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Abstract

In this paper provides, we study two extensions of Gilboa and Schmeidler (1989)’s

maxmin expected utility decision rule to accommodate a decision maker’s changing

ambiguity attitude. The two rules are respectively a weighted maxmin rule and a variant

constraint rule. The former evaluates an act by a weighted average of its worst and

best possible expected utilities over a set of priors, with the weight on the worst case

depending on the act. The latter evaluates an act by its worst expected utility over

a neighborhood of a set of approximating priors, with the size of the neighborhood

depending on the act. Canonical representations of the two rules are provided for classes

of preferences that exhibit respectively ambiguity aversion of Schmeidler (1989) and

ambiguity aversion of Ghirardato and Marinacci (2002). When restricted to the class

of preferences exhibits both versions of ambiguity aversion, our results provide two

alternative representations in addition to the ambiguity averse representation provided

by Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011).

In the second part of this paper, we study the wealth effect under ambiguity. We pro-

pose axioms on absolute and relative ambiguity aversion and derive the three represen-

tations for the ambiguity averse preferences displaying decreasing (increasing) absolute

ambiguity aversion. In particular, decreasing absolute ambiguity aversion implies that

as baseline utility increases, a weighted maxmin decision maker puts less weight on the

worst case, and a variant constraint decision maker considers a smaller neighborhood of

approximating priors.

Key-words: ambiguity; ambiguity averse preferences; weighted maxmin representation;

variant constraint representation; decreasing absolute ambiguity aversion; increasing relative

ambiguity aversion; wealth effect

JEL classification: D81



1 Introduction

A decision maker makes choices in the face of both unknown states of the world and un-

known probability distributions of the states. Such a situation is called Knightian uncertainty

(Knight (1921)) or ambiguity, in contrast with risk which refers to a situation with unknown

states but a known probability distribution. The decision maker has a preference relation

over acts that yield state-contingent outcomes. A well-known decision rule axiomatized by

Gilboa and Schmeidler (1989) is the maxmin expected utility, or simply MEU, rule (see also

Wald (1950a,b)). A MEU decision maker evaluates an act f by

min
p∈D

Epu( f )

where D is a set of priors over the states, u is a utility function over outcomes, and Epu( f )

denotes the expected utility of the act f with respect to a prior p. The decision maker behaves

as if he regards the priors in D as possible and pessimistically evaluates an act by its worst

possible expected utility.

The MEU decision rule is a prominent rule that incorporates a decision maker’s aversion

to ambiguity. However, by always considering the worst case, it does not accommodate the

possibility that a decision maker’s ambiguity attitude changes across acts. Even assuming

that the decision maker is always averse to ambiguity, it does not accommodate the possi-

bility that his degree of ambiguity aversion changes across acts. For example, as analogous

to the wealth effect under risk, people may tend to be less averse to ambiguity when the

baseline payoff of an act increases. This phenomenon is well evidenced by the recent experi-

mental study of Baillon and Placido (2015). To accommodate changing ambiguity attitude or

changing ambiguity aversion of a decision maker, we consider in this paper two extensions

of the MEU decision rule.

The first extension is a generalized Hurwicz rule, or a weighted maxmin decision rule. A

weighted maxmin decision maker evaluates an act f by

λ(u( f )) min
p∈D

Epu( f ) + (1 − λ(u( f ))) max
p∈D

Epu( f )

where D and u are the same as in the MEU rule, and λ is a function that depends on utility

profiles induced by acts and takes values in [0, 1]. We call D an admissible set of priors,

or simply an admissible set, and λ a weight function. A weighted maxmin decision maker

behaves as if he considers not only the worst possible expected utility but also the best, and
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evaluates an act by a weighted average of the worst and the best expected utilities. Different

from the MEU rule, the weight on the worst case is not a constant, but dependent on acts.

Smaller weights correspond to less ambiguity aversion. When the weight goes to 1, the

decision maker becomes optimistic and thus displays ambiguity loving.

One important issue with a weighted maxmin decision rule is the non-uniqueness of its

representations. In fact, for each set D′ of priors that includes D, there is a weight function

λ′ such that for each act f ,

λ(u( f )) min
p∈D

Epu( f ) + (1 − λ(u( f ))) max
p∈D

Epu( f )

=λ′(u( f )) min
p∈D′

Epu( f ) + (1 − λ′(u( f ))) max
p∈D′

Epu( f ).

Thus, each superset of an admissible set is an admissible set. In light of the nesting property

of admissible sets, we are interested in finding the smallest admissible set to normalize the

representation. This is a good way of normalization because while an admissible set provides

for each act both an upper bound of its possible expected utility and a lower bound, only the

bounds provided by the smallest admissible set provides are tight. We shall call a weighted

maxmin representation of a preference relation a canonical weighted representation if its

admissible set is the smallest admissible set in the set inclusion sense.

Ghirardato, Maccheroni and Marinacci (2004) also introduce a weighted maxmin deci-

sion rule with a unique representation. Instead of searching for the smallest admissible set,

they impose a requirement on their admissible set in terms of an “unambiguous” preference

relation induced from the initial preference relation. That is, the admissible set must be an

component of a representation à la Bewley (2002) of the unambiguous preference relation.

We shall call their admissible set a Bewley set and their representation a Bewley weighted
maxmin representation.

Our first main result provides a canonical weighted maxmin representation for a class of

so-called ambiguity averse preferences in the literature. This class of preferences is known to

admit a Bewley weighted maxmin representation.1 We further show that for each preference

in this class, the smallest admissible set is in fact the Bewley set, so that the two types of

weighted maxmin representations are the same.

In general, a canonical weighted maxmin representation is different from a Bewley

weighted maxmin representation. Ambiguity averse preferences satisfy, besides some basic

1See Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci and Siniscalchi (2011).
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axioms, the well-known ambiguity aversion axiom of Schmeidler (1989), called S-ambiguity

aversion in this paper. Without imposing S-ambiguity aversion, we show by examples that

when a Bewley weighted maxmin representation of a preference relation exists, a canonical

weighted maxmin representation may not, and when both representations exist, the small-

est admissible set may not be the Bewley set, so that the two types of weighted maxmin

representations are different.

Another existing representation of the class of ambiguity averse preferences, provided

by Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011), is called an ambiguity

averse representation. It ranks an act f according to

min
p∈∆

G(Epu( f ), p) (1)

where u is the same as before, ∆ is the probability space over the states, and G : R ×
∆ → (−∞,∞] satisfying some properties is regarded as an ambiguity aversion index. They

relate an ambiguity averse representation with a Bewley weighted maxmin representation

by showing that the set cl({p ∈ ∆|G(t, p) < ∞ for some t}) is the Bewley set. In view

of our result, it can also be related to a canonical weighted maxmin representation since

cl({p ∈ ∆|G(t, p) < ∞ for some t}) is also the smallest admissible set.

The second extension of the MEU rule is in spirit a constraint decision rule introduced

by Hansen and Sargent (2001) as one of their two robust decision rules. A variant constraint

decision maker evaluates an act f by

min
p∈∆:d(p,K)≤σ(u( f ))

Epu( f )

where u and ∆ are the same as before, K is set of priors, d(p,K) is the Euclidean distance

between a prior p and the set K, and σ is a function that depends on utility profiles induced

by acts and takes values inR+. We call K an essential set of priors, or simply an essential set,
and σ a constraint function. A variant constraint decision maker behaves as if he considers

the priors in the essential set K as best approximations of the true prior, and is also concerned

with potential misspecification of approximating priors. Thus, the decision maker considers

a neighborhood of the essential set and evaluates an act by its worst expected utility with

respect to the priors in the neighborhood. Importantly, the size of the neighborhood, specified

by σ, depends on the act in consideration. Larger values of σ correspond to less concern

about misspecification of the essential set. When σ goes to 0, the decision maker only

considers priors in essential set and is not at all concerned about its misspecification. When

the constraint function σ is constant, it reduces to a MEU decision rule.
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Similar to a weighted maxmin decision rule, a variant constraint decision rule has typi-

cally no unique representation. In fact, for each set K′ of priors that is included in K, there

is a constraint function σ′ such that for each act f ,

min
p∈∆:d(p,K)≤σ(u( f ))

Epu( f ) = min
p∈∆:d(p,K′)≤σ′(u( f ))

Epu( f ).

Thus, each subset of an essential set is an essential set. This nesting property of essential

sets motivate us to find the largest essential set to normalize the representation, as in the case

of a weighted maxmin representation. We shall call a variant constraint representation of

a preference relation a canonical variant constraint representation if its essential set is the

largest essential set.

Our second main result axiomatizes the class of preferences that admits a canonical vari-

ant constraint representation. The characterizing axioms of this class of preferences are the

ambiguity aversion axiom of Ghirardato and Marinacci (2002) and some other basic ax-

ioms. We shall call their ambiguity aversion axiom GM-ambiguity aversion. While there is

an existing representation for the class of preferences satisfying S-ambiguity aversion (and

other basic axioms),2 our second main result provides the first representation for the class of

preferences satisfying GM-ambiguity aversion.

Moreover, we fully characterize the largest essential set. To describe the set, we first

recall the definition of GM-ambiguity aversion. GM-ambiguity aversion is defined based on

a notion of comparative ambiguity aversion proposed by Ghirardato and Marinacci (2002).

A preference relation is said to be more ambiguity averse than another preference relation

if for each (ambiguous) act f and each (deterministic) outcome x, whenever x is preferred

to f by the second preference relation, this is also the case by the first preference relation.

Intuitively, if the ambiguity of an act is intolerable by a preference relation, it should also

be intolerable by a more ambiguity averse preference relation. A preference relation is said

to exhibit GM-ambiguity aversion if there is a subjective expected utility, or simply SEU,

preference relation such that it is more ambiguity averse than the SEU preference relation.

Each SEU preference relation is associated with a subjective prior, using which it reduces

each act to a lottery and ranks acts by comparing reduced lotteries. Given a preference

relation that admits a canonical variant constraint representation, we show that the largest

essential set is exactly the set of all priors associated with which the SEU preferences are

less ambiguity averse than the preference relation.
2It is provided by Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011).
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When S-ambiguity aversion is additionally imposed, we further relate a canonical variant

constraint representation of a preference relation with an ambiguity aversion representation.

We show that the largest essential set is in fact {p ∈ ∆| for each t,G(t, p) = t}.

The class of preferences admitting a canonical weighted maxmin representation and

the class admitting a canonical variant constraint representation do not include each

other. In view of our two representation results, there are preferences admitting canonical

weighted maxmin representations but not canonical variant constraint representations, since

S-ambiguity aversion does not imply GM-ambiguity aversion. Conversely, we also provide

an example of a preference relation that admits a canonical variant constraint representation

but not a canonical weighted maxmin representation. When a preference relation admits

both canonical representations, we show that the largest essential set is always a subset of

the smallest admissible set. Moreover, the MEU preferences are exactly characterized by the

coincidence of the largest essential set with the smallest admissible set.

In the first part of the paper, we investigate two extensions of the MEU decision rule

that accommodate a decision maker’s changing ambiguity attitude. In the second part of the

paper, we focus on studying a particular class of ambiguity averse preferences that display

a monotonic pattern of changing ambiguity aversion. More precisely, we study the wealth

effect on the class of preferences satisfying S-ambiguity aversion and some other basic ax-

ioms. As mentioned before, as evidenced by Baillon and Placido (2015), people tend to be

less averse to ambiguity when they become better off overall. We propose an axiom of de-

creasing absolute ambiguity aversion to capture this type of behavior. Roughly, the axiom

says that if an (ambiguous) act is preferred to a constant act, then it should be still preferred

after a common improvement for both acts in every state. Intuitively, if the ambiguity of an

act is tolerable before, it should be even more tolerable after an ensured improvement of the

act.

Our third main result provides three representations for the subclass of ambiguity averse

preferences displaying decreasing absolute ambiguity aversion — a weighted maxmin rep-

resentation, a variant constraint representation, and an ambiguity averse representation.

The wealth effect has straightforward implications on the weighted maxmin representation

and the variant constraint representation. It implies that for each act f , λ(u( f ) + t1) and

σ(u( f ) + t1) is weakly decreasing in t, where t1 is a constant utility profile that yields utility

t in each state. Intuitively, as the ensured utility of an act increases, a weighted maxmin

decision maker behaves as if he becomes less pessimistic and puts a smaller weight on the
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worst case, and a variant constraint decision maker behaves as if he is less concerned with

priors misspecification and considers a smaller neighborhood of the essential set. When re-

flected in the ambiguity averse presentation, the wealth effect amounts to that for each p ∈ ∆,

G(t, p) − t is weakly increasing in t.

We emphasize that our third representation result is not a corollary of our first two main

results. Instead of searching for two types of canonical representations, we impose two limit

conditions on respective representations. First, we require that a weighted maxmin decision

maker tend to put the whole weight on the worst case in the extremely bad situation in which

the baseline utility of an act is sufficiently low and the scale of its ambiguous part is suffi-

ciently large. Second, we require that a variant constraint decision maker tend to consider

only the essential set in the extremely good situation in which the baseline utility of an act

is sufficiently high and the scale of its ambiguous part is sufficiently small. It turns out that

under respective conditions, the admissible set in the weighted maxmin representation is ac-

tually the smallest admissible set, and the essential set in the variant constraint representation

is the largest essential set. Thus, the two types of representations that we derive are in fact

canonical representations.

Analogous representations are obtained for the subclass of ambiguity averse preferences

displaying increasing and constant absolute ambiguity aversion. As a corollary, we get two

alternative representations for variational preferences studied by Maccheroni, Marinacci and

Rustichini (2006), for variational preferences constitute the subclass of ambiguity averse

preferences displaying constant absolute ambiguity aversion. Variational preferences also

display increasing relative ambiguity aversion defined in a similar way as increasing absolute

ambiguity aversion. This implies that for each act f , λ(ku( f )) and σ(ku( f )) increases in k

on (0,∞). That is, as the scale of the ambiguity of an act increases, a weighted maxmin

decision maker behaves as if he is more pessimistic and puts more weight on the worst case,

and a variant constraint decision maker behaves as if he is more concerned about priors

misspecification and considers a larger neighborhood of the essential set.

Lastly, we discuss the related literature. There are quite a few works studying different

versions of the two generalized MEU decision rules in different settings, e.g., Ghirardato,

Maccheroni and Marinacci (2004), Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci and

Siniscalchi (2011), Olszewski (2007), Gajdosa, Hayashib, Tallona and Vergnaud (2008),

Kopylov (2009), Chateauneuf and Faro (2009) and Hill (2013). Among them, the most re-

lated works are Ghirardato, Maccheroni and Marinacci (2004) and Hill (2013). Ghirardato,
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Maccheroni and Marinacci (2004) introduce a weighted maxmin decision rule and derive

a representation with the certainty independence axiom of Gilboa and Schmeidler (1989)

being imposed. The same type of representation is also obtained, after dropping certainty in-

dependence, by Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci and Siniscalchi (2011).

The relation between their weighted maxmin representation with ours is elaborated in details

in Section 3.

Hill (2013) also axiomatizes a class of preferences that display changing ambiguity aver-

sion across acts. In his model, each act is evaluated by the worst expected utility over a set

of priors that depends on the “stakes” involved in choosing the act. This class of preferences

satisfies the axioms of our Theorem 2, so it constitutes a subclass of preferences that admits

a canonical variant constraint representation. This subclass of preferences satisfies a stronger

independence axiom, a stronger monotonicity axiom and a stronger ambiguity aversion ax-

iom. These axioms together imply that as the stakes get bigger, the decision maker evaluates

an act by its worst expected utility over a larger set of priors, as if he becomes less confident.

Regarding the wealth effect under ambiguity, Cherbonnier and Gollier (2015) propose

a definition of decreasing aversion under ambiguity within the smooth ambiguity model

and the α-MEU model. They consider the change in monetary wealth but their definition

does not distinguish the the effect on risk aversion and ambiguity aversion. Cerreia-Vioglio,

Maccheroni, and Marinacci (2017) propose a definition of decreasing absolute ambiguity

aversion in a general setting. They also consider the change of monetary wealth, but their

definition implies that a decision maker displays decreasing absolute ambiguity aversion

must display constant absolute risk aversion. In contrast with these two works, our definition

captures the effect of the change in baseline utility on ambiguity aversion and there is no

restriction on a decision maker’s risk attitude. Chambers, Grant, Polak and Quiggin (2014)

provide a similar definition as ours but is stronger. Our axiom is closer in spirit to Klibanoff,

Marinacci and Mukerji (2005)’s definition, although they only define constant absolute am-

biguity aversion. We show that in their model, our axiom is equivalent to the decreasing

concavity of a second-order utility index. This is consistent with the claim of Klibanoff,

Marinacci and Mukerji (2005) that a second-order utility index summarizes one’s ambiguity

attitude in the same way as a von-Neumann-Morgenstern utility function summarizes one’s

risk attitude. Chateauneuf and Faro (2009) assume the existence of a worst outcome and

propose the “worst independence” axiom. This axiom amounts to our constant relative am-

biguity aversion axiom under the assumption of constant absolute ambiguity aversion, but in
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general it is weaker.

The rest of the paper is organized as follows. Section 2 introduces the model and axioms.

Section 3 introduces two extensions of the MEU decision rule — a weighted maxmin rule

and a variant constraint rule. Characterizations of classes of preferences that admit respec-

tive canonical representations are provided. As an application, we present the two canonical

representations of multiplier preferences introduced by Hansen and Sargent (2001). Section

4 studies the wealth effect under ambiguity and proposes an axiom of decreasing absolute

ambiguity aversion. Representations are provided for the subclass of ambiguity averse pref-

erences displaying decreasing absolute ambiguity aversion. Analogous results are provided

for preferences displaying increasing and constant absolute ambiguity aversion. Section 5

concludes. All the proofs are in the Appendix.

2 The model

Let S be a finite set of states of the world with |S | ≥ 2, and ∆ the probability space over S .

Let X be a set of outcomes. Following Maccheroni, Marinacci and Rustichini (2006), we

assume that X is a convex subset of some vector space. For example, X is an interval range of

monetary payoffs, or the set of all lotteries over a set of prizes as in Anscombe and Aumann

(1963). An act is a function f : S → X that yields in each state an outcome. Let F be the

set of all acts. With a slight abuse of notation, for each x ∈ X, we denote by x the constant
act in F that yields x in all states, and we identify X with the set of all constant acts. Given

f , g ∈ F and α ∈ [0, 1], let α f + (1−α)g be the mixed act that yields in each s ∈ S the mixed

outcome α f (s) + (1 − α)g(s). Note that mixed acts are well-defined due to the convexity of

X. A decision maker’s preference relation is a binary relation % on F , and let � and ∼

denote respectively the asymmetric and symmetric parts of the preference relation % . For

each f ∈ F , we denote by x f a certainty equivalent of f which is a constant act such that

f ∼ x f .

We impose the following basic properties on the preference relation % .

A.1. Weak Order. The preference relation % is complete and transitive.

A.2. Risk Independence. For all x, y, z ∈ X and all α ∈ (0, 1),

x ∼ y⇒ αx + (1 − α)z ∼ αy + (1 − α)z.
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A.3. Continuity. For all f , g, h ∈ F , the sets {α ∈ [0, 1]|α f + (1 − α)g % h} and {α ∈

[0, 1]|h % α f + (1 − α)g} are closed.

A.4. Monotonicity. For all f , g ∈ F , if for all s ∈ S , f (s) % g(s), then f % g.

Axiom A.1 says that the preference relation % should be rational. Axiom A.2 imposes

Von-Neumann and Morgenstern’s independence requirement on constant acts — acts that

involve no state ambiguity. Axiom A.3 requires the preference relation % to be continuous

with respect to mixture coefficients. Axiom A.4 says that an act should be preferred to

another act if it yields a better outcome in each state, where the ranking of outcomes is

assumed to be state independent and induced by the preference relation over constant acts.

Besides the basic requirements, we are interested in studying preferences that exhibit am-

biguity aversion. There are two prominent definitions of ambiguity aversion in the literature.

The first is due to Schmeidler (1989), which formulates ambiguity aversion as convexity.

The interpretation is that for two acts that are indifferent, a mixture of them could be viewed

as a hedge against ambiguity, so the mixed act should be preferred to either of the two acts

for an ambiguity averse decision maker. We shall call this definition S-ambiguity aversion.

A.5.1. S-Ambiguity Aversion. For all f , g ∈ F and all α ∈ (0, 1), if f ∼ g, then α f + (1 −

α)g % f .

An alternative definition of ambiguity aversion is provided by Ghirardato and Marinacci

(2002). Their definition is based on a notion of comparative ambiguity aversion that they

propose: A preference relation % 1 is said to be more ambiguity averse than another pref-

erence relation % 2 if for each f ∈ F and each x ∈ X, x % 2 f =⇒ x % 1 f .3 Intuitively,

the preference relation % 1 is more ambiguity averse than the preference relation % 2 if

whenever the ambiguity is intolerable according to the preference relation % 2, it is also

intolerable according to the more ambiguity averse preference relation % 1.

Based on the above notion, Ghirardato and Marinacci (2002) say that a preference rela-

tion % is ambiguity averse if it is more ambiguity averse than a SEU preference relation.

We shall call this definition GM-ambiguity aversion. Formally, recall that a preference rela-

tion is a SEU preference relation if there is a subjective prior p ∈ ∆ such that each act f ∈ F

3For preferences satisfying Axioms A.1 - A.4, this definition is equivalent to the original definition in

Ghirardato and Marinacci (2002).
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and the reduced outcome
∑
s∈S

ps f (s) with respect to p are indifferent. We denote the SEU

preference relation associated with p ∈ ∆ by ≥p.

A.5.2. GM-Ambiguity Aversion. There is p ∈ ∆(S ) such that the preference relation % is

more ambiguity averse than ≥p.

The two definitions of ambiguity aversion do not imply each other in general. But under

the other axioms and a mild strengthening of Axiom A.2, S-ambiguity aversion implies GM-

ambiguity aversion (see section 4).

Lastly, we impose an unboundedness requirement, which says that there exist arbitrarily

good and arbitrarily bad outcomes.

A.6. Unboundedness. There are x, y ∈ X such that for all α ∈ (0, 1), there are z, z′ ∈ X

satisfying αz + (1 − α)y % x � y % αz′ + (1 − α)x.

Axiom A.6 is stronger than the usual non-degeneracy axiom, requiring only the exis-

tence of two outcomes, one of which is strictly preferred to the other. It implies that the

utility function representing the preference relation restricted to X is onto (see e.g. Kopylov

(2001), Maccheroni, Marinacci and Rustichini (2006)). In the literature, Axiom A.6 is as-

sumed sometimes to simplify the analysis, and sometimes to guarantee the uniqueness of a

representation.4 Throughout this paper, Axiom A.6 is imposed to simplify our presentation

and it is also indispensable for some of our results.5

3 Two generalized MEU decision rules

3.1 Weighted maxmin rule

For each u : X → R and each f ∈ F , let u( f ) : S → R be the function given by composing

u with f . For each ϕ ∈ RS and each p ∈ ∆, let Epϕ denote the expected value of ϕ with

respect to p. For each ϕ ∈ RS and each nonempty closed convex set D ⊆ ∆, let l(ϕ; D) :=

max
p∈D

Epϕ −min
p∈D

Epϕ.

4See e.g. Kopylov (2001), Maccheroni, Marinacci and Rustichini (2006), Strzalecki (2011b), Grant and

Polak (2011), and Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011).
5Our Theorem 3 relies on how a preference relation ranks the “limiting” acts that yield arbitrarily good or

bad outcomes in all the states.
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Definition 1. A preference relation % admits a weighted maxmin representation if there

exist an affine onto function u : X → R, a non-empty closed convex set D ⊆ ∆, and a function

λ : RS → [0, 1] continuous on {ϕ ∈ RS |l(ϕ; D) , 0} such that for each pair f , g ∈ F ,

f % g ⇐⇒ λ(u( f )) min
p∈D

Epu( f ) + (1 − λ(u( f ))) max
p∈D

Epu( f )

≥λ(u(g)) min
p∈D

Epu(g) + (1 − λ(u(g))) max
p∈D

Epu(g). (2)

We denote the representation by 〈u,D, λ〉. We call D an admissible set of priors, or simply an

admissible set, and λ a weight function. We call the preference relation a weighted maxmin
preference relation.

For example, Hurwicz’s α-pessimism decision rule (Hurwicz (1951)), also known as

the α-MEU rule (e.g., Marinacci (2002)), admits a weighted maxmin representation with

the weight function being constantly equal to α. When α = 1, it reduces to Gilboa and

Schmeidler (1989)’s MEU decision rule. MEU preferences exhibit S-ambiguity aversion

(Axiom A.5.1). But in general, α-MEU preferences and thus weighted maxmin preferences

do not S-ambiguity aversion.

One important issue is that the weighted maxmin representation of a preference relation

is typically not unique, due to the nonuniqueness of admissible sets. In fact, given a weighted

maxmin representation 〈u,D, λ〉 of a preference relation, each closed convex superset D′ of D

with D′ ⊆ ∆ is also an admissible set, that is, there is a weight function λ′ such that 〈u,D′, λ′〉

is also a weighted maxmin representation of the preference relation. This is because for

each f ∈ F , [min
p∈D

Epu( f ),max
p∈D

Epu( f )] ⊆ [min
p∈D′

Epu( f ),max
p∈D′

u( f )], and then there is λ′ :

RS → [0, 1] such that for each f ∈ F , λ(u( f )) min
p∈D

Epu( f ) + (1 − λ(u( f ))) max
p∈D

Epu( f ) =

λ′(u( f )) min
p∈D′

Epu( f ) + (1 − λ′(u( f ))) max
p∈D′

Epu( f ). Example 1 shows that a SEU preference

relation admits for each ε ∈ [0, 1], a weighted maxmin representation in which the admissible

set is the set of ε-contaminated priors with respect to the subjective prior.

Example 1. 6 Suppose X := R for simplicity. Let p∗ ∈ ∆. Consider the SEU preference

relation% over RS with the subjective prior p∗: For each pair f , g ∈ RS , f % g ⇐⇒ Ep∗ f ≥

Ep∗g.

For each ε ∈ [0, 1], let Dε := {(1 − ε)p∗ + εp|p ∈ ∆} denote the set of ε-contaminated

priors with respect to p∗. Note that D0 = {p∗}, D1 = ∆, and for each pair ε, ε′ ∈ [0, 1] with

6I thank the referee for suggesting this example.
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ε ≤ ε′, Dε ⊆ Dε′ . Fix ε ∈ [0, 1]. Define λε : RS → R by setting for each f ∈ RS ,

λε( f ) :=


max

s∈S
f (s) − Ep∗ f

max
s∈S

f (s) −min
s∈S

f (s)
if min

s∈S
f (s) , max

s∈S
f (s),

1 if min
s∈S

f (s) = max
s∈S

f (s).

Observe that for each f ∈ RS , λε is continuous at f whenever min
p∈Dε

Ep f , max
p∈Dε

Ep f , and that

Ep∗ f = λε( f ) min
p∈Dε

Ep f + (1 − λε( f )) max
p∈Dε

Ep f ,

since min
p∈Dε

Ep f = (1 − ε)Ep∗ f + ε min
s∈S

f (s) and max
p∈Dε

Ep f = (1 − ε)Ep∗ f + ε max
s∈S

f (s). Let u

be the identity mapping on R. Then, 〈u,Dε , λε〉 is a weighted maxmin representation of the

preference relation % .

In light of the nesting property of admissible sets, we are interested in finding the small-
est one if it exists. This provides a natural way of normalizing weighted maxmin representa-

tions. Indeed, given a weighted maxmin representation 〈u,D, λ〉 of a preference relation, for

each act, its maximum and minimum expected utilities over D are respectively an upper and

lower bounds of its value, and the bounds will be tight if D is the smallest admissible set.

Definition 2. A canonical weighted maxmin representation of a preference relation %

is a weighted maxmin representation 〈u,D, λ〉 of the preference relation % such that D is

the smallest admissible set, i.e., for each weighted maxmin representation 〈u′,D′, λ′〉 of the

preference relation % , D ⊆ D′.

Ghirardato, Maccheroni and Marinacci (2004) introduce a well-known weighted maxmin

representation different from a canonical weighted maxmin representation. Instead of seek-

ing for the smallest admissible set, they require the admissible set in their representation

to satisfy some property in terms of an “unambiguous” preference relation induced from

the initial preference relation. More precisely, their admissible set is required to be one

component of another representation à la Bewley (2002) of the unambiguous preference re-

lation. We shall call their representation of the initial preference relation a Bewley weighted
maxmin representation. To define it formally, we recall Ghirardato, Maccheroni and Mari-

nacci (2004)’s notion of unambiguous preference relation (see also Nehring (2007)). Given

a preference relation % , for each pair f , g ∈ F , f is said to be unambiguously preferred
to g, denoted by f % ∗g, if for each α ∈ (0, 1] and each h ∈ F ,

f % ∗g ⇐⇒ α f + (1 − α)h % αg + (1 − α)h.

12



Intuitively, if the consideration of either hedging against or speculating on ambiguity does

not affect the ranking of acts f and g, then it is as if that the decision maker unambiguously

prefers f to g (see Ghirardato, Maccheroni and Marinacci (2004) for more discussion).7

Given a preference relation % , a non-empty closed convex set D ⊆ ∆ is called a Bewley set

of priors, or simply a Bewley set, if there is an affine function u : X → R such that for each

pair f , g ∈ F ,

f % ∗g ⇐⇒ for each p ∈ D, Epu( f ) ≥ Epu(g).

Definition 3. A Bewley weighted maxmin representation of a preference relation % is a

weighted maxmin representation 〈u,D, λ〉 of the preference relation % such that D is the

Bewley set.

It is known that a preference relation admits a Bewley weighted maxmin representation

as long as it satisfies some basic properties.

Proposition 1. A preference relation % satisfies Axioms A.1 - A.4 and A.6 if and only if it

admits a Bewley weighted maxmin representation 〈u,D, λ〉. Moreover, u is unique up to a

positive affine transformation, D is unique, and given u, λ is unique on {ϕ ∈ RS : l(ϕ; D) ,

0}.8

A version of the “only if” direction of Proposition 1 has been shown by Cerreia-Vioglio,

Ghirardato, Maccheroni, Marinacci and Siniscalchi (2011). Ghirardato, Maccheroni and

Marinacci (2004) also shows a version of the “only if” direction but with the certainty inde-

pendence axiom of Gilboa and Schmeidler (1989) in addition, so that the weight function in

their Bewley weighted maxmin represention has more structure.9 Given the existing results,

it is not hard to check the “if” direction and complete the characterization.

Our first main result says that if a preference relation satisfies S-ambiguity aversion in

addition to Axioms A.1 - A.4 and A.6, then besides admitting a Bewley weighted maxmin

representation, it also admits a canonical weighted maxmin representation. Moreover, the

two types of weighted maxmin representations coincide.

7Equivalently, the unambiguous preference relation % ∗ is the maximal restriction of the preference relation

% that satisfies the independence axiom (Nehring (2007)).
8When l(ϕ; D) = 0, the choice of λ(ϕ) does not matter.
9The weight function in their Bewley weighted maxmin representation is always constant linear, i.e., it is

constant additive and positively homogeneous.
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The converse holds if some additional conditions on the representation are imposed. For

each nonempty closed convex set D ⊆ ∆, let Λ(D) denote the collection of functions λ :

RS → [0, 1] satisfying

(1) (monotonicity) for each pair ϕ, ϕ′ ∈ RS with ϕ′ ≥ ϕ,

max
p∈D

Epϕ
′ −max

p∈D
Epϕ ≥ λ(ϕ′)l(ϕ′; D) − λ(ϕ)l(ϕ; D); (3)

(2) (quasi-concavity) for each pair ϕ, ϕ′ ∈ RS satisfying (3) and for ϕ′′ := ϕ+ϕ′

2 ,

max
p∈D

Epϕ
′′ −max

p∈D
Epϕ ≥ λ(ϕ′′)l(ϕ′′; D) − λ(ϕ)l(ϕ; D). (4)

Theorem 1. A preference relation % satisfies Axioms A.1 - A.4, A.5.1, and A.6 if and only if

it admits a canonical weighted maxmin representation 〈u,D, λ〉 with λ ∈ Λ(D). Moreover, u

is unique up to a positive affine transformation, the smallest admissible set D is unique and

coincides with the Bewley set, and given u, λ is unique on {ϕ ∈ RS : l(ϕ; D) , 0}.

A well-known representation of the class of preferences satisfying Axioms A.1 - A.4,

A.5.1, and A.6 in the literature, different from ours, is provided by Cerreia-Vioglio, Mac-

cheroni, Marinacci and Montrucchio (2011). To define it formally, let G be the set of

functions G : R × ∆ → (−∞,∞] such that (i) G is quasi-convex and lower semicontin-

uous on R × ∆, (ii) for each p ∈ ∆, G(·, p) is weakly increasing on R, and (iii) for each

t ∈ R, min
p∈∆

G(t, p) = t. A function G ∈ G is said to be linearly continuous if the map

I : RS → (−∞,∞], defined by I(ϕ) = inf
p∈∆

G(Epϕ, p), is continuous.

Definition 4. A preference relation % admits an ambiguity averse representation if there

exist an affine onto function u : X → R and a linearly continuous function G ∈ G such that

for each pair f , g ∈ F ,

f % g ⇐⇒ min
p∈∆

G(Epu( f ), p) ≥ min
p∈∆

G(Epu(g), p)

We denote the representation by 〈u,G〉.

It is shown by Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011) that a

preference relation satisfies Axioms A.1 - A.4, A.5.1, and A.6 if and only if it admits an am-

biguity averse representation 〈u,G〉, where u is unique up to a positive affine transformation,

and given u, G is unique. Moreover, they show that given such a preference relation with an

ambiguity averse representation 〈u,G〉, the set

D∗ := cl({p ∈ ∆|G(t, p) < ∞ for some t ∈ R}) (5)
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coincides with the Bewley set. Note that it can be readily shown that this set D∗ is indepen-

dent of the choice of ambiguity averse representations.10

Our result above, in view of theirs, not only provides an alternative representation of such

a preference relation, but also shows that the set D∗ derived from their representation is the

smallest admissible set.

Corollary 1. If a preference relation satisfies Axioms A.1 - A.4, A.5.1, and A.6, then it admits

a canonical weighted maxmin representation 〈u,D∗, λ〉.

3.1.1 Relation between a canonical weighted maxmin representation and a Bewley
weighted maxmin representation

Restricted to preferences satisfying S-ambiguity aversion, we have shown that a canonical

weighted maxmin representation of a preference relation is the same as a Bewley weighted

maxmin representation. However, this is not the case for preferences that do not satisfy

S-ambiguity aversion. We now provide two examples respectively showing that (1) a prefer-

ence relation admitting a Bewley weighted maxmin representation may not admit a canonical

weighted maxmin representation, and (2) even if a preference relation admits both types of

representations, the Bewley set may not be the smallest admissible set. The proofs of our

claims in the two examples are in Appendix.

Example 2 (The Bewley set exists, but the smallest admissible set does not). Let S :=

{1, 2, 3} and X := R for simplicity. Let p′ := (2
3 ,

1
12 ,

1
4 ), q′ := ( 1

12 ,
2
3 ,

1
4 ), and p∗ := ( 1

3 ,
1
3 ,

1
3 )

be probabilities over S , where the i’s coordinate denotes the probability of state i, i = 1, 2, 3.

Let D1 := {p′, q′} and D2 := {p ∈ ∆|d(p, p∗) ≤ 1
√

6
}. Define the function V : RS → R by

setting for each f ∈ RS ,

V( f ) :=


min
p∈D1

Ep f if max{ f (1), f (2)} < f (3),

min
p∈D2

Ep f if max{ f (1), f (2)} ≥ f (3).

Define the preference relation % over RS by setting for each pair f , g ∈ RS , f % g ⇐⇒

V( f ) ≥ V(g).
10It is shown by Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011) that if 〈u′,G′〉 is another

ambiguity averse representation of the preference, then there are a > 0 and b ∈ R such that u′ = au + b, and

for each p ∈ ∆, aG(t, p) + b = G′(at + b, p). Hence, for each (t, p) ∈ R × ∆, G(t, p) < ∞ if and only if

G′(at + b, p) < ∞.
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The preference relation% satisfies Axioms A.1 - A.4 and A.6. By Proposition 1, it admits

a Bewley weighted maxmin representation.11 But it does not admit a canonical weighted

maxmin representation.

Example 3 (The Bewley set is not the smallest admissible set). Let S , X, p′, q′, p∗, and D2

be defined as in Example 2. Let p′′ := ( 2
3 ,

1
6 ,

1
6 ) and q′′ := ( 1

6 ,
2
3 ,

1
6 ) be probabilities over S .

For each f ∈ RS with max{ f (1), f (2)} < f (3), let

α( f ) :=


med{0,

1 − Ep′′ f
1 − Ep′′ f + Ep′ f

, 1} if f (1) ≤ f (2) < f (3),

med{0,
1 − Eq′′ f

1 − Eq′′ f + Eq′ f
, 1} if f (2) < f (1) < f (3),

and

D1( f ) := {α( f )p′ + (1 − α( f ))p′′, α( f )q′ + (1 − α( f ))q′′},

where med is the median operator.12 Define the function V : RS → R by setting for each

f ∈ RS ,

V( f ) =


min

p∈D1( f )
Ep f if max{ f (1), f (2)} < f (3),

min
p∈D2

Ep f if max{ f (1), f (2)} ≥ f (3).

Define the preference relation % over RS by setting for each pair f , g ∈ RS , f % g ⇐⇒

V( f ) ≥ V(g).

Like example 2, the preference relation % satisfies Axioms A.1 - A.4 and A.6, and thus

admits a Bewley weighted maxmin representation.13 Moreover, the preference relation %

admits a canonical weighted maxmin representation in which the smallest admissible set is

{p ∈ D2 : p3 ≥
1
6 }. However, this set is not the Bewley set.

3.2 Variant constraint rule

For each pair p, q ∈ ∆, let d(p, q) denote the Euclidean distance between p and q. For each

p ∈ D and each closed subset of A of ∆, define the distance, d(p, A), between p and A to be

min
q∈A

d(p, q). Given a preference relation % , for each f ∈ F , let x∗ f ∈ X denote the worst

outcome yielded by f , i.e., for some s ∈ S , f (s) = x∗ f , and for each s′ ∈ S , f (s′) % x∗ f .
11It can be shown that the associated Bewley set is cl(co(D1 ∪ {p ∈ D2|p3 ≥

1
6 })).

12For each t ∈ R, med{0, t, 1} is the median of 0, t, 1.
13It can be shown that the associated Bewley set is the same as in Example 2.
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Definition 5. A preference relation % admits a variant constraint representation if there

exist an affine onto function u : X → R, a non-empty closed convex set K ⊆ ∆, and a

function σ : RS → R+ continuous on {u( f ) ∈ RS | f ∈ F , f � x∗ f } and lower semicontinuous

on {u( f ) ∈ RS | f ∈ F , f ∼ x∗ f } such that for each pair f , g ∈ F ,

f % g ⇐⇒ min
p∈∆:d(p,K)≤σ(u( f ))

Epu( f ) ≥ min
p∈∆:d(p,K)≤σ(u( f ))

Epu(g).

We denote the representation by 〈u,K, σ〉. We call K an essential set of priors, or simply

an essential set, and σ a constraint function. We call the preference relation a variant
constraint preference relation.

A MEU preference relation admits a variant constraint representation in which σ is con-

stantly equal to 0. While MEU preferences exhibit S-ambiguity aversion, this is not true

for variant constraint preferences in general. Instead, variant constraint preferences satisfy

GM-ambiguity aversion, and later we shall characterize variant constraint preferences with

GM-ambiguity aversion and other basic properties.

Like a weighted maxmin representation, a variant constraint representation of a prefer-

ence relation is typically not unique, due to the nonuniqueness of essential sets. In fact, given

a variant constraint representation 〈u,K, σ〉 of a preference relation, each non-empty convex

closed subset K′ of K is an essential set, since there is another constraint function σ′ such

that 〈u,K′, σ′〉 is also a variant constraint representation of the preference relation. Example

4 shows the non-uniqueness of variant constraint representations of even a MEU preference

relation.

Example 4. Let S , X, p∗,D2 be defined as in Example 2. Consider the MEU preference

relation % over RS defined by, for each pair f , g ∈ RS , f % g ⇐⇒ min
p∈D2

Ep f ≥ min
p∈D2

Epg.

For each ε ∈ [0, 1
√

6
], let Kε := {p ∈ ∆|d(p, p∗) ≤ ε}. Note that K0 = {p∗}, K

1√
6 = D2, and

for each pair ε, ε′ ∈ [0, 1
√

6
] with ε ≤ ε′, Kε ⊆ Kε′ . Fix ε ∈ [0, 1

√
6
]. Define σε : RS → R+

by setting for each f ∈ RS , σε( f ) = 1
√

6
− ε. Observe that σε is continuous, and that for each

f ∈ RS ,

min
p∈D2

Ep f = min
p∈∆:d(p,Kε )≤σε ( f )

Ep f ,

since D2 = {p ∈ ∆|d(p,Kε) ≤ σε( f )}. Let u be the identity mapping on R. Then, 〈u,Kε , σε〉

is a variant constraint representation of the preference relation % .
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In light of the nesting property of essential sets, we can define a canonical variant con-

straint representation in a similar way of defining a canonical weighted maxmin representa-

tion.

Definition 6. A canonical variant constraint representation of a preference relation is a

variant constraint representation 〈u,K, σ〉 of the preference relation such that K is the largest

essential set, i.e, for each variant constraint representation 〈u′,K′, σ′〉 of the preference

relation, K′ ⊆ K.

Our second main result says that if a preference relation % satisfies GM-ambiguity aver-

sion in addition to Axioms A.1 - A.4 and A.6, then it admits a canonical variant constraint

representation. Moreover, the largest essential set is the set of all priors associated with

which the SEU preferences are less ambiguity averse than the preference relation % .

The converse holds with an additional condition on the variant constraint representation.

For each nonempty closed convex set K ⊆ ∆, let Σ(K) denote the collection of functions

σ : RS → R+ such that ∀ϕ, ϕ′ ∈ RS with ϕ′ ≥ ϕ,

min
p∈∆:d(p,K)≤σ(ϕ′)

Epϕ
′ ≥ min

p∈∆:d(p,K)≤σ(ϕ)
Epϕ. (6)

Theorem 2. A preference relation satisfies Axioms A.1 - A.4, A.5.2, and A.6 if and only if it

admits a canonical variant constraint representation 〈u,K, σ〉 with σ ∈ Σ(K). Moreover, u

is unique up to a positive affine transformation, K is unique, which is given by

K = {p ∈ ∆|the preference relation % is more ambiguity

averse than the SEU preference relation ≥p},

and given u, σ is unique on on {u( f ) ∈ RS | f ∈ F , f � x∗ f }.14

While Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011) provides the first

characterization of preferences exhibiting S-ambiguity aversion, Theorem 2 provides the first

characterization of preferences exhibiting GM-ambiguity aversion. Note that Axiom A.6 is

indispensable for establishing the uniqueness of the representation of Cerreia-Vioglio, Mac-

cheroni, Marinacci and Montrucchio (2011), whereas this is not the case for our representa-

tion. Axiom A.6 is imposed here for the ease of presentation.

14If x∗ f ∼ f , then min
s∈S

u( f (s)) = u(x f ). Thus as long as σ(u( f )) is sufficiently large, min
p∈D:d(p,K)≤σ(u( f ))

Epu( f ) =

u(x f ).

18



The class of preferences admitting canonical variant constraint representations is differ-

ent from the class admitting canonical weighted maxmin representations. In view of Theo-

rems 1 and 2, there are preferences admitting canonical weighted maxmin representations but

not canonical variant constraint representations, since S-ambiguity aversion does not imply

GM-ambiguity aversion. On the other hand, there are preferences admitting canonical vari-

ant constraint representations but not canonical weighted maxmin representations, as shown

by Example 5.

Example 5. Consider the preference relation defined in Example 2. As discussed in Example

2, it does not admit a canonical weighted maxmin representation. As seen in Example 2, the

preference relation satisfies Axioms A.1 - A.4, and A.6. It also satisfies Axiom A.5.2, since

for each f ∈ RS , Ep∗ f ≥ V( f ), so that it is more ambiguity averse than the SEU preference

relation ≥p∗ . Then, by Theorem 2, it admits a canonical variant constraint representation.15

When a preference relation admits both a canonical weighted maxmin representation and

a canonical variant constraint representation, we show that the largest essential set is always

a subset of the smallest admissible set, and the two sets coincide if and only if the preference

relation is a MEU preference relation.

Proposition 2. If a preference relation admits both a canonical weighted maxmin rep-

resesentation 〈u,D, λ〉 and a canonical variant constraint representation 〈u′,K, σ〉, then

K ⊆ D.

Proposition 3. A preference relation is a MEU preference relation if and only if it admits

both a canonical weighted maxmin represesentation 〈u,D, λ〉 and a canonical variant con-

straint representation 〈u′,K, σ〉, and K = D. Moreover, λ is constantly 1, and σ is constantly

0.

Recall that if a preference relation satisfies Axioms A.1 - A.4, A.5.1, and A. 6, then it

admits an ambiguity averse representation 〈u,G〉 (Cerreia-Vioglio, Maccheroni, Marinacci

and Montrucchio (2011)). In the last section, we show that the preference relation admits a

canonical weighted maxmin representation in which D∗ defined in (5) is the smallest admis-

sible set. A similar result can be obtained here. Formally, let

K∗ := {p ∈ ∆| for each t ∈ R,G(t, p) = t}. (7)

15It can be shown that the largest essential set is {p ∈ D2|p3 ≥
1
4 }.
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Like D∗, the set K∗ is independent of the choice of ambiguity averse representations of the

preference relation. It can be readily shown that p ∈ K∗ if and only if the preference relation

% is more ambiguity averse than the SEU preference relation ≥p. Thus, the preference

relation satisfies GM-ambiguity aversion if and only if K∗ is non-empty, and in this case,

by Theorem 2, the preference relation admits a canonical variant constraint representation in

which K∗ is the largest essential set.

Corollary 2. If a preference relation satisfies Axioms A.1 - A.4, A.5.1, A.5.2, and A.6, then

it admits a canonical variant constraint representation 〈u,K∗, σ〉.

3.3 Different representations of the multiplier decision rule

There is a large class of preferences that satisfy both S-ambiguity aversion and GM-

ambiguity aversion as well as other basic properties. Thus, besides admitting an ambi-

guity aversion representation of Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio

(2011), this class of preferences also admits a canonical weighted maxmin representation

and a canonical variant constraint representation. Although the three representations allow

different interpretations, they are behaviorally equivalent.

Finding different representations of a decision rule facilitates our understanding of it. As

an example, we consider two important robust decision rules introduced by Hansen and Sar-

gent (2001): the constraint rule and the multiplier rule.16 We shall apply our representation

results to the multiplier rule and compare it with the constraint rule. The multiplier rule is

defined in the form of an ambiguity averse representation. We shall argue that the other two

representations provide a more straightforward comparison between the multiplier rule and

the constraint rule.

For each pair p, q ∈ ∆, we write p � q if p is absolutely continuous with respect to q,

and denote by R(p||q) the relative entropy of p with respect to q, that is,

R(p||q) =


∑

S

pi log
pi

qi
if p � q,

∞ otherwise.

The relative entropy, known as Kullback-Leibler divergence, is a measure of “distance” be-

tween two probabilities.

16Strzalecki (2011a) axiomatizes the multiplier rule.
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Definition 7. A preference relation % admits a constraint representation if there exist an

affine onto function u : X → R, a prior q ∈ ∆, and a constant η ∈ R+ such that for each pair

f , g ∈ F ,

f % g ⇐⇒ min
p∈∆:R(p||q)≤η

Epu( f ) ≥ min
p∈∆:R(p||q)≤η

Epu(g). (8)

We denote the representation by 〈u, q, η〉. We call the preference relation a constraint pref-
erence relation.

A constraint representation 〈u, q, η〉 is in fact a MEU representation 〈u,D〉 in which

D = {p ∈ D|R(p||q) ≤ η}. It can also be viewed in spirit as a special variant constraint

representation, with a singleton essential set, a different measure of “distance” between two

probabilities, and a constant constraint function.

Definition 8. A preference relation % admits a multiplier representation if there exist an

affine onto function u : X → R, a prior q ∈ ∆, and a constant θ ∈ (0,∞] such that for each

pair f , g ∈ F ,

f % g ⇐⇒ min
p∈∆

[Epu( f ) + θR(p||q)] ≥ min
p∈∆

[Epu(g) + θR(p||q)]. (9)

We denote the representation by 〈u, q, θ〉. We call the preference relation a multiplier pref-
erence relation.17

A multiplier representation 〈u, q, θ〉 is in fact an ambiguity averse representation 〈u,G〉

in which G : R × ∆→ (−∞,∞] is given by, for each (t, p) ∈ R × ∆, G(t, p) = t + θR(p||q). A

multiplier preference relation satisfies both S-ambiguity aversion and GM-ambiguity aver-

sion, as well as the other basic properties. By Theorems 1 and 2, it admits both a canonical

weighted maxmin representation and a canonical variant constraint representation. More-

over, we can explicitly write down the components in both representations.

Proposition 4. Suppose that a preference relation admits a multiplier representation

〈u, q, θ〉. Then, it admits a canonical weighted maxmin representation 〈u,D, λ〉. When θ < ∞,

D = {p ∈ ∆ : p � q} and λ : RS → [0, 1] is given by, for each ϕ ∈ RS ,

λ(ϕ) =


1

ϕ − ϕ
(ϕ + θ log Eqe−

ϕ
θ ) if ϕ < ϕ,

1 if ϕ = ϕ,
(10)

17The preference relation in Definition 8 is called a multiplier preference relation since the parameter θ in

the unconstrained minimization problem in (9) can be viewed as a Lagrange multiplier in the Lagrangian of the

constrained minimization problem in (8).
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where ϕ = max
s∈S :qs>0

ϕ(s) and ϕ = min
s∈S :qs>0

ϕ(s). When θ = ∞, D = {q} and λ ≡ 1.

The preference relation also admits a canonical variant constraint representation

〈u,K, σ〉. When θ < ∞, K = {q} and σ : RS → R+ is given by, for each ϕ ∈ RS ,

σ(ϕ) = min
p∈∆:Epϕ=−θ log Eqe−

ϕ
θ

d(p, q). (11)

When θ = ∞, K = {q} and σ ≡ 0.

The connection between the multiplier rule and the constraint rule is established in a

dynamic resource allocation problem by Hansen and Sargent (2001, 2008). They show under

some conditions that fixing u : X → R and q ∈ ∆, for each η, there is θ such that the

constraint rule 〈u, q, η〉 and the multiplier rule 〈u, q, θ〉 generate the same optimal allocation,

and vise versa. But in general, as they point out, the two decision rules induce totally different

preference rankings.

In view of our alternative representation results, the relationship between the two decision

rules becomes more transparent. First, constraint and multiplier preferences are both special

cases of weighted maxmin preferences with different types of weight functions in general.

As mentioned before, a constraint preference relation that admits a representation 〈u, q, η〉

evaluates each act by its worst expected utility over a set of priors determined by q and η. In

comparison, by Proposition 4, a multiplier preference relation that admits a representation

〈u, q, θ〉 evaluates each act by a weighted average of its best and worst expected utilities over

a set of priors determined by q and θ. While the weight put on the worst expected utilities of

acts is constantly 1 for a constraint preference relation, it varies across acts for a multiplier

preference relation.

Second, constraint and multiplier preferences are both special cases of variant constraint

preferences with different constraint functions in general. In fact, for a more transparent

comparison, we can replace the Euclidean distance measure with relative entropy in the

variant constraint representation for the multiplier rule. That is, under the same assumption

of Proposition 4, when θ < ∞, for each pair f , g ∈ F ,

f % g ⇐⇒ min
p∈∆:R(p||q)≤σ′(u( f ))

Epu( f ) ≥ min
p∈∆:R(p||q)≤σ′(u(g))

Epu(g) (12)

where σ′ : RS → R is given by, for each ϕ ∈ RS ,

σ′(ϕ) = min
p∈∆:Epϕ=−θ log Eqe−

ϕ
θ

R(p||q) (13)
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From comparing (8) and (12), we can see that both a constraint preference relation and a

multiplier preference relation evaluate an act by its worst expected utility over a “neighbor-

hood” of priors around q, but the size of the neighborhood is fixed for a constraint preference

relation while it depends on the act for a multiplier preference relation.

Note that the key implication of using relative entropy instead of the Euclidean distance

in a variant constraint representation is that it excludes the priors which are not absolutely

continuous with respect to a central prior. Indeed, only when p � q, R(p||q) < ∞. But this

is not a problem for a multiplier preference relation, since it disregards all the priors that are

not absolutely continuous with respect to its central prior q. Thus, relative entropy can be

used instead of the Euclidean distance in its variant representation as long as the constraint

function is adjusted correspondingly.

4 Changing ambiguity aversion

Within the class of preferences satisfying S-ambiguity aversion, GM-ambiguity aversion,

and the other basic properties, we are interested, in this section, to study those displaying

particular patterns of changing ambiguity aversion with respect to the change of wealth. We

shall provide a definition of decreasing/increasing absolute ambiguity aversion and investi-

gate its implication on the representations that we study in the previous section.

4.1 Wealth effect and decreasing absolute ambiguity aversion

To motivate the study of the wealth effect, consider the following variation of Ellsberg

(1961)’s thought experiment.

Example 6. An urn contains 100 balls, of which 33 are red, and 67 are either black or white.

A ball is drawn from the urn. For each t ∈ R+, rt denotes the act “betting on red”. It pays

100 + t dollars if the ball is red and t dollars otherwise. Let bt denote the act “betting on

black”, and its payoff is similarly given. See the payoff table below.

Suppose that a decision maker’s preference relation % satisfies Axioms A.1 - A.4, A.5.1,

and A.6, and assume for simplicity that he is risk neutral. For each t ∈ R+, rt is an unambigu-

ous act which yields 100 + t with probability 0.33, while bt is an ambiguous act which gives

either 100 + t or t. The decision maker may prefer r0 to b0 if he is averse to ambiguity, but

the degree of his ambiguity aversion may decrease with the increase of the baseline prize t.
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Table 1: Payoffs of rt and bt

t ∈ R+ Red Black White

rt 100+t t t

bt t 100+t t

Table 2: Payoffs of r0 and b0

t = 0 Red Black White

r0 100 0 0

b0 0 100 0

Table 3: Payoffs of r104 and b104

t = 104 Red Black White

r104 10,100 10,000 10,000

b104 10,000 10,100 10,000

It can be expected that when t is sufficiently large, he is willing to take the ambiguity bearing

behavior, and prefers say b104 to r104 .

Such a behavioral pattern is evidenced by the laboratory experiments of Baillon and

Placido (2015) with subjects that may or may not be risk neutral. In the following, we

shall propose behavioral axioms to capture this and other analogous phenomena. The tests

designed by Baillon and Placido (2015) are consistent with the implications of our axioms.

A.2.1. Decreasing Absolute Ambiguity Aversion.18 For all f ∈ F , x, y, z ∈ X and α ∈
18After completing this paper, I learned that Ghirardato and Siniscalchi independently propose a very similar

axiom of decreasing absolute ambiguity aversion in their work “Symmetric preferences”, which is presented in

RUD 2015 and D-TEA 2015.
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(0, 1), if either f is a constant act or y % x, then

α f + (1 − α)x % αz + (1 − α)x

⇒ α f + (1 − α)y % αz + (1 − α)y. (14)

When f is constant, (14) essentially imposes von Neumann-Morgenstern’s independence

requirement on constant acts. When f is not constant, then (14) says that if an (ambiguous)

act α f + (1 − α)x is preferred to a constant act αz + (1 − α)x, then it is still the case after

improving the certainty part from x to y for both acts. In other words, if the ambiguity is

tolerable before, it is even more tolerable after a common improvement in the certainty part.

Axiom A.2.1 implies that if an act induces a larger utility than another act by an ensured

amount t in each state, then the value of the former act is larger than the later by at least t.

Similarly, if we replace y % x in Axiom A.2.1 by x % y, then the preference relation %

displays increasing absolute ambiguity aversion.

A.2.2. Increasing Absolute Ambiguity Aversion. For all f ∈ F , x, y, z ∈ X and α ∈ (0, 1),

if either f is a constant act or x % y, then

α f + (1 − α)x % αz + (1 − α)x

⇒ α f + (1 − α)y % αz + (1 − α)y.

If we require both Axiom A.2.1 and Axiom A.2.2 to hold, then the preference relation %

satisfies constant absolute ambiguity aversion proposed by Grant and Polak (2013).

A.2.3. Constant Absolute Ambiguity Aversion. (Grant and Polak (2013)) For all f ∈ F ,

x, y, z ∈ X and α ∈ (0, 1),

α f + (1 − α)x % αz + (1 − α)x

⇒ α f + (1 − α)y % αz + (1 − α)y. (15)

While the above axioms are about the effect of an absolute change in the certainty part of

an act, one can imagine a similar effect of a relative change in the proportion of the certainty

part of an act. We refer the readers to Maccheroni, Marinacci and Rustichini (2006) for such

a thought experiment. As analogous to Axiom A.2.2, we propose the following axiom of

increasing relative ambiguity aversion.
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A.2.4. Increasing Relative Ambiguity Aversion. For all f ∈ F , x, z ∈ X and α, β ∈ (0, 1),

if α ≥ β, then

α f + (1 − α)x % αz + (1 − α)x

⇒ β f + (1 − β)x % βz + (1 − β)x. (16)

Axiom A.2.4 says that if α f + (1 − α)x is preferred to a constant act αz + (1 − α)x, then

this is still the case after the proportion of the certainty part increases in both acts. That is,

the degree of ambiguity aversion increases as the relative proportion of the uncertain part

of an act increases. Similarly, a preference relation exhibits decreasing relative ambiguity
aversion if (16) holds for each α, β ∈ (0, 1) with α ≤ β, and constant relative ambiguity
aversion if (16) holds for each α, β ∈ (0, 1). Chateauneuf and Faro (2009) propose a so-called

worst independence axiom under the assumption of the existence of a worst outcome in X.

Their axiom amounts to our constant relative ambiguity aversion for the class of preferences

satisfying Axioms A.1 - A.4, A.5.1, and constant absolute ambiguity aversion. In general,

for preferences satisfying Axioms A.1 - A.4, their axiom is implied by ours.

Under Axioms A.1, A.3 - A.6, preferences satisfying constant absolute ambiguity aver-

sion display increasing relative ambiguity aversion. We shall show later that decreasing ab-

solute ambiguity aversion also implies increasing relative ambiguity aversion in some limit

forms.

4.2 Characterizations

For each t ∈ R, we denote by t1 an element in RS such that for each s ∈ S , t1(s) = t, and

when t = 1, we simply write 1. For each non-empty convex closed K ⊆ D, let Σ̄(K) be the

collection of functions σ ∈ Σ(K) such that for each pair ϕ, ϕ′ ∈ RS satisfying (6) and for

ϕ′′ := ϕ+ϕ′

2 ,

min
p∈∆:d(p,K)≤σ(ϕ′′)

Epϕ
′′ ≥ min

p∈∆:d(p,K)≤σ(ϕ)
Epϕ.

That is, the constraint functions in Σ̄(K) satisfy not only the monotonicity property required

for the functions in Σ(K), but also a quasi-concavity property.

Theorem 3. Let a preference relation % be given. The following statements are equivalent.

1. The preference relation % satisfies Axioms A.1, A.2.1, A.3, A.4, A.5.1, and A.6.

26



2. The preference relation % admits a weighted maxmin representation 〈u,D, λ〉 such

that λ ∈ Λ(D), and for each ϕ ∈ RS , λ(ϕ+t1) weakly decreases in t, and lim
k→∞

lim
t→∞

λ(kϕ−

t1) = 1.

3. The preference relation % admits a variant constraint representation 〈u,K, σ〉 such

thatσ ∈ Σ̄(K), and for each ϕ ∈ RS , σ(ϕ+t1) weakly decreases in t, and lim
k↘0

lim
t→∞

σ(kϕ+

t1) = 0.

4. The preference relation % admits an ambiguity averse representation 〈u,G〉 such that

for each p ∈ ∆, G(t, p) − t weakly increases in t.

Moreover, 〈u,D, λ〉 is a canonical weighted maxmin representation, 〈u,K, σ〉 is a canonical

variant constraint representation, and for each ϕ ∈ RS , lim
t→∞

λ(kϕ − t1) and lim
t→∞

σ(kϕ + t1)

weakly increase in k on (0,∞).

Decreasing absolute ambiguity aversion has straightforward behavioral implications on

the weighted maxmin representation and the variant constraint representation of a preference

relation. As the baseline utility of an act increases, it is as if that a weighted maxmin decision

maker puts less weight on the worst expected utility, and a variant constraint decision maker

considers a smaller neighborhood of priors around the essential set.

Note that under Axioms A.1, A.2.1, A.3, and A.4, S-ambiguity aversion (A.5.1) implies

GM-ambiguity aversion (A.5.2). Thus, by Theorems 1 and 2, the preference relation admits

a canonical weighted maxmin representation and a canonical variant constraint representa-

tion. However, the equivalence of statement 1, 2 and 3 is not a corollary of Theorems 1 and

2. In Theorem 3, the weighted maxmin representation and the variant constraint representa-

tion are uniquely determined not by the smallest admissible set and the largest essential set

respectively, but by two limit conditions. It turns out that the two limit conditions are char-

acterizing conditions of the smallest admissible set and the largest essential set respectively.

Hence, both representations are in fact canonical representations.

The two limit conditions have natural interpretations. The condition lim
k→∞

lim
t→∞

λ(kϕ− t1) =

1 says that a weighted maxmin decision maker shall tend to consider only the worst expected

utility in the extremely bad situation where the baseline utility of an act is sufficiently low and

the scale of its uncertain part is sufficiently large. The condition of lim
k↘0

lim
t→∞

σ(kϕ+t1) = 0 says

that a variant constraint decision maker shall tend to consider only the priors in the essential
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set K in the extremely good situation where the baseline utility of an act is sufficiently high

and the scale of its uncertain part is sufficiently small.

Theorem 3 also shows that decreasing absolute ambiguity aversion implies increas-

ing relative ambiguity aversion in some limit form under the other axioms. The fact that

lim
t→∞

λ(kϕ − t1) weakly increases in k on (0,∞) suggests that when the baseline utility of an

act is sufficiently low, if the scale of its uncertain part increases, a weighted maxmin decision

maker behaves as if he is more pessimistic and puts a larger weight on the worst expected

utility. Similarly, lim
t→∞

σ(kϕ + t1) being weakly increasing in k on (0,∞) suggests that when

the baseline utility of an act is sufficiently high, if the scale of its uncertain part increases,

a variant constraint decision maker behaves as if he is more cautious and considers a larger

neighborhood of priors around the essential set.

Analogous characterizations can be obtained for preferences displaying increasing abso-

lute ambiguity aversion: Theorem 3 holds if Axiom A.2.1 is replaced by A.2.2 and t by −t.

Since Axiom A.2.3 is equivalent to the combination of Axioms A.2.1 and A.2.2, then we

further obtain the characterizations for preferences displaying constant absolute ambiguity

aversion.

Corollary 3. Let a preference relation % be given. The following statements are equivalent.

1. The preference relation % satisfies Axioms A.1, A.2.3, A.3, A.4, A.5.1, and A.6.

2. The preference relation % admits a weighted maxmin representation 〈u,D, λ〉 such

that λ ∈ Λ(D), and for each ϕ ∈ RS , λ(ϕ + t1) is constant in t, and lim
k→∞

λ(kϕ) = 1.

3. The preference relation % admits a variant constraint representation 〈u,K, σ〉 such

that σ ∈ Σ̄(K), and for each ϕ ∈ RS , σ(ϕ + t1) is constant in t, and lim
k↘0

σ(kϕ) = 0.

4. The preference relation % admits an ambiguity averse representation 〈u,G〉 such that

for each p ∈ ∆, G(t, p) − t is constant in t.

Moreover, 〈u,D, λ〉 is a canonical weighted maxmin representation, 〈u,K, σ〉 is a canonical

variant constraint representation, and for each ϕ ∈ RS , λ(kϕ) and σ(kϕ) weakly increase in

k on (0,∞).

As shown by Corollary 3, constant absolute ambiguity aversion implies that the weight

put on the worst expected utility by a weighted maxmin decision maker is independent of the
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baseline utility of an act, and so is the size of the neighborhood of the essential set considered

by a variant constraint decision maker.

It is known that constant absolute ambiguity aversion implies increasing relative ambi-

guity aversion under the other axioms. Corollary 3 shows that as the scale of an (uncertain)

act increases, it is as if that a weighted maxmin decision maker puts a larger weighted on the

worst expected utility and a variant constraint decision makers considers a larger neighbor-

hood of the essential set.

The equivalence of statements 1 and 4 in Corollary 3 partially reproduces some existing

results in the literature. Maccheroni, Marinacci and Rustichini (2006) propose a weak cer-

tainty independence axiom and call a preference relation a variational preference relation
if it satisfies Axioms A.1, A.3 - A.6, and weak certainty independence. They show that a

preference relation is a variational preference relation if and only if there exist an affine onto

function u : X → R and a lower semicontinuous convex function c : ∆ → [0,∞] with

min
p∈∆

c(p) = 0 such that

f % g ⇐⇒ min
p∈∆

[Epu( f ) + c(p)] ≥ min
p∈∆

[Epu(g) + c(p)]. (17)

Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011) show that this represen-

ation amounts to an ambiguity averse representation 〈u,G〉 in which G is additively sepa-

rable.19 Since weak certainty independence is known to be equivalent to constant absolute

ambiguity aversion under the other axioms,20 our result can be expected for G is additively

separable if for each p ∈ ∆, G(t, p) − t is constant in t.

We close this subsection by providing a differential characterization of the smallest ad-

missible set for preferences displaying decreasing absolute ambiguity aversion. Let a pref-

erence relation % be given. Following Rigotti, Shannon and Strazalecki (2008), define a

correspondence π : F ⇒ ∆ by setting for each f ∈ F ,

π( f ) = {p ∈ ∆|
∑
s∈S

ps f (s) %
∑
s∈S

psg(s) =⇒ f % g}. (18)

It is interpreted that the set π( f ) consists of all the prior beliefs that rationalize the choice

of f over other acts (see Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011)).

These beliefs are used in the study of ambiguity averse preferences and their applications
19See their Proposition 12.
20Grant and Polak (2013) show the equivalence under Axioms A.1 and A.3, and a weaker version of Axioms

A.4 and A.6.
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(see e.g., Rigotti, Shannon and Strazalecki (2008) and Lang (2016)). Mathematically, they

correspond to the supporting hyperplanes of the upper contour set of f .

For a general preference relation satisfying Axioms A.1 - A.4, A.5.1, and A.6, Cerreia-

Vioglio, Maccheroni, Marinacci and Montrucchio (2011) show that D∗ = cl(co(∪ f∈F π( f ))).

Thus, by our Corollary 1, cl(co(∪ f∈F π( f ))) is the smallest admissible set. Proposition 5

strengthens this result for preferences displaying decreasing absolute ambiguity aversion.

Proposition 5. Suppose that a preference relation % satisfies Axioms A.1, A.2.1, A.3, A.4,

A.5.1, and A.6. Let 〈u,D, λ〉 a canonical weighted maxmin representation of the preference

relation % . Then, for each x ∈ X, D = cl(co(∪ f∼xπ( f ))).

Thus, to identify the smallest admissible set, it suffices to find the collection of beliefs

that rationalize the decision maker’s choices of the acts that lie on the same indifference

curve.

For each x ∈ X, the set π(x) is interpreted as the set of beliefs that rationalize the choice

of the constant act x over ambiguous acts. GM-ambiguity aversion is equivalent to the non-

emptyness of ∩x∈Xπ(x) (see e.g., Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and

Siniscalchi (2011)). By Theorem 2, it can be readily seen that if a preference relation satisfies

Axioms A.1 - A.4, A.5.2, and A.6, then the largest essential set is ∩x∈Xπ(x).

Assuming that X is a set of simple lotteries over R, Lang (2016) proposes definitions,

for an ambiguity averse preference, to distinguish between first-order and second-order am-

biguity aversion at a wealth level w ∈ R. Lang (2016) characterizes second-order ambiguity

aversion at w by π(w) being a singleton. In view of Lang (2016)’s result, for an ambiguity

averse preference that exhibits second-order ambiguity aversion at each w ∈ R, it admits a

canonical variant constraint representation only if there is p ∈ ∆ such that for each w ∈ R,

π(w) = {p}. In this case, the largest essential set is exactly the singleton {p}.

4.3 Comparison with other definitions

Based on a notion of comparative “dispersion”, Chambers, Grant, Polak and Quiggin (2014)

also propose the definitions of decreasing, increasing and constant absolute ambiguity aver-

sion. According to them, an act f is considered at least as dispersed as an act g, denoted

by f � g, if there exist x ∈ X and λ ∈ [0, 1] such that g = λ f + (1 − λ)x. They say that

a preference relation % displays decreasing (increasing) absolute ambiguity aversion if for
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each pair f , g ∈ F with f � g, each pair x, y ∈ X with y % x (x % y), and each α ∈ (0, 1),

α f + (1 − α)x % αg + (1 − α)x

⇒ α f + (1 − α)y % αg + (1 − α)y. (19)

They say that a preference relation satisfies constant absolute ambiguity aversion if it satisfies

both their decreasing and increasing absolute ambiguity aversion.

Since for each f ∈ F and each z ∈ X, f � z, then their decreasing absolute ambiguity

aversion is stronger than ours. If we apply their definition, we could get similar result as

Theorem 3 with modified monotonicity conditions of λ, σ and G.21 This is also the case for

increasing absolute ambiguity aversion. As for constant absolute ambiguity aversion, it turns

out that their seemingly stronger definition is in fact equivalent to Axiom A.2.3.

Proposition 6. Suppose that a preference relation % satisfies A.1 - A.4 and A.6. Then for

each pair f , g ∈ F with f � g, each pair x, y ∈ X, and each α ∈ (0, 1), (19) holds if and only

if the preference relation satisfies Axiom A.2.3.

The validity of our axioms can be seen from their implications in the smooth ambigu-

ity model of Klibanoff, Marinacci and Mukerji (2005). A preference relation % admits a

smooth ambiguity representation is if there exist an affine onto function u : X → R, a strictly

increasing function φ : R → R, a countably additive Borel probability measure µ over ∆

such that for each pair f , g ∈ F ,

f % g⇔
∫

p∈∆

φ(Epu( f ))dµ(p) ≥
∫

p∈∆

φ(Epu(g))dµ(p). (20)

We denote such a representation by 〈u, φ, µ〉.

Klibanoff, Marinacci and Mukerji (2005) show that in this model “attitudes towards pure

risk are characterized by the shape of u, as usual, while attitudes towards ambiguity are

characterized by the shape of φ,” and “one advantage of this model is that the well-developed

machinery for dealing with risk attitudes can be applied as well to ambiguity attitudes.”

21If a preference relation % satisfies Axioms A.1 - A.4, and A.6, then there exist an affine and onto function

u : X → R, and an increasing and continuous functional I : RS → R such that f % g ⇐⇒ I(u( f )) ≥ I(u(g)).

Their decreasing absolute ambiguity aversion amounts to that for each pair ϕ, ϕ′ ∈ RS , if ϕ′ = λϕ+ (1−λ)t′ for

some λ ∈ [0, 1] and some t′ ∈ R, and if I(ϕ) = I(ϕ′), then for each t > 0, I(ϕ + t1) ≥ I(ϕ′ + t1), which means

for example in the weighted maxmin representation that λ(ϕ + t1) ≤ λ(ϕ′ + t1).
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We focus on the case where φ is concave so that 〈u, φ, µ〉 represents a preference relation

satisfying S-ambiguity aversion. In this case, our definitions of decreasing and increasing

absolute ambiguity aversion correspond exactly to the usual monotonicity properties of the

Arrow-Pratt coefficient of absolute risk aversion of φ (Arrow (1963), Pratt (1964)).

Proposition 7. Fix an affine onto function u : R→ R and a strictly increasing concave and

twice differentiable function φ : R → R. Let P be the collection of preferences represented

by 〈u, φ, µ〉 for some countably additive Borel probability measure µ on ∆. Then, for each

preference relation in P, Axiom A.2.1 (A.2.2) is satisfied if and only if φ displays decreasing

(increasing) absolute risk aversion, i.e., −φ
′′

φ′
is weakly decreasing (increasing).

Since variational preferences are those displaying constant absolute ambiguity aversion,

as a corollary of Proposition 7, we obtain the following result of Cerreia-Vioglio, Mac-

cheroni, Marinacci and Montrucchio (2011) (see their Theorem 23).

Corollary 4 (Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011)). Let u :

X → R be an affine onto function and φ : R→ R a strictly increasing and concave function.

The triplet 〈u, φ, µ〉 represents a variational preference relation for all countably additive

Borel probability measures µ on ∆ if and only if φ displays constant absolute risk aversion.

Cherbonnier and Gollier (2015) propose a definition of decreasing aversion under am-

biguity in the smooth ambiguity model. They assume that the decision maker with initial

wealth z ∈ R+ is facing N possible monetary lotteries (x̃1, ..., x̃N). For each n ∈ {1, ...,N},

x̃n occurs with probability qn. The value function of the decision maker obeys the smooth

ambiguity rule:

N∑
n=1

qnφ(Eu(z + x̃n)), (21)

where φ is strictly increasing and concave. According to them, the decision maker exhibits

decreasing aversion if

φ−1(
N∑

n=1

qnφ(Eu(z + x̃n))) = u(z)

⇒

n∑
n=1

qnφ
′(Eu(z + x̃n))Eu′(z + x̃n) ≥ φ′(u(z))u′(z). (22)
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The key difference between their definition and ours is that their definition does not dis-

tinguish the effect of wealth on risk aversion and ambiguity aversion, while ours captures

the effect only on ambiguity aversion. More precisely, their definition says that an ambigu-

ous lottery becomes more desirable at a higher monetary wealth level, while our axioms

essentially says that it becomes more desirable at a higher baseline utility level. When the

comparison of behavior is based on the change in baseline utilities, we do not confound the

wealth effect on risk aversion with that on ambiguity aversion.

Indeed, they show that (22) holds if and only if both u and φ◦u exhibit decreasing concav-

ity, where u, according to Klibanoff, Marinacci and Mukerji (2005), summarizes the decision

maker’s risk attitude. Instead, as shown in Proposition 7, our Axiom A.2.1 corresponds only

to the decreasing concavity of φ, the measure of the ambiguity attitude.

Cherbonnier and Gollier (2015) also provide an analogous definition for decreasing aver-

sion in the α-maxmin expected utility model studied by Ghirardato, Maccheroni and Mari-

nacci (2004). That is,

αmin
n

Eu(z + x̃n) + (1 − α) max
n

Eu(z + x̃n) ≤ u(z)

⇒ ∀z′ ≤ z, αmin
n

Eu(z′ + x̃n) + (1 − α) max
n

Eu(z′ + x̃n) ≤ u(z′). (23)

While the weight α is fixed, their definition only imposes restriction on the function u which,

according to Ghirardato, Maccheroni and Marinacci (2004), describes one’s risk attitude.

In contrast, our axiom captures decreasing aversion towards ambiguity, which is reflected

by assigning less weight on the worst expected utility as the baseline utility increases (see

Theorem 3).

Focusing also on the effect of changing monetary wealth, Cerreia-Vioglio, Maccheroni,

and Marinacci (2017) provide a definition of decreasing/increasing absolute ambiguity aver-

sion in a general setting in which X is assumed to be a set of monetary lotteries. Given a

lottery x and a wealth level w, the transformed lottery at w, xw, is defined as a lottery that

yields a payoff of c + w with the same probability as x yields c. Intuitively, xw is the “real”

lottery faced by a decision maker at the wealth level w. Given a preference relation % and a

wealth level w, they define the induced preference relation % w at w as a preference relation

that ranks acts as the initial preference relation % ranks “real” acts that yield in each state

transformed lotteries at w. Then, in terms of the notion of comparative ambiguity aversion

by Ghirardato and Marinacci (2002), a preference relation % is said to display decreasing

absolute ambiguity aversion if for each pair w,w′ with w′ > w, % w is more ambiguity averse
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than % w′ .

One implication of their definition is that if a preference relation displays decreasing

absolute ambiguity aversion, then it must display constant absolute risk aversion. Their def-

inition does not allow, for example, a decision maker to exhibit both decreasing absolute

ambiguity aversion and decreasing absolute risk aversion. In contrast, our definition does

not impose restriction on a decision maker’s risk attitude and captures the changing pattern

of ambiguity aversion with respect to the increase in baseline utility level. Thus, we can

accommodate the possibility that a decision maker exhibits both decreasing absolute ambi-

guity aversion and decreasing absolute risk aversion. In case a decision maker is risk neutral,

their definition has the same implication as ours on the representations, since the change in

monetary wealth translates directly to the change in baseline utility.

5 Conclusion

In this paper, we study two extensions of the well-known MEU decision rule to accommo-

date a decision maker’s changing ambiguity attitude: a weighted maxmin rule and a variant

constraint rule. Due to the non-uniqueness of their representations, we are interested in find-

ing canonical representations of the two rules in terms of the smallest admissible set and

the largest essential set respectively. We characterize a class of preferences that admits a

canonical weighted maxmin representation as well as a class that admits a canonical variant

constraint representation. The first class of preferences exhibits S-ambiguity aversion while

the second exhibits GM-ambiguity aversion. In the second part of this paper, we study the

wealth effect under ambiguity. We propose axioms of decreasing (increasing and constant)

absolute and relative ambiguity aversion. Representations are provided for the subclass of

ambiguity averse preferences displaying decreasing (increasing and constant) absolute am-

biguity aversion. The monotonic pattern of changing ambiguity aversion is reflected in a

intuitive way in both the weighted maxmin representation and the variant constraint repre-

sentation.
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6 Appendix: proofs

We denote by N the set of positive integers. For each ϕ ∈ RS , let ϕ∗ = max
s∈S

ϕ(s) and

ϕ∗ = min
s∈S

ϕ(s). We say that I : RS → R is normalized if for each t ∈ R, I(t1) = t; I is

monotonic if for each pair ϕ, ϕ′ ∈ RS with ϕ ≤ ϕ′, I(ϕ) ≤ I(ϕ′); I is constant superadditive

if for each ϕ ∈ RS and each t ∈ R+, I(ϕ + t1) ≥ I(ϕ) + t; I is constant additive if for each

ϕ ∈ RS and each t ∈ R, I(ϕ + t1) = I(ϕ) + t; I is superadditive if for each ϕ, ϕ′ ∈ RS ,

I(ϕ + ϕ′) ≥ I(ϕ) + I(ϕ′).

6.1 Proofs in Section 3

Lemma 1. A preference relation satisfies Axioms A.1 - A.4 and A.6 if and only if there exist

an affine onto function u : X → R and a normalized, monotonic, and continuous functional

I : RS → R such that for each pair f , g ∈ F , f % g ⇐⇒ I(u( f )) ≥ I(u(g)). Moreover, u

is unique up to a positive affine transformation, and given u, there is a unique normalized

functional I : RS → R such that for each pair f , g ∈ F , f % g⇔ I(u( f )) ≥ I(u(g)).

Proof. Let a preference relation % satisfying Axioms A.1 - A.4 and A.6 be given. Note

that A.6 implies the non-degeneracy axiom: There are f , g ∈ F such that f � g. Applying

the same argument in Lemma 28 of Marinacci, Maccheroni and Rustichini (2006), it can be

shown that there exist a non-constant affine function u : X → R and a normalized monotonic

functional I : u(X)S → R such that for each pair f , g ∈ F , f % g ⇐⇒ I(u( f )) ≥ I(u(g)).

Since the preference relation satisfies A.6, by Lemma 29 of Marinacci, Maccheroni and

Rustichini (2006), u(X) = R. Since the preference relation satisfies A.3, by Proposition 43 of

Cerreia-Vioglio, Maccheroni, Marinacci and Siniscalchi (2011), I is lower-semicontinuous.

By an analogous argument, I is also upper semicontinuous.

The proof of the “if” direction can be readily seen and thus is omitted. The uniqueness

property follows from routine arguments. �

Proof of Proposition 1. Let a preference relation % satisfying A.1 - A.4 and A.6 be given.

By Lemma 1, there exist an affine onto function u : X → R and a normalized, monotonic, and

continuous functional I : RS → R such that for each pair f , g ∈ F , f % g ⇐⇒ I(u( f )) ≥

I(u(g)).

By Propositions 1 and 2 of Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci and
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Siniscalchi (2011)22, there exist a non-empty closed convex set D ⊆ ∆ such that for each

pair f , g ∈ F ,

f % ∗g ⇐⇒ for each p ∈ D, Epu( f ) ≥ Epu(g).

Let λ : RS → R be defined by setting for each ϕ ∈ RS ,

λ(ϕ) :=


max
p∈D

Epϕ − I(ϕ)

max
p∈D

Epϕ −min
p∈D

Epϕ
if min

p∈D
Epϕ , max

p∈D
Epϕ,

1 if min
p∈D

Epϕ = max
p∈D

Epϕ.

It can be readily verified that for each ϕ ∈ RS ,

I(ϕ) = λ(ϕ) min
p∈D

Epϕ + (1 − λ(ϕ)) max
p∈D

Epϕ.
23

Thus,

f % g ⇐⇒ λ(u( f )) min
p∈D

Epu( f ) + (1 − λ(u( f ))) max
p∈D

Epu( f )

≥λ(u(g)) min
p∈D

Epu(g) + (1 − λ(u(g))) max
p∈D

Epu(g).

Moreover, since I is continuous, then λ is continuous on {ϕ ∈ RS |min
p∈D

Epϕ , max
p∈D

Epϕ}.

Hence, 〈u,D, λ〉 is a Bewley weighted maxmin representation of the preference relation %

by definition.

Conversely, let % be a preference relation that admits a Bewley weighted maxmin rep-

resentation 〈u,D, λ〉. Clearly, the preference relation satisfies A.1. Since u is affine, the

preference relation satisfies A.2. To see that A.3 is satisfied, let f , g, h ∈ F , α ∈ [0, 1], and

let {αn}∞n=1 be a sequence of elements in [0, 1] such that lim
n→∞

αn = α. Suppose that for each

n ∈ N, αn f + (1 − αn)g % h. We want to show that α f + (1 − α)g % h. Let I : RS → R be

defined by setting for each ϕ ∈ RS ,

I(ϕ) := λ(ϕ) min
p∈D

Epϕ + (1 − λ(ϕ)) max
p∈D

Epϕ.

It suffices to show that lim
n→∞

I(αnu( f ) + (1 − αn)u(g)) = I(αu( f ) + (1 − α)u(g)). Suppose

that min
p∈D

Ep[αu( f ) + (1 − α)u(g)] , max
p∈D

Ep[αu( f ) + (1 − α)u(g)]. Then, λ is continuous at

22See also Propositions 4 and 5 of Ghirardato, Maccheroni and Marinacci (2004).
23See also Proposition 5 of Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci and Siniscalchi (2011).
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αu( f ) + (1−α)u(g), and thus lim
n→∞

I(αnu( f ) + (1−αn)u(g)) = I(αu( f ) + (1−α)u(g)). Suppose

that min
p∈D

Ep[αu( f )+(1−α)u(g)] = max
p∈D

Ep[αu( f )+(1−α)u(g)]. Then, I(αu( f )+(1−α)u(g)) =

min
p∈D

Ep[αu( f ) + (1 − α)u(g)] = lim
n→∞

min
p∈D

Ep[αnu( f ) + (1 − αn)u(g)] = lim
n→∞

max
p∈D

Ep[αnu( f ) +

(1 − αn)u(g)]. Thus, lim
n→∞

I(αnu( f ) + (1 − αn)u(g)) = I(αu( f ) + (1 − α)u(g)), as desired.

To see that the preference relation satisfies A.4, let f , g ∈ F be such that for each s ∈ S ,

f (s) % g(s). Thus, u( f ) ≥ u(g), and hence for each p ∈ D, Epu( f ) ≥ Epu(g). By the

definition of a Bewley weighted maxmin representation, f % ∗g, which implies f % g, as

desired. Lastly, since u is onto, by Lemma 29 of Marinacci, Maccheroni and Rustichini

(2006), the preference relation satisfies A.6.

To show the uniqueness of the representation, let 〈u,D, λ〉 and 〈u′,D′, λ′〉 be two Bewley

weighted maxmin representations of the preference relation % . Since both u and u′ are

affine functions representing the preference relation restricted to X, by a routine argument,

u′ is a positive affine transformation of u. By Proposition 5 of Ghirardato, Maccheroni and

Marinacci (2004), D = D′. Lastly, suppose that u = u′. Let ϕ ∈ RS be such that l(ϕ; D) , 0,

i.e., max
p∈D

Epϕ , min
p∈D

Epϕ. Let f ∈ F be such that u( f ) = ϕ. Since both 〈u,D, λ〉 and

〈u′,D′, λ′〉 are weighted maxmin representations of the preference relation % , then

u(x f ) = λ(u( f )) min
p∈D

Epu( f ) + (1 − λ(u( f ))) max
p∈D

Epu( f ), (24)

and

u′(x f ) = λ(u′( f )) min
p∈D′

Epu′( f ) + (1 − λ(u′( f ))) max
p∈D′

Epu′( f ). (25)

Since u = u′, u( f ) = ϕ, and D = D′, then by (24) and (25),

λ(ϕ) min
p∈D

Epϕ + (1 − λ(ϕ)) max
p∈D

Epϕ = λ′(ϕ) min
p∈D

Epϕ + (1 − λ′(ϕ)) max
p∈D

Epϕ.

Since max
p∈D

Epϕ , min
p∈D

Epϕ, then λ(ϕ) = λ′(ϕ), as desired. �

Proof of Theorem 1. Let a preference relation % be given. To show the “only if” direction,

suppose that the preference relation % satisfies Axioms A.1 - A.6. By Proposition 1, the

preference relation % admits a Bewley weighted maxmin representation 〈u,D, λ〉. We show

that D is the smallest admissible set.

By Theorems 3 and 5 of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

(2011), the preference relation % admits an ambiguity averse representation 〈v,G〉, where

G : R × ∆→ (−∞,∞] is given by, for each (t, p) ∈ R × ∆,

G(t, p) = sup{v(x f )| f ∈ F , Epv( f ) ≤ t}. (26)
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Recall that, defined in (5), D∗ = cl({p ∈ ∆|G(t, p) < ∞ for some t ∈ R}). By Theorem 10

of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011), D = D∗. Thus, it is

equivalent to show that D∗ is the smallest admissible set.

Let 〈u′,D′, λ′〉 be another weighted maxmin representation of the preference relation

% , and we want to show that D∗ ⊆ D′. Suppose to the contrary that D∗ * D′. Since D′

is closed, there is q ∈ ∆ \ D′ such that G(t, q) < ∞ for some t ∈ R. Since q < D′, by a

standard separation theorem, there is ϕ ∈ RS such that Eqϕ < 0 < min
p∈D′

Epϕ. Since v, u′

are affine functions that represent the preference relation % restricted to X, by a routine

argument, v is a positive affine transformation of u′. Without loss of generality, we assume

that v = u′. Let x ∈ X be such that v(x) = t. Since Eqv(x) = t, by (26), G(t, q) ≥ v(x) = t.

Let n ∈ N be such that Eqnϕ < t ≤ G(t, q) < min
p∈D′

Epnϕ. Let g ∈ F be such that v(g) = nϕ.

On one hand, since Eqv(g) = Eqnϕ < t, by (26), v(xg) ≤ G(t, q). On the other hand, since

G(t, q) < min
p∈D′

Epnϕ, then G(t, q) < min
p∈D′

Epv(g) = min
p∈D′

Epu′(g) ≤ λ′(u′(g)) min
p∈D′

Epu′(g) + (1 −

λ′(u′(g))) max
p∈D′

Epu′(g) = u′(xg) = v(xg), which contradicts v(xg) ≤ G(t, q). Hence, D∗ ⊆ D′,

as desired.

We complete the proof of the “only if” direction by showing that λ ∈ Λ(D). Define

I : RS → R by setting for each ϕ ∈ RS ,

I(ϕ) = λ(ϕ) min
p∈D

Epϕ + (1 − λ(ϕ)) max
p∈D

Epϕ. (27)

Since 〈u,D, λ〉 is a Bewley weighted maxmin representation of the preference relation % ,

then by the proof of Proposition 1, I is monotonic and continuous. Let ϕ, ϕ′ ∈ RS . Suppose

that ϕ′ ≥ ϕ. Since I is monotonic, then I(ϕ′) ≥ I(ϕ), and thus, (3) holds. Suppose that ϕ, ϕ′

satisfy (3), and let ϕ′′ := ϕ+ϕ′

2 . Since ϕ, ϕ′ satisfy (3), then I(ϕ′) ≥ I(ϕ). Since I is monotonic

and continuous, there is t ∈ R+ such that I(ϕ′− t1) = I(ϕ). Let f , g ∈ F be such that u( f ) = ϕ

and u(g) = ϕ′− t1. Then, f ∼ g. By Axiom A.5, 1
2 f + 1

2g % f . Thus, I(1
2ϕ+ 1

2 (ϕ′− t1)) ≥ I(ϕ).

Since I is monotonic, then I(1
2ϕ+ 1

2ϕ
′) ≥ I( 1

2ϕ+ 1
2 (ϕ′−t1)). Thus, I(ϕ′′) ≥ I(ϕ), which implies

that (4) holds.

To show the “if” direction, suppose that the preference relation % admits a canonical

weighted maxmin representation 〈u,D, λ〉 with λ ∈ Λ(D). It can be readily seen that the

preference relation satisfies Axioms A.1, A.2, A.4 and A.6. To show that it satisfies Axiom

A.3, it suffices to show that the functional I defined in (27) is continuous. Let ϕ ∈ RS

and {ϕn}
∞
n=1 be a sequence of elements in RS such that lim

n→∞
ϕn = ϕ. Then, lim

n→∞
min
p∈D

Epϕn =

min
p∈D

Epϕ and lim
n→∞

max
p∈D

Epϕn = max
p∈D

Epϕ. If l(ϕ; D) > 0, then λ is continuous at ϕ, and thus
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lim
n→∞

I(ϕn) = I(ϕ). If l(ϕ; D) = 0, then lim
n→∞

min
p∈D

Epϕn = lim
n→∞

max
p∈D

Epϕn = min
p∈D

Epϕ, and thus

lim
n→∞

I(ϕn) = min
p∈D

Epϕ = I(ϕ).

Lastly, to show the uniqueness of the representation, let 〈u,D, λ〉 and 〈u′,D′, λ′〉 be two

canonical weighted maxmin representations of the preference relation % . Since both D and

D′ are the smallest admissible set, then D = D′. By the proof of the “if” direction of the

characterization, both D and D′ are the Bewley set, so that both 〈u,D, λ〉 and 〈u′,D′, λ′〉 are

Bewley weighted maxmin representations of the preference relation % . Thus, the unique-

ness property follows from Proposition 1. �

Proposition 8. The preference relation % in Example 2 admits a Bewley weighted maxmin

representation but not a canonical weighted maxmin representation.

Proof of Proposition 8. We first prove that the preference relation % admits a Bewley

weighted maxmin representation. By Proposition 1, it suffices to show that the preference

relation% satisfies Axioms A.1 - A.4 and A.6. Clearly, it satisfies A.1. Since for each x ∈ X,

V(x) = x, then it satisfies Axioms A.2 and A.6.

To show that the preference relation satisfies Axiom A.3, it suffices for us to prove the

continuity of V . Let f ∈ RS and { f n}∞n=1 be a sequence of elements in RS that converges to

f . We check that lim
n→∞

V( f n) = V( f ) in each of the following two cases.

Case 1: max{ f (1), f (2)} , f (3). Suppose that max{ f (1), f (2)} < f (3). Then, V( f ) =

min
p∈D1

Ep f . Moreover, for sufficiently large n, max{ f n(1), f n(2)} < f n(3), so V( f n) = min
p∈D1

Ep f n.

Hence, lim
n→∞

V( f n) = lim
n→∞

min
p∈D1

Ep f n = min
p∈D1

Ep f = V( f ). Similarly, when max{ f (1), f (2)} >

f (3), it can be shown that lim
n→∞

V( f n) = V( f ).

Case 2: max{ f (1), f (2)} = f (3). Suppose that f (1) < f (2). Then, f (2) = f (3). Let

p′′ := ( 2
3 ,

1
6 ,

1
6 ) as in Example 2. Note that p′′ ∈ D2, and for each p ∈ D2, p1 ≤ p′′1 since

1
6
≥ (p1 −

1
3

)2 + (p2 −
1
3

)2 + (p3 −
1
3

)2 ≥ (p1 −
1
3

)2 + 2(
1 − p1

2
−

1
3

)2 =
3
2

(p1 −
1
3

)2. (28)

Since f (1) < f (2) = f (3), then V( f ) = min
p∈D2

Ep f = Ep′′ f = Ep′ f . For sufficiently large n,

f n(1) < f n(2), so either V( f n) = min
p∈D1

Ep f n = Ep′ f n or V( f n) = min
p∈D2

Ep f n. Since lim
n→∞

Ep′ f n =

Ep′ f = V( f ) and lim
n→∞

min
p∈D2

Ep f n = min
p∈D2

Ep f = V( f ), then lim
n→∞

V( f n) = V( f ). Similarly,

when f (1) > f (2), it can be shown that lim
n→∞

V( f n) = V( f ). Suppose that f (1) = f (2).

Then, f is a constant act, so lim
n→∞

min
p∈D1

Ep f n = lim
n→∞

min
p∈D2

Ep f n = V( f ). Since for each n, either

V( f n) = min
p∈D1

Ep f n or V( f n) = min
p∈D2

Ep f n, then lim
n→∞

V( f n) = V( f ).
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To show that the preference relation satisfies Axiom A.4, let f , g ∈ RS be such that f ≥ g.

We check that V( f ) ≥ V(g) in each of the following three cases.

Case 1: Either max{ f (1), f (2)} < f (3) and max{g(1), g(2)} < g(3), or max{ f (1), f (2)} ≥

f (3) and max{g(1), g(2)} ≥ g(3). Then, either V( f ) = min
p∈D1

Ep f and V(g) = min
p∈D1

Epg, or

V( f ) = min
p∈D2

Ep f and V(g) = min
p∈D2

Epg. Since f ≥ g, then V( f ) ≥ V(g) in either scenario.

Case 2: max{ f (1), f (2)} < f (3) and max{g(1), g(2)} ≥ g(3). Then, V( f ) = min
p∈D1

Ep f and

V(g) = min
p∈D2

Epg. Let f ′ ∈ RS be such that

f ′(1) = f (1), f ′(2) = f (2), f ′(3) = max{ f (1), f (2)}.

Since max{ f (1), f (2)} < f (3), then f ′(3) < f (3), and thus f ′ ≤ f . Since f ≥ g, then

f ′(3) = max{ f (1), f (2)} ≥ max{g(1), g(2)} ≥ g(3), and thus f ′ ≥ g. Consider the sequence

{ 1n f + n−1
n f ′}∞n=1 of elements ofRS . For each n, since max{ 1n f (1)+ n−1

n f ′(1), 1
n f (2)+ n−1

n f ′(2)} =

max{ f (1), f (2)} < 1
n f (3) + n−1

n f ′(3), then V( 1
n f + n−1

n f ′) = min
p∈D1

Ep(1
n f + n−1

n f ′). As shown

before, V is continuous, so V( f ′) = lim
n→∞

V(1
n f + n−1

n f ′) = lim
n→∞

min
p∈D1

Ep( 1
n f + n−1

n f ′) = min
p∈D1

Ep f ′.

Since f ′ ≤ f , then min
p∈D1

Ep f ′ ≤ min
p∈D1

Ep f , and thus V( f ′) ≤ V( f ). Since max{ f ′(1), f ′(2)} =

f ′(3) and f ′ ≥ g, then V( f ′) = min
p∈D2

Ep f ′ ≥ min
p∈D2

Epg = V(g). Since V( f ) ≥ V( f ′) ≥ V(g),

then V( f ) ≥ V(g).

Case 3: max{ f (1), f (2)} ≥ f (3) and max{g(1), g(2)} < g(3). Then, V( f ) = min
p∈D2

Ep f and

V(g) = min
p∈D1

Epg. Let f ′ ∈ RS be such that

f ′(1) =

 f (3) if f (1) ≥ f (2),

f (1) if f (1) < f (2),
f ′(2) =

 f (2) if f (1) ≥ f (2),

f (3) if f (1) < f (2),
f ′(3) = f (3).

Since max{ f (1), f (2)} ≥ f (3), then f ′(1) ≤ f (1) and f ′(2) ≤ f (2), and thus f ′ ≤ f . By

the definition of f ′, max{ f ′(1), f ′(2)} ≥ f ′(3). Thus, V( f ′) = min
p∈D2

Ep f ′. Since f ′ ≤ f , then

min
p∈D2

Ep f ′ ≤ min
p∈D2

Ep f . Hence, V( f ′) ≤ V( f ). Let g′ ∈ RS be such that

g′(1) =

g(3) if f (1) ≥ f (2),

g(1) if f (1) < f (2),
g′(2) =

g(2) if f (1) ≥ f (2),

g(3) if f (1) < f (2),
g′(3) = g(3).

Since f ≥ g, then f ′ ≥ g′. Since max{g(1), g(2)} < g(3), then g′ ≥ g and

max{g′(1), g′(2)} = g′(3). Thus, V( f ′) = min
p∈D2

Ep f ′ ≥ min
p∈D2

Epg′ = V(g′). Con-

sider the sequence { 1ng + n−1
n g′}∞n=1 of elements of RS . Since max{g(1), g(2)} < g(3),
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then for each n, max{ 1ng(1) + n−1
n g′(1), 1

ng(2) + n−1
n g′(2)} < 1

ng(3) + n−1
n g′(3), and

thus, V( 1
ng + n−1

n g′) = min
p∈D1

Ep( 1
ng + n−1

n g′). As shown before, V is continuous, so

V(g′) = lim
n→∞

V( 1
ng + n−1

n g′) = lim
n→∞

min
p∈D1

Ep( 1
ng + n−1

n g′) = min
p∈D1

Epg′. Since g′ ≥ g, then

min
p∈D1

Epg′ ≥ min
p∈D1

Epg. Thus, V(g′) ≥ V(g). Since V( f ) ≥ V( f ′) ≥ V(g′) ≥ V(g), then

V( f ) ≥ V(g).

Next, we prove that the preference relation % does not admit a canonical weighted

maxmin representation. Suppose to the contrary that 〈u,D, λ〉 is a canonical weighted

maxmin representation of the preference relation % . Let D3 := {p ∈ ∆|p3 ≥
1
4 }. We

shall show that both D2 and D3 are admissible sets of priors for the preference relation %.

Let f ∈ RS . We check that V( f ) ≤ max
p∈D2

Ep f and V( f ) ≤ max
p∈D3

Ep f . Suppose that

f (1) ≤ f (2) < f (3). Then, V( f ) = min
p∈D1

Ep f = Ep′ f ≤ Ep∗ f . Similarly, if f (2) < f (1) < f (3),

V( f ) ≤ Ep∗ f . Suppose that max{ f (1), f (2)} ≥ f (3). Then, V( f ) = min
p∈D2

Ep f . Since p∗ ∈ D2,

then V( f ) ≤ Ep∗ f . In all cases, V( f ) ≤ Ep∗ f , and since p∗ ∈ D2 ∩ D3, then V( f ) ≤ max
p∈D2

Ep f

and V( f ) ≤ max
p∈D3

Ep f .

We now check that V( f ) ≥ min
p∈D2

Ep f . Suppose that f (1) ≤ f (2) < f (3). Then, V( f ) =

min
p∈D1

Ep f = Ep′ f ≥ Ep′′ f . Since p′′ ∈ D2, then V( f ) ≥ min
p∈D2

Ep f . Similarly, if f (2) < f (1) <

f (3), V( f ) ≥ min
p∈D2

Ep f . Lastly, if max{ f (1), f (2)} ≥ f (3), V( f ) = min
p∈D2

Ep f . In all cases,

V( f ) ≥ min
p∈D2

Ep f .

We then check that V( f ) ≥ min
p∈D3

Ep f . Suppose that max{ f (1), f (2)} < f (3). Then,

V( f ) = min
p∈D1

Ep f . Since D1 ⊆ D3, V( f ) ≥ min
p∈D3

Ep f . Suppose that f (3) < min{ f (1), f (2)}.

Then, V( f ) = min
p∈D2

Ep f ≥ f (3) = min
p∈D3

Ep f . Suppose that f (1) ≤ f (3) ≤ f (2). Then,

V( f ) = min
p∈D2

Ep f . Recall that for each p ∈ D2, by (28), p1 ≤
2
3 . Thus, for each p ∈ D2,

p1 < 3
4 so that Ep f ≥ 3

4 f (1) + 1
4 f (3). Since (3

4 , 0,
1
4 ) ∈ D3, then min

p∈D2
Ep f ≥ min

p∈D3
Ep f .

Hence, V( f ) ≥ min
p∈D3

Ep f . Similarly, if f (2) ≤ f (3) ≤ f (1), V( f ) ≥ min
p∈D3

Ep f . In all cases,

V( f ) ≥ min
p∈D3

Ep f .

Define the function λ2 : RS → R by setting for each f ∈ RS ,

λ2( f ) :=


max
p∈D2

Ep f − V( f )

max
p∈D2

Ep f −min
p∈D2

Ep f
if min

p∈D2
Ep f , max

p∈D2
Ep f ,

1 if min
p∈D2

Ep f = max
p∈D2

Ep f .

For each f ∈ RS , we have just checked that V( f ) ∈ [min
p∈D2

Ep f ,max
p∈D2

Ep f ], so λ2( f ) ∈ [0, 1].
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As shown before, V is continuous, and hence, λ2 is continuous on { f ∈ RS |min
p∈D2

Ep f ,

max
p∈D2

Ep f }. By the definition of λ2, it can be readily seen that for each f ∈ RS , V( f ) =

λ2( f ) min
p∈D2

Ep f + (1 − λ2( f )) max
p∈D2

Ep f . Let v be the identity mapping on R. Then, (v,D2, λ2)

is a weighed maxmin representation of the preference relation % . Similarly, one can define

λ3 : RS → [0, 1] so that (v,D3, λ3) is a weighted maxmin representation of the preference

relation % . Since 〈u,D, λ〉 is a canonical weighted maxmin representation of the preference

relation % , then D ⊆ D2 ∩ D3.

Let f ∈ RS be such that f (1) < f (2) = f (3). Then, V( f ) = min
p∈D2

Ep f . Recall that for

each p ∈ D2, by (28), p1 ≤
2
3 , and moreover, it can be readily seen that p1 = 2

3 if only

if p2 = p3 = 1
6 . Thus, V( f ) = Ep′′ f , and for each p ∈ D2 \ {p′′}, Ep f > V( f ). Since

p′′ < D3 and D ⊆ D2 ∩ D3, then D ⊆ D2 \ {p′′}. Thus, min
p∈D

Ep f > V( f ) = x f . Since both

v and u are affine functions that represent the preference relation % restricted to X, by a

routine argument, u is a positive affine transformation of v. Then, min
p∈D

Epu( f ) > u(x f ), and

thus λ(u( f )) min
p∈D

Epu( f ) + (1 − λ(u( f ))) max
p∈D

Epu( f ) > u(x f ). Since 〈u,D, λ〉 is a weighted

maxmin representation of the preference relation % , then f � x f , which is a contradiction.

Therefore, there is no canonical weighted maxmin representation of the preference relation

% . �

Proposition 9. The preference relation % in Example 3 admits both a Bewley weighted

maxmin representation and a canonical weighted maxmin representation, whereas the Bew-

ley set of priors for the preference relation % is not the smallest admissible set.

Proof of Proposition 9. We first prove that the preference relation % admits a Bewley

weighted maxmin representation. By Proposition 1, it suffices to show that the preference

relation % satisfies Axioms A.1 - A.4 and A.6. Clearly, it satisfies Axiom A.1. Since for

each x ∈ R, V(x) = x, then it satisfies Axioms A.2 and A.6.

To show that the preference relation satisfies Axiom A.3, it suffices for us to prove the

continuity of V . For that, we first check the continuity of α. Let f ∈ RS be such that

max{ f (1), f (2)} < f (3). Let { f n}∞n=1 be a sequence of elements in RS that converges to f and

such that for each n, max{ f n(1), f n(2)} < f n(3). We want to show that lim
n→∞

α( f n) = α( f ).

Suppose that f (1) < f (2) < f (3). Then, α( f ) = med{0, 1−Ep′′ f
1−Ep′′ f +Ep′ f , 1}, and for sufficiently

large n, f n(1) < f n(2) < f n(3), so that α( f n) = med{0, 1−Ep′′ f n

1−Ep′′ f n+Ep′ f n , 1}. Since the me-

dian operator is continuous, then lim
n→∞

α( f n) = α( f ). Similarly, when f (2) < f (1) < f (3),

it can be shown that lim
n→∞

α( f n) = α( f ). Suppose that f (1) = f (2) < f (3). Then,
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lim
n→∞

1−Ep′′ f n

1−Ep′′ f n+Ep′ f n =
1−Ep′′ f

1−Ep′′ f +Ep′ f =
1−Eq′′ f

1−Eq′′ f +Eq′ f = lim
n→∞

1−Eq′′ f n

1−Eq′′ f n+Eq′ f n . For each n, either

α( f n) = med{0, 1−Ep′′ f n

1−Ep′′ f n+Ep′ f n , 1}, or α( f n) = med{0, 1−Eq′′ f n

1−Eq′′ f n+Eq′ f n , 1}. Thus, lim
n→∞

α( f n) =

med{0, 1−Ep′′ f
1−Ep′′ f +Ep′ f , 1} = α( f ).

To show the continuity of V , let f ∈ RS and { f n}∞n=1 be a sequence of elements in RS that

converges to f . We show that lim
n→∞

V( f n) = V( f ) in each of the following two cases.

Case 1: max{ f (1), f (2)} , f (3). Suppose that max{ f (1), f (2)} < f (3). Then,

V( f ) = min
p∈D1( f )

Ep f , and for sufficiently large n, max{ f n(1), f n(2)} < f n(3), so that

V( f n) = min
p∈D1( f n)

Ep f n. Since α is continuous at f , then D1 is continuous (i.e., both upper

and lower hemicontinuous) at f . By the maximum theorem, lim
n→∞

V( f n) = V( f ). Sup-

pose that max{ f (1), f (2)} > f (3). Then, V( f ) = min
p∈D2

Ep f , and for sufficiently large n,

max{ f n(1), f n(2)} > f n(3), so that V( f n) = min
p∈D2

Ep f n. Hence, lim
n→∞

V( f n) = V( f ).

Case 2: max{ f (1), f (2)} = f (3). Then, V( f ) = min
p∈D2

Ep f . Suppose that f (1) < f (2).

Then, f (2) = f (3). As argued in the proof of Proposition 8, for each p ∈ D2, by (28),

p1 ≤
2
3 = p′′1 . Thus, min

p∈D2
Ep f = Ep′′ f = Ep′ f . For sufficiently large n, f n(1) <

f n(2), so either V( f n) = α( f n)Ep′ f n + (1 − α( f n))Ep′′ f n, or V( f n) = min
p∈D2

Ep f n. Since

lim
n→∞

Ep′ f n = Ep′ f = Ep′′ f = lim
n→∞

Ep′′ f n, and for each n, α( f n)Ep′ f n + (1 − α( f n))Ep′′ f n ∈

[min{Ep′ f n, Ep′′ f n},max{Ep′ f n, Ep′′ f n}], then lim
n→∞

α( f n)Ep′ f n + (1 − α( f n))Ep′′ f n = Ep′′ f .

Moreover, lim
n→∞

min
p∈D2

Ep f n = min
p∈D2

Ep f . Since Ep′′ f = min
p∈D2

Ep f = V( f ), then lim
n→∞

V( f n) =

V( f ). Similarly, when f (1) > f (2), it can be shown that lim
n→∞

V( f n) = V( f ). Lastly, suppose

that f (1) = f (2). Then, f is a constant act and lim
n→∞

min
p∈D1( f n)

Ep f n = lim
n→∞

min
p∈D2

Ep f n = V( f ). For

each n, either V( f n) = min
p∈D1( f n)

Ep f n, or V( f n) = min
p∈D2

Ep f n. Thus, lim
n→∞

V( f n) = V( f ).

Now we show that the preference relation satisfies Axiom A.4. It helps to rewrite α and

V in decomposed form. Note that for each f ∈ RS with f (1) ≤ f (2) < f (3),

α( f ) =


1 if Ep′ f ≤ 0,

1 − Ep′′ f
1 − Ep′′ f + Ep′ f

if Ep′ f ≥ 0, and Ep′′ f ≤ 1,24

0 if Ep′′ f ≥ 1,

and similarly, for each f ∈ RS with f (2) < f (1) < f (3),

α( f ) =


1 if Eq′ f ≤ 0,

1 − Eq′′ f
1 − Eq′′ f + Eq′ f

if Eq′ f > 0 and Eq′′ f < 1,

0 if Eq′′ f ≥ 1.
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Thus, for each f ∈ RS ,

V( f ) =



Ep′ f if f (1) ≤ f (2) < f (3) and Ep′ f ≤ 0,
Ep′ f

1 − Ep′′ f + Ep′ f
if f (1) ≤ f (2) < f (3), Ep′ f > 0, and Ep′′ f < 1,

Ep′′ f if f (1) ≤ f (2) < f (3) and Ep′′ f ≥ 1,

Eq′ f if f (2) < f (1) < f (3) and Eq′ f ≤ 0,
Eq′ f

1 − Eq′′ f + Eq′ f
if f (2) < f (1) < f (3), Eq′ f > 0, and Eq′′ f < 1,

Eq′′ f if f (2) < f (1) < f (3) and Eq′′ f ≥ 1,

min
p∈D2

Ep f max{ f (1), f (2)} ≥ f (3).

Let f , g ∈ RS be such that f ≥ g. We check that V( f ) ≥ V(g) in each of the following

four cases.

Case 1: f (1) ≤ f (2) < f (3) and g(1) ≤ g(2) < g(3). Suppose that Ep′ f ≤ 0. Then,

Ep′g ≤ Ep′ f ≤ 0, and thus

V( f ) = Ep′ f ≥ Ep′g = V(g).

Suppose that Ep′ f > 0 and Ep′′ f < 1. Then, Ep′′g ≤ Ep′′ f < 1. If Ep′g ≤ 0, then

V( f ) =
Ep′ f

1 − Ep′′ f + Ep′ f
> 0 ≥ Ep′g = V(g).

If Ep′g > 0, then

V( f ) =
Ep′ f

1 − Ep′′ f + Ep′ f
=

1
1 − Ep′′ f

Ep′ f
+ 1
≥

1
1 − Ep′′g

Ep′g
+ 1

=
Ep′g

1 − Ep′′g + Ep′g
= V(g),

where the inequality holds since 1 − Ep′′ f ≤ 1 − Ep′′g and Ep′ f ≥ Ep′g. Suppose that

Ep′′ f ≥ 1. If Ep′g ≤ 0, then

V( f ) = Ep′′ f ≥ 1 > 0 ≥ Ep′g = V(g).

If Ep′g > 0 and Ep′′g < 1, then

V( f ) = Ep′′ f ≥ 1 >
Ep′g

1 − Ep′′g + Ep′g
= V(g).
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If Ep′′g ≥ 1, then

V( f ) = Ep′′ f ≥ Ep′′g = V(g).

Case 2: f (2) < f (1) < f (3) and g(2) < g(1) < g(3), or max{ f ( f ), f (2)} ≥ f (3) and

max{g(1), g(2)} ≥ g(3). In the former scenario, by a similar argument as in Case 1, it can be

shown that V( f ) ≥ V(g). In the latter scenario, V( f ) = min
p∈D2

Ep f ≥ min
p∈D2

Epg = V(g).

Case 3: f (1) ≤ f (2) < f (3) and g(2) < g(1) < g(3), or f (2) < f (1) < f (3) and

g(1) ≤ g(2) < g(3). Consider the former scenario. Let f ′ ∈ RS be such that

f ′(1) = f (1), f ′(2) = f (1), f ′(3) = f (3).

Then, f ≥ f ′, and by the result in Case 1, V( f ) ≥ V( f ′). Moreover, f ′(1) = f ′(2) <

f ′(3) and f ′ ≥ g. Consider the sequence { n−1
n f ′ + 1

ng}∞n=1 of elements in RS . For each n,
n−1

n f ′(2) + 1
ng(2) < n−1

n f ′(1) + 1
ng(1) < n−1

n f ′(3) + 1
ng(3) and n−1

n f ′ + 1
ng ≥ g. By the result

in Case 2, for each n, V(n−1
n f ′ + 1

ng) ≥ V(g). As shown before, V is continuous. Then,

V( f ′) = lim
n→∞

V( n−1
n f ′ + 1

ng) ≥ V(g). Thus, V( f ) ≥ V( f ′) ≥ V(g). By a similar argument, it

can be shown in the later scenario that V( f ) ≥ V(g).

Case 4: max{ f (1), f (2)} < f (3) and max{g(1), g(2)} ≥ g(3), or max{ f (1), f (2)} ≥ f (3)

and max{g(1), g(2)} < g(3). Consider the former scenario. Let f ′ ∈ RS be such that

f ′(1) = f (1), f ′(2) = f (2), f ′(3) = max{ f (1), f (2)}.

Then, f ≥ f ′ ≥ g and max{ f ′(1), f ′(2)} = f ′(3). By the result in Case 2,

V( f ′) ≥ V(g). Consider the sequence { n−1
n f ′ + 1

n f }∞n=1 of elements in RS . For each n,

max{n−1
n f ′(1) + 1

n f (1), n−1
n f ′(2) + 1

n f (2)} = max{ f (1), f (2)} < n−1
n f ′(3) + 1

n f (3), and

f ≥ n−1
n f ′ + 1

n f . By the results in Cases 1, 2, and 3, for each n, V( f ) ≥ V( n−1
n f ′ + 1

n f ).

As shown before, V is continuous. Thus, V( f ) ≥ lim
n→∞

V( n−1
n f ′ + 1

n f ) = V( f ′). Hence,

V( f ) ≥ V( f ′) ≥ V(g). By a similar argument, it can be shown in the later scenario that

V( f ) ≥ V(g).

Next, we prove that the preference relation % admits a canonical weighted maxmin

representation with D := {p ∈ D2 : p3 ≥
1
6 } being the smallest admissible set. Let f ∈ RS .

We claim that V( f ) ∈ [min
p∈D

Ep f ,max
p∈D

Ep f ]. To see this, assume first that f (1) ≤ f (2) < f (3).

Then, Ep′′ f < Ep′ f < Ep∗ f and V( f ) = α( f )Ep′ f + (1 − α( f ))Ep′′ f . Since p′′, p∗ ∈ D,

then [Ep′′ f , Ep′ f ] ⊆ [min
p∈D

Ep f ,max
p∈D

Ep f ]. Thus, V( f ) ∈ [min
p∈D

Ep f ,max
p∈D

Ep f ]. When f (2) <
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f (1) < f (3), by a similar argument, it can be shown that V( f ) ∈ [min
p∈D

Ep f ,max
p∈D

Ep f ]. Lastly,

assume that max{ f (1), f (2)} ≥ f (3). Then, V( f ) = min
p∈D2

Ep f . Since p∗ ∈ D2 and p ∈ D,

then V( f ) ≤ Ep∗ f ≤ max
p∈D

Ep f . To show that V( f ) ≥ min
p∈D

Ep f , suppose to the contrary that

V( f ) < min
p∈D

Ep f . Then, f is not constant. Let p̄ ∈ arg min
p∈D2

Ep f . Then, p̄ < D, i.e., p̄3 <
1
6 .

Suppose that f (1) ≤ f (2). Then, f (3) ≤ f (2). As argued in the proof of Proposition 8, for

each p ∈ D2, by (28), p1 ≤
2
3 , and moreover p1 = 2

3 if and only if p2 = p3 = 1
6 . Thus,

p̄1 <
2
3 . Since p̄1 < p′1, p̄3 < p′3, f (1) ≤ f (2), f (3) ≤ f (2), and since f is not constant, then

E p̄ f > Ep′ f . Since p′ ∈ D2, then E p̄ f > min
p∈D2

Ep f , which is a contradiction. By a similar

argument, it can be shown that when f (1) > f (2), V( f ) ≥ min
p∈D

Ep f .

Since for each f ∈ RS , V( f ) ∈ [min
p∈D

Ep f ,max
p∈D

Ep f ], then there is λ : RS → [0, 1] such

that for each f ∈ RS , V( f ) = λ( f ) min
p∈D

Ep f + (1 − λ( f )) max
p∈D

Ep f . By the continuity of

V , it can be readily verified that λ is continuous on { f ∈ RS |min
p∈D

Ep f , max
p∈D

Ep f }. Let u

be the identity mapping on R. Then, 〈u,D, λ〉 is a weighted maxmin representation of the

preference relation %.

To show that D is the smallest admissible set, let 〈u′,D′, λ′〉 be another weighted maxmin

representation of the preference relation %, and we want to check that D ⊆ D′. Suppose to

the contrary that there is p̄ ∈ D \ D′. By a standard separation theorem, there is f̄ ∈ RS \R1
such that E p̄ f̄ < min

p∈D′
Ep f̄ . Let t ∈ R be such that Ep′′( f̄ + t1) ≥ 1 and Eq′′( f̄ + t1) ≥ 1.

We claim that V( f̄ +t1) ≤ E p̄( f̄ +t1). This is clearly true if max{ f̄ (1)+t, f̄ (2)+t} ≥ f̄ (3)+t,

since V( f̄ + t1) = min
p∈D2

Ep( f̄ + t1) and p̄ ∈ D ⊆ D2. Suppose that f̄ (1)+ t ≤ f̄ (2)+ t < f̄ (3)+ t.

Then, V( f̄ + t1) = Ep′′( f̄ + t1). Recall that as argued in the proof of Proposition 8, for each

p ∈ D2, p1 ≤
2
3 . Since p̄ ∈ D2, then p̄1 ≤

2
3 = p′′1 . Since p̄ ∈ D, then p̄3 ≥

1
6 = p′′3 . Since

f̄ (1) + t ≤ f̄ (2) + t < f̄ (3) + t, then Ep′′( f̄ + t1) ≤ E p̄( f̄ + t1). Thus, V( f̄ + t1) ≤ E p̄( f̄ + t1).

By a similar argument, it can be shown that when f̄ (2) + t < f̄ (1) + t < f̄ (3) + t, V( f̄ + t1) ≤

E p̄( f̄ + t1).

Since V( f̄ +t1) ≤ E p̄( f̄ +t1) and E p̄ f̄ < min
p∈D′

Ep f̄ , then V( f̄ +t1) < min
p∈D′

Ep( f̄ +t1), and thus

x f̄ +t1 < min
p∈D′

Ep( f̄ + t1). Since both u and u′ are affine functions that represent the preference

relation % restricted to X, by a routine argument, u′ is a positive affine transformation of

u. Then, u′(x f̄ +t1) < min
p∈D′

Epu′( f̄ + t1) ≤ λ′(u′( f̄ + t1)) min
p∈D′

Epu′( f̄ + t1) + (1 − λ′(u′( f̄ +

t1))) max
p∈D′

Epu′( f̄ + t1). Since 〈u′,D′, λ′〉 represents the preference relation %, then f̄ + t1 �
x f̄ +t1, which is a contradiction. Hence, D ⊆ D′, as desired.

Finally, we show that D is not the Bewley set. Since d(p′, p∗) > 1
√

6
, then p′ < D.
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By a standard separation theorem, there is f ′ ∈ RS \ R1 such that Ep′ f ′ < min
p∈D

Ep f ′. Let

x := min
p∈D

Ep f ′. Let g ∈ RS be such that g(1) < g(2) < g(3), f ′(1) + g(1) < f ′(2) + g(2) <

f ′(3) + g(3), and Ep′(x1 + g) ≤ 0. Since Ep′ f ′ < x, then Ep′( 1
2 f ′ + 1

2g) < Ep′(1
2 x1 + 1

2g) ≤ 0.

Hence, V(1
2 f ′+ 1

2g) = Ep′( 1
2 f ′+ 1

2g) < Ep′( 1
2 x1+ 1

2g) = V( 1
2 x1+ 1

2g). Thus, 1
2 x1+ 1

2g � 1
2 f ′+ 1

2g.

Suppose that D is the Bewley set. Since for each p ∈ D, Ep f ′ ≥ min
p∈D

Ep f ′ = x, then f ′ %∗ x.

Thus, 1
2 f ′1 + 1

2g % 1
2 x + 1

2g, which is a contradiction. Therefore, D is not the Bewley set. �

Lemma 2. Let ϕ ∈ RS , t ∈ [ϕ∗, ϕ∗], and B := {p ∈ ∆|Epϕ = t}. Let K be a non-empty closed

subset of ∆ such that for each p ∈ K, Epϕ ≥ t. Let c := min
p∈B

d(p,K). Then, min
p∈∆:d(p,K)≤c

Epϕ = t.

Proof. Since both B and K are non-empty, closed, and bounded, then there is p̄ ∈ B such

that d( p̄,K) = c. Since p̄ ∈ B, then E p̄ϕ = t. Since d( p̄,K) = c, then E p̄ϕ ≥ min
p∈∆:d(p,K)≤c

Epϕ.

Thus, t ≥ min
p∈∆:d(p,K)≤c

Epϕ. Suppose that t > min
p∈∆:d(p,K)≤c

Epϕ. Then, there is p′ ∈ ∆ such that

d(p′,K) ≤ c and t > Ep′ϕ. Let q′ ∈ K be such that d(p′, q′) = d(p′,K). Since q′ ∈ K, then

Eq′ϕ ≥ min
p∈K

Epϕ. Since for each p ∈ K, Epϕ ≥ t, then min
p∈K

Epϕ ≥ t. Thus, Eq′ϕ ≥ t > Ep′ϕ.

Hence, there is α ∈ [0, 1) such that t = Eαp′+(1−α)q′ϕ, i.e., αp′ + (1 − α)q′ ∈ B. Since p′ , q′

and α ∈ [0, 1), then d(αp′ + (1 − α)q′, q′) < d(p′, q′). Thus,

c = min
p∈B

d(p,K) ≤ d(αp′ + (1 − α)q′, q′) < d(p′, q′) = d(p′,K) ≤ c,

which is not possible. Hence, t = min
p∈∆:d(p,K)≤c

Epϕ. �

Proof of Theorem 2. Let a preference relation % be given. To show that “only if” direction,

suppose that the preference relation % satisfies Axioms A.1 - A.4, A.5’, and A.6. By

Lemma 1, there exist an affine onto function u : X → R and a normalized, monotonic, and

continuous functional I : RS → R such that for each pair f , g ∈ F , f % g ⇐⇒ I(u( f )) ≥

I(u(g)).

Let K∗ := {p ∈ ∆ : for each ϕ ∈ RS , I(ϕ) ≤ Epϕ}. Since I is continuous, K∗ is closed.

By the definition of K∗, it is convex. We claim that it is non-empty. Since the preference

relation % satisfies Axiom A.5’, then there is q ∈ ∆ such that for each f ∈ F and each

x ∈ X with f % x,
∑
s∈S

qs f (s) % x. Thus, for each f ∈ F ,
∑
s∈S

ps f (s) % x f , or equivalently,

I(u(
∑
s∈S

qs f (s))) ≥ I(u(x f )), which implies Equ( f ) ≥ I(u( f )) since u is affine and I is normal-

ized. For each ϕ ∈ RS , there is f ∈ F such that u( f ) = ϕ, so Eqϕ = Equ( f ) ≥ I(u( f )) = I(ϕ).

By the definition of K∗, q ∈ K∗, and thus K∗ is non-empty.
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Define B : RS ⇒ ∆ by setting for each ϕ ∈ RS ,

B(ϕ) = {p ∈ ∆|Epϕ = I(ϕ)}.

For each ϕ ∈ RS , B(ϕ) is non-empty since I is normalized and monotonic so that I(ϕ) ∈

[ϕ∗, ϕ∗], and B(ϕ) is closed since the expected value of ϕ is continuous in p over ∆. Define

σ : RS → R+ by setting for each ϕ ∈ RS ,

σ(ϕ) = min
p∈B(ϕ)

d(p,K∗).

By Lemma 2, for each ϕ ∈ RS , I(ϕ) = min
p∈∆:d(p,K∗)≤σ(ϕ)

Epϕ.

We now check the continuity property of σ. Let f ∈ F and ϕ := u( f ). Let {ϕn}
∞
n=1 be

a sequence of elements in RS such that lim
n→∞

ϕn = ϕ. Consider first the case that f � x∗ f ,

and we want to show that lim
n→∞

σ(ϕn) = σ(ϕ). Since f � x∗ f , then I(ϕ) , I(ϕ∗1). Since I is

normalized and monotonic, then I(ϕ) > ϕ∗. First, suppose that I(ϕ) = ϕ∗. Let q∗ ∈ K∗. By the

definition of K∗, I(ϕ) ≤ Eq∗ϕ. Since Eq∗ϕ ≤ ϕ
∗ = I(ϕ), then I(ϕ) = Eq∗ϕ. Hence, q∗ ∈ B(ϕ),

and thus, σ(ϕ) = min
p∈B(ϕ)

d(p,K∗) = d(q∗, q∗) = 0. To show that lim
n→∞

σ(ϕn) = 0, suppose to

the contrary that there exist ε > 0 and a subsequence {ϕnm}
∞
m=1 of {ϕn}

∞
n=1 such that for each

m ∈ N, σ(ϕnm) > ε. Let q∗ ∈ ∆ be such that Eq∗ϕ = ϕ∗. Since I(ϕ) > ϕ∗, then I(ϕ) > Eq∗ϕ,

and thus q∗ < K∗. Let λ ∈ (0, 1) be such that d(λq∗ + (1 − λ)q∗, q∗) < ε. Since q∗ ∈ K, then

d(λq∗ + (1 − λ)q∗,K∗) < ε. Thus, for each m ∈ N, d(λq∗ + (1 − λ)q∗,K∗) < σ(ϕnm), and

hence min
p∈∆:d(p,K∗)≤σ(ϕnm )

Epϕnm ≤ Eλq∗+(1−λ)q∗ϕnm . For each m ∈ N, by the result in the previous

paragraph, I(ϕnm) = min
p∈∆:d(p,K∗)≤σ(ϕnm )

Epϕnm , so I(ϕnm) ≤ Eλq∗+(1−λ)q∗ϕnm . Since I is continuous,

then I(ϕ) = lim
m→∞

I(ϕnm). Since lim
m→∞

I(ϕnm) ≤ lim
m→∞

Eλq∗+(1−λ)q∗ϕnm = λEq∗ϕ + (1 − λ)Eq∗ϕ =

λϕ∗ + (1 − λ)ϕ∗ < ϕ∗, then I(ϕ) < ϕ∗, which contradicts our assumption that I(ϕ) = ϕ∗.

Hence, in this case, lim
n→∞

σ(ϕn) = σ(ϕ).

Second, suppose that I(ϕ) < ϕ∗. By the maximum theorem, it suffices to show that B is

a continuous correspondence at ϕ. To show the upper hemicontinuity of B, let p̄ ∈ ∆ and let

{pn}
∞
n=1 be a sequence of elements in ∆ such that lim

n→∞
pn = p̄ and for each n ∈ N, pn ∈ B(ϕn).

Then, Epnϕn = I(ϕn). Since lim
n→∞

Epnϕn = E p̄ϕ and since I is continuous, then E p̄ϕ = I(ϕ).

Thus, p̄ ∈ B(ϕ), as desired. To show the lower hemicontinuity of B, let p̂ ∈ B(ϕ). Then,

E p̂ϕ = I(ϕ) ∈ (ϕ∗, ϕ∗). For each ε > 0, define A(ε) = {p ∈ ∆|d(p, p̂) ≤ ε}. For each ε > 0,

since E p̂ϕ = I(ϕ) ∈ (ϕ∗, ϕ∗), then min
p∈A(ε)

Epϕ < I(ϕ) < max
p∈A(ε)

Epϕ, and since I is continuous,

for sufficiently large n, min
p∈A(ε)

Epϕn < I(ϕn) < max
p∈A(ε)

Epϕn. Thus, for each ε > 0 and for each

n ∈ N that is sufficiently large, there is pn ∈ A(ε) such that I(ϕn) = Epnϕn, i.e., pn ∈ B(ϕn).
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Let {pnm}
∞
m=1 be a subsequence of {pn}

∞
n=1 such that for each m ∈ N, pnm ∈ A( 1

m ) ∩ B(ϕnm).

Since for each m ∈ N, pnm ∈ A( 1
m ), then lim

m→∞
pnm = p̂, as desired.

Consider now the case that f ∼ x∗ f , and we want to show that lim inf
n→∞

σ(ϕn) ≥ σ(ϕ). Since

f ∼ x∗ f and I is normalized, then I(ϕ) = I(ϕ∗1) = ϕ∗. Suppose that ϕ is constant. Then,

B(ϕ) = ∆ and σ(ϕ) = min
p∈B(ϕ)

d(p,K∗) = 0. Since σ(ϕ) = 0 and for each n ∈ N, σ(ϕn) ≥ 0,

then lim inf
n→∞

σ(ϕn) ≥ σ(ϕ). Suppose that ϕ is not constant. Suppose to the contrary that there

is a convergent subsequence {ϕnm}
∞
m=1 of {ϕn}

∞
n=1 such that lim

m→∞
σ(ϕnm) < σ(ϕ). Let t ∈ R

be such that lim
m→∞

σ(ϕnm) < t < σ(ϕ). For each p ∈ ∆ with d(p,K∗) ≤ t, if Epϕ = I(ϕ),

then p ∈ B(ϕ), and hence, by the definition of σ, σ(ϕ) ≤ d(p,K∗), so that σ(ϕ) ≤ t < σ(ϕ)

which is not possible. Thus, for each p ∈ ∆ with d(p,K∗) ≤ t, Epϕ , I(ϕ), and since

Epϕ ≥ ϕ∗ = I(ϕ), then Epϕ > I(ϕ). Therefore, min
p∈∆:d(p,K∗)≤t

Epϕ > I(ϕ). Since lim
m→∞

σ(ϕnm) < t,

then for sufficiently large m, min
p∈∆:d(p,K∗)≤σ(ϕnm )

Epϕnm ≥ min
p∈∆:d(p,K∗)≤t

Epϕnm . Since I is continuous,

and since for each m ∈ N, I(ϕnm) = min
p∈∆:d(p,K∗)≤σ(ϕnm )

Epϕnm , then

I(ϕ) = lim
m→∞

I(ϕnm) = lim
m→∞

min
p∈∆:d(p,K∗)≤σ(ϕnm )

Epϕnm ≥ lim
m→∞

min
p∈∆:d(p,K∗)≤t

Epϕnm = min
p∈∆:d(p,K∗)≤t

Epϕ,

which contradicts that min
p∈∆:d(p,K∗)≤t

Epϕ > I(ϕ).

Since u, K∗, and σ satisfy the requirements in the definition of a variant constraint repre-

sentation, and since for each pair f , g ∈ F ,

f % g ⇐⇒ min
p∈∆:d(p,K∗)≤σ(u( f ))

Epu( f ) = I(u( f )) ≥ I(u(g)) = min
p∈∆:d(p,K∗)≤σ(u(g))

Epu(g),

then 〈u,K∗, σ〉 is a variant constraint representation of the preference relation % . Moreover,

since I is monotonic, σ ∈ Σ(K∗).

We complete the proof of the “only if” direction by showing that K∗ is the largest essential

set, so that 〈u,K∗, σ〉 is a canonical variant constraint representation of the preference relation

% . Let 〈u′,K′, σ′〉 be another variant constraint representation of the preference relation % .

We want to show that K′ ⊆ K∗. Since u, u′ are both affine functions representing the prefer-

ence relation restricted to X, by a routine argument, u′ is a positive affine transformation of u.

Let p′ ∈ K′ and ϕ ∈ RS . There is f ∈ F such that u( f ) = ϕ. Since 〈u′,K′, σ′〉 is a variant con-

straint representation of the preference relation % , then u′(x f ) = min
p∈∆:d(p,K′)≤σ′(u′( f ))

Epu′( f ).

Since p′ ∈ K′, then min
p∈∆:d(p,K′)≤σ′(u′( f ))

Epu′( f ) ≤ Ep′u′( f ). Thus, u′(x f ) ≥ Ep′u′( f ). Since u′

is a positive affine transformation of u, then u(x f ) ≥ Ep′u( f ), and thus I(ϕ) ≥ Ep′ϕ. By the

definition of K∗, p′ ∈ K∗, as desired.
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To show the “if” direction, suppose that the preference relation % admits a canonical

variant constraint representation 〈u,K, σ〉 with σ ∈ Σ(K). It can be readily seen that the

preference relation satisfies Axioms A.1, A.2, A.4, and A.6.

We show that the preference relation satisfies Axiom A.3. Define C : RS ⇒ ∆ by setting

for each ϕ ∈ RS ,

C(ϕ) = {p ∈ ∆|d(p,K) ≤ σ(ϕ)}.

Define I : RS → R by setting for each ϕ ∈ RS ,

I(ϕ) = min
p∈C(ϕ)

Epϕ.

It suffices to show that I is continuous. Fix ϕ ∈ RS and a sequence {ϕn}
∞
n=1 of elements in RS

such that lim
n→∞

ϕn = ϕ. If ϕ is constant, then lim
n→∞
|I(ϕn) − I(ϕ)| ≤ lim

n→∞
sup
s∈S
|ϕn(s) − ϕ(s)| = 0,

and thus lim
n→∞

I(ϕn) = I(ϕ).

Suppose that ϕ is not constant and I(ϕ) > ϕ∗. Let f ∈ F be such that u( f ) = ϕ. Since

I(ϕ) > ϕ∗, then f � x∗ f , and thus σ is continuous at ϕ. By the maximum theorem, to show

that I is continuous at ϕ, it suffices to show that C is continuous at ϕ. To show the upper

hemicontinuity, let p ∈ ∆ and {pn}
∞
n=1 be a sequence of elements in ∆ such that lim

n→∞
pn = p

and for each n ∈ N, pn ∈ C(ϕn). We want to show that p ∈ C(ϕ). For each n ∈ N, since

pn ∈ C(ϕn), then d(pn,K) ≤ σ(ϕn). Since d(·,K) is continuous on ∆ and σ is continuous

at ϕ, then d(p,K) = lim
n→

d(pn,K) ≤ lim
n→∞

σ(ϕn) = σ(ϕ). Hence, p ∈ C(ϕ). To show the

lower hemicontinuity, let p ∈ C(ϕ) and let q ∈ K be such that d(p, q) = d(p,K). For each

n ∈ N, if d(p, q) ≤ σ(ϕn), let pn := p, and if σ(ϕn) < d(p, q), let εn ∈ [0, 1] be such

that d(εnq + (1 − εn)p, q) = σ(ϕn) and let pn := εnq + (1 − εn)p. Thus, for each n ∈ N,

d(pn,K) ≤ d(pn, q) ≤ σ(ϕn), and thus pn ∈ C(ϕn). We want to show that lim
n→∞

pn = p. For

each ε > 0, let m ∈ N be such that |σ(ϕ) − σ(ϕn)| < ε. Then, for each n ∈ N such that n ≥ m,

either pn = p, or pn = εnq + (1 − εn)p and σ(ϕn) = d(pn, q) < d(p, q) < σ(ϕn) + ε, so that

d(pn, p) < ε in either case. Hence, lim
n→∞

pn = p.

Suppose that ϕ is not constant and I(ϕ) = ϕ∗. Let f ∈ F be such that u( f ) = ϕ.

Since I(ϕ) = ϕ∗, then f ∼ x∗ f , and thus σ is lower semicontinuous at ϕ. To show that I is

continuous at ϕ, suppose to the contrary that there exist ε > 0 and a subsequence {ϕnm}
∞
m=1 of

{ϕn}
∞
n=1 such that for each m ∈ N, |I(ϕnm) − I(ϕ)| > ε. Since lim

m→∞
ϕnm∗ = ϕ∗ = I(ϕ) and I is

monotonic, then when m is sufficiently large, I(ϕnm)−ϕnm∗ >
ε
2 . Thus, there is λ ∈ (0, 1) such

that for sufficiently large m, λ(ϕ∗nm
− ϕnm∗) <

ε
2 < I(ϕnm) − ϕnm∗, so that (1 − λ)ϕnm∗ + λϕ∗nm

<
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I(ϕnm). For each m ∈ N, let Bm := {p ∈ ∆|Epϕnm = (1 − λ)ϕnm∗ + λϕ∗nm
}, and let B∞ := {p ∈

∆|Epϕ = (1 − λ)ϕ∗ + λϕ∗}. Note that for each m ∈ N, Bm is non-empty and closed, and so

is B∞. It can be readily shown that lim
m→∞

min
p∈Bm

d(p,K) = min
p∈B∞

d(p,K). Let c := min
p∈B∞

d(p,K).

When m is sufficiently large, for each p ∈ Bm, Epϕnm = (1 − λ)ϕnm∗ + λϕ∗nm
< I(ϕnm), so

by the definition of I, p < C(ϕnm), and by the definition of C, d(p,K) > σ(ϕnm). Thus, for

sufficiently large m, min
p∈Bm

d(p,K) > σ(ϕnm). Therefore, c = lim
m→∞

min
p∈Bm

d(p,K) ≥ lim inf
n→∞

σ(ϕn).

Since σ is lower semicontinuous at ϕ, then lim inf
n→∞

σ(ϕn) ≥ σ(ϕ). Thus, c ≥ σ(ϕ), so that

min
p∈∆:d(p,K)≤c

Epϕ ≤ min
p∈C(ϕ)

Epϕ = I(ϕ) = ϕ∗ < (1 − λ)ϕ∗ + λϕ∗. On the other hand, for each

p ∈ K and each m ∈ N, since p ∈ C(ϕnm), then I(ϕnm) ≤ Epϕnm , and when m is sufficiently

large, since (1 − λ)ϕnm∗ + λϕ∗nm
< I(ϕnm), then (1 − λ)ϕnm∗ + λϕ∗nm

< Epϕnm . Therefore, for

each p ∈ K, Epϕ = lim
m→∞

Epϕnm ≥ lim
m→∞

(1 − λ)ϕnm∗ + λϕ∗nm
= (1 − λ)ϕ∗ + λϕ∗. By lemma 2,

min
p∈∆:d(p,K)≤c

Epϕ = (1 − λ)ϕ∗ + λϕ∗, which contradicts that min
p∈∆:d(p,K)≤c

Epϕ < (1 − λ)ϕ∗ + λϕ∗.

To show that the preference relation % satisfies Axiom A.5’, let q ∈ K. Let f ∈ F

and x ∈ X be such that f % x. Thus, Equ( f ) ≥ min
p∈∆:d(p,K)≤σ(u( f ))

Epu( f ) ≥ u(x). Hence,∑
s∈S

qs f (s) % x, as desired.

Lastly, we check the uniqueness of the representation. By a routine arguement, u is

unique up to a positive affine transformation. By its definition, the largest essential set K∗

is unique. Given u, to show the uniqueness of the constraint function, let 〈u,K∗, σ′〉 be

another variant constraint representation of the preference relation % . Let f ∈ F be such

that f � x∗ f , and let ϕ := u( f ). We want to show that σ(ϕ) = σ′(ϕ). Since f � x∗ f ,

then I(ϕ) , I(ϕ∗1). Since I is normalized and monotonic, then I(ϕ) > ϕ∗. Let p∗, q, q′ ∈ ∆

be such that Ep∗ϕ = ϕ∗, q ∈ arg min
p∈∆:d(p,K∗)≤σ(ϕ)

Epϕ, and q′ ∈ arg min
p∈∆:d(p,K∗)≤σ′(ϕ)

Epϕ. Since I(ϕ) =

min
p∈∆:d(p,K∗)≤σ(ϕ)

Epϕ, then I(ϕ) = Eqϕ. Since I(ϕ) = I(u( f )) = I(u(x f )) = u(x f ), and since

u(x f ) = min
p∈∆:d(p,K∗)≤σ′(ϕ)

Epϕ = Eq′ϕ, then I(ϕ) = Eq′ϕ. Suppose that σ(ϕ) < σ′(ϕ). Then,

d(q,K∗) < σ′(ϕ), and thus, there is ε ∈ (0, 1) such that d(εp∗ + (1− ε)q,K∗) ≤ σ′(ϕ). Hence,

I(ϕ) = Eq′ϕ = min
p∈∆:d(p,K∗)≤σ′(ϕ)

Epϕ ≤ Eεp∗+(1−ε)qϕ = εϕ∗ + (1 − ε)I(ϕ) < I(ϕ),

which is not possible. Suppose that σ(ϕ) > σ′(ϕ). Then, d(q′,K∗) < σ(ϕ). Since Eq′ϕ =

I(ϕ), then q′ ∈ B(ϕ). By the definition of σ, σ(ϕ) ≤ d(q′,K∗), which contradicts that

d(q′,K∗) < σ(ϕ). Therefore, σ(ϕ) = σ′(ϕ). �

Proof of Proposition 2. Suppose that a preference relation % admits both a canonical

weighted maxmin representation 〈u,D, λ〉 and a canonical variant constraint representation
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〈u′,K, σ〉. To show that K ⊆ D, suppose to the contrary that there is p̄ ∈ K \D. Since p̄ < D,

by a standard separation theorem, there is ϕ ∈ RS such that E p̄ϕ < min
p∈D

Epϕ. Let f ∈ F

and x ∈ X be such that u( f ) = ϕ and u(x) = min
p∈D

Epϕ. Since 〈u,D, λ〉 is a weighted maxmin

representation of the preference relation % , and since

u(x) = min
p∈D

Epϕ ≤ λ(ϕ) min
p∈D

Epϕ + (1 − λ(ϕ)) max
p∈D

Epϕ,

then f % x. Since p̄ ∈ K, then E p̄u′( f ) ≥ min
p∈∆:d(p,K)≤σ(u′( f ))

Epu′( f ). Since both u and u′

are affine functions that represent the preference relation % restricted to X, by a routine

argument, u′ is a positive affine transformation of u. Thus, u′(x) = min
p∈D

Epu′( f ) > E p̄u′( f ).

Hence, u′(x) > min
p∈∆:d(p,K)≤σ(u′( f ))

Epu′( f ). Since 〈u′,K, σ〉 is a variant constraint representation

of the preference relation % , then x � f , which contradicts that f % x, as desired. �

Proof of Proposition 3. Let a preference relation % be given. To show the “only if” direc-

tion, suppose that the preference relation is a MEU preference relation, that is, there exist an

affine onto function u : RS → ∞ and a non-empty closed convex set D ⊆ ∆ such that for

each pair f , g ∈ F , f % g ⇐⇒ min
p∈D

Epu( f ) ≥ min
p∈D

Epu(g). It can be readily seen that the

preference relation satisfies Axioms A.1 -A.6, and A.5’. By Theorem 1, it admits a canon-

ical weighted maxmin representation and the smallest admissible set is the Bewley set. By

Theorem 2, it admits a canonical variant constraint representation and the largest essential

set is the Bewley set. By Ghirardato, Maccheroni, and Marinaccia (2004),25 the preference

relation admits a Bewley weighted maxmin representation and D is the Bewley set. Let

λ : RS → [0, 1] be such that for each ϕ ∈ RS , λ(ϕ) = 1. Let σ : RS → R+

To show the “if” direction, suppose that the preference relation admits both a canonical

weighted maxmin representation 〈u,D, λ〉 and a canonical variant constraint representation

〈u′,K, σ〉, and K = D. To show that the preference relation % is a MEU preference relation,

it suffices to show that for each f ∈ F , λ(u( f )) = 1. Fix f ∈ F . Since 〈u′,K, σ〉 is a variant

constraint representation of the preference relation % , then u′(x f ) = min
p∈∆:d(p,K)≤σ(u′( f ))

Epu′( f ).

Since u′ is a positive affine transformation of u, then u(x f ) = min
p∈∆:d(p,K)≤σ(u′( f ))

Epu( f ). Since

〈u,D, λ〉 is a weighted maxmin representation of the preference relation % and K = D,

then u(x f ) = λ(u( f )) min
p∈D

Epu( f ) + (1 − λ(u( f ))) max
p∈D

Epu( f ) = λ(u( f )) min
p∈K

Epu( f ) + (1 −

25See Theorem 11 and the first paragraph on Page 151 of their paper.
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λ(u( f ))) max
p∈K

Epu( f ). Thus,

min
p∈∆:d(p,K)≤σ(u′( f ))

Epu( f ) = u(x f )

=λ(u( f )) min
p∈K

Epu( f ) + (1 − λ(u( f ))) max
p∈K

Epu( f )

≥min
p∈K

Epu( f ) ≥ min
p∈∆:d(p,K)≤σ(u′( f ))

Epu( f ).

Hence, λ(u( f )) min
p∈K

Epu( f ) + (1 − λ(u( f ))) max
p∈K

Epu( f ) = min
p∈K

Epu( f ), and thus λ(u( f )) = 1,

as desired. �

Proof of Corollary 2. Suppose that a preference relation % satisfies Axioms A.1 -A.4,

A.5.1, A.5.2, and A.6. By Theorem 2, the preference relation admits a canonical variant

constraint representation 〈u,K, σ〉. It suffices to show that K = K∗.

By Theorems 3 and 5 of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

(2011), the preference relation admits an ambiguity averse representation 〈u,G〉. By Proposi-

tion 11 of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011), K∗ = ∩x∈Xπ(x)

where π(·) is defined in (18). Thus, p ∈ K∗ if and only if for each x ∈ X and each f ∈ F ,

x %
∑
s∈S

ps f (s) =⇒ x % f . For each p ∈ ∆, the condition that for each x ∈ X and f ∈ F ,

x ≥p f =⇒ x % f implies that for each pair x, y ∈ X, x ≥p y ⇐⇒ x % y. Thus, for each

p ∈ ∆, the preference relation % is more ambiguity averse than the SEU preference relation

≥p if and only if for each x ∈ X and f ∈ F , x %
∑
s∈S

ps f (s) =⇒ x % f . Hence, p ∈ K∗ if and

only if the preference relation % is more ambiguity averse than the SEU preference relation

≥p. By Theorem 2, K = K∗. �

Proof of Proposition 4. Suppose that a preference relation admits a multiplier representation

〈u, q, θ〉. Then the preference admits an ambiguity averse representation 〈u,G〉 such that for

each (t, p) ∈ R × ∆, G(t, p) = t + θR(p||q). By Theorems 3 and 5 of Cerreia-Vioglio, Mac-

cheroni, Marinacci, and Montrucchio (2011), the preference relation % satisfies Axioms

A.1 - A.4, A.5.1, and A.6. It can be readily seen that the preference relation % is more

ambiguity averse than the SEU preference relation ≥q, so that it satisfies Axiom A.5.2. By

Theorems 1 and 2, the preference relation % admits both a canonical weighted maxmin

representation and a canonical variant constraint representation.

If θ = ∞, then clearly D∗ = K∗ = {q}, and thus the result naturally follows. Suppose

that θ < ∞. Then it can be readily seen that D∗ = {p ∈ ∆ : p � q} and K∗ = {q}. Thus
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ϕ = max
p∈D∗

Epϕ and ϕ = min
p∈D∗

Epϕ. By the following variational formula (see, e.g., Proposition

1.4.2 of Dupuis and Ellis (1997))

min
p∈∆

[Epϕ + θR(p||q)] = −θ log Eqe−
ϕ
θ (29)

and the construction of λ and σ in the proofs of Theorems 1 and 2, we can get the desired

results. �

6.2 Proofs in Section 4

Lemma 3. A preference relation % on F satisfies Axioms A.1, A.2.1, A.3 - A.6 if and only

if there exists an affine onto function u : X → R and a normalized, weakly increasing, quasi-

concave, continuous and constant superadditive functional I : RS → R such that for each

pair f , g ∈ F , f % g ⇔ I(u( f )) ≥ I(u(g)). Moreover, u is unique up to a positive affine

transformation, and given u, there is a unique normalized functional I : RS → R such that

for each pair f , g ∈ F , f % g⇔ I(u( f )) ≥ I(u(g)).

Proof. The “if” direction is easy. For the “only if” direction, the existence and uniqueness

of the required u and I follow from Lemma 1, except the constant superadditivity of I. We

now check this property.

Let ϕ ∈ RS and t ∈ R+ be arbitrarily given. Let x, x0 ∈ X and f ∈ F be such that

u(x) = 2t, u(x0) = 0 and u( f ) = 2ϕ. Then u(1
2 f + 1

2 x) = ϕ + t1 and u( 1
2 f + 1

2 x0) = ϕ. Since

u is an affine onto function, then there exists z ∈ X such that 1
2 f + 1

2 x0 ∼
1
2z + 1

2 x0 for some

z ∈ X. Since t ∈ R+, then x % x0. By Axiom A.2, we know that 1
2 f + 1

2 x % 1
2z + 1

2 x. Thus,

I(ϕ + t1) = I(u(
1
2

f +
1
2

x)) ≥ I(u(
1
2

z +
1
2

x))

=
1
2

u(z) +
1
2

u(x) =
1
2

u(z) +
1
2

u(x0) +
1
2

u(x) = u(
1
2

z +
1
2

x0) + t

= I(u(
1
2

f +
1
2

x0)) + t = I(ϕ) + t

as desired.

�

Proof of Theorem 3. We shall only check that statement 1 implies statement 2, 3 and 4. The

necessity of A.2.1 for statement 2, 3 and 4 is easy to check. The necessity of A.1, A.3, A.4,

A.5.1, and A.6 for statement 2 can be readily verified, and that for statement 3 and 4 follows
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respectively from the proof of Corollary 2 and Cerreia-Vioglio, Maccheroni, Marinacci and

Montrucchio (2011)’s characterization result.

Suppose that statement 1 holds. We shall first prove statement 2. Let u : X → R and

I : RS → R be given as in Lemma 3. We define J : RS → R by for each ϕ ∈ RS ,

J(ϕ) = lim
k→∞

lim
t→∞

1
k

[I(kϕ − t1) + t]. (30)

We check the following properties of J.

Let ϕ ∈ RS be arbitrarily given. First, for each k > 0 and each t ∈ R, 1
k [I(kϕ − t1) + t]

is bounded in [min
S
ϕ(s),max

S
ϕ(s)]. This is because I is normalized and weakly increasing.

Second, for each k > 0, 1
k [I(kϕ − t1) + t] weakly decreases in t on R since I is constant

superadditive. Third, lim
t→∞

1
k [I(kϕ− t1) + t] weakly decreases in k on (0,∞). To see it, suppose

the contrary that k′ > k > 0 and lim
t→∞

1
k′ [I(k′ϕ − t1) + t] > lim

t→∞
1
k [I(kϕ − t1) + t]. Hence, there

exists t̄ such that for each pair t, t′ ≥ t̄, 1
k [I(kϕ − t1) + t] > 1

k′ [I(k′ϕ − t′1) + t′]. That is,

I(kϕ − t1) <
k
k′

I(k′ϕ − t′1) − t +
k
k′

t′. (31)

Pick t, t′ ≥ t̄ such that k
k′ (−t′) + (1 − k

k′ )I(k′ϕ − t′1) = −t. Thus, kϕ − t1 = k
k′ (k

′ϕ − t′1) + (1 −
k
k′ )I(k′ϕ − t′1)1. since I is normalized and quasi-concave, and by the choice of t, t′, we have

I(kϕ − t1) ≥ I(k′ϕ − t′1) =
k
k′

I(k′ϕ − t′1) − t +
k
k′

t′, (32)

which contradicts (31) as desired.

Thus it can be readily verifiable that for each ϕ ∈ RS , I(ϕ) ≤ J(ϕ), and that J is

normalized, weakly increasing, constant additive and positive homogeneous of degree 1.

We now check that J is superadditive. Suppose the contrary that there exist ϕ, ϕ′ ∈ RS

such that J(ϕ + ϕ′) < J(ϕ) + J(ϕ′). Since J is positive homogeneous of degree 1, then

J(1
2ϕ + 1

2ϕ
′) < 1

2 J(ϕ) + 1
2 J(ϕ′). Thus, there exist k > 0 and t̄ such that for each pair t, t′ ∈ R

and each t′′ ≥ t̄,

1
k

[I(k(
1
2
ϕ +

1
2
ϕ′) − t′′1) + t′′] <

1
2k

[I(kϕ − t1) + t] +
1
2k

[I(kϕ′ − t′1) + t′],

i.e.,

I(
1
2

kϕ +
1
2

kϕ′ − t′′1) <
1
2

I(kϕ − t1) +
1
2

I(kϕ′ − t′1) − t′′ +
t + t′

2
. (33)
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Pick t, t′ ≥ t̄ such that I(kϕ − t1) = I(kϕ′ − t′1). Let t′′ = t+t′
2 so that t′′ ≥ t̄ and

1
2kϕ + 1

2kϕ′ − t′′1 = 1
2 (kϕ − t1) + 1

2 (kϕ′ − t′1). Since I is quasi-concave, then

I(
1
2

kϕ +
1
2

kϕ′ − t′′1) ≥
1
2

I(kϕ − t1) +
1
2

I(kϕ′ − t′1)

which contradicts (33) as desired.

Then by Gilboa and Schmeidler (1989)26, there exists a unique non-empty closed convex

set D ⊆ ∆ such that J(ϕ) = min
p∈D

Epϕ for all ϕ ∈ RS . Fix ϕ ∈ RS . We shall show that

I(ϕ) ∈ [min
p∈D

Epϕ,max
p∈D

Epϕ]. Since I(ϕ) ≥ J(ϕ), thus I(ϕ) ≥ min
p∈D

Epϕ. For the upper bound,

let t ∈ R be given such that I(ϕ) = I(−ϕ + t1). Since I is quasi-concave, then I(ϕ2 +
−ϕ+t1

2 ) ≥
1
2 I(ϕ) + 1

2 I(−ϕ + t1) ≥ 1
2 I(ϕ) + 1

2 min
p∈D

Ep(−ϕ) + t
2 . Since I is normalized, then t

2 ≥
1
2 I(ϕ) +

1
2 min

p∈D
Ep(−ϕ) + t

2 . Thus, I(ϕ) ≤ −min
p∈D

Ep(−ϕ) = max
p∈D

Epϕ.

Define λ : RS → [0, 1] by

λ(ϕ) =

 1 if l(ϕ; D) = 0,
max
p∈D

Epϕ−I(ϕ)

l(ϕ;D) otherwise.

Thus, for each ϕ ∈ RS , I(ϕ) = λ(ϕ) min
p∈D

Epϕ+(1−λ(ϕ)) max
p∈D

Epϕ. By the properties of I, it can

be readily verified that for each ϕ ∈ RS , λ(ϕ+t1) weakly decreasing in t, lim
t→∞

λ(kϕ−t1) weakly

increases in k on (0,∞), lim
k→∞

lim
t→∞

λ(kϕ− t1) = 1, and λ is continuous on {ϕ ∈ RS |l(ϕ; D) > 0}.

To show that D is the smallest admissible set, by Corollary 1, it suffices to show that

D ⊆ D∗. Let 〈u,G〉 be an ambiguity averse representation of the preference relation % .

Let D◦ := {p ∈ ∆|G(t, p) < ∞ for some t ∈ R}. Let ϕ, ϕ′ ∈ RS and f , f ′ ∈ F be given

such that ϕ = u( f ), ϕ′ = u( f ′), and for each p ∈ D◦, Epϕ ≥ Epϕ
′. Since D◦ is convex, by

Proposition A.1 of Ghirardato, Maccheroni and Marinacci (2004), as long as we show that

for each p ∈ D, Epϕ ≥ Epϕ
′, we have that D ⊆ cl(D◦) = D∗.

Fix arbitrarily α ∈ [0, 1] and h ∈ F . For each k > 0 and t ∈ R, let gk,t, g′k,t ∈ F be

such that u(gk,t) = ku(α f + (1 − α)h) − t1 and u(g′k,t) = ku(α f ′ + (1 − α)h) − t1. Then,

for each k > 0, each t ∈ R, and each p ∈ ∪t∈Rdom ct, Epu(gk,t) ≥ Epu(g′k,t), and thus

inf
p∈∆

G(Epu(gk,t), p) ≥ inf
p∈∆

G(Epu(g′k,t), p). That is, for each k > 0 and each t ∈ R, I(ku(α f +

(1 − α)h) − t1) ≥ I(ku(α f ′ + (1 − α)h) − t1). Hence, lim
k→∞

lim
t→∞

1
k [I(ku(α f + (1 − α)h) −

t1) + t] ≥ lim
k→∞

lim
t→∞

1
k [I(ku(α f ′ + (1 − α)h) − t1) + t]. By the proof of Theorem 3, we have

26See their Lemma 3.5.
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min
p∈D

Epu(α f +(1−α)h) ≥ min
p∈D

Epu(α f ′+(1−α)h). By Ghirardato, Maccheroni and Marinacci

(2004) (p.151), for each p ∈ D, Epϕ ≥ Epϕ
′, as desired.

We proceed to prove statement 1 implies statement 3. Define J′ : RS → R by for each

ϕ ∈ RS ,

J′(ϕ) = lim
k↘0

lim
t→∞

1
k

[I(kϕ + t1) − t]. (34)

By a similar argument as before, one can show that (1) for each k > 0 and each t ∈ R,
1
k [I(kϕ + t1) − t] is bounded in [min

S
ϕ(s),max

S
ϕ(s)], (2) for each k > 0, 1

k [I(kϕ + t1) − t]

weakly increases in t, and (3) lim
t→∞

1
k [I(kϕ+ t1)− t] weakly decreases in k on (0,∞). Hence, J′

is well-defined and for each ϕ ∈ RS , I(ϕ) ≤ J′(ϕ). It can also be analogously verified that J′

is normalized, weakly increasing, constant additive, positive homogeneous of degree 1 and

superadditive.

Again by Gilboa and Schmeidler (1989)’s Lemma 3.5, there exists a non-empty closed

convex set K ⊆ ∆ such that for each ϕ ∈ RS , J′(ϕ) = min
K

Epϕ. Define B : RS ⇒ ∆ by

B(ϕ) = {p ∈ ∆|I(ϕ) = Epϕ}, and define σ : RS → R+ by σ(ϕ) = d(B(ϕ),K). Since for each

ϕ ∈ RS , I(ϕ) ≤ min
K

Epϕ, then by the same argument as in the proof of Theorem 2, one can

show that for each ϕ ∈ RS , I(ϕ) = min
p∈∆:d(p,K)≤σ(ϕ)

Epϕ.

Now we turn to the properties of σ. First, σ is continuous on {u( f ) ∈ RS | f ∈ F \ F∗}

and lower semicontinuous on {u( f ) ∈ RS | f ∈ F∗}. The proof utilizes the continuity of I and

is the same as in the proof of Theorem 2.

Second, for each ϕ ∈ RS , σ(ϕ + t1) weakly decreases in t. To see it, let ϕ ∈ RS and

t ≤ t′ in R be given. Let p ∈ B(ϕ + t1) and q ∈ K be such that σ(ϕ + t1) = d(p, q).

Since I is constant superadditive, then Ep(ϕ + t′1) ≤ I(ϕ + t′1). If Ep(ϕ + t′1) < I(ϕ + t′1),

then σ(ϕ + t1) = d(p, q) > σ(ϕ + t′1), otherwise I(ϕ + t′1) = min
p′∈∆:d(p′,K)≤σ(ϕ+t′1)

Ep′(ϕ + t′1) ≤

Ep(ϕ+t′1) < I(ϕ+t′1), which is a contradiction. If Ep(ϕ+t′1) = I(ϕ+t′1), then p ∈ B(ϕ+t′1),

and thus σ(ϕ + t1) = d(p, q) ≥ d(B(ϕ + t′1),K) = σ(ϕ + t′1) as desired.

Third, for each ϕ ∈ RS , lim
t→∞

σ(kϕ + t1) weakly increases in k on (0,∞). Fix ϕ ∈ RS . For

each k > 0, define Bk : [0,∞] ⇒ ∆ by for each t ∈ R+, Bk(t) = B(kϕ + t1), and Bk(∞) =

{p ∈ ∆|Epϕ = lim
t→∞

1
k [I(kϕ + t1) − t]}. Fix k > 0, and we first check that lim

t→∞
d(Bk(t),K) =

d(Bk(∞),K). By the maximum theorem, it suffices to prove that Bk is continuous at ∞. The

upper hemicontinuity is easy. For the lower hemicontinuous, let {tn}
∞
n=1 be a sequence of

elements in R+ such that lim
n→∞

tn = ∞. Fix p̄ ∈ Bk(∞). If E p̄ϕ = ϕ∗, then for each n ∈ N,
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p̄ ∈ Bk(tn) and we are done. Suppose E p̄ϕ > ϕ∗. Let p∗ ∈ ∆ be such that Ep∗ϕ = ϕ∗. Then,

for each n ∈ N, there exists a unique αn ∈ [0, 1] such that αn p̄ + (1−αn)p∗ ∈ Bk(tn). It can be

readily verified that lim
n→∞

[αn p̄ + (1 − αn)p∗] = p̄ as desired. Now let k′ ≥ k, p ∈ Bk(∞), p′ ∈

Bk′(∞) and q, q′ ∈ K be given such that d(p, q) = d(Bk(∞),K) and d(p′, q′) = d(Bk′(∞),K).

We would like to check that d(p, q) ≤ d(p′, q′). Note that Epϕ ≥ Ep′ϕ. If Epϕ = Ep′ϕ,

then p′ ∈ Bk(∞), and we are done. If Epϕ > Ep′ϕ, since Eq′ϕ ≥ J′(ϕ) ≥ Epϕ, then there

exists a unique α ∈ [0, 1) such that Eαp′+(1−α)q′ϕ = Epϕ, i.e., αp′ + (1 − α)q′ ∈ Bk(∞). Thus

d(p, q) ≤ d(αp′ + (1 − α)q′, q′) = αd(p′, q′) < d(p′, q′), as desired.

Fourth, lim
k↘0

lim
t→∞

σ(kϕ + t1) = 0. Fix ϕ ∈ RS . Let q ∈ K and p∗ ∈ ∆ be given such

that Eqϕ = J′(ϕ) and Ep∗ϕ = ϕ∗. If Eqϕ = ϕ∗, then for each k > 0 and each t ∈ R,

q ∈ B(kϕ + t1), and thus the result follows from the definition of σ. If Eqϕ > ϕ∗, then for

each k > 0 there exists a unique αk ∈ [0, 1] such that Eαk p∗+(1−αk)qϕ = lim
t→∞

1
k [I(kϕ + t1) − t].

Thus lim
k↘0

αk = lim
k↘0

1
Ep∗ϕ−Eqϕ

[lim
t→∞

1
k [I(kϕ+ t1)− t]− Eqϕ] =

Eqϕ−Eqϕ

Ep∗ϕ−Eqϕ
= 0. Then, for each k > 0,

0 ≤ lim
t→∞

σ(kϕ + t1) = d(Bk(∞),K)

≤ d(αk p∗ + (1 − αk)q, q) = αkd(p∗, q),

where the first equality and the second inequality follow from the proof in the last step. By

taking the limit of k to 0, we get the desired result.

To show that K is the largest essential set, by Theorem 2 and Corollary 2, it suffices to

show that K∗ ⊆ K. Suppose the contrary that q ∈ K∗ \ K. Thus there exists ϕ ∈ RS such

that Eqϕ < min
p∈K

Epϕ. Let f ∈ F be such that u( f ) = ϕ. For each k > 0 and t ∈ R, let

fk,t ∈ F and xk,t ∈ X be such that u( fk,t) = kϕ + t1 and u(xk,t) = kEqϕ + t. Since q ∈ K∗,

then for each k > 0 and each t ∈ R, G(u(xk,t), q) = u(xk,t), and thus u(xk,t) ≥ Equ( fk,t) implies

kEqϕ + t ≥ I(kϕ + t1). Then, min
p∈K

Epϕ = lim
k↘0

lim
t→∞

1
k [I(kϕ + t1) − t] ≤ Eqϕ, which gives a

contradiction as desired.

Lastly, we check that statement 1 implies statement 4. By Lemma 3, we know that %

satisfies A.2. Then by Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011) %

admits an ambiguity averse representation 〈u,G〉 in which G is given by, for each (t, p) ∈

R × ∆,

G(t, p) = sup{u(x f )| f ∈ F , Epu( f ) ≤ t}.
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Let I : RS → R be such that for each ϕ ∈ RS ,

I(ϕ) = min
p∈∆

G(Epϕ, p). (35)

Given p ∈ ∆ and t′ ≥ t in R, we want to show that G(t′, p) − t′ ≥ G(t, p) − t. For each

f ∈ F such that Epu( f ) ≤ t, there exists f ′ ∈ F such that u( f ′) = u( f ) + (t′ − t)1 and

thus Epu( f ′) ≤ t′. Note that by Lemma 3, I is constant superadditive. Hence u(x f ′) − t′ =

I(u( f ′)) − t′ = I(u( f ) + (t′ − t)1) − t′ ≥ I(u( f )) + t′ − t − t′ = I(u( f )) − t = u(x f ) − t. Then by

definition G(t′, p) − t′ ≥ G(t, p) − t. �

Proof of Proposition 5. By Theorem 10 and Proposition 11 of Cerreia-Vioglio, Maccheroni,

Marinacci and Montrucchio (2011), D∗ = cl(co(∪ f∈F π( f ))). To show that for each x ∈

X, D∗ = cl(co(∪ f∼xπ( f ))), fix y � z in X and it suffices to prove that cl(co(∪ f∼yπ( f ))) =

cl(co(∪ f∼zπ( f ))). Let 〈u,G〉 be an ambiguity averse representation of % , and let I be given

as in (35). For each x ∈ X, define Jx : RS → R by for each ϕ ∈ RS ,

Jx(ϕ) = u(x) + tx(ϕ),

where tx(ϕ) is given by I(ϕ − tx(ϕ)1) = u(x), and let % x be the preference relation induced

by Jx, i.e., for each pair f , g ∈ F , f % xg ⇔ Jx(u( f )) ≥ Jx(u(g)), with ∼x denoting its

indifference component. It can be readily verified that for each x ∈ X, % x is a variational

preference relation (Maccheroni, Marinacci and Rustichini (2006)), and for each f ∈ F ,

x % f ⇔ x % x f and x ∼ f ⇔ x ∼x f . For each x ∈ X, define πx : F ⇒ ∆ by for each

f ∈ F ,

πx( f ) = {p ∈ ∆|
∑
s∈S

ps f (s) ≥
∑
s∈S

psg(s) implies f % xg},

and notice that for each x ∈ X and each f ∈ F with f ∼ x, πx( f ) = π( f ). It is easy to see that

for all x, y, z ∈ X, ∪ f∼xyπx( f ) = ∪ f∼xzπx( f ), and hence ∪ f∈F πx( f ) = ∪ f∼x xπx( f ) = ∪ f∼xπ( f ).

Moreover, for each ϕ ∈ RS ,

u(y) − u(z) = I(ϕ − ty(ϕ)1) − I(ϕ − tz(ϕ)1)

= I(ϕ + (tz(ϕ) − tz(ϕ) − ty(ϕ))1) − I(ϕ − tz(ϕ)1)

≥ I(ϕ − tz(ϕ)1) + tz(ϕ) − ty(ϕ) − I(ϕ − tz(ϕ)1) = tz(ϕ) − ty(ϕ),

where the inequality follows from the constant superadditivity of I and the fact that tz(ϕ) >

ty(ϕ). Thus, for each ϕ ∈ RS , Jy(ϕ) − Jz(ϕ) = u(y) − u(z) + ty(ϕ) − tz(ϕ) ≥ 0. Therefore, % z
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is more ambiguity averse than % y in the sense of Maccheroni, Marinacci and Rustichini

(2006). By Proposition 6, 11 and Theorem 10 of Cerreia-Vioglio, Maccheroni, Marinacci

and Montrucchio (2011), cl(co(∪ f∈F πy( f ))) ⊆ cl(co(∪ f∈F πz( f ))). Combined with the above

observation, we have cl(co(∪ f∼yπ( f ))) ⊆ cl(co(∪ f∼zπ( f ))).

Conversely, suppose that there exists g ∼ z and q ∈ π(g) \ cl(co(∪ f∼yπ( f ))). Hence,

there exists ϕ ∈ RS such that for each p ∈ cl(co(∪ f∼yπ( f ))), Eqϕ < 0 < Epϕ. Pick n ∈ N

such that Eqnϕ < Equ(g) and for each p ∈ cl(co(∪ f∼yπ( f ))), Epnϕ > u(y). Let h ∈ F

be such that u(h) = nϕ. Thus z ∼ g % h. Applying Theorem 10 and Proposition 11 of

Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2011) for % y, we have h % yy

and thus h % y, which contradicts y � z % h. Hence, ∪ f∼zπ( f ) ⊆ cl(co(∪ f∼yπ( f ))), and then

cl(co(∪ f∼zπ( f ))) ⊆ cl(co(∪ f∼yπ( f ))). �

Proof of Proposition 6. The “only if” direction is clear. For the “if” direction, suppose that

A.2.3 holds. By Lemma 1, then there exists an affine onto utility function u : X → R and a

normalized monotone continuous functional I : RS → R such that f % g in F if and only if

I(u( f )) ≥ I(u(g)). A.2.3 implies that for each ϕ ∈ RS and each t ∈ R, I(ϕ + 1) = I(ϕ) + t.

Let α ∈ (0, 1), x, y ∈ X and f , g ∈ F with f � g be given such that α f + (1 − α)x % αg +

(1 − α)x. Pick f ′ ∈ F with u( f ′) = u( f ) − t1 for some t ∈ R+ and I(αu( f ′) + (1 − α)u(x)1) =

I(αu(g)+ (1−α)u(x)1). By the implication of A.2.3, I(αu( f ′)+ (1−α)u(y)1) = I(αu(g)+ (1−

α)u(y)1). Since I(αu( f )+(1−α)u(y)1) ≥ I(αu( f ′)+(1−α)u(y)1), then I(αu( f )+(1−α)u(y)1) ≥

I(αu(g) + (1 − α)u(y)1). Thus α f + (1 − α)y % αg + (1 − α)y as desired. �

Proof of Proposition 7. Fix u and ϕ as required. By Cerreia-Vioglio, Maccheroni, Mari-

nacci and Montrucchio (2011) (Section 5.2), if % admits a smooth ambiguity representation

〈u, φ, µ〉, then it also admits an ambiguity averse representation 〈u,G〉, and for Iµ : RS → R
defined in (35),

Iµ(ϕ) = φ−1(
∫

p∈∆

φ(Epϕ)dµ(p)).

Thus by the proof of Lemma 3, % satisfies A.2.1 if and only if Iµ is constant superadditive.

If −φ
′′

φ′
is weakly decreasing, then one can show that Iµ is constant superadditive27 and thus

A.2.1 is satisfied.
27The result follows from the counterparts of Lemma 52 and the proof of Proposition 53 in Cerreia-Vioglio,

Maccheroni, Marinacci and Montrucchio (2011).
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Conversely, suppose that each % ∈ P satisfies A.2.1. To show that −φ
′′

φ′
is weakly

decreasing, it is equivalent to check that for each t > 0, Jt : φ(R) → R, defined by for each

r ∈ φ(R),

Jt(r) = φ[φ−1(r) + t],

is convex on φ(R). Let x, x′ ∈ X, r, r′ ∈ φ(R) be given such that r = φ(u(x)) and r′ = φ(u(x′)).

Let f ∈ F be such that f (s) = x and f (s′) = x′ for some s, s′ ∈ S . Let δs and δs′ be the

degenerate measures which assign the whole probability respectively on s and s′. For each

α ∈ [0, 1], let µα be the second-order belief which assigns probability α to δs and 1−α to δs′ .

Then, for each t > 0 and each α ∈ [0, 1],

Jt(αr + (1 − α)r′) = Jt(
∫

p∈∆

φ(Epu( f ))dµα(p)) = φ[Iµα(u( f )) + t]

≤φ[Iµα(u( f ) + t1)] =

∫
p∈∆

φ(Ep(u( f ) + t1))dµα(p)

=αφ[φ−1(r) + t] + (1 − α)φ[φ−1(r′) + t] = αJt(r) + (1 − α)Jt(r′),

where the first inequality comes from the constant superadditivity of Iµα .

Similarly, one can prove that for each preference relation % ∈ P, it satisfies Axiom

A.2.2 if and only if −φ
′′

φ′
is weakly increasing. �
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