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Abstract
This paper first presents simple methods for conducting up to third-order bias and

variance corrections for the quasi maximum likelihood (QML) estimators of the spatial
parameter(s) in the fixed effects spatial panel data (FE-SPD) models. Then, it shows
how the bias and variance corrections lead to refined t-ratios for spatial effects and for
covariate effects. The implementation of these corrections depends on the proposed
bootstrap methods of which validity is established. Monte Carlo results reveal that (i)
the QML estimators of the spatial parameters can be quite biased, (ii) a second-order
bias correction effectively removes the bias, and (iii) the proposed t-ratios are much
more reliable than the usual t-ratios.

Key Words: Bias correction, Variance correction, Refined t-ratios, Bootstrap, Wild
bootstrap, Spatial panels, Fixed effects.

JEL Classification: C10, C13, C21, C23, C15

1 Introduction

Panel data models with spatial and social interactions have received a belated but

recently increasing attention by econometricians, since Anselin (1988).1 Spatial panel

data (SPD) models are differentiated by whether they are static or dynamic and whether

they contain random effects or fixed effects. Popular methods of model estimation and

inferences are quasi maximum likelihood (QML) and generalized method of moments

(GMM). See Lee and Yu (2010a, 2015a) and Anselin et al. (2008) for general accounts on

issues related to SPD model specifications, parameter estimation, etc.

It has been recognized through the studies of spatial regression models that QML

estimators of the spatial parameter(s), though efficient, can be quite biased (Lee, 2004; Bao
∗Zhenlin Yang gratefully acknowledges the financial support from Singapore Management University

under Grant C244/MSS14E002.
†Corresponding Author: 90 Stamford Road, Singapore 178903. Phone: +65-6828-0852; Fax: +65-6828-

0833. E-mail: zlyang@smu.edu.sg.
1See, among others, Baltagi et al. (2003, 2013), Kapoor et al. (2007), Yu et al. (2008, 2012), Yu and

Lee (2010), Lee and Yu (2010a,b), Baltagi and Yang (2013a,b), and Su and Yang (2015).
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and Ullah, 2007; Bao, 2013; Yang, 2015), and more so with a denser spatial weight matrix

(Yang, 2015; Liu and Yang, 2015a). As a result the subsequent model inferences (based

on t-ratios) can be seriously affected. Methods of bias-correcting the QML estimators of

the spatial parameter(s) have been given for the spatial lag (SL) model (Bao and Ullah,

2007; Bao, 2013; Yang, 2015), the spatial error (SE) model (Liu and Yang, 2015a), and

the spatial lag and error (SLE) model (Liu and Yang, 2015b). The improved t-ratios for

the SL effect is given in Yang (2015), and improved t-ratios for the covariate effects are

given in Liu and Yang (2015b) for the SL, SE and SLE models, respectively.

Evidently, the QML estimators of the SPD models are subjected to the same issues on

the finite sample bias and finite sample performance of subsequent inferences, but these

important issues have not been addressed.2 Given the popularity of the SPD models

among the applied researchers, it is highly desirable to have a set of simple and reliable

methods for parameter estimation and model inference. In this paper, we focus on the

SPD models with fixed effects to provide methods for bias and variance corrections (up

to third-order) by extending the methods of Yang (2015),3 and then to show how the bias

and variance corrections lead to improved t-ratios for spatial and covariate effects. Lee and

Yu (2010b) investigate the asymptotic properties for the QML estimation of this model

based on direct and transformation approaches. The latter approach is more attractive as

it provides consistent estimators for all the common parameters, which is crucial in the

developments of the methods for finite sample bias-corrections and refined inferences.4

We note that while the general stochastic expansions of Yang (2015) for nonlinear

estimators are applicable to different models including the SPD models considered in this

paper, the detailed developments of bias corrections, variance corrections and corrections

on t-ratio vary from one model to another. Furthermore, the transformation approach

induces errors that may no longer be independent and identically distributed (iid) even

if the original errors are. Thus, the bootstrap method proposed by Yang (2015) under

iid errors, may not be directly applicable. We demonstrate in this paper that when the

original error distribution is not far from normality, the standard iid bootstrap method

can still provide an excellent approximation, due to the fact that the transformed errors
2The importance of bias correction for models with nonlinear parameters is seen from the large literature

on the regular dynamic panels (see, e.g., Nickell (1981), Kiviet (1995), Hahn and Kuersteiner (2002), Hahn

and Newey (2004), Bun and Carree (2005), Hahn and Moon (2006), and Arellano and Hahn (2005).
3The fixed effects model has the advantage of robustness because fixed effects are allowed to depend

on included regressors. It also provides a unified model framework for different random effects models

considered in, e.g., Anselin (1988), Kapoor et al. (2007) and Baltagi et al. (2013). However, fixed effects

model encounters incidental parameter problem (Neyman and Scott, 1948; Lancaster, 2000).
4Lee and Yu (2010b) observe that when conducting a direct estimation using the likelihood function

where all the common parameters and the fixed effects are estimated together, the estimate of the variance

parameter is inconsistent when T is finite while n is large. With data transformations to eliminate the fixed

effects, the incidental parameter problem is avoided, and the ratio of n and T does not affect the asymptotic

properties of estimates as the data are pooled. The QMLEs so derived are shown to be consistent, and,

except for the variance estimate, are identical to those from the direct approach.
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are homoskedastic and uncorrelated. When the original errors are extremely non-normal,

we show that the wild bootstrap method can improve the approximation. Monte Carlo

results reveal that the QMLEs of the spatial parameters can be quite biased, in particular

for the models with spatial error dependence, and that a second-order bias correction

effectively removes the bias. Furthermore, Monte Carlo results show that inferences for

spatial and covariate effects based on the regular t-ratios can be misleading, but these

based on the proposed t-ratios are very reliable. We emphasize that while corrections on

bias and variance of a point estimator are important, it is more important to correct the

t-ratios so that practical applications of the models and methods are more reliable. The

methods presented in this paper show a plausible way to do so. They are simple and yet

quite general as the spatial regression models are embedded as special cases.

The rest of the paper is organized as follows. Section 2 introduces the spatial panel

data model allowing both spatial lag and spatial error, and both time-specific effects and

individual-specific effects, and its QML estimation based on the transformed likelihood

function. Section 3 presents a third-order stochastic expansion for the QML estimators of

the spatial parameters, a third-order expansion for the bias, and a third-order expansion

for the variance of the QML estimators of the spatial parameters. Section 3 also addresses

issues on the bias of QMLEs of other model parameters, and on the inferences following

bias and variance corrections. Section 4 introduces the bootstrap methods for estimating

various quantities in the expansions, and presents theories for the validity of these methods.

Section 5 presents Monte Carlo results. Section 6 discusses and concludes the paper.

2 The Model and Its QML Estimation

For the spatial panel data (SPD) model with fixed effects (FE), we can investigate

the case with both spatial lag and spatial error, where n is large and T could be finite or

large. We include both individual effects and time effects to have a robust specification.

The FE-SPD model under consideration is

Ynt = λ0W1nYnt +Xntβ0 + cn0 + αt0ln + Unt, Unt = ρ0W2nUnt + Vnt, (2.1)

for t = 1, 2, . . . , T , where, for a given t, Ynt = (y1t, y2t, . . . , ynt)′ is an n × 1 vector of

observations on the response variable, Xnt is an n × k matrix containing the values of k

nonstochastic, individually and time varying regressors, Vnt = (v1t, v2t, . . . , vnt)′ is an n×1

vector of errors where {vit} are independent and identically distributed (iid) for all i and

t with mean 0 and variance σ2
0 , cn0 is an n×1 vector of fixed individual effects, and αt0 is

the fixed time effect with ln being an n× 1 vector of ones. W1n and W2n are given n× n

spatial weights matrices where W1n generates the ‘direct’ spatial effects among the spatial

units in their response values Ynt, and W2n generates cross-sectional dependence among

the disturbances Unt. In practice, W1n and W2n may be the same.
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In Lee and Yu (2010b), QML estimation of (2.1) is considered by using either a direct

approach or a transformation approach. The direct approach is to estimate the regres-

sion parameters jointly with the individual and time effects, which yields a bias of order

O(T−1) due to the estimation of individual effects and a bias of order O(n−1) due to the

estimation of time effects. The transformation approach eliminates the individual and

time effects and then implements the estimation, which yields consistent estimates of the

common parameters when either n or T is large. In the current paper, we will follow the

transformation approach so that it is free from the incidental parameter problem.

To eliminate the individual effects, define JT = (IT − 1
T lT l

′
T ) and let [FT,T−1,

1√
T
lT ]

be the orthonormal eigenvector matrix of JT , where FT,T−1 is the T × (T − 1) submatrix

corresponding to the eigenvalues of one, IT is a T × T identity matrix and lT is a T × 1

vector of ones.5 To eliminate the time effects, let Jn and Fn,n−1 be similarly defined, and

let W1n and W2n be row normalized.6 For any n × T matrix [Zn1, · · · , ZnT ], define the

(n− 1)× (T − 1) transformed matrix as

[Z∗
n1, . . . , Z

∗
n,T−1] = F ′

n,n−1[Zn1, . . . , ZnT ]FT,T−1. (2.2)

This leads to, for t = 1, . . . , T −1, Y ∗
nt, U

∗
nt, V

∗
nt, and X∗

nt,j for the jth regressor. As in Lee

and Yu (2010), let X∗
nt = [X∗

nt,1, X
∗
nt,2, . . . , X

∗
nt,k], and W ∗

hn = F ′
n,n−1WhnFn,n−1, h = 1, 2.

The transformed model we will work on thus takes the form:

Y ∗
nt = λ0W

∗
1nY

∗
nt +X∗

ntβ0 + U∗
nt, U∗

nt = ρ0W
∗
2nU

∗
nt + V ∗

nt, t = 1, . . . , T − 1. (2.3)

After the transformations, the effective sample size becomes N = (n−1)(T −1). Stacking

the vectors and matrices, i.e., letting YN = (Y ∗′
n1, . . . , Y

∗′
n,T−1)

′, UN = (U∗′
n1, . . . , U

∗′
n,T−1)

′,

VN = (V ∗′
n1, . . . , V

∗′
n,T−1)

′, XN = (X∗′
n1, . . . , X

∗′
n,T−1)

′, and denoting WhN = IT−1⊗W ∗
hn, h =

1, 2, we have the following compact expression for the transformed model:

YN = λ0W1NYN + XNβ0 + UN , UN = ρ0W2NUN + VN , (2.4)

which is in form identical to the spatial autoregressive model with autoregressive errors

(SARAR), showing that the QML estimation of the two-way fixed effects panel SARAR

model is similar to that of the linear SARAR model. The key difference is that the elements

of VN may not be iid though they are uncorrelated and homoskedastic as shown below.

This may have a certain impact on the bootstrap method (see next section for details).

It is easy to show that the transformed errors {v∗it} are uncorrelated for all i and t by

using the identity (V ∗′
n1, . . . , V

∗′
n,T−1)

′ = (F ′
T,T−1 ⊗ F ′

n,n−1)(V
′
n1, . . . , V

′
nT )′,

E(V ∗′
n1, . . . , V

∗′
n,T−1)

′(V ∗′
n1, · · · , V ∗′

n,T−1) = σ2
0(F

′
T,T−1 ⊗ F ′

n,n−1)(FT,T−1 ⊗ Fn,n−1) = σ2
0IN .

5As discussed in Lee and Yu (2010b, Footnote 12), the first difference and Helmert transformation have

often been used to eliminate the individual effects. A special selection of FT,T−1 gives rise to the Helmert

transformation where {Vnt} are transformed to ( T−t
T−t+1

)1/2[Vnt − 1
T−t

(Vn,t+1 + · · · + VnT )], which is of

particular interest for dynamic panel data models.
6When Wjn are not row normalized, the linear SARAR presentation of (2.4) for the spatial panel model

will no longer hold. In that case, a likelihood formulation would not be feasible.
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Hence, {v∗it} are iid N (0, σ2
0) if the original errors {vit} are iid N (0, σ2

0). It follows that

the (quasi) Gaussian log likelihood function for (2.3) is,

�N(θ) = −N
2

ln(2πσ2) + ln |AN(λ)|+ ln |BN (ρ)| − 1
2σ2

V′
N(ζ)VN(ζ), (2.5)

where ζ = (β′, λ, ρ)′, θ = (β′, σ2, λ, ρ)′, AN(λ) = IN − λW1N , BN (ρ) = IN − ρW2N , and

VN(ζ) = BN(ρ)[AN(λ)YN − XNβ].

Now, letting YN(λ) = AN (λ)YN and XN(ρ) = BN (ρ)XN , the constrained QMLEs

of β and σ2, given λ and ρ, can be expressed in the following simple form:

β̃N(λ, ρ) = [X′
N(ρ)XN(ρ)]−1X′

N(ρ)BN(ρ)YN(λ), (2.6)

σ̃2
N(λ, ρ) = N−1Y′

N(λ)MN(ρ)YN(λ), (2.7)

where MN(ρ) = B′
N (ρ){IN−XN (ρ)[X′

N(ρ)XN(ρ)]−1X′
N(ρ)}BN(ρ). Substituting β̃N(λ, ρ)

and σ̃2
N(λ, ρ) back into (2.5) gives the concentrated log likelihood function of (λ, ρ):

�cN (λ, ρ) = −N
2

(ln(2π) + 1) + ln |AN(λ)|+ ln |BN (ρ)| − N

2
ln σ̃2

N (λ, ρ). (2.8)

Maximizing �cN (λ, ρ) in (2.8) gives the unconstrained QMLEs λ̂N and ρ̂N of λ and ρ, and

substituting (λ̂N , ρ̂N) back into (2.6) and (2.7) gives the unconstrained QMLEs of β and

σ2 as β̂N ≡ β̃N(λ̂N , ρ̂N) and σ̂2
N ≡ σ̃2

N(λ̂N , ρ̂N).7 Write θ̂N = (β̂′N , λ̂N , ρ̂N , σ̂
2
N)′. Lee and

Yu (2010b) show that θ̂N is
√
N -consistent and asymptotically normal under some mild

conditions. These conditions and the asymptotic variance of θ̂N are given in Appendix

A to facilitate the subsequent developments for the higher-order results. It follows that

the QML estimators for any of the submodels discussed below will be
√
N -consistent and

asymptotically normal as well, where N can be (n− 1)(T − 1), n(T − 1), (n− 1)T , or nT .

The linear SARAR representation (2.4) has greatly facilitated the QML estimation

of the general FE-SPD model. It is also very helpful for the subsequent developments in

bias and variance corrections. Obviously, it contains as special cases the spatial regression

models. Based on this representation, the results developed for this general model can

easily be reduced to suit simpler models. For example, setting ρ or λ to zero in (2.4)

gives an FE-SPD model with only the SL effect or an FE-SPD model with only the SE

effect; dropping either αt0 or cn0 in (2.1) (or dropping either Fn,n−1 or FT,T−1 in (2.2))

leads to a submodel with only the individual-specific effects or a submodel with only the

time-specific effects; and finally, dropping both cn0 and αt0 in (2.1) leads to the SARAR

regression model. On the other hand, the spatial panel model considered in this paper

can also be extended to include more spatial lag terms in both the response and the
7Numerical maximization of �cN (λ, ρ) can be computationally demanding if N is large due to the need

of repeated calculations of the two determinants. Following simplifications help alleviate such a burden:

|AN (λ)| = |In−1 − λW∗
1n|T−1 =

`
1

1−λ
|In − λW1n|

´T−1
=

`
1

1−λ

Qn
i=1(1 − λω1i)

´T−1
, where ω1i are the

eigenvalues of W1n, the middle equation from Lee and Yu (2010), and the last equation is from Griffith

(1988). Similarly the determinant of |BN (ρ)| is calculated.
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disturbance, in particular the former.8 Software can be developed to facilitate the end

users of the methodologies developed in this paper.

3 Third-Order Bias and MSE for FE-SPD Model

3.1 Third-order stochastic expansions for nonlinear estimators

In a recent paper, Yang (2015) presents a general method for up to third-order bias and

variance corrections on a set of nonlinear estimators based on stochastic expansions and

bootstrap. The stochastic expansions provide tractable approximations to the bias and

variance of the nonlinear estimators and the bootstrap make these expansions practically

implementable. The method is demonstrated, through a linear SAR model, to be very

effective in correcting the bias and improving inferences. It was emphasized in Yang (2015)

that, in estimating a model with both linear and nonlinear parameters, the main source

of bias and the main difficulty in correcting the bias are associated with the estimation

of the nonlinear parameters, and hence one should focus on the concentrated estimation

equations. By doing so, the dimensionality of the problem can be greatly reduced, and

more importantly, the additional variations from the estimation of the linear and scale

parameters are captured in correcting the nonlinear estimators, thus making the bias and

variance corrections more effective. The method is summarized as follows.

Let δ be the vector of nonlinear parameters of a model, and δ̂N defined as

δ̂N = arg{ψ̃N(δ) = 0}, (3.1)

be its
√
N -consistent estimator, with ψ̃N(δ) being referred to as the concentrated esti-

mating function (CEF) and ψ̃N (δ) = 0 the concentrated estimating equation (CEE). Let

HrN (δ) = ∇rψ̃N(δ), r = 1, 2, 3, where the partial derivatives are carried out sequen-

tially and elementwise, with respect to δ′. Let ψ̃N ≡ ψ̃N (δ0), HrN ≡ HrN (δ0) and

H◦
rN = HrN − E(HrN), r = 1, 2, 3. Note that here and hereafter the expectation oper-

ator ‘E’ corresponds to the true model parameters θ0. Define ΩN = −[E(H1N)]−1. Yang

(2015), extending Rilstone et al. (1996) and Bao and Ullah (2007), gives a set of sufficient

conditions for a third-order stochastic expansion of δ̂N = arg{ψ̃N(δ) = 0}, based on a

general CEF ψ̃N (δ), which are restated here to facilitate the development of higher-order

results for the FE-SPD model:

Assumption G1. δ̂N solves ψ̃N(δ) = 0 and δ̂N − δ0 = Op(N−1/2).

Assumption G2. ψ̃N (δ) is differentiable up to the rth order for δ in a neighborhood

of δ0, E(HrN) = O(1), and H◦
rN = Op(N−1/2), r = 1, 2, 3.

Assumption G3. [E(H1N)]−1 = O(1), and H−1
1N = Op(1).

Assumption G4. ‖HrN(δ) −HrN(δ0)‖ ≤ ‖δ − δ0‖UN for δ in a neighborhood of

δ0, r = 1, 2, 3, and E |UN | ≤ c <∞ for some constant c.
8See Lee and Yu (2015a,b) for more discussions and for the related issue on parameter identification.
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Under these conditions, a third-order stochastic expansion for δ̂N takes the form:

δ̂N − δ0 = a−1/2 + a−1 + a−3/2 + Op(N−2), (3.2)

where a−s/2 represents a term of order Op(N−s/2) for s = 1, 2, 3, having the expressions

a−1/2 = ΩN ψ̃N ,

a−1 = ΩNH
◦
1Na−1/2 + 1

2ΩNE(H2N)(a−1/2 ⊗ a−1/2),

a−3/2 = ΩNH
◦
1Na−1 + 1

2ΩNH
◦
2N(a−1/2 ⊗ a−1/2)

+1
2ΩNE(H2N)(a−1/2 ⊗ a−1 + a−1 ⊗ a−1/2)

+1
6ΩNE(H3N)(a−1/2 ⊗ a−1/2 ⊗ a−1/2),

where ⊗ denotes the Kronecker product. In moving from the stochastic expansion given

in (3.2) to third-order expansions for the bias, MSE and variance of δ̂N , it is assumed that

E(ψ̃N) = O(N−1) and that a quantity bounded in probability has a finite expectation. The

latter is a simplifying assumption to ensure that the remainders are of the stated order.

A third-order expansion for the bias of δ̂N is

Bias(δ̂N) = b−1 + b−3/2 +O(N−2), (3.3)

where b−1 = E(a−1/2 + a−1) and b−3/2 = E(a−3/2), being the second- and third-order

biases. Similarly, a third-order expansion for the mean squared error (MSE) of δ̂N is

MSE(δ̂N) = m−1 +m−3/2 +m−2 + O(N−5/2), (3.4)

where m−1 = E(a−1/2a
′
−1/2), m−3/2 = E(a−1/2a

′
−1 + a−1a

′
−1/2) and m−2 = E(a−1a

′
−1 +

a−1/2a
′
−3/2 + a−3/2a

′
−1/2), and the third-order expansion for the variance of δ̂N is

Var(δ̂N) = v−1 + v−3/2 + v−2 +O(N−5/2), (3.5)

where v−1 = Var(a−1/2), v−3/2 = Cov(a−1/2, a−1)+Cov(a−1, a−1/2), and v−2 = Cov(a−1/2,

a−3/2) + Cov(a−3/2, a−1/2) + Var(a−1 + a−3/2); or simply v−1 = m−1, v−3/2 = m−3/2, and

v−2 = m−2 − b2−1.

Therefore, we can improve the statistical inference in finite samples by correcting the

bias and standard deviation of estimates. From (3.3), we can use

δbc2
N = δ̂N − b−1 or δbc3

N = δ̂N − b−1 − b−3/2,

to yield an estimator unbiased up to order O(N−1) or an estimator unbiased up to order

O(N−3/2). With estimated b−1 and b−3/2, feasible δbc2
N and δbc3

N can be constructed.

Similar procedures can be applied to increase the precision of variance estimate. By

(3.5), if b̂−1 − b−1 = Op(N−3/2) and b̂−3/2 − b−3/2 = Op(N−2), we have

Var(δbc3
N ) = v−1 + v−3/2 + v−2 − 2ACov(δ̂N , b̂−1) +O(N−5/2), (3.6)

and Var(δbc2
N ) = Var(δbc3

N ) + O(N−5/2), where ACov denotes asymptotic covariance. See

Section 4 for details on the practical implementations of bias and variance corrections.
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3.2 Third-order bias and variance for spatial estimators

As pointed out in the introduction, the general expansions summarized in Section 3.1

are applicable to different models including the FE-SPD model we consider in this paper,

but the detailed developments for the corrections on bias, variance, and t-ratio vary from

one model to another. Furthermore, the transformation approach induces errors that are

no longer iid, rendering the bootstrap method of Yang (2015) for estimating the correction

terms not directly applicable. In this subsection, we first derive all the quantities required

for the third-order expansions for the FE-SPD model, and then discuss conditions under

which the results (3.2)-(3.6) hold under the FE-SPD model instead of going through the

detailed proofs of them. As seen from Section 2, the set of nonlinear parameters in

the FE-SPD model are δ = (λ, ρ)′. The CEF leading to the QMLE δ̂N = (λ̂N , ρ̂N) is

ψ̃N (δ) = 1
N

∂
∂δ�

c
N (δ), which is shown to have the form:

ψ̃N(δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−T0N(λ) +
Y′

N(λ)MN(ρ)W1NYN

Y′
N(λ)MN(ρ)YN(λ)

,

−K0N(ρ)− Y′
N(λ)M(1)

N (ρ)YN(λ)
2Y′

N(λ)MN(ρ)YN(λ)
,

(3.7)

where T0N(λ) = 1
N tr(W1NA−1

N (λ)),K0N(ρ) = 1
N tr(W2NB−1

N (ρ)), and M(1)
N (ρ) = d

dρMN(ρ).9

To derive the rth order derivative, HrN(δ), of ψ̃N(δ) w.r.t. δ′, r = 1, 2, 3, for up

to third-order bias correction, define TrN(λ) = 1
N tr[(W1NA−1

N (λ))r+1], and KrN(ρ) =
1
N tr[(W2NB−1

N (ρ))r+1], r = 0, 1, 2, 3. Let M(k)
N (ρ) be the kth derivative of MN(ρ) w.r.t.

ρ, k = 1, 2, 3, 4. Define

R1N(δ) =
Y′

N(λ)MN(ρ)W1NYN

Y′
N(λ)MN(ρ)YN(λ)

, R2N(δ) =
Y′

NW′
1NMN (ρ)W1NYN

Y′
N(λ)MN(ρ)YN(λ)

;

Q†
kN (δ) =

Y′
N (λ)M(k)

N (ρ)W1NYN

Y′
N(λ)MN(ρ)YN(λ)

, Q‡
kN (δ) =

Y′
NW′

1NM(k)
N (ρ)W1NYN

Y′
N(λ)MN(ρ)YN(λ)

;

SkN(δ) =
Y′

N(λ)M(k)
N (ρ)YN(λ)

Y′
N(λ)MN(ρ)YN(λ)

,

which have the following properties

∂R1N(δ)
∂λ = 2R2

1N(δ) −R2N(δ), ∂R2N(δ)
∂λ = 2R1N(δ)R2N(δ),

∂Q†
kN(δ)

∂λ = 2R1N(δ)Q†
kN(δ) −Q‡

kN (δ), ∂Q‡
kN(δ)

∂λ = 2R1N(δ)Q‡
kN (δ),

∂SkN (δ)
∂λ = 2R1N(δ)SkN(δ)− 2Q†

kN(δ);

∂R1N(δ)
∂ρ = Q†

1N(δ)− R1N(δ)S1N(δ), ∂R2N(δ)
∂ρ = Q‡

1N(δ) −R2N(δ)S1N(δ),
∂Q†

kN(δ)

∂ρ = Q†
k+1,N(δ) −Q†

kN (δ)S1N(δ), ∂Q‡
kN(δ)

∂ρ = Q‡
k+1,N (δ)−Q‡

kN (δ)S1N(δ),
∂SkN (δ)

∂ρ = Sk+1,N (δ)− SkN (δ)S1N(δ).

9Lee and Yu (2010b) provide a useful identity: (In−1 − λW∗
hn)−1 = F ′

n,n−1(In−1 − λWhn)−1Fn,n−1.

Based on this, the inverses of AN (λ) and BN (λ) can easily be calculated as they are block-diagonal. The

conditions for the
√
N -consistency of δ̂N are given in Lee and Yu (2010b), and also in Appendix A.
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Write ψ̃N(δ) = (ψ̃1N(δ), ψ̃2N(δ))′ with ψ̃1N(δ) = −T0N(λ) + R1N(δ) and ψ̃2N(δ) =

−K0N (ρ) − S1N(δ). Denote the partial derivatives of ψ̃jN(δ) by adding superscripts λ

and/or ρ sequentially, e.g., ψ̃λλ
1N(δ) = ∂2

∂λ2 ψ̃1N(δ), and ψ̃λρλ
2N (δ) = ∂3

∂λ∂ρ∂λψ̃2N(δ). Thus,

H1N(δ) has 1st row {ψ̃λ
1N(δ), ψ̃ρ

1N(δ)} and 2nd row {ψ̃λ
2N(δ), ψ̃ρ

2N(δ)}, which gives

H1N(δ) =

⎛
⎝ −T1N (λ)− R2N(δ) + 2R2

1N(δ), Q†
1N (δ)− R1N(δ)S1N(δ)

Q
†
1N (δ)−R1N(δ)S1N(δ), −K1N (ρ)− 1

2S2N(δ) + 1
2S

2
1N(δ)

⎞
⎠ .

H2N(δ) has rows {ψ̃λλ
1N(δ), ψ̃λρ

1N(δ), ψ̃ρλ
1N(δ), ψ̃ρρ

1N(δ)} and {ψ̃λλ
2N(δ), ψ̃λρ

2N(δ), ψ̃ρλ
2N(δ), ψ̃ρρ

2N(δ)},
where

ψ̃λλ
1N(δ) = −2T2N(λ)− 6R1N(δ)R2N(δ) + 8R3

1N(δ),

ψ̃λρ
1N(δ) = −Q‡

1N(δ) + 4R1N(δ)Q†
1N(δ) + R2N(δ)S1N(δ)− 4R2

1N(δ)S1N(δ),

ψ̃ρρ
1N(δ) = Q†

2N(δ)− 2Q†
1N(δ)S1N(δ) + 2R1N(δ)S2

1N(δ)− R1N(δ)S2N(δ),

ψ̃ρρ
2N(δ) = −2K2N(ρ)− 1

2S3N(δ) + 3
2S1N(δ)S2N(δ)− S3

1N(δ),

ψ̃λλ
2N(δ) = ψ̃ρλ

1N(δ) = ψ̃λρ
1N(δ), and ψ̃λρ

2N(δ) = ψ̃ρλ
2N(δ) = ψ̃ρρ

1N(δ).

H3N(δ) is obtained by differentiating every element of H2N(δ) w.r.t. δ′. It has elements:

ψ̃λλλ
1N (δ) = −6T3N(λ) + 6R2

2N(δ)− 48R2
1N(δ)R2N(δ) + 48R4

1N(δ),

ψ̃λλρ
1N (δ) = −6Q†

1N (δ)R2N(δ) + 12R1N(δ)R2N(δ)S1N(δ) − 6R1N(δ)Q‡
1N(δ),

+24R2
1N(δ)[Q†

1N(δ)− R1N(δ)S1N(δ)],

ψ̃λρλ
1N (δ) = 2Q‡

1N(δ)R1N(δ) + 12R1N(δ)R2N(δ)S1N(δ)− 6R1N(δ)Q†
1N(δ)

+8R2
1N(δ)Q†

1N(δ)− 20R3
1N(δ)S1N(δ),

ψ̃λρρ
1N (δ) = −Q‡

2N(ρ) + 2Q‡
1N(ρ)S1N(δ)− 2R2N(δ)S2

1N(δ) +R2N(δ)S2N(δ) + 4Q† 2
1N(δ)

−16R1N(δ)S1N(δ)Q†
1N(δ)+4R1N(δ)Q†

2N(δ)+12R2
1N(δ)S2

1N(δ)−4R2
1N(δ)S2N(δ),

ψ̃ρρλ
1N (δ) = −Q‡

2N(δ)+4Q†
2N(δ)R1N(δ)+2Q‡

1N(δ)S1N(δ)+4Q† 2
1N(δ)−16R1N(δ)Q†

1N(δ)S1N(δ)

−R2N(δ)S2N(δ) + 12R2
1N(δ)S2

1N(δ) − 2R2N(δ)S2
1N(δ)− 4S2

1N(δ)S2N(δ),

ψ̃ρρρ
1N (δ) = Q†

3N(δ)−3Q†
2N(δ)S1N(δ)+6Q†

1N(δ)S2
1N(δ)−3Q†

1N(δ)S2N(δ)−6R1N(δ)S3
1N(δ)

+6R1N(δ)S1N(δ)S2N(δ)− R1N(δ)S3N(δ),

ψ̃ρρλ
2N (δ) = Q†

3N(δ)− R1N(δ)S3N(δ)− 3Q†
1N(δ)S2N(δ) + 6R1N(δ)S1N(δ)S2N(δ)

−3S1N(δ)Q†
2N(δ) + 6S2

1N(δ)Q†
1N(δ)− 6R1N(δ)S3

1N(δ),

ψ̃
ρρρ
2N (δ) = −6K3N(ρ)− 1

2S4N(δ)+2S1N(δ)S3N(δ)+ 3
2S

2
2N(δ)−6S2N(δ)S2

1N(δ)+3S4
1N(δ).

ψ̃ρλλ
1N (δ) = ψ̃λρλ

1N (δ) = ψ̃λλλ
2N (δ), ψ̃ρλρ

1N (δ) = ψ̃λρρ
1N (δ) = ψ̃λλρ

2N (δ),

ψ̃ρρλ
1N (δ) = ψ̃λρλ

2N (δ) = ψ̃ρλλ
2N (δ), and ψ̃ρρρ

1N (δ) = ψ̃λρρ
2N (δ) = ψ̃ρλρ

2N (δ).

The expressions of M(k)
N (ρ), ρ, k = 1, 2, 3, 4, are lengthy, and hence are relegated to

Appendix B.
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For the general results (3.2)-(3.6) to be valid when the CEF ψ̃N(δ) corresponds to

the FE-SPD model, it is sufficient that this function satisfies Assumptions G1-G4 listed

in Section 3.1. First the
√
N -consistency of δ̂N in Assumption G1 is given in Theorem

A.1 in Appendix A. The differentiability of ψ̃N(δ) in Assumption G2 is obvious. From

Section 4.1 we see that the R-, S- and Q-quantities at the true parameter values are all

ratios of quadratic forms in VN , having the same denominator V′
NM�

NVN where M�
N =

IN −XN(ρ0)[X′
N(ρ0)XN(ρ0)]−1X′

N(ρ0). It can be shown that 1
N V′

NM�
NVN converges to

σ2
0(> 0) with probability one. Hence, with Assumptions A1-A8 in Appendix A, for the

H-quantities to have proper stochastic behavior, it would typically require the existence

of the 6th moment of vit for the second-order bias correction, and the existence of the

10th moment of vit for the third-order bias correction. Variance corrections have stronger

moment requirements. However, these moment requirements are no more than those under

a joint estimating equation with analytical approach. The condition E(ψ̃N) = O(N−1) is

required so that b−1 is truly O(N−1). This condition is not restrictive as the asymptotic

normality of δ̂N , i.e., as N → ∞,
√
N (δ̂N − δ0) converges to a centered bivariate normal

distribution, established by Lee and Yu (2010b), implies that E(ψ̃N) = o(N−1/2). The

other conditions are likely to hold by the FE-SPD model. With these and Assumptions

A1-A8 in Appendix A, the results (3.2)-(3.6) are likely to hold. For these reasons, we do

not present detailed proofs of the results (3.2)-(3.6) for the FE-SPD model, but rather

focus on the validity of the bootstrap methods for the practical implementation of these

bias and variance corrections.

3.3 Reduced models

Letting either ρ = 0 or λ = 0 leads to two important submodels, the FE-SPD model

with SL dependence only and the FE-SPD model with SE dependence only. Bias and

variance corrections become much simpler in these cases, in particular the former.

FE-SPD model with SL dependence. The necessary terms for up to third-order

bias and variances correction for the FE-SPD model with only SL dependence are:

R1N(λ) = Y′
N (λ)M0

NW1NYN

Y′
N (λ)M0

NYN(λ)
, R2N(λ) = Y′

NW′
1NM0

N W1NYN

Y′
N(λ)M0

NYN(λ)
,

ψ̃N(λ) = −T0N(λ) + R1N(λ),

H1N(λ) = −T1N(λ)− R2N(λ) + 2R2
1N(λ),

H2N(λ) = −2T2N(λ)− 6R1N(λ)R2N(λ) + 8R3
1N(λ),

H3N(λ) = −6T3N(λ) + 6R2
2N(λ)− 48R2

1N(λ)R2N(λ) + 48R4
1N(λ),

where M0
N ≡ MN(0) = IN − XN(X′

NXN)−1X′
N . These results contain, as a special

case, the results for linear SAR model considered in detail in Yang (2015), showing the

usefulness of the linear SARAR representation (2.4) for the FE-SPD model.

10



FE-SPD model with SE dependence. The necessary terms for up to third-order

bias and variances correction for the FE-SPD model with only SE dependence are:

SkN (ρ) = Y′
NM

(k)
N (ρ)YN

Y′
NMN (ρ)YN

, k = 1, 2, 3, 4,

ψ̃N (ρ) = −K0N(ρ)− 1
2S1N(ρ),

H1N (ρ) = −K1N(ρ)− 1
2S2N(ρ) + 1

2S
2
1N(ρ),

H2N (ρ) = −2K2N(ρ)− 1
2S3N(ρ) + 3

2S1N(ρ)S2N(ρ)− S3
1N (ρ),

H3N (ρ) = −6K3N(ρ)− 1
2S4N(δ) + 2S1N(δ)S3N(δ) + 3

2S
2
2N (δ)

−6S2N(δ)S2
1N(δ) + 3S4

1N(δ).

These results contain, as a special case, the results for the linear SED model considered

in Liu and Yang (2015a). Again, these results show the usefulness of the linear SASAR

representation for the fixed effects spatial panel data model given in (2.4).

Simplifications to a one-way fixed effects model are easily done by dropping either

Fn,n−1 or FT,T−1 in defining the transformed variables Y ∗
nt, U

∗
nt, and V ∗

nt, and the trans-

formed matrices X∗
nt and W ∗

hn, h = 1, 2. Obviously, when the model contains only

individual-specific effects, t = 1, . . . , T − 1 and N = n(T − 1), and when model contains

only the time-specific effects, t = 1, . . . , T and N = (n− 1)T .

3.4 Bias correction for non-spatial estimators

Note that β̂N = β̃N(δ̂N) and σ̂2
N = σ̃2

N (δ̂N), where β̃N(δ) and σ̃2
N(δ) are the constrained

QMLEs of β and σ2 defined in (2.6) and (2.7). As β̃N(δ0) is an unbiased estimator of β,

and N
N−k σ̃

2
N (δ0) is an unbiased estimator of σ2, it is natural to expect that, with a bias-

corrected QMLE δ̂bc
N of δ, β̂bc

N = β̃N (δ̂bc
N ) and σ̂2,bc

N = N
N−k σ̃

2
N (δ̂bc

N ) would be much less

biased than the original QMLEs. Thus, with a bias-corrected nonlinear estimator, the

QMLEs of the linear and scale parameters may be automatically bias-corrected, making

the overall bias correction much easier. This is another point stressed by Yang (2015) in

supporting the arguments that one should use CEE to perform bias correction on nonlinear

parameters. We now present some results to support this point.

First, β̂N ≡ β̃N (δ̂N) = FN (ρ̂N)YN(λ̂N), where FN (ρ) = [X′
N(ρ)XN(ρ)]−1X′

N (ρ)BN(ρ),

by (2.6). Let β̃(k)
N (δ) be the kth derivative of β̃N(δ) w.r.t. δ′, and F(k)

N (ρ) the kth deriva-

tive of FN (ρ) w.r.t. ρ. A notational convention is followed: β̃N ≡ β̃N(δ0), β̃
(k)
N ≡

β̃
(k)
N (δ0), FN ≡ FN (ρ0), AN = AN(λ0), BN = BN (ρ0), etc. Assume E(β̃(k)

N ) exists

and β̃
(k)
N − E(β̃(k)

N ) = Op(N−1/2), k = 1, 2. By a Taylor series expansion, we obtain,

β̃N (δ̂N) = β̃N + β̃
(1)
N (δ̂N − δ0) + 1

2 β̃
(2)
N [(δ̂N − δ0) ⊗ (δ̂N − δ0)] +Op(N−3/2), (3.8)

= β̃N + E(β̃(1)
N )(δ̂N − δ0) + bNa−1/2 + 1

2E(β̃(2)
N )(a−1/2 ⊗ a−1/2) + Op(N−3/2),

where E(β̃(1)
N ) = [−FNGNXNβ0, F(1)

N XNβ0], GN = W1NA−1
N , bN = [−FNGNB−1

N VN ,

F(1)
N B−1

N VN ], and E(β̃(2)
N ) = [0k×1, −F(1)

N GNXNβ0, −F(1)
N GNXNβ0, F(2)

N XNβ0]. Recall

a−1/2 = ΩN ψ̃N .
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It is easy to see that the expansion (3.8) holds when δ̂N is replaced by δ̂bc2
N . Thus,

Bias(β̂N) = E(β̃(1)
N )Bias(δ̂N) + E(bNa−1/2) + 1

2E(β̃(2)
N )E(a−1/2 ⊗ a−1/2) +O(N−3/2),

Bias(β̂bc2
N ) = E(bNa−1/2) + 1

2E(β̃(2)
N )E(a−1/2 ⊗ a−1/2) + O(N−3/2). (3.9)

The key term E(β̃(1)
N )Bias(δ̂N) of order O(N−1) in the bias of β̃N (δ̂N) is absorbed into the

error term when δ̂N is replaced by δ̂bc2
N in defining the estimator for β0. Thus, it can be

expected that the resulting bias reduction can be big, and the estimator β̂bc2
N = β̃N(δ̂bc2

N ) is

essentially second-order bias-corrected, if E(bNa−1/2)+ 1
2E(β̃(2)

N )E(a−1/2⊗a−1/2) is ‘small’.

In general, using (3.9), β̂bc2
N can easily be further bias-corrected to be ‘truly’ second-order

unbiased. However, our Monte Carlo results given in Section 5 suggest that this may not

be necessary. Finally, F(k)
N (ρ), k = 1, 2, can be easily derived.

Now, from (2.7), σ̂2
N = σ̃2

N (δ̂N ) = 1
N Y′

N(λ̂N)MN(ρ̂N)YN(λ̂N) ≡ 1
NQN(δ̂N ). Let

Q
(k)
N (δ) be the kth partial derivative of QN (δ) w.r.t. δ′, and similarly Q(k)

N ≡ Q
(k)
N (δ0).

Assume 1
N E(Q(k)

N ) = O(1) and 1
N [Q(k)

N − E(Q(k)
N )] = Op(N−1/2) for k = 1, 2. A Taylor

series expansion gives,

σ̃2
N(δ̂N ) = σ̃2

N + 1
NQ

(1)
N (δ̂N − δ0) + 1

2NQ
(2)
N [(δ̂N − δ0)⊗ (δ̂N − δ0)] + Op(N−3/2),

= σ̃2
N + 1

N E(Q(1)
N )(δ̂N − δ0) + qNa−1/2 + 1

2N E(Q(2)
N )(a−1/2 ⊗ a−1/2) (3.10)

+Op(N−3/2),

where the exact expressions for qN and E(Q(k)
N ), k = 1, 2, are given in Appendix B.

It is easy to see that the expansion (3.10) holds when δ̂N is replaced by δ̂bc2
N . It follows

that

Bias[ N
N−k σ̃

2
N(δ̂N )] = 1

N−kE(Q(1)
N )Bias(δ̂N ) + N

N−kE(qNa−1/2)

+ 1
2(N−k)E(Q(2)

N )E(a−1/2 ⊗ a−1/2) + O(N−3/2),

Bias[ N
N−k σ̃

2
N (δ̂bc2

N )] = N
N−kE(qNa−1/2) + 1

2(N−k)E(Q(2)
N )E(a−1/2 ⊗ a−1/2) (3.11)

+O(N−3/2).

Again, the key bias term 1
N−k E(Q(1)

N )Bias(δ̂N) is removed when δ̂N is replaced by δ̂bc2
N

in defining the estimator for σ2
0, and our Monte Carlo results in Section 5 show that

N
N−k σ̃

2
N(δ̂bc2

N ) is nearly unbiased for σ2
0 . In any case, one can always use (3.11) to carry

out further bias correction on N
N−k σ̃

2
N(δ̂bc2

N ).

3.5 Inferences following bias and variance corrections

The impacts of bias correction for spatial estimators on the estimation of the regression

coefficients and error standard deviation were investigated in the earlier subsection. It

would be interesting to further investigate the impacts of bias and variance corrections for

spatial estimators on the statistical inferences concerning the spatial parameters or the

regression coefficients. The latter issue is of a great practical relevance, as being able to
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access the covariate effects in a reliable manner may be the most desirable feature in any

econometric modelling activity. Unfortunately, this issue has not been addressed for the

spatial panel data regression models.

One of the most interesting type of inferences for a spatial model would be the testing

for the existence of spatial effects. With the availability of QMLEs δ̂N and its asymptotic

variance ΩNE(ψ̃N ψ̃
′
N)ΩN , one can easily carry out a Wald test. However, given the fact

that δ̂N can be quite biased, it is questionable that this asymptotic test would be reliable

when N is not large. With the bias and variance correction results presented in Section 3,

one can easily construct various ‘bias-corrected’ Wald tests. For testing H0 : λ = ρ = 0,

i.e., the joint non-existence of both types of spatial effects, we have,

WSARAR
N,jk = (δ̂bcj

N )′Var−1
k (δ̂bcj

N )δ̂bcj
N , (3.12)

where δ̂bcj
N is the jth-order bias-corrected δ̂N and Vark(δ̂

bcj
N ) is the kth-order corrected

variance of δ̂bcj
N . When j = k = 1, δ̂bc1

N = δ̂N , Var−1
1 (δ̂bc1

N ) = ΩNE(ψ̃N ψ̃
′
N)ΩN , and

the test is an asymptotic Wald test. The details on estimating Vark(δ̂
bcj
N ), in particular,

Var3(δ̂bc3
N ), are given at the end of Section 4.

Similarly, for testing the non-existence of one type of spatial effects, allowing the

existence of the other type of spatial effects, i.e., H0 : λ = 0, allowing ρ, or H0 : ρ = 0

allowing λ, we have, respectively,

WSAR
N,jk = λ̂bcj

N /

√
Var11,k(δ̂

bcj
N ) or WSED

N,jk = ρ̂bcj
N /

√
Var22,k(δ̂

bcj
N ), (3.13)

where Varii,k(δ̂
bcj
N ) denotes the i-th diagonal element of Vark(δ̂bcj

N ). Furthermore, we can

easily construct improved tests for testing the non-existence of spatial effect in the two

reduced models, i.e., testing H0 : λ = 0, given ρ = 0, or H0 : ρ = 0, given λ = 0:

T SAR
N,jk = λ̂bcj

N /

√
Vark(λ̂bcj

N ) or T SED
N,jk = ρ̂bcj

N /

√
Vark(ρ̂

bcj
N ), (3.14)

where Vark(λ̂
bcj
N ) and Vark(ρ̂bcj

N ) are the k-order corrected variances of the jth-order bias-

corrected estimators based on the corresponding reduced models described in Section 3.3.

Another important type of inference concerns the covariate effects, i.e., the testing or

confidence interval construction for c′β0, a linear combination of the regression parameters.

For an improved inference, we need the bias-corrected variance estimator for β̂bc2
N . By (3.8)

with δ̂N being replaced by δ̂bc2
N , we have,

Var(β̂bc2
N ) = Var

[
β̃N +E(β̃(1)

N )(a−1/2+a−1)+bNa−1/2+ 1
2E(β̃(2)

N )(a−1/2⊗a−1/2)
]
+Op(N−2).

This variance can be easily estimated based on the bootstrap method described at the end

of Section 4. For testing H0 : c′β0 = 0, the following two statistics may be used:

TN,11 = c′β̂N/

√
c′ÂVar(β̂N)c, and TN,22 = c′β̂bc2

N /

√
c′V̂ar(β̂bc2

N )c, (3.15)

where ÂVar(β̂N) is the estimate of the asymptotic variance of β̂N and V̂ar(β̂bc2
N ) is the

bootstrap estimate of Var(β̂bc2
N ) (see the end of Section 4). These results can easily be
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simplified to suit the simpler models. Monte Carlo results presented in Section 5 show

that inferences based on TN,22 are much more reliable than inferences based on TN,11.

4 Bootstrap for Feasible Bias and Variance Corrections

For practical purpose, we need to evaluate the expectations of a−s/2 for s = 1, 2, 3,

and the expectations of their cross products. Thus, we need to compute expectations of

all the R-, S-, and Q-ratios of quadratic forms defined below (3.7), expectations of their

powers, and expectations of cross products of powers, which seem impossible analytically.

The use of a joint estimating equation (JEE) as in Bao and Ullah (2007) and Bao (2013)

may offer a possibility. However, even for a second-order bias correction of a simple SAR

model (Bao, 2013), the formulae are seen to be very complicated already. Furthermore,

the analytical approach runs into another problem with variance corrections and higher-

order bias corrections – it may involve higher than fourth moments of the errors of which

estimation may not be stable numerically. In the current paper, we follow Yang (2015)

to use the CEE, ψ̃N (δ) = 0, which not only reduces the dimensionality but also captures

additional bias and variability from the estimation of linear and scale parameters, making

the bias correction more effective. We then use bootstrap to estimate these expectations

involved in the bias and variance corrections, which overcomes the difficulty in analytically

evaluating the expectations of ratios of quadratic forms and avoids the direct estimation

of higher-order moments of the errors.

4.1 The bootstrap method

We follow Yang (2015) and propose a bootstrap procedure for the FE-SPD model

with SARAR effects. Note YN(λ0) = XNβ0 + B−1
N (ρ0)VN , W1NYN = GN [XNβ0 +

B−1
N (ρ0)VN ], where GN ≡ GN(λ0) = W1NA−1(λ0), and MN(ρ)XN = 0. The R-ratios,

S-ratios and Q-ratios at δ = δ0 defined below (3.7) can all be written as functions of

ζ0 = (β′0, δ
′
0)

′ and VN , given XN and WjN , j = 1, 2:

R1N(ζ0,VN) =
V′

NB′−1
N MNGN (XNβ0 + B−1

N VN)
V′

NM�
NVN

, (4.1)

R2N(ζ0,VN) =
(XNβ0 + B−1

N VN)′G′
NMNGN(XNβ0 + B−1

N VN)
V′

NM�
NVN

, (4.2)

Q
†
kN(ζ0,VN) =

(XNβ0 + B−1
N VN)′M(k)

N GN (XNβ0 + B−1
N VN)

V′
NM�

NVN
, (4.3)

Q
‡
kN(ζ0,VN) =

(XNβ0 + B−1
N VN)′G′

NM(k)
N GN (XNβ0 + B−1

N VN)
V′

NM�
NVN

, (4.4)

SkN(ζ0,VN) =
(XNβ0 + B−1

N VN)′M(k)
N (XNβ0 + B−1

N VN)
V′

NM�
NVN

, (4.5)

14



where M�
N = IN −XN(ρ0)[X′

N(ρ0)XN(ρ0)]−1X′
N(ρ0) given at the end of Section 3.2, and

M(k)
N ≡ M(k)

N (ρ0). It follows that ψ̃N = ψ̃N(ζ0,VN) and HrN = HrN(ζ0,VN), r = 1, 2, 3.

Now, define the QML estimate of the error vector VN in the FE-SPD model (2.4):

V̂N = BN (ρ̂N)[A(λ̂N)YN −XN β̂N ]. (4.6)

Let V̂�
N be a bootstrap sample based on V̂N . The bootstrap analogs of various quantities

are simply

ψ̃�
N ≡ ψ̃N(ζ̂N ,V�

N) and H�
rN ≡ HrN(ζ̂N ,V�

N), r = 1, 2, 3.

Thus, the bootstrap estimates of the quantities in bias and variance corrections are, for

example,

Ê(ψ̃N ⊗HrN ) = E�
[
ψ̃N(ζ̂N , V̂�

N) ⊗HrN(ζ̂N , V̂�
N)

]
, and

Ê(ψ̃N ⊗ ψ̃N ⊗ ψ̃N ) = E�
[
ψ̃N(ζ̂N , V̂�

N) ⊗ ψ̃N(ζ̂N , V̂�
N) ⊗ ψ̃N(ζ̂N , V̂�

N)
]
,

where E� denotes the expectation with respect to the bootstrap distribution. The boot-

strap estimates of other quantities are defined in the same manner.10 To make these

bootstrap expectations practically feasible, we first follow Yang (2015) and propose the

following iid bootstrap procedure:

Algorithm 4.1 (iid Bootstrap)

1. Compute ζ̂N and V̂N , and center V̂N .

2. Draw a bootstrap sample V̂�
N,b, i.e., make N random draws from the elements of

centered V̂N .

3. Compute ψ̃N(ζ̂N , V̂�
N,b) and HrN(ζ̂N , V̂�

N,b), r = 1, 2, 3.

4. Repeat steps 2-3 for B times to give approximate bootstrap estimates as

Ê(ψ̃N ⊗HrN ) =̇ 1
B

∑B
b=1

[
ψ̃N(ζ̂N , V̂�

N,b) ⊗HrN(ζ̂N , V̂�
N,b)

]
, and

Ê(ψ̃N ⊗ ψ̃N ⊗ ψ̃N ) =̇ 1
B

∑B
b=1

[
ψ̃N(ζ̂N , V̂�

N,b) ⊗ ψ̃N(ζ̂N , V̂�
N,b)⊗ ψ̃N(ζ̂N , V̂�

N,b)
]
.

Note that the approximation in the last step of Algorithm (4.1) can be made arbitrarily

accurate by choosing an arbitrarily large B, and that the scale parameter σ2
0 and its QMLE

σ̂2
N do not play a role in the bootstrap process as they are hidden in either VN or V̂N .

The iid bootstrap procedure requires that the underlining error vector VN contains

iid elements, which apparently may not be true in general if the original errors are not

normal. However, the fact that the elements of VN are uncorrelated and homoskedastic
10To facilitate the bootstrapping, the a−s/2 in (3.2) can be re-expressed so that the random quantities

are put together, using the well-known properties of Kronecker product: (A ⊗ B)(C ⊗ D) = AC ⊗ BD

and vec(ACB) = (B′ ⊗ A)vec(C), where ‘vec’ vectorizes a matrix by stacking its columns. For example,

H1NΩN ψ̃N = (ψ′
N ⊗ H1N )vec(ΩN ), and a−1/2 ⊗ a−1/2 ⊗ a−1/2 = (ΩN ⊗ ΩN ⊗ ΩN )(ψ̃N ⊗ ψ̃N ⊗ ψ̃N ).

Alternatively, one can follow the ‘two-step’ procedure given in Yang (2015, Sec. 4).
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suggests that applying the iid bootstrap may give a very good approximation although

it may not be strictly valid. Nevertheless, when the original errors are nonnormal, the

following wild bootstrap or perturbation procedure can be used.

Algorithm 4.2 (Wild Bootstrap)

1. Compute ζ̂N and V̂N , and center V̂N .

2. Compute V̂�
N,b = V̂N 
 εb, where 
 denotes the Hadamard product, and εb is an

N -vector of iid draws from a distribution of mean zero and all higher moments 1,

and is independent of V̂N .11

3. Compute ψ̃N(ζ̂N , V̂�
N,b) and HrN(ζ̂N , V̂�

N,b), r = 1, 2, 3.

4. Repeat steps 2-3 for B times to give approximate bootstrap estimates as

Ê(ψ̃N ⊗HrN ) =̇ 1
B

∑B
b=1

[
ψ̃N(ζ̂N , V̂�

N,b) ⊗HrN(ζ̂N , V̂�
N,b)

]
, and

Ê(ψ̃N ⊗ ψ̃N ⊗ ψ̃N ) =̇ 1
B

∑B
b=1

[
ψ̃N(ζ̂N , V̂�

N,b) ⊗ ψ̃N(ζ̂N , V̂�
N,b)⊗ ψ̃N(ζ̂N , V̂�

N,b)
]
.

Note that the common applications of the wild bootstrap method are to handle the

problem of unknown heteroskedasticity, which clearly is not the main purpose of this paper.

In our model, the (transformed) errors are homoskedastic in the usual sense, i.e., variances

are constant. Also, the errors are uncorrelated. However, the transformed errors are,

strictly speaking, heteroskedastic in the sense that their third and higher order moments

may not be constant. The wild bootstrap here aims to capture these non-constant higher-

order moments. Also, there may be higher-order dependence, which the wild bootstrap is

not able to capture. We see in the next section that this can be ignored.

4.2 Validity of the bootstrap method

In discussing the validity of the bootstrap method, we concentrate on the bias correc-

tions. The fact that the elements of the transformed errors VN = {v∗it} are uncorrelated

and homoskedastic (up to second moment) across i and t, and its observed counterpart V̂N

is consistent provide the theoretical base for the proposed iid bootstrap method. However,

these may not be sufficient in general for the classical iid bootstrap method to be strictly

valid, as our estimation requires matching of the higher-order bootstrap moments with

those of v∗it. There are important special cases under which the classical iid bootstrap

method is strictly valid.

First, we note that the original errors {vit} are iid normal, the transformed errors {v∗it}
are again iid normal. Further, Lemma 4.1 shows that if the original errors {vit} are iid with

11We are unaware of the existence of such a distribution. However, the two-point distribution suggested

by Mammen (1993): εb,i = −(
√

5−1)/2 or (
√

5+1)/2 with probability (
√

5+1)/(2
√

5) or (
√

5−1)/(2
√

5),

has mean zero, and second and third moments 1. Another two-point distribution: εb,i = −1 or 1 with

equal probability, has all the odd moments zero and even moments 1. See Liu (1988) and Davidson and

Flachaire (2008) for more details on wild bootstrap.
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mean zero, variance σ2
0 , and cumulants kr = 0, r = 3, 4, . . ., then the transformed errors

{v∗it} will also have mean zero, variance σ2
0, and rth cumulant being zero for r = 3, 4, . . ..

Furthermore, the rth order joint cumulants of the transformed errors are also zero. The

iid bootstrap procedure essentially falls into the general framework of Yang (2015) and

hence its validity is fully established. We have the following proposition.

Proposition 4.1 Suppose the conditions leading to the third-order bias expansion

(3.3) are satisfied by the FE-SPD model. Assume further that the rth cumulant kr of

{vit} is 0, r = 3, . . . , 10. Then the iid bootstrap method stated in Algorithm 4.1 is valid,

i.e., Bias(δ̂bc2
N ) = O(N−3/2) and Bias(δ̂bc3

N ) = O(N−2).

Second, for the important submodel with individual effects only and small T , the

transformed errors, [V ∗
n1, . . . , V

∗
n,T−1] = [Vn1, . . . , Vn,T ]FT,T−1 are iid across i, i.e., the rows

of the matrix [V ∗
n1, . . . , V

∗
n,T−1] are iid whether the original errors are normal or nonnormal,

where N = n(T − 1). As T is small and fixed, the asymptotics depend only on n.

The bootstrap thus proceeds by randomly drawing the rows of the QML estimate of

[V ∗
n1, . . . , V

∗
n,T−1]. We have the following proposition.

Proposition 4.2 Suppose the conditions leading to the third-order bias expansion

(3.3) are satisfied by the FE-SPD model with only individual effects. Assume further

that the rth cumulant kr of {vit} exists, r = 3, . . . , 10, and T is fixed. Then the bootstrap

method making iid draws from the rows of the QML estimates of [V ∗
n1, . . . , V

∗
n,T−1] is valid,

i.e., Bias(δ̂bc2
N ) = O(N−3/2) and Bias(δ̂bc3

N ) = O(N−2).

For the general FE-SPD model with two-way fixed effects, T being small or large,

and the original errors being iid but not necessarily normal, the classical iid bootstrap

may not be strictly valid, because the transformed errors (on which the iid bootstrap

depend) are not guaranteed to be iid, although they are uncorrelated with mean zero

and constant variance σ2
0. In particular, the transformed errors may not be independent,

and their higher-order moments (3rd-order and higher) may not be constant. On the

other hand, making random draws from the empirical distribution function (EDF) of

the centered V̂N gives bootstrap samples that are of iid elements. Thus, the classical iid

bootstrap does not fully mimic or recreate the random structure of VN , rendering its strict

validity questionable. The following proposition says that the wild bootstrap described in

Algorithm 4.2 is valid.

Proposition 4.3 Suppose the conditions leading to the third-order bias expansion

(3.3) are satisfied by the FE-SPD model. Assume further that the rth cumulant kr of

{vit} exists for r = 3, . . . , 10. Then the wild bootstrap method stated in Algorithm 4.2 is

valid for the general FE-SPD model, provided that the joint cumulants of the transformed

errors {v∗it} up to rth order, r = 3, . . . , 10, are negligible.
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Proof: We now present a collective discussion/proof of the Propositions 4.1-4.3. Very

importantly, we want to ‘show’ that the classical iid bootstrap method can give a very

good approximation in cases it is not strictly valid, i.e., the ‘missing parts’ can be ignored

numerically.

Let VnT = (V ′
n1, . . . , V

′
nT )′ be the vector of original errors in Model (2.1), which contains

iid elements of mean zero, variance σ2
0 , cumulative distribution function (CDF) F , and

cumulants kr, r = 3, 4, . . . , 10. Let FnT,N = FT,T−1⊗Fn,n−1 be the nT ×N transformation

matrix. We have

VN = F′
nT,NVnT . (4.7)

For convenience, denote the elements of VN by vi, and the ith column of FnT,N by

fi, i = 1, . . . , N . Let κr(·) denote the rth cumulant of a random variable, and κ(·, . . . , ·)
the joint cumulants of random variables. Let 
 denote the Hadamard product. A vector

raised to rth power is operated elementwise.

From the definition of the bias terms b−s/2, s = 2, 3, we see that b−s/2 ≡ b−s/2(ζ0,κN)

where κN contains the cumulants or joint cumulants of {vi}. From (4.1)-(4.6), it is

clear that the bootstrap estimates of b−s/2 are such that b̂−s/2 ≡ b−s/2(ζ̂N , κ̂
�
N) where

κ̂�
N contains the cumulants of {v�

i } w.r.t. the bootstrap distribution. With the
√
N -

consistency of θ̂N , how the set κ̂�
N match the set κN , becomes central to the validity of

the bootstrap method. Following lemmas reveal their relationship.

Lemma 4.1 If the elements of VnT are iid with mean zero, variance σ2
0 , CDF F , and

higher-order cumulants kr, r = 3, 4, . . ., then,

(a) κ1(vi) = 0, κ2(vi) = σ2
0, and κr(vi) = kr ar,i, r ≥ 3, i = 1, . . . , N ,

(b) κ(vi, vj) = 0 for i �= j, and κ(vi1, . . . , vir) = kr ai1,...,ir , r ≥ 3,

where ar,i = l′nT f r
i , ai1,...,ir = l′nT (fi1 
 · · · 
 fir), and {i1, . . . , ir} are not all the same.

Lemma 4.1 shows clearly that the higher-order cumulants or joint cumulants of {vi} are

proportional to the higher-order cumulants kr of the original errors {vit}. This suggests

that when kr = 0, r = 3, . . . , 10, {vi} are essentially iid and hence the conclusion of

Proposition 4.1 holds in light of the results of Yang (2015) for the iid bootstrap. Similarly,

the conclusion of Proposition 4.2 also holds.

When kr �= 0 for some or all r = 3, . . . , 10, {v′
i} are no longer iid. First, ar,i are

constant across i only when r = 1 and 2, i.e., a1,i = 0 and a2,i = 1. Thus, κr(vi), r ≥ 3,

are not constant across i unless kr = 0. Second, v′
is are not independent as ai1,...,ir �= 0

for r ≥ 3. The latter may cause more problem as it is known that the iid bootstrap is

unable to capture dependence. However, noting that the proportionality constants ai1,...,ir

are all pure numbers, being the sum of elementwise products of the orthonormal vectors
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{fi}, intuitively they should be small, and the larger the r, the smaller the ai1,...,ir .
12

These suggest that the higher-order dependence among {vi} can largely be ignored. The

question left is how well the two sets of cumulants match.

Lemma 4.2 Let v� be a random draw from {vi, i = 1, . . . , N}. Then, under the

conditions of Lemma 4.1, we have

κ�
1(v

�) = 0, κ�
2(v

�) = σ2
0 +Op(N−1/2), and κ�

r(v
�) = krār + Op(N−1/2), r ≥ 3,

where ār = 1
N

∑N
i=1 ar,i, and κ�

r(·) denotes rth cumulant w.r.t. the EDF GN of {vi, i =

1, . . . , N}.

Lemma 4.2 shows that the iid bootstrap is able to capture, to a certain degree, the

higher-order moments of vi (ār versus ar,i), but is unable to capture the higher-order

dependence. However, as argued below Lemma 4.1, the latter does not have a significant

effect as such dependence is weak and negligible. As both {ar,i} and their variability are

not big and get smaller as r increases,13 the results of Lemmas 4.1-4.3 strongly suggest

that the simple iid bootstrap method may be able to give a good approximation in the

situations where the original errors are not far from normal.

Lemma 4.3 Suppose Assumptions A1-A8 and the conditions of Lemma 4.1 hold. Let

v̂� be a random draw from the EDF ĜN of {v̂1, . . . , v̂N}, and v� a random draw from the

EDF GN of {v1 . . . , vN}. Then,

κ�
r(v̂

�) = κ�
r(v

�) + Op(N−1/2), or κr(ĜN) = κr(GN) +Op(N−1/2), r ≥ 3,

where κ�
r(v̂

�) is the rth cumulant of v̂� w.r.t. ĜN , and κ�
r(v

�) is the rth cumulant of v�

w.r.t. GN .

In case of severe nonnormality of the original errors so that the transformed errors are

far from being iid, it may be more important to be able to match the even moments, in

particular the kurtosis, than the odd moments as ar,i is typically small on average with

moderate variability when r is odd, see Footnote 12. This point is also reflected by the
12We are unable to further characterize these quantities. However, as they are pure numbers depending

on n and T through FT,T−1 and Fn,n−1, it should be indicative to present some of their values. With the

eigenvector-based transformations defined above (2.2) and calculated using Matlab eig function, we have,

for n = 100 and T = 3, a1,2,3 = −5.6e−5, a1,2,3,4 = 3.4e−5, and a1,2,3,4,5 = −3.7e−7; and for n = 200, the

same set of numbers become 2.3e−5,−3.8e−6 and 1.3e−8. With Helmert transformations (see Footnote 5),

these numbers become much smaller (< 1.0e−19).
13Again, we are unable to further characterize these pure constants. To have some concrete idea,

we have calculated the mean and standard deviation of {ar,i} for n = 100, T = 3 and r = 3, 4, 5, 6:

(−.0020, .0827), (.1245, .0679), (−.0010, .0425), (.0308, .0299). When n = 500, the same set of values

becomes: (.0008, .0751), (.1141, .0714), (.0010, .0360), (.0263, .0281). With Helmert transformations, these

numbers become slightly bigger.
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fact that the variance of the joint score function (given in Theorem A.1) is free from the

third cumulant of the original error. In this spirit, the simple two-point distribution with

equal probability described in Footnote 10 may provide satisfactory results.

Lemma 4.4 Suppose Assumptions A1-A8 and the conditions of Lemma 4.1 hold. Let

v̂�
i = v̂iε

�, where ε� is independent of v̂i, having a distribution with mean 0 and rth

moment 1, r ≥ 2. Then,

E�(v̂�
i ) = 0, and E�[(v̂�

i )
r] = v̂r

i , r ≥ 2,

where E� corresponds to the distribution of ε�.

Lemma 4.3 shows that moving from the model errors to their observed counterparts

introduces errors of smaller order and hence can be ignored asymptotically. With the

results of Lemma 4.4, the validity of the wild bootstrap follows. The proofs of Lemmas

4.1-4.4 are given in Appendix C.

Variance corrections. A final note is given to the variance correction before ending

this section. Note that the bootstrap estimate of a bias term or a variance term typically

has a bias of order O(N−1) multiplied by the order of that term, i.e., Bias(b̂−1) = O(N−2),

Bias(v̂−1) = O(N−2), Bias(v̂−3/2) = O(N−5/2), etc. This is sufficient for achieving a third-

order bias correction, but not for a third-order variance correction. Thus, to achieve a

third-order variance correction (up to O(N−2)), a further correction on the bootstrap es-

timate v̂−1 of v−1 is desirable. Yang (2015) proposed a method based on the first-order

variance term obtained from the joint estimating function. To avoid algebraic compli-

cations, in the current paper, we adopt a simple approximation method: replacing v̂−1

evaluated at the original QMLE θ̂N , by v̂bc
−1 evaluated at the second-order bias-corrected

QMLE θ̂bc2
N . Monte Carlo results given in the next section show that this approximation

works well.

To have a third-order variance correction for δ̂bc3
N , we also need to estimate ACov(δ̂N , b̂−1)

in (3.6). Following Yang (2015), we write ACov(δ̂N , b̂−1) = ACov(δ̂N , ζ̂N)E(b′−1,ζ0
), where

b−1,ζ0 is the partial derivative of b−1 with respect to ζ ′0, and ACov(δ̂N , ζ̂N) is the submatrix

of

E
(

∂
∂θ′0
ψN(θ0)

)−1Var
(
ψN (θ0)

)
E

(
∂

∂θ′0
ψN(θ0)

)−1
,

where ψN (θ) = ∂
∂θ′ �N(θ). The detailed expressions of ψN (θ) = ∂

∂θ′ �N (θ), Var
(
ψN(θ0)

)
,

and E
(

∂
∂θ′0
ψN(θ0)

)
are given in Theorem A.1 in Appendix A. We estimate E(b−1,ζ0) by

b̂−1,ζ̂N
, the numerical derivatives. E( ∂

∂θ′0
ψN(θ0)) can simply be estimated by the plug-in

method as it involves only the parameter-vector θ0. Var( ∂
∂θ0
�N (θ0)) involves k4, the fourth

cumulant of the original errors, besides the parameter-vector θ0. The results of Lemmas

4.1-4.3 suggest that k4 can be consistently estimated by

k̂4 = ā−1
4 κ4(V̂N),
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where κ4(V̂N) is the fourth sample cumulant of the QML residuals V̂N , and ā4 is given

in Lemma 4.2.

Finally, to estimate V̂ar(β̂bc2
N ) in (3.15): we need to (i) calculate the estimates of all the

non-stochastic quantities with analytical expressions by plugging in δ̂bc2
N and β̂bc2

N for δ0
and β0, (ii) calculate the new QML residuals based on δ̂bc2

N and β̂bc2
N , and (iii) bootstrap

the new residuals to give bootstrap estimates of the other quantities in Var(β̂bc2
N ), including

ΩN and E(H2N), and hence the final estimate V̂ar(β̂bc2
N ) of Var(β̂bc2

N ). For simplicity, the

estimates of ΩN and E(H2N) from the early stage bootstrap based on the original QMLEs

δ̂N and β̂N can be directly used.

5 Monte Carlo Study

We present Monte Carlo results to show (i) the finite sample performance of the QMLE

δ̂N and the bias-corrected QMLEs δ̂bc2
N and δ̂bc3

N , (ii) the impact of bias corrections for δ̂N
on the estimations for β and σ2, and (iii) the impact of bias and variance correction on

the inferences for spatial or regression coefficients. The simulations are carried out based

on the following data generation process (DGP):

Ynt = λ0W1nYnt+X1ntβ10+X2ntβ20+cn0+αt0ln+Unt, Unt = ρ0W2nUnt+Vnt, t = 1, . . . , T.

For all the Monte Carlo experiments, β0 = (β10, β20)′ is set to (1, 1)′, σ2
0 = 1, λ0 and ρ0

take values form {−0.5,−0.25, 0, 0.25, 0.5}, n = {25, 50, 100, 200, 500}, and T = {3, 10}.
Each set of Monte Carlo results is based on M = 5000 Monte Carlo samples, and B = 999

bootstrap samples within each Monte Carlo sample. The FT,T−1 and Fn,n−1 defined

above (2.2) are used and calculated using Matlab eig function. The weight matrices, the

regressors, and the idiosyncratic errors are generated as follows.

Weights Matrices. We use four different methods for generating the spatial weights

matrices W1n and W2n: (i) Rook contiguity, (ii) Queen contiguity, (iii) Circular

neighbors, and (iv) Group Interaction. The degree of spatial dependence specified by

layouts (i) − (iii) are all fixed while in (iv) it may grow with the sample size. This is

attained by relating the number of groups, k, to the sample size n, e.g., k = n0.5. In this

case, the degree of spatial dependence is reflected by the average group size n/k. For more

details on generating spatial weights matrices, see Yang (2015).

Regressors. The exogenous regressors are generated according to REG1: {Xknt}
iid∼

N (0, 1)/
√

2, and are independent across k = 1, 2, and t = 1, . . .T . In case when the spatial

dependence is in the form of group interaction, the regressors can also be generated

according to REG2: the ith value of the kth regressor in the gth group is such that Xkt,ig
iid∼

(2zg + zig)/
√

10, where (zg, zig)
iid∼ N (0, 1) when group interaction scheme is followed;

{Xkt,ig} are independent across k and t, {zg} iid, and {zig} iid.
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Error distributions. vit = σ0eit are generated according to DGP1: {eit} are iid

standard normal; DGP2: {en,i} are iid normal mixture with 10% of values from N (0, 4)

and the remaining from N (0, 1), standardized to have mean 0 and variance 1; and DGP3:

{en,i} iid log-normal (i.e., log eit
iid∼ N (0, 1)), standardized to have mean 0 and variance 1.

The estimators of spatial parameters. The finite sample performance of the QM-

LEs and bias-corrected QMLEs of the spatial parameters is investigated. Monte Carlo

results are summarized in Tables 1a, 1b, 2, 3a and 3b, where Tables 1a-1b correspond

to the model with ρ = 0, i.e., the spatial lag dependence model; Table 2 the model with

λ = 0, i.e., the spatial error dependence model; and Tables 3a-3b the general model.

All the reported results correspond to the iid bootstrap method given in Algorithm 4.1.

The results (unreported for brevity) using the wild bootstrap method described in Algo-

rithm 4.2 show that the wild bootstrap gives almost identical results as the iid bootstrap,

consistent with remarks below Lemma 4.2.

From Tables 1a and 1b, we see that regular QMLEs of the spatial parameters can be

very biased, depending on the spatial layouts, the true values of the parameters, and the

way that the regressors are generated. First, when the number of cross sectional units

increases from 50 to 500, the magnitude of the bias becomes small. The bias is apparent

for n = 50 and negligible for n = 500, which implies that bias correction is especially

needed for the data with a small sample size. Also, when the spatial weights matrix

becomes denser (from the queen matrix to the group interaction matrix), the bias of regular

QMLEs becomes larger. When the true value of spatial effect parameter becomes larger in

absolute value, the bias becomes larger. Either reducing the magnitude of the regression

parameters β or increasing the value of the error standard deviation increases the bias of

the QMLE of the spatial parameter. The magnitude of the bias is also influenced by the

way that the regressors are generated. The DGPs with normal errors and lognormal errors

give a smaller bias than the DGP with normal mixture errors. For the bias correction, we

see that our bias correction procedure works very well, independent of the spatial layouts,

model parameters, and the way the regressors being generated. We see that even for

the small sample case of n = 50, the bias correction procedure produces nearly unbiased

estimates. By comparing λ̂bc2
n and λ̂bc3

n , we see that in most of the situations considered,

a second-order bias correction has essentially removed the bias of the QMLEs and the

third-order bias correction might not be needed.

The results in Table 2 show that the patterns observed from the spatial lag model

for the regular QMLEs and bias corrections generally hold for the spatial error model.

A noticeable difference is that the regular QMLE of the spatial error parameter can be

much more biased and the bias can be much more persistent than the QMLE of the

spatial lag parameter in the spatial lag model. Therefore, the bias correction procedures

developed in the current paper works even more effectively for the spatial error model.

Furthermore, unlike the case of spatial lag model, the magnitude of β and σ does not
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affect the performance of ρ̂N much.

From Tables 3a and 3b where the third-order bias correction results are omitted for

brevity, we see that the general patterns we observed for the two special models hold

for the general model as well. However, we observe that the QMLE of the spatial error

parameter can be much more biased than the QMLE of the spatial lag parameter, in

particular when the regressors are generated in a non-iid manner. The bias of the QMLE

of the spatial error parameter can be very persistent and even when n = 500, there can

still exist very noticeable bias.

The results show that in general the QMLEs of the spatial panel data models need to

be bias-corrected even when sample size is not small, and that the proposed bias correction

method is very effective in removing the bias. As far as the bias correction is concerned,

a simple iid bootstrap may well serve the purpose. The method can easily be applied and

thus is recommended to the practitioners.

The estimators of non-spatial parameters. The finite sample properties of β̂N and

σ̂2
N , and their bias-corrected versions β̂bc

N and σ̂2,bc
N defined in Section 3.4 are investigated.

Monte Carlo results reveal some interesting phenomena. The biases of the non-spatial

estimators β̂N and σ̂2
N depend very much on whether λ̂N is biased, not much on whether

ρ̂N is biased. In general the biases of β̂N and σ̂2
N are not problems of serious concern (at

most 6-7% for the experiments considered). Consistent with the discussions in Section 3.4,

β̂bc
N is nearly unbiased in general. When the error distribution is skewed, σ̂2,bc

N may still

encounter a bias of less than 5% when n = 50 and T = 3, and in this case the method given

in Section 3.4 can be applied for further bias correction. Partial results are summarized

in Table 4.

Inferences following bias and variance corrections. To demonstrate the poten-

tial gains from bias and variance corrections, we present Monte Carlo results concerning

the finite sample performance of various tests for spatial effects, and the tests concern-

ing the regression coefficients, presented in Section 3.5. Partial results are summarized

in Tables 5a-5c, and 6. More comprehensive results are available from the authors upon

request.

Table 5a presents the empirical sizes of, respectively, the joint tests for the lack of both

SLD and SED effects given in (3.12), and the one-directional tests for the lack of SLD

effect allowing the presence of SED effect or the lack of SED effect allowing the presence

of SLD effect, given in (3.13). The results show that the third-order bias and variance

corrections on the spatial estimators lead to tests that can have a much better finite sample

performance over the tests based on the original estimates and asymptotic variances. The

tests based on second-order corrections offer improvements over the asymptotic ones but

may not be satisfactory. All the reported results are based on the wild bootstrap with the

perturbation distribution being the simple two-point (1 and −1) distribution with equal

probability. Consistent with the results of Section 4.2, in case of severe nonnormality
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such as the lognormal errors, the wild bootstrap perform better than the iid bootstrap; in

case of normal errors, the iid bootstrap performs slightly better than the wild bootstrap

and both show excellent performance of the third-order corrected Wald tests. Due to its

robustness, the wild bootstrap may be a better choice in the case of testing for spatial

effects. Tables 5b and 5c present the empirical sizes of the tests given in (3.14) for the two

simpler models, from which the same conclusions are drawn.

Table 6 presents partial results for the empirical sizes of the tests for the equality of

the two regression slopes given in (3.15), based on iid bootstrap. The results show that the

tests with merely second-order bias and variance corrections significantly outperforms the

standard tests with the original estimate and asymptotic variance. With smaller values of

the slope parameters, the size distortion for the standard tests becomes more persistent.

The results (unreported for brevity) shows that when the spatial dependence becomes

weaker the performance of the asymptotic test improves, but is still outperformed by the

proposed bias-corrected test.

6 Conclusion and Discussion

We have introduced a general method for finite sample bias and variance corrections of

the QMLEs of the two-way fixed effects spatial panel data models where the spatial inter-

actions can be in the form of either spatial lag or spatial error, or both, and the panels can

be either short or long. We have demonstrated that bias and variance corrections lead to

refined inferences for the spatial effects as well as covariate effects. The proposed methods

are seen to be very easy to implement, and very effective. If only bias-correction is of

concern, a second-order correction using iid bootstrap suffices. For improved inferences

for the spatial parameters, a third-order variance correction seems necessary and a wild

bootstrap method seems to perform better. However, for improved inferences concern-

ing the regression coefficients (the covariate effects), the second-order bias and variance

corrections seem sufficient, and the resulting inferences can be much more reliable than

those based on the standard asymptotic methods. The latter observation is perhaps the

most important one in this study as being able to assess the covariate effects in a reliable

manner may be the most desirable feature of the econometric modelling activities. All the

methods proposed in the current paper can easily be built into the standard statistical

software to facilitate the practical applications. Further extensions of the proposed meth-

ods are desirable and possible such as the FE-SPD models of higher-order spatial effects,

but are beyond the scope of the paper. Nevertheless, the results presented in this paper

reinforce that the general methodology of bias and variance corrections of Yang (2015),

based on stochastic expansion and bootstrap, is indeed a promising approach in handling

the bias issues, and in providing refined inference methods.
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Appendix A: Some First-Order Results

The following list summarizes some frequently used notations in the paper:

• δ = (λ, ρ)′, and δ0 is its true value.

• For an integerm, Jm = Im− 1
m lml

′
m where lm is anm×1 vector of ones. [Fm,m−1,

1√
m
lm]

is the eigenvector matrix of Jm, where Fm,m−1 corresponds to eigenvalue of ones.

• W ∗
hn = F ′

n,n−1WhnFn,n−1, h = 1, 2.

• An(λ) = In − λW1n and Bn(ρ) = In − ρW2n.

• [Z∗
n1, . . . , Z

∗
n,T−1] = F ′

n,n−1[Zn1, . . . , ZnT ]FT,T−1 for any n×T matrix [Zn1, · · · , ZnT ].

• YN = (Y ∗′
n1, . . . , Y

∗′
n,T−1)

′, XN = (X∗′
n1, . . . , X

∗′
n,T−1)

′, and WhN = IT−1 ⊗W ∗
hn, h =

1, 2.

• AN(λ) = IN − λW1N , and BN (ρ) = IN − ρW2N .

• MN(ρ) = B′
N(ρ){IN −XN(ρ)[X′

N(ρ)XN(ρ)]−1X′
N(ρ)}BN(ρ).

The following set of regularity conditions from Lee and Yu (2010b) are sufficient for

the
√
N -consistency of the QMLE δ̂nT defined by maximizing (2.8), and hence the

√
N -

consistency of the QMLEs β̂N and σ̂2
N of β and σ2, which are clearly essential for the

development of the higher-order results for the QMLEs.

Assumption A1. W1n and W2n are row-normalized nonstochastic spatial weights

matrices with zero diagonals.

Assumption A2. The disturbances {vit}, i = 1, 2, . . . , n and t = 1, 2, . . . , T, are iid

across i and t with zero mean, variance σ2
0 and E|vit|4+η <∞ for some η > 0.

Assumption A3. An(λ) and Bn(ρ) are invertible for all λ ∈ Λ and ρ ∈ P, where

Λ and P are compact intervals. Furthermore, λ0 is in the interior of Λ, and ρ0 is in the

interior of P.14

Assumption A4. The elements of Xnt are nonstochastic, and are bounded uniformly

in n and t. Under the setting in Assumption A6, the limit of 1
N X′

NXN exists and is

nonsingular.

Assumption A5. W1n and W2n are uniformly bounded in both row and column sums

in absolute value (for short, UB).15 Also A−1
n (λ) and B−1

n (ρ) are UB, uniformly in λ ∈ Λ

and ρ ∈ P.
14Due to the nonlinearity of λ and ρ in the model, compactness of Λ and P is needed. However, the

compactness of the space of β and σ2 is not necessary because the β and σ2 estimates given λ and ρ are

least squares type estimates.
15A (sequence of n×n) matrix Pn is said to be uniformly bounded in row and column sums in absolute

value if supn≥1 ‖Pn‖∞ < ∞ and supn≥1 ‖Pn‖1 < ∞, where ‖Pn‖∞ = sup1≤i≤n

Pn
j=1 |pij,n| and ‖Pn‖1 =

sup1≤j≤n

Pn
i=1 |pij,n| are, respectively, the row sum and column sum norms.
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Assumption A6. n is large, where T can be finite or large.16

Assumption A7. Either (a): limn→∞ HN (ρ) is nonsingular ∀ρ ∈ P and limn→∞Q1n(ρ) �=
0 for ρ �= ρ0; or (b): limn→∞ Q2n(δ) �= 0 for δ �= δ0, where

HN (ρ) = 1
N (XN ,W1NA−1

N XNβ0)′B′
N (ρ)BN(ρ)(XN ,W1NA−1

N XNβ0),

Q1n(ρ) = 1
n−1

(
ln

∣∣σ2
0B

−1′
n JnB

−1
n

∣∣ − ln
∣∣σ2

n(ρ)B−1
n (ρ)′JnB

−1
n (ρ)

∣∣) ,
Q2n(δ) = 1

n−1

(
ln

∣∣σ2
0B

−1′
n A−1′

n JnA
−1
n B−1

n

∣∣ − ln
∣∣σ2

n(δ)B−1
n (ρ)′A−1

n (λ)′JnA
−1
n (λ)B−1

n (ρ)
∣∣) ,

σ2
n(δ) = σ2

0
n−1 tr[(Bn(ρ)An(λ)A−1

n B−1
n )′Jn(Bn(ρ)An(λ)A−1

n B−1
n )], and σ2

n(ρ) = σ2
n(δ)|λ=λ0.

Assumption A8. The limit of 1
(n−1)2

[
tr(Cs

nC
s
n)tr(Ds

nD
s
n) − tr2(Cs

nD
s
n)

]
is strictly

positive, where Cn = JnG̈n − trJnG̈n
n−1 Jn and Dn = JnHn − trJnHn

n−1 Jn, with Hn = W2nB
−1
n

and G̈n = Bn(W1nA
−1
n )B−1

n .

Theorem A.1 (Lee and Yu, 2010) Under Assumptions A1-A8, we have θ̂N
p−→ θ0,

and √
N(θ̂N − θ0)

D−→ N
[
0, limN→∞ Σ−1

N (θ0)ΓN(θ0)Σ−1
N (θ0)

]
, (A.1)

where ΣN(θ0) = 1
N E[ ∂2

∂θ0∂θ′0
�N (θ0)] assumed to be positive definite for large enough N , and

ΓN (θ0) = 1
N E[( ∂

∂θ0
�N (θ0))( ∂

∂θ0
�N (θ0))′] assumed to exist.

The results of Theorem A.1 serve two purposes: one is the
√
N -consistency of θ̂N ,

which is crucial for the higher-order results developed in this paper, and the other is the

asymptotic VC matrix of θ̂N , which is needed in the third-order variance correction. With

the set of compact notations introduced in Section 2, the component ΣN(θ0) of the VC

matrix takes the following form:

ΣN (θ0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
Nσ2

0
X′

NB′
NBNXN , 0, 1

Nσ2
0
X′

NB′
NηN , 0

∼, 1
2σ4

0
, 1

Nσ2
0
tr(B′−1

N GNBN ), 1
Nσ2

0
tr(W2NB−1

N )

∼, ∼, T1N + T ∗
1N + 1

Nσ2
0
η′

NηN , T ∗
2N

∼, ∼, ∼, K1N +K∗
1N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where ηN = GNXNβ0, T ∗
1N = 1

N tr(B′−1
N G′

NB′
NBNGNB−1

N ), K∗
1N = 1

N tr(B′−1
N W′−1

2N W−1
2NB−1

N ),

and T ∗
2N = 1

N tr(B′−1
N G′

NW2N + B′−1
N G′

NB′
NW2NB−1

N ).

To obtain the other component ΓN (θ0) of the VC matrix, it is helpful to express the

score vector in terms of the original errors using (4.7):

1
N

∂�N(θ0)
∂θ0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
Nσ2

0
A′

1nT VnT

− 1
2σ2

0
+ 1

2Nσ4
0
V′

nT A′
2nT VnT

−T0N + 1
Nσ2

0
V′

nT A′
3nT VnT + 1

Nσ2
0
b′

nT VnT

−K0N + 1
Nσ2

0
V′

nT A′
4nT VnT

16The consistency and asymptotic normality of QML estimators still hold under a finite n and a large

T , but this case is of less interest as the incidental parameter problem does not occur in this model.
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where bnT = FnT,NBNηN , A1nT = FnT,NBNXN , A2nT = FnT,NF′
nT,N , A3nT = FnT,NBN

·GNB−1
N F′

nT,N , and A4nT = FnT,NW2NB−1
N F′

nT,N . Letting ainT be the diagonal vector of

AinT , and denoting

Πij = 1
N tr[AinT (AjnT + A′

jnT )] + 1
N k4a′inT ajnT ,

we obtain, referring to Lemma A.4 of Lee and Yu (2010b) and its proof,

ΓN (θ0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
Nσ2

0
X′

NB′
NBNXN , 0, 1

Nσ2
0
A′

1nTbnT , 0

∼, 1
4σ4

0
Π22,

1
2σ2

0
Π23,

1
2σ2

0
Π24

∼, ∼, Π33 + 1
Nσ2

0
b′

nT bnT , Π34

∼, ∼, ∼, Π44

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Appendix B: Some Higher-Order Results

Derivatives of MN(ρ) defined below (2.7).

We have MN(ρ) = CN (ρ) − CN (ρ)XNDN(ρ)X′
NCN (ρ) where CN (ρ) = B′

N(ρ)BN(ρ)

and DN(ρ) = [X′
NCN (ρ)XN ]−1. Let C(k)

N (ρ) and D
(k)
N (ρ) be, respectively, the kth order

partial derivatives of CN (ρ) and DN(ρ) w.r.t. ρ. The derivatives of MN(ρ) are:

M(1)
N (ρ) = C

(1)
N (ρ)−C

(1)
N (ρ)XNDN (ρ)X′

NCN (ρ)−CN (ρ)XND
(1)
N (ρ)X′

NCN (ρ)

−CN (ρ)XNDN(ρ)X′
NC

(1)
N (ρ),

M(2)
N (ρ) = C

(2)
N (ρ)−C

(2)
N (ρ)XNDN (ρ)X′

NCN (ρ)− 2C(1)
N (ρ)XND

(1)
N (ρ)X′

NCN (ρ)

−2C(1)
N (ρ)XNDN(ρ)X′

NC
(1)
N (ρ)− 2CN (ρ)XND

(1)
N (ρ)X′

NC
(1)
N (ρ)

−CN (ρ)XND
(2)
N (ρ)X′

NCN (ρ)−CN (ρ)XNDN (ρ)X′
NC

(2)
N (ρ)

M(3)
N (ρ) = −3C(2)

N (ρ)XND
(1)
N X′

NCN (ρ)− 3C(2)
N (ρ)XNDN (ρ)X′

NC
(1)
N (ρ)

−3C(1)
N (ρ)XND

(2)
N (ρ)X′

NCN (ρ)− 6C(1)
N (ρ)XND

(1)
N (ρ)X′

NC
(1)
N (ρ)

−3C(1)
N (ρ)XNDN(ρ)X′

NC
(2)
N (ρ)− 3CN (ρ)XND

(2)
N (ρ)X′

NC
(1)
N (ρ)

−3CN (ρ)XND
(1)
N (ρ)X′

NC
(2)
N (ρ)− CN (ρ)XND

(3)
N (ρ)X′

NCN (ρ)

M(4)
N (ρ) = −6C(2)

N (ρ)XND
(2)
N X′

NCN (ρ)− 12C(2)
N (ρ)XND

(1)
N (ρ)X′

NC
(1)
N (ρ)

−6C(2)
N (ρ)XNDN(ρ)X′

NC
(2)
N (ρ)− 4C(1)

N (ρ)XND
(3)
N (ρ)X′

NCN (ρ)

−4CN (ρ)XND
(3)
N (ρ)X′

NC
(1)
N (ρ)− 12C(1)

N (ρ)XND
(2)
N (ρ)X′

NC
(1)
N (ρ)

−12C(1)
N (ρ)XND

(1)
N (ρ)X′

NC
(2)
N (ρ)− 6CN (ρ)XND

(2)
N (ρ)X′

NC
(2)
N (ρ)

−CN (ρ)XND
(4)
N (ρ)X′

NCN (ρ).

For the derivatives of CN (ρ), we have C(1)
N (ρ) = −W′

2NBN (ρ)−B′
N(ρ)W2N , C(2)

N (ρ) =

2W′
2NW2N , and C

(k)
N (ρ) = 0, k ≥ 3. For the derivatives of DN (ρ), denoting PN (ρ) =

X′
NCN (ρ)XN and its kth derivative P (k)

N (ρ), we have,

D
(1)
N (ρ) = −DN (ρ)P (1)

N (ρ)DN(ρ),

D
(2)
N (ρ) = −D(1)

N (ρ)P (1)
N (ρ)DN(ρ)−DN(ρ)P (2)

N (ρ)DN(ρ)−DN(ρ)P (1)
N (ρ)D(1)

N (ρ),
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D
(3)
N (ρ) = −D(2)

N (ρ)P (1)
N (ρ)DN(ρ)−DN(ρ)P (1)

N (ρ)D(2)
N (ρ)− 2D(1)

N (ρ)P (2)
N (ρ)DN(ρ)

−2D(1)
N (ρ)P (1)

N (ρ)D(1)
N (ρ)− 2DN(ρ)P (2)

N (ρ)D(1)
N (ρ),

D
(4)
N (ρ) = −D(3)

N (ρ)P (1)
N (ρ)DN(ρ)−DN(ρ)P (1)

N (ρ)D(3)
N (ρ)− 3D(2)

N (ρ)P (2)
N (ρ)DN(ρ)

−3D(2)
N (ρ)P (1)

N (ρ)D(1)
N (ρ)− 3D(1)

N (ρ)P (1)
N (ρ)D(2)

N (ρ)− 3DN(ρ)P (2)
N (ρ)D(2)

N (ρ)

−6D(1)
N (ρ)P (2)

N (ρ)D(1)
N (ρ).

Clearly, P (k)
N (ρ) can be obtained from C

(k)
N (ρ), and both are zero when k ≥ 3.

Additional quantities required in (3.10).

Letting E(Q(1)
N ) = (s1, s2), qN = (s3, s4) and E[Q(2)

N (δ0) = (s5, s6, s7, s8), we have

s1 = −2β′0X
′
NG′

1NMNXNβ0 − 2σ2
0tr[GNMN(B′

NBN )−1],

s2 = 2β′0X
′
NM(1)

N XNβ0 + σ2
0tr[M

(1)
N (B′

NBN)−1],

s3 = −4β′0X
′
NG′

1NMNB−1
N VN − 2V′

NB′
NGNMNB−1

N VN + 2σ2
0tr[GNMN(B′

NBN )−1],

s4 = 2β′0X
′
NM(1)

N B−1
N VN + V′

NB′ −1
N M(1)

N B−1
N VN − σ2

0tr[M
(1)
N (B′

NBN)−1],

s5 = 2β′0X
′
NG′

1NMNGNXNβ0 + 2σ2
0tr[G′

1NMNGN (B′
NBN )−1],

s6 = q7 = −2β′0X
′
NG′

1NM(1)
N XNβ0 − 2σ2

0tr[GNM(1)
N (B′

NBN )−1],

s8 = β′0X
′
NM(2)

N XNβ0 + σ2
0tr[M(2)

N (B′
NBN )−1],

where MN ≡ MN(ρ0) and M(k)
N ≡ M(k)

N (ρ0).

Appendix C: Proofs for Section 4

Proof of Lemma 4.1: The results of (a) follows from the following properties of

cumulants: for two independent random variables X and Y and a constant c, (i) κ1(X +

c) = κ1(X) + c, (ii) κr(X + c) = κr(X), r ≥ 2, (iii) κr(cX) = crκr(X), and (iv) κr(X +

Y ) = κr(X) + κr(Y ). See, e.g., Kendall and Stuart (1969, Sec. 3.12). The results of (b)

follows from the definition of the joint cumulants, and some tedious derivations.

Proof of Lemma 4.2: Note that the rth cumulant w.r.t. the EDF GN of {vi, i =

1, . . . , N} is just the rth sample cumulant of {vi, i = 1, . . . , N}. This immediately gives

κ�
1(v

�) = 1
N

∑N
i=1 vi = 0.

To show κ�
2(v

�) = σ2
0 + Op(N−1/2), note that E(κ�

2(v
�)) = 1

N E(V′
NVN) = σ2

0. From

Lemma 4.1, we have Var(v2
i ) = k4a4,i + 2σ4

0, Cov(v2
i , v

2
j) = k4ai,i,j,j = k4

∑N
m=1 f

2
mif

2
mj,

and thus

Var( 1
N V′

NVN) = 1
N2

∑N
i=1 Var(v2

i ) + 2
N2

∑N
i=1

∑N
j 	=i Cov(v2

i , v
2
j )

= 1
N (k4ā4 + 2σ4

0) + 2
N2k4

∑N
i=1

∑N
j 	=i

∑N
m=1 f

2
mif

2
mj

= 1
N (k4ā4 + 2σ4

0) + 2
N2k4

∑N
i=1

∑N
j=1

∑N
m=1 f

2
mif

2
mj − 2

N k4ā4

= 1
N (k4ā4 + 2σ4

0) + 2
N2k4

∑N
m=1(

∑N
i=1 f

2
mi)(

∑N
j=1 f

2
mj) − 2

N k4ā4

= O(N−1),
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due to the fact that
∑N

i=1 f
2
mi is bounded, uniformly in m = 1, 2, . . . , nT . It follows by the

generalized Chebyshev’s inequality that κ�
2(v

�) = σ2
0 + Op(N−1/2).

For the general results with r ≥ 3, it is easy to verify that E(κ�
r(v�)) = krār+O(N−1/2).

By the results of Lemma 4.1 and the fact that
∑N

i=1 |fmi|r is bounded, uniformly in m =

1, 2, . . . , nT , it is straightforward, though tedious, to show that Var(κ�
r(v

�)) = O(N−1).

The result thus follows.

Proof of Lemma 4.3: As V̂N is defined by replacing θ0 in VN by θ̂N , the result

follows directly from the
√
N-consistency of θ̂N .

Proof of Lemma 4.4: The proof is trivial.
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Table 1a. Empirical Mean[rmse](sd) of Estimators of λ, 2FE-SPD Model with SLD, T = 3, β = (1, 1)′, σ = 1

λ λ̂N λ̂bc2
N λ̂bc3

N λ̂N λ̂bc2
N λ̂bc3

N

(a) Queen Contiguity, REG1 (b) Group Interaction, REG2

Normal Error, n=50

.50 .484[.120](.119) .502[.120](.120) .502[.120](.120) .469[.095](.089) .497[.088](.088) .499[.088](.088)

.25 .234[.142](.141) .248[.143](.143) .250[.143](.143) .210[.130](.124) .250[.123](.123) .251[.123](.123)

.00 -.010[.158](.158) .001[.161](.161) .002[.161](.161) -.049[.167](.159) -.001[.160](.160) .001[.160](.160)

-.25 -.258[.161](.161) -.251[.164](.164) -.250[.165](.165) -.303[.189](.182) -.250[.184](.184) -.248[.184](.184)

-.50 -.504[.163](.163) -.503[.166](.166) -.502[.167](.167) -.565[.214](.204) -.509[.208](.208) -.507[.208](.208)

Normal Mixture, n=50

.50 .483[.119](.117) .500[.118](.118) .501[.118](.118) .470[.091](.086) .498[.084](.084) .499[.084](.084)

.25 .238[.139](.139) .253[.141](.141) .254[.141](.141) .209[.128](.121) .248[.120](.120) .249[.120](.120)

.00 -.013[.155](.154) -.002[.157](.157) -.001[.157](.157) -.048[.160](.152) -.001[.153](.153) .001[.153](.153)

-.25 -.257[.158](.158) -.251[.161](.161) -.250[.162](.162) -.301[.188](.181) -.248[.182](.182) -.247[.183](.183)

-.50 -.504[.163](.163) -.503[.166](.166) -.503[.167](.167) -.556[.206](.199) -.500[.203](.203) -.498[.203](.203)

Lognormal Error, n=50

.50 .485[.111](.110) .501[.111](.111) .502[.111](.111) .470[.090](.085) .497[.083](.083) .498[.083](.083)

.25 .239[.133](.133) .253[.134](.134) .254[.134](.134) .212[.122](.116) .249[.115](.115) .251[.115](.115)

.00 -.010[.146](.146) .001[.149](.149) .002[.149](.149) -.045[.154](.147) .000[.147](.147) .002[.147](.147)

-.25 -.255[.151](.151) -.249[.154](.154) -.248[.154](.154) -.302[.178](.171) -.251[.173](.173) -.250[.173](.173)

-.50 -.498[.152](.152) -.499[.155](.155) -.499[.156](.156) -.556[.204](.196) -.503[.200](.200) -.501[.200](.200)

Normal Error, n=100

.50 .493[.079](.078) .502[.078](.078) .502[.078](.078) .482[.067](.065) .500[.064](.064) .501[.064](.064)

.25 .243[.095](.095) .251[.095](.095) .252[.095](.095) .222[.096](.092) .248[.092](.092) .248[.092](.092)

.00 -.007[.110](.109) .000[.110](.110) .000[.110](.110) -.031[.123](.119) .000[.120](.120) .001[.120](.120)

-.25 -.255[.114](.114) -.250[.115](.115) -.250[.115](.115) -.289[.146](.141) -.254[.143](.143) -.253[.143](.143)

-.50 -.503[.117](.117) -.501[.118](.118) -.501[.118](.118) -.538[.162](.158) -.503[.162](.162) -.503[.162](.162)

Normal Mixture, n=100

.50 .490[.078](.078) .499[.078](.078) .500[.078](.078) .482[.067](.065) .500[.065](.065) .500[.065](.065)

.25 .241[.095](.095) .249[.095](.095) .250[.095](.095) .224[.095](.091) .250[.091](.091) .250[.091](.091)

.00 -.006[.106](.106) .001[.107](.107) .002[.107](.107) -.034[.122](.117) -.002[.118](.118) -.002[.118](.118)

-.25 -.255[.112](.112) -.250[.113](.113) -.250[.113](.113) -.286[.144](.140) -.251[.142](.142) -.250[.142](.142)

-.50 -.502[.117](.117) -.499[.119](.119) -.499[.119](.119) -.535[.160](.156) -.500[.159](.159) -.500[.159](.159)

Lognormal Error, n=100

.50 .492[.075](.075) .501[.075](.075) .501[.075](.075) .482[.065](.062) .500[.062](.062) .500[.062](.062)

.25 .242[.091](.091) .250[.091](.091) .250[.091](.091) .225[.093](.090) .250[.090](.090) .250[.090](.090)

.00 -.006[.102](.102) .001[.103](.103) .001[.103](.103) -.029[.116](.113) .001[.113](.113) .002[.113](.113)

-.25 -.255[.110](.110) -.250[.111](.111) -.250[.111](.111) -.283[.138](.134) -.249[.136](.136) -.248[.136](.136)

-.50 -.503[.112](.112) -.500[.113](.113) -.500[.113](.113) -.526[.157](.154) -.492[.159](.159) -.495[.159](.159)

Normal Error, n=500

.50 .498[.033](.033) .500[.033](.033) .500[.033](.033) .495[.034](.033) .500[.033](.033) .500[.033](.033)

.25 .249[.040](.040) .251[.041](.041) .251[.041](.041) .242[.050](.049) .249[.049](.049) .249[.049](.049)

.00 -.001[.047](.047) .000[.047](.047) .000[.047](.047) -.009[.065](.064) .000[.065](.065) .000[.065](.065)

-.25 -.252[.050](.050) -.251[.050](.050) -.251[.050](.050) -.260[.080](.079) -.249[.079](.079) -.249[.079](.079)

-.50 -.501[.050](.050) -.501[.050](.050) -.501[.050](.050) -.514[.096](.095) -.501[.095](.095) -.501[.095](.095)

Normal Mixture, n=500

.50 .498[.033](.033) .500[.033](.033) .500[.033](.033) .495[.034](.033) .500[.033](.033) .500[.033](.033)

.25 .249[.040](.040) .250[.040](.040) .250[.040](.040) .242[.050](.049) .249[.049](.049) .249[.049](.049)

.00 -.002[.045](.045) -.001[.045](.045) -.001[.045](.045) -.007[.066](.066) .002[.066](.066) .002[.066](.066)

-.25 -.251[.048](.048) -.250[.048](.048) -.250[.048](.048) -.261[.081](.081) -.250[.081](.081) -.250[.081](.081)

-.50 -.501[.050](.050) -.500[.050](.050) -.500[.050](.050) -.514[.095](.094) -.501[.094](.094) -.501[.094](.094)

Lognormal Error, n=500

.50 .498[.032](.032) .500[.032](.032) .500[.032](.032) .496[.034](.034) .501[.034](.034) .501[034](.034)

.25 .248[.040](.040) .250[.040](.040) .250[.040](.040) .243[.050](.049) .250[.049](.049) .250[.049](.049)

.00 -.003[.046](.046) -.001[.046](.046) -.001[.046](.046) -.009[.065](.064) .000[.064](.064) .000[.064](.064)

-.25 -.250[.048](.048) -.249[.048](.048) -.249[.048](.048) -.259[.080](.080) -.248[.080](.080) -.248[.080](.080)

-.50 -.501[.049](.049) -.501[.049](.049) -.501[.049](.049) -.514[.095](.094) -.501[.095](.095) -.501[.095](.095)
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Table 1b. Empirical Mean[rmse](sd) of Estimators of λ, 2FE-SPD Model with SLD, T = 3, β = (.5, .5)′, σ = 1

λ λ̂N λ̂bc2
N λ̂bc3

N λ̂N λ̂bc2
N λ̂bc3

N

(a) Queen Contiguity, REG1 (b) Group Interaction, REG2

Normal Error, n=50

.50 .477[.133](.132) .500[.133](.133) .500[.132](.132) .449[.122](.111) .498[.105](.105) .500[.105](.105)

.25 .231[.157](.156) .251[.159](.159) .252[.158](.158) .179[.171](.156) .248[.150](.150) .250[.150](.150)

.00 -.015[.176](.175) .000[.180](.180) .002[.180](.180) -.086[.214](.196) -.002[.191](.191) .001[.191](.191)

-.25 -.261[.180](.180) -.252[.185](.185) -.251[.185](.185) -.348[.247](.227) -.252[.224](.224) -.249[.224](.224)

-.50 -.505[.185](.184) -.502[.190](.190) -.501[.190](.190) -.609[.283](.262) -.504[.261](.261) -.502[.262](.262)

Normal Mixture, n=50

.50 .478[.133](.132) .501[.133](.133) .500[.132](.132) .449[.120](.109) .498[.103](.103) .500[.103](.103)

.25 .229[.158](.157) .248[.159](.159) .249[.159](.159) .180[.168](.153) .248[.147](.147) .250[.147](.147)

.00 -.017[.174](.173) -.002[.177](.177) .000[.177](.177) -.088[.212](.193) -.003[.188](.188) .000[.188](.188)

-.25 -.260[.176](.176) -.251[.181](.181) -.250[.181](.181) -.346[.247](.227) -.250[.224](.224) -.247[.225](.225)

-.50 -.502[.181](.181) -.499[.186](.186) -.499[.186](.186) -.608[.281](.260) -.503[.260](.260) -.500[.260](.260)

Lognormal Error, n=50

.50 .480[.123](.122) .502[.123](.123) .502[.122](.122) .454[.112](.102) .502[.097](.097) .504[.097](.097)

.25 .229[.148](.147) .249[.150](.149) .250[.149](.149) .184[.157](.143) .251[.138](.138) .254[.138](.138)

.00 -.013[.162](.161) .002[.165](.165) .003[.165](.165) -.079[.193](.176) .003[.172](.172) .006[.172](.172)

-.25 -.258[.168](.167) -.248[.172](.172) -.247[.172](.172) -.341[.225](.206) -.247[.203](.203) -.244[.203](.203)

-.50 -.504[.173](.172) -.501[.177](.177) -.501[.178](.178) -.598[.258](.239) -.495[.239](.239) -.493[.240](.240)

Normal Error, n=100

.50 .490[.090](.090) .502[.090](.090) .502[.089](.089) .469[.087](.081) .499[.079](.079) .500[.079](.079)

.25 .242[.108](.108) .253[.109](.109) .253[.109](.109) .205[.127](.119) .248[.117](.117) .248[.117](.117)

.00 -.003[.122](.122) .006[.123](.123) .006[.123](.123) -.058[.166](.155) -.004[.153](.153) -.003[.153](.153)

-.25 -.256[.130](.129) -.250[.131](.131) -.249[.131](.131) -.313[.192](.181) -.249[.179](.179) -.249[.179](.179)

-.50 -.505[.131](.131) -.503[.133](.133) -.503[.133](.133) -.578[.223](.209) -.506[.209](.208) -.506[.209](.209)

Normal Mixture, n=100

.50 .491[.088](.088) .502[.088](.088) .502[.088](.088) .470[.087](.082) .500[.080](.080) .500[.079](.079)

.25 .241[.105](.105) .252[.106](.106) .252[.106](.106) .207[.124](.116) .249[.113](.113) .250[.113](.113)

.00 -.010[.120](.120) -.002[.121](.121) -.001[.121](.121) -.056[.160](.150) -.001[.148](.148) -.001[.148](.148)

-.25 -.254[.129](.129) -.248[.131](.131) -.247[.131](.131) -.314[.195](.184) -.251[.182](.182) -.250[.182](.182)

-.50 -.503[.130](.130) -.500[.131](.131) -.500[.132](.132) -.567[.217](.207) -.496[.206](.206) -.495[.206](.206)

Lognormal Error, n=100

.50 .490[.084](.084) .502[.084](.084) .502[.084](.084) .470[.084](.079) .500[.077](.077) .500[.077](.077)

.25 .235[.102](.101) .246[.102](.102) .246[.102](.102) .208[.120](.113) .250[.110](.110) .251[.110](.110)

.00 -.005[.116](.116) .004[.117](.117) .004[.117](.117) -.050[.151](.143) .003[.141](.141) .004[.141](.141)

-.25 -.258[.121](.121) -.252[.123](.123) -.252[.123](.123) -.316[.185](.172) -.253[.171](.171) -.253[.171](.171)

-.50 -.502[.125](.125) -.499[.126](.126) -.499[.126](.126) -.565[.208](.197) -.495[.197](.197) -.495[.197](.197)

Normal Error, n=500

.50 .498[.039](.039) .500[.039](.039) .500[.039](.039) .490[.050](.049) .501[.048](.048) .501[.048](.048)

.25 .247[.048](.048) .250[.048](.048) .250[.048](.048) .234[.073](.071) .250[.071](.071) .250[.071](.071)

.00 -.001[.055](.055) .001[.055](.055) .001[.055](.055) -.021[.097](.094) .000[.094](.094) .000[.094](.094)

-.25 -.251[.058](.058) -.250[.058](.058) -.250[.058](.058) -.275[.117](.114) -.249[.113](.113) -.249[.113](.113)

-.50 -.500[.060](.060) -.499[.061](.061) -.499[.061](.061) -.530[.139](.136) -.500[.135](.135) -.500[.135](.135)

Normal Mixture, n=500

.50 .499[.039](.039) .501[.039](.039) .501[.039](.039) .490[.048](.047) .501[.047](.047) .501[.047](.047)

.25 .247[.048](.048) .249[.048](.048) .249[.048](.048) .233[.074](.072) .249[.071](.071) .249[.071](.071)

.00 .000[.054](.054) .002[.055](.055) .002[.055](.055) -.020[.095](.093) .002[.092](.092) .002[.092](.092)

-.25 -.250[.059](.059) -.249[.059](.059) -.249[.059](.059) -.279[.119](.116) -.253[.115](.115) -.253[.115](.115)

-.50 -.501[.059](.059) -.500[.060](.060) -.500[.060](.060) -.529[.137](.134) -.499[.133](.133) -.499[.133](.133)

Lognormal Error, n=500

.50 .497[.037](.037) .500[.037](.037) .500[.037](.037) .491[.047](.046) .502[.046](.046) .502[.046](.046)

.25 .248[.048](.048) .250[.048](.048) .250[.048](.048) .234[.072](.070) .251[.069](.069) .251[.069](.069)

.00 -.002[.053](.053) .000[.053](.053) .000[.053](.053) -.020[.094](.092) .001[.091](.091) .001[.091](.091)

-.25 -.252[.057](.057) -.251[.058](.058) -.251[.058](.058) -.277[.116](.112) -.250[.112](.112) -.251[.112](.112)

-.50 -.499[.059](.059) -.499[.059](.059) -.499[.059](.059) -.530[.139](.136) -.498[.135](.135) -.499[.135](.135)
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Table 2. Empirical Mean[rmse](sd) of Estimators of λ - 2FE-SPD Model with SED, T = 3, β = (1,1)′, σ = 1

λ λ̂N λ̂bc2
N λ̂bc3

N λ̂N λ̂bc2
N λ̂bc3

N

(a) Queen Contiguity, REG1 (b) Group Interaction, REG2

Normal Error, n=50

.50 .481[.144](.142) .500[.143](.143) .500[.142](.142) .457[.139](.132) .503[.116](.116) .503[.115](.115)

.25 .233[.171](.170) .252[.171](.171) .254[.171](.171) .177[.202](.188) .258[.167](.167) .260[.167](.166)

.00 -.018[.190](.189) -.001[.190](.190) .001[.191](.190) -.115[.266](.240) -.004[.221](.221) -.001[.220](.220)

-.25 -.271[.202](.201) -.255[.203](.203) -.254[.204](.204) -.382[.299](.268) -.250[.256](.256) -.249[.256](.256)

-.50 -.516[.203](.202) -.503[.205](.205) -.502[.206](.206) -.637[.321](.290) -.496[.287](.287) -.497[.288](.288)

Normal Mixture, n=50

.50 .480[.139](.138) .500[.138](.138) .500[.137](.137) .458[.137](.130) .504[.114](.114) .504[.113](.113)

.25 .233[.166](.165) .252[.166](.166) .251[.166](.166) .168[.210](.194) .251[.172](.172) .250[.171](.171)

.00 -.016[.186](.185) .002[.186](.186) .003[.186](.186) -.108[.258](.234) .004[.214](.214) .003[.214](.214)

-.25 -.267[.195](.194) -.252[.196](.196) -.250[.197](.197) -.381[.293](.262) -.248[.251](.251) -.249[.251](.251)

-.50 -.511[.198](.197) -.498[.200](.200) -.498[.201](.201) -.636[.313](.282) -.493[.280](.280) -.495[.281](.281)

Lognormal Error, n=50

.50 .483[.135](.133) .504[.134](.134) .503[.133](.133) .454[.136](.128) .502[.112](.112) .502[.111](.111)

.25 .237[.160](.159) .256[.161](.160) .255[.160](.160) .174[.196](.181) .257[.160](.160) .256[.160](.160)

.00 -.012[.179](.179) .006[.180](.180) .005[.180](.180) -.105[.242](.218) .009[.199](.199) .002[.199](.199)

-.25 -.264[.186](.186) -.248[.188](.188) -.249[.188](.188) -.368[.273](.247) -.233[.235](.235) -.239[.236](.235)

-.50 -.512[.191](.191) -.499[.194](.194) -.499[.194](.194) -.632[.305](.275) -.489[.272](.272) -.489[.274](.273)

Normal Error, n=100

.50 .490[.096](.095) .500[.095](.095) .500[.095](.095) .467[.107](.102) .501[.093](.093) .501[.093](.093)

.25 .241[.119](.119) .251[.119](.119) .251[.118](.118) .196[.152](.142) .252[.132](.132) .251[.132](.132)

.00 -.011[.132](.132) -.001[.132](.132) .000[.132](.132) -.074[.192](.177) -.002[.171](.171) -.002[.171](.171)

-.25 -.259[.141](.140) -.249[.141](.141) -.249[.141](.141) -.333[.215](.199) -.255[.199](.199) -.255[.199](.199)

-.50 -.510[.142](.142) -.501[.143](.143) -.501[.143](.143) -.574[.220](.207) -.500[.215](.215) -.500[.215](.215)

Normal Mixture, n=100

.50 .489[.095](.094) .500[.094](.094) .500[.094](.094) .465[.104](.098) .500[.090](.090) .500[.090](.090)

.25 .240[.118](.117) .250[.117](.117) .250[.117](.117) .196[.149](.139) .253[.130](.130) .253[.130](.130)

.00 -.010[.130](.130) .001[.130](.130) .001[.130](.130) -.073[.189](.174) .000[.168](.168) .000[.168](.168)

-.25 -.260[.138](.138) -.250[.138](.138) -.249[.138](.138) -.327[.211](.196) -.249[.197](.197) -.249[.197](.197)

-.50 -.510[.138](.138) -.501[.139](.139) -.501[.139](.139) -.569[.220](.209) -.495[.219](.219) -.495[.219](.219)

Lognormal Error, n=100

.50 .494[.088](.088) .505[.088](.088) .505[.088](.088) .465[.107](.101) .501[.092](.092) .500[.092](.092)

.25 .240[.110](.110) .251[.110](.110) .251[.110](.110) .198[.145](.135) .256[.126](.126) .256[.126](.125)

.00 -.006[.126](.126) .004[.127](.126) .003[.127](.126) -.064[.174](.162) .010[.156](.156) .010[.156](.156)

-.25 -.259[.136](.136) -.250[.136](.136) -.249[.136](.136) -.320[.200](.188) -.239[.189](.188) -.239[.189](.189)

-.50 -.508[.135](.135) -.500[.136](.136) -.500[.136](.136) -.561[.214](.205) -.485[.215](.215) -.486[.215](.215)

Normal Error, n=500

.50 .497[.041](.041) .499[.041](.041) .499[.041](.041) .487[.060](.059) .500[.057](.057) .500[.057](.057)

.25 .249[.051](.051) .251[.051](.051) .251[.051](.051) .226[.090](.087) .249[.083](.083) .249[.083](.083)

.00 -.003[.058](.058) -.001[.058](.058) -.001[.058](.058) -.033[.121](.116) .000[.112](.112) .000[.112](.112)

-.25 -.252[.062](.061) -.250[.062](.062) -.250[.062](.062) -.292[.148](.142) -.249[.137](.137) -.249[.137](.137)

-.50 -.500[.063](.063) -.499[.063](.063) -.499[.063](.063) -.549[.170](.162) -.499[.158](.158) -.499[.158](.158)

Normal Mixture, n=500

.50 .498[.040](.040) .500[.040](.040) .500[.040](.040) .485[.060](.058) .499[.056](.056) .499[.056](.056)

.25 .247[.051](.051) .250[.051](.051) .250[.051](.051) .226[.091](.088) .250[.084](.084) .249[.084](.084)

.00 -.001[.058](.058) .001[.058](.058) .001[.058](.058) -.035[.120](.114) -.001[.110](.110) -.002[.110](.110)

-.25 -.252[.062](.062) -.250[.062](.062) -.250[.062](.062) -.291[.146](.140) -.249[.136](.136) -.249[.136](.136)

-.50 -.504[.063](.063) -.502[.063](.063) -.502[.063](.063) -.551[.173](.165) -.500[.161](.161) -.500[.161](.161)

Lognormal Error, n=500

.50 .498[.040](.040) .500[.040](.040) .500[.040](.040) .485[.062](.060) .500[.058](.058) .499[.058](.058)

.25 .249[.050](.050) .251[.050](.050) .251[.050](.050) .227[.088](.085) .252[.081](.081) .252[.081](.081)

.00 -.003[.057](.056) -.001[.056](.056) -.001[.056](.056) -.030[.112](.108) .006[.104](.104) .005[.104](.104)

-.25 -.251[.060](.060) -.249[.060](.060) -.249[.060](.060) -.290[.141](.135) -.245[.131](.130) -.246[.130](.130)

-.50 -.503[.062](.062) -.501[.062](.062) -.501[.062](.062) -.545[.168](.162) -.492[.158](.157) -.493[.158](.157)
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Table 3a. Empirical Mean[rmse](sd) of Estimators of λ and ρ, 2FE-SPD Model with SARAR, T = 3, β = (1,1)′, σ = 1, Queen Contiguity, REG-1

λ ρ λ̂N λ̂bc2
N ρ̂N ρ̂bc2

N λ̂N λ̂bc2
N ρ̂N ρ̂bc2

N

(a) Normal Error, n = 50 (b) Lognormal Error, n = 50

.50 .50 .484[.116](.115) .500[.116](.116) .483[.143](.142) .500[.143](.143) .486[.105](.104) .502[.105](.105) .484[.131](.130) .502[.131](.131)

.25 .484[.119](.117) .501[.118](.118) .226[.176](.174) .242[.175](.175) .485[.114](.113) .501[.113](.113) .233[.162](.161) .250[.161](.161)

.00 .483[.118](.116) .500[.117](.117) -.019[.192](.191) -.002[.192](.192) .486[.110](.109) .503[.110](.110) -.015[.177](.176) .002[.177](.177)

-.25 .482[.124](.122) .500[.123](.123) -.267[.202](.202) -.251[.203](.203) .487[.112](.111) .503[.112](.112) -.265[.193](.193) -.249[.193](.193)

-.50 .484[.125](.123) .500[.124](.124) -.513[.208](.208) -.498[.209](.209) .489[.111](.110) .505[.111](.111) -.514[.195](.194) -.499[.196](.196)

-.50 .50 -.502[.158](.158) -.500[.161](.161) .486[.144](.143) .504[.144](.144) -.502[.145](.145) -.500[.148](.148) .486[.132](.131) .504[.132](.131)

.25 -.506[.165](.165) -.504[.168](.168) .232[.174](.173) .249[.174](.174) -.505[.152](.151) -.503[.155](.154) .233[.161](.160) .250[.160](.160)

.00 -.501[.163](.163) -.499[.167](.167) -.006[.187](.187) .010[.187](.187) -.499[.159](.159) -.497[.162](.162) -.018[.180](.179) -.001[.180](.180)

-.25 -.500[.164](.164) -.498[.168](.168) -.262[.209](.209) -.246[.210](.210) -.501[.152](.152) -.499[.155](.155) -.263[.197](.197) -.246[.197](.197)

-.50 -.506[.169](.169) -.505[.172](.172) -.518[.207](.206) -.503[.208](.208) -.498[.157](.157) -.497[.160](.160) -.513[.194](.194) -.498[.195](.195)

(c) Normal Error, n = 100 (d) Lognormal Error, n = 100

.50 .50 .494[.078](.077) .502[.078](.078) .490[.096](.096) .499[.096](.096) .490[.078](.078) .499[.078](.078) .493[.090](.090) .502[.090](.090)

.25 .490[.080](.080) .499[.080](.080) .244[.117](.116) .253[.117](.117) .491[.081](.080) .500[.080](.080) .243[.111](.111) .252[.111](.111)

.00 .493[.083](.083) .502[.083](.083) -.011[.132](.131) -.002[.131](.131) .494[.079](.079) .503[.079](.079) -.009[.126](.126) .001[.126](.126)

-.25 .491[.084](.083) .500[.083](.083) -.258[.142](.142) -.249[.142](.142) .490[.077](.077) .499[.077](.077) -.264[.138](.137) -.254[.138](.137)

-.50 .490[.079](.078) .499[.078](.078) -.509[.142](.141) -.499[.142](.142) .493[.077](.077) .501[.077](.077) -.509[.137](.137) -.499[.137](.137)

-.50 .50 -.494[.118](.118) -.493[.119](.119) .492[.094](.094) .501[.094](.094) -.503[.106](.106) -.503[.107](.107) .491[.089](.088) .500[.088](.088)

.25 -.501[.119](.119) -.500[.121](.121) .242[.117](.117) .251[.117](.117) -.502[.112](.112) -.501[.113](.113) .240[.111](.111) .249[.111](.111)

.00 -.496[.115](.115) -.495[.117](.117) -.008[.133](.133) .001[.133](.133) -.498[.114](.114) -.498[.115](.115) -.007[.129](.129) .003[.128](.128)

-.25 -.505[.118](.118) -.504[.120](.120) -.258[.143](.143) -.248[.143](.143) -.497[.112](.112) -.496[.113](.113) -.257[.136](.136) -.248[.136](.136)

-.50 -.501[.118](.118) -.500[.120](.120) -.504[.148](.148) -.495[.149](.149) -.505[.109](.109) -.504[.110](.110) -.507[.137](.137) -.498[.138](.137)

(e) Normal Error, n = 500 (f) Lognormal Error, n = 500

.50 .50 .497[.033](.033) .499[.033](.033) .499[.041](.041) .501[.041](.041) .499[.030](.030) .501[.030](.030) .497[.040](.040) .499[.040](.040)

.25 .497[.033](.033) .499[.033](.033) .247[.052](.052) .249[.052](.052) .499[.032](.032) .501[.032](.032) .249[.050](.050) .250[.050](.050)

.00 .499[.033](.033) .501[.033](.033) .001[.057](.057) .003[.058](.057) .498[.033](.033) .500[.033](.033) -.001[.057](.057) .001[.057](.057)

-.25 .498[.033](.032) .499[.033](.033) -.254[.062](.062) -.252[.062](.062) .498[.033](.033) .500[.033](.033) -.250[.061](.061) -.248[.061](.061)

-.50 .498[.032](.032) .500[.032](.032) -.503[.062](.062) -.501[.062](.062) .497[.032](.032) .499[.032](.032) -.501[.062](.062) -.499[.062](.062)

-.50 .50 -.502[.049](.049) -.501[.049](.049) .498[.041](.041) .500[.041](.041) -.499[.049](.049) -.499[.049](.049) .498[.040](.040) .500[.040](.040)

.25 -.503[.051](.051) -.502[.051](.051) .249[.051](.051) .250[.051](.051) -.500[.051](.051) -.499[.051](.051) .248[.050](.050) .250[.050](.050)

.00 -.501[.050](.050) -.501[.050](.050) -.001[.060](.060) .001[.060](.060) -.501[.051](.051) -.500[.052](.052) -.002[.058](.058) .000[.058](.058)

-.25 -.502[.051](.050) -.502[.051](.051) -.253[.061](.061) -.251[.061](.061) -.499[.051](.051) -.498[.051](.051) -.252[.062](.062) -.250[.062](.062)

-.50 -.500[.049](.049) -.499[.049](.049) -.501[.063](.063) -.499[.064](.064) -.500[.048](.048) -.500[.049](.049) -.503[.062](.062) -.502[.062](.062)
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Table 3b. Empirical Mean[rmse](sd) of Estimators of λ and ρ, 2FE-SPD Model with SARAR, T = 3, β = (1,1)′, σ = 1, Group Interaction, REG-2

λ ρ λ̂N λ̂bc2
N ρ̂N ρ̂bc2

N λ̂N λ̂bc2
N ρ̂N ρ̂bc2

N

(a) Normal Error, n = 50 (b) Lognormal Error, n = 50

.50 .50 .484[.095](.094) .499[.092](.092) .453[.156](.149) .500[.129](.129) .484[.089](.088) .500[.087](.087) .456[.146](.140) .505[.121](.121)

.25 .480[.103](.101) .497[.099](.099) .162[.238](.221) .248[.194](.194) .484[.096](.095) .501[.093](.093) .161[.237](.220) .251[.193](.193)

.00 .481[.104](.102) .498[.100](.100) -.120[.298](.272) .001[.243](.243) .486[.097](.096) .501[.093](.093) -.120[.301](.276) .005[.247](.247)

-.25 .481[.104](.102) .496[.100](.100) -.408[.362](.326) -.257[.299](.299) .488[.097](.096) .502[.094](.094) -.407[.365](.330) -.252[.306](.306)

-.50 .484[.099](.098) .498[.096](.096) -.685[.400](.354) -.512[.335](.334) .491[.095](.095) .504[.093](.093) -.682[.413](.370) -.506[.354](.354)

-.50 .50 -.527[.218](.216) -.499[.218](.218) .453[.158](.150) .501[.130](.130) -.522[.214](.213) -.494[.215](.215) .458[.147](.141) .507[.123](.122)

.25 -.534[.237](.235) -.505[.237](.236) .164[.235](.219) .251[.191](.191) -.524[.226](.225) -.495[.227](.227) .171[.220](.205) .259[.179](.179)

.00 -.532[.239](.237) -.504[.239](.239) -.117[.301](.277) .004[.249](.249) -.528[.239](.237) -.501[.239](.239) -.114[.293](.270) .010[.242](.242)

-.25 -.530[.237](.235) -.504[.237](.237) -.407[.357](.320) -.257[.295](.295) -.519[.240](.240) -.494[.241](.241) -.396[.349](.317) -.243[.293](.293)

-.50 -.524[.233](.232) -.500[.233](.233) -.689[.403](.355) -.518[.337](.336) -.528[.251](.250) -.505[.252](.252) -.661[.399](.364) -.489[.345](.345)

(c) Normal Error, n = 250 (d) Lognormal Error, n = 250

.50 .50 .497[.044](.044) .501[.044](.044) .477[.082](.079) .500[.074](.074) .497[.043](.043) .500[.042](.042) .477[.081](.078) .500[.073](.073)

.25 .497[.043](.043) .500[.043](.043) .209[.124](.117) .250[.110](.110) .497[.042](.042) .500[.042](.042) .209[.119](.112) .250[.105](.105)

.00 .497[.041](.040) .499[.040](.040) -.056[.161](.151) .001[.142](.142) .498[.040](.040) .500[.039](.039) -.056[.158](.148) .002[.138](.138)

-.25 .498[.038](.038) .500[.038](.038) -.327[.204](.189) -.253[.178](.178) .498[.038](.038) .500[.038](.038) -.322[.194](.180) -.247[.169](.169)

-.50 .499[.035](.035) .500[.035](.035) -.590[.232](.214) -.501[.203](.203) .500[.035](.035) .501[.035](.035) -.588[.229](.211) -.497[.200](.200)

-.50 .50 -.508[.123](.122) -.498[.122](.122) .476[.082](.078) .499[.073](.073) -.509[.122](.121) -.498[.121](.121) .476[.081](.078) .500[.073](.073)

.25 -.510[.118](.118) -.502[.118](.118) .213[.121](.115) .253[.108](.108) -.504[.118](.118) -.496[.118](.118) .210[.120](.113) .251[.106](.106)

.00 -.507[.116](.116) -.500[.116](.116) -.063[.167](.155) -.005[.146](.146) -.509[.113](.113) -.502[.113](.113) -.058[.161](.150) .000[.140](.140)

-.25 -.502[.105](.105) -.497[.105](.105) -.326[.201](.186) -.252[.175](.175) -.507[.105](.105) -.502[.105](.105) -.320[.192](.179) -.245[.169](.169)

-.50 -.506[.099](.099) -.502[.099](.099) -.592[.235](.216) -.503[.204](.204) -.503[.100](.100) -.499[.100](.100) -.589[.234](.217) -.498[.205](.205)

(e) Normal Error, n = 500 (f) Lognormal Error, n = 500

.50 .50 .498[.030](.030) .500[.030](.030) .484[.065](.063) .500[.060](.060) .498[.030](.030) .500[.030](.030) .484[.065](.063) .501[.060](.060)

.25 .499[.029](.029) .500[.029](.029) .220[.098](.093) .248[.089](.089) .498[.029](.029) .500[.029](.029) .223[.096](.092) .252[.087](.087)

.00 .500[.027](.027) .501[.027](.027) -.040[.128](.122) .001[.116](.116) .500[.027](.027) .501[.027](.027) -.044[.128](.120) -.001[.114](.114)

-.25 .500[.025](.025) .501[.025](.025) -.303[.160](.151) -.249[.144](.144) .500[.025](.025) .501[.025](.025) -.305[.158](.148) -.249[.141](.141)

-.50 .499[.023](.023) .500[.023](.023) -.562[.187](.176) -.496[.168](.168) .499[.022](.022) .500[.022](.022) -.565[.192](.180) -.497[.172](.172)

-.50 .50 -.505[.087](.087) -.500[.087](.087) .485[.065](.063) .500[.060](.060) -.505[.085](.085) -.499[.085](.085) .484[.064](.062) .501[.059](.059)

.25 -.507[.082](.082) -.503[.082](.082) .220[.098](.094) .248[.089](.089) -.504[.081](.081) -.500[.081](.081) .223[.096](.092) .252[.088](.088)

.00 -.503[.075](.075) -.500[.075](.075) -.041[.131](.124) .000[.118](.118) -.502[.075](.075) -.499[.075](.075) -.044[.127](.119) -.001[.113](.113)

-.25 -.504[.070](.070) -.502[.070](.070) -.303[.161](.152) -.249[.145](.145) -.501[.071](.071) -.499[.071](.071) -.303[.159](.150) -.248[.143](.143)

-.50 -.501[.065](.065) -.499[.065](.065) -.569[.192](.179) -.503[.171](.171) -.502[.065](.065) -.500[.065](.065) -.562[.187](.176) -.494[.168](.168)
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Table 4. Empirical Means of the Non-Spatial Estimators, 2FE-SPD Model with SLD

Group Interaction, REG2, T = 3

λ β̂1N β̂2N σ̂2
N β̂bc

1N β̂bc
2N σ̂

2,bc
N β̂1N β̂2N σ̂2

N β̂bc
1N β̂bc

2N σ̂
2,bc
N

(a) β = (1,1)′, σ = 1 (b) β = (.5, .5)′, σ = 1

Normal Error, n=50

.50 1.041 1.035 0.984 0.996 0.998 0.992 0.533 0.530 0.985 0.496 0.499 0.991

.25 1.039 1.030 0.982 0.997 0.995 0.992 0.532 0.524 0.981 0.498 0.496 0.991

.00 1.035 1.023 0.980 0.997 0.992 0.992 0.529 0.519 0.978 0.498 0.494 0.991

-.25 1.032 1.023 0.978 0.997 0.995 0.992 0.524 0.519 0.975 0.496 0.496 0.992

-.50 1.030 1.019 0.974 0.999 0.994 0.989 0.527 0.514 0.970 0.501 0.494 0.990

Normal Mixture, n=50

.50 1.040 1.031 0.975 0.996 0.994 0.982 0.532 0.520 0.981 0.495 0.490 0.988

.25 1.041 1.030 0.973 1.000 0.996 0.982 0.531 0.523 0.973 0.497 0.495 0.983

.00 1.038 1.030 0.973 1.001 0.998 0.984 0.526 0.518 0.973 0.495 0.493 0.986

-.25 1.035 1.025 0.966 1.001 0.997 0.980 0.524 0.515 0.963 0.496 0.492 0.979

-.50 1.028 1.023 0.969 0.997 0.997 0.985 0.521 0.520 0.962 0.496 0.500 0.981

Lognormal Error, n=50

.50 1.036 1.031 0.944 0.994 0.995 0.951 0.529 0.523 0.946 0.493 0.493 0.952

.25 1.036 1.032 0.947 0.996 0.999 0.957 0.529 0.521 0.946 0.496 0.494 0.956

.00 1.028 1.020 0.936 0.992 0.990 0.947 0.525 0.519 0.944 0.495 0.494 0.957

-.25 1.029 1.019 0.942 0.996 0.992 0.955 0.522 0.517 0.943 0.494 0.494 0.959

-.50 1.026 1.017 0.940 0.996 0.993 0.956 0.518 0.514 0.926 0.494 0.494 0.945

Normal Error, n=100

.50 1.028 1.023 0.993 1.000 0.999 0.996 0.526 0.521 0.993 0.501 0.499 0.996

.25 1.027 1.019 0.991 1.000 0.996 0.995 0.524 0.517 0.990 0.500 0.496 0.995

.00 1.023 1.020 0.990 0.998 0.999 0.996 0.524 0.516 0.991 0.501 0.496 0.997

-.25 1.020 1.020 0.989 0.996 1.000 0.995 0.521 0.514 0.988 0.499 0.496 0.995

-.50 1.024 1.018 0.988 1.002 0.999 0.995 0.520 0.514 0.986 0.500 0.497 0.994

Normal Mixture, n=100

.50 1.026 1.022 0.990 0.998 0.998 0.993 0.523 0.518 0.988 0.497 0.497 0.991

.25 1.024 1.019 0.987 0.998 0.996 0.992 0.525 0.519 0.986 0.501 0.498 0.990

.00 1.022 1.018 0.985 0.997 0.996 0.990 0.522 0.515 0.985 0.499 0.496 0.991

-.25 1.023 1.018 0.987 1.000 0.998 0.994 0.523 0.517 0.983 0.501 0.499 0.991

-.50 1.022 1.019 0.982 1.000 1.001 0.989 0.518 0.515 0.983 0.498 0.498 0.992

Lognormal Error, n=100

.50 1.024 1.021 0.973 0.997 0.998 0.977 0.524 0.518 0.969 0.499 0.497 0.972

.25 1.025 1.023 0.964 1.000 1.002 0.968 0.522 0.516 0.966 0.498 0.496 0.971

.00 1.023 1.015 0.963 0.999 0.995 0.969 0.520 0.514 0.962 0.497 0.495 0.968

-.25 1.022 1.016 0.970 0.999 0.997 0.977 0.520 0.516 0.964 0.499 0.498 0.972

-.50 1.021 1.012 0.960 1.000 0.995 0.966 0.516 0.514 0.958 0.497 0.498 0.967

Normal Error, n=250

.50 1.011 1.010 0.997 0.999 0.998 0.999 0.512 0.512 0.997 0.499 0.499 0.998

.25 1.010 1.009 0.996 0.998 0.997 0.998 0.512 0.512 0.996 0.500 0.500 0.998

.00 1.009 1.009 0.996 0.998 0.997 0.998 0.509 0.509 0.996 0.497 0.497 0.998

-.25 1.009 1.010 0.996 0.997 0.998 0.999 0.508 0.511 0.995 0.497 0.500 0.998

-.50 1.009 1.010 0.995 0.998 0.999 0.998 0.511 0.510 0.994 0.500 0.499 0.997

Normal Mixture, n=250

.50 1.014 1.013 0.997 1.002 1.000 0.998 0.513 0.509 0.996 0.500 0.497 0.997

.25 1.012 1.010 0.993 1.000 0.998 0.995 0.512 0.511 0.995 0.500 0.498 0.996

.00 1.010 1.011 0.995 0.998 0.999 0.997 0.510 0.512 0.993 0.498 0.500 0.996

-.25 1.012 1.011 0.996 1.001 1.000 0.998 0.510 0.510 0.997 0.498 0.498 1.000

-.50 1.009 1.008 0.994 0.998 0.997 0.996 0.510 0.509 0.993 0.499 0.498 0.996

Lognormal Error, n=250

.50 1.011 1.010 0.986 0.999 0.998 0.987 0.511 0.511 0.982 0.498 0.498 0.983

.25 1.012 1.013 0.985 1.000 1.001 0.987 0.513 0.513 0.986 0.501 0.501 0.988

.00 1.010 1.009 0.983 0.998 0.998 0.985 0.511 0.511 0.984 0.499 0.499 0.987

-.25 1.010 1.009 0.982 0.999 0.997 0.985 0.512 0.510 0.984 0.500 0.498 0.987

-.50 1.007 1.007 0.985 0.996 0.997 0.987 0.509 0.508 0.983 0.498 0.497 0.986
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Table 5a. Empirical Sizes: Two-Sided Tests of Spatial Dependence in SARAR Model

Group Interaction, REG2, T = 3, β = (1,1)′, σ = 1

n Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

Normal Errors Normal Mixture Lognormal Errors

H0 : λ = ρ = 0

50 W11 .1974 .1288 .0546 .1918 .1232 .0450 .1616 .1062 .0456

W22 .1896 .1196 .0516 .1846 .1222 .0470 .1584 .1008 .0408

W33 .1520 .0906 .0388 .1428 .0874 .0302 .1318 .0778 .0300

100 W11 .1732 .1048 .0348 .1652 .0964 .0384 .1416 .0860 .0286

W22 .1754 .1116 .0366 .1684 .1070 .0388 .1416 .0858 .0284

W33 .1290 .0764 .0224 .1228 .0734 .0266 .1192 .0676 .0208

250 W11 .1406 .0808 .0208 .1364 .0736 .0198 .1104 .0620 .0162

W22 .1390 .0788 .0234 .1350 .0758 .0206 .1170 .0712 .0196

W33 .1148 .0618 .0174 .1102 .0576 .0154 .1026 .0564 .0170

500 W11 .1334 .0740 .0176 .1168 .0682 .0142 .1128 .0630 .0136

W22 .1358 .0752 .0178 .1270 .0674 .0176 .1338 .0730 .0196

W33 .1088 .0548 .0128 .1000 .0528 .0118 .1096 .0552 .0118

H0 : λ = 0, (true ρ = 0)

50 W11 .1660 .1024 .0392 .1436 .0920 .0320 .1450 .0920 .0360

W22 .1622 .1044 .0382 .1578 .0968 .0378 .1590 .0970 .0410

W33 .1354 .0842 .0294 .1260 .0758 .0246 .1284 .0798 .0286

100 W11 .1362 .0798 .0256 .1352 .0812 .0268 .1302 .0734 .0230

W22 .1532 .0908 .0282 .1494 .0906 .0294 .1332 .0758 .0230

W33 .1174 .0668 .0212 .1162 .0686 .0202 .1186 .0670 .0178

250 W11 .1232 .0732 .0174 .1228 .0690 .0158 .1134 .0576 .0154

W22 .1266 .0726 .0170 .1238 .0682 .0160 .1174 .0616 .0154

W33 .1126 .0630 .0132 .1100 .0594 .0118 .1052 .0542 .0126

500 W11 .1108 .0578 .0142 .1094 .0556 .0116 .1116 .0616 .0138

W22 .1198 .0588 .0148 .1120 .0576 .0128 .1198 .0662 .0160

W33 .1050 .0530 .0122 .1030 .0524 .0098 .1070 .0572 .0130

H0 : ρ = 0 (true λ = 0)

50 W11 .1730 .1054 .0392 .1714 .1070 .0382 .1498 .0902 .0328

W22 .1366 .0850 .0326 .1418 .0822 .0312 .1202 .0692 .0192

W33 .1268 .0794 .0280 .1214 .0710 .0262 .1056 .0598 .0170

100 W11 .1604 .0980 .0268 .1478 .0856 .0250 .1292 .0710 .0198

W22 .1302 .0758 .0252 .1274 .0732 .0260 .1142 .0672 .0220

W33 .1124 .0630 .0198 .1056 .0612 .0196 .0952 .0568 .0164

250 W11 .1358 .0742 .0192 .1304 .0724 .0192 .1030 .0506 .0122

W22 .1216 .0694 .0166 .1226 .0670 .0176 .1036 .0552 .0168

W33 .1074 .0570 .0132 .1054 .0556 .0126 .0880 .0456 .0132

500 W11 .1306 .0704 .0158 .1126 .0600 .0140 .0976 .0514 .0124

W22 .1208 .0682 .0170 .1110 .0590 .0150 .1154 .0616 .0146

W33 .1030 .0528 .0114 .0928 .0466 .0106 .0966 .0478 .0116

Note: Wjj are defined in (3.12) for joint tests and (3.13) for one-directional tests.
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Table 5b. Empirical Sizes: Two-Sided Tests of H0 : λ = 0 in SLD Model

Group Interaction, REG2, T = 3, β = (1,1)′, σ = 1. Tjj are defined in (3.14)

n Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

Normal Errors Normal Mixture Lognormal Errors

50 T11 .1422 .0850 .0232 .1254 .0676 .0190 .1068 .0552 .0140

T22 .1348 .0808 .0212 .1154 .0586 .0162 .1042 .0586 .0134

T33 .1120 .0616 .0146 .0992 .0472 .0126 .0918 .0484 .0102

100 T11 .1224 .0622 .0174 .1186 .0660 .0136 .1070 .0590 .0116

T22 .1142 .0604 .0128 .1214 .0654 .0158 .1108 .0600 .0130

T33 .1004 .0478 .0102 .1046 .0518 .0118 .0958 .0502 .0084

250 T11 .1148 .0584 .0176 .1042 .0540 .0112 .1006 .0512 .0142

T22 .1130 .0622 .0172 .1128 .0604 .0128 .1140 .0572 .0150

T33 .1006 .0526 .0130 .0946 .0506 .0086 .0996 .0466 .0124

500 T11 .1126 .0560 .0106 .1082 .0528 .0122 .0970 .0472 .0082

T22 .1154 .0646 .0140 .1066 .0564 .0118 .1064 .0554 .0106

T33 .1010 .0554 .0110 .0972 .0484 .0104 .0960 .0474 .0080

Table 5c. Empirical Sizes: Two-Sided Tests of H0 : ρ = 0 in SED Model

Group Interaction, REG2, T = 3, β = (1,1)′, σ = 1. Tjj are defined in (3.14)

n Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

Normal Errors Normal Mixture Lognormal Errors

50 T11 .1572 .0920 .0282 .1492 .0846 .0236 .1282 .0666 .0164

T22 .1386 .0758 .0234 .1242 .0734 .0220 .1030 .0572 .0152

T33 .1146 .0620 .0172 .1152 .0640 .0176 .0928 .0518 .0142

100 T11 .1420 .0798 .0224 .1324 .0738 .0142 .1170 .0598 .0126

T22 .1274 .0736 .0202 .1248 .0700 .0160 .1010 .0550 .0140

T33 .1116 .0594 .0154 .1054 .0540 .0112 .0840 .0444 .0116

250 T11 .1224 .0630 .0140 .1128 .0568 .0114 .1028 .0544 .0124

T22 .1190 .0656 .0172 .1096 .0560 .0142 .1056 .0566 .0166

T33 .1006 .0518 .0124 .0882 .0450 .0114 .0880 .0466 .0114

500 T11 .1124 .0578 .0120 .1126 .0526 .0098 .1004 .0518 .0116

T22 .1136 .0624 .0142 .1202 .0604 .0148 .1164 .0610 .0178

T33 .0952 .0492 .0098 .1004 .0482 .0108 .0982 .0476 .0126

Table 6. Empirical Sizes: Two-Sided Tests of H0 : β1 = β2 in SARAR Model

Group Interaction, REG2, T = 3, σ = 1, λ = ρ = 0

n Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

Normal Errors Normal Mixture Lognormal Errors

50 T11 .1608 .1020 .0386 .1630 .1046 .0386 .1604 .0978 .0344

T22 .1154 .0650 .0214 .1190 .0678 .0206 .1138 .0614 .0204

100 T11 .1334 .0744 .0228 .1344 .0794 .0218 .1334 .0782 .0218

T22 .1012 .0546 .0138 .1042 .0536 .0126 .1032 .0534 .0120

250 T11 .1240 .0642 .0166 .1210 .0680 .0204 .1196 .0670 .0184

T22 .1066 .0524 .0120 .1060 .0564 .0152 .1018 .0580 .0114

500 T11 .1092 .0548 .0116 .1100 .0564 .0140 .1154 .0616 .0200

T22 .0958 .0472 .0092 .0978 .0472 .0100 .1022 .0536 .0146

50 T11 .1624 .1004 .0376 .1624 .1024 .0390 .1610 .0992 .0376

T22 .1136 .0654 .0196 .1204 .0666 .0208 .1136 .0640 .0216

100 T11 .1282 .0742 .0196 .1394 .0810 .0208 .1420 .0808 .0250

T22 .0968 .0496 .0114 .1068 .0540 .0090 .1060 .0564 .0118

250 T11 .1254 .0688 .0190 .1224 .0642 .0140 .1146 .0622 .0180

T22 .1050 .0568 .0142 .1024 .0480 .0094 .0990 .0526 .0132

500 T11 .1240 .0626 .0152 .1130 .0594 .0130 .1220 .0650 .0160

T22 .1102 .0502 .0124 .0978 .0482 .0096 .1084 .0552 .0122

Note: β = (1, 1)′ for upper panel, and (.5, .5)′ for lower panel. Tjj are defined in (3.15).
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