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Abstract

This paper investigates the asymptotic properties of quasi-maximum likelihood (QML)

estimators for random-effects panel data transformation models where both the response

and (some of) the covariates are subject to transformations for inducing normality, flexible

functional form, homoskedasticity, and simple model structure. We develop a QML-type

procedure for model estimation and inference. We prove the consistency and asymptotic

normality of the QML estimators, and propose a simple bootstrap procedure that leads

to a robust estimate of the variance-covariance (VC) matrix. Monte Carlo results reveal

that the QML estimators perform well in finite samples, and that the gains by using the

robust VC matrix estimate for inference can be enormous.

Key Words: Asymptotics; Error components bootstrap; Quasi-MLE; Trans-

formed panels; Random-effects; Robust VC matrix estimation.

JEL Classification: C23, C15, C51

1 Introduction.

Panel data regression models with error components have been extensively treated in the

literature, and almost all the standard econometrics text books on panel data models cover

those topics (see, among the others, Baltagi, 2001; Arellano, 2003; Hsiao, 2003; Frees, 2004).

However, the literature on transformed panel data regression models is rather sparse, and many

issues of immediate theoretical and practical relevance, such as the properties of the parameter

estimates in terms of consistency, asymptotic normality and robustness against heavy-tailed
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distributions, variance-covariance matrix estimation in the situations where transformation

can only bring the data to near-normality, etc., have not been formally studied, in particular

for the models with random-effects.1

In this paper, we concentrate on the transformed two-way random-effects model,

h(Yit, λ) =
k1∑

j=1

βjXitj +
k∑

j=k1+1

βjg(Xitj, ρj) + uit, (1)

uit = μi + ηt + vit, i = 1, 2, · · · , N, t = 1, 2, · · · , T

where h(·, λ) and g(·, ρj) are the monotonic transformations (e.g., Box and Cox, 1964), known

except the indexing parameters λ and {ρj}, called the transformation parameters, Xitj, j =

1, · · · , k1, are the exogenous variables containing a column of ones, dummy variables, etc., that

do not need to be transformed, Xitj, j = k1+1, · · · , k, are the exogenous variables that need to

be transformed, and {μi}, {ηt} and {vit} are the error components representing, respectively,

the individual-specific effects, the time-specific effects and the pure random errors, assumed

to be independent of each other, and each containing elements that are independent and

identically distributed (i.i.d.) of means zero and variances σ2
μ, σ2

η and σ2
v , respectively. In the

following we will assume that the regressors Xitj, j = 1, · · · , k, are either non-stochastic or

stochastic but independent of the errors. In the latter case, our analysis can be interpreted as

being conditional on the stochastic regressors.

Yang and Huang (2011) considered the maximum likelihood estimation (MLE) of Model

(1) under Gaussian distributions with g = h and ρj = λ, and provided a simple method

for handling the large panel data. As indicated in Yang and Huang (2011), Model (1) gives

a useful extension of the standard error components model by allowing the distribution of

Yit to be in a broad family, not just normal or lognormal; it also allows easy testing of the

traditional economic theories of lognormality for production function, firm-size distribution,

income distribution, etc., as governed by the Cobb-Douglas production function and Gibrat’s

Law. Interesting examples for which Model (1), or an extended version of it, can be useful

include the public capital productivity (Baltagi, 2001, Ch. 3) and the wage distribution of

U.S. male workers (Polacheck and Yoon, 1996), where strong evidence was found by Yang

and Huang (2011) for a power transformation rather than linear or log-linear form. See, e.g.,

Baltagi (2001, Ch. 2 and Ch. 3) and Cameron and Trivedi (2005) for more examples.

The Monte Carlo results of Yang and Huang (2011) show that the finite sample performance
1While the fixed-effects models have the attraction of allowing one to use panel data to establish causation

under weaker assumptions, they do suffer from several practical weaknesses for being unable to estimate the
effects of time-invariant regressors, imprecise in estimating the effects in time-varying regressors of which the
variation in time-dimension is small, etc. For these reasons economists also use random-effects models in
particular when causation is clear (Cameron and Trivedi, 2005, Ch. 21). Panel data transformation models
with random-effects are typically treated parametrically, see, e.g., Baltagi (1997), Giannakas et al. (2003), and
Yang and Huang (2011); whereas those with fixed-effects are typically estimated semi-parametrically, see, e.g.,
Abrevaya (1999a, 2000), and Chen (2002, 2010).
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of the MLE-based inference is excellent if the errors are normal or close to normal, but our

Monte Carlo results show that it can be quite poor if the errors are fairly nonnormal (e.g.,

there exist gross errors or outliers).2 Thus, there is a need for an alternative method to the

MLE-based inference. Also, to the best of our knowledge there are so far no rigorous large

sample theories for Model (1) for either the case of normal errors or the case of nonnormal

errors. Furthermore, for the cases where the error components follow nonnormal distributions,

there are no available methods for estimating the variance-covariance matrix. The reason for

the lack of these important results for the transformed two-way random-effects panel model

is, at least partially, due to the technical complications caused by the nonlinear response

transformation and the cross-sectional and time wise dependence induced by the two-way

error components, making the standard large sample techniques not directly applicable.3 This

paper fills in these gaps. Model (1) can be further extended to include heteroskedasticity in

{μi} and serial correlation in {ηt}. It can also be simplified by letting g = h and ρj = λ, or

by dropping the time-specific effects {ηt}.
This paper is organized as follows. Section 2 outlines the quasi-maximum likelihood esti-

mation for the model. Section 3 presents the large sample results concerning the consistency

and asymptotic normality of the QMLEs of the model parameters, and their rates of con-

vergence under different relative magnitudes of N and T . Section 4 introduces a bootstrap

method for estimating the variance-covariance matrix which leads to robust inferences. Sec-

tion 5 presents some Monte Carlo results concerning the finite sample behavior of the QMLEs

and the bootstrap-based inference. Section 6 concludes the paper.

Some generic notation. Throughout the paper we adopt the following notation and

convention. The Euclidean norm of a matrix A is denoted by ‖A‖ = [tr(AA′)]1/2. When A

is a real symmetric matrix, its smallest and largest eigenvalues are denoted, respectively, by

γmin(A) and γmax(A). As usual, convergence in probability is denoted by
p−→ and convergence

in distribution by D−→. That both N and T approach infinity concurrently is denoted by

N, T → ∞, and that either N or T or both approach infinity is denoted by N ∪ T → ∞.

Partial derivatives of h(Yit, λ) of various order are denoted by adding subscripts to h, e.g.,

hY (Yit, λ) is the first-order partial derivative of h w.r.t. Yit, hY λ(Yit, λ) the partial derivative

of h w.r.t. (Yit, λ), hλλ(Yit, λ) the second-order partial derivative of h w.r.t. λ, etc.
2Transformation aims to induce (i) normality, (ii) flexible functional form, (iii) homoskedastic errors, and

(iv) simple model structure (Box and Cox, 1964). However, it is generally acknowledged that with a single
transformation, it is difficult to reach all the four goals simultaneously, in particular, the normality. Nevertheless,
it is still reasonable to believe that a normalizing transformation should be able to bring the data closer to being
normally distributed (see, e.g., Hinkley (1975), Hernadze and Johnson (1980), Yeo and Johnson (2000), and
Yang and Tse (2007, 2008)). In this sense, the use of quasi-maximum likelihood method provides an additional
protection when the exact normality is not achieved.

3In contrast, the transformed cross-sectional model does not suffer from the dependence problem. Almost all
the standard econometrics/statistics textbooks cover this topic (e.g., Davidson and MacKinnon, 1993; Greene,
2000; Draper and Smith, 1998; Cook and Weisberg, 1999), and some popular commercial softwares, such as
SAS and Matlab, have implemented the normal-transformation technique.
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2 Quasi Maximum Likelihood Estimation

Stacking the data according to t = 1, · · · , T , for each of i = 1, · · · , N , Model (1) can be

compactly written in matrix form,

h(Y, λ) = X(ρ)β+ u, with u = Zμμ+ Zηη + v, (2)

where Zμ = IN ⊗ 1T and Zη = 1N ⊗ IT with IN being an N × N identity matrix, 1N an

N -vector of ones, and ⊗ the Kronecker product. Define JN = 1N1′N . The quasi-Gaussian

loglikelihood function after dropping the constant term takes the form

�(ψ) = −1
2 log |Σ| − 1

2 [h(Y, λ)−X(ρ)β]′Σ−1[h(Y, λ)−X(ρ)β] + J(λ), (3)

where ψ = (β′, σ2
μ, σ

2
η, σ

2
v, λ, ρ

′)′, and J(λ) =
∑N

i=1

∑T
t=1 log hY (Yit, λ) is the log Jacobian of

the transformation, and Σ = Var(u) = σ2
μ(IN ⊗ JT ) + σ2

η(JN ⊗ IT ) + σ2
v(IN ⊗ IT ).

When the error components μ, η and v are exactly normal, (3) gives the exact loglikelihood

and thus maximizing �(ψ) gives the maximum likelihood estimator (MLE) of ψ. However,

when one or more of the error components are not exactly normal, the �(ψ) function defined

by (3) is no longer the true loglikelihood function. Nevertheless, when �(ψ) satisfies certain

conditions, maximizing it still gives consistent estimators of model parameters, which are often

termed as QML estimator (QMLE). See, e.g., White (1994). Furthermore, as pointed out in

the introduction, one of the aims of transformation is to bring the data to near-normality. In

case that the exact normality is not achieved, the QML method provides an extra protection

against the ‘left-over’ nonnormality.

Yang and Huang (2011) pointed out that direct maximization of �(ψ) may be impractical

as the dimension of ψ may be high and calculation of |Σ| and Σ−1 can be difficult if panels are

large. Following Baltagi and Li (1992) and others, they considered a spectral decomposition:

Ω = 1
σ2

v
Σ = Q + 1

θ1
P1 + 1

θ2
P2 + 1

θ3
P3, where Q = INT − 1

T IN ⊗ JT − 1
N JN ⊗ IT + 1

NT JNT ,

P1 = 1
T IN ⊗ JT − 1

NT JNT , P2 = 1
N JN ⊗ IT − 1

NT JNT , P3 = 1
NT JNT , θ1 = 1/(Tφμ + 1),

θ2 = 1/(Nφη + 1), and θ3 = 1/(Tφμ +Nφη + 1), φμ = σ2
μ/σ

2
v , and φη = σ2

η/σ
2
v . This leads to

Ω−1 = Q+ θ1P1 + θ2P2 + θ3P3, and |Σ|−1 = (σ2
v)

−NT θN−1
1 θT−1

2 θ3. (4)

In what follows, we adopt the following parameterization: ψ = (β′, σ2
v , φ

′)′ with φ =

(φμ, φη, λ, ρ
′)′. The loglikelihood function under this new parameterization thus becomes

�(ψ) = c(φμ, φη) − NT
2 log(σ2

v) − 1
2σ2

v
[h(Y, λ)−X(ρ)β]′Ω−1[h(Y, λ)−X(ρ)β] + J(λ),

where c(φμ, φη) = N−1
2 log(θ1)+ T−1

2 log(θ2)+ 1
2 log(θ3). The expressions θ1, θ2, and θ3 defined

above are often used for convenience.

4

Accepted by Econometric Reviews, 3 Nov. 2015



It is easy to see that, for a given φ, �(ψ) is partially maximized at

β̂(φ) = [X ′(ρ)Ω−1X(ρ)]−1X ′(ρ)Ω−1h(Y, λ) (5)

σ̂2
v(φ) = 1

NT [h(Y, λ)−X(ρ)β̂(φ)]′Ω−1[h(Y, λ)−X(ρ)β̂(φ)], (6)

resulting the concentrated quasi loglikelihood for φ as

�max(φ) = c(φμ, φη) − NT
2 [1 + log σ̂2

v(φ)] + J(λ). (7)

Maximizing �max(φ) gives the QMLE φ̂ of φ, and hence the QMLEs β̂(φ̂) and σ̂2
v(φ̂) of β and

σ2
v , respectively. Yang and Huang (2011) further noted that maximization of (7) may still be

computationally infeasible when panels become large, i.e., N and T become large, because the

process involves repeated calculations of the NT ×NT the matrices Q, P1, P2, and P3. They

provided a simple computational device that overcomes this difficulty.

3 Asymptotic Properties of the QMLE

In this section, we first treat the consistency of the QMLEs of the model parameters, and

then the asymptotic normality where the different convergence rates of QMLEs are identified.

To ease the exposition, formal results are proved without loss of generality under the simpler

model with g = h, ρj = λ, and φ = (φμ, φη, λ)′. Let Λ,Φ and Ψ be, respectively, the parameter

space for λ, φ and ψ; λ0, φ0 and ψ0 be the true parameter values; “E” and “Var” be expectation

and variance operators corresponding to the true parameter ψ0.

3.1 Consistency

Let �̄(ψ) be the expected loglikelihood, i.e., �̄(ψ) ≡ E[�(ψ)] = −NT
2 log(σ2

v) + c(φμ, φη) −
1

2σ2
v
E
{
[h(Y, λ)−X(λ)β]′Ω−1[h(Y, λ)−X(λ)β]

}
+ E[J(λ)]. Given φ, �̄(ψ) is maximized at

β̄(φ) = [X ′(λ)Ω−1X(λ)]−1X ′(λ)Ω−1E[h(Y, λ)] (8)

σ̄2
v(φ) = 1

NT E
{
[h(Y, λ)−X(λ)β̄(φ)]′Ω−1[h(Y, λ)−X(λ)β̄(φ)]

}
. (9)

Thus, the partially maximized �̄(ψ) takes the form

�̄max(φ) = c(φμ, φη) − NT
2 [1 + log σ̄2

v(φ)] + E[J(λ)]. (10)

According to White (1994, Theorem 3.4), the uniform convergence of 1
NT [�max(φ) − �̄max(φ)]

to zero is the focal point for the consistency of the QMLE φ̂. Once the consistency of φ̂ is

established, the consistency of β̂(φ̂) and σ̂2
v(φ̂) follows immediately, although some standard

conditions on the regressors are necessary. We now list a set of sufficient conditions for the

5
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consistency of the QMLE.

Assumption C1: The error components μ, η, and v are independent of each other, and

each contains i.i.d. elements with a zero mean and a constant variance denoted by σ2
μ0, σ

2
η0,

and σ2
v0 respectively for μ, η, and v.

Assumption C2: Φ is convex and compact. φμ = σ2
μ/σ

2
v and φη = σ2

η/σ
2
v are bounded

away from 0 in Φ.

Assumption C3: The elements of X(λ) are uniformly bounded, uniformly in λ ∈ Λ; and

limN,T→∞ 1
NT [X ′(λ)X(λ)] exists and is nonsingular, uniformly in λ ∈ Λ.

Assumption C4: E[h2(Yit, λ)] < Δ1 < ∞ and E| loghY (Yit, λ)| < Δ2 < ∞, for all

i = 1, · · · , N , t = 1, · · · , T , and λ ∈ Λ.

Assumption C5: Let h̄i· = 1
T

∑T
t=1 h(Yit, λ) and h̄·t = 1

N

∑N
i=1 h(Yit, λ). As N ∪T → ∞,

(i) 1
NT

∑N
i=1

∑T
t=1[h

k(Yit, λ)−E(hk(Yit, λ))]
p−→ 0, k = 1, 2, 1

N

∑N
i=1[h̄

2
i· −E(h̄2

i·)]
p−→ 0,

and 1
T

∑T
t=1[h̄

2·t −E(h̄2·t)]
p−→ 0, for each λ ∈ Λ,

(ii) 1
NT

∑N
i=1

∑T
t=1[loghY (Yit, λ)− E(loghY (Yit, λ))]

p−→ 0, for each λ ∈ Λ, and

(iii) the row sums of the absolute values of Var[h(Y, λ)] are o(NT ) uniformly in λ ∈ Λ.

Assumption C6: The partial derivatives {hλ(Xitj, λ), j = k1 +1, · · · , k}, hλ(Yit, λ) and

hY λ(Yit, λ) exist such that as N ∪ T → ∞,

(i) supλ∈Λ
1

NT

∑N
i=1

∑T
t=1 h

2
λ(Xitj, λ) = O(1) for j = k1 + 1, · · · , k,

(ii) supλ∈Λ
1

NT

∑N
i=1

∑T
t=1 h

2(Yit, λ) = Op(1),

(iii) supλ∈Λ
1

NT

∑N
i=1

∑T
t=1 h

2
λ(Yit, λ) = Op(1), and

(iv) supλ∈Λ
1

NT

∑N
i=1

∑T
t=1 hY λ(Yit, λ)/hY (Yit, λ) = Op(1).

Assumptions C1-C2 are standard in quasi maximum likelihood estimation. Assumption

C3 guarantees the existence of β̄(φ) uniformly in φ ∈ Φ, as under Assumption C3, the limit

of 1
NT [X ′(λ)Ω−1X(λ)] exists and is nonsingular uniformly in φ ∈ Φ.4

Assumption C4 ensures the uniform boundedness of σ̄2(φ) and 1
NT E[J(λ)], and thus the

uniform boundedness of 1
NT �̄max(φ). Assumption C5 says the sequences of random variables

{h2(Yit, λ)} and {loghY (Yit, λ)} satisfy a pointwise weak law of large numbers (LLN), and the

dependence among {h(Yit, λ)} is of smaller order of magnitude than the information available.

Assumption C6 says that those sequences are well behaved uniformly for λ in the compact

set Λ, which are essential for us to apply the weak uniform law of large numbers (ULLN).

Alternatively, one can require those sequences satisfy certain Lipschitz condition, as specified

in, say, Andrews (1987, 1992), Pötscher and Prucha (1989), and Davidson (1994, Chapter 21).
4This can be seen by the following matrix results: (i) for any two real symmetric matrices A and B,

γmax(A +B) ≤ γmax(A) + γmax(B), and (ii) the eigenvalues of a projection matrix are either 0 or 1. We have
by (4), γmax(Ω

−1) ≤ [γmax(Q) +
P3

j=1 θjγmax(Pj)] ≤ 4, because 0 < θj ≤ 1 for j = 1, 2, 3, and Q, P1, P2, and

P3 are projection matrices. It follows that γmin(Ω−1)X ′(λ)X(λ) ≤ X ′(λ)Ω−1X(λ) ≤ γmax(Ω−1)X ′(λ)X(λ) ≤
4X ′(λ)X(λ), where γmin(Ω−1) is strictly positive as Ω is positive definite. Here, A ≥ B means A−B is positive
semidefinite, and A ≤ B is defined similarly.
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The smoothness condition in Assumption C6 is not restrictive as the transformation functions

h(Yit, λ) applied in practice, such as the Box-Cox power transformation (Box and Cox, 1964),

and more recently the power transformations by Yeo and Johnson (2000) and the dual-power

transformation by Yang (2006), typically possess continuous partial derivatives in Yit and λ

up to any order. We have the following consistency result.

Theorem 1: Assume Assumptions C1-C6 hold. Assume further that (a) h(Yit, λ) is

monotonically increasing in Yit, and (b) �̄max(φ) has a unique global maximum at φ∗ such that

φ∗ → φ0 as N, T → ∞. Then, ψ̂
p−→ ψ0, as N, T → ∞.

The proof is relegated to Appendix. The identification uniqueness condition (�̄max(φ) has

a unique global maximum at φ0) stated in Theorem 1 may be proved directly with some

additional minor regularity conditions. Some details on the order of convergence of ψ̂ with

respect to the relative magnitudes of N and T are given in the next subsection.

3.2 Asymptotic normality

Let G(ψ) = ∂�(ψ)/∂ψ and H(ψ) = ∂2�(ψ)/(∂ψ∂ψ′) be, respectively, the gradient and the

Hessian of the loglikelihood function �(ψ). Let Jλ(λ), Jλλ(λ) and Jλλλ(λ) be the first three

partial derivatives of J(λ) w.r.t. λ (the λ-derivatives), and Xλ(λ), Xλλ(λ) and Xλλλ(λ) the

first three λ-derivatives of X(λ). The G(ψ) function has the elements:

Gβ(ψ) = 1
σ2

v
X ′(λ)Ω−1u,

Gσ2
v
(ψ) = 1

2σ4
v
u′Ω−1u− NT

2σ2
v
,

Gφμ(ψ) = 1
2σ2

v
u′Aμu− 1

2T (N − 1)θ1 − 1
2Tθ3,

Gφη(ψ) = 1
2σ2

v
u′Aηu− 1

2N (T − 1)θ2 − 1
2Nθ3,

Gλ(ψ) = Jλ(λ)− 1
σ2

v
u′λΩ−1u,

where u ≡ u(β, λ) = h(Y, λ)−X(λ)β, uλ = ∂
∂λu(β, λ), Aμ ≡ − ∂

∂φμ
Ω−1 = T (θ21P1 + θ23P3), and

Aη ≡ − ∂
∂φη

Ω−1 = N (θ22P2 + θ23P3). The detailed expression of H(ψ) is given in Appendix.

For the asymptotic normality, we need some further assumptions.

Assumption N1: E|μi|4+ε1 <∞, E|ηt|4+ε2 <∞, and E|vit|4+ε3 <∞, for some ε1, ε2 and

ε3 > 0, all i = 1, · · · , N ; t = 1, · · · , T .

Assumption N2: ψ0 is an interior point of Ψ.

Assumption N3: 1√
NT

E[Gλ(ψ0)] = o(1).

Assumption N4: X(λ) and h(Y, λ) are third order differentiable w.r.t. λ such that for

Nε(λ0) = {λ ∈ Λ : |λ− λ0| ≤ ε}, and as N ∪ T → ∞,

(i) supλ∈Nε(λ0)
1

NT ‖X∗(λ)‖2 = O(1), where X∗(λ) = X(λ), or its λ-derivatives.

(ii) supλ∈Nε(λ0)
1

NT ‖h∗(Y, λ)‖2 = Op(1), where h∗(Y, λ) = h(Y, λ), or its λ-derivatives.

(iii) supλ∈Nε(λ0)
1

NT |J∗(λ)| = Op(1), where J∗(λ) = J(λ), or its λ-derivatives.

7
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Assumption N5: As N ∪ T → ∞,

(i) 1
NTX

′(λ0)[hλ(Y, λ0) − E(hλ(Y, λ0))] = op(1) and the same is true for hλλ(Y, λ0).

(ii) 1
NT {h′λ(Y, λ0)h(Y, λ0) − E[h′λ(Y, λ0)h(Y, λ0)]} = op(1), and the same is true when

h(Y, λ0) is replaced by hλ(Y, λ0) or hλ(Y, λ0) is replaced by hλλ(Y, λ0).

(iii) 1
NT {Jλλ(λ0) − E[Jλλ(λ0)]} = op(1).

Assumptions N1-N3 are standard for quasi maximum likelihood inference. Under As-

sumption C1, the first four components of G(ψ0) have mean zero, and hence the requirement,
1√
NT

E[Gλ(ψ0)] = o(1), becomes essential for the limiting distribution of the normalized gra-

dient to be centered at zero. Intuitively, such a requirement is more likely to be met when the

errors are more symmetric due to the nonlinearity of the Gλ(ψ0) function. This intuition is

indeed supported by the results presented in Footnote 6 corresponding to the Box-Cox power

transformation. In fact, when both N and T are large it is more crucial that vit is symmet-

rically distributed, or otherwise σv0 needs to be ‘small’ for the assumption to be met (see

the discussions below Assumption N6). See also Hinkley (1975) and Yang (1999) for some

related discussions and useful results. This assumption is also related to the Assumption (b)

stated in Theorem 1, for the unique global maximum point of �̄max(φ) to converge to φ0.

Assumptions N4 and N5 spell out conditions on the transformation function and its partial

derivatives to ensure the existence of the information matrix and convergence in probability

of various quantities. In particular, Assumptions N4(iii) and N5(iii) set out conditions on the

derivatives of the Jacobian term. They are not restrictive as in the special case of Box-Cox

power transformation, Jλ(λ) is free of λ, and Jλλ(λ) = Jλλλ(λ) = 0.

One of the key steps in proving the asymptotic normality of the QMLE ψ̂ is to show that the

gradient functionG(ψ0) after being suitably normalized is asymptotic normal. The asymptotic

normality of the components of G(ψ0) corresponding to β, σ2
v , φμ and φη can be proved using

the central limit theorem (CLT) for linear-quadratic forms of error components given in Lemma

A3 in Appendix, which adapts the CLT for linear-quadratic forms by Kelejian and Prucha

(2001). However, the component of G(ψ0) corresponding to λ involves the nonlinear function

h and its partial derivatives:

Gλ(ψ0) =
∑

i

∑
t

hY λ(Yit, λ0)
hY (Yit, λ0)

− 1
σ2

v0

u0λΩ−1u0,

where u0 ≡ u(β0, λ0), and u0λ = uλ(β0, λ0). Moreover, the two-way error components μ and

η induce dependence along both the cross-sectional and time-wise directions. These render

the standard limiting theorems inapplicable5 and hence some high-level condition needs to be

imposed. Some heuristic arguments for its plausibility follow.

Assumption N6: 1√
NT

Gλ(ψ0)
D−→ N (0, τ2), and any linear combination of Gλ(ψ0) with

5This is in contrast to the fixed-effects panel transformation models (Abrevaya, 1999a, 2000; Chen, 2002,
2010), or the cross-sectional transformation models (Abrevaya, 1999b; Shin, 2008; Honoré and Hu, 2010).
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the other elements of G(ψ0) is also asymptotically normal.

It is extremely difficult, if possible at all, to specify explicitly detailed conditions so

that a version of CLT can apply to Gλ(ψ0). Given the highly nonlinear dependence of

r(Yit, λ0) = hY λ(Yit,λ0)
hY (Yit ,λ0)

and hλ(Yit, λ0) on the non-identically distributed dependent data,

no generic CLT for dependent sequences (as in McLeish (1975)) is applicable. The follow-

ing heuristic arguments help understand the nature of Assumption N6. Denote h(Yit, λ0) =

μit +uit where μit are the elements of X(λ0)β0. As h is strictly monotonic in Yit, one can write

r(Yit, λ0) = r(μit + uit) and hλ(Yit, λ0) = hλ(μit + uit). If σμ0, ση0 and σv0 are all small in the

sense that as N, T → ∞, they approach zero, then we have r(μit + uit) ≈ r(μit) + rμ(μit)uit

and hλ(μit + uit) ≈ hλ(μit) + hλμ(μit)uit (Bickel and Doksum, 1981; Yang, 1999).6 Hence,

Gλ(ψ0) becomes a linear-quadratic form in u, as the other elements of G(ψ0), and Lemma A3

leads to Assumption N6. For generality, however, the small-σ condition is not imposed.

Now, letting C = diag{Ik+1,
√
T ,

√
N, 1}, we have the following theorem.

Theorem 2: Given Assumptions C1-C6 and Assumptions N1-N6, we have

√
NTC−1(ψ̂ − ψ0)

D−→ N
(
0, I−1(ψ0)K(ψ0)I−1(ψ0)

)
, as N, T → ∞,

where I(ψ0) = − limN,T→∞ 1
NTCE[H(ψ0)]C and K(ψ0) = limN,T→∞ 1

NTCE[G(ψ0)G′(ψ0)]C,

both assumed to exist with I(ψ0) being positive definite. Furthermore, if μi’s, ηt’s and vit’s are

all normally distributed, then
√
NTC−1(ψ̂ − ψ0)

D−→ N (0, I−1(ψ0)), as N, T → ∞.

The proof of Theorem 2 is given in Appendix. From Theorem 2, we see that the involvement

of the C matrix clearly spells out the rate of convergence for the parameter estimates. The

behavior of the QMLEs is different under the following different scenarios:

(a) N, T → ∞ such that N/T → c, a positive finite constant;

(b) N, T → ∞ such that N/T → ∞;

(c) N, T → ∞ such that N/T → 0;

(d) N → ∞, T is fixed;

(e) T → ∞, N is fixed;

Under these scenarios, the asymptotic behavior of the QMLEs are as follows:

(i) β̂, σ̂2
v and λ̂ are

√
NT -consistent under (a)-(e);

6For the Box-Cox power transformation: h(y, λ) = 1
λ
(yλ − 1) if λ �= 0; log y if λ = 0, we have r(Yit, λ0) =

log Yit = 1
λ0

log[1 + λ0h(Yit, λ0)], and hλ(Yit, λ0) = λ−1
0 [1 + λ0h(Yit, λ0)] log Yit − λ−1

0 h(Yit, λ0) when λ0 �= 0;
1
2
(log Yit)

2 when λ0 = 0, which are clearly analytical functions of h(Yit, λ0) = μit + uit. As the Box-Cox power
transformation has a bounded range when λ �= 0, the small-σ approximation makes it more compatible with
the near-normality assumption. Under this approximation, log Yit ≈ 1

λ0
log(1 + λ0μit) + θituit, and

1
NT

E[Gλ(ψ0)] ≈ − 1
2
σv0γvθ̄ + 1

2T
(σv0γv − Tσ3

μ0γμ+σ3
v0γv

Tσ2
μ0+σ2

v0
)θ̄ + 1

2N
(σv0γv − Nσ3

η0γη+σ3
v0γv

Nσ2
η0+σ2

v0
)θ̄ + O( 1

NT
),

where θit = (1 + λ0μit)
−1, θ̄ = 1

NT

P
i

P
t θit, and γμ, γη and γv are the measures of skewness of μi, ηt, and

vit, respectively. Thus, for Assumption N3 to be satisfied it is necessary that σv0 = o((NT )−1/2) if γv �= 0,
σμ0 = o((N/T )−1/2) if γμ �= 0, and σμ0 = o((T/N)−1/2) if γη �= 0.
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(ii) φμ (or σ2
μ) is

√
N -consistent under (a)-(d), but is inconsistent under (e).

(iii) φη (or σ2
η) is

√
T -consistent under (a)-(c) and (e), but is inconsistent under (d).

Thus, the QMLEs β̂, σ̂2
v and λ̂ are consistent when either N or T or both approach infinity.

In the case where both pass to infinity, they are
√
NT -consistent irrespective of the relative

magnitude of N and T . When N approaches infinity but T is fixed, σ̂2
μ is consistent but σ̂2

η

is inconsistent. This is because there is no sufficient variations in ηt no matter how large N

is. Similarly, when T goes to infinity but N is fixed, σ̂2
η is consistent but σ̂2

μ is inconsistent.

See Hsiao (2003, p. 41) for a discussion on a random-effects model without functional form

transformation.

The result of Theorem 2 provides theoretical base for statistical inferences for the trans-

formed random-effects models. Practical application of this result involves the estimation of

I(ψ0) and K(ψ0). The former can be consistently estimated by I(ψ̂) = − 1
NTCH(ψ̂)C, but

for the latter, there are no readily available methods. This is because (i) Var[G(ψ0)] does not

have an explicit expression for the transformed panel models, (ii) G(ψ0) cannot be written as

summation of NT independent terms, nor in the form of a U - or V -statistic. Thus, traditional

methods of estimating Var[G(ψ0)] are not applicable.

4 Bootstrap Estimate of Variance-Covariance Matrix

As mentioned above, the difficulty in estimating the variance-covariance matrix of ψ̂ is due

to the lack of analytical expression for K(ψ0) or due to the fact that G(ψ0) does not have the

desirable structure. Thus, we turn to the bootstrap method. The bootstrap procedure given

below is inspired by the idea of transformation based bootstrap (TBB) put forth by Lahiri (2003,

p. 40), which generalizes the idea of Hurvivh and Zeger (1987). The central idea can simply

be stated as follows. If (a) a statistic is a function of a dependent sequence, (b) this sequence

can be transformed through a one-to-one transformation to a sequence that is approximately

independent, and (c) the statistic can be expressed (at least to a close approximation) in terms

of this new sequence, then the distribution of this statistic can be obtained by bootstrapping

the new sequence in the usual way.

The bootstrap procedure is called the Error Components Bootstrap (ECB) as it directly

bootstraps on the estimated error components obtained by decomposing the estimated error

vector û = h(Y, λ̂) − X(λ̂)β̂. Each of these estimated error components contains asymptot-

ically independent elements, which sets up the theoretical base for the bootstrap method.

Furthermore and very importantly, G(ψ0) can be written as an analytical function of u0 and

ψ0 (see details below). The procedure is summarized as follows.

1. Reshape û into an N × T matrix denoted by Û . Decompose û into three components:

• μ̂ = N × 1 vector of row means of Û ,
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• η̂ = T × 1 vector of column means of Û ,
• v̂ = û− μ̂⊗ 1T − 1N ⊗ η̂.

2. Resample in the usual way μ̂, η̂ and v̂ respectively to give μ̂∗, η̂∗ and v̂∗, and thus

û∗ = μ̂∗ ⊗ 1T + 1N ⊗ η̂∗ + v̂∗.

3. Compute G(ψ0) using û∗ and ψ̂, denoted as G∗(ψ̂),

4. Repeat steps 1-3 B times to give G∗
1(ψ̂), G∗

2(ψ̂), · · · , G∗
B(ψ̂). The bootstrap estimate of

Var[G(ψ0)] = E[G(ψ0)G′(ψ0)] is then given as

V̂ar[G(ψ0)] = 1
B−1

∑B
b=1[G

∗
b(ψ̂) − μ∗G][G∗

b(ψ̂) − μ∗G]′,

where μ∗G = 1
B

∑B
b=1 G

∗
b(ψ̂).

This gives a bootstrap estimate of K(ψ0), K̂(ψ0) = 1
NTCV̂ar[G(ψ0)]C, which together with

I(ψ̂) gives an estimate of the robust VC matrix of the QMLE ψ̂.

Some details in calculating G∗(ψ̂) are given as follows. From the expression of G(ψ0)

given in Section 3.2, we see that the first four elements of G(ψ0) are all explicit functions of

u0 and the true parameters ψ0 no matter what transformation function is adopted. Their

bootstrapped values can thus be obtained by plugging û∗ and ψ̂ in these functions for u0

and ψ0, respectively. Calculating bootstrapped values of the last element of G∗(ψ̂), i.e.,

Gλ(ψ0) = Jλ(λ)− 1
σ2

v
u′0λΩ−1u0, requires some algebra which is transformation specific.

For the Box-Cox power transformation, the transformation used in our Monte Carlo sim-

ulation, we have Jλ(λ0) =
∑N

i=1

∑T
t=1 logYit, and hλ(Yiy, λ0) = λ−1

0 [1 + λ0h(Yit, λ0)] logYit −
λ−1

0 h(Yit, λ0) when λ0 �= 0; 1
2 (logYit)2 when λ0 = 0. Since h(Yit, λ0) = x′it(λ0)β0 + u0,it,

logYit = 1
λ log[1+λ0h(Yit, λ0)], and u0λ = hλ(Y, λ0)−Xλ(λ0)β0, the gradient Gλ(ψ0) can also

be expressed analytically in terms of u0 and ψ0. Thus, the bootstrapped values of Gλ(ψ0) can

again be obtained by plugging û∗ and ψ̂ in Gλ(ψ0) for u0 and ψ0. For other transformations,

one could go through the same process, although the expressions may be more complicated

than those of Box-Cox power transformation.

For practical applications, it is essential to establish the validity of the proposed bootstrap

procedure. Let Fμ, Fη and Fv be, respectively, the true distributions of μi, ηt and vit. Let

F̂μ be the empirical distribution function (EDF) of μ̂, F̂η the EDF of η̂ and F̂v the EDF of

v̂. Let E∗ and Var∗ be the mean and variance operators corresponding to (F̂μ, F̂η, F̂v). The

theoretical bootstrap estimate of Var[G(ψ0)] is thus,

Var∗[G∗(ψ̂)] = E∗[G∗(ψ̂)G∗(ψ̂)′]− E∗[G∗(ψ̂)]E∗[G∗(ψ̂)′], (11)

which is approximated by the feasible version V̂ar[G(ψ0)] given above. Evidently, this approx-

imation can be made arbitrarily accurate by choosing an arbitrarily large B.
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Corollary 1: Under the assumptions of Theorems 2 and 3, we have

1
NT

C
{
Var∗[G∗(ψ̂)]− Var[G(ψ0)

}
C

p−→ 0, as N, T → ∞,

and hence the proposed ECB procedure is asymptotically valid.

The advantage of the proposed ECB procedure is that it is computationally feasible even

for large panels. This is because it bootstraps the score function only by resampling the

estimated error components, conditional on the QMLEs of the parameters, thus the numerical

optimization as in the process of obtaining the parameter estimates is avoided. The Monte

Carlo results presented in Section 5 show that this procedure performs well when used to

construct robust confidence intervals for model parameters.

5 Monte Carlo Results

Monte Carlo experiments we conducted serve two purposes: one is for checking the con-

vergence rates of the QMLEs under different scenarios concerning the relative magnitude of N

and T discussed in Section 3, and the other is for investigating the finite sample performance

of the bootstrap estimate K̂(ψ0) when used in constructing robust confidence intervals (CIs)

for the elements of ψ0, in comparison with the CIs based on Hessian only.

The data generating process (DGP) used in the Monte Carlo experiments is as follows.

h(Y, λ) = β0 + β1X1 + β2h(X2, λ) + Zμμ+ Zηη + v,

where h is the Box-Cox power transformation with λ = 0.1, X1 is generated from U(0, 5), X2

from exp[N (0, 1)], β = (20, 5, 1)′, σ2
μ = σ2

η = 0.25, and σ2
v = 1.0.

To generate error components {μi}, {ηt} and {vit}, we consider three distributions: (i)

normal, (ii) normal-mixture, and (iii) normal-gamma mixture, all standardized to have zero

mean and unit variance. The standardized normal-mixture random variates are generated

according to

Wi = ((1− ξi)Zi + ξiτZi)/(1− p+ pτ2)0.5,

where ξi is a Bernoulli random variable with probability of success p and Zi is standard

normal independent of ξi. The parameter p here also represents the proportion of mixing the

two normal populations. In our experiments, we choose p = 0.05 or 0.10, meaning that 95%

or 90% of the random variates are generated from the standard normal and the remaining 5%

or 10% are from another normal population with standard deviation τ . We choose τ = 5 or 10

to simulate the situations where there are gross errors in the data. Similarly, the standardized

normal-gamma mixture random variates are generated according to

Wi = ((1 − ξi)Zi + ξi(Vi − α))/(1− p+ pα)0.5,
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where Vi is a gamma random variable with scale parameter 1 and shape parameter α, and is

independent of Zi and ξi. The other quantities are the same as in the definition of normal-

mixture. We choose p = 0.05 or 0.10, and α = 4 or 9.

Note that the normal-mixture gives a nonnormal distribution that is still symmetric like

normal distribution but leptokurtic, whereas the normal-gamma mixture gives a nonnormal

distribution that is both skewed and leptokurtic.7 As discussed in the introduction, one of the

main purposes of a response transformation is to induce normality of the observations. We

argued that while exact normality may be impractical, the transformed observations can be

close to normal or at least more symmetrically distributed. In case that the exact normality is

not achieved, the QML method provides an extra protection. This means that there could still

be ‘mild’ departure from normality for the error distributions in the forms of excess kurtosis

or skewness or both. As symmetry can pretty much be achieved by transformation, it is thus

more interesting to see the behaviors of the QMLEs and bootstrap VC matrix estimation in

the case of excess kurtosis, i.e., the case of normal-mixture. Nevertheless, we still include the

normal-gamma mixture case to see what happens when the transformed data is still ‘far’ from

being normal in the sense that there is still a certain degree of skewness left after the so called

‘normalizing’ transformation.

5.1 Convergence of the QMLEs

Table 1 presents Monte Carlo results for the finite sample performance of the QMLEs of

the model parameters ψ, in terms of bias(%) ((bias/true parameter value)×100%) and rmse

(root mean squared error), with DGP 1 corresponding to the case that all errors are normal,

DGP 2 the case that μ and η are normal but v follows a normal-mixture distribution with

p = 0.05 and τ = 5, and DGP 3 the case that μ and η are normal but v follows a normal-

gamma mixture with p = 0.05 and α = 4. The results corresponding to each combination of

the values of N, T and DGP are based on 10,000 samples.

Tables 1a-1d correspond to the cases where N and T increase concurrently with the same

or different speeds. The results clearly show that as N and T get larger, the bias and rmse

get smaller. If N is relatively larger than T , then the bias and rmse of φη are generally larger

than those of φμ and vise versa. If T is fixed as in Table 1e, then the bias and rmse of φη,

in particular the former, do not go down as N increases. Similarly, if N is fixed as in Table

1f, then the bias and rmse of φμ do not go down as T increases. More specifically, the results

of Tables 1a-1f show that the rmse of a
√
NT -consistent estimator at (N2, T2) approximately

equals that at (N1, T1) multiplied by
√
N1T1/N2T2; the rmse of a

√
N -consistent estimator at

7Using the fact that ξj
i (1− ξi)

k = 0, i = 1, 2, . . . , j = 1, 2, . . ., one can easily show that the excess kurtosis for

the normal-mixture random variable is κ = 3(1−p+pτ4 )
(1−p+pτ2)2

− 3, and that the skewness and excess kurtosis for the

normal-gamma mixture random variable are, respectively, γ = 2pα

(1−p+pα)3/2 and κ = 3(1−p+pα(2+α))

(1−p+pα)2
− 3. Thus

for the four sets of (p, τ) values considered for the normal-mixture, κ = (13.45, 16.96, 22.27, 39.45), and for the
four sets of (p, α) values considered, γ = (.3243, .5397, .5433, .7454, ) and κ = (1.88, 2.86, 6.03, 7.00).
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N2 approximately equals that at N1 multiplied by
√
N1/N2; and the rmse of a

√
T -consistent

estimator at T2 approximately equals that at T1 multiplied by
√
T1/T2. Further, the rmse of

φ̂μ approximately equals that of φ̂η multiplied by
√
T/N (note φμ0 = φη0 = .25).

The results corresponding to DGP 2 and DGP 3 do not differ much from those corre-

sponding to DGP 1 as far as the general observations are concerned. However, introducing

the nonnormality does make the rmse larger, especially in the case of DGP 2. As discussed in

Subsection 3.2 below Assumption N5, it may be easier to achieve consistency and asymptotic

normality of λ̂ when the error distributions in the transformed model are closer to symmetry.

The results in Table 1 do indicate that the bias of λ̂ is indeed smaller in the case of symmetric

nonnormal errors (DGP 2) than in the case of asymmetric nonnormal errors (DGP 3). How-

ever, the magnitude of bias is still quite small. The results of Table 1 also show that the rmse

under DGP 2 is generally larger than that under DGP 3. This is because DGP 2 has a much

larger excess kurtosis than DGP3 (16.96 vs 1.88 as in Footnote 7). This larger kurtosis also

causes larger biases of the other estimators (beside λ̂) when NT is not large. Monte Carlo

experiments are repeated under other parameter (ψ) values as well. The results (not reported

for brevity) show similar patterns and lead to the same conclusions.

5.2 Performance of the bootstrap estimate of VC matrix

To investigate the finite sample performance of the bootstrap estimate of Var[G(ψ0)], we

look at the coverage probability of the confidence interval (CI) for each parameter in the

model, constructed based on the robust VC matrix estimate I−1(ψ̂)K̂(ψ0)I−1(ψ̂) (RCI), and

compare it with the CI constructed based on I(ψ̂) only (HCI). Both CIs use standard normal

critical values, and are asymptotically valid when the errors are normal. When the errors are

nonnormal, however, only RCI can be asymptotically valid. The same DGPs as in Section 5.1

are used with some changes on the parameter values in the mixture distributions. Due to the

fact that bootstrap procedure is computationally more demanding, we use 5,000 samples for

each Monte Carlo experiment instead of 10,000 as in Section 5.1. The number of bootstrap

samples is chosen to be 300. Partial results for 95% CIs are summarized in Table 5.2.

From the results we see that under normal errors, the two CIs perform equally well. Under

nonnormal but symmetric errors, the bootstrap procedure leads to robust CIs with coverage

probabilities generally quite close to their nominal levels even though the mixture distributions

considered in the Monte Carlo experiment are quite different from normal distribution (see

Footnote 7). In contrast, the Hessian-based CIs can perform quite poorly with coverage

probabilities significantly below the nominal levels. The results (unreported for brevity) for the

90% and 99% CIs show the same pattern. Furthermore, the results (reported and unreported

but available from the authors upon request) show that as N ∪ T increases, the coverage

probabilities of the robust CIs get closer to their nominal levels, and the empirical distributions

of the robust t-statistics get closer to the standard normal distribution. However, the same
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are not true for the Hessian-based CIs and t-statistics unless the errors are normal.

When the errors are skewed (DGP 3), the performance of RCIs may not be as good as

in the case of symmetric but nonnormal error (DGP 2), but can still be significantly better

than HCIs. One point to note is that when the error standard deviations are not small, e.g.,

(σv0, σμ0, ση0) = (1, .5, .5), the inferences based on both methods do not improve much when

N and T increase, suggesting that Assumption N3 may have been violated (see Footnote 6).

However, the amount of skewness generated by DGP 3 (see Footnote 7) is incompatible with

the transformation model as a response transformation can typically achieve near-symmetry

as discussed earlier. Interestingly, the additional Monte Carlo results (unreported for brevity)

show that by simply reducing σv0 by half, the RCIs perform reasonably well, and so are the

HCIs except the HCI for σ2
v0; further reducing the error standard deviations to (.5, .25, .25) the

RCIs perform very well and the HCI for σ2
v0 continues to perform poorly. Another interesting

point to note is that the CIs for φμ and φη based on both methods perform equally well in

all situations. One possible reason for this may be that the error components μ and η are

generated from normal for all the reported Monte Carlo results. This shows that whether the

pure error vit is normal or not does not affect the performance of the inference for φμ and φη.

6 Discussions

Asymptotic properties of the QMLEs of the transformed panel model with two-way

random-effects are studied and an error components bootstrap (ECB) method is introduced

for estimating the robust VC matrix. Typically, a consistent estimate of the model requires

both N and T to be large. When N is large but T is fixed, only the variance of the time-

specific random-effects cannot be consistently estimated; when T is large but N is fixed, only

the variance of the individual-specific random-effects cannot be consistently estimated. The

ECB method works well when model assumptions are met, and in this case the resulted CIs

are robust against departures from normality, in particular in the form of excess kurtosis.

In certain economics applications, it may be more appropriate to apply a one-way random-

effects model. The results in the paper can easily be simplified to suit this purpose. For the

one-way random-effects model with only individual-specific effects, (i) in the derivations in

Section 2, set φη = 0 and θ3 = θ1, (ii) in the gradient and Hessian expressions given in Section

3.2 and in the proof of Theorem 2, do (i) and drop the components corresponding to φη , and

(iii) in the bootstrap procedure presented in Section 4, drop the terms involving η̂ and η̂∗.
Similarly, for the one-way random-effects model with only time-specific effects, set φμ = 0 and

θ3 = θ2, and drop all the terms corresponding to μ in the gradient and Hessian expressions,

and in the bootstrap procedure. Clearly for the former the asymptotics only require N to be

large, and for the latter the asymptotics only require T to be large.
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Appendix: Proofs of the Theorems

Recall u ≡ u(β, λ) = h(Y, λ)− X(λ)β, uλ = ∂
∂λu(β, λ), and uλλ = ∂2

∂λ2u(β, λ) with their

values at (β0, λ0) denoted as u0, u0λ and u0λλ. Recall Ω−1 = Q+ θ1P1 + θ2P2 + θ3P3, where

θ1 = 1/(Tφμ + 1), θ2 = 1/(Nφη + 1), and θ3 = 1/(Tφμ +Nφη + 1).

The proof of Theorem 1 needs the following two lemmas.

Lemma A1: Under the assumptions of Theorem 1, the quantity σ̄2
v(φ) defined in (9) is

bounded away from zero as N, T → ∞, uniformly in φ ∈ Φ.

Proof: By Assumption (b) stated in Theorem 1, �̄max(φ) ≤ �̄max(φ0) + ε, ∀φ ∈ Φ, i.e.,

c(φμ, φη) − NT
2 [1 + log σ̄2

v(φ)] + E[J(λ)] ≤ c(φμ0, φη0) − NT
2 [1 + log(σ2

v0)] + E[J(λ0)] + ε,

or log σ̄2
v(φ) ≥ 1

NT [c(φμ, φη) − c(φμ0, φη0) − ε] + log σ2
v0 + 2

NT [EJ(λ) − EJ(λ0)], for small ε

(> 0). Assumption C4 guarantees that 2
NT [EJ(λ)− EJ(λ0)] is bounded, uniformly in λ ∈ Λ.

It follows that σ̄2
v(φ) is bounded away from zero as N, T → ∞, uniformly in φ ∈ Φ. �

Lemma A2: Under the assumptions of Theorem 1, |σ̂2
v(φ) − σ̄2

v(φ)| p−→ 0 as N, T → ∞,

uniformly in φ ∈ Φ.

Proof: The proof goes in three steps.8 Let P ∗(φ) = Ω− 1
2X(λ)[X ′(λ)Ω−1X(λ)]−1X ′(λ)Ω− 1

2

where Ω− 1
2 is the symmetric square root of Ω−1, we have by (6) and (9),

σ̂2
v(φ) − σ̄2

v(φ) =
{
Q1(φ)− E[Q1(φ)]

}− {Q2(φ) − E[Q2(φ)]
}

+ E[Q3(φ)], (A-1)

whereQ1(φ) = 1
NT h

′(Y, λ)Ω−1h(Y, λ),Q2(φ) = − 1
NT h

′(Y, λ)Ω− 1
2P ∗(φ)Ω− 1

2h(Y, λ), andQ3(φ) =
1

NT [h′(Y, λ)− Eh′(Y, λ)]Ω− 1
2P ∗(φ)Ω− 1

2 [h(Y, λ)− Eh(Y, λ)].

Step 1. We show supφ∈Φ |Q1(φ) − E[Q1(φ)]| = op(1). Using Ω−1 = Q + θ1P1 + θ2P2 +

θ3P3 given by (4), we can prove Q1(φ) − E[Q1(φ)] = op(1) for each φ ∈ Φ by showing that
1

NT {h′(Y, λ)Qh(Y, λ)−E[h′(Y, λ)Qh(Y, λ)]}= op(1) for each λ ∈ Λ and 1
NT {h′(Y, λ)Pkh(Y, λ)−

E[h′(Y, λ)Pkh(Y, λ)]} = op(1) for each λ ∈ Λ, k = 1, 2, 3. Using the expressions for Q and Pk’s,

it is trivial to show that these pointwise convergence results hold under Assumptions C4 and

C5(i). To show the stochastic equicontinuity of Q1(φ), we have by the mean value theorem,

Q1(φ)−Q1(φ̃) = Q1λ(φ∗)(λ− λ̃) +Q1φμ(φ∗)(φμ − φ̃μ) +Q1φη(φ∗)(φη − φ̃η),

where φ∗ ≡ (φ∗μ, φ∗η, λ∗)′ lies between φ and φ̃ elementwise, Q1λ(φ) = 2
NT h

′
λ(Y, λ)Ω−1h(Y, λ),

Q1φμ(φ) = − 1
N h

′(Y, λ)(θ21P1 + θ23P3)h(Y, λ), and Q1φη(φ) = − 1
T h

′(Y, λ)(θ22P2 + θ23P3)h(Y, λ).

8In proving Lemma A2, the following matrix results are repeatedly used: (i) the eigenvalues of a projection
matrix are either 0 or 1; (ii) γmin(A)trB ≤ tr(AB) ≤ γmax(A)trB for symmetric matrix A and positive
semidefinite (p.s.d.) matrix B, (iii) γmax(A +B) ≤ γmax(A) + γmax(B) for symmetric matrices A and B; and
(iv) γmax(AB) ≤ γmax(A)γmax(B) for p.s.d. matrices A and B.
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By Lemma 1 of Andrews (1992), it suffices to show that supφ∈Φ |Q1ξ(φ)| = Op(1) for

ξ = λ, φμ, and φη. First, by Cauchy-Schwarz inequality and Assumption C6(ii) and C6(iii),

supφ∈Φ |Q1λ(φ)| ≤ supφ∈Φ
2

NT {h′λ(Y, λ)Ω−1hλ(Y, λ)}1/2{h′(Y, λ)Ω−1h(Y, λ)} 1
2

≤ 2{supφ∈Φ γmax(Ω−1)} supλ∈Λ
1√
NT

‖hλ(Y, λ)‖ supλ∈Λ
1√
NT

‖h(Y, λ)‖
≤ 8 ·Op(1) ·Op(1) = Op(1).

Now, by Assumption C2, the positive constants Tθ21, Nθ
2
2, Tθ

2
3 and Nθ23 are such that Tθ23

and Nθ23 are o(1) if N ∪ T → ∞; Tθ21 is free of N , which is O(1) if T is fixed and o(1) if T

grows; and Nθ2
2 is free of T , which is O(1) if N is fixed and o(1) if N grows. In any case, they

are bounded uniformly by a constant c, say. We have by Assumption C6(ii),

supφ∈Φ |Q1φμ(φ)| ≤ supφ∈Φ
1

NT h
′(Y, λ)(Tθ21P1 + Tθ23P3)h(Y, λ)

≤ supφ∈Φ(Tθ21γmax(P1) + Tθ23γmax(P3)) 1
NT ‖h(Y, λ)‖2

≤ 2c supλ∈Λ
1

NT ‖h(Y, λ)‖2 = Op(1), and

supφ∈Φ |Q1φη(φ)| ≤ supφ∈Φ
1

NT h
′(Y, λ)(Nθ22P2 +Nθ23P3)h(Y, λ)

≤ supφ∈Φ(Nθ22γmax(P2) +Nθ23γmax(P3)) 1
NT ‖h(Y, λ)‖2

≤ 2c supλ∈Λ
1

NT ‖h(Y, λ)‖2 = Op(1).

Step 2. We now show supφ∈Φ|Q2(φ)−E[Q2(φ)]| = op(1). As P ∗(φ) is a projection matrix,

Q2(φ) ≤ γmax(P ∗(φ)) 1
NT h

′(Y, λ)Ω−1h(Y, λ) ≤ Q1(φ). The pointwise convergence follows from

Step 1 and the dominated convergence theorem. We now show the stochastic equicontinuity

of Q2(φ). By the mean value theorem,

Q2(φ) −Q2(φ̃) = Q2λ(φ∗∗)(λ− λ̃) +Q2φμ(φ∗∗)(φμ − φ̃μ) +Q2φη(φ
∗∗)(φη − φ̃η),

where φ∗∗ ≡ (φ∗∗μ , φ
∗∗
η , λ

∗∗)′ lies between φ and φ̃ elementwise, and forA(φ) = [X ′(λ)Ω−1X(λ)]−1,

Q2λ(φ) = 2
NT h

′
λ(Y, λ)Ω−1X(λ)A(φ)X ′(λ)Ω−1h(Y, λ)

+ 2
NT h

′(Y, λ)Ω−1Xλ(λ)A(φ)X ′(λ)Ω−1h(Y, λ)

− 2
NT h

′(Y, λ)Ω−1X(λ)A(φ)X ′
λ(λ)Ω−1X(λ)A(φ)X ′(λ)Ω−1h(Y, λ)

≡ 2Q2λ,1(φ) + 2Q2λ,2(φ) − 2Q2λ,3(φ),

Q2φμ(φ) = − 2
NT h

′(Y, λ)(Tθ21P1 + Tθ23P3)X(λ)A(φ)X ′(λ)Ω−1h(Y, λ)

+ 1
NT h

′(Y, λ)Ω−1X(λ)A(φ)(Tθ21P1 + Tθ23P3)A(φ)X ′(λ)Ω−1h(Y, λ), and

Q2φη(φ) = − 2
NT h

′(Y, λ)(Nθ22P2 +Nθ23P3)X(λ)A(φ)X ′(λ)Ω−1h(Y, λ)

+ 1
NT h

′(Y, λ)Ω−1X(λ)A(φ)(Nθ22P2 +Nθ23P3)A(φ)X ′(λ)Ω−1h(Y, λ).

For the first part of Q2λ(φ), by Cauchy-Schwarz inequality and Assumption C6(ii)-(iii),
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supφ∈Φ |Q2λ,1(φ)| = supφ∈Φ
1

NT |h′λ(Y, λ)Ω− 1
2P ∗(φ)Ω− 1

2h(Y, λ)|
≤ supφ∈Φ

1√
NT

{h′λ(Y, λ)Ω− 1
2P ∗(φ)Ω− 1

2hλ(Y, λ)} 1
2Q2(φ)

1
2

≤ supφ∈Φ γmax(P ∗(φ)) 1√
NT

{h′λ(Y, λ)Ω−1hλ(Y, λ)} 1
2Q1(φ)

1
2

≤ supφ∈Φ γmax(Ω−1) 1
NT ‖hλ(Y, λ)‖‖h(Y, λ)‖

≤ 4 supλ∈Λ
1√
NT

‖hλ(Y, λ)‖ supλ∈Λ
1√
NT

‖h(Y, λ)‖ = Op(1).

Similarly, for the second component of Q2λ(φ),

supφ∈Φ |Q2λ,2(φ)| = supφ∈Φ
1

NT |h′(Y, λ)Ω−1Xλ(λ)A(φ)X ′(λ)Ω−1h(Y, λ)|
≤ supφ∈Φ

1√
NT

{h′(Y, λ)Ω−1Xλ(λ)A(φ)X ′
λ(λ)Ω−1h(Y, λ)} 1

2 · supφ∈Φ Q2(φ)
1
2 .

Let QXX(φ) ≡ 1
NTX

′(λ)Ω−1X(λ). The first term on the right hand side (r.h.s.) is

≤ supφ∈Φ[γmin(QXX(φ))]−
1
2 supφ∈Φ

1
NT {h′(Y, λ)Ω−1Xλ(λ)X ′

λ(λ)Ω−1h(Y, λ)} 1
2

≤ supφ∈Φ[γmin(QXX(φ))]−
1
2 supλ∈Λ

1√
NT

‖Xλ(λ)‖ supφ∈Φ γmax(Ω−1) supλ∈Λ
1√
NT

‖h′(Y, λ)‖
= O(1)Op(1)O(1)Op(1) = Op(1), by Assumptions C3 and C6(i)-(ii).

Note that Q1(φ) ≤ γmax(Ω−1)
NT ‖h(Y, λ)‖2 ≤ 4

NT ‖h(Y, λ)‖2 as supφ∈Φ γmax(Ω−1) ≤ 4 (see Foot-

note 4). By Assumption C6(ii), supφ∈ΦQ2(φ)
1
2 ≤ supφ∈ΦQ1(φ)

1
2 ≤ 2 supλ∈Λ

1√
NT

‖h′(Y, λ)‖
= Op(1). Consequently, supφ∈Φ |Q2λ,2(φ)| = Op(1). For the third component of Q2λ(φ),

supφ∈Φ |Q2λ,3(φ)| ≤ supφ∈Φ ‖h′(Y, λ)Ω−1X(λ)A(φ)‖ supλ∈Λ
1√
NT

‖X ′
λ(λ)‖

× supφ∈Φ
1√
NT

‖Ω−1X(λ)A(φ)X ′(λ)Ω−1h(Y, λ)‖.

The first term on the r.h.s. is

supφ∈Φ ‖h′(Y, λ)Ω−1X(λ)A(φ)‖
= supφ∈Φ{‖h′(Y, λ)Ω−1X(λ)A(φ)2X ′(λ)Ω−1h(Y, λ)‖} 1

2

≤ supφ∈Φ[γmin(QXX(φ))]−
1
2

1√
NT

{‖h′(Y, λ)Ω− 1
2P ∗(φ)Ω− 1

2h(Y, λ)‖} 1
2

≤ supφ∈Φ[γmin(QXX(φ))]−
1
2 supφ∈Φ{γmax(Ω−1)} 1

2
1√
NT

‖h(Y, λ)‖
= Op(1)O(1)Op(1) = Op(1) by Assumptions C3 and C6(ii),

the middle term is O(1) by Assumption C6(i), and the third term on r.h.s. is
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supφ∈Φ
1√
NT

‖Ω− 1
2P ∗(φ)Ω− 1

2h(Y, λ)‖
= supφ∈Φ

1√
NT

{h′(Y, λ)Ω− 1
2P ∗(φ)Ω−1P ∗(φ)Ω− 1

2h(Y, λ)} 1
2

≤ {γmax(Ω− 1
2P ∗(φ)Ω−1P ∗(φ)Ω− 1

2 )} 1
2 supλ∈Λ

1√
NT

‖h(Y, λ)‖
≤ 4 supλ∈Λ

1√
NT

‖h(Y, λ)‖ = Op(1) by Assumption C6(ii),

where we repeatedly use the fact that γmax(AB) ≤ γmax(A)γmax(B) for p.s.d. matrices A and

B. Consequently, we have supφ∈Φ |Q2λ,3(φ)| = Op(1). Finally, the triangle inequality leads to:

supφ∈Φ |Q2λ(φ)| ≤ 2 supφ∈Φ |Q2λ,1(φ)|+ 2 supφ∈Φ |Q2λ,2(φ)|+ 2 supφ∈Φ |Q2λ,3(φ)| = Op(1).

Analogously, we can show supφ∈Φ |Q2φμ(φ)| = Op(1) and supφ∈Φ |Q2φη(φ)| = Op(1).

Step 3. Finally, we show supφ∈Φ |EQ3(φ)| = o(1). By Assumption C3,

supφ∈Φ E[Q3(φ)]

= supφ∈Φ
1

NT E{[h′(Y, λ)− Eh′(Y, λ)]Ω− 1
2P ∗(φ)Ω− 1

2 [h(Y, λ)− Eh(Y, λ)]}
= supφ∈Φ

1
(NT )2

E{[h′(Y, λ)− Eh′(Y, λ)]Ω−1X(λ)QXX(φ)X ′(λ)Ω−1[h(Y, λ)− Eh(Y, λ)]}
≤ [γmin(QXX(φ))]−1 supλ∈Λ

1
(NT )2

E‖X ′(λ)Ω−1[h(Y, λ)− Eh(Y, λ)‖2

= [γmin(QXX(φ))]−1[γmax(Ω−1)]2 supλ∈Λ
1

(NT )2
tr{X ′(λ)Var[h(Y, λ)]X(λ)}

= O(1)O(1)o(1) = o(1), by Assumption C5(iii).

This completes the proof of the lemma. �

Proof Theorem 1: Since �max(φ) has a unique global maximum at φ∗ such that φ∗ → φ0

as N, T → ∞, the proof of the consistency of φ̂ amounts to show the uniform convergence

sup
φ∈Φ

1
NT

|�max(φ) − �̄max(φ)| p−→ 0, as N, T −→ ∞, (A-2)

(White, 1994, Theorem 3.4). From (7) and (10), 1
NT [�max(φ) − �̄max(φ)] = −1

2 [log σ̂2
v(φ) −

log σ̄2
v(φ)] + 1

NT {J(λ)− E[J(λ)]}. By a Taylor expansion of log σ̂2
v(φ) at σ̄2

v(φ),

| log σ̂2
v(φ)− log σ̄2

v(φ)| = |σ̂2
v(φ)− σ̄2

v(φ)|/σ̃2
v(φ),

where σ̃2
v(φ) lies between σ̂2

v(φ) and σ̄2
v(φ). Lemma A1 shows that σ̃2

v(φ) is bounded below

from zero uniformly in φ ∈ Φ, and Lemma A2 shows that |σ̂2
v(φ)− σ̄2

v(φ)| p−→ 0, uniformly in

φ ∈ Φ. Hence, | log σ̂2
v(φ)− log σ̄2

v(φ)| p−→ 0, uniformly in φ ∈ Φ.

Now, Assumption C5(ii) leads to the pointwise convergence of 1
NT {J(λ) − E[J(λ)]} to

zero in probability, and Assumption C6(iv) leads to the stochastic equicontinuity of 1
NT {J(λ).

Thus, by Lemma 1 of Andrews (1992), 1
NT {J(λ) − E[J(λ)]} p−→ 0 uniformly in φ ∈ Φ. The
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result (A-2) thus follows. Finally, the consistency of β̂(φ̂) and σ̂2
v(φ̂) follows from that of φ̂

and Assumption C3. �

The proof of Theorem 2 requires Lemma A.3, which essentially gives a central limit theorem

(CLT) for linear-quadratic forms of error components u = Zμμ + Zηη + v defied in (2). Let

m
(k)
μ0 , m

(k)
η0 and m

(k)
v0 be, respectively, the kth moment of μi, ηt and vit, k = 1, 2, 3, 4. Let

κμ0 = m
(4)
μ0 /σ

4
μ0 − 3, κη0 = m

(4)
η0 /σ

4
η0 − 3 and κv0 = m

(4)
v0 /σ

4
v0 − 3. Denote n = NT . Let

W = {wjk} be an n× n symmetric matrix and b = {bj} be an n× 1 column vector. Consider

the following linear-quadratic form: q = u′Wu + b′u.

Lemma A3. Assume (i) E|μi|4+ε1 < ∞, E|ηt|4+ε2 < ∞, and E|vit|4+ε3 < ∞, for some

ε1, ε2 and ε3 > 0, and for all i = 1, · · · , N and t = 1, · · · , T ; (ii) sup1≤k≤n

∑n
j=1 |wjk| < ∞;

and (iii) supn n
−1
∑n

j=1 |bj|2+ε <∞ for some ε > 0. Then, we have, as n −→ ∞,

q − μq

σq

D−→ N (0, 1),

where μq = E(q) = σ2
μ0tr(Wμ) + σ2

η0tr(Wη) + σ2
v0tr(W ), and

σ2
q = σ4

μ0(κμ0
∑
w2

μ,ii + 2tr(W 2
μ))+σ4

η0(κη0
∑
w2

η,ii + 2tr(W 2
η ))+σ4

v0(κv0
∑
w2

ii + 2tr(W 2))

+ 4σ2
μ0σ

2
η0tr(Z

′
μWZηZ

′
ηWZμ) + 4σ2

μ0σ
2
v0tr(Z

′
μW

2Zμ) + 4σ2
η0σ

2
v0tr(Z

′
ηW

2Zη),

+ 2m(3)
μ0

∑
wμ,iibμ,i + 2m(3)

η0

∑
wη,iibη,i + 2m(3)

v0

∑
wiibi + σ2

v0b
′Ωb,

where Wμ = Z ′
μWZμ, Wη = Z ′

ηWZη, bμ = Z ′
μb, bη = Z ′

ηb, bμ,i denotes the ith element of bμ
and similarly bη,i.

Proof: Since u′Wu = (Zμμ+ Zηη + v)′W (Zμμ+ Zηη + v) = μ′Wμμ + η′Wηη + v′Wv +

2μ′Z ′
μWZηη + 2μ′Z ′

μWv + 2η′Z ′
ηWv, we have E(q) = σ2

μ0tr(Wμ) + σ2
η0tr(Wη) + σ2

v0tr(W ).

Noting that the six terms in the expansion of u′Wu are mutually uncorrelated, we have

Var(u′Wu) = Var(μ′Wμμ) + Var(η′Wηη) + Var(v′Wv)

+4Var(μ′Z ′
μWZηη) + 4Var(μ′Z ′

μWv) + 4Var(η′Z ′
ηWv)

It is easy to show that Var(μ′Wμμ) = σ4
μ0(κμ0

∑
w2

μ,ii + 2tr(W 2
μ)), and Var(μ′Z ′

μWZηη) =

σ2
μ0σ

2
η0tr(Z

′
μWZηZ

′
ηWZμ). The former leads to the expressions for Var(η′Wηη) and Var(v′Wv),

and the latter leads to the expressions for Var(μ′Z ′
μWv) and Var(η′Z ′

ηWv). Finally,

Cov(u′Wu, b′u) = m
(3)
μ0

∑
wμ,iibμ,i +m

(3)
η0

∑
wη,iibη,i +m

(3)
v0

∑
wiibi,

where we note the number of items in each summation is, respectively, N , T , and NT . Putting

all together gives the expression for σ2
q =Var(q).

For the asymptotic normality of q, we note that q = u′Wu + b′u = (μ′Wμμ + b′μμ) +

(η′Wηη+b′ηη)+(v′Wv+b′v)+2μ′Z ′
μWZηη+2μ′Z ′

μWv+2η′Z ′
ηWv. The asymptotic normality
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of the first three bracketed terms follow from the CLT for linear-quadratic forms of vector of

i.i.d. elements given in Kelejian and Prucha (2001). The asymptotic normality of the last

three terms can easily be proved using the fact that the two random vectors involved in each

term are independent. �

Proof of Theorem 2: Let G†(ψ) = CG(ψ), where we recall G(ψ) ≡ ∂�(ψ)/∂ψ is the

gradient function containing the following elements.

Gβ(ψ) = 1
σ2

v
X ′(λ)Ω−1u,

Gσ2
v
(ψ) = 1

2σ4
v
u′Ω−1u− NT

2σ2
v
,

Gφμ(ψ) = 1
2σ2

v
u′Aμu− 1

2T (N − 1)θ1 − 1
2Tθ3,

Gφη(ψ) = 1
2σ2

v
u′Aηu− 1

2N (T − 1)θ2 − 1
2Nθ3,

Gλ(ψ) = Jλ(λ)− 1
σ2

v
u′λΩ−1u,

where Aμ = T (θ21P1 + θ23P3), and Aη = N (θ22P2 + θ23P3). The proof of the theorem starts from

a Taylor expansion of G†(ψ̂) around ψ0:

0 =
1√
NT

G†(ψ̂) =
1√
NT

G†(ψ0) +
(

1
NT

CH(ψ̄)C
)√

NTC−1(ψ̂ − ψ0),

where ψ̄ lies between ψ̂ and ψ0 elementwise, and the Hessian matrix H(ψ) has the elements:

Hββ = − 1
σ2

v
X ′(λ)Ω−1X(λ)

Hβσ2
v

= − 1
σ4

v
X ′(λ)Ω−1u

Hβφμ = − 1
σ2

v
X ′(λ)Aμu

Hβφη = − 1
σ2

v
X ′(λ)Aηu

Hβλ = 1
σ2

v
[X ′

λ(λ)Ω−1u +X ′(λ)Ω−1uλ]

Hσ2
vσ2

v
= NT

2σ4
v
− 1

σ6
v
u′Ω−1u

Hσ2
vφμ

= − 1
2σ4

v
u′Aμu

Hσ2
vφη

= − 1
2σ4

v
u′Aηu

Hσ2
vλ = 1

σ4
v
u′λΩ−1u

Hφμφμ = 1
2T

2((N − 1)θ21 + θ23) − 1
2σ2

v
u′Aμμu

Hφμφη = 1
2NTθ

2
3 − 1

2σ2
v
u′Aμηu

Hφμλ = − 1
σ2

v
u′λAμu

Hφηφη = 1
2N

2((T − 1)θ22 + θ23) − 1
2σ2

v
u′Aηηu

Hφηλ = − 1
σ2

v
u′λAηu

Hλλ = − 1
σ2

v
[u′λλΩ−1u+ u′λΩ−1uλ] + Jλλ(λ).

where Aμμ = ∂2

∂φ2
μ
Ω−1 = 2T 2(θ31P1+θ33P3), Aμη = ∂2

∂φμ∂φη
Ω−1 = 2NTθ33P3, and Aηη = ∂2

∂φ2
η
Ω−1
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= 2N 2(θ32P2 + θ33P3).

The result of the theorem follows from the following three results:

(i)
1√
NT

CG(ψ0)
D−→ N (0, K(ψ0))

(ii)
1
NT

C{H(ψ̄) −H(ψ0)}C = op(1)

(iii)
1
NT

C{H(ψ0) − E[H(ψ0)]}C = op(1).

For (i), the joint asymptotic normality of the first four elements of G†(ψ0) follows from

Lemma A3 and Cramér-Wold device. Assumption N6 and Cramér-Wold device lead to the

joint asymptotic normality of all elements of G(ψ0). What is left is to show that the normaliz-

ing factor should be adjusted by the matrix C to reflect the different rates of convergence of the

components of ψ̂. This amounts to show that Gβ(ψ0), Gσ2
v
(ψ0) and Gλ(ψ0) are all Op(

√
NT ),

but Gφμ(ψ0) = Op(
√
N) and Gφη(ψ0) = Op(

√
T ). The first three results are trivial. To prove

the latter two, note that

u′P1u = NT (s2μ + s2v1 + s2μv), u
′P2u = NT (s2η + s2v2 + s2ηv), and u′P3u = NT (μ̄+ η̄ + ¯̄v)2,

where s2μ = 1
N

∑N
i=1(μi − μ̄)2, s2v1 = 1

N

∑N
i=1(v̄i· − ¯̄v)2, and s2μv = 1

N

∑N
i=1 μi(v̄i· − ¯̄v); s2η =

1
T

∑T
t=1(ηt − η̄)2, s2v2 = 1

T

∑T
t=1(v̄·t − ¯̄v)2, and s2ηv = 1

T

∑T
t=1[ηt(v̄·t − ¯̄v)]; μ̄ = 1

N

∑N
i=1 μi,

η̄ = 1
T

∑T
t=1 ηt, v̄i· = 1

T

∑T
t=1 vit, v̄·t = 1

N

∑N
i=1 vit, and ¯̄v = 1

NT

∑N
i=1

∑T
t=1 vit. These give

Gφμ(ψ0) =
1

2σ2
v0

u′Aμu− 1
2
T (N − 1)θ1 − 1

2
Tθ3

=
T

2σ2
v0

(θ21u
′P1u+ θ23u

′P3u) − 1
2
T (N − 1)θ1 − 1

2
Tθ3

=
NT 2(s2μ + s2v1 + s2μv)

2σ2
v0(Tφμ0 + 1)2

+
NT 2(μ̄+ η̄ + ¯̄v)2

2σ2
v0(Tφμ0 +Nφη0 + 1)2

− (N − 1)T
2(Tφμ0 + 1)

− T

2(Tφμ0 +Nφη0 + 1)

Under Assumption C1, we have, as N → ∞, μ̄
p−→ 0, ¯̄v

p−→ 0, η̄
p−→ 0 if T → ∞ as well, but

otherwise does not converge, s2μ
p−→ σ2

μ0, s
2
v1

p−→ σ2
v0/T , s2μv

p−→ 0. These give for N large

Gφμ(ψ0) ≈
√
N

2(φμ0 + 1/T )

√
N

(
s2μ + s2v1

σ2
μ0 + σ2

v0/T
− 1

)

Clearly, the term
√
N ((s2μ + s2v1)/(σ

2
μ0 + σ2

v0/T ) − 1) is Op(1) as N approaches infinity irre-

spective of whether T being fixed or approaching to infinity, and hence Gφμ(ψ0) = Op(
√
N )

as N approaches to infinity irrespective of whether T being fixed or approaching to infinity.
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Similarly, one can show that as T −→ ∞,

Gφη(ψ0) ≈
√
T

2(φη0 + 1/N )

√
T

(
s2η + s2v2

σ2
η0 + σ2

v0/N
− 1

)

showing that it is Op(
√
T ), irrespective of weather N being fixed or approaching to infinity.

To show (ii): 1
NTCH(ψ̄)C − 1

NTCH(ψ0)C = op(1), note that ψ̂
p−→ 0 implies ψ̄

p−→
0. All parameters or their one-to-one functions, except λ, appear in H(ψ) additively or

multiplicatively. The parameter λ appears in H(ψ) through either continuous non-stochastic

functions X(λ) and its derivatives up to second order, or stochastic functions h(Y, λ) and its

partial derivatives up to third order. Hence, it suffices to show the following:

(a) 1
NT [X ′(λ̄)WX(λ̄) − X ′(λ0)WX(λ0)] = op(1), for W = INT , P1, P2, P3, with the same

being true when X(λ) is replaced by its first and second order derivatives w.r.t λ;

(b) 1
NT [h′(Y, λ̄)WX(λ̄)−h′(Y, λ0)WX(λ0)] = op(1), for W = INT , P1, P2, P3, and the same

holds if X(λ) or h(Y, λ) is replaced by its first and second order derivatives w.r.t. λ;

(c) 1
NT [h′(Y, λ̄)Wh(Y, λ̄) − h′(Y, λ0)Wh(Y, λ0)] = op(1), for W = INT , P1, P2, P3, and the

same is true when h(Y, λ) is replaced by its first and second order derivatives w.r.t. λ; and

(d) 1
NT [Jλλ(λ̄) − Jλλ(λ0)] = op(1).

To show (a), by the mean value theorem,

1
NT [X ′(λ̄)WX(λ̄)−X ′(λ0)WX(λ0)] = 2

NTX
′
λ(λ̃)WX(λ̃)(λ̄− λ0)

where λ̃ lies between λ̄ and λ0. Let ιi denotes a k × 1 vector with 1 in the ith place and 0

elsewhere. Then by the fact that W is a projection matrix, Cauchy-Schwarz inequality, and

Assumption N4

1
NT

∣∣∣ι′iX ′
λ(λ̃)WX(λ̃)ιj

∣∣∣
≤

{
1

NT ι
′
iX

′
λ(λ̃)WX ′

λ(λ̃)ιi
}1/2{

1
NT ι

′
jX

′(λ̃)WX(λ̃)ιj
} 1

2

≤ γmax (W ) 1√
NT

∥∥∥ι′iX ′
λ(λ̃)

∥∥∥ 1√
NT

∥∥∥ι′jX ′(λ̃)
∥∥∥

≤ supλ∈Nε(λ0)
1√
NT

‖Xλ(λ)‖ supλ∈Nε(λ0)
1√
NT

‖X(λ)‖
= O(1)O(1) = O(1).

It follows that 1
NT [X ′(λ̄)WX(λ̄) − X ′(λ0)WX(λ0)] = op(1) as λ̄− λ0 = op(1), and thus the

first part of (a) follows. Noting that 1√
NT

‖Xλ(λ)‖, 1√
NT

‖Xλλ(λ)‖, and 1√
NT

‖Xλλλ(λ)‖ are

O(1) uniformly in the ε-neighborhood of λ0 by Assumption N4, the other parts of (a) follow

by similar arguments. Analogously, one can show that the results (b)-(d) follow.
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Finally, to show (iii): 1
NTC {H(ψ0) − E[H(ψ0)]}C = op(1), it is straightforward to han-

dle the terms which are linear or quadratic forms of u0, i.e., 1
NTX

′∗(λ0)Wu0 = op(1) and
1

NT [u′0Wu0 − E(u′0Wu0)] = op(1), for W = INT , P1, P2, P3, and X ′∗(λ0) = X(λ0), Xλ(λ0), and

Xλλ(λ0). For other items, Assumption N5 implies that

(a) 1
NTX

′(λ0)W [hλ(Y, λ0)−E(hλ(Y, λ0))] = op(1), for W = INT , P1, P2, P3, with the same

being true when hλ(Y, λ0) is replaced by hλλ(Y, λ0);

(b) 1
NT {h′λ(Y, λ0)Wh(Y, λ0) − E[h′λ(Y, λ0)Wh(Y, λ0)]} = op(1), for W = INT , P1, P2, P3,

and the same holds if h(Y, λ0) is replaced by hλ(Y, λ0), or hλ(Y, λ0) by hλλ(Y, λ0).

Finally, Assumption 5N(iii) states 1
NT {Jλλ(λ0) − E[Jλλ(λ0)]} = op(1). This completes

the proof of (iii) and thus the proof of Theorem 2.

Proof Corollary 1: Let S(u0, ψ0) = 1√
NT

CG(ψ0) be the normalized gradient function,

viewed as a vector-valued function of the true error vector u0 and the true but unknown

parameter vector ψ0. Clearly, the bootstrap analogue of S(u0, ψ0) is S(û∗, ψ̂). It suffices to

show that E∗[S(û∗, ψ̂)] = op(1) and E∗[S(û∗, ψ̂)S(û∗, ψ̂)′] − E[S(u0, ψ0)S(u0, ψ0)′] = op(1).

Denote F0 = (Fμ0, Fη0, Fv0) and F̂ = (F̂μ̂, F̂η̂, F̂v). We have, as ψ̂ is consistent for ψ0,

E∗[S(û∗, ψ̂)] =
∫
S(u, ψ̂)dF̂ (u) =

∫
S(u, ψ0)dF̂ (u) + op(1),

E∗[S(û∗, ψ̂)S(û∗, ψ̂)′] =
∫
S(u, ψ̂)S(u, ψ̂)′dF̂ (u) =

∫
S(u, ψ0)S(u, ψ0)′dF̂ (u) + op(1),

which are compared, respectively, with E[S(u0, ψ0)] =
∫
S(u, ψ0)dF0(u) = op(1) by Assump-

tion N3, and with E[S(u0, ψ0)S(u0, ψ0)′] =
∫
S(u, ψ0)S(u, ψ0)′dF0(u). The results thus follow

if F̂μ(u)− Fμ0(u) = op(1) for each continuity point u of Fμ0, F̂η(u) − Fη0(u) = op(1) for each

continuity point u of Fη0, and F̂v(u) − Fv0(u) = op(1) for each continuity point u of Fv0. To

prove the first case, note that û = h(Y, λ̂) −X(λ̂)β̂,

μ̂ =
1
T

(In ⊗ 1′T )û =
1
T

(In ⊗ 1′T )u0 +
1
T

(In ⊗ 1′T )u0α′(α̂− α0) = μ+ op(1),

where α = (β′, λ)′ and u0α′ = ∂
∂α′u(α0), implying that F̂μ(u) − Fμ0(u) = op(1) for each

continuity point u of Fμ0. Details on this and the proofs of the results corresponding to η and

v (which can be proved in a similar fashion) are available from the authors.

References

[1] Abrevaya, J. (1999a). Leapfrog estimation of a fixed-effects model with unknown trans-

formation of the dependent variable. Journal of Econometrics, 93, 203-228.

24

Accepted by Econometric Reviews, 3 Nov. 2015



[2] Abrevaya, J. (1999b). Rand estimation of transformation model with observed truncation.

Econometrics Journal 2, 292-305.

[3] Abrevaya, J. (2000). Rank estimation of a generalized fixed-effects regression model. Jour-

nal of Econometrics, 95, 1-23.

[4] Andrews, D. W. K. (1987). Consistency in nonlinear econometric models: a generic uni-

form law of large numbers. Econometrica, 55, 1465-1471.

[5] Andrews, D. W. K. (1992). Generic Uniform Convergence. Econometric Theory, 8, 241-

257.

[6] Arellano, M. (2003). Panel Data Econometrics. Oxford: Oxford University Press.

[7] Baltagi, B. H. (1997). Testing linear and log-linear error components regression against

Box-Cox alternatives. Statistics and Probability Letters, 33, 63-68.

[8] Baltagi, B. H. (2001). Econometric Analysis of Panel Data. New York: John Wiley &

Sons, Ltd.

[9] Baltagi, B. H. and Li, Q. (1992). A monotonic property for iterative GLS in the two-way

random effects model. Journal of Econometrics, 53, 45-51.

[10] Box, G.E.P. and Cox, D.R. (1964). An Analysis of Transformations (with discussion).

Journal of the Royal Statistical Society, B 26, 211-46.

[11] Bickel, P. J. and Doksum, K. A. (1981). An analysis of transformations revisited. Journal

of the American Statistical Association, 76, 296-311.

[12] Cameron, A. C. and Trivedi, P. K. (2005). Microeconometrics: Methods and Applications.

Cambridge: Cambridge University Press.

[13] Chen, S. (2002). Rank estimation of transformation models. Econometrica, 70, 1683-1697.

[14] Chen, S. (2010). Root-N -consistent estimation of fixed-effect panel data transformation

models. Journal of Econometrics, 159, 222-234.

[15] Cook R. D. and Weisberg, S. (1999). Applied Regression Including Computing and Graph-

ics. New York: John Wiley & Sons, Ltd.

[16] Davidson, J. (1994). Stochastic Limit Theory: An Introduction for Econometricians. Ox-

ford: Oxford University Press.

[17] Davidson, R. and MacKinnon, J. G. (1993). Estimation and Inference in Econometrics.

Oxford: Oxford University Press.

[18] Draper, N. R. and Smith, H. (1998). Applied Regression Analysis. New York: John Wiley

& Sons, Ltd.

[19] Frees, E. W. (2004). Longitudinal and Panel Data. Cambridge: Cambridge University

Press.

[20] Giannakas, K., Tran, K. C., and Tzouvelekas, V. (2003). On the choice of functional form

in stochastic frontier modeling. Empirical Economics, 28, 75-100.

[21] Greene, W. H. (2000). Econometric Analysis, 4th ed. Singapore: Prentice-Hall Pte Ltd.

25

Accepted by Econometric Reviews, 3 Nov. 2015



[22] Hernandze, F. and Johnson, R. A. (1980). The large-sample behavior of transformations

to normality. Journal of The American Statistical Association 75, 855-861.

[23] Hinkley, D. V. (1975). On power transformations to symmetry. Biometrika, 62, 101-111.
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Table 1a. Monte Carlo Results for bias and rmse: T = Ceiling(N/3)
(N, T ) (10, 4) (30, 10) (90, 30) (200, 67)
DGP ψ bias (%) rmse bias (%) rmse bias (%) rmse bias (%) rmse
1 20 1.4850 4.2025 0.1518 1.1387 0.0182 0.3640 0.0019 0.1734

5 15.4692 3.4779 0.9954 0.6977 0.1178 0.2130 0.0211 0.0975
1 16.4202 0.7732 1.0627 0.1556 0.1114 0.0463 0.0219 0.0211
1 63.3115 2.5958 2.7896 0.2986 0.2773 0.0893 0.0727 0.0406

.25 16.8834 0.3256 0.5225 0.0975 0.0573 0.0430 -0.0609 0.0267

.25 -6.5971 0.2874 -7.1974 0.1282 -2.6440 0.0680 -1.2370 0.0437

.10 -0.5324 0.0376 0.0250 0.0096 0.0188 0.0030 0.0020 0.0014
2 20 1.1845 4.6417 0.4475 1.6176 0.2634 0.5492 0.2531 0.2679

5 21.1295 5.1422 2.3531 1.0404 0.7842 0.3376 0.6521 0.1619
1 23.2728 1.1711 2.4264 0.2220 0.7495 0.0698 0.6495 0.0332
1 191.1191 15.3145 8.0796 0.6139 1.8845 0.1637 1.4040 0.0764

.25 59.6726 0.4670 6.5192 0.1224 0.2663 0.0476 0.1467 0.0283

.25 26.9171 0.4165 -1.1966 0.1484 -2.4037 0.0702 -0.9441 0.0460

.10 -1.4870 0.0433 0.2615 0.0137 0.3927 0.0046 0.4178 0.0022
3 20 1.1752 3.9537 0.6544 1.1921 -0.6135 0.4035 -0.5213 0.2097

5 13.0648 3.2485 2.2002 0.7352 -1.4375 0.2344 -1.2778 0.1194
1 14.0831 0.7210 2.3692 0.1650 -1.4595 0.0498 -1.2505 0.0251
1 32.9719 2.1937 5.7527 0.3273 -3.4043 0.0962 -2.3534 0.0475

.25 34.7490 0.3634 0.2941 0.1001 0.6344 0.0439 -0.2369 0.0267

.25 9.2933 0.3244 -6.9805 0.1283 -2.0470 0.0677 -1.5639 0.0438

.10 -0.7973 0.0353 0.8214 0.0099 -1.0804 0.0033 -0.9076 0.0017

Table 1b. Monte Carlo Results for bias and rmse: N = Ceiling(T/3)
(N, T ) (4, 10) (10, 30) (30, 90) (67, 200)
DGP ψ bias (%) rmse bias (%) rmse bias (%) rmse bias (%) rmse
1 20 1.6626 3.5220 0.1212 1.1225 0.0045 0.3700 0.0110 0.1729

5 10.0607 2.5084 0.8350 0.6959 0.0648 0.2185 0.0238 0.0974
1 8.4445 0.5141 0.6747 0.1443 0.0534 0.0473 0.0197 0.0211
1 31.3067 1.4900 2.4561 0.3014 0.1868 0.0918 0.0693 0.0407

.25 -7.4761 0.2938 -6.2675 0.1277 -2.8286 0.0670 -0.9196 0.0445

.25 16.1751 0.3416 0.2472 0.0978 -0.3819 0.0434 -0.1904 0.0266

.10 0.4069 0.0294 -0.0705 0.0095 -0.0195 0.0030 0.0036 0.0014
2 20 1.5019 3.8552 0.4219 1.5741 0.2936 0.5645 0.2745 0.2606

5 12.0462 3.1864 2.2684 1.0372 0.8794 0.3499 0.7002 0.1573
1 10.4869 0.6289 2.0535 0.2051 0.8561 0.0712 0.6784 0.0323
1 70.3777 6.8206 8.0102 0.6051 2.1802 0.1699 1.4127 0.0744

.25 23.8538 0.4217 -1.8562 0.1453 -1.7470 0.0705 -1.0862 0.0444

.25 51.9917 0.4556 6.6628 0.1229 0.3339 0.0475 0.1305 0.0282

.10 -0.2634 0.0331 0.2200 0.0135 0.4430 0.0048 0.4527 0.0022
3 20 0.5578 3.4725 -0.1199 1.1146 -0.5424 0.3945 -0.3817 0.1948

5 7.2228 2.4724 0.2162 0.6831 -1.2801 0.2303 -0.9401 0.1103
1 5.6161 0.4817 0.1704 0.1409 -1.2560 0.0491 -0.9247 0.0235
1 16.6609 1.4810 1.0719 0.2971 -3.5683 0.0974 -2.4932 0.0476

.25 1.9333 0.3197 -7.9895 0.1259 -1.3736 0.0682 -0.8216 0.0441

.25 30.5226 0.3702 0.7213 0.0999 1.1827 0.0444 0.5264 0.0269

.10 -1.4481 0.0293 -0.4884 0.0095 -0.9676 0.0033 -0.6692 0.0016
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Table 1c. Monte Carlo Results for bias and rmse: T = Ceiling(N2/3)
(N, T ) (10, 5) (30, 10) (90, 21) (200, 35)
DGP ψ bias (%) rmse bias (%) rmse bias (%) rmse bias (%) rmse
1 20 0.6714 3.3944 0.1004 1.1168 0.0145 0.4312 0.0168 0.2370

5 8.0998 2.4804 0.8047 0.6947 0.0994 0.2543 0.0579 0.1358
1 9.1545 0.5718 0.8373 0.1484 0.0868 0.0551 0.0520 0.0290
1 30.1281 1.4476 2.5120 0.3007 0.3006 0.1068 0.1385 0.0566

.25 11.9192 0.2711 0.4978 0.0983 -0.0399 0.0459 0.0816 0.0286

.25 -2.3470 0.2603 -6.0608 0.1279 -3.9286 0.0800 -2.3244 0.0615

.10 -1.1210 0.0299 -0.0933 0.0095 -0.0162 0.0035 0.0144 0.0019
2 20 1.1472 3.9027 0.4735 1.6043 0.2578 0.6505 0.2455 0.3636

5 14.2339 3.6941 2.5092 1.0660 0.8052 0.4011 0.6723 0.2210
1 16.1274 0.8367 2.3411 0.2161 0.7838 0.0824 0.6600 0.0449
1 97.4621 7.0443 8.6327 0.6275 1.9647 0.1989 1.4691 0.1040

.25 39.7601 0.3674 6.1964 0.1201 1.2364 0.0517 0.1877 0.0311

.25 22.7846 0.3527 -1.1836 0.1496 -2.9973 0.0842 -2.1562 0.0617

.10 -0.5890 0.0356 0.3148 0.0138 0.3402 0.0055 0.3992 0.0030
3 20 5.2050 3.7566 -0.1560 1.1518 -0.4588 0.4618 -0.3992 0.2610

5 21.9689 3.0336 0.2115 0.7048 -1.0756 0.2690 -0.9699 0.1489
1 23.7486 0.7016 0.2117 0.1482 -1.0567 0.0575 -0.9586 0.0315
1 76.8265 2.6040 -2.4828 0.2953 -2.1617 0.1112 -2.1341 0.0614

.25 11.5621 0.2701 4.2328 0.1034 0.1849 0.0469 0.1804 0.0289

.25 -2.6763 0.2631 -3.3042 0.1315 -4.0713 0.0813 -1.9501 0.0600

.10 6.8458 0.0312 -0.5480 0.0098 -0.8493 0.0038 -0.7074 0.0021

Table 1d. Monte Carlo Results for bias and rmse: N = Ceiling(T 2/3)
(N, T ) (5, 10) (10, 30) (21, 90) (35, 200)
DGP ψ bias (%) rmse bias (%) rmse bias (%) rmse bias (%) rmse
1 20 0.9086 2.9491 0.1771 1.0901 -0.0200 0.4507 0.0066 0.2342

5 6.5530 2.0498 0.9423 0.6634 0.0284 0.2655 0.0469 0.1328
1 5.9321 0.4541 0.9262 0.1454 0.0084 0.0571 0.0394 0.0291
1 21.1822 1.1090 2.5036 0.2854 0.1470 0.1119 0.1083 0.0557

.25 -6.6775 0.2615 -7.5289 0.1265 -4.0155 0.0806 -2.5084 0.0607

.25 4.0118 0.2699 -0.1795 0.0971 -0.0217 0.0451 0.0496 0.0281

.10 -0.2126 0.0251 0.0524 0.0091 -0.0795 0.0037 0.0079 0.0018
2 20 1.3733 3.4228 0.2871 1.4986 0.2388 0.6870 0.2433 0.3522

5 10.4854 2.7818 1.6693 0.9516 0.8098 0.4254 0.6463 0.2139
1 9.9401 0.5962 1.7204 0.1985 0.7852 0.0869 0.6374 0.0443
1 55.8167 3.8679 5.7291 0.5497 1.9901 0.2046 1.5275 0.1021

.25 19.8571 0.3558 -1.9789 0.1465 -3.3260 0.0829 -2.1208 0.0615

.25 35.3587 0.3674 6.4728 0.1216 0.9734 0.0519 0.0544 0.0307

.10 0.1624 0.0299 -0.0061 0.0127 0.3165 0.0058 0.3859 0.0029
3 20 0.2111 2.8711 0.0570 1.1180 -0.0357 0.4693 -0.4332 0.2603

5 4.5863 1.9592 0.6030 0.6724 0.0096 0.2755 -1.0502 0.1480
1 4.1735 0.4378 0.5002 0.1459 0.0412 0.0582 -1.0358 0.0317
1 6.9426 0.9532 4.4785 0.3091 -1.3457 0.1140 -1.9337 0.0605

.25 2.0814 0.2794 -10.0904 0.1253 -2.6570 0.0810 -2.3653 0.0605

.25 14.4077 0.2909 -2.2718 0.0982 1.4432 0.0467 -0.1125 0.0285

.10 -1.3220 0.0246 -0.1968 0.0093 -0.1020 0.0039 -0.7615 0.0021
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Table 1e. Monte Carlo Results for bias and rmse: T = 6
(N, T ) (10, 6) (30, 6) (90, 6) (200, 6)
DGP ψ bias (%) rmse bias (%) rmse bias (%) rmse bias (%) rmse
1 20 0.5176 2.5188 0.1920 1.4818 0.0699 0.8520 0.0414 0.5945

5 4.3508 1.6859 1.4480 0.9370 0.5334 0.5147 0.1935 0.3449
1 4.4221 0.3974 1.6185 0.2067 0.4656 0.1125 0.1584 0.0739
1 12.4808 0.8504 4.5732 0.4162 1.4810 0.2192 0.5530 0.1458

.25 6.6293 0.2346 2.0671 0.1241 0.9901 0.0702 0.5473 0.0457

.25 -4.8258 0.2287 -13.5153 0.1620 -15.5476 0.1458 -15.8451 0.1422

.10 -0.4027 0.0214 -0.1371 0.0126 0.0032 0.0071 -0.0287 0.0048
2 20 0.8390 2.9618 0.5264 2.0239 0.2808 1.2295 0.2923 0.8783

5 6.9884 2.2412 3.4373 1.3936 1.4094 0.7854 1.1367 0.5474
1 7.8780 0.5155 3.5880 0.2968 1.4024 0.1623 1.0758 0.1115
1 34.4753 2.5459 13.8585 0.9604 4.4340 0.4148 3.0105 0.2756

.25 29.8492 0.3138 11.7330 0.1567 4.1343 0.0848 1.9740 0.0555

.25 19.6292 0.3135 -4.0819 0.1956 -12.5116 0.1534 -15.2801 0.1457

.10 -0.2556 0.0256 0.1047 0.0174 0.1649 0.0105 0.3879 0.0074
3 20 -0.1263 2.3799 0.0686 1.4659 -1.0046 0.9072 -0.9829 0.6624

5 2.4054 1.5447 1.1418 0.9208 -2.1759 0.5324 -2.2858 0.3789
1 2.4613 0.3618 1.1868 0.2057 -2.1201 0.1144 -2.2234 0.0800
1 -2.4846 0.6659 3.7739 0.4198 -1.1348 0.2230 -1.4319 0.1515

.25 15.5504 0.2486 1.9605 0.1258 -2.2069 0.0698 -2.3133 0.0467

.25 4.8760 0.2470 -13.3253 0.1637 -17.1744 0.1430 -17.9169 0.1399

.10 -1.3612 0.0204 -0.3407 0.0125 -1.9236 0.0077 -1.7920 0.0055

Table 1f. Monte Carlo Results for bias and rmse: N = 6
(N, T ) (6, 10) (6, 30) (6, 90) (6, 200)
DGP ψ bias (%) rmse bias (%) rmse bias (%) rmse bias (%) rmse
1 20 0.6010 2.5238 0.2521 1.5170 0.0873 0.8517 0.0351 0.5931

5 4.5205 1.6876 1.6386 0.9616 0.5002 0.5173 0.1921 0.3430
1 4.6810 0.3965 1.7997 0.2134 0.4451 0.1121 0.1510 0.0727
1 13.1904 0.8543 5.1963 0.4276 1.4016 0.2186 0.5562 0.1454

.25 -4.5043 0.2280 -12.9882 0.1609 -15.2029 0.1443 -16.1954 0.1424

.25 2.1429 0.2275 1.4080 0.1228 1.0595 0.0690 0.5436 0.0461

.10 -0.2702 0.0214 -0.0708 0.0130 -0.0196 0.0071 -0.0278 0.0047
2 20 0.7508 2.9542 0.6402 2.0800 0.3092 1.2393 0.3050 0.8668

5 6.6834 2.1923 3.8620 1.4425 1.4862 0.7915 1.1148 0.5368
1 7.4786 0.5041 4.1143 0.3096 1.4786 0.1626 1.0406 0.1089
1 32.3731 2.3497 15.2978 1.0088 4.5079 0.4162 2.9287 0.2717

.25 19.4406 0.3194 -4.4418 0.1918 -12.4435 0.1544 -14.4436 0.1449

.25 30.2216 0.3201 11.9166 0.1577 4.3162 0.0843 2.2850 0.0560

.10 -0.4123 0.0256 0.2626 0.0179 0.2051 0.0106 0.3868 0.0073
3 20 -0.1466 2.3923 0.0867 1.5013 -1.0186 0.9097 -0.9925 0.6549

5 2.4299 1.5598 1.2234 0.9491 -2.2174 0.5348 -2.2764 0.3783
1 2.3144 0.3604 1.2935 0.2103 -2.1578 0.1155 -2.2034 0.0795
1 -1.8531 0.6859 4.1209 0.4329 -1.2705 0.2229 -1.4183 0.1513

.25 3.8823 0.2450 -12.1404 0.1663 -17.3942 0.1429 -18.7594 0.1400

.25 13.7751 0.2491 2.2762 0.1269 -1.8197 0.0700 -2.4326 0.0467

.10 -1.3970 0.0205 -0.3495 0.0129 -1.9545 0.0077 -1.7853 0.0054
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Table 2. Empirical Coverage Probabilities for 95% Confidence Intervals

(N, T ) (25,25) (50, 25) (50, 50) (100, 50) (100, 100)
ψ HCI RCI HCI RCI HCI RCI HCI RCI HCI RCI

Normal Errors

20 .9468 .9382 .9456 .9354 .9454 .9406 .9502 .9450 .9490 .9482
5 .9480 .9366 .9438 .9352 .9496 .9426 .9510 .9444 .9512 .9466
1 .9490 .9404 .9442 .9330 .9472 .9386 .9534 .9512 .9502 .9462
1 .9390 .9276 .9372 .9294 .9486 .9404 .9482 .9418 .9512 .9496

.25 .8984 .9128 .9352 .9484 .9266 .9288 .9324 .9434 .9370 .9352

.25 .8988 .9144 .8938 .8868 .9216 .9260 .9238 .9148 .9416 .9376

.10 .9472 .9370 .9476 .9370 .9484 .9402 .9516 .9472 .9502 .9466
Normal-Mixture, p = .05, τ = 5

20 .8322 .9200 .8054 .9210 .8114 .9332 .8000 .9318 .7966 .9446
5 .8260 .9146 .7994 .9200 .7986 .9366 .7848 .9390 .7702 .9434
1 .8402 .9164 .8200 .9206 .8212 .9362 .8060 .9334 .7924 .9436
1 .7542 .8828 .7388 .9068 .7500 .9260 .7294 .9360 .7168 .9384

.25 .8780 .9050 .9112 .9410 .9116 .9270 .9282 .9498 .9298 .9368

.25 .8924 .9206 .8860 .8928 .9240 .9356 .9142 .9124 .9292 .9366

.10 .8228 .9140 .7950 .9172 .7970 .9332 .7834 .9354 .7678 .9412
Normal-Mixture, p = .10, τ = 5

20 .8402 .9206 .8382 .9316 .8410 .9362 .8368 .9408 .8470 .9442
5 .8360 .9166 .8348 .9250 .8246 .9318 .8184 .9412 .8242 .9458
1 .8488 .9186 .8512 .9320 .8472 .9352 .8410 .9378 .8468 .9438
1 .7804 .8922 .7838 .9156 .7640 .9270 .7760 .9390 .7720 .9470

.25 .8930 .9168 .9126 .9388 .9160 .9274 .9302 .9494 .9260 .9322

.25 .8946 .9174 .8932 .8972 .9180 .9292 .9168 .9208 .9326 .9400

.10 .8362 .9190 .8326 .9240 .8234 .9334 .8152 .9398 .8238 .9446
Normal-Mixture, p = .05, τ = 10

20 .6904 .8916 .6770 .9096 .6638 .9244 .6612 .9316 .6474 .9352
5 .6782 .8940 .6608 .9092 .6444 .9256 .6358 .9318 .6070 .9378
1 .7056 .8988 .6928 .9140 .6756 .9270 .6664 .9342 .6492 .9396
1 .5902 .8464 .5778 .8840 .5750 .9186 .5642 .9316 .5578 .9456

.25 .8700 .9130 .8756 .9370 .8958 .9262 .8912 .9326 .9220 .9398

.25 .8616 .9068 .8802 .8994 .9044 .9346 .9080 .9188 .9212 .9404

.10 .6760 .8896 .6606 .9108 .6418 .9222 .6332 .9242 .6058 .9340
Normal-Gamma Mixture, p = .05, α = 9

20 .8992 .9226 .8864 .9216 .9162 .9494 .8394 .8976 .8612 .9146
5 .8958 .9132 .8812 .9084 .9208 .9546 .8270 .8900 .8510 .9076
1 .9008 .9146 .8868 .9148 .9250 .9520 .8436 .8958 .8610 .9118
1 .8704 .8910 .8652 .8956 .9052 .9402 .8532 .9008 .8894 .9310

.25 .8920 .9110 .9186 .9406 .9212 .9254 .9232 .9392 .9260 .9274

.25 .8958 .9126 .9008 .8986 .9232 .9296 .9138 .9066 .9150 .9184

.10 .9016 .9214 .8876 .9214 .9194 .9534 .8378 .9010 .8524 .9152
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