
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Economics School of Economics 

6-2016 

Precautionary Saving with Changing Income Ambiguity Precautionary Saving with Changing Income Ambiguity 

Atsushi KAJII 
Singapore Management University, atsushikajii@smu.edu.sg 

Jingyi XUE 
Singapore Management University, JYXUE@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research 

 Part of the Economic Theory Commons 

Citation Citation 
KAJII, Atsushi and Jingyi XUE. Precautionary Saving with Changing Income Ambiguity. (2016). 1-10. 
Available at:Available at: https://ink.library.smu.edu.sg/soe_research/1905 

This Working Paper is brought to you for free and open access by the School of Economics at Institutional 
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School 
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For 
more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/344?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


 

 

 

 

 

 

 

Precautionary Saving with Changing Income 

Ambiguity 
 

Atsushi Kajii and Jingyi Xue 

January 2017 

 

 

 

 

 

 

 

 

Paper No. 02-2017 

 

 

 

ANY OPINION EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF 
THE SCHOOL OF ECONOMICS, SMU 



Precautionary saving with changing income

ambiguity∗

Atsushi Kajii†and Jingyi Xue‡

Kyoto University and Singapore Management University

June 6, 2016

Abstract

We study a two-period saving model where the agent’s future income might be

ambiguous. Our agent has a version of the smooth ambiguity decision criterion

(Klibanoff, Marinacci and Mukerji (2005)), where the agent’s perception about ambi-

guity is described by a second-order belief over first-order risks. We model increasing

ambiguity as a spreading-out of the second-order belief. We show that under a “Risk

Comonotonicity” condition, our agent saves more when ambiguity in future income

increases. We argue that the condition is indispensable for our result.
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1 Introduction and Summary

We study a saving problem of an ambiguity averse agent facing ambiguity in future income.

The agent has a version of the smooth ambiguity decision criterion axiomatized by Klibanoff,

Marinacci and Mukerji (2005). When the agent is ambiguity neutral, our problem reduces

to the classic one of Kimball (1990). Our main result is that under an appealing condition,

the agent has a stronger precautionary saving motive when the ambiguity in future income

increases. The condition roughly says that when “first-order beliefs” about future income

change, the expected utility and the expected marginal utility from future income move in the

opposite directions. Since utility is increasing and marginal utility is decreasing in income,

this condition holds intuitively in a variety of contexts. We also argue that the condition is in

fact indispensable, so our main result is tight in this sense.

Our contributions are twofold. First, we propose a notion of increasing ambiguity for

future income, elaborating on the idea in Snow (2010).1 It relates directly to the informa-

tiveness of signals in Blackwell’s information theory. The notion admits various equivalent

interpretations and could be useful in a variety of applications. Second, we demonstrate that

the notion is plausible at least in our saving context. When the future looks more ambiguous

in our notion, an ambiguity averse agent is shown to save more as expected.

Our model is similar to, but different from, Berger (2014) and Osaki and Schlesinger

(2014), where the agent has the recursive smooth ambiguity decision criterion (Klibanoff,

Marinacci and Mukerji (2009)). Notably, Berger (2014) reports an important result that an

ambiguity averse agent saves more in the case of ambiguity in future income than the case

of no ambiguity, under a condition similar to ours in spirit. The result however is silent if an

initially ambiguous future income gets more ambiguous, which our model can neatly handle.

We speculate that such intermediate cases, though important, are hard to characterize in the

recursive smooth ambiguity decision model.

2 Precautionary Saving under Income Ambiguity

An environment is a pair (S ,Y) of random variables jointly distributed on R2, where S is a

signal and Y an income level. It summarizes an agent’s perception about income ambiguity.

In Klibanoff, Marinacci and Mukerji (2005)’s terms, each conditional distribution Y |S = s,

1Snow (2010) proposes a notion of increasing ambiguity in a general abstract setup.
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s ∈ R, is a first-order belief about future income, and the distribution of all first-order beliefs

{Y |S = s, s ∈ R} induced by S is his second-order belief. Consider the saving problem of

an agent who has a sure income e ∈ R+ today, an ambiguous income (S ,Y) tomorrow, and

faces a per unit saving cost q ∈ (0,∞). The agent solves

max
z

U(v (e − qz) ,E
[
φ (E [u (z + Y) |S ])

]
) (1)

where z ∈ R is an amount of saving, and v, u, φ are increasing and smooth real-valued func-

tions over R with v′′ < 0,2 u′′ ≤ 0, u′′′ ≥ 0, φ′′ ≤ 0, and φ′′′ ≥ 0.

max
z

v (e − qz) + βE
[
φ (E [u (z + Y) |S ])

]
(2)

In period 1, the utility from net income is measured by v. In period 2, the utility is

calculated first by finding the expected values of u conditional on various first-order beliefs,

and then these conditional expected values, after transformed by φ, are averaged with respect

to the second-order belief. The utility function conforms with the smooth ambiguity decision

criterion.3 When φ is strictly concave, the agent is strictly ambiguity averse. When φ is linear,

the agent is ambiguity neutral, and (2) reduces to Kimball (1990)’s classical problem.

In the special case of v = φ ◦ u, the objective function, φ ◦ u (·) + βE
[
φ (E [u (·) |S ])

]
,

represents an additively time separable preference.4 If Y equals to a constant y, then

E
[
φ (E [u (z + Y) |S ])

]
= φ ◦ u (z + y) = v (z + y), so v measures non-random income in

each period. If S is a constant, then E
[
φ (E [u (z + Y) |S ])

]
= φ (E [u (z + Y)]), which is a

monotonic transformation of E [u (z + Y)]. In other words, the preference restricted to the

second-period risks is represented by the vNM function u.

Different from the recursive smooth ambiguity preference model (Klibanoff, Marinacci

and Mukerji (2009)), our model distinguishes the ambiguity neutral preference and the am-

biguity averse preference in the absence of ambiguity. For example, suppose that v = φ ◦ u.

2The strict concavity of v is assumed to guarantee the uniqueness of the solution. It simplifies the presenta-

tion but is not necessary for our result.
3See Klibanoff, Marinacci and Mukerji (2005) for an axiomatization. However, except for the trivial case,

our preferences are not recursive in the sense of Klibanoff, Marinacci and Mukerji (2009).
4One can extend this type of preference to the sum of an infinite series of discounted utilities, which admits

the standard dynamic programming techniques in principle.
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When ϕ is the identity function (ambiguity neutrality), our objective function becomes

u (e − qz) + βE [E [u (z + Y) |S ]]

=u (e − qz) + βE [u (z + Y)] .

On the other hand, when ϕ is strictly concave and S is not random, our objective function

becomes

ϕ(u (e − qz)) + βϕ(E [u (z + Y)]).

Fixing v, u and φ as well as e, β and q, we study how optimal saving changes with

environment. Throughout, we assume that probability distributions in consideration are well-

behaved so that we can apply differentiation under expectation operators. Differentiating (2)

with respect to z gives

Ψ (z; (S ,Y)) := −qv′ (e − qz) + βE
[
φ′ (E [u (z + Y) |S ]) · E

[
u′ (z + Y) |S

]]
. (3)

Since −qv′ (e − qz) is decreasing in z, and φ′ (E [u (z + Y) |S ]) and E [(u′ (z + Y)) |S ] are non-

increasing in z, then Ψ (z; (S ,Y)) is decreasing in z. Hence, our problem is a well-defined

concave problem. Write z∗ (S ,Y) for the optimal saving under (S ,Y). Then z∗ (S ,Y) ≤

z∗ (S ′,Y ′) if Ψ (z∗(S ,Y); (S ′,Y ′)) ≥ 0.

3 Comparative Statics on Environment

3.1 Increasing Background Risks

For an illustrative purpose, we first compare the optimal amounts of saving under (S ,Y) and

(S ,Y ′), where signals are identically distributed. Suppose that Y ′|S is riskier than Y |S with

probability one, i.e., based on almost all the first-order beliefs, the agent perceives a greater

income risk under the latter environment.

When φ is linear, Kimball (1990) shows that an ambiguity neutral agent saves more

when income risk increases. In our general setup, an ambiguity averse agent also saves

more. Indeed, for each z, φ′ (E [u (z + Y) |S ]) ≤ φ′ (E [(u (z + Y ′)) |S ]) with probability one,

and E [(u′ (z + Y)) |S ] ≤ E [(u′ (z + Y ′)) |S ] with probability one. Hence, Ψ (z; (S ,Y)) ≤

Ψ (z; (S ,Y ′)) holds at each z, and a fortiori at z∗ (S ,Y).
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3.2 Risk and Ambiguity Trade-off

Assume that S , S ′ and Y are jointly distributed. We compare (S ,Y) and (S ′,Y), i.e., the in-

come distribution is the same, but the signals are different, generating different ambiguity.

Recall that when S is a constant, (2) reduces to v (e − qz) + βφ (E [u (z + Y)]). Thus, tomor-

row’s income is purely risky, not ambiguous at all. At the other extreme, when S ′ = Y with

probability one, (2) reduces to v (e − qz) + βE
[
φ (u (z + Y))

]
. So the final income tomorrow

is evaluated with a compound function φ ◦ u, i.e., it is purely ambiguous rather than risky.

Notice that signal S is completely uninformative for Y in the first extreme case, while

S ′ is perfectly informative in the second. This observation suggests the following criterion

to compare ambiguous environments. It is essentially equivalent to that proposed by Snow

(2010).

Definition 1. An environment (S ′,Y) is no less ambiguous than another environment

(S ,Y) if S ′ is at least as informative as S for Y, i.e., for each integrable function f ,

E
[
E

[
f (Y) |S ′

]
|S

]
= E

[
f (Y) |S

]
.

In other words, an environment is more ambiguous if the agent learns more from the

signal. Since the agent cannot choose an action contingent on the signal, an additional piece

of information is useless per se, and it will even hurt an ambiguity averse agent who cares

about first-order beliefs.5

This condition is the same as the informativeness in Blackwell’s information theory. In

the case of discrete random variables, it is equivalent to that for each y and s in the support,

Pr (Y = y|S = s) =
∑

s′ Pr (Y = y|S ′ = s′) Pr (S ′ = s′|S = s). In general, it says that for each s

in the support, the conditional distribution Y |S = s is an average of conditional distributions

E[(Y |S ′)|S = s].6

We shall show that our agent saves more facing the same income risks but more ambigu-

ous environment, under a condition below. Let

W0
(
S ′; z

)
:= E

[
u (z + Y) |S ′

]
, (4)

W1
(
S ′; z

)
:= E

[
u′ (z + Y) |S ′

]
. (5)

5See Grant, Kajii and Polak (1998) for their general discussion on Blackwell’s theorem without contingent

action choice.
6Snow (2010) uses this version, essentially.
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Since u is increasing and u′ is non-increasing, intuitively, W0 and W1 move in the opposite

directions with S ′. If S ′ brings good news so that Y tends to be high, then W0 tends to be

high and W1 tends to be low. But this is not necessarily true because Y is random conditional

on S ′, and this is what we need to assume.

Definition 2. Risk Comonotonicity at z is satisfied if W0 and −W1 are comonotonic random

variables at z, i.e., for each pair of realizations s′1 and s′2 of S ′,(
W0

(
s′1; z

)
−W0

(
s′2; z

))
·
(
W1

(
s′1; z

)
−W1

(
s′2; z

))
≤ 0

At each z, Risk Comonotonicity holds immediately if Y = S ′ with probability one, i.e.,

tomorrow’s income is purely ambiguous, or if u′ is constant, i.e., the agent is risk neutral.

It also holds if the distributions in {Y |S ′ = s′ : s′ ∈ R} are ordered by the first-order or

second-order stochastic dominance.7

Proposition 1. Suppose that (S ′,Y) is no less ambiguous than (S ,Y), and that Risk Comono-

tonicity holds at z∗ (S ,Y). Then z∗ (S ,Y) ≤ z∗ (S ′,Y).

Proof. Let z := z∗ (S ,Y). We shall show that Ψ (z; (S ′,Y)) ≥ 0. Write for simplic-

ity Wi (S ′) = Wi (S ′; z), i = 0, 1. Since (S ′,Y) is no less ambiguous than (S ,Y),

then E [E [u (z + Y) |S ′] |S ] = E [u (z + Y) |S ] and E [E [u′ (z + Y) |S ′] |S ] = E [u′ (z + Y) |S ].

Thus,

E
[
W0

(
S ′

)
|S

]
= E [u (z + Y) |S ] , (6)

E
[
W1

(
S ′

)
|S

]
= E

[
u′ (z + Y) |S

]
. (7)

Since φ′ is non-increasing, by Risk Comonotonicity, for each pair of realizations s′1 and

s′2 of S ′, (
φ′

(
W0

(
s′1

))
− φ′

(
W0

(
s′2
)))
·
(
W1

(
s′1

)
−W1

(
s′2
))
≥ 0.

Since s′1 and s′2 are arbitrary, we can take the expectation of the above, conditional on S , first

letting s′1 = S ′ and then s′2 = S ′. Thus,

E
[
φ′

(
W0

(
S ′

))
·W1

(
S ′

)
|S

]
≥ E

[
φ′

(
W0

(
S ′

))
|S

]
· E

[
W1

(
S ′

)
|S

]
(8)

7Actually, the techniques to establish propositions 1 and 2 in Berger (2014) can be applied almost directly to

assure Risk Comonotonicity. So we refer the reader to them for more conditions that guarantee Risk Comono-

tonicity.
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with probability one.

Since φ′ is convex, then by Jensen’s inequality

E
[
φ′

(
W0

(
S ′

))
|S

]
≥ φ′

(
E

[
W0

(
S ′

)
|S

])
with probability one. Since W1 is a positive random variable, then

E
[
φ′

(
W0

(
S ′

))
|S

]
· E

[
W1

(
S ′

)
|S

]
− φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]
≥ 0 (9)

with probability one.

Since z = z∗(S ,Y), in view of (6) and (7),

−qv′ (e − qz) + βE
[
φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]]
= 0.

Hence,
1
β

Ψ
(
z;

(
S ′,Y

))
= −

q
β

v′ (e − qz) + E
[
φ′

(
E

[
u (z + Y) |S ′

])
· E

[
u′ (z + Y) |S ′

]]
= E

[
φ′

(
W0

(
S ′

))
·W1

(
S ′

)]
− E

[
φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]]
= E

[
E

[
φ′

(
W0

(
S ′

))
·W1

(
S ′

)
|S

]
− φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]]
≥ E

[
E

[
φ′

(
W0

(
S ′

))
|S

]
· E

[
W1

(
S ′

)
|S

]
− φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]]
≥ 0

where the third equality holds because E [·] = E [E [·|S ]], the first inequality holds by (8),

and the last inequality by (9).

Remark 1. Risk Comonotonicity is used to establish (8): φ′ (W0 (S ′)) and W1 (S ′) are posi-

tively correlated conditional on S . So we could strengthen Proposition 1 by simply assuming

(8). But as discussed in the next section, Risk Comonotonicity is indispensable for a robust

comparative statics result.

Remark 2. A similar analysis can be done with the recursive decision criterion, where the

relevant first-order effect corresponding to (3) is:

−qv′ (e − qz) +
βE

[
φ′ (E [u (z + Y) |S ]) · E [u′ (z + Y) |S ]

]
φ′

{
φ−1 (

E
[
φ (E [E [u (z + Y) |S ]])

])}
If S is constant, i.e., there is no ambiguity, then the denominator of the fraction cancels out.

This is the property Berger (2014) takes advantage of. If S is not constant, i.e., both (S ,Y)

and (S ′,Y) are ambiguous environments, the comparison of the first-order effects appears to

be complicated, and there does not seem to be an analogous result as Proposition 1.
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3.3 Tightness

We shall argue that if Risk Comonotonicity fails at some z, then the saving implication is

reserved in some problem.

Let q, u and v be as assumed. Suppose that u′′ < 0, and for ease of exposition that

u > 0 so that when constructing φ, we only need to define it for positive numbers. Moreover,

assume that lim
x→0

v′(x) = ∞ and lim
x→∞

v′(x) = 0 so that an optimal consumption level in period

1 is positive.

Let (S ′,Y) be an environment where S ′ takes values from {s′0, ..., s
′
n}, s′i with probability

pi > 0, i = 0, ..., n, and
∑

pi = 1. Suppose that Risk Comonotonicity fails at z > 0. Let

w0 j := E[u(z + Y)|S ′ = s′j] and w1 j := E[u′(z + Y)|S ′ = s′j], j = 0, 1. Without loss of

generality, say wi1 < wi0 for i = 0, 1.

We shall construct φ, e and (S ,Y) such that (S ′,Y) is no less ambiguous than (S ,Y), but

z∗ (S ,Y) > z∗ (S ′,Y).

Let random variables S , S ′,Y be generated as follows. First, draw a number from

{s1, ..., sn}, s1 with probability p0 + p1, si with probability pi, i = 2, ..., n, and set S to be

the drawn number. If s1 is drawn, choose s′0 with probability p0
p0+p1

, and s′1 with probability
p1

p0+p1
and set S ′ to be the chosen number. If si, i , 1, is drawn, set S ′ = s′i . Finally, choose Y

according to the conditional probability distribution given S ′. Clearly, the joint distribution

of S ′ and Y is the same as in the given environment (S ′,Y), and (S ′,Y) is no less ambiguous

than (S ,Y).

To construct φ, let η be a smooth, positive, decreasing, convex, and integrable function

such that

p0

p0 + p1
η(w00) +

p1

p0 + p1
η(w01) − η(

p0

p0 + p1
w00 +

p1

p0 + p1
w01)

<
p0 p1[η(w01) − η(w00)](w10 − w11)

(p0 + p1)(p0w10 + p1w11)
.

This is possible since the left hand side can be made arbitrarily small by making η flat,

keeping the right hand side unchanged. Let φ (t) :=
∫ t

0
η (s) ds, t > 0. Clearly, φ′ > 0,

φ′′ = η′ < 0 and φ′′′ = η′′ > 0, as required.

Finally, let e be such that

−qv′ (e − qz) + E
[
φ′ (E [u (z + Y) |S ]) · E

[
u′ (z + Y) |S

]]
= 0,

so that z = z∗ (S ,Y).
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To show that z∗ (S ′,Y) < z, it suffices to check that (3) is negative at (S ′,Y). Notice that

E[u(z + Y)|S = s1] =
p0

p0+p1
w00 +

p1
p0+p1

w01, E[u′(z + Y)|S = s1] =
p0

p0+p1
w10 +

p1
p0+p1

w11, and that

the expectations conditional on S = si and on S ′ = s′i coincide for i = 2, ..., n. Therefore,

E
[
φ′

(
E

[
u (z + Y) |S ′

])
· E

[
u′ (z + Y) |S ′

]]
− E

[
φ′ (E [u (z + Y) |S ]) · E

[
u′ (z + Y) |S

]]
=p0φ

′(w00)w10 + p1φ
′(w01)w11

− (p0 + p1)φ′(
p0

p0 + p1
w00 +

p1

p0 + p1
w01) · (

p0

p0 + p1
w10 +

p1

p0 + p1
w11)

= −
p0 p1

p0 + p1
[η(w01) − η(w00)] · (w10 − w11)

+ [
p0

p0 + p1
η(w00) +

p1

p0 + p1
η(w01) − η(

p0

p0 + p1
w00 +

p1

p0 + p1
w01)] · (p0w10 + p1w11)

<0,

where the last inequality holds by the construction of η. This proves that (3) is negative at

(S ′,Y).

References

[1] Berger, L., (2014), Precautionary saving and the notion of ambiguity prudence. Eco-

nomics Letters, 123, 248-251.

[2] Grant, S., Kajii, A. and Polak, B. (1998) “Intrinsic Preference for Information,” Journal

of Economic Theory, 83, 233-259.

[3] Kimball, M. (1990), “Precautionary saving in the small and in the large”, Econometrica

58, 53-73.

[4] Klibanoff, P., Marinacci, M., and Mukerji S. (2005) “A smooth model of decision making

under ambiguity” Econometrica

[5] Klibanoff, P., Marinacci, M., and Mukerji S. (2009) “Recursive smooth ambiguity pref-

erences”, Journal of Economic Theory 144, 930-976.

[6] Osaki, Y., and Schlesinger, H., (2014) “Precautionary saving and ambiguity”, Work-

ing paper. (http://hschlesinger.people.ua.edu/uploads/2/6/8/4/26840405/saving-

ambiguity.pdf)

9



[7] Snow, A. (2010) “Ambiguity and the value of information”, Journal of Risk and Uncer-

tainty 40, 133-145.

10


	Precautionary Saving with Changing Income Ambiguity
	Citation

	tmp.1486962940.pdf.Qi0_Z

