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ANALYTICS-MODULATED CODING OF SURVEILLANCE VIDEO

Lai-Tee Cheok, Nikhil Gagvani

Cernium Corporation
Email: ltcheok@gmail.com, ngagvani@cernium.com

ABSTRACT
Video surveillance systems increasingly use H.264 coding to
achieve 24x7 recording and streaming. However, with the pro-
liferation of security cameras, and the need to store several
months of video, bandwidth and storage costs can be signif-
icant. We propose a new compression technique to signifi-
cantly improve the coding efficiency of H.264 for surveillance
video. Video content is analyzed and video semantics are ex-
tracted using video analytics algorithms such as segmentation,
classification and tracking. In contrast to existing approaches,
our Analytics-Modulated Compression (AMC) scheme does not
require coding of object shape information and produces bit-
streams that are standards-compliant and not limited to specific
H.264 profiles. Extensive experiments were conducted involv-
ing real surveillance scenes. Results show that our technique
achieves compression gains of 67% over JM. We also intro-
duced AMC Rate Control (AMC RC) which allocates bits in
response to scene dynamics. AMC RC is shown to significantly
reduce artifacts in constant-bitrate video at low bitrates.

Keywords— H.264, object-based coding, video analytics,
video surveillance, rate control

1. INTRODUCTION

Object-based coding techniques for selective video compression
already exist in the MPEG-4 standard where a video sequence is
treated as a collection of one or more objects of arbitrary shape.
An alpha binary map is computed where each pixel belonging to
the foreground object is defined as black and pixel correspond-
ing to the background region outside the object is defined as
white. A binary shape encoder is then used to encode the alpha
binary map and the encoded shape information is transmitted
together with the coded video data.
H.264/AVC is the latest video coding standard developed

jointly by MPEG and VCEG that offers significantly higher
compression gains than MPEG-4. However, one functionality
that is absent in the H.264/AVC standard is the ability to code
arbitrary shaped objects. Recent work progresses along the di-
rection to incorporate shape coding functionality in H.264/AVC.
In [1] and [2], the authors used Flexible Macroblock Ordering
(FMO) which is supported only in the H.264 Baseline Profile
(BP). Conventional video standard allows the encoding of mac-
roblocks (MB) in raster scan order, whereas with FMO, the

slices of macroblocks can be grouped into slice groups freely.
In [1], the authors defined separate slice groups for foreground
(fg) objects and background (bg) objects. Bg slice groups have a
larger QP value than the fg slice groups, resulting in significant
bit-rate reduction. The work in [2] adopts a similar approach,
however, the fg QP value is determined by the native rate con-
troller [3], whereas an equation is proposed to derive the cor-
responding bg QP value as a function of additional parameters
that determine the sharpness of the quality difference between
the fg and bg object. In [4], the authors re-designed the H.264
slice group structure and a new binary shape coder for H.264
video, following a strategy similar to that used in MPEG-4. All
the video frames are encoded as I frames and the compressed
Binary Alpha Blocks (BABs) are delivered via the auxiliary in-
formation stream of the H.264/AVC bitstream.
Our proposed scheme, Analytics-Modulated Coding (AMC),

does not require coding of shape information (unlike [4]) and
produces bitstreams that are standards-compliant and are not
limited to H.264 Baseline Profile (BP). [1] and [2] works only
for H.264 BP that supports FMO. Furthermore, we use Struc-
tural Similarity (SSIM) [5] instead of PSNR since SSIM cor-
relates better to human perceptual quality. In AMC, video an-
alytics algorithms such as segmentation and classification are
utilized to analyze the video content and extract scene seman-
tics for identifying target objects of interest (fg objects) and to
determine when target objects appear in the scene or disappear
from the scene. The bg and/or non-ROI regions are encoded
using fewer bits relative to the identified ROI. A typical video
surveillance scene involves one or a few moderately sized target
objects and the scene is static most of the time. Adopting our
proposed scheme for encoding surveillance video will signifi-
cantly reduce the bit-rate without compromising quality. The
GOP size as well as other encoding parameters (e.g. motion
vector search range) are adapted to the scene content for im-
proving compression. Instead of adapting the spatial and tem-
poral resolution which may result in discontinuity in perceptual
quality, encoding parameters are adjusted at finer granularity to
yield smooth, high-quality video at low bit rate. An object track-
ing module can also be utilized to yield motion information for
optimal I/P/skipped mode decision and for faster motion esti-
mation to reduce computational overhead.
We have also designed and implemented a new Rate Control

scheme (AMC RC) that allocates bits in response to scene dy-
namics. It is worthwhile to mention that AMC does not focus
only on selective coding of image regions, but presents other in-
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Fig. 1. Architecture of a video surveillance system incorporat-
ing AMC

novative ways of exploiting video analytics modules to improve
other aspects of compression for achieving higher compression
and computational efficiency than H.264. It also significantly
reduces storage and bandwidth requirements and offers a com-
petitive solution to surveillance systems that record and stream
video continuously.
This paper is organized as follows: Section 2 provides

an overview of our video surveillance solution employing
Analytics-Modulated Coding (AMC). Section 3 introduces the
design of AMC. The new rate control module (AMC RC) is
proposed in section 4. We present and discuss the experimen-
tal results in section 5 and draw conclusions from our work in
section 6.

2. ARCHITECTURE OF A VIDEO SURVEILLANCE
SYSTEM INCORPORATING

ANALYTICS-MODULATED CODING (AMC)

Figure 1 illustrates an architecture of a video surveillance and
video compression solution employing AMC. Both the AMC
encoder and the video analytics components run on a single de-
vice (e.g., IP cameras, sensors, etc.). Video input to the device
is processed by the analytics engine which comprises of a seg-
mentation, a classification and a tracking module.
The segmentation module produces foreground blobs which

are inter-connected clusters of pixels. Our current surveillance
system uses a variant of the background subtraction technique
[6] in which a background model is constructed and updated.
Each subsequent frame is compared with the background model
to yield foreground blobs which are classified by assigning a
category to each of the blobs. The classification engine uses
image features to discriminate one class from another, for in-
stance, a multi-class classifier [7] separates object blobs into
one of multiple classes, e.g., object is a person, a vehicle, or an
animal. Classified objects are then tracked [8] across multiple
video frames by establishing a correspondence between the ob-
ject blobs in consecutive frames. These correspondences can be

Fig. 2. Architecture of AMC

used for scene interpretation and for behavior/activity recogni-
tion. As shown in the figure, metadata from the analytics engine
is stored in an event database while the encoded video from the
compression engine is stored on a video server. Our surveil-
lance system generates real time alerts of activities of interest
to the users, by posting SMS messages or sending email noti-
fications to client devices (e.g., users’ cell phones, PCs, or the
command center). Users can interact via a web-based interface
such as querying for a specific event from the event database
and have event clips delivered to their devices.
In existing systems, the analytics engine runs independently

of the compression engine (encoder). However, our AMC en-
coder utilizes output from the analytics engine (shown as block
arrow in Figure 1), for scene-adaptive coding to produce high
quality low bit-rate H.264 video for storage on video servers
and/or delivery to client devices.

3. ANALYTICS-MODULATED CODING (AMC)

Our proposed Analytics-Modulated Coding (AMC) scheme
aims to leverage analytics components to enable scene-adaptive
coding to achieve better compression and computational effi-
ciency than H.264. As shown in Figure 2, the binary alpha mask
generated by the segmentation module is used to identify the re-
gions of interest (ROI). A ROI may correspond to regions where
a target person is identified in the scene/picture. The GOP size
is adaptively adjusted based on whether the segmented object
enters or leaves the scene. The segmented objects are classified
as belonging to 1 of N classes of objects through the classifi-
cation process. Weights are assigned to these classes to define
relative priorities among the classes for bit allocation. For ex-
ample, blobs belonging to one class (e.g., person class), use a
greater fraction of the bit budget compared to blobs belonging
to another class (e.g., trees class). The classified objects are
tracked over successive frames by establishing correspondence
between blobs. The tracking module yields motion information
for each object that is utilized to determine a suitable motion
vector search range. The interactions between the modules are
described in more details in the following subsections.

3.1. Region-based Coding by Modulating QP Value

The mask from the segmentation module is used to identify
ROIs so that non-ROIs are coded with relatively fewer bits in
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such a way that the overall bitrate is reduced without com-
promising quality. As mentioned, unlike existing approaches,
our scheme does not require object shape information to be en-
coded, is not limited to specific profiles in H.264 and produces
H.264 bitstreams that are compliant to the standard.
We have implemented our proposed scheme into H.264 JM

reference software (JM 15.1) [9], and integrated with our analyt-
ics engine. As shown in Figure 2, the alpha mask derived from
the segmentation module is used to distinguish foreground (fg)
objects (i.e., ROIs) from background (bg) objects (non-ROIs).
In our surveillance application where the aim is to detect per-
sons, the fg objects refer to detected person targets, while the
bg objects refer to objects other than persons, such as vehi-
cles, animals, moving tree foliage, etc. Each class of object
can be further assigned a weight and a different QP value could
be associated with different object class based on their relative
priorities. The mask defining the boundary of the ROI are in
pixel units. We have mapped the ROI from pixel to macroblock
(MB) units and defined an array indexed by macroblock address
to keep track of MBs belonging to fg and bg objects. Exten-
sive experiments have been conducted using two hour long real
surveillance video and are described in more details in Section
5. The proposed feature discussed in this section allows AMC
to operate in VBR mode. AMC in CBR mode involving RC is
covered in Section 4.

3.2. Adaptive I-Frame Placement (Adaptive GOP Interval)

The analytic modules can be used to detect scene changes. An
initial large GOP interval is used and a frame is encoded as an
I-frame whenever scene change occurs. This has the effect of
adaptively varying the GOP size depending on the scene con-
tent. An example of a scene change is when a target object
(e.g., a person) is detected entering or leaving the scene. Our
implementation uses both the segmentation and classification
modules to detect scene change. Frames are coded as P frames
up to the moment that an object enters the scene. A maximum
GOP size is specified such that an I-frame can be inserted when
the period of inactivity exceeds certain predetermined duration
or predetermined criterion (e.g., number of frames of inactiv-
ity). A minimum GOP size is specified such that two I frames
are at least a certain duration apart. We have encoded several
surveillance videos with a combination of minimum and maxi-
mumGOP sizes. Details of the experiments are given in Section
5.

3.3. I/P/Skipped Mode Decision

Existing algorithms on I/P/Skipped mode decision rely on the
computation of Mean Absolute Difference (MAD) and compar-
ing that against a threshold to determine if the MB should be an
I, P or skipped MB. Such an approach, however, incurs higher
computation cost. Furthermore, the threshold chosen may not
guarantee that all fg MBs will be coded as I MBs. Our proposed
approach allows the use of segmentation and classification out-
put to directly determine the I/P/skipped mode selection. When

Fig. 3. Analytics-Modulated Coding with Rate Control (AMC
RC)

a scene change occurs, the fg MBs are coded as I MBs. bg MBs
in regions having movement (e.g., foliage, fountain, etc.) are
coded as P MBs whereas MBs corresponding to static bg re-
gions are coded as skipped MBs. Results show about 40 - 50%
compression gains by coding static bg MBs as skipped MBs and
fg MBs as I MBs.

3.4. Determining Motion Vector Search Range

A motion trajectory for an object blob from the tracking mod-
ule can be used to determine a suitable MV search range with
a good trade-off between accuracy and complexity. Such mo-
tion information can also be used to derive a predictive motion
vector used in predictor-based ME algorithms. The MV search
range can also be determined based on the result of the classi-
fication engine. As an example, for segmented blobs classified
as a person, the lower half of the ROI corresponding to the leg
movement of the detected person target can be used to deter-
mine the search range, which can further be adaptively changed
depending on the motion history of objects.

4. ANALYTICS-MODULATED CODINGWITH RATE
CONTROL (AMC RC)

We have also designed and implemented a new rate control
scheme by leveraging analytics. Figure 3 illustrates the AMC
RC module and its relationship with the analytics and compres-
sion engines. Raw video is processed by the appearance model
[10] in the analytics engine to yield brightness, spatial and tem-
poral information that contribute to the HVS factors. Alterna-
tively, these HVS factors can be derived through first-pass en-
coding as shown encased within the dotted box. The segmenta-
tion module of the Analytics engine identifies foreground blobs
which are then categorized by the classification module. Within
the AMC RC block, the inputs to the High-level RC are target
bitrate, weights for object classes, number of objects and size
of objects. The latter three are derived from the segmentation
and classification modules. Complexity is computed based on
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segmentation output and the weight for each object class. Com-
plexity is used to drive the Low-level RC and the RQ model
which is described in detail in the following sections.

4.1. AMCRCHigh-Level Rate Control (AMCRC - HLRC)

At the HLRC, the target bit allocation for each frame can be de-
pendent on the number of remaining frames in the GOP, num-
ber of remaining bits available for the GOP as well as scene
complexity, which is expressed as a function of the number, the
size and the type of objects in the scene. These three quanti-
ties are derived from the analytics module. The mathematical
formulations for calculating frame budget at the HLRC, while
incorporating analytics are as follows:

Ti =
Xi

((N−i+1)Xi)+c

(
Rt −

i−1∑
j=1

Rj

)
(1)

Xi =
n∑

k=1

αk,jFk,j , Fk,j ε {ai, bi} (2)

ai =

mi∑

g=1

Sg,i

S
, bi =

mi

M
(3)

For a GOP with N frames, the bit budget for frame i, Ti, is com-
puted by taking a proportion of bits remaining in the GOP as
shown in equation (1). Rt refers to the total bit budget whereas
Rj gives total bits used to encode frame j and c is a constant.
Xi is the complexity of frame i due to multiple features and, as
an example, is expressed as weighted combination of the nor-
malized size of objects, ai, and normalized number of objects,
bi, in the scene as shown in equations (2) and (3). αk,j is the
weight associated with Fk,j which denotes feature k of frame
i. In equation (3), Sg,j refers to the size of object g (in pix-
els) in frame i; mi is the number of objects in frame i, while S
andM are the total number of pixels in the video frame and the
expected maximum number of objects respectively.

Ti final = γTBi + (1− γ)Ti (4)

The final target bit budget, Ti final, is allocated for each frame
as shown in equation (4). Ti final is the weighted sum of the
bit budget computed based on buffer occupancy (i.e., TBi), and
the bit budget predicted based on complexity (i.e., Ti), as de-
rived from equation (1). γ indicates how much to weight each
component (TBi and Ti) of the sum. We adopted the buffer
occupancy scheme in JM.

4.2. AMC RC Low-Level Rate Control (AMC RC - LLRC)

At the LLRC, bits for each macroblock (MB) are allocated as
a fraction of the frame bit budget and the MB complexity. In
our scheme, the MB complexity is calculated based on analytics

components.

rj = (xj/
p∑

j=1

xj)Ti final (5)

xj =
n∑

k=1

λk,jfk,j (6)

cj = (1− gj) ∗ 1/Sj (7)
dj = (1− gj) ∗ 1/Mj (8)
ej = (1− gj) ∗ 1/Ij (9)
hj = gjwj , (10)

As shown in equation (5), the bit budget for each MB, rj , is
computed as a fraction of frame bit budget, Ti final, based on
MB complexity, xj . p is the total number of MBs in each frame.
xj is expressed as a weighted linear combination of features
fk,j , where fk,j ε {cj , dj , ej , hj} and λk,j are weights asso-
ciated with each of these features (equation (6)). These fea-
tures include HVS factors such as brightness, spatial activities
and temporal activities, denoted as normalized quantities Ij ,
Sj and Mj respectively (equations (7) - (9)). Using hj , an-
alytics are incorporated into the calculation of the MB com-
plexity. gj , in equation (10), indicates whether the MB be-
longs to the foreground or background object and is derived
based on the segmentation module. The classification module
is used to compute the normalized weight for each object class,
wj , j ε {1, . . . , L}, where L is the number of object classes. For
example, a larger weight can be assigned to a PERSON object
and a smaller weight can be assigned to a CAR/VEHICLE ob-
ject and/or other objects in an application used to detect target
persons in the scene. This directly incorporates weights based
on object class into the rate control technique used for com-
pression. We used the quadratic R-Q model in equation (11) to
derive MB QP.

rj = Ki ∗
xj

QP
+K2 ∗

xj

QP 2
(11)

rj and xj , are derived from equation (5) and (6) respectively.
K1 and K2 are model parameters. In contrast to schemes that
uses MAD between pixels in an original image and pixels in a
predicted image, a combination of segmentation and classifica-
tion results from analytics is used, as well as HVS factors to
compute the MB complexity.

5. RESULTS AND DISCUSSION

We implemented our AMC encoder based on the H.264 JM
reference software (JM 15.1) [9] and ran experiments on real
surveillance video containing both indoor and outdoor scenes
with different levels of motion activity. Each two hour long
video is encoded at 30fps with CIF resolution (352x240). We
have also conducted experiments on HD video and found that
the compression gain is higher (approx. up to 10%). We use
SSIM since it correlates better to subjective quality compared
to PSNR. We present results of 3 video sequences in the follow-
ing subsections and evaluated the performance of our proposed
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(a) Building Entrance (b) Trailer

(c) Parked Car

Fig. 4. Real Surveillance Scenes used for Experiments

(a) Building Entrance (b) Trailer

(c) Parked Car

Fig. 5. Results on Region-based coding using QP modulation

compression scheme against H.264 JM baseline profile. The 3
video sequences consist of the scenes of a building entrance, a
trailer, and a parked car as shown in Figure 4.

5.1. Experimental Results for Region-based Coding by
Modulating QP

Figure 5 shows the bitrate, QP and SSIM values of video en-
coded using JM and AMC for the 3 video scenes. SSIM values
are shown as data labels on the points along the curves. AMC
(fg,bg) QP values appear in brackets beside the JM QP values
along the x-axis. In Figure 5(a), the building entrance scene is
first encoded using JM with a QP value of 24. The resulting bi-
trate is 276.64kbps and SSIM value is 0.98. The same video is
encoded using AMC with a (fg,bg) QP value of 23 and 25. The
resulting bitrate at the same SSIM value is 224.84kbps giving a
bitrate savings of 18% over JM. The bitrate and corresponding
SSIM for QP of 24, 26, 28 and 30 are shown. Results for other
scenes are illustrated in Figures 5(b),(c) and (d). As shown,
AMC via QP modulation achieves compression gain of up to
24%.

5.2. Experimental Results for Adaptive I-Frame Placement

Figure 6 describes results from experiments conducted on the
surveillance scenes shown in Fig. 4, with low and high activ-
ity, using a minimum GOP size of 60 or 250 and a maximum
GOP size of 60, 250, 1000 and 5000. The results are presented
in the graph using data symbols * and ’triangle’. The ’square’
and ’circle’ symbols represent results that will be discussed in
the next section. For JM, the min and max GOP size is the
same, i.e., min, max size of (60,60) refers to using JM at a GOP
size of 60. As shown in Figure 6(a), JM bitrate decreases from
132.04kbps to 84.76kbps as GOP size increases from 60 to 250.
AMC bitrate reduces from 80.44kbps to 79.17kbps when max
GOP size increases from 1000 to 5000 at the same min GOP
size of 60. Similar results are achieved at min GOP size of
250 and for other video scenes in Figure 6(b) and 6(c). The
amount of bitrate savings is dependent on scene activity. Rela-
tively static scenes yields higher savings than scenes with more
activity. Overall, bitrate reduction as high as 55% is achieved.

5.3. Combined Results

The results of combining Region-based coding via QP modula-
tion and adaptive I-frame placement are shown represented as
’square’ and ’circle’ symbols in Figure 6. The y-axis indicates
bitrate (kbps) in log scale. Bitrate also appears as data labels
alongside the symbols. The ”square” corresponds to results ob-

(a) Building Entrance (b) Trailer

(c) Parked Car

Fig. 6. Combined Results on Region-based coding (QP Modu-
lation) and Adaptive I-Frame Placement

tained after encoding video using AMC encoder with a mini-
mum GOP size of 60, a maximum GOP size of 5000, and using
fg and bg QP values of (28, 29). The results obtained using a
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minimum GOP size of 250, a maximum GOP size of 5000, and
fg and bg QP values of (28, 29) is indicated by the ”circle” sym-
bol. As shown, combining both features yields bitrate savings
of up to 67%.

5.4. AMC RC Results

Figure 7 compares results of JM RC and AMC RC. As shown,
AMC RC yields better bit allocation compared to JM RC which
produces spikes and dips over frame interval 180 - 300.

(a) JM RC (b) AMC RC
Fig. 7. Results of AMC RC

6. CONCLUSION

We proposed a new compression scheme leveraging analytics
to achieve better compression than H.264. Video content is
processed by analytics and scene semantics are extracted to
adaptively vary the GOP size and to allow selective coding of
regions. The proposed AMC technique directly incorporates
object-based coding capability into H.264 without the draw-
backs suffered by existing approaches. Experimental results
show that AMC can achieve approximately 67% improvement
in coding efficiency/gain. We have also developed AMC RC to
allow AMC to operate in CBR mode. For future work, we will
extend AMC to adaptively vary the number of reference frames,
MV search range, as well as to improve intra-prediction, and to
combine AMC technique with SVC.
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