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MULTIVARIATE STOCHASTIC VOLATILITY: A REVIEW

Manabu Asai o Facully of Economics, Soka University, Tokyo, Japan

Michael McAleer o School of Economics and Commerce,
University of Western Australia, Perth, Australia

Jun Yu o School of Economics and Social Sciences,
Singapore Management University, Singapore

O The literature on multivariate stochastic volatility (MSV) models has developed significantly
over the last few years. This paper reviews the substantial literature on specification, estimation,
and evaluation of MSV models. A wide range of MSV models is presented according to various
categories, namely, (i) asymmetric models, (ii) factor models, (iii) time-varying correlation models,
and (i) alternative MSV specifications, including models based on the matrix exponential
transformation, the Cholesky decomposition, and the Wishart autoregressive process. Alternative
methods of estimation, including quasi-maximum likelihood, simulated maximum likelihood,
and Markov chain Monte Carlo methods, are discussed and compared. Various methods of
diagnostic checking and model comparison are also reviewed.

Keywords Asymmetry; Diagnostic checking; Estimation; Factor models; Leverage; Model
comparison; Multivariate  stochastic  volatility; Thresholds; Time-varying correlations;
Transformations.

JEL Classification Cl11; C15; C32; G12.

1. INTRODUCTION

A wide range of multivariate GARCH and stochastic volatility (SV)
models has been developed, analyzed, and applied extensively in recent
years to characterize the volatility that is inherent in financial time series
data. Bauwens et al. (2006) recently provided a survey of multivariate
GARCH models. The GARCH literature has expanded considerably since
the univariate ARCH process was developed by Engle (1982). The
univariate SV model was proposed by, among others, Taylor (1982, 1986).
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The univariate SV literature was surveyed in Ghysels et al. (1996) and
Shephard (1996), while estimation methods for univariate SV models were
reviewed in Broto and Ruiz (2004). Shephard (2005) collects some of the
more important studies on the topic.

Although there have already been many practical and successful
applications of multivariate GARCH models, the theoretical literature on
multivariate stochastic volatility (MSV) models has developed significantly
over the last few years. In GARCH-type models the conditional variance of
returns is assumed to be a deterministic function of past returns, whereas
in SV models the volatility process is random. The introduction of the
additional error term makes the SV model more flexible than the GARCH-
type models (see, for example, Kim et al., 1998) and also more directly
linked to continuous time models that are often used in asset pricing in
finance. Some of the more important existing univariate and multivariate
GARCH and discrete time SV models have been analyzed in McAleer
(2005). However, a comprehensive review of the important aspects of
existing discrete time MSV models in the literature does not yet seem to
exist. Owing to the development of a wide variety of discrete time MSV
models in recent years, this paper reviews the substantial literature on the
specification, estimation, and evaluation of discrete time MSV models.

There are both economic and econometric reasons why multivariate
volatility models are important. The knowledge of correlation structures is
vital in many financial applications, such as asset pricing, optimal portfolio
risk management, and asset allocation, so that multivariate volatility models
are useful for making financial decisions. Moreover, as financial volatility
moves together across different assets and markets, modeling volatility in a
multivariate framework can lead to greater statistical efficiency.

The remainder of the paper is organized as follows. Section 2 presents
a range of discrete time MSV models according to various categories,
including asymmetric models, factor models, time-varying correlation
models, and several alternative specifications, including the matrix
exponential transformation, the Cholesky decomposition, and the Wishart
autoregressive models. Section 3 compares and discusses alternative
methods of estimation, including the quasi-maximum likelihood, simulated
maximum likelihood, Monte Carlo likelihood, and Markov chain Monte
Carlo techniques. Various methods of diagnostic checking and model
comparison are examined in Section 4. Some concluding comments are
given in Section 5.

2. MSV MODELS

In what follows, S =(S,...,S,) denotes a vector of log-prices
for m financial assets, and y = (y;,...,y,)" denotes a vector of returns



for m financial assets. For expositional purposes, it is assumed that the
conditional mean vector of y is zero, although this can easily be relaxed.
Moreover, exp(-) and log(-) denote the element-by-element exponential
and logarithmic operators, respectively, and diag{x} = diag{xi,..., x,}
denotes the m x m diagonal matrix with diagonal elements given by
x=(X,...,%,)".

In a general level, the continuous time diffusion model for S can be
specified by

ds(t) = H'*(t)aw V()
df (vech(H (1)) = a(vech(H (1)))dt + b(vech(H (t)))dW® (t), (1)

where wvech(-) is the operator that stacks each column of the lower
triangular matrix, W (¢) and W®(¢) are two vectors of Brownian motions
whose elements may be cross-correlated, and f, a, b are all known functions.
The Euler scheme leads to the discrete time MSV model

y, = H'?e,, e ~ N(0,1,)
f(vech(H,)) = a(vech(H,_,)) + f(vech(H,_y)) + b(vech(H,_1))n,_1,
11[71 ~ N(O’ 2}1)7 (2)

where y, = S, — S,_;.

Without further restrictions, there is no guarantee for the positive
definiteness of H,. As a result, the validity of Equation (2) as a well-
defined econometric model is not guaranteed. In order to understand
why H, must be positive definite. Note that, in its mathematical form, the
first equation in (2) is identical to the mean equation of the multivariate
GARCH model (see, for example, Bauwens et al., 2006, Equation (2)),
while H, in Equation (1) represents the instantaneous covariance matrix.
This requirement of positive definiteness is the same as in multivariate
GARCH models and becomes nontrivial relative to the univariate case.
However, in sharp contrast to multivariate GARCH models, in which H,
is measurable with respect to I,_; as it is specified to be a deterministic
function of past returns (Engle and Kroner, 1995), #,_y € I,-; (where I, is
denoted as the information set observed by the econometrician at ¢) in
MSV models. Consequently, H, is not measurable with respect to /,_; in
MSV models.

The latent feature of H, makes the positive definiteness a more difficult
condition to achieve than in multivariate GARCH models. This is perhaps
the reason that, in the discrete time MSV literature, the dynamics of the
logarithm transformation of H,, rather than H, itself, are almost always
modeled. Moreover, without further restrictions, Equation (2) does not
warrant identification or parsimony. From the perspective of estimation



and prediction, parsimony is an especially relevant issue. As the dimension
of the vector y increases, the number of parameters in Equation (2)
increases at a much faster rate, making the model difficult to estimate and
not useful for prediction. However, if too many restrictions are imposed,
the model may fail to capture some important features in the data. Thus
there is a trade-off between the flexibility of specification and the curse of
dimensionality.

There are various approaches to simplify Equation (2) in order
to address the positive definiteness of H, and the trade-off between
flexibility and the curse of dimensionality. This section reviews these
variants of MSV models according to four categories: (i) asymmetric
models, (ii) factor models, (iii) time-varying correlation models, and
(iv) alternative MSV specifications, including models based on the matrix
exponential transformation, the Cholesky decomposition, and the Wishart
autoregressive process.

2.1. The Basic Model

The first MSV model proposed in the literature is due to Harvey et al.
(1994):

1
Y = I_It /28t7

H'* = diag{exp(h/2),...,exp(h,/2)} = diag{exp(h,/2)}

hiyr = p+ o b+, (4)
() =100 (6 5)] g
ne 0 0 3,
where h, = (hy,..., hy) is an m x 1 vector of unobserved log-volatility,

u and ¢ are m x 1 parameter vectors, the operator o denotes the
Hadamard (or element-by-element) product, 3, = {c,;} is a positive-
definite covariance matrix, and P, = {plj} is the correlation matrix, that
is, P; is a positive definite matrix with p; =1 and [p;| < 1 for any i # j,
i,j=1,...,m. Harvey et al. (1994) also considered the multivariate ¢
distribution for g, as this specification permits greater kurtosis than with
the Gaussian assumption. It can be seen that the positive definiteness of
H, and parsimony are achieved by restricting H, to be a diagonal matrix,
with the diagonal element following the exponential function of a Gaussian
vector AR(1) process. The number of parameters in the basic model is
2m + m*.

The model of Harvey et al. (1994) can easily be extended to a VARMA
structure for A,:

(L) by = p+ L)1,



where

P
(L) =1, — Z O,L

i=1

q
OL)=1,— Y L,

j=1

and L is the lag operator.

Assuming that the off-diagonal elements of 3, are all equal to zero, the
model corresponds to the constant conditional correlation (CCC) model
proposed by Bollerslev (1990) in the framework of multivariate GARCH
processes. In the CCC model, each conditional variance is specified as a
univariate GARCH model, that is, with no spillovers from other assets, while
each conditional covariance is given as a constant correlation coefficient
times the product of the corresponding conditional standard deviations. If
the off-diagonal elements of 3, are not equal to zero, then the elements of
h, are not independent.

2.2. Asymmetric Models

It has long been recognized that the volatility of stock returns responds
differently to bad news and good news. In particular, while bad news
tends to increase the future volatility, good news of the same size will
increase the future volatility by a smaller amount, or may even decrease
the future volatility. The news impact function (NIF) of Engle and Ng
(1993) is a powerful tool for analyzing the volatility asymmetry for GARCH-
type models. The idea of the NIF is to examine the relationship between
conditional volatility in period ¢ + 1 (defined by ¢7,,) and the standardized
shock to returns in period ¢ (defined by &,) in isolation.

In both the conditional and the stochastic volatility literature, there
has been some confusion regarding the definitions of asymmetry and
leverage. The asymmetric effect in volatility is that the effects of positive
returns on volatility are different from those of negative returns of a
similar magnitude. On the other hand, leverage refers to the negative
correlation between the current return and future volatility. Therefore
leverage denotes asymmetry, but not all asymmetric effects display leverage.
In the class of ARCH specifications that have been developed to capture
asymmetric effects, the exponential GARCH (EGARCH) model of Nelson
(1991) and the GJR model of Glosten et al. (1993) are widely used. Using
the terminology given above, the EGARCH model can describe leverage,
whereas the GJR model can capture asymmetric effects but not leverage
(for further details, see Asai and McAleer, 2006).



As stated above, a popular explanation for asymmetry is the leverage
effect proposed by Black (1976) (see also Christie, 1982). Other forms
of asymmetry, such as the asymmetric V-shape, have to be explained by
reasons other than the leverage effect. Alternative reasons for the volatility
asymmetry that have been suggested in the literature include the volatility
feedback effect (Campbell and Hentschel, 1992).

Most asymmetric MSV models are based on the basic SV specifications
and hence the positive definiteness of H, is ensured. Depending on how
asymmetry is introduced, we have three types of asymmetric MSV models,
as given below.

2.2.1. Leverage Effect

A univariate discrete time SV model with the leverage effect was first
proposed by Harvey and Shephard (1996), although Wiggins (1987) and
Chesney and Scott (1989), among others, considered a continuous time

model itself and discretized it for purposes of estimation. The model of
Harvey and Shephard (1996) is of the form

Y = 0.&;

In ‘7?+1 =a+¢ln a? + o1, (6)

()= (6)-G )

where all the variables are scalar. Model (6) may be regarded as the Euler
approximation to the continuous time SV model that is used widely in
the option price literature (see, for example, Hull and White, 1987, who
generalized the Black-Scholes option pricing formula to analyze SV and
leverage).

In the context of SV, Yu (2005) defined the leverage effect to be
a negative relationship between E(Ing? |y,) and the return in period ¢
(defined by y,), holding everything else constant. Yu (2005) showed that

E(In ¢? ly,) = o+ i + po, exp| — 63 + 630( Vi
ok 1—¢2 " 4(1—-¢2)?  (1—¢H(1 - ¢)

and hence Model (6) ensures the leverage effect whenever p < 0. An
alternative discrete time SV model with leverage effect was proposed by
Jacquier et al. (2004) as

() ~(6)-6 1) "



Model (7) differs from (6) in the timing of the correlation. Using the
implicit function theorem, one can show that Model (7) implies

dlnay,, _ PyO1/0
ayt 1 + O.5p0-,18t+1 ’

(8)

Even when p < 0, the quantity in (8) can be positive or negative. As a result,
the leverage effect is not warranted, and hence it is difficult to interpret
the leverage effect (Yu, 2005).

Danielsson (1998) and Chan et al. (2005) considered a multivariate
extension of the model of Jacquier et al. (2004). The model is given by
Equations (3) and (4), together with

() =G (7 5)

L = diag{,6,*, K, A,,6'/2

mmJ >

(9)

where the parameter A; captures asymmetry. In the empirical analysis,
Danielsson (1998) did not estimate the multivariate dynamic leverage (DL)
model because the data used in his analysis did not suggest any asymmetry
in the estimated univariate models. However, the argument of Yu (2005)
regarding the leverage effect also applies to the model in (9). Thus the
interpretation of the leverage effect in (9) is unclear and, even if ; <0,
there is no guarantee that there will, in fact, be a leverage effect.

In order to introduce the leverage effect, Asai and McAleer (2005b)
considered a multivariate extension of the model of Harvey and Shephard
(1996). The model is given by Equations (3) and (4) together with

() =) £)]

L = diag{40,11, - AuGyum}s

(10)

where the parameter 4;,i=1,...,m, is expected to be negative. The
number of parameters in Model (10) is 3m + m?.

2.2.2. Threshold Effect

In the GARCH literature, Glosten et al. (1993) proposed modeling
the asymmetric responses in conditional volatility using thresholds. In the
univariate SV literature, So et al. (2002) proposed a threshold SV model,
in which the constant term and the autoregressive parameter in the SV
equation changed according to the sign of the previous return.

Although the multivariate threshold SV model has not yet been
developed in the literature, it is straightforward to introduce a multivariate



threshold SV model with the mean equation given in (2), together with the
volatility equation,

Ry = u(s,) + (P(St) oh +n,,

where

H(St) = (,ul(slt)a ] .u“m(smt))/a
d(s) = (P1(s1)5 - Pulsm)),

and s, is a state vector with elements given by

0, ify, <O,
Sy =
" 1, otherwise.

2.2.3. General Asymmetric Effect

Within the univariate framework, Danielsson (1994) suggested an
alternative asymmetric specification to the leverage SV model, which
incorporates the absolute value function to capture the sign and magnitude
of the previous normalized returns shocks to accommodate asymmetric
behavior.

In the model suggested by Danielsson (1994), which was called the SV
with leverage and size effect (SV-LSE) model in Asai and McAleer (2005b),
two additional terms, |y,| and y,, were included in the volatility equation,
while the correlation between the two error terms was assumed to be
zero. Asai and McAleer (2005a,b) noted that the absolute values of the
previous realized returns are included because it was not computationally
straightforward to incorporate the previous normalized shocks in the
framework of SV models.

In the multivariate context, Asai and McAleer (2005b) suggested an
extension of the SV-LSE model of Danielsson (1994) with the mean
equation given in (2), together with

hipy = p+ oy + 720 |yt|+¢0hz+’7h

where 7, ~ N(0,%,) and y; and ), are m x 1 parameter vectors.

2.3. Factor Models

Although the models reviewed in Section 2.2 can mitigate the problem
of the curse of dimensionality, the number of parameters still increases at
an increasing speed in m. To afford further parsimonious parameterization,
a class of factor MSV models has been proposed in the literature. Unlike the



models reviewed in Section 2.2, the boundary between factor MSV and
factor GARCH is blurred. Some factor GARCH models, including Engle
et al. (1990), assume that factors are observable, so that the likelihood is
readily available. Some other factor models, such as Diebold and Nerlove
(1989), assume the factors follow latent ARCH processes. As a result, the
latent factor ARCH models can also be classified as factor MSV models.

Although the model of Diebold and Nerlove (1989) can be regarded
as a prototype of factor MSV models, the MSV models with the latent
SV factor were originally proposed by Harvey et al. (1994), and extended
by Shephard (1996), Pitt and Shephard (1999b), Jacquier et al. (1999),
and Doz and Renault (2006). Apart from the ability to ensure parsimony,
factor MSV models can capture the common features in asset returns and
volatilities, and hence have a natural link with the arbitrage pricing theory
(APT) of Ross (1976). Owing to these two features, this class of MSV
models has received a great deal of attention in the literature. Depending
on how factors enter the mean equation, we will classify this class of models
into two subclasses.

2.3.1. Additive Factor Models

The additive factor MSV model was first introduced by Harvey
et al. (1994) and subsequently extended in Jacquier et al. (1995, 1999),
Shephard (1996), Pitt and Shephard (1999a), and Aguilar and West
(2000). The basic idea is borrowed from the factor multivariate ARCH
models and more generally from factor decompositions of covariance
structures in multivariate analysis, where the returns are decomposed into
two additive components. The first component has a smaller number of
factors, which captures the information relevant to the pricing of all assets,
while the other component is idiosyncratic noise, which captures the asset-
specific information (for further details, see Diebold and Nerlove, 1989).

Denote the K x 1 vector of factors as f; (K < m) and D is an m x K
dimensional matrix of factor loadings. The additive K factor MSV model
presented by Jacquier et al. (1995) can be written as

Ve = Dﬁ + e,
ﬁz = CXP(hiz/Q)Sin (11)
Rir1 :Hi+¢thit+77ita 1=1,...,K,

where ¢, ~ N(0,diag{a%,...,0%}), &, ~ N(0,1), n,, ~ N(0, a?) and they are
mutually independent. In order to guarantee the identification of D and
Ji: uniquely, the restrictions D; =0 and D; =1 for i=1,...,m and j < ¢
are usually adopted (see Aguilar and West, 2000). The variance of y, is
D3,D' + diag{a?, ..., 0%}, which is always positive definite. In Diebold and



Nerlove (1989), f; is assumed to follow a latent ARCH process instead of a
latent AR(1) process. It is easy to see that the positive definiteness of the
conditional variance of y, is ensured by construction. When K = 1, the total
number of parameters is 5m — 1 and hence will only grow linearly with m.

While Model (11) is highly parsimonious and can capture some of the
important features in the data, it has several drawbacks. First, since the
error ¢ is homoskedastic, when the number of assets in the portfolios is
greater than the number of factors, it can be shown that there must exist
portfolios whose prices involve no heteroskedasticity. This feature is clearly
inconsistent with the stylized fact. Second, the diagonality in the covariance
of the error ¢ is a too strong assumption and is not preserved by portfolio
formation, as shown by Doz and Renault (2006).

Model (11) was extended in Pitt and Shephard (1999a) by allowing
each element in ¢ to evolve according to a univariate SV model, which
increases the number of parameters to 8m — 1. Chib et al. (2005) further
extended the model by allowing for jumps and for idiosyncratic errors that
follow the Student ¢ SV process. Clearly, these extensions overcome the first
drawback while maintaining parsimonious specifications. To deal with the
second drawback, Model (11) was extended in Doz and Renault (2006) by
allowing Var(e,) to be a possibly nondiagonal constant definite matrix.

Yu and Meyer (2006) showed that additive factor models accommodate
both time-varying volatility and time-varying correlations. In the context of
the bivariate one-factor SV model given by

Y =Dfi+ e, b~ N(O’ diag{afl, ‘732})
Ji=exp(h/2)e,, g~ N(,1),
ht+1:u+¢h’t+n[; ntNN(O>1);

where £, is a scalar. Yu and Meyer (2006) derived the conditional
correlation coefficient between y,, and yy, as

d
J 4 62 exp(=h)) (@ + o exp(—h))

where (1, d)’ = D. Itis clear from the above expression that the correlation
depends on the volatility of the factor.

Philipov and Glickman (2006) proposed a high-dimensional additive
factor MSV model in which the factor covariance matrices are driven by
Wishart random processes, as

Ve :Dﬁ+er, e ~ N(0,Q),
Sl Vi~ N(@,V),



Vo VL ALy, 6 ~ Wish(v, S-1),
1 9 J 2N/
S = AV (A

where V7' is a matrix of factor volatility, A is a symmetric positive definite
matrix, 0 is a scalar persistence parameter, Wish is the Wishart distribution,
and v is the degrees of freedom parameter of the Wishart distribution.

2.3.2. Multiplicative Factor Models

The multiplicative factor MSV model, also known as the stochastic
discount factor model, was considered in Quintana and West (1987).
The one-factor model from this class decomposes the returns into two
multiplicative components, a scalar common factor and a vector of
idiosyncratic noise, as

h
y, = exp (j)sh g~ N(0,3,),
hipr = p+ (b — ) +m, 1~ N(O, 0',3)’

where #, is a scalar. The first element in 2, is assumed to be one for
purposes of identification. By construction, the positivity for the variance
of y, is ensured. Compared with the basic MSV model, this model
has a smaller number of parameters, which makes it more convenient
computationally. Unlike the additive factor MSV model, however, the
correlations are now invariant with respect to time. Moreover, the
correlation in log-volatilities is always equal to 1, which is clearly too strong
an assumption.

Ray and Tsay (2000) extended the one-factor model to a k-factor
model, in which long range dependence is accommodated in the factor
volatility:

hv,
yt = exp 7 &y, &~ N(O’Ps)’

(1 - L)dht = U+,

where v, is an (m X k) matrix of rank k, with k < m.

2.4. Time-Varying Correlation Models

A consequence of MSV factor models is that conditional correlations
are time varying. However, the same set of parameters also determines the
time-varying variance. To break the intrinsic tension between the two roles



served by the same set of parameters, one could model the dynamics in
volatility and the dynamics in correlation separately, while maintaining the
positivity of the covariance matrix. This is the idea behind the time-varying
correlation models. To begin, let us relax the assumption of constant
correlations in the correlation matrix P, in Equation (5) by considering the
time-varying correlation matrix, P,, = {p;,}, where p;, =1 and p;, = pji,.

Following the suggestion made by Tsay (2002) and Christodoulakis and
Satchell (2002) in the bivariate GARCH framework, Yu and Meyer (2006)
proposed that the Fisher transformation of pys, could be modeled in a
bivariate SV framework, as

P12 = (exp(v,) — 1)/(exp(v,) + 1), (12)
Vil = Wy + @(vy — ) + w,  w ~ N(O, JZ)

The first equality in (12) guarantees that |pyo,|< 1. The obvious drawback
with this specification is the difficulty in generalizing it to a higher
dimension.

In order to develop an MSV model that accommodates time-varying
correlation, Asai and McAleer (2004) proposed a new MSV model based
on the Wishart distribution. Suppose that y, conditional on 3,, has a
multivariate normal distribution, N (0, X,), where the covariance matrix is
given by

3, =DTI,D,. (13)

In Equation (13), the time-varying correlation matrix is given by I, while
the diagonal matrix D, is defined by Equations (3) and (4). For the DCC
model, I is specified as

rt — Q*71QQ*71

where Q = (diag{vecd(Q))})"/*, where vecd creates a vector from the
diagonal elements of a matrix, by using some positive definite matrix Q.
Asai and McAleer (2004) extended the DCC model by specifying Q, as

Qui=1—-Y)Q+yQ +E,
El ~ VVm(vaA)a

where W, (v, A) denotes a Wishart distribution. This dynamic correlation
MSV model guarantees the positive definiteness of I', under the assumption
that Q is positive definite and || < 1. The latter condition also implies that
the time-varying correlations are mean reverting. In the special case where
v=1, E, can be expressed as the cross product of a multivariate normal



variate with mean zero and covariance matrix given by A. The total number
of parameters in this model is (3m* + 7m + 3)/2.

Following Engle (2002), Yu and Meyer (2006) proposed an alternative
MSV extension of DCC by specifying Q, as

Qi1 =S+Bo(Q —S)+Ao(ee —39)
=So(lll —=A—B)+BoQ,+ Aoe¢e,

where ¢ ~ N(0,1,) and [ is a vector of unit elements. According to Ding
and Engle (2001) and Engle (2002), if A, B and (I’ — A — B) are positive
semidefinite, then Q, will also be positive semidefinite. Moreover, if any of
the matrices is positive definite, then @, will also be positive definite. The
total number of parameters in this model is 2m(m + 2).

2.5. Alternative Specifications

This subsection introduces four alternative MSV models based on
the matrix exponential transformation, the Cholesky decomposition, the
Wishart autoregressive process, and the observed range.

2.5.1. Matrix Exponential Transformation

Motivated by the requirement for the positivity of the covariance, Chiu
et al. (1996) proposed a general framework for the logarithmic covariance
matrix based on the matrix exponential transformation, which is well
known in the mathematics literature (see, for example, Bellman, 1970).
In this subsection, we denote Exp(-) as the matrix exponential operation
to distinguish it from the standard exponential operation. For any m x m
matrix A, the matrix exponential transformation is defined by the power
series expansion

= /1
Exp(A) = ) (E)As,

s=0

where A" reduces to the m x m identity matrix and A* denotes the standard
matrix multiplication of A s times. Thus, in general, the elements of
Exp(A) do not typically exponentiate the elements of A.

The properties of the matrix exponential and matrix logarithm are
summarized in Chiu et al. (1996). For any real symmetric matrix A, we
note the singular value decomposition A = TDT’, where the columns of
the m x m orthonormal matrix 7" denote the appropriate eigenvectors
of A, and D is an m X m diagonal matrix with elements equal to the
eigenvalues of A. Therefore, Exp(A) = TExp(D)T’', where Exp(D) is an
m x m diagonal matrix, with diagonal elements equal to the exponential of



the corresponding eigenvalues of A. If it is assumed that 3, = Exp(A) for
any symmetric matrix A,, then 2, is positive definite.

Similarly, the matrix logarithmic transformation, Log(B), for any
m x m positive definite matrix, B, is defined by using the spectral
decomposition of B.

Using the matrix exponential operator, we propose the model

yt ~ N(O> 2t)>
2= EXP(AI)’

where o, = vech(A,) is a vector autoregressive process, as

o1 = p+Yx, +poo, +n,
nt ~ N(O, En)>

with x, = (], |y,])’, » x 1 parameter vectors u and ¢, where n = (m +1)/2,
n X m covariance matrix %,, and an n x 2m matrix of parameters Y. The
model may be regarded as an SV generalization of the matrix exponential
GARCH model of Kawakatsu (2005). A limitation of this specification is
that it is not straightforward to interpret the relationship between the
elements of 3, and A,.

2.5.2. Cholesky Decomposition

Tsay (2002) advocated an alternative approach to ensuring the
positive definiteness of the covariance matrix, which uses the Cholesky
decomposition. For a symmetric, positive definite matrix 3,, the Cholesky
decomposition factors the matrix %, uniquely in the form X, = L,G,L],
where L, is a lower triangular matrix with unit diagonal elements, and G,

is a diagonal matrix with positive elements.
The MSV model of Tsay (2002) is given as

N | Et ~ N(O, Et),
Et = LthL,/,
L=l
le,z qm2,t -1

G, = diag{gi1.s, - - - » @um,.} = diag{exp(h,), ..., exp(hu.)},
his1 = Wi + Qhy + 1y 1=1,...,m,
Qi1 = O + B + Wi, i> .



The elements in G, are always positive owing to the exponential
transformation. Consequently, the Cholesky decomposition guarantees the
positive definiteness of %,. It can be seen that the elements in L, and G,
are assumed to follow an AR(1) process. Moreover, it is straightforward to
derive the relationship between the variances and correlations, on the one
hand, and the variables in L, and G,, on the other, by

3
2 .
Jii,t = E qik,[gkk,t’ 1= 15 e, M,
k=1

J
Ot = E Gik,t Gite,t Skt > P> j, 1=2,...,m,

k=1
J
Oijt D ke Gik,t Gjie,1 8kt
0ii1Ojje i i 9
vy \/Zk:l T8t Dt i1 G

It is clear from these expressions that the dynamics in g;;, and ¢;;, are the
driving forces underlying the time-varying volatility and the time-varying
correlation.

However, the dynamics underlying volatility are not determined
separately from those associated with the correlations, as both are
dependent on their corresponding AR(1) processes. This restriction is,
at least in spirit, similar to that associated with factor MSV models.
The number of parameters in this model is 3m(m + 1)2.

Pij.e =

2.5.3. Wishart Models

Gourieroux et al. (2004) and Gourieroux (2006) proposed the Wishart
autoregressive (WAR) multivariate process of stochastic positive definite
matrices to develop an altogether different type of dynamic MSV model.

Let 3, denote a time-varying covariance matrix of y,. Gourieroux et al.
(2004) defined the WAR(p) process as

K
Et = Zxklx/,{p (14)
k=1

where K > m — 1 and each x;, follows the VAR(p) model given by

4
Xpt = ZAixk,t—i + Eus e ~ N(0,%).

=1

By using the realized value of volatility, Gourieroux et al. (2004) estimated
the parameters of the WAR(1) process using a two-step procedure based



on nonlinear least squares. Gourieroux (2006) proposed the continuous-
time WAR process, which is not only a generalization of the Model (14)
but also the multivariate extension of the CIR model suggested by Cox
et al. (1985). As the CIR process has closed-form solutions for a number
of financial problems, such as term structure of T-bonds and corporate
bonds, and structural model for credit risk, the WAR process is appropriate
for modeling multivariate risk in various financial problems and provides
closed-form derivative prices.

Philipov and Glickman (2004) suggested an alternative model based on
Wishart processes

yt | 2t ~ N(Oa Et)’
2;1 | v, St—l ~ Wm(v; St—])a

where v and §, are the degrees of freedom and the time-dependent scale
parameter of the Wishart distribution, respectively. With a time-invariant
covariance structure, the above model may be considered as a traditional
Normal-Wishart representation of the behavior of multivariate returns.
However, Philipov and Glickman (2004) introduced time variation in the
scale parameter

S = l(A”Q)(E,_l)d(Al/Q),
v

where A is a positive definite symmetric parameter matrix that is
decomposed through a Cholesky decomposition as A = (A'/?)(A'?)’, and d
is a scalar parameter. The quadratic expression ensures that the covariance
matrices are symmetric positive definite.

2.5.4. Range-Based Model

Tims and Mahieu (2003) proposed a range-based MSV model. As the
range can be used as a measure of volatility, which is observed (or realized)
when the high and low prices are recorded, Tims and Mahieu (2003)
suggested a multivariate model for volatility directly, as

log(range,) = D'f, + €, g, ~N(0,3),
ﬁ+1 = (I)ﬁ + Nes ng~ N(O, Er()

As the volatility is not latent in this model, efficient estimation of the
parameters is achieved through the use of the Kalman filter. It is not
known, however, how to use this model for purposes of asset pricing.

To conclude this section, we summarize some MSV models where the
reporting includes the specifications, the number of parameters in each
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model, which of the cited papers uses such a model, and the main features
of each model (see Table 1). For exchange rates, it is said that volatility
asymmetry is not an important feature, and hence the asymmetric MSV
models, such as the leverage MSV, are not particularly relevant. On the
other hand, asymmetric MSV models are useful for stock returns. Some
empirical results show that, for exchange rate returns and stock returns,
the correlation is time varying. Therefore a DC-MSV model and a factor
MSV model for exchange rate returns may be more suitable as far as time-
varying correlations are concerned. Using a model selection criterion, the
deviance information criterion (DIC), which will be discussed in Section 4,
Yu and Meyer (2006) compared the performance of nine alternative MSV
models for a bivariate exchange rate series and found that those MSV
models that allow for time-varying correlations fit the data better. For stock
returns, asymmetric MSV models with time-varying correlations should be
developed in future research.

3. ESTIMATION

Unlike the multivariate GARCH model in which the conditional
covariance at ¢ is known given the information up to ¢ — 1, the conditional
covariance is latent in the MSV models and has to be integrated out from
the joint likelihood function of returns and the conditional covariance.
As a result, MSV models do not have a closed-form expression for
the likelihood function; hence the exact maximum likelihood is not
readily available. Not surprisingly, the estimation methods proposed in the
literature are nonstandard.

An important concern for the choice of a particular estimation method
lies in its statistical efficiency. In addition to efficiency, other important
issues related to estimation include (1) estimation of the latent volatility;
(2) determination of the optimal filtering, smoothing, and forecasting
methods; (3) computational efficiency; (4) applicability for flexible
modeling. Broto and Ruiz (2004) provided a recent survey regarding the
numerous estimation techniques for univariate SV models, ranging from
inefficient methods, such as GMM, quasi-maximum likelihood, and spectral
GMM based on the characteristic function, to more efficient methods, such
as EMM, indirect inference, numerical maximum likelihood, simulated
maximum likelihood and Markov chain Monte Carlo. While this general
set of estimation methods can all be used to estimate certain MSV models,
only a small subset of them has been applied in the literature, namely,
quasi-maximum likelihood, simulated maximum likelihood, and Markov
chain Monte Carlo. Consequently, in this review we will focus on these
three estimation methods and refer readers to Broto and Ruiz (2004) for
a review of the remaining estimation methods.



3.1. Quasi-Maximum Likelihood

In order to estimate the parameters of the model (3-5), Harvey et al.
(1994) proposed a quasi-maximum likelihood (QML) method based on
the property that the transformed vector yf = (Iny;,,...,Iny2) has a state
space form with the measurement equation given by

yZ‘ =h+ <&,

. . . 15
(=Ing?=(Inéf,...,In&2) (15)
and the transition equation (4). The measurement equation errors, ¢, are
nonnormal, with mean vector E(,) = —1.27931, where 1 is an m x 1 vector
of unit elements. Harvey et al. (1994) showed that the covariance matrix of
¢, denoted 3, is given by,

(n—1)" ,,

a9

2 o0
= (n2/2){pj}}, where pj; =1, and pj = = Z

n=1

where (x), = x(x+1)---(x+n—1) and p; is defined by (5). Treating ¢,
as a Gaussian error term, QML estimates may be obtained by applying
the Kalman filter to Equations (4) and (15). Taking account of the
nonnormality in ¢, the asymptotic standard errors can be obtained by
using the results established in Dunsmuir (1979).

If pj; can be estimated, then it is also possible to estimate the absolute
value of p; and the cross correlations between the different values of &.
Estimation of p; can be obtained by returning to the untransformed
observations and noting that the sign of each of the pairs, €;&; (7,5 =
1,...,m), will be the same as the corresponding pairs of observed values,
yiyi- Therefore the sign of p; is estimated as positive if more than one-half
of the pairs, y;y;, is positive.

One of the main features of this transformation is that &, and #, are
uncorrelated, even if the original &, and 5, are correlated (see Harvey et al.,
1994). Since the leverage effects assume a negative correlation between &g,
and 7, as in Equation (7), the transformation may ignore the information
regarding the leverage effects. In the univariate case, Harvey and Shephard
(1996) recovered it in the state space form, given the signs of the observed
values. As for the multivariate case, Asai and McAleer (2005b) derived the
state space form for the leverage effects in the model (3), (4), and (10),
based on pairs of the signs of y; and y;. This representation enables use of
the QML method based on the Kalman filter. However, Asai and McAleer
(2005b) adopted the Monte Carlo likelihood method (to be discussed
below) for purposes of efficient estimation.

The main advantages of the QML method are that it is computationally
convenient and also straightforward for purposes of filtering, smoothing,



and forecasting. Unfortunately, the available (though limited) Monte Carlo
experiments in the context of the basic univariate SV model suggest that
the QML method is generally less efficient than the Bayesian MCMC
technique and the likelihood approach based on Monte Carlo simulation
(for further details, see Jacquier et al., 1994, and the discussions contained
therein). It is natural to believe that inefficiency remains for the QML
method relative to the Bayesian MCMC technique and the likelihood
approach in the multivariate context, although no Monte Carlo evidence
is yet available.

3.2. Simulated Maximum Likelihood

As discussed earlier, the likelihood function of MSV models involves
high-dimensional integration, which is difficult to calculate numerically.
Nevertheless, estimation of the parameters can be based on evaluating
high-dimensional integrals with simulation methods and then maximizing
the likelihood function, resulting in the so-called simulated maximum
likelihood (SML) estimators. There are several ways to perform SML
estimation for MSV models.

Perhaps the most usual approach to SML is the importance sampling
method. The basic idea of this method is to approximate first the
integrand by a multivariate normal distribution using the so-called Laplace
approximation and then to draw samples from this multivariate normal
distribution. To fix the idea, let 4, denote a ¢g-dimensional vector of latent
variables, and let f(Y,A;0) be the joint density of ¥ = {y,}", and A =
{A},. The likelihood function associated with the observable variables,
Y, is given by the (7 x ¢)-dimensional integral L(0;Y) = [ (Y, A;0)dA.
The Monte Carlo estimator of the likelihood function L based on
importance sampling is then given by

JY, A 0)

————-dG(A]Y,0),
g(A1Y,0)

L(O,Y)= /f(Y,A; 0)dA =

where g is an importance density and G is an importance distribution

function. The idea of this SML method is to draw samples A®, ... A®
from g so that we can approximate L(0;Y) by %Z% The key

to this SML method is to match f(Y,A;0) and g(A|Y,0) as closely as
possible, while ensuring that it is easy to simulate from g. To achieve
this goal, Shephard and Pitt (1997), Durbin and Koopman (1997), and
Durham (2005) proposed basing the importance sampler on the Laplace
approximation to f(Y, A;0). In particular, we choose the mean of g to be
the mode of In f(Y, A;0) with respect to A and the variance of g to be
the negative of the inverse of the second derivative of In f(Y, A;0) with



1 F(Y,AD) 0
respect to A evaluated at the mode. The convergence of ) TG

L(0;Y) can be justified by the central limit theorem, though it requires the

. (Y, A0
variance of £ )

a0 T © be finite. Koopman and Shephard (2004) proposed
a test to check the validity of such an importance sampler.

We will now explain three SML methods used in the MSV literature.
Apart from the importance sampling methods, it may be possible to use
the numerical integration techniques, such as Kitagawa’s (1987) extended
Kalman filter.

The first SML method is the accelerated Gaussian importance sampling
(AGIS) approach, as developed in Danielsson and Richard (1993). This
is designed to estimate dynamic latent variable models, where the latent
variable follows a Gaussian process. Danielsson’s comments on Jacquier
et al. (1994) show that the finite sample property of this SML estimator is
close to that of the Bayesian MCMC method in the context of the basic
univariate SV model. As for MSV models, Danielsson (1998) applied the
AGIS approach to estimate the parameters of the MSV model in Equations
(3-5). It seems difficult to extend the AGIS approach to accommodate
more flexible SV models, as the method is specifically designed for models
with a latent Gaussian process.

While the AGIS technique has limited applicability, a closely related
method, namely the efficient importance sampling (EIS) procedure, as
proposed by Liesenfeld and Richard (2003, 2006), is applicable to models
with more flexible classes of distributions for the latent variables. As in
the case of AGIS, EIS is a Monte Carlo technique for the evaluation of
high-dimensional integrals. The EIS relies on a sequence of simple low-
dimensional least squares regressions to obtain a very accurate global
approximation of the integrand. This approximation leads to a Monte
Carlo sampler, which produces highly accurate Monte Carlo estimates
of the likelihood. Using EIS, Liesenfeld and Richard (2003) successfully
estimated the parameters of the additive factor model (11) with one factor.

The last SML method, also known as Monte Carlo likelihood (MCL),
was proposed to evaluate the likelihood function of linear non-Gaussian
state-space models. The MCL method can approximate the likelihood
function to an arbitrary degree of accuracy by decomposing it into
a Gaussian part, which is constructed by the Kalman filter, and a
remainder function, whose expectation is evaluated through simulation.
Asai and McAleer (2005b) and Jungbacker and Koopman (2006) used
this importance sampling method to estimate various MSV models. While
Jungbacker and Koopman (2006) considered the basic MSV model and the
factor MSV models and documented the good performance of the SML
method, Asai and McAleer (2005b) dealt with the basic MSV model and
asymmetric MSV models.



Durbin and Koopman (1997) demonstrated that the log-likelihood
function of state space models with non-Gaussian measurement distur-
bances could be expressed simply as

p:(E10) }
InL(y|0) =1In L, 0 In|————"F—1, 17
nL(y|0)=InLs(y|0)+ n[ﬁc(fl%()) (17)

where y=(y,....,9) %=Oe....%), and <=(&,...,¢r) and
InL;(y|0) are the vectors of measurement disturbances and the log-
likelihood function of the approximating Gaussian model, respectively,
p:(£10) is the true density function, ps(<|y,0) is the Gaussian density
of the measurement disturbances of the approximating model, and E;
refers to the expectation with respect to the so-called importance density
pc(E1y, 0) associated with the approximating model. Equation (17) shows
that the non-Gaussian log-likelihood function can be expressed as the
log-likelihood function of the Gaussian approximating model plus a
correction for the departures from the Gaussian assumptions relative to
the true model.

A key feature of the MCL method is that only the minor part of
the likelihood function requires simulations, unlike other SML methods.
Therefore, the method is computationally efficient in the sense that it
needs only a small number of simulations to achieve the desirable accuracy
for empirical analysis. The drawback is that it requires a linear non-
Gaussian state-space representation for the model.

The MCL estimates of the parameters, 0, are obtained by numerical
optimization of the unbiased estimate of Equation (17). The log-likelihood
function of the approximating model, In L;(y|0), can be used to obtain
the starting values. Sandmann and Koopman (1998) are the first to have
used this MCL approach in the SV literature. Asai and McAleer (2005b)
developed the MCL method for asymmetric MSV models. This MCL
method is also able to accommodate the additive factor MSV model.

Being a maximum likelihood method, SML inherits the asymptotic
properties of exact maximum likelihood and hence is asymptotically
efficient. Therefore relative to QML, SML is statistically more efficient
but computationally less efficient. It should be stressed that SML. methods
require a lower computational burden than the Markov chain Monte Carlo
methods explained below.

3.3. Markov Chain Monte Carlo

Much of the focus in the SV literature is on the development and the
use of Markov chain Monte Carlo (MCMC) methods. In the context of
the basic SV model, Andersen et al. (1999) documented a finite sample
comparison of various methods and found that MCMC is the most efficient



estimation tool, while Meyer and Yu (2000) discuss the flexibility of
modeling modifications of the basic SV model. Moreover, as a by-product
of parameter estimation, MCMC methods can provide estimates of latent
volatility and predictive distributions for volatility (see Jacquier et al., 1994).

MCMC was originally developed in the statistical physics literature. The
earliest contributions in the context of the basic univariate SV include
Jacquier et al. (1994). Useful refinements were made in Shephard and Pitt
(1997) and Kim et al. (1998) in the context of univariate SV. As a Bayesian
approach, the idea behind MCMC methods is to produce variates from a
given multivariate density (the posterior density in Bayesian applications)
by repeatedly sampling a Markov chain whose invariant distribution is
the target density of interest. One MCMC method proposed in the
literature focuses on the density n(0, & |y) instead of the usual posterior
density, m(0]y), since the latter requires computation of the likelihood
function f(y|0) = [ f(y|h, 0)f (k| 0)dh. As a result, the parameter space is
augmented by including all the latent variables. The MCMC procedure
only requires alternating back and forth between drawing from f (4]0, y)
and f(0] &, y). This process of alternating between conditional distributions
produces a cyclic chain. See Tierney (1994) for conditions under which a
realization of the Markov chain produces the target stationary distribution.

Regarding the property of sample variates from an MCMC algorithm,
they are a high-dimensional sample from the target density of interest.
These draws can be used as the basis for drawing inferences by
appealing to suitable ergodic theorems for Markov chains. For example,
posterior moments and marginal densities can be estimated (or simulated
consistently) by averaging the relevant function of interest over the
sampled variates. The posterior mean of 0 is estimated simply as the sample
mean of the simulated 0 values. These estimates can be made arbitrarily
accurate by increasing the simulation sample size.

As a Bayesian likelihood-based approach, MCMC relies on posterior
distributions to make statistical inference. Therefore the full statistical
efficiency is automatically achieved. The real concerns include (1) the
computational efficiency, that is, how fast the chain can converge; and (2)
the flexibility of the MCMC algorithm. Jacquier et al. (1994) proposed
to update each element in the vector of latent variables %, one at a
time. As the vector A is often highly persistent, this single-move sampler
is numerically inefficient and typically requires a large number of draws
before the chain converges. In Kim et al. (1998), a multimove sampler,
which updates the whole state vector at once, was proposed. It was shown
that computational efficiency can be greatly improved relative to the single-
move sampler in the context of the basic univariate SV model.

One particularly important technical advantage of the Bayesian MCMC
method over classical inferential techniques is that MCMC does not
need to use numerical optimization. This advantage becomes especially



important when the number of parameters to be estimated is large, as in
the application of MSV models to the analysis of financial data. It should
be noted that it is not necessary to apply numerical optimization for the
Bayesian MCMC, but that it is possible to include some optimization steps
in order to improve computational efficiency (see Chib et al., 2005).

In the context of MSV, Jacquier et al. (1999), Pitt and Shephard
(1999a), and Aguilar and West (2000) have applied the MCMC procedure
to estimate additive factor MSV models. Chan et al. (2005) estimated an
asymmetric MSV model. Philipov and Glickman (2006) estimated a Wishart
MSV model. Moreover, Yu and Meyer (2006) estimated and compared
nine MSV models, covering most of the model classes reviewed in Section
2. By doing so, they have demonstrated the ease with which different
MSV models can be studied routinely with MCMC. In particular, Yu and
Meyer (2006) employed the purpose-built Bayesian software package called
BUGS (Bayesian analysis using the Gibbs sampler). However, all these
MCMC algorithms are based on single-move algorithms, and hence can be
numerically inefficient.

In order to improve the simulation efficiency, Chib et al. (2005)
developed a multi-move MCMC algorithm that greatly improves the
simulation efficiency for a factor MSV model augmented with jumps.
Nardari and Scruggs (2003) and Han (2006) applied this estimation
methodology to address different empirical issues. Liesenfeld and Richard
(2006) proposed an alternative multimove MCMC method to estimate a
factor MSV model based on EIS, which can be used to estimate SV models
by maximum likelihood as well as simulation smoothing.

Bos and Shephard (2006) modeled the Gaussian errors in the standard
Gaussian linear state space model as an SV process and showed that
conventional MCMC algorithms for this class of models are ineffective.
Rather than sampling the unobserved variance series directly, Bos and
Shephard (2006) sampled in the space of the disturbances, which
decreased the correlation in the sampler and increased the quality of the
Markov chain. Using the reparameterized MCMC sampler, they showed
how to estimate an unobserved factor model.

Smith and Pitts (2006) used a bivariate SV model to measure the
effects of intervention in stabilization policy. Missing observations were
accommodated in the model and a data-based Wishart prior for the
precision matrix of the errors in the central bank intervention equation
was suggested. A threshold model for the transition equation was estimated
by MCMC jointly with the bivariate SV model.

It should be noted that in the models estimated in Chan et al. (2005)
and Nardari and Scruggs (2003), and especially in Chib et al. (2005) and
Han (2006), there is a large number of parameters, ranging from dozens to
hundreds, excluding the latent variables. This level of feasibility, together



with the full statistical efficiency of the resulting estimators, seems difficult
to match on the basis of the alternative estimation methods.

4. DIAGNOSTIC CHECKING AND
MODEL COMPARISON

Although standard diagnostic check methods for specification are
based on the residuals, since MSV models involve the latent variables, it
is not obvious how to retrieve the residuals. Following Kim et al. (1998),
Pitt and Shephard (1999a) proposed diagnostic checking using a particle
filter, a simulation method designed to deal with nonlinear non-Gaussian
state-space models. It is known that, for nonlinear non-Gaussian state-space
models, one cannot find the closed-form expression for the distribution
in either the updating stage or the in-sampling prediction stage. The idea
of the particle filter is to draw “particles” from these distributions. The
particle filter is one class of simulation filtering methods. Other simulation
filtering techniques, such as the EIS filter of Liesenfeld and Richard (2003)
and the reprojection technique of Gallant and Tauchen (1998), may also
be applicable. By using these filtering methods, we can obtain samples
from the prediction density, f (A1 | Y;; 0), where Y, = (y;,..., %) . Pitt and
Shephard (1999a) focus on four quantities for assessing overall model fit,
outliers and observations which have substantial influences on the fitted
model.

The first quantity is the log-likelihood for ¢ + 1, 4 = log f(y1 | Y;;0).
As we have

SO 1 Y50) = /f(ym | A1 O)dE Chyyr | Y5 0),

Monte Carlo integration may be used as

R 1 A .
JOun1Y50) = - Z Fye 1 75 0),

where ), ~ f(h1|Y,;0). Itis possible to evaluate the log-likelihood at the
ML (SML) estimates or at the posterior means.

The second quantity is the normalized log-likelihood, /. Pitt and
Shephard (1999a) used samples from 2 (j=1,...,S), where 2 ~
S (4115 0), to obtain samples I, using the above method. Denote the
sample mean and standard deviation of the samples of log-likelihood as
il and ¢!, respectively. The normalized log-likelihood at ¢+ 1 may
be computed as [, = (1 — pl,,)/0l,,. If the model and parameters are

correct, then this statistic should have zero mean and unit variance. Large



negative values indicate that an observation is less likely than would be
expected from the model.

The third quantity is the uniform residual, u,; = F (41| Y;;0), which
may be estimated as

S
s = Flyn) = (1/8) Y I, < ),

J=1

where the /., are constructed as above. Assuming that the parameter
vector 0 is known, under the null hypothesis that the model is correct, it
follows that u,., ~ UID(0, 1).

Finally, the fourth quantity is the distance measure, d,, which may be
computed by

1\ & ,
2= V(s | Y 0) = (M) Z V(i | htl+l; 0),
i=1

where hf 1~ f(hy1 1Y,;;0). If the conditional distribution of vy, is multi-
variate normal, then the quantity d, = y;3; 'y, is independently distributed
as 72 under the null hypothesis that the parameters and model are correct.
Therefore we may use Y., , d, ~ %, as a test statistic.

It should be noted that all the diagnostic checking methods are
computationally expensive. This is the case for the basic MSV model, and
even more so for more flexible MSV models. Further research is needed to
develop methods that are easier to use.

When the MCMC procedure is used, it may require checking the
convergence of the Markov chains and prior sensitivities. The former can
be assessed by correlograms, and the latter by using alternative priors (for
further details, see Chib, 2001; Chib et al., 2005; Kim et al., 1998).

Turning to model selection, we may use the likelihood ratio test
for nested models and Akaike information criterion (AIC) or Bayesian
information criterion (BIC) for the nonnested models, in the context of
the likelihood-based methods, such as SML and MCL. In the Bayesian
framework, model comparison can be conducted via the posterior odds
ratio or Bayes factor. For both values, the marginal likelihood needs to be
calculated, for which estimation is based on the procedure proposed by
Chib (1995) and its various extensions.

The AIC is inappropriate for the MCMC method because, when MCMC
is used to estimate the SV models, as mentioned above, the parameter
space is often augmented. For example, in the basic univariate SV model,
we include the T latent volatilities in the parameter space, with 7" being
the sample size. As these volatilities are dependent, they cannot be counted
as T additional free parameters. Consequently, AIC is not applicable for



comparing SV models. Recently, Berg et al. (2004) showed that model
selection of alternative univariate SV models can be performed easily using
the deviance information criterion (DIC) proposed by Spiegelhalter et al.
(2002), while Yu and Meyer (2006) compared alternative MSV models
using DIC.

5. CONCLUDING REMARKS

Relative to the extensive theoretical and empirical multivariate
conditional volatility (or GARCH) literature, the MSV literature is still in its
infancy. The majority of existing research in the MSV literature deals with
specifications and/or estimation techniques, which are often illustrated
by fitting a particular set of MSV models to financial returns series. In
terms of model specification, we share the view of Bauwens et al. (2006)
about multivariate modeling, especially that providing “a realistic and
parsimonious specification of the variance matrix ensuring its positivity” is
crucial. As a related point, model diagnostic checking methods that are
computationally inexpensive are needed so that the limitations of various
models can be more easily explored and improved.

A few papers have directly addressed important economic issues using
MSV models, but no paper has yet examined the predictive power of MSV
models for volatility. To the best of our knowledge, Nardari and Scruggs
(2003), Han (2006), and Smith and Pitts (2006) are the only studies that
have examined economic issues in the context of MSV models. Nardari and
Scruggs (2003) used MSV models to address the restrictions in the APT
theory. Han (2006) examined the economic values of MSV models. Smith
and Pitts (2006) analyzed central bank intervention. Clearly, further serious
empirical applications of MSV models are warranted. Useful applications
of MSV include the study of volatility comovement, volatility causality,
volatility contagion, the computation of hedge ratios, and the examination
of relative performance for predicting future volatility.
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