2
. Then by k > k∗, we have a contradiction: ϕn−1,C(P 5,k) = ϕn,C(P 5,k) <

m
n
− m1

n−(k∗−1)
− m3

2
= 0.

Claim 8. For each preference profile P 6,k, ϕ(P 6,k) specifies probabilities on B, C, and D as
follows

B C D

1 − − m3

n

...
...

...
...

n− k − − m3

n

n− k + 1 − − m3

n

...
...

...
...

n− 2 − − m3

n

n− 1 m1+m2

n
0 m3

n

n m1+m2

n
0 m3

n

Proof. Verification of the claim consists of three steps.
Step 1: We show ϕn−1,B(P 6,k) = ϕn,B(P 6,k) = m1+m2

n
for all k = 2, · · · , n̄6. Fix an

k. Notice that P 6,k and P 4,k are different only in agent (n − 1)’s preference, i.e., P 6,k
n−1 =

P̄i and P 4,k
n−1 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-proofness implies

ϕn−1,B(P 6,k) = ϕn−1,B(P 4,k) = m1+m2

n
. Hence equal treatment of equals impliesϕn−1,B(P 6,k) =

ϕn,B(P 6,k) = m1+m2

n
.

Step 2: We showϕn−1,C(P 6,k) = ϕn,C(P 6,k) = 0 andϕn−1,D(P 6,k) = ϕn,D(P 6,k) = m3

n
for

all k = 2, · · · , n̄6. Fix an k. By Lemma 1, it suffices to show ϕn−1,C(P 6,k) = ϕn,C(P 6,k) = 0.
Suppose not, then sd-efficiency implies ϕi,D(P 6,k) = 0 for all i = 1, · · · , n − 2 and hence
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feasibility and equal treatment of equals imply ϕn−1,D(P 6,k) = ϕn,D(P 6,k) = m3

2
. Then

m1+m2

n
+ 0 + m3

2
> m

n
: contradiction against Lemma 1.

Step 3: We show ϕi,D(P 6,k) = m3

n
for all i = 1 ∈ I and all k = 3, · · · , n̄6.

We first show ϕi,D(P 6,3) = m3

n
for all i = 1 ∈ I . Notice that, by Step 2 and equal treatment

of equals, ϕn−2,D(P 6,2) = m3

n
. Notice also that P 6,3 and P 6,2 are different only in agent (n−2)’s

preference, i.e., P 6,3
n−2 = Pi and P 6,2

n−2 = P̂i where Pi and P̂i are from Table 7. Then sd-strategy-
proofness implies ϕn−2,D(P 6,3) = ϕn−2,D(P 6,2) = m3

n
. Then Step 2 and equal treatment of

equals imply what we want.
Now we show an induction: for any 3 6 k < n̄6, if ϕi,D(P 6,k) = m3

n
for all i = 1 ∈ I , then

ϕi,D(P 6,k+1) = m3

n
for all i = 1 ∈ I . Notice that P 6,k+1 and P 6,k are different only in agent

(n− k)’s preference, i.e., P 6,k+1
n−k = Pi and P 6,k

n−k = P̂i where Pi and P̂i are from Table 7. Then
sd-strategy-proofness implies ϕn−k,D(P 6,k+1) = ϕn−k,D(P 6,k) = m3

n
. Hence Step 2 and equal

treatment of equals imply what we want.

Now we have the contradiction to prove the theorem for the case where m2n
m1+m2

is not
an integer.

P 5,n̄5 = (P̂1, · · · , P̂[
m2n

m1+m2

]
−

, P[
m2n

m1+m2

]
−

+1
, · · · , Pn−2, P̄n−1, P̄n)

P 6,n̄6 = (P̂1, · · · , P̂n−
[

m1n
m1+m2

]
−

, P
n−

[
m1n

m1+m2

]
−

+1
, · · · , Pn−2, P̄n−1, P̄n)

Notice that
[

m2n
m1+m2

]
−

=
[
n− m1n

m1+m2

]
−

=

(
n−

[
m1n

m1+m2

]
−

)
− 1. Then P 5,n̄5 and

P 6,n̄6 are different only in agent
([

m2n
m1+m2

]
−

+ 1

)
’s preference, i.e., P 5,n̄5[

m2n
m1+m2

]
−

+1
= Pi and

P 6,n̄6[
m2n

m1+m2

]
−

+1
= P̂i. Hence sd-strategy-proofness impliesϕ[

m2n
m1+m2

]
−

+1,D
(P 5,n̄5) = ϕ[

m2n
m1+m2

]
−

+1,D
(P 6,n̄6).

If ϕ(P 5,n̄5) is in the form of Assignment 2, the contradiction is evident: 0 6= m3

n
.

If ϕ(P 5,n̄5) is in the form of Assignment 1, the contradiction is verified by Assumption 2 in
Appendix A.

m3 − 2(m
n
− m1

n−(n̄5−1)
)− (n̄5 − 1)× γ(n̄5)

n− (n̄5 + 1)
6= m3

n

C Proof of Theorem 2

Fix a description (C, σ) that satisfies the condition in Statement ??, we show that the induced
preference domain D(C,σ) is covered by a sequentially dichotomous domain.

For each t∗ ∈ {2, · · · , |C|}, let

Aσ
t∗ ≡

{
B ⊂ A

∣∣∣∣∃(v1, · · · , vt∗−1) ∈
t∗−1∏
τ=1

Aστ s.t. b ∈ B whenever (bσ1 , · · · , bσt∗−1) = (v1, · · · , vt∗−1)

}
,
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i.e., objects are grouped according to their values of the top-(t∗ − 1) ranked characteristics.
Now we construct a sequence of partitions (At)

n
t=1 using (At∗)

|C|
t∗=2 as the backbones.

• A1 ≡ {A}

• A|At∗ | ≡ At∗ , for each t∗ ∈ {2, · · · , |C|}

• for each t∗ ∈ {2, · · · , |C| − 1}, the partitions At with |At∗| < t < |At∗+1| are defined as
follows

– pick any B ∈ At∗\At∗+1, due to statement ??, there are two blocks C,D ∈
At∗+1\At∗ such that B = C ∪D

– label blocks in At∗\At∗+1 as
(
B1, · · · , B|At∗+1|−|At∗ |

)
and blocks in At∗+1\At∗

as
(
C1, D1, · · · , C |At∗+1|−|At∗ |, D|At∗+1|−|At∗ |

)
such that Bm = Cm ∪ Dm for all

m = 1, · · · , |At∗+1| − |At∗|

– define A|At∗ |+m ≡ (At∗\{Bm})
⋃
{Cm, Dm} for eachm = 1, · · · , |At∗+1|−|At∗|.

The following two claims prove that the induced domain is covered by a sequentially di-
chotomous domain and hence Liu (2016) implies what we want.

Claim 9. The sequence (At)
n
t=1 is a path.

By definition, A1 = {A} and An = {{a} : a ∈ A}, it suffices to show for each t ∈
{1, · · · , n − 1}, At+1 is a direct refinement of At, i.e., there is exactly one block Ak ∈ At

and two blocks Ai, Aj ∈ At+1 such that Ak = Ai ∪ Aj and for each Al ∈ At\{Ak} there is
Ai ∈ At+1 such that Al = Ai. This is obvious from the construction of (At)

n
t=1.

Claim 10. Every preference P0 ∈ D(C,σ) observes every partition in the path (At)
n
t=1.

This is evident from the definition of lexicographically separable preferences and the path
(At)

n
t=1.
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