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Abstract:  We consider the problem of formulating and estimating dynamic 

regression models with variables observed at different frequencies.  The strategy 

adopted is to define the dynamics of the model in terms of the highest available 

frequency, and to apply certain lag polynomials to transform the dynamics so that 

the model is expressed solely in terms of observed variables.  A general solution 

is provided for models with monthly and quarterly observations.  We also show 

how the methods can be extended to models with quarterly and annual 

observations, and models combining monthly and annual observations. 
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1. Introduction 

Economic data are available in a variety of frequencies.  Econometric models, on the 

other hand, are typically constructed for use with data observed at the same frequencies.  

Datasets for use in any one econometric application are thus assembled at the frequency of the 

lowest frequency variable, with the data series available at higher frequencies converted to the 

lower frequency through temporal aggregation or systematic sampling, depending on whether the 

corresponding variables are flow or stock variables respectively.  A researcher may, for instance, 

be interested in modeling the relationship between output and employment:  if output is observed 

quarterly and employment monthly, a model incorporating these two variables would have to be 

specified at a quarterly frequency, with quarterly employment figures systematically sampled 

from the monthly figures.   

This paper develops a modeling strategy that avoids the need for all data series within an 

econometric application to be sampled at the same time intervals.  Dynamic regression models 

are formulated which include variables observed at different frequencies.  There are clear 

advantages to such a modeling approach.  Consider the case where the dependent variable is 

available quarterly while the independent variable is observed monthly.  By allowing the 

independent variable to be included in the model at the higher frequency, monthly multipliers 

would be available that would otherwise be lost had the monthly data been converted into 

quarterly observations.  The model would permit updating of quarterly forecasts as monthly data 

becomes available.  Including monthly dynamics may also improve one-quarter ahead forecasts.   

A long history of papers has discussed the effects of systematic sampling and temporal 

aggregation on model structure, parameter estimates, forecasting and causal relationships 

(Zellner 1966, Brewer 1973, Wei 1981, Weiss 1984, among others), but these works focus on 



 3 

situations where all the variables in the model are available at one frequency whereas the 

theoretical model of interest is defined at a higher frequency.  Our aim is to develop a way of 

including variables at their highest frequencies available, even if these frequencies are not the 

same across all variables.  The strategy adopted in this paper is that of Abeysinghe (1998, 1999), 

which is to define an autoregressive distributed lag model with the dynamics of the model 

defined in terms of the highest frequency available among the variables.  The problem then is 

one of missing observations, and our solution is to apply certain lag polynomials to transform the 

dynamics so that the model is expressed solely in terms of the observed variables.  Abeysinghe 

(1998, 1999) considered a simple model with an AR(1) structure, with the dependent variable 

sampled less frequently than the independent variable.  Our contribution in this paper is to 

provide a solution for the general AR(p) case for models combining monthly and quarterly, 

quarterly and annual, and monthly and annual observations.  We also indicate how these results 

can be extended to other combinations of frequencies. 

We begin by introducing the dynamic models that we consider in this paper.  Focusing on 

the case where the model contains monthly and quarterly data, we show how a straightforward 

application of lag polynomials can transform the dynamic model so that only observed 

frequencies appear.  The coefficients of these lag polynomials are simple functions of the 

autoregressive parameters in the original model.  Estimation and testing issues are discussed.  

Section 3 extends the method to quarterly-annual and monthly-annual combinations, and we 

conclude in section 4.   
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2. The Basic Model 

The basic autoregressive distributed lag model that we consider is 

 (1) 
 
 

where p
p LLLL φ++φ+φ+=φ ...1)( 2

21 , r
r LLLL β++β+β+β=β ...)( 2

210 .  We refer to this as 

ARX(p,r) model.  The variables xt and yt are assumed to be available at different frequencies, and 

the time subscript t is defined in terms of the highest frequency.  For example, if xt is monthly 

and yt is quarterly then t=1,2,…,T  would represent months.  The model can include more than 

one regressor though for expositional purposes we will stay with just one regressor.  Our 

approach can also be extended to the ARMAX class of models, but we leave out the MA 

structures to keep the exposition clear.  In all our examples we will assume that it is the 

dependent variable that is observed with the lower frequency, though our results can easily be 

adapted for the reverse case. 

 If the lower frequency variable yt  represents a stock variable, and xt  is observed at m 

times the frequency of yt , then only every mth observation of yt is available, and the observed 

data set would comprise },...,,{ 21 Txxx  and },...,,{ 2 Tmm yyy  where we have assumed for 

notational simplicity that the first available observation of yt  is at t = m and that T is a multiple 

of m.  In the quarterly-monthly case, m = 3.  If, on the other hand, yt represents a flow variable, 

then what is observed of y at every mth period is an aggregation of m flows recorded at the 

higher frequency.  The ARX(p,r) can be modified to handle the case of a low-frequency flow 

variable by temporally aggregating the variables to obtain 

  (2) 

),0(~,)()( 2σεε+β+α=φ iid   xLyL tttt

),0(~,)...1()()( 212 σεε+++++β+α=φ − iid   LLLXLYL tt
m

tt
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where t
m

t yLLLY )...1( 12 −++++=  and t
m

t xLLLX )...1( 12 −++++= , and the lag polynomials 

)(Lφ  and )(Lβ  are as previously defined.  Again, under our assumptions, what is observed of Yt 

are the values at m, 2m,…, T  whereas Xt is available at all lags. 

As the methods we propose are similar for both the stock as well as the flow variable 

cases, we will focus on the case where the low frequency variable is a stock variable, and refer to 

the flow variable case only when differences arise.  Note that in the usual way of dealing with 

mismatched frequencies, the higher frequency data is systematically sampled, or temporally 

aggregated depending on whether the variable is a stock or a flow.  In our framework, whether or 

not the higher frequency (independent) variable is aggregated depends on whether the low 

frequency (dependent) variable is a flow or a stock.  The nature of the higher frequency data is 

inconsequential. 

 

2.1 Monthly-Quarterly Data 

Consider first the simple case with an ARX(1,r) structure 

(3) 

where tx  (t=1,2,…,T) is observed at monthly intervals whereas ty  is observed only quarterly, so 

only every third observation of yt is available, i.e., the observed values of yt comprise 

}.,...,,{ 63 Tyyy   The strategy adopted in Abeysinghe (1998) is to transform the model so that 

only the observed frequencies appear.  This involves multiplying both sides of (3) by a lag 

polynomial )1()1()( 222
21 LLLLL φ+φ−=λ+λ+=λ  which will convert the model to1 

(4) 

                                                
1  Note that Abeysinghe (1998) adopted a fractional time subscript which we do not follow here. 

ttt xLLLyL ν+φ+φ−β+αφ+φ−=φ+ )1)(()1()1( 22233

 xLyL ttt ε+β+α=φ+ )()1(
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to be estimated over τ= 3t ,  3/,...,2,1 T=τ .  We will refer to the lag polynomial )(Lλ  as the 

transformation polynomial, and the lower frequency as the observed frequency.  In this case, the 

transformed error term tt Lv ελ= )(  still maintains the iid property at the observed frequency, and 

(4) can be estimated by a non-linear LS technique.  One of the advantages of this approach is that 

although yt is quarterly, the monthly multipliers or impulse responses can easily be worked out 

from (4) using )()( 1 LL βφ −  once the parameters have been estimated. 

 In the general ARX(p,r) case the necessary transformation polynomial will be a lag 

polynomial of order 2p, )...1()( 2
2

2
21

p
p LLLL λ++λ+λ+=λ .  Applying this transformation to 

(1) gives 

    (5) 

where tt Lv ελ= )( .  Note that the polynomial )()()( LLL φλ=π  is of order 3p.  Setting the 

coefficients of the unobserved lags of this polynomial to zero, i.e., 02313 =π=π −− jj , j = 1, 2,…, 

p, will provide 2p relationships from which we can solve for the 2p coefficients of )(Lλ  in terms 

of the φ ’s. 

For illustration, consider the ARX(2,r) case where )1()( 2
21 LLL φ+φ+=φ .  Multiplying 

this polynomial with the transformation polynomial )(Lλ of order 4 will give us the following 

lag polynomial of order 6: 

6
42

5
3241

4
22314

3
12213

2
211211

)()(

)()()(1

LLL

LLL

λφ+λφ+λφ+λφ+λφ+λ+

λφ+λφ+λ+φ+λφ+λ+φ+λ+
 

Setting the coefficients of lags 1, 2, 4 and 5 to zero and solving for the λ ’s will yield the 

following solution 

ttt vxLLyLL +βλ+αλ=φλ )()()1()()(
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.

,

,

,

2
24

213

2
2
12

11

φ=λ

φφ−=λ
φ−φ=λ

φ−=λ

 

Thus the ARX(2,r) model ttt xLyLL ε+β+α=φ+φ+ )()1( 2
21  can be expressed in observed 

frequencies as 

(6) 

where 4
4

3
3

2
211)( LLLLL λ+λ+λ+λ+=λ  with the λ ’s as defined above. 

 

 The following theorem provides the general solution to the problem of finding the 

coefficients of the lag transformation polynomial =λ )L(  )...1( 2
2

2
21

p
p LLL λ++λ+λ+  for the 

ARX(p,r) case.  

 

Theorem 1: Let 10 =φ  and 0... 221 =φ==φ=φ ++ ppp .  If  

∑
=

−φφ−=λ
i

j
jijjii c

0
,2

1
 ,  i = 0, 1, 2, …, 2p, 

where 






=





 −

−=
otherwise

ji
remif

c ji

1

0
3

2
2

,   , 

then )...1()...1)(...1( 3
3

2
21

2
2

2
21

2
21

p
p

p
p

p
p LLLLLLLLL π++π+π+=λ++λ+λ+φ++φ+φ+  

where 0=πk  if k = 3j – 1  or 3j – 2  for some j = 1, 2, …, p. 

Proof: See Appendix A1. 

ttt LxLLyLL ελ+βλ+αλ=φ+φφ−φ+ )()()()1())3(1( 63
2

3
21

3
1
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The term 





 −

3

2 ji
rem  refers to the remainder of quotient 

3

2 ji −
, i.e., we have 2, −=jic  

if the difference between the subscripts of jφ  and ji−φ  is divisible by 3, and 1 otherwise.  For 

convenience, the coefficients of λ(L) for the AR(1) through to the AR(5) case are tabulated in 

Appendix A2. 

 The case where ty  contains a unit root (at the higher frequency) can easily be handled.  A 

process with a unit root at the higher frequency will display a unit root at the lower frequency 

after application of the transformation polynomials.  In the quarterly-monthly ARX(2,r) case, 

this can be verified by simply substituting 12 1 φ−−=φ  into the AR polynomial in (6) and setting 

1=L .  The unit root ARX(p,r) case can be handled by factoring L−1  out of the p-order AR 

polynomial in (1), and applying the transformation for the ARX(p–1) case followed by the 

transformation for ARX(1) with 11 −=φ .  We illustrate this procedure in the quarterly-monthly 

ARX(3,r) case with a unit root.  Let )1)(1()( 2
21 LLLL −φ+φ+=φ .  Multiplying this polynomial 

with the transformation polynomial )(Lλ′ of order 4 as in the ARX(2,r) case will give us the 

following lag polynomial: 

(7) 

Multiplying (7) by  )1()( 2LLL ++=λ ′′  gives  

 

 (8) 

where tt XxL =λ )(" is a moving sum of xt.  

The formulation in (8) is suitable for the situation where xt is a stationary variable. For 

example, tyL )1( 3−  may be the quarterly inflation rate and xt the monthly unemployment rate.  If  

ttt LxLLyLLL ελ′+βλ′+αλ′=−φ+φφ−φ+ )()()()1()1)()3(1( 63
2

3
21

3
1

ttt LLxLLLyLLL ελ ′′λ′+λ ′′βλ′+αλ ′′λ′=−φ+φφ−φ+ )()()()()()1()1()1)()3(1( 363
2

3
21

3
1
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xt is also a unit root process but not cointegrated with yt, the (1 – L) operator must be applied 

throughout equation (7) and as a result txLL )1)((" −λ  reduces to txL )1( 3− , and tL ε− )1(  

becomes the white noise process.  In this case modeling is done using the quarterly differences of 

both yt and xt.  If yt and xt  are I(1) processes and cointegrated, then the model reverts back to the 

original form (6) and can be estimated in level form without imposing the cointegrating 

restriction.  Being a dynamic model, standard t tests apply (Sims et al., 1990). 

 

2.2 Estimation and the Autocorrelation Problem 

 We have noted in the quarterly-monthly ARX(1,r) stock variable case that the 

transformed error process tt Lv ελ= )(  is not serially correlated at the observed lags.  Estimation 

of the model parameters can therefore be carried out using a non-linear least squares method.  

However, the transformed errors will be autocorrelated in the general quarterly-monthly 

ARX(p,r) flow variable case for 1≥p  as well as the quarterly-monthly ARX(p,r) stock variable 

case for 2≥p .  In the stock variable case, )(Lλ  is of order 2p and therefore tt Lv ελ= )(  

systematically sampled at every 3rd observation will be an MA(q) process where ]3/2int[ pq ≤  

where int[.] is the integer operator (Brewer, 1973).  For the flow variable case, 

tt LLLv ε++λ= )1)(( 2  and so will follow an MA(q) process with ]3/)1(2int[ +≤ pq .   

 To get a feel for the size of the autocorrelations involved we explore some simple cases 

below.  For a general MA( q~ ) process t
q

qt LLv εθ++θ+= )...1(
~

~1  systematically sampled at 

every m periods, the jth autocorrelation at the observed frequency, mjρ , can be computed as 

0γ
γ

=ρ mj
mj  where  1,)( 0

~

0

2 =θθθσ=εε=γ ∑
−

=
+−  E

mjq

i
mjiimjttmj , j = 0, 1, 2, …, int[ q~ /m].  In the 
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quarterly-monthly ARX(1,r) flow variable case, the transformed errors tt LLLv ε++λ= )1)(( 2  

will follow an MA(1) process at the observed frequency.  After substituting for the original AR 

parameters, the observed frequency-first order autocorrelation of tv  is  

4
1

3
1

2
11

2
11

1 34543

)1(

φ+φ−φ+φ−
φ−φ−

=ρm  

Figure 1 plots this autocorrelation for stationary values of 1φ .  The autocorrelation problem 

appears to be small; for values of )0,1(1 −∈φ , which is the more likely region for economic data 

(recall that our AR coefficients have signs that are the reverse of the conventional specification), 

1mρ  is less than 0.21.   Unfortunately, there is no reason to expect the autocorrelation problem to 

be small for the other cases.  Figure 2 plots the first autocorrelation of tt Lv ελ= )(  for the 

quarterly-monthly ARX(2,r) stock variable case, which also follows an MA(1) process when 

systematically sampled at the observed frequency.  The autocorrelation is seen to lie between 

5.0−  and 0.5 for values of 1φ  and 2φ  in the stationary range.  A plot of 1mρ  in the ARX(2,r) 

flow variable case shows this  autocorrelation to range from about 6.0−  to 6.0 . 

 The major obstacle posed by the autocorrelation problem is the inconsistency of the non-

linear LS estimator of the transformed model.  Since the autocorrelations, and therefore the MA 

parameters, depend on the AR parameters a simple alternative to least squares is to use a non-

linear IV estimator.  After computing the autocorrelations from the estimated φ’s, the MA 

parameters can be derived by solving the set of non-linear equations given in Box et al. (1994, p. 

202, eq. 6.3.1).  The same procedure can be used to estimate )var(2
tε=σ and the standard errors 

of the IV estimator can be recomputed by replacing 2
vσ  by 2σ  (note that 22

vσ≤σ ).  One has to 

go through the trouble of deriving the MA parameters only if the model is designed for 
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forecasting.  If the objective is to derive the impulse responses, then the MA parameters do not 

enter the calculations and can be ignored. 

 The success of the IV estimator depends on the quality of the instrument used.  One 

possibility is to use lagged dependent variables yt-(p+j), j=1,2,.. as instruments, although this may 

not work well if p is large.  Monte Carlo studies carried out in relation to a flow ARX(1,1) model 

shows that in small samples the LS and IV bias could be similar and may be negligible if the 

autocorrelation is small (Abeysinghe, 1999).  

Another practical problem is the choice of the lag orders p and r.  As observed in 

Abeysinghe (1998) if p is known the choice of r is not difficult.  Starting with a large value for r 

one can test downward to choose an appropriate value for r.  Complications arise in the choice of 

p because the form of the transformation polynomial )(Lλ depends on p.  One possibility is to 

treat (5) as a reduced form and estimate it as a linear model.  The number of significant lags 

would indicate the appropriate order of the lag polynomial )(Lφ .  If, for instance, the coefficient 

on 6−ty  is significantly different from zero while those of 9−ty , 12−ty , …are not, this would imply 

p = 2.  If r* lags of tx  are significant, this would suggest r = r* – 2p (inclusion of 6−ty  would 

necessarily imply the inclusion of at least four lags of tx ).  The disadvantage of this approach is 

that some reduced form parameters might be very small, even if the original structural 

parameters are not, and in small samples these parameter estimates may turn out to be 

statistically insignificant. 

 In summary, the practical implementation of our modeling approach might take the 

following form:  if unit root variables are involved, test for cointegration by converting all high 
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frequency variables to the low frequency available2.  If cointegration cannot be rejected, use the 

level variables for modeling, otherwise use differenced data.  Estimating (5) as a reduced form, 

as described in the previous paragraphs, would suggest suitable values of p and r, after which (5) 

can be estimated using a non-linear IV technique.  We suggest overfitting to see if the chosen p 

and r are sufficient.  Note that the standard t test is applicable here.  If the residuals appear to be 

empirically white noise, ignoring the MA structure of the transformed model would probably be 

inconsequential, and the estimated model may be put to use.  In this case a non-linear LS 

estimation of the model might be better as the LS estimator is more efficient than the IV 

estimator; if the residuals remain white noise under the LS method, the LS estimates would be 

preferable for inference.  If residual autocorrelation is present, the MA parameters can be derived 

as described earlier in this section.  An alternative is to identify an ARMA model for the error 

term and estimate them together with the model parameters as in the Box-Jenkins transfer 

function noise model approach, i.e., generalize the ARX model to an ARMAX structure. 

 

3. Extensions to Quarterly-Annual and Monthly-Annual Cases 

 Another empirically important case is where the dependent variable is observed annually 

and the independent variable is observed quarterly.  The general strategy in this case will be to 

apply the transformation given in the following theorem twice.  The first transformation will 

convert the quarterly lag structure into biannual terms, and the second transformation will 

convert the biannual structure into an annual structure. 

                                                
2   Integration and cointegration are invariant to temporal aggregation and systematic sampling (Marcellino, 1999). 
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Theorem 2: Let  

ii
i φ−=λ )1(  ,  i = 1, 2, …, p, 

then )...1()...1)(...1( 2
2

2
21

2
21

2
21

p
p

p
p

p
p LLLLLLLLL π++π+π+=λ++λ+λ+φ++φ+φ+  

where 0=πk  if k = 2j – 1  for some j = 1, 2, …, p. 

Proof: See appendix A1. 

 

For example, consider the AR(2) case ttt xLyLL ε+β+α=φ+φ+ )()1( 2
21 .  We have to 

convert this model to a form in which the lag structure on ty  only contains the lags in multiples 

of 4.  Theorem 2 suggests applying the transformation )1()( 2
21 LLL φ+φ−=λ  once to obtain a 

lag structure in multiples of 2 for ty  to obtain: 

ttt LLxLLLyLL εφ+φ−+φ+φ−β+αφ+φ−=φ+φ−φ+ )1()1)(()1())2(1( 2
21

2
2121

42
2

22
12 . 

Applying a second transformation ))2(1( 42
2

22
12 LL φ+φ−φ−  gives us  

t

t

t

LLLL

xLLLL

yLL

εφ+φ−φ+φ−φ−+

φ+φ−φ−φ+φ−β+ωφ+φ−φ−φ+φ−=

φ+φ−φ−φφ+

)1)()2(1(

))2(1)(1())2(1)(1(

))22(1(

2
21

42
2

22
12

42
2

22
12

2
21

2
2

2
1221

82
2

42
2

4
12

2
1

 

A similar idea can be applied to the monthly-annual case: first transform the lag structure on ty  

to the bimonthly form (using Theorem 2), followed by a transformation to the biannual form 

(using Theorem 1) and finally to the annual form (again using Theorem 2).   

 As in the monthly-quarterly case, these transformations create a problem of 

autocorrelation of the transformed error term; the transformed error term follows an MA process 

at the observed frequencies in all cases.  For each p, the final transformation matrix will be of 
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order 3p, and the transformed error will follow, at the observed lags, an MA(q) process where 

]4/3int[ pq ≤  for the stock variable case and ]4/)1(3int[ +≤ pq  for the flow variable case.   

Finally, we note that the above transformations can easily be adapted to the case where 

the independent variable is observed less frequently than the dependent variable. Now the 

transformation polynomial λ(L) has to be worked out in relation to β(L) in (1). To apply the 

previous results β(L) can be written as )...1()( **
10

r
r LLL β++β+β=β  where 

riii ,...,2,1,/ 0
* =ββ=β .  

 

4. Concluding Remarks 

This paper has provided a modeling approach which allows variables observed at 

different frequencies to be framed within a single model without converting the higher frequency 

variable into a lower frequency via systematic sampling or temporal aggregation. This approach 

entails a number of advantages3. Firstly, we can recover the impulse responses or multipliers at 

the high frequency time units. This information is totally lost if one were to use the standard 

systematic sampling or temporal aggregation approach. Secondly, this approach is likely to 

provide better forecasts compared to those based on the standard approach. Thirdly, forecast 

updating can easily be done as and when the high frequency data become available. 

The cases that we cover are mostly suitable for macroeconomic analysis, where data are 

usually available in monthly, quarterly or annual frequencies.  An extension to other 

combinations of frequencies may be fruitful, especially for areas like finance.  Other possible 

avenues for future research include the extension of our methods to vector autoregression models 

and for causality testing.   

                                                
3  For an illustrative application see Abeysinghe (1998). 
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Appendix A1 

Proof of Theorem 1 

By multiplying )...1)(...1( 2
2

2
21

2
21

p
p

p
p LLLLLL λ++λ+λ+φ++φ+φ+ , and 

substituting the expressions for iλ  from the theorem, we see that kπ  takes the form  

ik

k

i
jij

i

j
ji

k

i
ikik

c −
=

−
=

=
−

φφφ−=

φλ=π

∑∑

∑

0 0
,

0

2

1  

where
 





=





 −

−=
otherwise

ji
remif

c ji

1

0
3

2
2

, .
 

 

Note that the subscripts of jφ , ji−φ  and ik −φ  add up to m.  Note also that for kπ  to be zero, all 

terms in the double summation containing the same set of φ ’s must sum to zero, e.g., all terms of 

the form, say, 431 φφφ , must sum to zero, likewise all 2
52 φφ  terms must sum to zero, and so on. 

Consider any one term in the summation in kπ  containing, aφ , bφ  and bak −−φ  (where aφ , 

bφ  and bak −−φ  are not necessarily distinct).  aφ , bφ  and bak −−φ  may appear because aj = , 

bji =−  and bakik −−=− .  There are six possibilities, with the corresponding values for i and 

ji 2− , as follows 
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j i – j  k – i   i i – 2 j    

a b k – a – b    a + b b – a 

a k – a – b  b k - b k – 2a – b  

b a k - a – b  a + b a – b 

b k – a – b   a k – a  k – a – 2b 

k – a – b  a b k – b  2a + b – k  

k – a – b  b a k – a  2b + a – k  

 

We now show that 0=πk  for each of these 6 cases, when k  takes the form 13 −j  or 

23 −j  for any positive integer value j .  This amounts to showing that  0
0 0

, =∑∑
= =

k

i

i

j
jic  in each 

case. 

For these 6 cases, we have to divide the problem into 18 sub-cases, 9 each for the cases 

where k  takes the form 13 −j  and 23 −j , and depending on whether a  takes the form 3m, 3m – 

1  or 3m – 2 , and whether b  takes the form 3n, 3n – 1  or 3n – 2 , where m and n are arbitrary 

integer values.  The label the eighteen sub-cases as follows  
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case k a b case k a b 

1   3n 10   3n 

2  3m 3n – 1  11  3m 3n – 1  

3   3n – 2  12   3n – 2  

4   3n 13   3n 

5 3j – 1  3m – 1  3n – 1  14 3j – 2  3m – 2  3n – 1  

6   3n – 2  15   3n – 2  

7   3n 16   3n 

8  3m – 2  3n – 1  17  3m – 2  3n – 1  

9   3n – 2  18   3n – 2  

 

The following table shows jic ,  for each of the 18 x 6 cases, and computes ∑∑
= =

k

i

i

j
jic

0 0
,  for each 

case : 

case 

i – 2j  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

b – a  -2 1 1 1 -2  1 1 1 -2 -2 1 1 1 -2 1 1 1 -2 

k – 2a – b  1 -2 1 1 1 -2 -2 1 1 1 1 -2 -2 1 1 1 -2 1 

a – b  -2 1 1 1 -2 1 1 1 -2 -2 1 1 1 -2 1 1 1 -2 

k – a – 2b  1 1 -2 -2 1 1 1 -2 1 1 -2 1 1 1 -2 -2 1 1 

2a + b – k  1 -2 1 1 1 -2 -2 1 1 1 1 -2 -2 1 1 1 -2 1 

2b + a – k  1 1 -2 -2 1 1 1 -2 1 1 -2 1 1 1 -2 -2 1 1 

∑∑
= =

m

n

n

j
jnc

0 0
,  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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In all cases 0
0 0

, =∑∑
= =

k

i

i

j
jic , hence 0=πk .  A similar exercise for k of the form 3j will show that 

in that case 0≠πk  in general. Q.E.D. 

 

 

Proof of Theorem 2 

By multiplying )...1)(...1( 2
21

2
21

p
p

p
p LLLLLL λ++λ+λ+φ++φ+φ+ , we see that kπ  

takes the form,  

ik

k

i
i

i

k

i
ikik

−
=

=
−

φφ−−=

φλ=π

∑

∑

0

0

)1(  

for pk ...,,2,1= .  If k of the form 2j – 1 then there is an even number of terms in the summation, 

with the aka −φφ  terms canceling out the aak φφ −  terms, therefore 0=πk  if k is odd.  Q.E.D.  
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Appendix A2 

The following table provides the coefficients of the transformation polynomial 
)...1( 2

2
2

21
p

p LLL λ++λ+λ+  for the ARX(p,.) case where the dependent variable is observed 

quarterly and the independent variable is observed monthly.  ji,λ  refers to the coefficient in the 

ijth cell indicated by row  λi and column ARX(j,.). 
 

 ARX(1,.) ARX(2,.) ARX(3,.) ARX(4,.) ARX(5,.) 

1λ  1φ−  1,1λ  1,1λ  1,1λ  1,1λ  

2λ  2
1φ  21,2 φ−λ  2,2λ  2,2λ  2,2λ  

3λ   
21φφ−  32,3 2φ+λ  3,3λ  3,3λ  

4λ   2
2φ  312,4 φφ−λ  43,4 φ−λ  4,4λ  

5λ    
32φφ−  413,5 2 φφ+λ  54,5 φ−λ  

6λ    2
3φ  423,6 φφ−λ  514,6 φφ−λ  

7λ     
43φφ−  524,7 2 φφ+λ  

8λ     2
4φ  534,8 φφ−λ  

9λ      
54φφ−  

10λ      2
5φ  
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Figure 1 Autocorrelation in the Quarterly-Monthly Flow Dependent Variable  
ARX(1,r) Case 
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Figure 2 Autocorrelation in the Quarterly-Monthly Stock Dependent Variable  
ARX(2,r) Case 
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Notes: The dashed portions of the graphs show values of ρ   in the non-stationary range of 1φ  

and 2φ .  
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