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Jingyi Xue

Singapore Management University

jyxue@smu.edu.sg

September 9, 2017

Abstract

Imagine that agents have uncertain needs and a resource must be divided before

uncertainty resolves. In this situation, waste typically occurs when the assignment to

an agent turns out to exceed his realized need. How should the resource be divided

in the face of possible waste? This is a question out of the scope of the existing ra-

tioning literature. Our main axiom to address the issue is no domination. It requires that

no agent receive more of the resource than another while producing a larger expected

waste, unless the other agent has been fully compensated. Together with conditionally

strict endowment monotonicity, consistency, and strong upper composition, we charac-

terize a class of rules which we call expected-waste constrained uniform gains rules.

Such a rule is associated with a function that aggregates the two components of cost

generated by an agent at an allocation: the amount of the resource assigned to him and

the expected waste he generates. The rule selects the allocation that equalizes as much

as possible the cost generated by each agent. Moreover, we characterize the subclasses

of rules associated with homothetic and linear cost functions. Lastly, to appreciate the

role of no domination, we establish all the characterizations with a decomposition of no

domination into two axioms: risk aversion and no reversal. They respectively capture

∗This paper subsumes the previous version “Fair division with random demands (2014)”. I am indebted to

Atsushi Kajii, Hervé Moulin, William Thomson and Siyang Xiong for invaluable discussion and suggestions.

I also thank Anna Bogomolnaia, Shurojit Chatterji, Biung-Ghi Ju, Yan Long, Juan D. Moreno-Ternero, Cheng

Wang and Yongqin Wang for helpful comments. The constructive comments of two referees have greatly

improved the paper. All errors are my own.
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the ideas that a rule should not be unresponsive to need uncertainty, and neither should

it be too sensitive to it.

Key-words: claims problems; need uncertainty; fair division; waste; expected-waste con-

strained uniform gains rule; rationing; bankruptcy

JEL classification: C71; D63; D74; D81

1 Introduction

Resource allocation in the face of uncertain needs is common in real life. For example, a

government has to divide a budget among several districts to finance the development of

infrastructure (roads, schools, etc.) with a rough knowledge of local public demands (Copas

(1993)); an emergency management institute has to distribute rescue forces (search teams,

medical supplies, etc.) to different areas struck by a natural disaster based on estimates

of individual damage statistics (Rolland, Patterson, Ward, and Dodin (2010), Wex, Schryen,

and Neumann (2012), Wex, Schryen, Feuerriegel, and Neumann (2014)); a network architect

has to assign capacities (bandwidth, memories, etc.) to various nodes and links before the

realization of random traffic flows (Meesublak (2008), Ukkusuri and Patil (2009)).

In those situations, a resource has to be divided ex ante, and ex post reallocation may be

difficult. It could be costly to downsize an underutilized public facility, retrieve unused res-

cue forces, or remove idle capacities in a network. In such cases, division is pre-committed,

and it generates waste when the allocated amount turns out to exceed the realized need.

To the best of our knowledge, this is the first paper providing a normative theory to

address the issue of waste in a pre-committed division problem with uncertain needs. Besides

the issue of waste, it is also a valid concern for assignments falling short of realized needs.

We are interested in the former because how to divide a resource in the face of possible

waste is a question that is specific to the context of need uncertainty — waste can always be

avoided when needs are deterministic. It turns out that our work also inspires a dual approach

to addressing the issue of unsatisfied needs. A discussion is provided in Section 6.

Our resource is one-dimensional and perfectly divisible. We model the uncertain needs

of agents, called claims, as probability distributions. They are objectively verifiable. A “divi-

sion problem” consists of a finite set of agents, the profile of their claims, and an endowment
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of the resource which does not exceed the aggregate maximal claims. An allocation for a

problem specifies for each agent an assignment of the resource that is no larger than his

maximal claim, the sum of all assignments equal to the endowment. A division rule picks an

allocation for each problem. We search for desirable rules.

We use an example to illustrate the difficulty caused by uncertainty. There are 48 units

of the resource and three agents. Agent 1 claims 50 for sure. Agent 2 claims 50, 0 and 100

with probability 0.98, 0.01 and 0.01 respectively. Agent 3 claims 0 and 100 with probability

0.5 respectively. Although all three agents have equal expected claims, agent 1’s claim is

deterministic while agent 3’s is most risky. If the resource does not have to be divided before

the realization of their claims, waste can be avoided. But we are interested in ex ante division

which must be fully committed. A planner concerned with efficiency may want to minimize

the expected amount of unused resource. Then the allocation (48, 0, 0) should be adopted,

since in any other allocation some amount of the resource will be wasted with a positive

probability. The emphasis on efficiency makes the rule excessively averse to uncertainty,

and this may well be judged unfair. In this problem, the small uncertainty in agent 2’s claim

ruins his opportunity to get anything, and the same thing is true for agent 3 although he

claims a large amount with probability 0.5.

One simple solution might be to apply the proportional rule to the profile of expected

claims. In this example, expected claims are equal, so the rule picks (16, 16, 16). But this

outcome is not desirable either, since it ignores how uncertain claims are — agents are as-

signed equal amounts although they generate different amounts of waste.

We study the problem from a normative perspective. Our key axiom that addresses the

issue of waste is no domination. To illustrate it, note that an assignment to an agent induces

two components of cost: the resource assigned to him and the expected waste generated by

him. If a society has no bias toward any agent, it should not bear for any particular agent

a larger cost in each component. Thus, our no domination axiom requires that no agent be

assigned a larger amount while producing a larger expected waste than another, unless the

other agent has been fully compensated.

The remaining axioms are all standard. Symmetry requires that if two agents have equal

claims, they receive equal assignments. Conditionally strict endowment monotonicity says

that if the endowment increases and if an agent had not been fully compensated, then his

assignment should increase. Positivity requires that whenever the endowment is positive, an

agent with a non-zero claim receive a positive assignment. For consistency, imagine that
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after an allocation is selected for a problem, some agents come first and take away their

assignments. Then the division of the rest of the endowment among the remaining agents

should yield the original assignments for them. Upper composition pertains to the possibil-

ity that after an allocation has been chosen for a problem, the endowment is found to have

been overestimated. Then the initial allocation can be canceled and the smaller endowment

divided, or the initial assignments can be used as upper bounds of agents’ claims and the

smaller endowment divided based on the claims truncated at these upper bounds. Upper

composition requires that the two approaches yield the same allocation in the end. Strong

upper composition strengthens upper composition. Consider in the same situation that some

agents disagree with using their initial assignments as upper bounds and having their claims

truncated. In such cases, agents should be allowed to use either the truncated claims or the

initial claims when the smaller endowment is divided. Strong upper composition applies

the same invariance requirement to all such cases no matter who use the truncated claims

and who do not. That is, dividing the smaller endowment based on the initial claims should

yield the same allocation as based on any revised claims with the claims of a subset of agents

truncated at their initial assignments. Lower composition pertains to the “dual” situation that

after an allocation has been chosen for a problem, the endowment is found to have been un-

derestimated. Then the initial allocation can be canceled and the larger endowment divided,

or the initial allocation can be implemented and the increment in the endowment divided

based on the claims adjusted down by the initial assignments. Lower composition requires

that the two approaches yield the same allocation in the end. Claims truncation invariance

says that the part of claims exceeding the endowment should be regarded as irrelevant, so

truncating claims at the endowment should not affect the allocation. Lastly, scale invari-

ance says that if the claims and the endowment are multiplied by a common factor, then the

allocation should be rescaled accordingly.

We first show that no domination, conditionally strict endowment monotonicity, consis-

tency, and strong upper composition characterize a class of rules which we call expected-

waste constrained uniform gains rules. To see how such a rule operates, recall that an as-

signment to an agent induces two components of cost: the amount of the resource assigned

to him and the expected waste he generates. Each expected-waste constrained uniform gains

rule is associated with a continuous and increasing cost function that aggregates the two

components. For each problem, a cost level c∗ is chosen so that assigning to each agent his

maximal claim if it generates a cost less than c∗ and otherwise an amount that induces a cost
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equal to c∗ yields a feasible allocation. This allocation equalizes as much as possible the

costs generated by all assignments to agents, and it is the one selected by our rule. When

restricted to deterministic claims, this rule coincides with the classic “uniform gains rule”.

Naturally, the properties of an expected-waste constrained uniform gains rule depends

on the properties of the associated cost function. Adding scale invariance, we pin down the

subclass of rules associated with homothetic cost functions. Moreover, we show that no dom-

ination, positivity, consistency, lower composition, and either strong upper composition or

claims truncation invariance characterize the subclass of the rules associated with linear cost

functions. For example, let U be the summation of assignment and expected waste. Then in

the previous three-agent problem, the allocation is approximately (18.067, 17.888, 12.045).

The cost induced by agent 1 is 18.067, by agent 2 17.888 + 17.888 × 0.01 and by agent 3

12.045 + 12.045 × 0.5. Note that on one hand, unlike the proportional rule discussed before,

this rule assigns a smaller amount of the resource to an agent who has a riskier claim. On the

other hand, unlike the efficient rule, it avoids assigning a too small amount to such an agent.

In general, an expected-waste constrained uniform gains rule strikes a balance between

being unresponsive to uncertainty and too sensitive to uncertainty. This is precisely the

implication of no domination. In fact, we can decompose no domination into two axioms

which capture respectively the two sides of the implication. The first is risk aversion. It

says that if two agents have the same maximal claim and if the claim of one agent is riskier

than the other’s, then the agent who has a riskier claim should not be assigned a larger

amount than the other agent. The second is no reversal. It says that in the same situation,

the riskier agent should not be assigned so little as to generate a smaller expected waste.

Although no domination is imposed for general populations of agents whose claims may

not be comparable in terms of riskiness, combined with the other axioms, we show that no

domination is equivalent to the combination of risk aversion and no reversal.

Lastly, we extend the characterization of the uniform gains rule from the domain of prob-

lems with deterministic claims (Dagan (1996), Martı́nez (2008)) to a subdomain of problems

with uncertain claims. This subdomain, called the strongly ordered domain, consists of all

problems in which for each pair of agents, the claim of one agent is given by a truncation of

the other’s. This subdomain is meaningful when agents only disagree on large needs.

Following the literature review, the remainder of the paper is organized as follows. Sec-

tion 2 introduces the model and the axioms. Section 3 defines the class of expected-waste

constrained uniform gains rules. Section 4 provides the characterizations. Section 5 checks
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the tightness of the characterizations. Section 6 remarks on a dual approach to addressing

the issue of unsatisfied needs and summarizes the paper. All the proofs are in the Appendix.

1.1 Literature review

There is a rapidly growing literature on pre-committed resource allocation with uncertain

needs in many practical fields such as emergency control, project management, and network

design (e.g., Johansson and Sternad (2005), Rawls and Turnquist (2010), Turnquist and Noz-

ick (2003), Wex, Schryen, and Neumann (2012)).

However, very few papers have addressed the problem from a normative perspective.

We are only aware of the following axiomatic studies. In a model where uncertain claims

are assumed to be intervals, a version of the proportional rule is characterized by Yager and

Kreinovich (2000) (see also Branzei, Dimitrov, Pickl and Tijs (2004), Woeginger (2006)).

When claims are assumed to be contingent on finitely many future states, the so-called “ex

ante” and “ex post” proportional rules are characterized by Ertemel and Kumar (2017).1

None of these papers address the issue of waste. As far as we know, we are the first to offer

an axiomatic foundation for division in the face of possible waste due to claim uncertainty.

There is a rich literature on fair division with deterministic claims. For example, the

uniform gains rule and its dual version, the uniform losses rule, are axiomatized by Dagan

(1996), Herrero and Villar (2001, 2002), Yeh (2004, 2006, 2008), Martı́nez (2008), and

Marchant (2008). The proportional rule is characterized by Banker (1981), O’Neill (1982),

Moulin (1987), and Chun (1988). The class of “parametric rules” includes all the previous

rules as special cases, and is characterized by Young(1987a). Moulin (2002) and Thomson

(2003, 2015) provide excellent surveys on this subject.

There are two papers closely related to our work. First, our Theorem 1 is related to

Moreno-Ternero and Roemer (2006) on a division problem without uncertainty. Moreno-

Ternero and Roemer (2006) study how to divide a resource among a group of agents, each of

whom is equipped with an output function that transforms the assigned resource into some

output. Their “priority” axiom is a form of no domination. It requires that no agent receive

more of the resource while producing a larger output than another agent. Together with their

“solidarity” axiom, which can be decomposed into “strict endowment monotonicity”2 and

1In a similar framework, Habis and Herings (2013) adopt a cooperative game approach to test the stability

of a stochastic extension of well-known rules.
2They call it endowment monotonicity.
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“consistency”, they characterize a class of “index-egalitarian” rules similar to ours. Each

index-egalitarian rule is associated with an index that is continuous and increasing in re-

source assignment and output. It selects the allocation in which all assignments to agents

generate the same index value.

Our generic agent, given his claim, can be thought of having a waste function (like their

output function) that transforms the assigned resource to expected waste. Thus, our no dom-

ination corresponds in its structure to their priority. However, probabilistic claims and real

output functions are different objects, and axioms dealing with the two objects do not in

general correspond to each other. First, their output functions are all strictly increasing,

whereas our waste functions, whenever induced by deterministic claims, always generate

zero expected waste. Their characterization does not need to deal with agents with zero

output functions, whereas ours relies on one additional axiom, strong upper composition,

to pin down the division for deterministic claims. Second, their agents can receive an un-

limited amount of the resource, while our agents cannot receive more than their maximal

claims. Their strict endowment monotonicity therefore implies in our context that no agent

could be fully compensated unless the endowment is sufficient to satisfy all agents’ maximal

claims. This requirement is too strong for our rules. Our characterization utilizes the weaker

conditionally strict endowment monotonicity axiom. Third, lower composition has different

implications in the two models. It turns out to be quite restrictive in their model as it nar-

rows down the whole class of their rules to two extreme ones (Moreno-Ternero and Roemer

(2012)). In contrast, it implies an entire subclass of our rules, those associated with linear

cost functions (see our Theorem 2).

There are also some technical differences between our model and Moreno-Ternero and

Roemer (2006). First, they require that the union of the graphs of all output functions cover

the whole positive quadrant in R2. In our model, an agent cannot waste more than what he

is assigned, so the union of the graphs of all waste functions only contain points under the

45 degree line. Second, they assume that the output functions of their agents are unbounded,

while the waste functions of our agents are bounded by their maximal claims. This further

makes our proof different from theirs.

The other closely related work is Chun, Jang and Ju (2014). They propose a decomposi-

tion of Moreno-Ternero and Roemer (2006)’s priority into two axioms: “order preservation”

and “no reversal”. Both axioms consider pairs of agents such that one agent is less disabled

than the other agent in the sense that he produces a no smaller output for all assignments
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than the other. Order preservation says that the less disabled agent should not be assigned

a larger amount of the resource than the more disabled. Their no reversal says that the less

disabled agent should not be assigned so little as to produce a smaller output than the more

disabled. On a well-ordered domain where agents are pairwise comparable in terms of abil-

ity, the combination of their order preservation and no reversal is amount to priority. On

such a domain, they characterize the class of index-egalitarian rules by order preservation,

no reversal, and “agreement”, where agreement is equivalent to the combination of strict

endowment monotonicity and a solidarity axiom that plays a similar role as consistency.3

In our model, if an agent has a riskier claim than another agent, he generates a no smaller

expected waste than the other for all assignments. Thus, an agent who has a riskier claim

in our model is like a less disabled agent in their model. Hence, our decomposition of no

domination into risk aversion and our no reversal corresponds to their decomposition of

priority into order preservation and their no reversal.

There are three main differences between our decomposition result and theirs. First and

foremost, unlike their domain, ours is not well-ordered. The claims of our agents may not

be comparable in terms of riskiness. We show without restriction on agents’ claims that no

domination can be replaced with risk aversion and our no reversal in all of our characteriza-

tions. Second, our two separate axioms are not as restrictive as theirs. Their two axioms are

imposed on each pair of agents one of whom always produces a no smaller output than the

other. In our model, even if one of two agents always produces a no smaller expected waste

than the other, their claims may not be comparable in terms of riskiness,4 so that our axioms

impose no restriction on them. Third, each of their two axioms directly implies symmetry,

while it is not trivial to show that our two axioms together imply symmetry under strong

upper composition and consistency (see our Proposition 4, and also Proposition 5). This

is because two agents with the same output functions are comparable in terms of ability by

their definition, whereas the same claims are not comparable in riskiness by our definition.

Lastly, note that distributive justice under uncertainty has also been discussed in other

contexts. For example, cost sharing of risky projects is studied by Hougaard and Moulin

3This solidarity axiom that they consider is called “separability”. It says that after a shock on agents’

output functions and the endowment, if the output functions of some agents are unaffected and if the sum of

their assignments is unchanged, then each of them should receive his initial assignment. Moreover, they also

provide a characterization of the class of index-egalitarian rules on a “rich” domain with a monotonicity axiom

regarding the change in an agent’s ability.
4It could be that the claim of the first agent is first-order stochastically dominated by that of the second.
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(2016); general approaches to assessing risky social situations are studied by Fleurbaey

(2010) (see also Fleurbaey, Gajdos and Zuber (2015)).

2 The model and the axioms

Let R be the set of real numbers, R+ the set of nonnegative real numbers, N the set of positive

integers, and N the set of all finite subsets of N. For each pair x, x′ ∈ Rn, n ∈ N, we write

x ≤ x′ if for each m ∈ {1, ..., n}, xm ≤ x′m, and x < x′ if for each m ∈ {1, ..., n}, xm < x′m.

A one-dimensional and perfectly divisible resource is to be divided among some group of

agents. Agents are denoted by elements in N. An agent’s (uncertain) claim of the resource is

a cumulative distribution function with compact support in R+.5 Let F be the set of claims.

For each agent i ∈ N, we denote by Fi ∈ F a typical claim of agent i, and supp Fi and supp Fi

the minimal and maximal values in the support of Fi. For each population I ∈ N , we denote

by F a typical profile of claims, i.e., a vector (Fi)i∈I such that for each i ∈ I, Fi ∈ F . Let F I

be the set of claim profiles with population I.

Given I ∈ N , a claims problem, or simply a problem, with population I, consists of a

claim profile F ∈ F I and an endowment T ∈ [0,
∑

supp Fi]. We denote by (F,T ) a typical

problem and C I the set of problems with population I. An allocation for (F,T ) ∈ CI is a

vector t ∈ RI
+ such that

∑
ti = T , and for each i ∈ I, ti ≤ supp Fi. We call ti the assignment

to agent i. A division rule, or simply a rule, is a function r that specifies for each problem in⋃
I∈N
CI an allocation. We denote by ri(F,T ) the assignment to agent i.

Given assignment ti to agent i, if his realized need is xi, then the difference max{ti − xi, 0}

is wasted. If his claim is Fi, then
∫

max{ti − xi, 0}dFi(xi) is the expected waste. For each

Fi ∈ F and ti ∈ [0, supp Fi], let w(Fi, ti) denote the expected waste that results when agent i,

claiming Fi, is assigned ti. Note that the expected waste generated by an agent is independent

of the probability distribution of his need that is above his assignment. That is, for each pair

Fi, F′i ∈ F and each ti ∈ [0,min{supp Fi, supp F′i }], if Fi and F′i agree on (−∞, ti), then

w(Fi, ti) = w(F′i , ti).

A basic example of a rule is the rule that divides the resource proportionally to expected

claims. In the three-agent problem of the Introduction, since all agents have equal expected

claims, the outcome is simply (16, 16, 16). But this is not desirable since this division com-

5It is possible to allow unbounded claims, but our axioms essentially ignore the tails of claims.
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pletely ignores differences in the riskiness of the three claims.

Another example is the rule that picks, for each problem, the allocation that minimizes

total expected waste. Unfortunately, this rule is too sensitive to uncertainty. In our three-

agent problem, as long as agent 2 claims 0 with positive probability, no matter how small the

probability is, the rule assigns the whole of the resource to agent 1, who has a deterministic

claim of 50. The tiny bit of uncertainty in an agent’s claim entirely destroys his chance to

obtain anything. This may not be judged fair.

We seek to identify well-behaved rules which address the issue of waste. In particular,

we are interested in rules which are responsive to the riskiness of claims but not too sensitive

to it. For this purpose, we consider the following axioms.

2.1 No domination

Our key axiom is no domination. It formulates the principle that no agent should dominate

another in every dimension. In our model, although the resource is one-dimensional, a so-

ciety bears for each agent two components of cost: the resource assigned to him and the

expected waste generated by him. Waste is costly since the resource would have been better

utilized in other places (possibly outside the problem). In the case of dividing public funds,

it is a reminiscent of the shadow cost in Laffont and Tirole (1993) due to the distortions gen-

erated in an economy. If a society has no bias toward any agent, it should not bear for any

particular agent a larger cost in each component than for another agent. Thus, we require that

no agent receive a larger assignment while generating a larger expected waste than another

agent, unless the other agent has been fully compensated.

No domination: For each I ∈ N , each (F,T ) ∈ CI , and each pair {i, j} ∈ I, if ri(F,T ) >

r j(F,T ), w(Fi, ri(F,T )) > w(F j, r j(F,T )), then r j(F,T ) = supp F j.

The principle of “no domination in every dimension” has also appeared in earlier works.

In the classic division problem, a bundle of multiple commodities is divided among agents

who have individual preferences. A weak version of envy-freeness (Thomson (1983a),

Thomson and Varian (1985), Moulin and Thomson (1988)) takes the commodities as these

dimensions, and requires that no agent receive more of each commodity than another agent.6

In the division problem studied by Moreno-Ternero and Roemer (2006), a one-dimensional

6It is equivalent to the standard envy-freeness when agents have Leontief preferences (Li and Xue (2013)).
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resource is divided among agents who are equipped with individual output functions trans-

forming the assigned resource into some output. Their priority axiom takes resource assign-

ment as one dimension and output as the other dimension. They require that no agent receive

more of the resource and produce a larger output than another agent.

The difference of our formulation of this principle from the earlier works is that the

dimensions considered in the earlier works are aspects of an agent’s welfare, whereas waste

is not related to an agent’s welfare. But from a broader perspective, these dimensions can be

considered as aspects in which an agent could be treated in favor, no matter whether these

aspects directly affect an agent’s welfare or not. In our model, a society can favor an agent

by bearing for him a larger cost in both resource assignment and expected waste. Our axiom

rules out the domination of one agent over another in these cost components.

No domination has two essential implications which capture respectively the lessons of

the two examples in the beginning of this section: A rule should be responsive to riskiness,

but not too sensitive to it. Before we discuss the implications, let us formally introduce

a notion of comparative riskiness. Following Rothschild and Stiglitz (1970), for each pair

{i, j} ⊆ N and each F ∈ F {i, j}, we say Fi is riskier than F j, or F j is more deterministic
than Fi, if Fi is a mean-preserving spread of F j, i.e., Fi and F j have the same mean, for each

c ∈ R, ∫ c

−∞

Fi(xi)dxi ≥

∫ c

−∞

F j(x j)dx j, (1)

and (1) holds with strict inequality at some c ∈ R. Note that if agent i, who claims Fi, is

assigned ti, then his expected waste w(Fi, ti) is equal to
∫ ti
−∞

Fi(xi)dxi. Hence, if agent i has a

riskier claim than agent j, agent i would generate a no smaller expected waste than agent j

whenever they receive the same assignments. In this sense, a riskier agent is more wasteful.

Now consider a two-agent problem in which both agents have the same maximal claims,

and one agent has a riskier claim than the other. If the riskier agent receives a larger assign-

ment, he must generate a no smaller expected waste. In a generic case, he generates a larger

expected waste, and thus no domination is violated. Hence, in such cases, no domination

implies that the riskier agent receives a no larger assignment. We strengthen this implication

as a requirement applied to all cases and call it risk aversion.

Risk aversion: For each pair {i, j} ⊆ N and each (F,T ) ∈ C{i, j}, if supp Fi = supp F j and Fi

is riskier than F j, then ri(F,T ) ≤ r j(F,T ).
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Note that risk aversion is not an efficiency requirement. Assigning a larger amount of

the resource to the riskier agent might generate a smaller total expected waste. Risk aversion

simply imposes a punishment on the riskier agent for his being more wasteful.

On the other hand, no domination also implies that there is a limit to the punishment.

Observe that if the riskier agent is assigned too little of the resource, he could generate a

smaller expected waste than the other agent, which again violates no domination. Thus, no

domination implies that the riskier agent is not assigned so little as to generate a smaller

expected waste. We call this property no reversal.

No reversal: For each pair {i, j} ⊆ N and each (F,T ) ∈ C{i, j}, if supp Fi = supp F j and Fi is

riskier than F j, then w(Fi, ri(F,T )) ≥ w(F j, r j(F,T )).

When restricted to pairs of agents who have the same maximal claims and whose claims

are comparable in terms of riskiness,7 no domination is essentially equivalent to the combi-

nation of risk aversion and no reversal.8 The surprising fact we find is that even without the

restriction on agents’ claims, under some standard axioms, no domination is equivalent to

the combination of risk aversion and no reversal (Proposition 2). All of our characterizations

hold when no domination is replaced with risk aversion and no reversal.

Our decomposition of no domination is related to a decomposition of Moreno-Ternero

and Roemer (2006)’s priority by Chun, Jang and Ju (2014). Recall that Moreno-Ternero

and Roemer (2006) study the division of a one-dimensional resource among agents who are

endowed with individual output functions. An agent can be considered less disabled than

another agent if he produces a no smaller output than the other agent for all assignments.

Fixing a population of agents who are pairwise comparable in terms of ability, Chun, Jang

and Ju (2014) propose a decomposition of priority into order preservation and no reversal.

Their order preservation requires that a less disabled agent receive a no larger assignment.

Their no reversal requires that a less disabled agent not be assigned so little as to produce a

smaller output. An agent who has a riskier claim in our model is like an agent who is less

7The condition that two agents have equal maximal claims is indispensable for risk aversion. This is because

when there is a sufficient amount of the endowment, every rule assigns a larger amount of the resource to agent

i if he has a larger maximum claim. But this condition can be dropped in no reversal. Our results hold no matter

which version of no reversal is imposed.
8No domination does not imply risk aversion in the case when both agents have non-zero minimal claims

and the endowment is so small that any allocation induces a zero expected waste for both agents. In such cases,

no domination has no restriction on the allocation.
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disabled in their model. The main difference between our decomposition and theirs is that

we establish a general equivalence result with no restriction on the comparability of agents’

claims. We provide a detailed discussion in the Literature review.

2.2 Other axioms

We now introduce some axioms from the literature of deterministic claims problems to our

uncertain problems. A minimal fairness requirement is symmetry (Thomson (2003)). It says

that agents who have equal claims should receive equal assignments, i.e., a rule should not

discriminate agents on the basis of their names.

Symmetry: For each I ∈ N , each (F,T ) ∈ CI , and each pair {i, j} ⊆ I, if Fi = F j, then

ri(F,T ) = r j(F,T ).

A solidarity requirement regarding change of the endowment is endowment monotonicity

(Curiel, Maschler, and Tijs (1987), Chun and Thomson (1988), Roemer (1986a,b), Moulin

(1999), Young (1988)). It says that when the endowment increases, no agent should get less

than his initial assignment.

Endowment monotonicity: For each I ∈ N , each (F,T ) ∈ CI , and each T ′ ∈ [0,T ),

r(F,T ′) ≤ r(F,T ).

A strengthening of endowment monotonicity, known as strict endowment monotonicity,

requires that as the endowment increases, each agent with a non-zero claim get more than

his initial assignment. Strict endowment monotonicity is a strong requirement. In particular,

it does not allow any agent who has a non-zero claim to be fully compensated unless the

endowment is sufficient to satisfy all agents’ maximal claims. One conditional weakening

of strict endowment monotonicity that gets rid of this restriction is to require an agent’s

assignment to increase with the endowment only if the agent had not been fully compensated

(Thomson (2003)).

Conditionally strict endowment monotonicity: For each I ∈ N , each (F,T ) ∈ CI , each

T ′ ∈ [0,T ), and each i ∈ I, if ri(F,T ′) < supp Fi, then ri(F,T ′) < ri(F,T ).

Conditionally strict endowment monotonicity implies a basic lower bound requirement:

If an agent has a non-zero claim, then he should receive a positive assignment whenever the

endowment is positive.
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Positivity: For each I ∈ N , each (F,T ) ∈ CI , and each i ∈ I, if supp Fi > 0 and T > 0, then

ri(F,T ) > 0.

The familiar consistency axiom is also a solidarity requirement (Aumann and Maschler

(1985), Young (1987a), Thomson (1988, 2012)). Imagine that after an allocation has been

chosen for some (F,T ), some agents come first to take away their assignments. Consider now

the problem of dividing among the remaining agents the rest of the resource. We require that

for this problem, each agent be assigned the same amount as initially.9

Consistency: For each I ∈ N , each (F,T ) ∈ CI , each J ⊆ I, and each i ∈ J, ri(F,T ) =

ri(FJ,
∑
j∈J

r j(F,T )), where FJ is the restriction of F onto J.

The rest of our axioms are all invariance properties. First, imagine that after an alloca-

tion has been chosen, the endowment is found to have been overestimated. In this case, the

initial allocation can be canceled and the smaller endowment divided, or the initial assign-

ments can be used as upper bounds of agents’ claims and the smaller endowment divided

for the claims truncated at these upper bounds. Both ways of dealing with decrease of the

endowment are reasonable. Upper composition (Moulin (2000)) requires that they lead to

the same allocation. Strong upper composition (Martı́nez (2008), Thomson (2015)),10 which

strengthens upper composition, considers the possibility that some agents disagree with us-

ing the initial assignments as upper bounds and having their claims truncated. In such a

situation, an agent should have the option of using either the truncated claim or the initial

claim when the smaller endowment is divided. Strong upper composition further applies the

invariance requirement to all such situations no matter who use the truncated claims and who

do not. That is, dividing the smaller endowment based on the initial claim profile should be

the same as based on any revised claim profile with the claims of a subset of agents truncated

at their initial assignments. This helps to avoid the potential dispute among agents about the

influence of their different choices on the allocation.

To formally define the truncation of a claim, let i ∈ N, Fi ∈ F , and c ∈ R+ be given. The

truncation of Fi at c is a claim in F , denoted by Fi|
c, that assigns the same probability to

9If a rule is endowment monotonic and consistent, then it is population monotonic — dividing an endow-

ment among a subgroup of agents cannot lead to a decrease in their assignments (Thomson (1983b,c)).
10Martı́nez (2008) uses the name “strong composition down”. We follow the terminology of Moulin (2000)

and call it strong upper composition.

14



each xi ∈ [0, c) as Fi and assigns all the remaining probability to c. That is, for each xi ∈ R,

Fi|
c(xi) =

 Fi(xi) if xi ∈ (−∞, c)

1 if xi ∈ [c,∞).

Note that when c ≥ supp Fi, Fi|
c = Fi. Although only the case of c ≤ supp Fi is relevant

in upper composition and strong upper composition, the general definition will be useful in

some other axiom later.

Strong upper composition: For each I ∈ N , each (F,T ) ∈ CI , each T ′ ∈ [0,T ), and each

J ⊆ I, r(F,T ′) = r(((Fi|
ri(F,T ))i∈J, FI\J),T ′).

Upper composition simply requires the invariance of allocation for the case of J = I. Our

characterization results rely on strong upper composition. When restricted to problems with

deterministic claims, it is known that symmetry, consistency, and strong upper composition

characterize the uniform gains rule (Martı́nez (2008), Thomson (2015)). We extend the result

to a subdomain of problems with uncertain claims (Proposition 3) and show that consistency

is redundant in the existing characterization.

Now imagine the following “dual” situation: after an allocation has been chosen, the

endowment is found to have been underestimated. In this case, the initial allocation can

be canceled and the larger endowment divided, or the initial allocation can be implemented

and the increment in the endowment divided based on the claims reduced by the initial as-

signments. Lower composition (Kalai (1977), Young (1988), Moulin (2000)) requires the

two-step division to be equivalent to the one-time division of the entire endowment, so that

agents will not dispute which is the better way of proceeding.

To formally define a reduced claim, let i ∈ N, Fi ∈ F , and ti ∈ [0, supp Fi] be given. If

agent i’s realized need is xi ∈ R, then max{xi− ti, 0} is the unsatisfied need. Thus, the reduced

claim of agent i, denoted by Fi|
ti , is the distribution of max{xi − ti, 0}, xi ∈ R, induced by Fi.

That is, for each xi ∈ R,

Fi|
ti(xi) =

 0 if xi ∈ (−∞, 0)

Fi(xi + ti) if xi ∈ [0,∞).

Lower composition: For each I ∈ N , each (F,T ) ∈ CI , and each T ′ ∈ [0,T ), r(F,T ) =

r(F,T ′) + r((Fi|
ri(F,T ′))i∈I ,T − T ′).
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Note that both upper composition (and thus strong upper composition) and lower com-

position imply endowment monotonicity.

Another invariance requirement is claims truncation invariance (Dagan and Volij (1993),

Thomson (2015)). It says that the part of a claim that exceeds the endowment should be

regarded as irrelevant, so truncating claims at the endowment should not affect the allocation.

Claims truncation invariance: For each I ∈ N and each (F,T ) ∈ CI , r(F,T ) =

r((Fi|
T )i∈I ,T ).

When restricted to problems with deterministic claims, it is known that symmetry, lower

composition, and claims truncation invariance characterized the uniform gains rule (Dagan

(1996)). We also extend this result to a subdomain of problems with uncertain claims (Propo-

sition 3).

Lastly, scale invariance (Moulin (1987), Young (1988)) requires invariance with respect

to uniform rescalings of problems. That is, if individual claims and the endowment are

rescaled by a common factor, then assignments should be rescaled by the same factor.

Scale invariance: For each I ∈ N , each (F,T ) ∈ CI , each F′ ∈ F I , and each c > 0, if for

each i ∈ I and each xi ∈ R, F′i (cxi) = Fi(xi), then cr(F,T ) = r(F′, cT ).

3 Expected-waste constrained uniform gains rules

3.1 An illustrating example

As discussed before, an assignment to an agent induces two components of cost to a society:

the resource assigned to him and the expected waste he generates. Suppose that the (total)

cost of an agent is a weighted sum of the two components, and imagine that an egalitarian

planner seeks to equalize among agents their costs. Thus, for each problem, the planner

would set a common cost, and each agent can obtain as much of the resource as possible as

long as the induced cost is no more than the common cost and the obtained resource is no

more than his maximal claim. More precisely, if assigning to an agent his maximal claim

induces a cost lower than the common cost, he receives his maximal claim. Otherwise, he is

assigned the amount that exactly induces the common cost. The common cost is determined

by the binding feasibility constraint.
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Formally, let λ ∈ R+. If agent i, who claims Fi, is assigned ti, his cost is ti + λw(Fi, ti).

Note that the larger the weight λ is, the more the planner is concerned about waste. For each

I ∈ N and each (F,T ) ∈ CI , a common cost c∗ is chosen. For each i ∈ I, agent i can obtain his

maximal claim supp Fi if the induced cost supp Fi +λw(Fi, supp Fi) is less than c∗, otherwise

he obtains ti ∈ [0, supp Fi] such that his cost ti + λw(Fi, ti) is equal to c∗. The assignment

to each agent is non-decreasing as the common cost increases, and c∗ is determined by the

condition that all agents’ assignments sum up to T . We denote this rule by rλ.

Recall the three-agent problem in the Introduction. The allocation (t1, t2, t3) chosen by rλ

is given by solving the following system of equations:
t1 = c∗

t2 + λ · 0.01t2 = c∗

t3 + λ · 0.5t3 = c∗

t1 + t2 + t3 = 48.

We obtain ((100 1
λ2 +51 1

λ
+0.5)a, (100 1

λ2 +50 1
λ
)a, (100 1

λ2 + 1
λ
)a) where a = 0.96

6 1
λ2 +2.04 1

λ+0.01
. When

λ = 1, the allocation is approximately (18.067, 17.888, 12.045). Note that the assignment

of an agent is smaller if his claim is riskier, and on the other hand the assignment is not

excessively small. In general, the larger the value of λ, the smaller the assignment of a riskier

agent. When λ goes to 0, the planner tends to ignore waste and he equalizes assignments.

When λ goes to the infinity, the planner tends to care only about waste and he equalizes

expected waste. It can be shown that for each λ ∈ R+, rλ satisfies all of our axioms.

3.2 The general definition

In the illustrating example, the two components of cost generated by an agent are assumed

to be aggregated in a linear way. In general, the two components could be aggregated in

any way that satisfies some basic properties. Given a general cost function, we can define a

rule in the same way as before. That is, in each problem, the rule sets a common cost, and

each agent receives as much of the resource as possible as long as his cost, given by the cost

function, is no more than the common cost and the obtained resource is no more than his

maximal claim.

To define a general cost function, let D := {(ti,w(Fi, ti)) : Fi ∈ F , ti ∈ [0, supp Fi]}

denote the domain of the two components of cost: resource assignment and expected waste.

(Equivalently, D = {(x1, x2) ∈ R2
+ : x1 > x2} ∪ {(0, 0)}.) In general, a cost function is a
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continuous function U : D → R satisfying that (i) for each pair (x1, x2), (x′1, x
′
2) ∈ D such

that either (x1, x2) < (x′1, x
′
2) or x1 < x′1 and x2 = x′2 = 0, U(x1, x2) < U(x′1, x

′
2), and (ii)

U(0, 0) = 0, a normalization condition. Note that when an agent’s assignment increases, his

expected waste either increases or remains to be zero, and condition (i) requires that in both

cases his cost increases. LetU denote the set of all cost functions.

Given a cost function, an agent’s assignment is determined by a common cost c∗ in each

problem. An agent obtains his maximal claim if the induced cost is lower than c∗. Otherwise

he is assigned the amount which induces a cost of c∗. To formally define this rule, we

introduce an individual “assignment” function over all possible values of cost. For each

U ∈ U and each Fi ∈ F , define U−1
Fi

: U(D)→ [0, supp Fi] by

U−1
Fi

(c) =

 supp Fi if c > U(supp Fi,w(Fi, supp Fi)),

ti if c = U(ti,w(Fi, ti)) where ti ∈ [0, supp Fi].

To see that U−1
Fi

is well-defined, recall that by condition (i) in the definition of a cost function,

U(·,w(Fi, ·)) is increasing on [0, supp Fi], and thus when c ≤ U(supp Fi,w(Fi, supp Fi)),

there is a unique ti ∈ [0, supp Fi] satisfying c = U(ti,w(Fi, ti)). Moreover, one can check that

U−1
Fi

is continuous and increasing on [0, supp Fi].

Definition 1. A rule r is an expected-waste constrained uniform gains rule, if there is

U ∈ U such that for each I ∈ N , each (F,T ) ∈ CI , and each i ∈ I,

ri(F,T ) = U−1
Fi

(c∗), where c∗ solves
∑

U−1
F j

(c) = T.

When restricted to problems with deterministic claims, the cost of an agent only depends

on his assignment, and thus an expected-waste constrained uniform gains rule agrees with

the classic uniform gains rule. That is, for each I ∈ N and each (F,T ) ∈ CI , if for each i ∈ I,

Fi assigns probability one to some xi ∈ R+, then for each i ∈ I,

ri(F,T ) = min{xi, c∗}, where c∗ solves
∑

min{x j, c} = T .

Expected-waste constrained uniform gains rules belong to the well-known parametric

family (Young (1987a)) appropriately generalized to the domain of problems with uncertain

claims. To be precise, a rule r is a generalized parametric rule if there is a real-valued

function f on a closed interval [a, b] such that (1) for each Fi ∈ F , f (Fi, ·) is non-decreasing

and continuous on [a, b] with f (Fi, a) = 0 and f (Fi, b) = supp Fi, and (2) for each I ∈ N ,

each (F,T ) ∈ CI , and each i ∈ I,
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ri(F,T ) = f (Fi, c∗), where c∗ solves
∑

f (F j, c) = T .

The expected-waste constrained uniform gains rule associated with U is the generalized

parametric rule with f (Fi, c) = U−1
Fi

(c).

4 Characterizations

Our axioms characterize the class of expected-waste constrained uniform gains rules and

some subclasses.

Theorem 1. A rule satisfies no domination, conditionally strict endowment monotonicity,

consistency, and strong upper composition if and only if it is an expected-waste constrained

uniform gains rule.11

Proposition 1. An expected-waste constrained uniform gains rule satisfies scale invariance

if and only if it is associated with a homothetic cost function.

If lower composition is added in Theorem 1, we can weaken conditionally strict endow-

ment monotonicity to positivity and characterize the rules illustrated by the example of Sec-

tion 3.1. Moreover, strong upper composition is equivalent to claims truncation invariance

under the other axioms.

Theorem 2. A rule satisfies (i) no domination, positivity, consistency, strong upper com-

position, and lower composition, or (ii) no domination, positivity, consistency, lower com-

position, and claims truncation invariance if and only if it is an expected-waste constrained

uniform gains rule associated with a linear cost function.

No domination turns out to be equivalent to the combination of risk aversion and no

reversal under other axioms in Theorem 1 and Theorem 2.

Proposition 2. Let a rule satisfy either (i) conditionally strict endowment monotonicity, con-

sistency, and strong upper composition, or (ii) positivity, consistency, lower composition,

and claims truncation invariance. Then, it satisfies no domination if and only if it satisfies

risk aversion and no reversal.
11This result is related to Moreno-Ternero and Roemer (2006). See the Literature review for a detailed

discussion.
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It follows immediately from Proposition 2 that Theorem 1 holds with no domination re-

placed by risk aversion and no reversal. Since positivity and lower composition together

imply conditionally strict endowment monotonicity (see Lemma 3 in the Appendix), Propo-

sition 2 also implies that the same is true for Theorem 2.

Corollary 1. Theorem 1 and Theorem 2 hold with no domination replaced by risk aversion

and no reversal.

Finally, we extend the characterizations of the classic uniform gains rule by Dagan (1996)

and Martı́nez (2008) from the domain of problems with deterministic claims to a subdomain

of problems with uncertain claims. This subdomain contains all problems in which for each

pair of agents, the claim of one agent is given by a truncation of the other’s. Formally, for

each I ∈ N and each F ∈ F I , F is said to be strongly ordered if for each pair {i, j} ⊆ I with

supp Fi ≤ supp F j, Fi = F j|
supp Fi . For each I ∈ N , let C̄I := {(F,T ) ∈ CI : F is strongly

ordered}. Let C̄ :=
⋃

I∈N
C̄I , and we call it the strongly ordered domain. Since each profile of

deterministic claims is strongly ordered, C̄ contains all problems with deterministic claims.

Proposition 3. Let r be a rule satisfying either (i) symmetry and strong upper composition,

or (ii) symmetry, lower composition, and claims truncation invariance. Then, for each I ∈ N ,

each (F,T ) ∈ C̄I , and each i ∈ I,

ri(F,T ) = min{supp Fi, c∗}, where c∗ solves
∑

min{supp F j, c} = T.

Note that the converse is true if the axioms are restricted to the strongly ordered domain.

On the domain of problems with deterministic claims, Martı́nez (2008) characterizes the

classic uniform gains rule by the axioms in (i) together with consistency, and Dagan (1996)

characterizes it by the axioms in (ii). Our result shows that consistency is redundant in

Martı́nez (2008)’s characterization.

5 Tightness

The characterizations in Theorems 1, 2, and Corollary 1 are tight.

Dropping no domination and risk aversion, define a rule in the same way as an expected-

waste constrained uniform gains rule except that the associated “cost function” U is decreas-

ing in the second coordinate: For each (x1, x2) ∈ D, U(x1, x2) = x1 −
x2
2 . Since an increase in
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expected waste leads to a decrease in U, this rule violates no domination and risk aversion. It

can be readily seen that it satisfies no reversal, conditionally strict endowment monotonicity,

positivity, consistency, strong upper composition, and lower composition.

Dropping no reversal, define a rule in the same way as an expected-waste constrained

uniform gains rule except that the associated “cost function” is claim-specific. Formally, let

D̂ := {(Fi, ti) : Fi ∈ F , ti ∈ [0, supp Fi]} be the domain of the new cost function U, and define

U : D̂→ R+ by setting for each (Fi, ti) ∈ D̂,

U(Fi, ti) =

 1
10 ti if ti ≤ supp Fi,
1
10supp Fi + [ti − supp Fi + w(Fi|

supp Fi , ti − supp Fi)] if ti > supp Fi.

Note that if supp Fi = 0, U is simply the sum of assignment and expected waste, like a

usual cost function. If supp Fi > 0, U is sum of the cost of receiving an amount that is

surely needed (min{ti, supp Fi}) and the cost of receiving an additional amount that is not

surely needed (max{ti − supp Fi, 0}), and the former cost is one-tenth the latter cost. The rule

associated with such U assigns more of the resource to agents with larger ensured needs. To

see that it violates no reversal, let (F,T ) ∈ F {1,2} be such that F1 assigns probability 0.9 to

20 and 0.1 to 45, F2 assigns probability 0.5 to 0 and 0.5 to 45, and T = 44. The allocation

selected by this rule is (30, 14) since U(F1, 30) = 1
10 · 20 + (30 − 20) + 0.9 · (30 − 20) = 21

and U(F2, 14) = 14 + 0.5 · 14 = 21. Since F2 is riskier than F1 and w(F1, 30) = 0.9 · 10 >

0.5 ·14 = w(F2, 14), no reversal is violated. Moreover, since 30 > 14, w(F1, 30) > w(F2, 14),

and 14 < supp F2, no domination is also violated. It can be readily seen that the rule

satisfies risk aversion, conditionally strict endowment monotonicity, positivity, consistency,

strong upper composition, and claims truncation invariance. To see that it satisfies lower

composition, simply notice that for each Fi ∈ F and each pair ti, t′i ∈ [0, supp Fi] with ti < t′i ,

U(Fi, t′i ) = U(Fi, ti) + U(Fi|
ti , t′i − ti).

Dropping strong upper composition and claims truncation invariance, consider a rule that

is defined in the same way as in the previous paragraph expect that it is associated with a

different claim-specific cost function U : D̂→ R+: For each (Fi, ti) ∈ D̂,

U(Fi, ti) =

 1
10 ti if supp Fi = supp Fi,

ti + w(Fi, ti) if supp Fi < supp Fi.

Note that if a claim is uncertain (supp Fi < supp Fi), U is simply the sum of assignment and

expected waste, like a usual cost function. If a claim is deterministic (supp Fi = supp Fi),

then the same assignment generates one-tenth the cost generated in the case of an uncertain
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claim. Since a truncation of an uncertain claim can make it deterministic, strong upper

composition and claims truncation invariance will be violated. It can be readily seen that

this rule satisfies no domination, risk aversion, no reversal, conditionally strict endowment

monotonicity, positivity, consistency, and lower composition.

Dropping lower composition, consider an expected-waste constrained uniform gains rule

associated with a non-linear cost function. Such a rule satisfies no domination, risk aversion,

no reversal, conditionally strict endowment monotonicity, positivity, consistency, strong up-

per composition, and claims truncation invariance.

Dropping conditionally strict endowment monotonicity and positivity, consider the rule

r that equalizes agents’ assignments as much as possible when the endowment is small and

equalizes their expected waste as much as possible when the endowment is large. Formally,

for each I ∈ N and each (F,T ) ∈ CI , when T ≤
∑

supp Fi, r(F,T ) = t if and only if for some

c∗ ∈ R+ and for each j ∈ I,

t j = min{supp F j, c∗} and
∑

ti = T,

and when T >
∑

supp Fi, r(F,T ) = t if and only if for some c∗ ∈ R+ and for each j ∈ I,

w(F j, t j) = min{w(F j, supp F j), c∗} and
∑

ti = T.

This rule satisfies no domination, risk aversion, no reversal, consistency, strong upper com-

position, and lower composition.

Dropping consistency, consider an expected-waste constrained uniform gains rule relat-

ing to one linear cost function for two-agent problems and another linear cost function for

three-or-more-agent problems. Such a rule satisfies no domination, risk aversion, no re-

versal, conditionally strict endowment monotonicity, positivity, strong upper composition,

lower composition, and claims truncation invariance.

6 Concluding remarks

Besides the concern for waste, there is also a valid concern for assignments falling short of

realized needs. Our approach to addressing the issue of waste inspires a “dual” approach to

addressing the issue of unsatisfied needs. To discuss the dual approach, let us first introduce

some terminologies. Suppose that agent i claims Fi and receives ti. Recall that if his realized
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need is xi, max{xi − ti, 0} is his unsatisfied need, and Fi|
ti is the distribution of his unsatis-

fied needs. Let us call max{xi − ti, 0} his deficit for simplicity and the expectation of Fi|
ti

his expected deficit, and let us denote the latter d(Fi, ti). Following the convention in the

deterministic claims problems, we call the difference between agent i’s maximal claim and

his assignment, supp Fi − ti, the loss of agent i, which is equal to his maximal deficit. While

the expected waste of agent i increases with his assignment, the expected deficit increases

with his loss.

As in the deterministic claims problems, the dual approach focuses on how to divide the

shortfall, i.e., the difference between the sum of the maximal claims and the endowment.

A dual allocation specifies for each agent a loss such that the sum of their losses is equal

to the shortfall. One can impose dual axioms on dual allocations. For example, dual no

domination requires that no agent suffer a larger loss than another agent while getting a

larger expected deficit, unless the other agent has suffered the maximal loss (i.e., he has been

assigned nothing). Dual risk aversion requires that if two agents have the same maximal

claims and the claim of one agent is riskier than the other’s, then the riskier agent suffer a

no smaller loss than the other agent. Dual no reversal requires that in the same situation, the

riskier agent not suffer so large a loss as to get a larger expected deficit than the other agent.

Similarly, one can formulate dual requirements based on the other axioms.

We can define the class of expected-deficit constrained uniform losses rules analogously

to the way we define expected waste constrained uniform gains rules. Let D′ := {(x1, x2) ∈

R2
+ : x1 ∈ [0, supp Fi], x2 = d(Fi, supp Fi − x1) where Fi ∈ F } be the set of all loss-and-

expected-deficit pairs, and V a continuous and increasing real-valued function on D′. In each

problem, the expected-deficit constrained uniform losses rule associated with V assigns to

agent i his maximal loss supp Fi if V(supp Fi, d(Fi, supp Fi − supp Fi)) is smaller than some

common value c∗ ∈ R+, and otherwise a loss si ∈ [0, supp Fi] such that V(si, d(Fi, supp Fi −

si)) = c∗. The value of c∗ is determined by the binding feasibility constraint. When restricted

to problems with deterministic claims, all expected-deficit constrained uniform losses rules

agree with the classic uniform losses rule (Herrero and Villar (2001)).

We conjecture that the class of expected-deficit constrained uniform losses rules and its

homothetic and linear subclasses can be characterized by the corresponding sets of dual ax-

ioms. There are two main issues that require further investigation. First, some dual axioms

may be redundant in the dual characterization due to some technical differences between

waste and deficit. For example, expected deficit is always increasing in loss, whereas ex-
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pected waste could be constantly zero when assignment increases. Thus, axioms dealing

with the case in which agents have zero expected waste (like strong upper composition)

could be redundant in the dual characterization. Second and more importantly, the duality

between two problems, two rules and two axioms need to be systematically established, and

their definitions may be different from their deterministic counterparts. For example, when

restricted to deterministic claims, a problem is said to be dual to another if the profiles of

claims in two problems are the same and the endowment of the former is the shortfall of

the latter (Thomson (2015)). When extended to uncertain claims, the definition of a dual

problem may require an appropriate adjustment of agents’ claims. This is because it might

be ideal if the deficit of an agent in a problem corresponds to his waste for his adjusted claim

in the dual problem, and this cannot be true if his claim is unchanged. For instance, if an

agent has a deterministic claim and it remains unchanged in the dual problem, then in both

problems, waste does not exist and only deficit is relevant.

To summarize, in this paper, we study the pre-committed division of a resource in the face

of uncertain needs. Unlike division with deterministic needs, waste is a common issue under

uncertainty. We axiomatize a class of rules that strikes a balance between being unresponsive

to uncertainty and too sensitive to it. More studies should be done in this field, for example,

regarding different approaches to addressing the issue of waste, axioms that incorporate the

considerations of both waste and deficit, and the duality theory under uncertainty.

7 Appendix

Given I, I′ ∈ N , F ∈ F I and F′ ∈ F I′ such that I ∩ I′ = ∅, we denote by (F, F′) the claim

profile in F I∪I′ defined by setting for each i ∈ I, agent i’s claim is Fi, and for each agent

j ∈ I′, agent j’s claim is F′j.

Observe that symmetry and consistency together imply anonymity, i.e., the names of

agents should have no impact on allocation.12

Anonymity: For each I ∈ N , each (F,T ) ∈ CI and each π : I → N which is injective, if

(F′,T ) ∈ Cπ(I) is such that for each i ∈ I, F′π(i) = Fi, then for each i ∈ I, ri(F,T ) = rπ(i)(F′,T ).

Some intermediate results will be useful for our proofs. We state these results below and

leave their proofs to the online appendix.
12For a proof, see Lemma 3 in Chambers and Thomson (2002).
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Lemma 1. If r is endowment monotonic, then (1) for each I ∈ N , each F ∈ F I , each i ∈ I,

and each ti ∈ [0, supp Fi], there is a smallest T ∈ [0,
∑

supp F j] such that ri(F,T ) = ti; (2)

for each I ∈ N , each (F,T ) ∈ CI , and each i ∈ I, if T > 0, then ri(F,T ) = sup{ri(F,T ′) : T ′ ∈

[0,T )}.

Lemma 2. Let r be a rule satisfying either (i) symmetry and strong upper composition, or

(ii) symmetry, consistency, lower composition, and claims truncation invariance. For each

I ∈ N , each (F,T ) ∈ CI , and each pair {i, j} ⊆ I, if there is c ∈ [0,min{supp Fi, supp F j}]

such that Fi and F j agree on (−∞, c) and ri(F,T ) < c, then ri(F,T ) = r j(F,T ).

Lemma 3. If a rule satisfies positivity and lower composition, then it is conditionally strict

endowment monotonic.

Proposition 4. Let a rule satisfy consistency and strong upper composition. If in addition,

it satisfies either no domination and conditionally strict endowment monotonicity, or risk

aversion and no reversal, then it is symmetric.

Proposition 5. Let a rule satisfy consistency, lower composition, and claims truncation in-

variance. If in addition, it satisfies either no domination and positivity, or risk aversion, then

it is symmetric.

Proof of Theorem 1. The “if” direction can be readily verified, so the proof is omitted. To

show the “only if” direction, let r be a rule satisfying no domination, conditionally strict en-

dowment monotonicity, consistency, and strong upper composition. By strong upper com-

position, r is endowment monotonic. By Proposition 4, r is symmetric. Recall that by

symmetry and consistency, r is anonymous.

Step 1. For each I ∈ N , each (F,T ) ∈ CI , each J ⊆ I, and each G ∈ F J, if for each

T ′ ∈ [0,T ) and each i ∈ J, ri(F,T ′) < ri(F,T ), and for each i ∈ J, supp Gi ≥ ri(F,T ) and

w(Fi, ri(F,T )) = w(Gi, ri(F,T )), then r((G, FI\J),T ) = r(F,T ).

Let I ∈ N , (F,T ) ∈ CI , J ⊆ I, and G ∈ F J satisfy the required conditions. Let t :=

r(F,T ). Let π : J → N\ I be an injective mapping, and Fπ(J) a claim profile such that for each

i ∈ J, Fπ(i) = Gi. Consider ((F, Fπ(J)),T +
∑
i∈J

ti) ∈ CI∪π(J) and let t′ := r((F, Fπ(J)),T +
∑
i∈J

ti).

By consistency and anonymity, it suffices to show that for each i ∈ J, t′π(i) = ti. Let j ∈ J.

Suppose that t′π( j) > t j. Then, t′j ≥ t j. To see this, assume that t′j < t j. Then, t′j < t′π( j)

and w(F j, t′j) ≤ w(F j, t j) = w(G j, t j) ≤ w(Fπ( j), t′π( j)). If w(F j, t′j) < w(Fπ( j), t′π( j)), then by
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no domination, t′j = supp F j. However, t′j < t j ≤ supp F j, which is a contradiction. If

w(F j, t′j) = w(Fπ( j), t′π( j)), then w(F j, t′j) = w(F j, t j) = 0 and thus w(G j, t j) = 0. Hence, F j and

Fπ( j) agree on (−∞, t j). Since t′j < t j, then by Lemma 2, t′j = t′π( j), which is a contradiction.

Thus, t′j ≥ t j. Then by consistency, r j(F,
∑
i∈I

t′i ) = t′j ≥ t j. Since for each T ′ ∈ [0,T ),

r j(F,T ′) < t j, then
∑
i∈I

t′i ≥ T . Hence,
∑
i∈J

t′π(i) ≤
∑
i∈J

ti. Since t′π( j) > t j, then there is k ∈ J such

that t′π(k) < tk. By endowment monotonicity and consistency, tk ≤ rk(F,
∑
i∈I

t′i ) = t′k. Thus,

t′π(k) < tk and w(Fπ(k), t′π(k)) ≤ w(Gk, tk) = w(Fk, tk) ≤ w(Fk, t′k). If w(Fπ(k), t′π(k)) < w(Fk, t′k),

then by no domination, t′π(k) = supp Fπ(k). However, t′π(k) < tk ≤ supp Gk = supp Fπ(k),

which is a contradiction. If w(Fπ(k), t′π(k)) = w(Fk, t′k), then w(Fπ(k), t′π(k)) = w(Gk, tk) = 0 and

w(Fk, tk) = 0. Hence, Fk and Fπ(k) agree on (−∞, tk). Since t′π(k) < tk, then t′π(k) = t′k, which

is again a contradiction. Hence, t′π( j) > t j is not possible. Similarly, t′π( j) < t j is not possible,

either.

Step 2. Define a binary relation ' of “as costly as” between vectors in D as follows. For

each pair (x1, x2), (x′1, x
′
2) ∈ D, (x1, x2) ' (x′1, x

′
2) if there are I ∈ N , (F,T ) ∈ CI and {i, j} ⊆ I

with w(Fi, x1) = x2 and w(F j, x′1) = x′2, and satisfying

(a) ri(F,T ) = x1, r j(F,T ) = x′1;

(b) for each T ′ ∈ [0,T ), ri(F,T ′) < x1, r j(F,T ′) < x′1.

Intuitively, (x1, x2) seems revealed to be as costly as (x′1, x
′
2) if in a two-agent problem, one

agent is assigned x1, generating expected waste x2, and the other agent is assigned x′1, gen-

erating expected waste x′2. This is actually what condition (a) says. But this condition is not

sufficient. If the endowment in the problem is decreased and one agent’s assignment, say

x1, remains unchanged, then his expected waste, x2, is also unchanged, whereas the other

agent’s assignment must decrease and expected waste not increase. In this case, if we im-

posed only condition (a) when defining the relation ', (x1, x2) would then be as costly as

two vectors, one of which dominates the other, violating the monotonicity property that we

intend to have. To avoid that, condition (b) further requires that as the endowment decreases,

neither agent’s assignment remain unchanged, which is equivalent, in light of endowment

monotonicity, to that both of their assignments decrease.

We claim that ' is an equivalence relation. Moreover, for each pair (x1, x2) and (x′1, x
′
2)

in D, if x1 < x′1 and either x2 < x′2 or x2 = x′2 = 0, then (x1, x2) ; (x′1, x
′
2).

By symmetry, ' is reflexive. By definition, ' is symmetric. To show ' is transitive,

let (x1, x2), (x′1, x
′
2), (x′′1 , x

′′
2 ) ∈ D be such that (x1, x2) ' (x′1, x

′
2) and (x′1, x

′
2) ' (x′′1 , x

′′
2 ). By
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endowment monotonicity, consistency, and anonymity, there are (F,T ) ∈ C{1,2} and (F′,T ′) ∈

C{3,4} such that w(F1, x1) = x2, w(F2, x′1) = w(F3, x′1) = x′2, w(F4, x′′1 ) = x′′2 , and condition (a)

and (b) hold for both (F,T ) and (F′,T ′).

Let ((F, F′),T + T ′) ∈ C{1,2,3,4} and t := r((F, F′),T + T ′). We claim that t1 = x1, t2 =

t3 = x′1, and t4 = x′′1 . Suppose that t1 < x1. Then by endowment monotonicity, consistency,

and condition (b), t2 < x′1 ≤ t3. Thus, t2 < supp F2 and w(F2, t2) ≤ w(F2, x′1) = w(F3, x′1) ≤

w(F3, t3). If w(F2, t2) < w(F3, t3), then no domination is violated. If w(F2, t2) = w(F3, t3),

then w(F2, t2) = w(F2, x′1) = 0, and thus w(F3, x′1) = 0. Hence, F2 and F3 agree on (−∞, x′1).

Since t2 < x′1, then by Lemma 2, t2 = t3, which contradicts that t2 < t3. Suppose that t1 > x1.

Then by endowment monotonicity, consistency, and condition (b), t3 < x′1 ≤ t2, which will

result in similar contradictions. Hence, t1 = x1. Analogously, t4 = x′′1 . Moreover, since

t2 + t3 = x1 + 2x′1 + x′′1 − t1 − t4 = 2x′1, then by the previous arguments, t2 = t3 = x′1.

Next, let T ′′ ∈ [0,T + T ′) and t′ := r((F, F′),T ′′). Since
4∑

i=1
t′i = T ′′ < T + T ′, then

either t′1 + t′2 < T or t′3 + t′4 < T ′. In the former case, by consistency and condition (b), for

i ∈ {1, 2}, t′i < ti. Since t′2 < t2 = x′1, then by the arguments in the last paragraph, t′3 < x′1 = t3.

By endowment monotonicity, consistency, and condition (b), t′4 < t4. Similarly, in the latter

case, we can show that t′1 < t1 and t′4 < t4.

Lastly, abusing notation, let (x1, x2), (x′1, x
′
2) ∈ D be such that x1 < x′1 and (x1, x2) '

(x′1, x
′
2). By the definition of ', x1 > 0. Let (F,T ) ∈ C{1,2} be as above. Let G1 ∈ F

assign probability x2
x1

to 0 and 1 − x2
x1

to x′1. Note that supp G1 > x1 and w(G1, x1) = x2.

By Step 1, r((G1, F2),T ) = r(F,T ). If x2 < x′2, then it is a violation of no domination.

If x2 = x′2 = 0, then w(G1, x1) = w(F2, x′1) = 0. Since x1 < x′1, then G1 and F2 agree on

(−∞, x1). Let ε > 0 be such that x1 < x′1−ε. By conditionally strict endowment monotonicity,

r1((G1, F2),T −ε) < x1 < x′1−ε ≤ r2((G1, F2),T −ε). However, by Lemma 2, r1((G1, F2),T −

ε) = r2((G1, F2),T − ε), which is a contradiction.

Step 3. Let f : R+ → R+ be such that for each c ∈ R+, f (c) = c
2 . For each (x1, x2) ∈ D, there

is a unique c ∈ R+ such that (x1, x2) ' (c, f (c)).

Let (x1, x2) ∈ D. Let F ∈ F {1,2} be such that supp F1 > x1, w(F1, x1) = x2, and F2 assigns

probability 0.5 respectively to 0 and some c̄ ∈ R+ satisfying (c̄, f (c̄)) > (x1, x2). Note that for

each t2 ∈ [0, supp F2], w(F2, t2) = f (t2). By Lemma 1, there is T ∈ [0, supp F1 + supp F2]

such that r1(F,T ) = x1. Let c := r2(F,T ). By no domination, c < c̄. By conditionally strict

endowment monotonicity, for each T ′ < T , r(F,T ) < r(F,T ′). Thus, (x1, x2) ' (c, f (c)). By
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Step 2, such a c is unique.

Step 4. Define U : D → R+ by setting for each (x1, x2) ∈ D, U(x1, x2) = c if (x1, x2) '

(c, f (c)) for some c ∈ R+. The function U belongs toU.

Clearly, U(0, 0) = 0. To show the monotonicity property of U, let (x1, x2), (x′1, x
′
2) ∈ D

be such that x1 < x′1 and either x2 < x′2 or x2 = x′2 = 0. Let c := U(x1, x2) and c′ := U(x′1, x
′
2).

Suppose to the contrary that c ≥ c′. Let F ∈ F {1,2} be as in the proof of Step 3, so c < supp F2

and by the definition of U, r1(F, x1 + c) = x1 and r2(F, x1 + c) = c. By Lemma 1, there

is T ∈ [0, supp F1 + supp F2] such that r2(F,T ) = c′. Let x′′1 := r1(F,T ). By endow-

ment monotonicity and conditional endowment monotonicity, x′′1 ≤ x1 and (c′,w(F2, c′)) '

(x′′1 ,w(F1, x′′1 )). Since w(F2, c′) = f (c′), then (c′, f (c′)) ' (x′′1 ,w(F1, x′′1 )). Since ' is tran-

sitive, (x′1, x
′
2) ' (x′′1 ,w(F1, x′′1 )). But x′′1 ≤ x1 < x′1, and either w(F1, x′′1 ) ≤ x2 < x′2 or

w(F1, x′′1 ) = x2 = x′2 = 0, which contradicts Step 2.

Lastly, we show that U is continuous. To see upper semi-continuity, let ε > 0 and

(x1, x2) ∈ D. We claim that there is an open set O in D such that (x1, x2) ∈ O and

O ⊆ U−1((−∞,U(x1, x2) + ε)). Abusing notation, let c := U(x1, x2). Consider F ∈ F {1,2}

as in the proof of Step 3 and such that x1 ≥ supp F1, so w(F1, ·) is increasing on

[x1, supp F1]. Let δ ∈ (0,min{ε, supp F1 − x1, supp F2 − c}), x′1 := r1(F, x1 + c + δ) and

c′ := r2(F, x1+c+δ). By endowment monotonicity and conditionally strict endowment mono-

tonicity, x′1 ∈ (x1, supp F1), c′ ∈ (c,min{c + ε, supp F2}), and (x′1,w(F1, x′1)) ' (c′,w(F2, c′)).

Since w(F2, c′) = f (c′), then (x′1,w(F1, x′1)) ' (c′, f (c′)). Thus, U(x′1,w(F1, x′1)) = c′ ∈

(c, c + ε). Since (x1, x2) < (x′1,w(F1, x′1)), then there is an open neighborhood O of (x1, x2)

such that for each (x′′1 , x
′′
2 ) ∈ O, (x′′1 , x

′′
2 ) < (x′1,w(F1, x′1)). By the monotonicity property of

U, O ⊆ U−1((−∞,U(x1, x2) + ε)). Lower semicontinuity follows from a similar argument.

Step 5. The rule r is an expected-waste constrained uniform gains rule associated with U.

Let I ∈ N , (F,T ) ∈ CI , and c∗ ∈ R+ be such that c∗ solves
∑

U−1
Fi

(c) = T . Sup-

pose to the contrary that for some { j, k} ⊆ I, r j(F,T ) > U−1
F j

(c∗) and rk(F,T ) < U−1
Fk

(c∗).

Thus, T > 0, c∗ > 0, 0 < U−1
F j

(c∗) < r j(F,T ) ≤ supp F j and rk(F,T ) < supp Fk.

By endowment monotonicity and Lemma 1, there is T ′ ∈ (0,T ) such that r j(F,T ′) =

U−1
F j

(c∗). By endowment monotonicity and conditionally strict endowment monotonic-

ity, rk(F,T ′) < rk(F,T ) and (r j(F,T ′),w(F j, r j(F,T ′))) ' (rk(F,T ′),w(Fk, rk(F,T ′))). By

Step 2 and the definition of U, U(r j(F,T ′),w(F j, r j(F,T ′))) = U(rk(F,T ′),w(Fk, rk(F,T ′))).

However, U(r j(F,T ′),w(F j, r j(F,T ′))) = c∗ > U(rk(F,T ),w(Fk, rk(F,T ))) >
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U(rk(F,T ′),w(Fk, rk(F,T ′))), which is a contradiction.

Proof of Proposition 1. The “if” direction can be readily verified, so the proof is omitted.

To show the “only if” direction, let r be the expected-waste constrained uniform gains

rule associated with U ∈ U and suppose that r satisfies scale invariance. Let a > 0,

and (x1, x2), (x′1, x
′
2) ∈ D be such that (x1, x2) , (x′1, x

′
2) and U(x1, x2) = U(x′1, x

′
2). We

claim that U(ax1, ax2) = U(ax′1, ax′2). By the monotonicity property of U, x1 > 0 and

x′1 > 0. Let (F,T ) ∈ C{1,2} be such that F1 assigns probability x2
x1

to 0 and 1 − x2
x1

to

x1 + x′1 + 1, F2 assigns probability x′2
x′1

to 0 and 1 − x′2
x′1

to x1 + x′1 + 1, and T = x1 + x′1.

Thus, r1(F,T ) = x1 and r2(F,T ) = x′1. Let F′ ∈ F {1,2} be such that for each i ∈ {1, 2} and

each yi ∈ R, F′i (ayi) = Fi(yi). By scale invariance, r1(F′, aT ) = ax1 and r2(F′, aT ) = ax′1.

Note that for each i ∈ {1, 2}, axi < supp F′i . Hence, U(ax1, ax2) = U(ax1,w(F′1, ax1)) =

U(ax′1,w(F′2, ax′1)) = U(ax′1, ax′2).

Proof of Theorem 2. The “if” direction can be readily verified, so the proof is omitted. To

show the “only if” direction, let r be a rule satisfying no domination, positivity, consistency,

lower composition, and either strong upper composition or claims truncation invariance.

By lower composition, r is endowment monotonic. Since r satisfies positivity and lower

composition, by Lemma 3, it is conditionally strict endowment monotonic. By Proposition

4 and 5, r is symmetric. Recall that by symmetry and consistency, r is anonymous. Since

r satisfies the axioms required in Lemma 2, the conclusion of Lemma 2 holds. Note that

our proof of the “only if” direction of Theorem 1 only relies on no domination, symmetry,

endowment monotonicity, conditionally strict endowment monotonicity, consistency, and

Lemma 2. Thus, by applying the same proof, we know that there is U ∈ U such that r is the

expected-waste constrained uniform gains rule associated with U.

Let % be the weak order on D represented by U, i.e, for each pair (x1, x2), (x′1, x
′
2) ∈ D,

(x1, x2) % (x′1, x
′
2) if and only if U(x1, x2) ≥ U(x′1, x

′
2). We claim that % is homothetic. Let

a > 0, and (x1, x2), (x′1, x
′
2) ∈ D be such that (x1, x2) , (x′1, x

′
2) and U(x1, x2) = U(x′1, x

′
2). We

need to show that U(ax1, ax2) = U(ax′1, ax′2). By the monotonicity property of U, x1 > 0 and

x′1 > 0. Let (F,T ), (F′, aT ) ∈ C{1,2} be as in the proof of Proposition 1. Thus, r1(F,T ) = x1

and r2(F,T ) = x′1. Suppose that a = n where n ∈ N. For each m ∈ N with m ≤ n, let Fm
1 assign

probability x2
x1

to 0 and 1− x2
x1

to n(x1 + x′1 +1)−(m−1)x1, and F2 assign probability x′2
x′1

to 0 and

1− x′2
x′1

to n(x1 +x′1 +1)−(m−1)x′1. By lower composition, r(F′, nT ) =
n∑

m=1
r(Fm,T ) = nr(F,T ).
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Thus, U(ax1, ax2) = U(ax′1, ax′2). A similar argument applies when a = 1
n , n ∈ N, and hence

when a = m
n , m, n ∈ N. The case of general a follows from the continuity of U.

Moreover, % is quasi-linear in the first coordinate. Let a > 0, (x1, x2), (x′1, x
′
2) ∈ D be

such that (x1, x2) , (x′1, x
′
2) and U(x1, x2) = U(x′1, x

′
2). Thus, x1 > 0 and x′1 > 0. Let (F,T ) ∈

C{1,2} be as in the proof of Proposition 1. Thus, r1(F,T ) = x1 and r2(F,T ) = x′1. Abusing

notation, let F′ ∈ F {1,2} be such that for each i ∈ {1, 2} and each yi ∈ R, F′i (yi +a) = Fi(yi). By

lower composition, for each i ∈ {1, 2}, ri(F′,T + 2a) = ri(F,T ) + a. Since w(F′1, x1 + a) = x2

and w(F′2, x
′
1 +a) = x′2, then U(x1 +a, x2) = U(x′1 +a, x′2). By the monotonicity and continuity

properties of U, the same result holds if a < 0 and (x1 + a, x2), (x′1 + a, x′2) ∈ D.

Let U′ : D → R+ be defined by setting for each (x1, x2) ∈ D, U′(x1, x2) = c if and

only if U(x1, x2) = U(c, 0). By the monotonicity, continuity, and homotheticity properties

of U, U′ is well-defined and % is represented by U′. Since only the ordinal properties of

U matter when defining r, then r is the expected-waste constrained uniform gains rule with

respect to U′. We claim that U′ is linear. Define u : R+ → R by setting for each y ∈ R+,

u(y) = U′(2y, y) − 2y. Let (x1, x2) ∈ D. By the definition of U′, U(x1, x2) = U(U′(x1, x2), 0)

and U(2x2, x2) = U(U′(2x2, x2), 0). By quasi-linearity of % and the monotonicity property

of U, 2x2 − x1 = U′(2x2, x2) − U′(x1, x2). Thus, U′(x1, x2) = x1 + u(x2). Since % is

homothetic, when x2 > 0, u(x2) = U′(2x2, x2) − 2x2 = x2[U′(2, 1) − 2] = u(1)x2. When

x2 = 0, u(x2) = U′(0, 0) − 0 = 0 = u(1)x2. Hence, U′(x1, x2) = x1 + u(1)x2. Lastly, note that

by the monotonicity property of U, u(1) ≥ 0.

Proof of Proposition 2. Let r be a rule satisfying the axioms either in (i) or (ii). Then, r is

endowment monotonic. Moreover, if r satisfies positivity and lower composition, then by

Lemma 3, it is conditionally strict endowment monotonic.

Suppose that r satisfies no domination. By Proposition 4 and 5, r is symmetric. Recall

that by symmetry and consistency, r is anonymous. To see that it is risk averse, let I ∈ N ,

(F,T ) ∈ CI , and {i, j} ⊆ I be such that supp Fi = supp F j and Fi is riskier than F j. Suppose

to the contrary that ri(F,T ) > r j(F,T ). Then, T > 0, r j(F,T ) < supp F j and

w(Fi, ri(F,T )) ≥ w(Fi, r j(F,T )) =

∫ r j(F,T )

−∞

Fi(xi)dxi ≥

∫ r j(F,T )

−∞

F j(x j)dx j = w(F j, r j(F,T )).

If w(Fi, ri(F,T )) > w(F j, r j(F,T )), then no domination is violated. If w(Fi, ri(F,T )) =

w(F j, r j(F,T )), then w(Fi, ri(F,T )) = w(Fi, r j(F,T )) = 0 and thus w(F j, r j(F,T )) = 0.

Hence, Fi and F j agree on (−∞, r j(F,T )). Since T > 0 and supp F j > 0, by condi-

tionally strict endowment monotonicity, r j(F,T ) > 0. By endowment monotonicity and
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Lemma 1, there is T ′ ∈ [0,T ) such that ri(F,T ′) = 1
2 [ri(F,T ) + r j(F,T )]. By endow-

ment monotonicity and conditionally strict endowment monotonicity, r j(F,T ′) < r j(F,T ).

Thus, r j(F,T ′) < ri(F,T ′). Since Fi and F j agree on (−∞, r j(F,T )) and r j(F,T ′) < r j(F,T ),

then by Lemma 2, r j(F,T ′) = ri(F,T ′), which contradicts that r j(F,T ′) < ri(F,T ′). Hence,

ri(F,T ) ≤ r j(F,T ) as desired.

To see that r satisfies no reversal, let I ∈ N , (F,T ) ∈ CI , and {i, j} ⊆ I be such that

supp Fi = supp F j and Fi is riskier than F j. Suppose to the contrary that w(Fi, ri(F,T )) <

w(F j, r j(F,T )). If ri(F,T ) ≥ r j(F,T ), then w(Fi, ri(F,T )) ≥ w(Fi, r j(F,T )). Since Fi is riskier

than F j, then w(Fi, r j(F,T )) ≥ w(F j, r j(F,T )). Thus, w(Fi, ri(F,T )) ≥ w(F j, r j(F,T )), which

contradicts that w(Fi, ri(F,T )) < w(F j, r j(F,T )). Hence, ri(F,T ) < r j(F,T ) and ri(F,T ) <

supp F j = supp Fi. This contradicts no domination.

Conversely, suppose that r satisfies risk aversion and no reversal. By Proposition 4

and 5, r is symmetric. Recall that by symmetry and consistency, r is anonymous. Sup-

pose to the contrary that it violates no domination. By consistency and anonymity, there

is (F,T ) ∈ C{1,2} such that r1(F,T ) > r2(F,T ), w(F1, r1(F,T )) > w(F2, r2(F,T )), and

r2(F,T ) < supp F2. Then, T > 0 and w(F1, r1(F,T )) > 0. Let t := r(F,T ). By en-

dowment monotonicity and Lemma 1, there is T̄ ∈ (0,T ] such that r1(F, T̄ ) = t1 and

for each T ′ ∈ [0, T̄ ), r1(F,T ′) < t1. By endowment monotonicity, there is T ′ ∈ (0, T̄ )

such that r1(F,T ′) > r2(F,T ′), w(F1, r1(F,T ′)) > w(F2, r2(F,T ′)), r1(F,T ′) < supp F1 and

r2(F,T ′) < supp F2. Hence, it is without loss of generality to assume that t1 < supp F1. We

shall derive a contradiction in six steps.

Step 1. For each F′ ∈ F {1,2} such that for each i ∈ {1, 2}, F′i and Fi agree on (−∞, ti),

r(F′,T ) = t.

Let G ∈ F {3,4} be such that G3 = F′1 and G4 = F′2. Let t′ := r((F,G), 2T ). We claim that

t′3 = t1 and t′4 = t2. To see this, suppose first that t′3 < t1. Then, by Lemma 2, t′1 = t′3 < t1. By

endowment monotonicity, conditionally strict endowment monotonicity, and consistency,

t′2 < t2. Thus, by Lemma 2, t′4 = t′2 < t2. Hence,
4∑

i=1
t′i < 2T , which is a contradiction.

Suppose now that t′3 > t1. Then, by Lemma 2, t′1 ≥ t1. By endowment monotonicity,

conditionally strict endowment monotonicity, and consistency, t′2 ≥ t2. Thus, by Lemma 2,

t′4 ≥ t2. Hence,
4∑

i=1
t′i > 2T , which is a contradiction. Thus, t′3 = t1. Similarly, t′4 = t2. By

consistency and anonymity, r(F′,T ) = t.

Step 2. For each I ∈ N , each (F′,T ) ∈ F I , and each pair {i, j} ⊆ I such that supp F′i =
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supp F′j and F′i is riskier than F′j, if w(F′i , ri(F′,T )) = w(F′j, ri(F′,T )), then r j(F′,T ) =

ri(F′,T ).

By risk aversion, r j(F′,T ) ≥ ri(F′,T ). Suppose to the contrary that r j(F′,T ) > ri(F′,T ).

Then T > 0. Assume first that w(F′j, r j(F′,T )) > 0. Then, w(F′j, ri(F′,T )) < w(F′j, r j(F′,T )).

Since w(F′i , ri(F′,T )) = w(F′j, ri(F′,T )), then w(F′i , ri(F′,T )) < w(F′j, r j(F′,T )), which is a

violation of no reversal. Now, assume that w(F′j, r j(F′,T )) = 0. Then, w(F′j, ri(F′,T )) = 0.

Since w(F′i , ri(F′,T )) = w(F′j, ri(F′,T )), then w(F′i , ri(F′,T )) = 0. Hence, F′i and F′j agree

on (−∞, ri(F′,T )). By endowment monotonicity and Lemma 1, there is T ′ ∈ [0,T ) such

that r j(F′,T ′) ∈ (ri(F′,T ), r j(F′,T )). Since ri(F′,T ) < r j(F′,T ) ≤ supp F′j = supp F′i ,

by endowment monotonicity and conditionally strict endowment monotonicity, ri(F′,T ′) <

ri(F′,T ). By Lemma 2, r j(F′,T ′) = ri(F′,T ′). But ri(F′,T ′) < ri(F′,T ) < r j(F′,T ′), which

is a contradiction.

Step 3. Let p1 ∈ (F1(t1), 1) and p2 ∈ (F2(t2), 1) be such that when w(F1,t1)−w(F2,t2)
t1−t2

< 1, p1 >

p2 > w(F1,t1)−w(F2,t2)
t1−t2

, and when w(F1,t1)−w(F2,t2)
t1−t2

≥ 1, p2 > p1. Then, for each i ∈ {1, 2}, ti −

w(Fi,ti)
pi
≥ 0, and 1

p1−p2
[t1 p1 − t2 p2 − w(F1, t1) + w(F2, t2)] > t1.

For each i ∈ {1, 2}, w(Fi, ti) ≤ tiFi(ti) ≤ ti pi, and thus ti −
w(Fi,ti)

pi
≥ 0. By our conditions

on p1 and p2,

1
p1 − p2

[t1 p1 − t2 p2 − w(F1, t1) + w(F2, t2)] − t1

=
t1 − t2

p1 − p2
(p2 −

w(F1, t1) − w(F2, t2)
t1 − t2

) > 0.

Hence, 1
p1−p2

[t1 p1 − t2 p2 − w(F1, t1) + w(F2, t2)] > t1.

Step 4. Let F′ ∈ F {1,2} be such that F′1 assigns probability p1 to t1 −
w(F1,t1)

p1
and probability

1− p1 to 1
p1−p2

[t1 p1 − t2 p2 −w(F1, t1) + w(F2, t2)], and F′2 assigns probability p2 to t2 −
w(F2,t2)

p2

and probability 1 − p2 to 1
p1−p2

[t1 p1 − t2 p2 − w(F1, t1) + w(F2, t2)]. When w(F1,t1)−w(F2,t2)
t1−t2

< 1,

F′2 is riskier than F′1, and when w(F1,t1)−w(F2,t2)
t1−t2

≥ 1, F′1 is riskier than F′2.

Since t1 > t2, by Step 3, supp F′1 = supp F′2 = 1
p1−p2

[t1 p1 − t2 p2 − w(F1, t1) + w(F2, t2)] >

max{ti −
w(Fi,ti)

pi
: i ∈ {1, 2}}. For each i ∈ {1, 2} and each c ∈ R,

∫ c

−∞

F′i (xi)dxi =


0 if c ∈ (−∞, ti −

w(Fi,ti)
pi

),

pi[c − (ti −
w(Fi,ti)

pi
)] if c ∈ [ti −

w(Fi,ti)
pi

, supp F′i ),

pi[supp F′i − (ti −
w(Fi,ti)

pi
)] + c − supp F′i if c ∈ [supp F′i ,∞).
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Moreover,

p1[supp F′1 − (t1 −
w(F1, t1)

p1
)]

=
p1

p1 − p2
[t1 p1 − t2 p2 − w(F1, t1) + w(F2, t2) − t1(p1 − p2) + (1 −

p2

p1
)w(F1, t1)]

=
p1 p2

p1 − p2
[t1 −

w(F1, t1)
p1

− t2 +
w(F2, t2)

p2
],

and

p2[supp F′2 − (t2 −
w(F2, t2)

p2
)]

=
p2

p1 − p2
[t1 p1 − t2 p2 − w(F1, t1) + w(F2, t2) − t2(p1 − p2) + (

p1

p2
− 1)w(F2, t2)]

=
p1 p2

p1 − p2
[t1 −

w(F1, t1)
p1

− t2 +
w(F2, t2)

p2
].

Thus, p1[supp F′1 − (t1 −
w(F1,t1)

p1
)] = p2[supp F′2 − (t2 −

w(F2,t2)
p2

)]. Since supp F′1 = supp F′2,

then for each c ∈ [supp F′1,∞),
∫ c

−∞
F′1(x1)dx1 =

∫ c

−∞
F′2(x2)dx2, and F′1 and F′2 have the same

mean.

Suppose that w(F1,t1)−w(F2,t2)
t1−t2

< 1. Then, by the conditions on p1 and p2,

t1 −
w(F1, t1)

p1
− (t2 −

w(F2, t2)
p2

) > t1 − t2 − (
w(F1, t1)

p2
−

w(F2, t2)
p2

) > 0.

Thus, t1 −
w(F1,t1)

p1
> t2 −

w(F2,t2)
p2

, and for each c ∈ (−∞, t1 −
w(F1,t1)

p1
),
∫ c

−∞
F′1(x1)dx1 ≤∫ c

−∞
F′2(x2)dx2. Since supp F′1 = supp F′2 and p1 > p2, then for each c ∈ [t1−

w(F1,t1)
p1

, supp F′1),

p1[c − (t1 −
w(F1, t1)

p1
)] − p2[c − (t2 −

w(F2, t2)
p2

)] = (p1 − p2)(c − supp F′1) < 0,

and thus
∫ c

−∞
F′1(x1)dx1 <

∫ c

−∞
F′2(x2)dx2. Hence, when w(F1,t1)−w(F2,t2)

t1−t2
< 1, F′2 is riskier than

F′1.

Suppose that w(F1,t1)−w(F2,t2)
t1−t2

≥ 1. Then, by the conditions on p1 and p2,

t1 −
w(F1, t1)

p1
− (t2 −

w(F2, t2)
p2

) < t1 − t2 − (
w(F1, t1)

p2
−

w(F2, t2)
p2

)

<t1 − t2 − [w(F1, t1) − w(F2, t2)] ≤ 0.

Thus, t1 −
w(F1,t1)

p1
< t2 −

w(F2,t2)
p2

, and for each c ∈ (−∞, t2 −
w(F2,t2)

p2
),
∫ c

−∞
F′2(x2)dx2 ≤∫ c

−∞
F′1(x1)dx1. Since supp F′1 = supp F′2 and p1 < p2, then for each c ∈ [t2−

w(F2,t2)
p2

, supp F′2),

p1[c − (t1 −
w(F1, t1)

p1
)] − p2[c − (t2 −

w(F2, t2)
p2

)] = (p1 − p2)(c − supp F′2) > 0,
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and thus
∫ c

−∞
F′2(x2)dx2 <

∫ c

−∞
F′1(x1)dx1. So when w(F1,t1)−w(F2,t2)

t1−t2
≥ 1, F′1 is riskier than F′2.

Step 5. Let I := {1, 2, 3, 4} and F′ ∈ F I be such that for each i ∈ {1, 2}, F′i is defined as in

Step 4, and F′i+2 agrees with Fi on (−∞, ti) and agrees with F′i on [ti,∞).13 Then, for each

i ∈ {1, 2}, ri(F′, 2T ) = ri+2(F′, 2T ) = ti.

Let t′ := r(F′, 2T ). By Step 3, for each i ∈ {1, 2} and each c ∈ R,

∫ c

−∞

F′i (xi)dxi =


0 if c ∈ (−∞, ti −

w(Fi,ti)
pi

),

w(Fi, ti) − (ti − c)pi if c ∈ [ti −
w(Fi,ti)

pi
, ti),

w(Fi, ti) +
∫ c

ti
F′i (xi)dxi if c ∈ [ti,∞).

Besides, for each i ∈ {1, 2}, by the definition of F′i+2,

∫ c

−∞

F′i+2(xi+2)dxi+2 =

 w(Fi, ti) −
∫ ti

c
Fi(xi)dxi if c ∈ (−∞, ti),

w(Fi, ti) +
∫ c

ti
F′i (xi)dxi if c ∈ [ti,∞).

By Step 3, for each i ∈ {1, 2}, supp F′i = supp F′i+2 > ti, so
∫ supp F′i
−∞

F′i (xi)dxi =∫ supp F′i+2

−∞
F′i+2(xi+2)dxi+2, and thus F′i and F′i+2 have the same mean. For each i ∈ {1, 2},

since pi > Fi(ti), then for each c ∈ R,∫ c

−∞

F′i (xi)dxi ≤

∫ c

−∞

F′i+2(xi+2)dxi+2, (2)

and (2) holds with strict inequality when c ∈ [ti −
w(Fi,ti)

pi
, ti). Since w(F1, t1) > 0, [t1 −

w(F1,t1)
p1

, t1) , ∅. Hence, F′3 is riskier than F′1. Similarly, if w(F2, t2) > 0, then F′4 is riskier

than F′2. If w(F2, t2) = 0, then supp F2 ≥ t2 = supp F′2, and thus F′4 = F′2.

By anonymity and Step 1, for each i ∈ {1, 2}, ri+2((F′3, F
′
4),T ) = ti. Suppose that t′3 < t1.

Then, by endowment monotonicity and consistency, t′4 ≤ t2. Since
4∑

i=1
t′i = 2T = 2(t1 + t2),

then either t′1 > t1 or t′2 > t2. Let j ∈ {1, 2} be such that t′j > t j. Then, by endowment

monotonicity and Lemma 1, there is T ′ ∈ [2T, 2supp F′1 + 2supp F′2] such that r j+2(F′,T ′) =

t j. By endowment monotonicity, r j(F′,T ′) > t j. Thus, r j(F′,T ′) > r j+2(F′,T ′). Moreover,

w(F′j+2, r j+2(F′,T ′)) = w(F′j+2, t j) = w(F j, t j) = w(F′j, t j) = w(F′j, r j+2(F′,T ′)). By the

conclusion in the previous paragraph, either F′j+2 is riskier than F′j or F′j+2 = F′j. If F′j+2 is

riskier than F′j, since supp F′j = supp F′j+2 and w(F′j+2, r j+2(F′,T ′)) = w(F′j, r j+2(F′,T ′)),

then by Step 2, r j(F′,T ′) = r j+2(F′,T ′). This contradicts that r j(F′,T ′) > r j+2(F′,T ′). If

13For each i ∈ {1, 2}, F′i+2 is well-defined since F′i (ti) = pi > Fi(ti).
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F′j+2 = F′j, by symmetry, r j(F′,T ′) = r j+2(F′,T ′), which is again a contradiction. Hence,

t′3 ≥ t1. Similarly, t′4 ≥ t2. Suppose that t′1 < t1. Then, t′3 ≥ t1 > t′1. Since supp F′1 = supp F′3
and F′3 is riskier than F′1, then by risk aversion, t′3 ≤ t′1. This contradicts that t′3 > t′1. Hence,

t′1 ≥ t1. Similarly, if t′2 < t2 and F′4 is riskier than F′2, there is a contradiction. If t′2 < t2 and

F′4 = F′2, then t′4 ≥ t2 > t′2 and by symmetry, t′4 = t′2, which is also not possible. Hence,

t′2 ≥ t2. Since for each i ∈ {1, 2}, t′i ≥ ti and t′i+2 ≥ ti, then for each i ∈ {1, 2}, t′i = t′i+2 = ti.

Step 6. When w(F1,t1)−w(F2,t2)
t1−t2

< 1, no reversal is violated. When w(F1,t1)−w(F2,t2)
t1−t2

≥ 1, risk

aversion is violated.

Let I ∈ N and F′ ∈ F I be defined as in Step 5. By Step 5, r1(F′, 2T ) = t1

and r2(F′, 2T ) = t2. Then, r1(F′, 2T ) > r2(F′, 2T ) and w(F′1, r1(F′, 2T )) = w(F1, t1) >

w(F2, t2) = w(F′2, r2(F′, 2T )). When w(F1,t1)−w(F2,t2)
t1−t2

< 1, by Step 3 and Step 4, supp F′1 =

supp F′2 and F′2 is riskier than F′1. Thus, no reversal is violated. When w(F1,t1)−w(F2,t2)
t1−t2

≥ 1,

by Step 3 and Step 4, supp F′1 = supp F′2 and F′1 is riskier than F′2. Thus, risk aversion is

violated.

Proof of Proposition 3. Let r be a rule satisfying symmetry and strong upper composition.

Then, r is endowment monotonic. Let I ∈ N and (F,T ) ∈ C̄I . Let t := r(F,T ) and c∗ ∈ R+ be

such that
∑

min{supp Fi, c∗} = T . We claim that for each i ∈ I, ti = min{supp Fi, c∗}. Suppose

to the contrary that there are j, k ∈ I such that t j < min{supp F j, c∗} and tk > min{supp Fk, c∗}.

Then, c∗ ≤ supp Fk and t j < tk. Thus, min{supp F j, c∗} ≤ supp Fk, and F j and Fk agree on

(−∞,min{supp F j, c∗}). Since t j < min{supp F j, c∗}, then by Lemma 2, t j = tk, which

contradicts that t j < tk.

Let r be a rule satisfying symmetry, lower composition, and claims truncation invariance.

By a similar argument as in the first paragraph of Case 2 in the proof of Lemma 2, it can

be shown that for each I ∈ N and each (F,T ) ∈ C̄I , if c ∈ [0,min{supp Fi : i ∈ I}] is such

that all the claims agree on (−∞, c) and T ≤ |I|c, then for each i ∈ I, ri(F,T ) = T
|I| . Lastly,

by lower composition, for each i ∈ I, ri(F,T ) = min{supp Fi, c∗} where c∗ ∈ R+ is such that∑
min{supp Fi, c∗} = T .
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