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Asymptotic Dynamics and Value-at-Risk of Large

Diversified Portfolios in a Jump-Diffusion Market ∗

Lim Kian Guan, Liu Xiaoqing, and Tsui Kai Chong †

September 2003

Abstract

This paper studies the modelling of large diversified portfolios in a financial
market with jump-diffusion risks. The portfolios considered include three cate-
gories: equal money-weighted portfolios, risk minimizing portfolios, and market
indices. Reduced-form dynamics driven jointly by one Brownian Motion and one
Poisson process are derived for the asymptotics of such portfolios. We prove that
derivatives written on a portfolio can be priced by treating the asymptotic dynam-
ics as the underlying process if the number of assets in the portfolio is sufficiently
large. Analytical and Monte Carlo Value-at-Risk (VaR) can be computed for the
portfolios based on their asymptotic dynamics.
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1 Introduction

Reducing risk by diversification as introduced in H. Markowitz (1959)’s seminal work
is the basic idea behind modern portfolio theory (MPT). W. Sharpe (1964) and J.
Lintner (1965) considered economic equilibrium in MPT and developed the Capital
Asset Pricing Model (CAPM) in which asset risks are dichotomized as non-systematic
(or diversifiable) risk and systematic (or non-diversifiable) risk. The CAPM has a
powerful implication that only systematic risk matters in asset pricing. Under the
CAPM model, non-systematic risk is eliminated as the number of assets grows. The
single-period CAPM was later extended to an intertemporal model through the use
of lognormal asset price diffusion processes by R. Merton (1973). T. Björk and B.
Näslund (1998) introduced asymptotic assets, or infinitely diversified portfolios, into
the model and studied the absence of asymptotic arbitrage and the resulting market
completeness.

The asymptotic assets in T. Björk and B. Näslund (1998) are idealized instruments
for research purpose. In reality they refer to large-scale portfolios held by mutual funds
or banks, and financial indices (eg. S&P 500, Nikkei 225, NASDAQ 100) constructed as
proxies of market movements and so on. The study of the rate of convergence of such
portfolios and indices to their asymptotic forms under different probabilistic meanings
is presented in a rigorous mathematical framework in N. Hofmann and E. Platen (2000).
They considered a financial market with asset price dynamics modelled by a system of
lognormal stochastic differential equation (SDE) and derived an SDE, also lognormal,
for the asymptotic dynamics of large diversified portfolios of such assets. However, the
lognormal assumption about asset price is not adequate to describe the well-known
fat-tail empirical characteristic of asset returns. The latter is believed to be caused by
jump risks due to rare events in the market. M. S. Gibson (2001) recently developed
a methodology to incorporate event risk into VaR and implemented it in an empirical
application. D. Duffie and J. Pan (2001) also employed assumptions of portfolios with
multi-factor jump-diffusion asset returns, and derived analytical approximation of the
VaR.

Our paper extends the results of N. Hofmann and E. Platen (2000) in several dimen-
sions. We present a more realistic financial model that incorporates jump risks of the
market or individual assets. The portfolios may include basic or derivative instruments
with defaultable counterparties. The jump-diffusion of individual assets are then shown
to aggregate to similar portfolio characteristics that accommodate fat-tail return distri-
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butions. We also investigate three important types of portfolios with definite economic
significance. They are equal money-weighted portfolios, risk-minimizing portfolios, and
financial indices. We are able to characterize directly the asymptotic processes of these
portfolios, and thus provide a convenient and tractable way of measuring Value-at-Risk
for purpose of bank risk management.

Hofmann and Platen (2000) provide results of convergence in the logarithm of port-
folio values. This is useful for the study of the long-term behavior of large diversified
portfolios as the processes of the logarithms are approximately Gaussian and exhibit
the regular properties of linear growth in trend and variance. However the payoff func-
tions for derivatives are conventionally defined on the values of the underlying variable
instead of their logarithms. It is not straightforward to apply the convergence theo-
rems by Hofmann and Platen to the approximation of derivative prices. We tackle this
problem by directly working on the strong convergence and also weak convergence in
portfolio values rather than in their logarithms.

In addition to testing the pathwise convergence, we also investigate the effect of
replacing large diversified portfolios by their respective asymptotic dynamics in the
valuation of exotic options and the estimation of portfolio VaR by Monte Carlo method.

The rest of the paper is organized as follows. Section 2 describes the market spec-
ifications and defines three categories of large-scale portfolios with distinct economic
significance. Section 3 provides derivations of the asymptotic dynamics of the three
categories of portfolios. Proofs of the different orders of convergence for large diversi-
fied portfolios to their asymptotic values in the weak and strong senses are provided.
Section 4 derives an analytical formula for the tail probability of portfolio returns. Sec-
tion 5 tests the theoretical results in the previous sections by simulation. Section 6
contains the conclusions.

2 Market specification of the problem

We consider a financial market of d assets, whose prices at time t are denoted by
Xi
t , i = 1, · · · , d. Suppose that the asset prices are modelled by the following stochas-

tic differential equations on a complete probability space (Ω, F, P ) equipped with a
filtration (Ft)t≥0:

dXi
t = αi(t)Xi

tdt+ βi(t)Xi
tdW

0
t + γi(t)Xi

tdW
i
t (1)

+δi(t−)Xi
tdN

0
t + θi(t−)Xi

tdN
i
t , t ∈ [0, T ],
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where W i
t and N i

t , i = 1, · · · , d, are Brownian motions and Poisson processes with
intensities λi respectively, and these 2(d +1) stochastic processes are independent.
The coefficient functions in (1) are assumed to be sufficiently smooth and subject to an
upper bound and a lower bound1 independent of d on finite interval [0, T ]. In the above
characterization, we may think of the Brownian motions W 0

t and W i
t as representing

the sources of systematic and non-systematic white noises. As a non-trivial extension
to the existing literature, we introduce the Poisson processes N0

t and N i
t in this paper

to represent sources of systematic and non-systematic jump risks.
Let git > 0, i = 1, · · · , d, be finite numbers of shares invested in assets i at time t.

Then the value of this portfolio is:

Vt =
d∑

i=1

gitX
i
t (2)

and the weighted cash amount invested in asset i at time t is:

ωit =
gitX

i
t

Vt
.

Under the self-financing constraint:

dVt =
d∑

i=1

gitdX
i
t, (3)

the dynamics of Vt is governed by the following stochastic differential equation:

dVt = α̂tVtdt+ β̂tVtdW
0
t +

d∑

i=1

γ̂itVtdW
i
t + δ̂t−VtdN0

t +
d∑

i=1

θ̂it−VtdN
i
t , (4)

where α̂t =
∑d

i=1 αi(t)ω
i
t, β̂t =

∑d
i=1 βi(t)ω

i
t, γ̂

i
t = γi(t)ωit, δ̂t− =

∑d
i=1 δi(t−)ωit , and

θ̂it− = θi(t−)ωit, represent the appreciation rate, the aggregated white-noise volatility,
the asset i -specific white-noise volatility, the aggregated jump size, and the asset i-
specific jump size respectively. Let Lt = ln(Vt/V0). By Ito’s formula on jump-diffusion

1Throughout the paper, this is essentially a boundedness condition as in Arnold (1974). Given

smooth time-functions, boundedness is guaranteed within a finite time interval as is the case in this

paper. The coefficients could grow at a rapid rate with time within the time interval. Boundedness

and measurability also ensure that a unique continuous solution to the stochastic differential equation

exists.
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processes (see Ikeda and Watanabe(1981)), Lt satisfies the following stochastic differ-
ential equation:

dLt =

[
α̂t − 1

2
β̂2
t −

1
2

d∑

i=1

(
γ̂it
)2 +

d∑

i=1

λi ln
(

1 + θ̂it−
)]

dt (5)

+β̂tdW 0
t +

d∑

i=1

γ̂itdW
i
t + ln

(
1 + δ̂t−

)
dN0

t +
d∑

i=1

ln
(

1 + θ̂it−
)
dÑ i

t ,

where Ñ i
t = N i

t − λit are the compensated martingale processes of N i
t . In this paper,

we study three important categories of large diversified portfolios.

(I) (Almost) equal money-weighted portfolios:
An almost equal money-weighted portfolio is a portfolio satisfying the following

condition for i = 1, · · · , d, t ∈ [0, T ], and some constant δ > 0 :
∣∣∣∣ωit −

1
d

∣∣∣∣ ≤
δ

d2
a.s. (6)

This condition is proposed in Hofmann and Platen (2000).

(II) (Almost) risk-minimizing portfolios:
A risk-minimizing fully invested portfolio is achieved by the following risk-averse

strategy
(
ω1(t), · · · , ωd(t)):





min f(ω1(t), · · · , ωd(t))
d∑

i=1

ωi(t) = 1,
(7)

where the quadratic objective function,

f
(
ω1(t), · · · , ωd(t)

)
=

[
d∑

i=1

βi(t)ωi(t)

]2

+ λ0

[
d∑

i=1

δi(t−)ωi(t)

]2

(8)

+
d∑

i=1

[
γi(t)ωi(t)

]2 +
d∑

i=1

λi
[
θi(t−)ωi(t)

]2
,

reflects the magnitude of the overall risk at t. This quadratic function is the variance
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of the portfolio return in (5). By solving the Lagrangian multiplier equations




∂

∂ωi(t)

[
f
(
ω1(t), · · · , ωd(t)

)
+ ζ

(
d∑

i=1

ωi(t)− 1

)]
= 0, i = 1, · · · , d

d∑

i=1

ωi(t)− 1 = 0,

(9)

we obtain the solution to the optimization problem in (7) to (9):

ωi(t) = −ζ(t) + 2βi(t)c1(t) + 2λ0δi(t−)c2(t)
2ai(t)

, (10)

where
ai(t) = γ2

i (t) + λiθ
2
i (t−),

and ζ(t), c1(t), c2(t) solve the following simultaneous linear equations:




d∑

k=1

βk(t)
ak(t)

c1(t) + λ0

d∑

k=1

δk(t−)
ak(t)

c2(t) +
d∑

k=1

1
2ak(t)

ζ(t) = −1
(

1 +
d∑

k=1

β2
k(t)
ak(t)

)
c1(t) + λ0

d∑

k=1

βk(t)δk(t−)
ak(t)

c2(t) +
d∑

k=1

βk(t)
2ak(t)

ζ(t) = 0

d∑

k=1

βk(t)δk(t−)
ak(t)

c1(t) +

(
1 + λ0

d∑

k=1

δ2
k(t−)
ak(t)

)
c2(t) +

d∑

k=1

δk(t−)
2ak(t)

ζ(t) = 0.

In particular, if we let βi(t), δi(t−) ≡ 0 for i = 1, · · · , d, then

ωi(t) =

(
ai(t)

d∑

k=1

1
ak(t)

)−1

, (11)

which corresponds to the strategy that minimizes the total non-systematic risk.
An almost risk-minimizing fully invested portfolio is a portfolio

(
ω1
t , · · · , ωdt

)
that

satisfies the following conditions for i = 1, · · · , d, t ∈ [0, T ], and some constant δ > 0 :

∣∣ωit − ωi(t)
∣∣ ≤ δ

d2
a.s. (12)

Lemma 1: Suppose there exists a constant δ > 0 independent of d, such that

ai(t)
aj(t)

≤ δ (13)
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for i < j, i, j ∈ {1, · · · , d, }, t ∈ [0, T ]. Then we have

ωit ≤
C

d
, i = 1, · · · , d, t ∈ [0, T ], (14)

where C > 0 is a constant independent2 of d, and ωit’s are given in (11).

The proof of the lemma is straightforward. We can show using the triangle inequal-
ity via (12) that ωit ≤ ωi(t) + δ

d2 . (11) and (13) together imply ωj(t) ≤ δωi(t). If we
let ω1(t) = C′

d where C ′ is some finite constant, then all the ωj(t)’s will be bounded by
δjC′
d . Then, ωit ≤ δiC′+δ

d . Put C as the generic constant δiC ′ + δ. The result of this
lemma is useful for proving the convergence of the portfolios to their respective asymp-
totics. One can arrive at conclusions similar to Lemma 1 for more general strategies in
category II by imposing suitable boundedness conditions on the coefficient functions in
(1).

(III) Financial indices:
Indices can be regarded as portfolios with time-constant strategy git ≡ gi. They

are often used as proxies of market portfolios in financial studies and as underlying
benchmarks for derivative products.

Lemma 2: Suppose (i) there exists a constant δ > 0 independent of d such that

ωi0

ωj0
≤ δ, (15)

for i < j, i, j ∈ {1, · · · , d, }, and (ii) all the coefficient functions in (1) have upper and
lower bounds independent of d on [0, T ]. Then there exists a constant C independent
of d such that the following estimate holds for i, j = 1, · · · , d:

E

{
ωit

ωjt

}
≤ C. (16)

2In this article we use C to denote generic constants. They may represent different values in different

contexts.
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Proof of Lemma 2: Let Y i,j
t = Xi

t

Xj
t

and Ei,j(t) = E{Y i,j
t }. By Ito’s formula, we have

dY i,j
t

Y i,j
t

=
[
αi(t)− αj(t) + β2

j (t) + γ2
j (t)− βi(t)βj(t)

]
dt

+ (βi(t)− βj(t)) dW 0
t + γi(t)dW i

t − γj(t)dW j
t

+
δi(t−)− δj(t−)

1 + δj(t−)
dN0

t + θi(t−)dN i
t −

θj(t−)
1 + θj(t−)

dN j
t .

Since stochastic integrals with respect to W i
t or N i

t are martingales, it is easy to show
that

dEi,j(t) = Hi,j(t)Ei,j(t)dt,

where

Hi,j(t) = αi(t)− αj(t) + β2
j (t) + γ2

j (t)− βi(t)βj(t)

+λ0
δi(t−)− δj(t−)

1 + δj(t−)
+ λiθi(t−)− λj θj(t−)

1 + θj(t−)

Thus by (ii) we have

Ei,j(t) =

(
Xi

0

Xj
0

)
e
R t
0 Hi,j(s)ds ≤ C ′X

i
0

Xj
0

(17)

for some constant C ′ > 0 independent of d. It follows from (15) and (17) that

E

{
ωit

ωjt

}
=
gi

gj
Ei,j(t) ≤ C ′ω

i
0

ωj0
≤ C

with C = C ′δ.

Q.E.D.

Lemma 2 shows that the weighted values of different components of an index will
be of a similar order of magnitude if they start from a comparable state. It follows
from Holder’s inequality that

1 =


E





(
ωit

ωjt

) 1
2
(
ωjt
ωit

) 1
2








2

≤ E
{
ωit

ωjt

}
E

{
ωjt
ωit

}
,
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or

E

{
ωjt
ωit

}
≥ 1

E
{
ωit
ωjt

} .

By (16), we have

E

{
1
ωit

}
=

d∑

j=1

E

{
ωjt
ωit

}
≥

d∑

j=1

1

E
{
ωit
ωjt

} ≥ d

C
.

This result is analogous to Lemma 1.

3 Asymptotic dynamics of the portfolios

It has long been accepted that non-systematic risks are fully diversifiable when the
number of assets d tends to infinity, but it was only until recently that Hofmann and
Platen (2000) gave a rigorous proof to this conclusion in a setting of lognormal prices.
They showed the asymptotic convergence in terms of the logarithm values of the port-
folios. The results are suited for long-term investigation of the portfolios. But if we
want to study the effect of replacing large diversified portfolios with their asymptotic
dynamics in derivative pricing, we have to consider the convergence in the portfolio
values rather than in their logarithms. In fact, the difference between the convergence
in values and convergence in log-values is not mathematically trivial. For example, it
is proved in Hofmann and Platen (2000) for the diffusion case that, if f ∈ Φ3

P , where

Φ3
P =

{
f : R→ R

∣∣∣∣ ∃n, s.t.
∣∣∣∣
dkf

dxk
(x)
∣∣∣∣ ≤ C(1 + |x|n), for k = 0, · · · , 3.

}
,

then the following estimate holds for the log-value of a portfolio L and that of the
respective discrete asymptotic portfolio L̄ with step size 4:

|E(f(L̄T ))− E(f(LT ))| ≤ Cf (T )
(

1
d

+ ∆
)
.

But if h are the payoff functions for derivatives such as futures and options, then
the function f implied by the relationship h(V0 exp(LT )) = f(LT ) does not satisfy
the polynomial growth condition of Φ3

P . The aim of this section is to derive strong
convergence and weak convergence results on the portfolio values directly so as to
ensure the corresponding convergence in derivative pricing.
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In order to simplify (4) for analyses involving Vt and for computation of VaR as
well as derivative pricing, we introduce a more tractable SDE driven merely by W 0

t and
N0
t :

dV̄t
V̄t

= µ̄(t)dt+ β̄(t)dW 0
t + δ̄(t−)dN0

t (18)

with V̄0 = V0 and the coefficients corresponding to the three categories of portfolios
given as follows.

(I) (Almost) equal money-weighted portfolios:

ᾱ(t) =
1
d

d∑

i=1

αi (t) , µ̄(t) = ᾱ(t) +
1
d

d∑

i=1

λiθi(t−), (19)

β̄(t) =
1
d

d∑

i=1

βi (t) , δ̄(t−) =
1
d

d∑

i=1

δi (t−) .

(II) (Almost) risk-minimizing portfolios:

ᾱ(t) =
d∑

i=1

ωi(t)αi (t) , µ̄(t) = ᾱ(t) +
d∑

i=1

ωi(t)λiθi(t−), (20)

β̄(t) =
d∑

i=1

ωi(t)βi (t) , δ̄(t−) =
d∑

i=1

ωi(t)δi (t−) .

where ωi(t), i = 1, · · · , d, are given in (10). If all the coefficient functions in (1) have
upper and lower bounds independent of d on [0, T ], then by (6) and (12), we have

∣∣∣φ̄(t)− φ̂t
∣∣∣ ≤ C

d
(21)

for categories I and II, where C > 0 is a constant independent of d, φ(t) stands for
α(t), β(t), and δ(t−), and φt stands for αt, βt, and δt−.

(III) Financial indices:
Following the same treatment on the previous two categories of portfolios, one can

9



formulate the coefficient functions for the SDE of index portfolios as follows:

ᾱ(t) =
d∑

i=1

giXi
t

Vt
αi (t) , µ̄(t) = ᾱ(t) +

d∑

i=1

giXi
t

Vt
λiθi(t−), (22)

β̄(t) =
d∑

i=1

giXi
t

Vt
βi (t) , δ̄(t−) =

d∑

i=1

giXi
t

Vt
δi (t−) .

However this does not ensure that the SDE (18) is self-containing as Xi
t are involved in

the coefficient functions in (22). Therefore, equation (18) cannot serve as a satisfactory
simplification of the equation (4). To derive an SDE which is free of all the asset-
specific risks for the asymptotic dynamics of the portfolios, we introduce the following
jump-diffusion processes X̄i

t as follows to replace Xi
t :

dX̄i
t = αi(t)X̄i

tdt+ βi(t)X̄i
tdW

0
t + δi(t−)X̄i

tdN
0
t (23)

with X̄i
0 = Xi

0, , i = 1, · · · , d, and a portfolio

V̄t =
d∑

i=1

giX̄i
t . (24)

V̄t satisfies (18) with

ᾱ(t) =
d∑

i=1

giX̄i
t

V̄t
αi (t) , µ̄(t) = ᾱ(t) +

d∑

i=1

giX̄i
t

V̄t
λiθi(t−), (25)

β̄(t) =
d∑

i=1

giX̄i
t

V̄t
βi (t) , δ̄(t−) =

d∑

i=1

giX̄i
t

V̄t
δi (t−) .

We shall prove that V̄t approximates Vt at the same convergence rate as the portfolios
in the other two categories approximate their counterparts.

Let L̄t = ln(V̄t/V̄o). By (18) and Ito’s formula, L̄t satisfies the following SDE:

dL̄t =
[
µ̄(t)− 1

2
β̄2(t)

]
dt+ β̄(t)dW 0

t + ln
(
1 + δ̄(t−)

)
dN0

t . (26)

For a semimartingale Zt given by the SDE:

dZt = Atdt+
d∑

i=1

BtdW
i
t +

d∑

i=1

Cit−dN
i
t , (27)

10



we define

Λ (Zt) = At +
1
2

d∑

i=1

(
Bi
t

)2 +
d∑

i=1

λi

(
eC

i
t− − 1

)
.

Lemma 3: If there exists a constant δ > 0 such that

|Λ (Zt)| ≤ δ a.s.,

then the semimartingle Zt in (27) satisfies

E
{
eZ0
}
e−δT ≤ E {eZT } ≤ E {eZ0

}
eδT . (28)

Proof of Lemma 3: Let Yt = eZt . By Ito’s formula,

dYt = Yt

{[
At +

1
2

d∑

i=1

(
Bi
t

)2 +
d∑

i=1

λi

(
eC

i
t− − 1

)]
dt

+
d∑

i=1

Bi
tdW

i
t +

d∑

i=1

λi

(
eC

i
t− − 1

)
dÑ i

t

}
.

Thus

E {YT } = E {Y0}+ E

{∫ T

0
Yt

[
At +

1
2

d∑

i=1

(
Bi
t

)2 +
d∑

i=1

λi

(
eC

i
t− − 1

)]
dt

}

≤ E {Y0}+ δ

∫ T

0
E {Ys} ds.

By Gronwall’s inequality we have

E
{
eZT
} ≤ E {eZ0

}
eδT .

The other half of (28) can be proved similarly.

Q.E.D.

Theorem 1: Suppose (i) all the coefficient functions in (1) have upper and lower
bounds independent of d on [0, T ] and (ii) portfolios of categories I-III satisfy the

11



conditions (6), (13) and (15) respectively. Then there exists a constant C > 0 such
that

E
{∣∣V̄T − VT

∣∣} ≤ C√
d
. (29)

Proof of Theorem 1 for categories I and II: We take category I as an example.

The proof for category II can be accomplished by using the same approach and Lemma
2.

It follows from Holder’s inequality that

E{∣∣V̄T − VT
∣∣} = E

{∣∣∣∣V̄T
(

1− VT
V̄T

)∣∣∣∣
}

(30)

= E
{∣∣∣V0e

L̄T
(

1− eLT−L̄T
)∣∣∣
}

≤ V0

(
E
{
e2L̄T

}) 1
2
(

1− 2E
{
eLT−L̄T

}
+ E

{
e2(LT−L̄T )

}) 1
2
.

Since L̄t satisfies (26), by condition (i) we have

Λ
(
2L̄t
)

=
∣∣2µ̄(t) + β̄2(t) + λ0δ̄(t−)

(
δ̄(t−) + 2

)∣∣ ≤ C

for some constant C > 0. Thus we obtain the following boundedness by applying Lemma
3:

E{e2L̄T } ≤ C, (31)

where C is dependent on T but independent of d. (5) and (26) yield that,

d(Lt − L̄t) =

[
α̂t − ᾱ(t)− 1

2

(
β̂2
t − β̄2(t)

)
− 1
d

d∑

i=1

λi ln
(

1 + θ̂i(t−)
)
− 1

2

d∑

i=1

(
γ̂it
)2
]
dt

+
(
β̂t − β̄(t)

)
dW 0

t +
d∑

i=1

γ̂itdW
i
t

+
[
ln
(

1 + δ̂t−
)
− ln

(
1 + δ̄(t−)

)]
dN0

t +
d∑

i=1

ln
(

1 + θ̂it−
)
dN i

t .

12



By (6), (21) and condition (i), it is not difficult to show that,

∣∣Λ (Lt − L̄t
)∣∣ =

∣∣∣∣∣α̂t − ᾱ(t) + β̄(t)
(
β̄(t)− β̂t

)
+ λ0

δ̂t− − δ̄(t−)
1 + δ̄(t−)

+
d∑

i=1

λi

[
θ̂it− −

1
d

ln
(

1 + θ̂i(t−)
)]∣∣∣∣∣ ≤

δ

d

and

∣∣Λ (2 (Lt − L̄t
))∣∣ =

∣∣∣2 (α̂(t)− ᾱ(t)) +
(
β̂t − 3β̄(t)

)(
β̂(t)− β̄(t)

)

+
d∑

i=1

(
γ̂it
)2 + λ0

(
2 + δ̂t− + δ̄(t−)

)(
δ̂t− − δ̄t−

)

(
1 + δ̄(t−)

)2

+
d∑

i=1

λi

[(
θ̂it−
)2

+ 2
(
θ̂it− −

1
d

ln
(

1 + θ̂i(t−)
))]∣∣∣∣∣ ≤

δ

d

for some constant δ > 0. Then it follows from Lemma 3 that

E
{
eLT−L̄T

}
≥ e−

δT
d ,

E
{
e2(LT−L̄T )

}
≤ e

δT
d .

When d is sufficiently large, there exist a constant C > 0 dependent on T but indepen-
dent of d such that

1− 2E
{
eLT−L̄T

}
+ E

{
e2(LT−L̄T )

}
≤ 1− 2e−

δT
d + e

δT
d ≤ C

d
. (32)

The result (29) follows from (30) to (32).

Q.E.D.

Proof of Theorem 1 for category III: For parsimony in notations, we rewrite the
portfolios (2) as follows:

Vt =
d∑

k=1

αkAktB
k
t ,

13



where

αk = ωk0V0,

Akt = exp
[∫ t

0

(
αk(s)− 1

2
β2
k(s) + λkθk(s−)

)
ds+

∫ t

0
βk(s)dW 0

s +
∫ t

0
ln (1 + δk(s−)) dN0

s

]
,

Bk
t = exp

[∫ t

0

(
−1

2
γ2
k(s)− λkθk(s−)

)
ds+

∫ t

0
γk(s)dW k

s +
∫ t

0
ln (1 + θk(s−)) dNk

s

]
.

It follows from Ito’s formula that Bk
t solves the SDE:





Bk
0 = 1

dBk
t = γ(t)Bk

t dW
k
t + θk(t−)Bk

t dÑ
k
t ,

and is a martingale. Therefore, it is easy to show that

E{Bk
t } = 1, t ∈ [0, T ].

Let Yt =
(
Bk
t

)2
. By Ito’s formula, we have

dYt =
(
γ2
k(t) + λkθ

2
k(t−)

)
Ytdt+ 2γ(t)YtdW k

t +
(
θ2
k(t−) + 2θk(t−)

)
YtdÑ

k
t .

Solving the resulting ordinary differential equation for E{Yt}, we obtain

E

{(
Bk
T

)2
}

= exp
(∫ T

0

(
γ2
k(t) + λkθ

2
k(t−)

)
dt

)
.

Likewise,

E

{(
AkT

)2
}

= exp
(∫ T

0

[
2 (αk(t) + λkθk(t−)) + β2

k(t) + λ0

(
δ2
k(t−) + 2δk(t−)

)]
dt

)
.

Since
{
Nk
t ,W

k
t

}d
k=0

are independent, we can estimate the difference between VT and
V̄T as follows.

E
{

(VT − V̄T )2
}

= E





[
d∑

k=1

αkAkT

(
Bk
T − 1

)]2




14



=
d∑

k=1

(
αk
)2
E

{(
AkT

)2
}
E

{(
Bk
T − 1

)2
}

+2
∑

k 6=k′
αkαk

′
E
{
AkTA

k′
T

}
E
{
Bk
T − 1

}
E
{
Bk′
T − 1

}

=
d∑

k=1

(αk)2 exp
(∫ T

0

[
2 (αk(t) + λkθk(t−)) + β2

k(t) + λ0

(
δ2
k(t−) + 2δk(t−)

)]
dt

)

×
[
exp

(∫ T

0

(
γ2
k(t) + λkθ

2
k(t−)

)
dt

)
− 1
]

≤ C ′
d∑

k=1

(
ωk0

)2
,

where C ′ > 0 is a constant dependent on T but independent of d. Since (15) implies
that ωi0 ≤ δ

d , i = 1, · · · , d, we have

E
{

(VT − V̄T )2
} ≤ C ′δ2

d
,

or
E
{∣∣VT − V̄T

∣∣} ≤ C√
d

with C = δ
√
C ′.

Q.E.D.

Remark: The convergence stated in Theorem 1 is called strong convergence in the ter-
minology of numerical SDE. The strong convergence ensures the rationality of replacing
Vt by V̄t in applications such as scenario simulation and stress testing. But it is not
always necessary in all situations. For instance, in pricing vanilla European options,
we are only concerned about the weak convergence, i.e. the convergence of expected
functionals of Vt to those of V̄t. It is straightforward to derive a weak convergence of
order O

(
1√
d

)
. However, the following theorem shows that the weak convergence can

be of higher order.
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Theorem 2: Suppose (i) all the coefficient functions in (1) have upper and lower
bounds independent of d on [0, T ] and (ii) portfolios of categories I-III satisfy the
conditions (6), (13) and (15) respectively. Then for any f in the set3

Φ2
P ≡

{
f : R→ R

∣∣∣∣ ∃n, s.t.
∣∣∣∣
dkf

dxk
(x)
∣∣∣∣ ≤ C(1 + |x|n) for k = 0, · · · , 2.

}
,

there exists a constant C > 0, dependent on f and T but independent of d, such that
the following estimate holds:

∣∣E{f(V̄T )− f(VT )}∣∣ ≤ C

d
.

Proof of Theorem 2 for categories I and II: We show the proof of category I. The
proof can be easily adapted to category II.

For f ∈ Φ2
P , the functional u(t, x) ≡ E

{
f(V̄T )|V̄t = x

}
solves the Kolmogorov

backward integro-differential equation



L0u(t, x) = 0

u(T, x) = f(x),
(33)

where

L0u(t, x) =
∂u

∂t
+ µ̄(t)x

∂u

∂x
+

1
2
β̄2(t)x2∂

2u

∂x2
+ λ0

[
u
(
t, x+ δ̄(t−)x

)− u(t, x)
]
.

Clearly, we have E
{
f(V̄T )

}
= u(0, V̄0) = u(0, V0) and u (T, VT ) = f (VT ) . By Ito’s

formula we have

E
{
f(VT )− f(V̄T )

}
(34)

= E {u (T, VT )− u (0, V0)}

= E

{∫ T

0

[
∂u(t, Vt)

∂t
+ α̂tVt

∂u(t, Vt)
∂x

+
1
2

(
β̂2
t +

d∑

i=1

(
γ̂it
)2
)
V 2
t

∂2u(t, Vt)
∂x2

+λ0

(
u
(
t, Vt + δ̂t−Vt

)
− u(t, Vt)

)
+

d∑

i=1

λi

(
u
(
t, Vt + θ̂it−Vt

)
− u(t, Vt)

)]
dt

}
.

3This relaxes the respective requirement on f in the theorem on weak convergence in Hofmann and

Platen (2000).
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It follows from (33) and (34) that,

∣∣E{f(VT )− f(V̄T )}∣∣ (35)

=
∣∣∣∣E
{∫ T

0

[
(α̂t − ᾱ(t))Vt

∂u(t, Vt)
∂x

+
1
2

(
β̂2
t − β̄2(t) +

d∑

i=1

(
γ̂it
)2
)
V 2
t

∂2u(t, Vt)
∂x2

+λ0

(
u
(
t, Vt + δ̂t−Vt

)
− u (t, Vt + δ̄(t−)Vt

))

+
d∑

i=1

λi

(
u
(
t, Vt + θ̂it−Vt

)
− u(t, Vt)− θi(t−)

d
Vt
∂u(t, Vt)
∂x

)]
dt

}∣∣∣∣∣ .

We denote by I4
t the last term of the integrand on the right hand side of (35) and

estimate it as follows:

∣∣E {I4
t

}∣∣ ≤
d∑

i=1

λiE

{∣∣∣∣u
(
t, Vt + θ̂it−Vt

)
− u(t, Vt)− θi(t−)

d
Vt
∂u(t, Vt)
∂x

∣∣∣∣
}

(36)

=
d∑

i=1

λiE

{∣∣∣∣
∂u

∂x
(t, Vt)

(
θ̂it− −

θi(t−)
d

)
Vt+

+
1
2
∂2u

∂x2

(
t, Vt + τ(Vt)θ̂it−Vt

)(
θ̂it−
)2
V 2
t

∣∣∣∣
}

≤
d∑

i=1

λi



(
E

{(
θ̂i(t−)− θi(t−)

d

)2
}) 1

2
(
E

{(
∂u

∂x
(t, Vt)Vt

)2
}) 1

2

+
(
E

{(
θ̂it−
)4
}) 1

2

(
E

{(
∂2u

∂x2

(
t, Vt + τ(Vt)θ̂it−Vt

)
V 2
t

)2
}) 1

2


 ,

where τ(Vt) ∈ (0, 1). By the polynomial growth constraint on Φ2
P and (6), we have the

following estimate: ∣∣E {I4
t

}∣∣ ≤ C

d
, t ∈ [0, T ],

17



such that ∣∣∣∣
∫ T

0
E
{
I4
t

}
dt

∣∣∣∣ ≤
CT

d
.

The estimation of the other terms on the right hand side of (35) is easier and can be
done in a similar way. Hence the theorem is proved.

Q.E.D.

Proof of Theorem 2 for category III: As introduced in the proof of Theorem 1,
the processes Akt , k = 1, · · · , d, and V̄t are independent of Bk

t , k = 1, · · · , d. Therefore,
since E

{
Bk
T − 1

}
= 0 for k = 1, · · · , d, we have the following estimate:

∣∣E {f(VT )− f(V̄T )
}∣∣

=
∣∣∣∣E
{
f ′(V̄T )(VT − V̄T ) +

1
2
f ′′
(
τ
(
VT , V̄T

)
VT +

(
1− τ(VT , V̄T )

)
V̄T
)

(VT − V̄T )2

}∣∣∣∣

≤
∣∣∣∣∣
d∑

k=1

E
{
f ′(V̄T )αkAkT

}
E
{
Bk
T − 1

}∣∣∣∣∣

+
1
2

∣∣E {f ′′ (τ (VT , V̄T
)
VT +

(
1− τ(VT , V̄T )

)
V̄T
)

(VT − V̄T )2
}∣∣

≤ 1
2

(
E
{(
f ′′
(
τ
(
VT , V̄T

)
VT +

(
1− τ(VT , V̄T )

)
V̄T
)2)}) 1

2 (
E
{

(VT − V̄T )4
}) 1

2 ,

where τ
(
Vτ , V̄τ

) ∈ (0, 1) . As f ′′ is at most of polynomial growth, it is not difficult to
see that there exists a constant C ′ > 0 dependent on T and f but independent of d,
such that

∣∣E {f(VT )− f(V̄T )
}∣∣

≤ C ′
(
E
{

(VT − V̄T )4
}) 1

2
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= C ′


E





[
d∑

k=1

αkAkT

(
Bk
T − 1

)]4







1
2

= C ′


E





d∑

k=1

(
αkAkT

(
Bk
T − 1

))4
+ 12

∑

k 6=k′

(
αkTα

k′
T A

k
TA

k′
T

(
Bk
T − 1

)(
Bk′
T − 1

))2








1
2

≤ C ′




d∑

k=1

(
ωk0

)4
+
∑

k 6=k′

(
ωk0ω

k′
0

)2




1
2

≤ C

d
,

where C > 0 is a constant dependent on T and f but independent of d.

Q.E.D.

Remark So far, we have proved both the weak convergence and strong convergence
in a continuous-time setting. One can easily extend Theorems 1 and 2 to the case of
discrete-time strategies by applying the results on the two types of convergence for the
discretization of jump diffusions in Liu and Li (1999, 2000). In practice, the step size for
time discretization could be very small as real-time re-adjustments of portfolio positions
can be facilitated by high performance computers. Therefore, the approximation error
between V̄t and Vt is primarily determined by the asset number d.

4 Asymptotic Value-at-Risk

Duffie and Pan (2001) developed an analytical formula for computing the VaR of multi-
factor jump-diffusion portfolios. But the computation becomes tedious when the asset
number becomes too large. It is also intractable if we use Monte Carlo method to
estimate the VaR of large diversified portfolios because too many Brownian motions
and Poisson paths have to be simulated. However, if we use the asymptotic dynamics
(18) instead, then the analytical calculation and Monte Carlo estimation of the VaR
will become much easier.
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Suppose we observe thatXi
tn = Xi

n, such that Vn =
∑d

i=1 g
i
tnX

i
n. By (26), the change

in the logarithm of the respective asymptotic portfolio values V̄t at tn+1 = tn + τ can
be written as:

∆L̄n ≡ L̄n+1 − L̄n =
(
ᾱ(tn)− 1

2
β̄2(tn)

)
τ + β̄(tn)τz + ln

(
1 + δ̄(tn−)

)
Nτ , (37)

where z is a random normal variable and Nt is a standard Poisson process with inten-
sity λ0. ᾱ(tn), β̄(tn), and δ̄(tn−) can be evaluated as specified in (19),(20), and (25)
respectively. The calculation of the tail probability of ∆L̄n is straightforward:

P (∆L̄n ≤ c) =
∞∑

n=0

pnF (dn) (38)

for a given number c, where

pn ≡ P (Nτ = n) = e−λ0τ (λ0τ)n

n!
,

dn =
c− τ (ᾱ(tn)− 1

2 β̄
2(tn)

)− n ln
(
1 + δ̄(tn−)

)

τ β̄(tn)
,

and F is the cumulative density function for a standard normal distribution. The
series in (38) converges rapidly, so that only the first few terms need to be computed
to achieve an accurate approximation of the tail probability. Finally, the VaR of Vn+1

can be approximated by inverting the tail distribution function (38).

5 Simulation Studies

In this section, we investigate numerically the performance of V̄t in mimicking the
pathwise evolution of Vt and in proxying as a substitute of Vt for VaR estimation and
derivative pricing.

5.1 Pathwise approximation

Theorem 1 implies that sample paths of the portfolio value Vt approach those of its
asymptotic dynamics V̄t with respect to the same realizations of the market white-noise
W 0
t and market jump N0

t as the asset number d increases. We test the result on all
the three categories of portfolios with respect to the parameters as in Table 1. For
simulation purpose, the parameters have been set to hold across each i = 1, · · · , d,
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Table 1: Parameters for simulations

d αi βi γi δi θi λi Xi
0 gi0 ∆t

200 −0.3 random in [0, 1] 0.01 0.05 0.05 1.0 random in[0, 1] (1
d)( 1

Xi
0
) 1

365

where d is the number of assets, e.g. stocks, in the portfolio. Also, the portfolio value
is normalized to start at V0 = 1.

Figures 1 to 3 plot the sample paths of the jump-diffusion processes Vt of portfolios
in the categories I-III and their asymptotic processes V̄t respectively. See figures at the
end of paper. It turns out that V̄t almost replicates Vt in every case even if there were
occurrences of dramatic jumps. This evidence of pathwise approximation ensures the
feasibility of replacing the large diversified portfolios with their corresponding asymp-
totic dynamics in pricing path-dependent options on Vt. We shall further investigate
this issue in the next subsection.

5.2 Valuation of Vanilla and Exotic Options

Financial indices are special portfolios that function not only as indicators of the econ-
omy, but also as the underlying variable for derivatives such as index futures and op-
tions. Prices of such derivatives can be expressed as expectations of functionals of the
index Vt. According to Theorem 2, we can use V̄T given in (24) and (25) to substitute
for VT in valuing vanilla European options on VT . Furthermore, since V̄t approximates
Vt in a pathwise sense as demonstrated in the previous subsection, we can also replace
the processes Vt with V̄t in the valuation of path-dependent options.

Table 2 compares the prices of vanilla, barrier, Asian and lookback call options
obtained by using Vt as the underlying with those obtained by using V̄t. For simplic-
ity, we assume that the equation (4) already represents the evolution of Vt under a
prescribed risk-neutral probability measure. The option prices are produced by Monte
Carlo method with 1000 sample paths under the same setup as described in the previ-
ous subsection. Table 3 presents similar results on put options. From Tables 2 and 3,
we can see that the two sets of prices are close enough in all cases. This confirms that
V̄t provides a computationally parsimonious proxy of Vt for pricing vanilla and exotic
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options.

Table 2: Prices of Call Options on Vt and V̄t respectively

S0 = 1.0 Call Option Barrier Option Asian Option Lookback Option

on Vt on V̄t on Vt on V̄t on Vt on V̄t on Vt on V̄t

K=0.7, H=1.4 0.4555 0.4551 1.58E-02 1.64E-02 0.3705 0.3694 0.4791 0.4771

K=0.8, H=1.4 0.3575 0.3571 1.19E-02 1.24E-02 0.2725 0.2714 0.3810 0.3790

K=0.9, H=1.4 0.2594 0.2590 7.97E-03 8.55E-03 0.1744 0.1733 0.2830 0.2810

K=1.0, H=1.4 0.1614 0.1610 4.05E-03 4.63E-03 7.76E-02 7.62E-02 0.1849 0.1829

K=1.1, H=1.4 7.97E-02 7.89E-02 1.03E-03 9.77E-04 1.08E-02 1.01E-02 9.47E-02 9.21E-02

K=1.2, H=1.4 3.21E-02 3.05E-02 0 0 1.54E-04 1.02E-04 3.63E-02 3.40E-02

K=1.3, H=1.4 7.04E-03 6.72E-03 0 0 0 0 8.49E-03 7.41E-03

Table 3: Prices of Put Options on Vt and V̄t respectively

S0 = 1.0 Put Option Barrier Option Asian Option Lookback Option

on Vt on V̄t on Vt on V̄t on Vt on V̄t on Vt on V̄t

K=0.7, H=1.4 0 0 0 0 0 0 0 0

K=0.8, H=1.4 0 0 0 0 0 0 0 0

K=0.9, H=1.4 0 0 0 0 0 0 0 0

K=1.0, H=1.4 0 0 0 0 1.28E-03 9.44E-04 0 0

K=1.1, H=1.4 1.64E-02 1.59E-02 9.01E-04 2.60E-04 3.25E-02 3.29E-02 7.83E-03 7.25E-03

K=1.2, H=1.4 6.68E-02 6.56E-02 3.78E-03 3.20E-03 0.1198 0.1209 4.75E-02 4.72E-02

K=1.3, H=1.4 0.1398 0.1398 7.70E-03 7.12E-03 0.2177 0.2188 0.1177 0.1186

5.3 Asymptotic VaR

Another application of the asymptotic portfolios V̄t is that they can be used for com-
puting the tail probability of ∆V̄t (or ∆L̄t) so as to obtain approximate VaR of the
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actual portfolios Vt. For example, to estimate one-month 4 values-at-risk for the large
diversified portfolios specified in subsection 5.1, we simulate 1000 sample paths of Vt
and V̄t respectively and compute the cumulative density function (cdf) of ∆Vt and ∆V̄t.
The 1-month cdf curves for ∆Vt and ∆V̄t are plotted in Figures 4 to 6 for portfolios in
the three categories respectively. See figures at end of paper. The two cdf curves, for
Vt and V̄t respectively, are almost identical in all the situations, whereas the estimation
based on V̄t can provide for a great deal of economy in terms of computing resources in
simulating multi-noise diffusion processes, Vt. This is a significant improvement in real
time VaR estimation for large scale portfolios.

6 Conclusions

This paper derives continuous-time asymptotic dynamics in terms of a Brownian mo-
tion and a Poisson process for large diversified portfolios with jump-diffusion asset
prices, such as equal money-weighted portfolios, risk-minimizing portfolios, and finan-
cial indices. The jump-diffusion process provides for better and more appropriate fit of
empirically observed price processes displaying fat-tails. Different orders of strong con-
vergence and weak convergence for the portfolio values toward their asymptotic values
are proved. The prices of vanilla and path-dependent options can be approximated by
using the respective asymptotic portfolio as the underlying security if the number of
assets in a large diversified portfolio is sufficiently large.

Our results allow for portfolio VaR to be estimated analytically or else by Monte
Carlo simulations based on the asymptotic dynamics. The theoretical results in this
paper are verified by numerical evidence. The direct and explicit characterization of
the asymptotic processes of these portfolios, and the analytical computation of VaR
thus provide a convenient and tractable way of measuring Value-at-Risk for purpose of
bank risk management.

4To be convincing, here we provide the results of long-term VaR to illustrate the effectiveness of

using the asymptotic dynamics. Our other simulations show that they perform equally well or even

better in the estimation of short-term VaR, which is popular in the practice of portfolio management.
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Figure 1: Sample Path of Portfolio I and Respective Asymptotics
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Figure 2: Sample Path of Portfolio II and Respective Asymptotics
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Figure 3: Sample Path of Portfolio III and Respective Asymptotics
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Figure 4: Distribution of One-month Value of Portfolio I
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Figure 5: Distribution of One-month Value of Portfolio II
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Figure 6: Distribution of One-month Value of Portfolio III
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