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Modeling Preferences with Availability Constraints

Bing Tian Dai Hady W. Lauw
School of Information Systems

Singapore Management University
Email: {btdai, hadywlauw}@smu.edu.sg

Abstract—User preferences are commonly learned from his-
torical data whereby users express preferences for items, e.g.,
through consumption of products or services. Most work assumes
that a user is not constrained in their selection of items. This
assumption does not take into account the availability constraint,
whereby users could only access some items, but not others. For
example, in subscription-based systems, we can observe only those
historical preferences on subscribed (available) items. However,
the objective is to predict preferences on unsubscribed (unavail-
able) items, which do not appear in the historical observations
due to their (lack of) availability. To model preferences in a proba-
bilistic manner and address the issue of availability constraint, we
develop a graphical model, called Latent Transition Model (LTM)
to discover users’ latent interests. LTM is novel in incorporating
transitions in interests when certain items are not available to
the user. Experiments on a real-life implicit feedback dataset
demonstrate that LTM is effective in discovering customers’ latent
interests, and it achieves significant improvements in prediction
accuracy over baselines that do not model transitions.

Keywords—latent interests; topic transition; topic model; graph-
ical model; user preferences

I. INTRODUCTION

By understanding user preferences, commercial companies
are able to increase their sales by promoting more products
and services. For example, media companies providing cable
TV programs are always interested to attract their existing
customers to subscribe to more channels at higher subscription
fees, thus to make higher profits. In order to do this, these
media companies need to recommend unsubscribed channels
which users are likely to subscribe, which makes understanding
user preferences very critical.

There are various types of user behaviors from which
we can learn user preferences. Most of the previous work
studies ratings behavior [1], i.e., how a user evaluates a
product or a service on a scale. In some cases, they study
adoption behavior [2], i.e., the binary decision of adopting
(e.g., purchasing a product, befriending another user).

In this work, we are interested in modeling user preferences
from consumption behavior, how a user consumes a product
or a service. For instance, in the cable TV industry domain,
a user chooses what channel to watch from a selection of
available channels. In the music industry domain, a user
chooses which song to listen to from a set of available songs.
Similarly, in other domains such as online radio. On one hand,
consumption behavior is useful because we could observe the
user consuming the same item (e.g., a channel, a song) again
and again. In contrast, most of the time, users will only rate or
adopt a specific product once. On the other hand, consumption
behavior also introduces a new constraint we need to factor in,
which we term the availability constraint.

Availability constraint is the constraint imposed on users
to restrict which items are available to each user, i.e., users
do not have access to those items which are not specified
by the availability constraints. For example, a user can only
watch the available cable TV channels, i.e., those that she has
subscribed to. Similarly, a user can only listen to songs that
she has purchased. The implication of this constraint is that
we can only observe consumption behaviors from available
channels, but not from unavailable channels.

This gives rise to several challenges in modeling user
preferences. Let us illustrate this using an example. Bundling
is a common practice in the cable TV industry [3], whereby
users are to subscribe to one or more bundles and not allowed
to cherry pick channels within a bundle. Suppose there are
two bundles: A containing channels {A1, A2, A3}, and B
containing {B1, B2}. Table I shows the channel watching
activities for three users: Kat, Linda, Maggie. The cell values
are the time units that each user spends on each channel.

Bundle A Bundle B
A1 A2 A3 B1 B2

Kat 100 20 25 N.A. N.A.
Linda 15 40 90 0 0
Maggie 105 15 25 10 75

TABLE I. USERS AND THEIR CHANNEL ACTIVITIES

The first challenge is the need to factor in availability in
interpreting the preferences of users. Kat only subscribes to
bundle A, and therefore we cannot observe her activities on
bundle B (N.A. or not available). This does not mean that in
reality, Kat does not like the channels in B. It could well be
that Kat’s favorite channels may be A1 and B2, but B2 is
simply not available to her. Kat’s situation is in contrast to
Linda’s. The latter subscribes to bundle B, but does not watch
the channels there (zero activity). In Linda’s case, this is an
indication of not liking channels in B.

The second challenge is that the availability constraint
restricts the inference of user preferences among similar users.
For instance, in inferring whether Kat’s preferences is similar
to Maggie’s, we may want to take into account their activities
on bundle A alone, because B is not available to Kat. On the
other hand, whether Linda is similar to Maggie would depend
on their activities on all available channels.

Tackling these challenges in factoring availability con-
straint is useful in several respects. For one thing, it leads to
more accurate modeling of user preferences. For another thing,
it focuses our attempt of prediction on the set of unavailable
items, using information from the available items. In contrast,
this notion of availability has not been widely considered in
previous work. In traditional recommendation systems work, it



is frequently assumed that items are all available to the users,
and users are free to choose any item they like.

Problem. Our objective in this work is to build a preference
model for each user. We adopt a probabilistic framework for
its interpretability. In particular, we would like to model the
probability that a user will consume a particular item (either an
available item or an unavailable item). However, modeling this
probability at the item level directly is not practical, because
of the potentially large number of items, most of which are
unavailable and therefore not directly observable.

We propose to first put items that similar users tend to like
into groups, and model the probability that a user will like each
group, as well as the probability of an item within each group.
We observe that explicit groupings may not always accurately
reflect a grouping of items that a user may like. For instance,
a cable TV bundle is unlikely to contain all the channels that
a user may like, because the company may spread popular
channels over multiple bundles to get customers to subscribe
to more bundles. Thus, we would like to learn latent preference
groups to be inferred from consumption behavior data.

Our approach is to realize the user preference model
through generative topic modeling framework. While there are
existing such models such as LDA [4], they are not sufficient
for the problem because they do not expressly factor in the
notion of availability. Hence, we build a new generative model,
which we call Latent Transition Model or LTM, with the
following intuition. When a user would like to consume an
item that is not available, she will substitute it with another
available item. The substitution is modeled by a transition
from a first-choice latent group (or “topic”) to a second-choice
group. This gives rise to different consumption behaviors such
as picking an available item directly, or picking an unavailable
item followed by transitioning to an available item.

In this paper, we mainly discuss the domain of cable TV in
the examples and experiments, partially due to the presence of
a suitable dataset in this domain. However, as will be evident in
Section III, our model is general enough to cover other cases of
consumption behaviors, where the notion of availability can be
properly defined. This includes predicting which other music
tracks a user will like based on her listening behaviors on
music she already has access to. Another example in product
recommendation is when some items are unavailable to a user
due to her budget constraint (assuming the budget is known).

Contributions. In this paper, we make the following contri-
butions to tackle the above problem.

• First, we identify the availability constraint as an
important factor in modeling user preferences based
on consumption behaviors.

• Second, we propose a generative model, called Latent
Transition Model (LTM), which incorporates the
notion of transition among latent preference groups
based on availability of items to individual users.

• Third, we design a randomized algorithm for infer-
ring LTM based on Gibbs sampling. Importantly, the
algorithm has to be able to handle “triplet” latent
variables that arise because of the transition from a
first-choice to a second-choice group before picking

an available item. We further propose an optimization
that improves efficiency by two orders of magnitude.

• Fourth, we conduct a comprehensive evaluation of
the proposed model on a real-life proprietary dataset
from the cable TV industry. The application task is
to predict the next bundle that a customer is likely
to subscribe to, given the consumption behavior on
existing bundles of the customer.

Organization. Our paper is organized as follows. We review
previous work in Section II. We describe our proposed Latent
Transition Model in Section III, and its inference algorithm in
Section IV. This is then followed by the experiments with a
real-life dataset in Section V. We then conclude in Section VI.

II. RELATED WORK

In terms of problem. The study of modeling user preferences
is an area of interest in personalization or recommendation
systems [1]. We are different from the majority of previous
work in this area in two ways. First, in terms of output,
we focus on predicting consumptions, not ratings. Second, in
terms of input, instead of explicit ratings or meta-data [5], we
work with implicit feedback dataset. Implicit feedback is of
interest in several domains such as cable TV [6], search [7],
[8], music [9], Internet radio [10] and so on. What is common
across all these cases is that the users do not explicitly express
their preferences, but rather indicate them indirectly through
their behaviors, e.g., which TV shows they watched and for
how long, which music tracks they listened to.

To the best of our knowledge, ours is the first work to deal
with the availability constraint directly and systematically. A
related but different concept is competition [11]. Among the
items presented to a user, which one will she pick? This is
a different problem, because it focuses on relative preference
among available items, whereas we focus on extending pref-
erence to unavailable items by factoring availability explicitly.

Among the previous work on implicit feedback, the work
in [6] also used dataset from the cable TV domain. However,
there are two crucial differences from our work. First, [6]
attempted to predict which channels (among those that a user
had watched before) she would watch again. In contrast, we
attempt to predict which channels (other than those the user
has subscribed to) she is likely to want to subscribe to in the
future. In the former, there is a “direct” signal for the channels
to be predicted (previous watching sessions). In the latter, there
is not. The reason for the absence of direct signal in the latter
is the unavailability of some items (e.g., some channels are
unsubscribed, and therefore cannot generate watching data).

In terms of approach. The second difference is in terms
of approach. [6]’s solution was based on matrix factoriza-
tion (MF) [12], [13], [14], [15], [16], which are popular in
recommender systems because of its wide applicability to
ratings. In addition to MF, other rating prediction approaches
include collaborative filtering (CF) [1]. The approach of rating
prediction (MF or CF) is not appropriate in our scenario. For
one thing, there is no “rating” in our case. It is possible, but
inappropriate, to model the length of time a user watches a
show as “rating” for several reasons. First, the model will
be optimized to predict the length of time a user is likely
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Fig. 1. Latent Dirichlet Allocation (LDA)

to watch an item, which is not directly relevant to whether the
user is likely to subscribe to an unavailable item. Second, by
predicting absolute lengths of time on unavailable channels,
it results in the unrealistic scenario of predicting the user
will spend much longer absolute amount of time in aggregate
over the collection of all items. It is not necessarily the
case that customers will spend more time watching TV if
they subscribe to more channels. It is more useful to learn
how their preferences are distributed among all the channels.
Therefore, we adopt a generative modeling approach that
expresses preferences in terms of probability distributions.

While we model preferences over individual items, in
Section V, we validate the proposed approach on a real-life
cable TV dataset by predicting bundles. This is because at
the point of subscription, customers choose bundles, rather
than individual channels. Several previous works concern the
recommendation of bundles. [17] looked into how to configure
items into a bundle in for viral marketing. [18] looked into
how to personalize bundles for individual customers. Their
main issue is bundle configuration. This is a complementary
problem, and is not applicable to our setting because in our
case the cable TV bundles were already specified in the dataset.

In terms of modeling topic-based preferences. Our topic
modeling approach is related to Latent Dirichlet Allocation or
LDA [4], which is widely used to model topics in documents.
The graphical model of LDA is shown in Figure 1. Each
document n has a distribution over topics ~θn. To generate the
document, we repeatedly pick a topic t from this distribution,
and generate a word w from the topic’s word distribution
~βt. ~α and ~η are Dirichlet priors for ~θn and ~βt respectively.
Compared to LDA, our model is significantly novel in a few
respects. First, in terms of modeling, we model availability-
based transition between topics (vs. no transition in LDA).
Second, in terms of inference, this transition gives rise to
“triplet” latent variables (vs. singleton latent variables in LDA).
Third, in terms of optimization, we propose collapsing multiple
“related” triplet latent variables. To validate these differences,
we will use LDA as a baseline in experiments.

Transition between topics based on availability captures
a specific type of dependency between two topics. There are
other topic modeling approaches that focus on “dependencies”,
but none captures the concept of availability. Unlike correlated
topic models [19], [20], [21] with symmetric correlations
between topics, our work models directed transitions. Other
topic models may define transitions based on time [22], [23]
or distributional similarity [24], but not availability.

III. LATENT TRANSITION MODEL

Our objective in this section is to develop a model for user
preferences that factors in the fact that some items are never
observed in a user’s historical data because they are unavailable

Notation Description
~θn user n’s probability distribution over topics
~βt topic t’s probability distribution over items
~τt topic t’s distribution of transition probabilities to other topics
θn,t probability of user n choosing topic t
βt,c probability of topic t generating item c
τt,t′ probability of transitioning from topic t to topic t′

~α Dirichlet prior for ~θn for all users
~η Dirichlet prior for ~βt for all topics
~ψt Dirichlet prior for ~τt for topic t
λ parameter controlling within-topic vs. across-topic transition
An subset of items available to user n
Ān subset of items unavailable to user n
T total number of topics
N total number of users
C total number of items (e.g., channels)
Ln total consumption instances (e.g., watching sessions) for user n
cn,l an instance of consumption (e.g., a watching session) by user n

TABLE II. NOTATIONS

to the user, and not because the user does not like them. As
input, we have a set of observations of users’ consumptions of
various items, as well as which subset of items are available to
every user. As output, we would like to learn a model (for every
user) for how these consumptions could have been generated,
so as to help in the prediction of future consumptions. To
help with the description of the model, we maintain a list of
notations in Table II.

A. Modeling Preference

We begin with the consideration of how to model pref-
erence itself. While the end outcome is to estimate a user’s
preference for individual items, it is not feasible nor desirable
to model this directly. It is not feasible because the observation
is not complete, i.e., we can observe the user’s consumption
behavior for only the items that are available to her. It is
not necessarily desirable because such item-specific estimation
may overfit the data. A common assumption in previous work
is items share some form of “similarity” in the latent space, and
it is thus sufficient to model preferences in this latent space.

We thus associate each user n with a vector ~θn of T latent
factors, where the value corresponding to each latent factor t
reflects the degree of preference of user n for that factor. In
contrast to matrix factorization-based framework, where this
~θn is simply a vector of real values with no other interpretation,
in this work we attach a semantic interpretation to these values
as a probability distribution over the latent factors. Each value
is thus the probability that a user n prefers a latent factor t.
To relate user preferences to the items, we also associate each
item with these latent factors. Each latent factor t is associated
with a probability distribution ~βt over the items. To borrow the
terminology in [4], we refer to each latent factor as a topic.

Applied to the cable TV scenario, which we will experi-
ment with later, an instance of consumption refers to a session
of watching a channel. When a user wants to watch TV,
she first thinks of some “topic” to watch. A topic captures
the association of several channels (items) that a significant
number of users tend to watch. For example, a topic may be a
group of channels with similar broadcasting patterns (TV series
at certain time period), with similar genre (e.g., non-fiction
such as documentaries and news), or with similar language (a
topic on “Chinese shows” may have high probabilities for a
variety show, a news channel, as well as a movie channel).



One naive way to learn ~θn and ~βt for various users and
items is by using LDA [4]. In this case, to generate a user’s
watching data, we would repeatedly sample a topic t from the
user’s topic distribution ~θn, and then sample a channel c from
the sampled topic’s distribution ~βt. This naive way suffers from
a shortcoming, which we will explain shortly.

B. Modeling Transition

One crucial issue with the naive modeling by LDA is the
assumption that any item (channel) is available for consump-
tion, and thus could be generated from a topic’s distribution
~βt. This assumption does not hold in scenarios where only
some subset of items are available to the users. For instance, in
the cable TV domain, a user could only watch those channels
that she has subscribed to, and therefore no watching data
could be generated for the unsubscribed channels. This is a
serious issue because although LDA’s model parameters allow
the generation of all items, many of those “possible items” are
never actually observed.

This has two implications. First, because generative models
such as LDA are learned from the observations, these lack
of observations that are expected by the model will affect
the learning of the model parameters. Second, it implies that
there needs to be a mechanism that allows us to learn a user’s
preference of unsubscribed channels even when no historical
data for those channels have been observed.

One way to get around this issue is to assume that whenever
the model generates an unavailable item, it simply fails. This
is not a realistic scenario. For instance, when a user wishes to
watch TV, she does not stop watching just because the channel
that she likes is not available. More likely, she will pick a
different channel to watch. In this scenario, we say that the
user transitions from the former to the latter.

We thus propose the notion of transition based on avail-
ability. When a user n picks a topic t1 from ~θn, and then picks
a channel c1 from ~βt1 , there are two possible outcomes. First,
c1 is available to the user, and the model simply generates a
watching session. Second, c1 is unavailable to the user, and
she picks an alternative channel c2 to watch.

In the second scenario, in theory, it is possible that even
c2 may again be unavailable, resulting in another transition,
which again may be to an unavailable channel. Carried to the
extreme, this may lead to infinite transitions, which realistically
would not really occur in real life. In practically all cases, a
user will eventually decide on an available channel to watch.
To avoid the degenerate cases, and for simplicity of modeling,
in this work we focus on the case where at most one transition
will occur, i.e., either the first or the second channel picked
(c1 or c2) will be observed. This should cover most cases, and
we will keep the extension to modeling a single instance of
observation due to multiple transitions (c1 to c2 to c3 and so
on) as future work.

When a transition occurs, how does the user pick the
alternative channel c2? One possibility is that the user has
stayed on the same topic t1, in which case we simply pick c2
from ~βt1 . Another possibility is that the user now “transitions”
to another topic t2, and then picks c2 from ~βt2 . This transition
from one topic to another is modeled by a vector ~τt. For

~ψ ~τt

T

~α ~θn

N

t1

t2

c1

c2

~βt

T

~η

Ln

Fig. 2. Latent Transition Model (LTM)

each topic t, ~τt is a probability distribution of transitioning
to various topics (including t itself).

In correspondence to the two possibilities of choosing
channel c2 when channel c1 is not available, we name them
Within-Topic Transition and Across-Topic Transition respec-
tively. Within-topic transitions reckon the topic for c1 and c2
are the same, whereas across-topic transitions consider c1 and
c2 are generated by different topics. Intuitively, for certain
topics, e.g., “kids”, within-topic transitions dominate across-
topic transitions as kids are not interested in anything else.
Other less “addictive” topics would demonstrate more across-
topic transitions than within-topic transitions. Therefore, we
distinguish within-topic transitions from across-topic transi-
tions for each different topic.

C. Generative Process

We therefore build a generative model that incorporates
modeling such preferences and transitions, which we refer to
as Latent Transition Model or LTM, as shown in Figure 2.
We now describe the generative process of LTM.

M = {~α, ~η,Ψ} where Ψ = {~ψ1, ~ψ2, . . .}. ~α, ~η and Ψ are
the three parameters of LTM, serving as the Dirichlet priors
for user’s topic distribution, topic’s channel distribution and
topic’s transition distribution respectively. As we discussed
above, some topics may be more prone to transitions than other
topics. Therefore, the topic transition prior for each topic ought
to be different, which is why there exists one topic transition
prior ~ψt for each topic t.

We assume that An or the subset of channels available
to user n is known and is given as input. The subset of
unavailable channels Ān is the complement of An. For N
users, T topics and C channels in total, the observation is
generated as follows:

1) For each topic t (1 ≤ t ≤ T ):
a) generate the topic-channel probability distribution ~βt,

where βt,c is the probability of watching channel c with
topic t

~βt ∼ Dirichlet(~η)

b) generate the topic-transition probability distribution ~τt,
where τt,t′ is the probability of transitioning from topic
t to topic t′

~τt ∼ Dirichlet(~ψt)

2) For each user n (1 ≤ n ≤ N ):
a) generate the user-topic probability distribution ~θn,

where θn,t is the probability of user n choosing t

~θn ∼ Dirichlet(~α)



b) generate the list of user n’s observed channel-watching
sessions cn,l for 1 ≤ l ≤ Ln where Ln is the total
number of watching sessions observed for user n, as
follows:
i) generate a topic t1 : 1 ≤ t1 ≤ T based on the user
n’s topic distribution ~θn

t1 ∼ Multinomial(~θn)

ii) generate a channel c1 : 1 ≤ c1 ≤ C based on topic
t1’s channel distribution ~βt1

c1 ∼ Multinomial(~βt1)

A) If c1 is available to n, i.e., c1 ∈ An, then we
observe:

cn,l = c1

B) Otherwise, i.e., c1 ∈ Ān, then we have a
transition:
• generate a topic t2 : 1 ≤ t2 ≤ T based on

topic t1’s transition distribution ~τt1

t2 ∼ Multinomial(~τt1)

• generate a watching session c2 : 1 ≤ c2 ≤
C based on t2’s channel distribution ~βt2

c2 ∼ Multinomial(~βt2)

• implicitly c2 ∈ An, therefore we observe:

cn,l = c2

To summarize, as shown in Figure 2, the three Dirichlet
priors determine all other variables in this model. ~η and Ψ
each generate T instances of ~β and T instances of ~τ . The
topic-channel probability distribution and the topic-transition
probability distribution for topic t are denoted by ~βt and ~τt
respectively. ~α generates N instances of ~θ, i.e., ~θn for user n.
For each of the Ln watching sessions of user n, we assume the
observation is either c1 or c2 where c1 is directly chosen by
the first-choice topic t1 and c2 is chosen by the second-choice
topic t2 according to ~βt1 and ~βt2 respectively. The transition
from t1 to t2 in the latter case involves the topic-transition
probability distribution ~τt1 .

For the priors, as is common in topic models, we may set
~α and ~η to be uniform, i.e., all αt = α and all ηc = η for a
pair of scalars α and η. We will experiment with different
values of α and η in the experiments. However, it is not
adequate to set ~ψt to be uniform, as within-topic transitions
are expected to be different from across-topic transitions. We
therefore introduce two scalars ψ and λ to model the topic
transition prior and the difference between the two kinds of
transitions. The across-topic transitions are parameterized by
ψt,t′ = ψ given t 6= t′, while the within-topic transitions
involve the additional λ, making ψt,t = λψ. A larger value
of λ makes within-topic transitions more likely. Therefore,
the topic transition probability ~τt for topic t is generated by
Dirichlet(~ψt) = Dirichlet(ψ, . . . , ψ, λψ, ψ, . . . , ψ).

Note that both c1 and c2 are partially observed, i.e., for
each watching session, we do not know the observed channel
is c1 or c2. It is common that there exists multiple kinds

of observations, and it is usually controlled by a switch
determined by a model parameter. However, in our case, c2
depends on the availability of c1, so c2 is observed only if
c1 is not available. This characteristic of our model is called
observations with dependencies. In general, observations with
dependencies cannot be modeled by a switch. In the next
section, we will elaborate how we deal with observations with
dependencies and infer the variables ~θ, ~β and Ψ.

IV. INFERENCE

There are several approaches to infer the parameters of a
generative models. One of the well-known approaches that are
used for statistical inference is Gibbs Sampling [25].

A. Gibbs Sampling

We first look at the basic scenario without transition. Let
c denote the set of observed watching sessions, and z denote
the set of latent variables. For each observed watching session
c, Gibbs sampling samples a value for z from {1, 2, . . . , T}
according to a calculated probability distribution, as the topic
assignment for c. As the probability distribution used for
sampling a particular z depends on the value of other z’s,
Gibbs sampling usually takes many iterations to converge to a
local optimum that maximizes the posterior probability p(z|c).

To introduce transition into this sampling process, we need
to figure out whether c1 or c2 is being observed for each
watching session. The approach of incorporating a switch into
LTM is not feasible, as discussed in Section III. Note that c2
is only observed when c1 is not available, therefore, when c2
is observed, c1 becomes latent. Our proposal is thus to use
“special” latent variables to represent the two different kinds
of observations. Specifically, for a user n:

• If we observe c1, we only have t1 being latent, the
latent variable is thus one of the T topics

• Otherwise, we observe c2, and all t1, c1 and t2
are latent. We therefore use a triplet (t1, c1, t2) to
represent a latent variable here. Note that c1 is not
available to n, i.e., c1 ∈ Ān.

Let zn,l be the latent variable determining the observed
watching channel cn,l, we have zn,l ∈ {1, 2, . . . , T} or zn,l ∈
{1, 2, . . . , T}× Ān×{1, 2, . . . , T}. In the former case, zn,l =
t1 when c1 is observation. In the latter case, zn,l = (t1, c1, t2)
when c2 is the observation.

The probability of observing all c with z is therefore:

p(z, c,θ,β, τ |M) =

N∏
n=1

p(~θn|~α)

T∏
t=1

p(~βt|~η)

T∏
t=1

p(~τt|~ψt)

·
N∏
n=1

Ln∏
l=1

p(zn,l, cn,l|θ,β, τ ,M)

With zn,l ∈ {1, 2, . . . , T}, we have:

p(zn,l, cn,l|θ,β, τ ,M) = θn,zn,l
βzn,l,cn,l

.

With zn,l ∈ {1, 2, . . . , T} × Ān × {1, 2, . . . , T}, we have:

p(zn,l, cn,l|θ,β, τ ,M) = θ
n,z

(1)
n,l

β
z
(1)
n,l,z

(2)
n,l

τ
z
(1)
n,l,z

(3)
n,l

β
z
(3)
n,l,cn,l



where z(1)
n,l = t1, z(2)

n,l = c1 and z(3)
n,l = t2 as in Figure 2.

Integrating p(z, c,θ,β, τ |M) over θ, β and τ , we have:

p(z, c|M) =

N∏
n=1

Γ(
∑T
t=1 αt)∏T

t=1 Γ(αt)

∏T
t=1 Γ(m

(1)
n,t + αt)

Γ(
∑T
t=1m

(1)
n,t + αt)

·
T∏
t=1

Γ(
∑C
c=1 ηc)∏C

c=1 Γ(ηc)

∏C
c=1 Γ(m

(2)
t,c + ηc)

Γ(
∑C
c=1m

(2)
t,c + ηc)

·
T∏
t=1

Γ(
∑T
t′=1 ψt,t′)∏T

t′=1 Γ(ψt,t′)

∏T
t′=1 Γ(m

(3)
t,t′ + ψt,t′)

Γ(
∑T
t′=1m

(3)
t,t′ + ψt,t′)

where m(1)
n,t, m

(2)
t,c and m

(3)
t,t′ are the number of times user n

chooses topic t as her first-choice topic, the number of times
channel c is assigned to topic t and the number of times topic
t transitions to topic t′ over all users, respectively.

For a particular user n0, and a watching channel cn0,l0 , by
considering the three possible outcomes zn0,l0 = t1, zn0,l0 =
t1c1t1 and zn0,l0 = t1c1t2, we have:

p(zn0,l0 = t1, z
−
n0,l0

, c|M) ∝ (m
(1)−
n0,t1 + αt1) ·

m
(2)−
t1,c1 + ηc1

sum
(2)−
t1

p(zn0,l0 = t1c1t1, z
−
n0,l0

, c|M) (1)

∝ (m
(1)−
n0,t1 + αt1) ·

(m
(2)−
t1,c1 + ηc1)(m

(2)−
t1,c2 + ηc2)

sum
(2)−
t1 (sum

(2)−
t1 + 1)

·
m

(3)−
t1,t1 + ψt1,t1

sum
(3)−
t1

p(zn0,l0 = t1c1t2, z
−
n0,l0

, c|M)

∝ (m
(1)−
n0,t1 + αt1) ·

m
(2)−
t1,c1 + ηc1

sum
(2)−
t1

·
m

(2)−
t2,c2 + ηc2

sum
(2)−
t2

·
m

(3)−
t1,t2 + ψt1,t2

sum
(3)−
t1

where sum
(2)−
t =

∑C
c=1m

(2)−
t,c + ηc and sum

(3)−
t =∑T

t′=1m
(3)−
t,t′ + ψt,t′ .

With Equation 1, we can inference the three sets of proba-
bility distributions: the user-topic probability distributions ~θn,
the topic-channel probability distributions ~βt and the topic-
transition probability distributions ~τt, by Gibbs sampling.
Algorithm 1 outlines the LTM inference on sampling latent
variables zn,l for each observed watching channel cn,l. As
explained earlier, there are two forms1 of zn,l, which are zn,l ∈
{1, 2, . . . , T} or zn,l ∈ {1, 2, . . . , T}×Ān×{1, 2, . . . , T}. We
update the count according to the two forms of zn,l. The latent
variables zn,l of the first form update the user-topic countm(1)

and the topic-channel count m(2) once, but the latent variables
of zn,l of the second form update the topic-channel count
m(2) with an additional count, as well as update the topic-
transition count m(3). This is shown in Function UpdateCnt,
which either increases or decreases the count of m(1), m(2)

and m(3) by δ = +1 or −1.

B. Optimization

Algorithm 1 suffers from the inefficiency due to the large
search space for latent variables zn,l (particularly the triplets).
Because the number of unavailable channels |Ān| can be close
to the total number of channels C, the number of possible
values of zn,l is O(C · T 2). In order to optimize the Gibbs

1{1, 2, . . . , T} is short-formed to [1, T ] in the Algorithm 1 and Func-
tion UpdateCnt

Algorithm 1: Algorithm for LTM inference
input : A list of observed watching channels

{cn,l|l = 1, . . . , Ln} for each user n
output: latent variable assignment zn,l for each cn,l
1 foreach user n do
2 foreach watching channel cn,l do
3 Randomly choose z0 from

[1, T ] ∪ ([1, T ]× Ān × [1, T ]);
4 zn,l ← z0;
5 UpdateCnt(zn,l,m(1),m(2),m(3),+1);

6 foreach iteration till convergence do
7 foreach user n do
8 foreach watching channel cn,l do
9 UpdateCnt(zn,l,m(1),m(2),m(3),−1);

10 foreach
z ∈ [1, T ] ∪ ([1, T ]× Ān × [1, T ]) do

11 calculate p(zn,l = z, z−n,l, c|M) by
formulae in Equation 1;

12 Randomly choose z0 from
[1, T ] ∪ ([1, T ]× Ān × [1, T ]) with
probabilities p(zn,l = z, z−n,l, c|M);

13 zn,l ← z0;
14 UpdateCnt(zn,l,m(1),m(2),m(3),+1);

Function UpdateCnt(zn,l,m(1),m(2),m(3), δ)

1 if zn,l ∈ [1, T ] then
2 m

(1)−
n,zn,l ← m

(1)−
n,zn,l + δ;

3 m
(2)−
zn,l,cn,l ← m

(2)−
zn,l,cn,l + δ;

4 else
5 m

(1)−
n,z

(1)
n,l

← m
(1)−
n,z

(1)
n,l

+ δ;

6 m
(2)−
z
(1)
n,l,z

(2)
n,l

← m
(2)−
z
(1)
n,l,z

(2)
n,l

+ δ;

7 m
(3)−
z
(1)
n,l,z

(3)
n,l

← m
(3)−
z
(1)
n,l,z

(3)
n,l

+ δ;

8 m
(2)−
z
(3)
n,l,cn,l

← m
(2)−
z
(3)
n,l,cn,l

+ δ;

sampling process, we reduce the space for latent variables zn,l
to O(T 2) by combining unsubscribed channels for each user.
This is achieved by collapsing the set of latent variables zn,l of
the second form (triplets) with the same pairs of topics t1 and
t2, i.e., we use z′n,l = (t1, t2) to represent zn,l ∈ {t1}× Ān×
{t2}. Thus the number of possible values of z′n,l is T + T 2.
This optimization effectively reduces the running time of Gibbs
sampling by a factor proportional to C (in our case it cuts
down the time to 1

50 to 1
100 as compared to the original Gibbs

sampling on the larger space of latent variables).

In the original Gibbs sampling (without optimization), for
each watching channel, we build one probability distribution
over all possible values of the latent variable, and sample from
it once for the value of the latent variable, shown from line 10
to 13 in Algorithm 1. It thus requires multiple calculations of



the probability distributions for a user, one for each watching
channel. In the optimized Gibbs sampling, we can consolidate
watching channels from the same user, and build just one
probability distribution at the user level. For each user at each
iteration, we first subtract all latent variables for her watching
channels from the topic-channel count m(2) and the topic-
transition count m(3), but retain the user-topic count m(1),
and then calculate the probabilities according to Equation 2,
where sum(4)−

n,t =
∑
c∈Ān

m
(2)−
t,c + η.

p(z′n0,l0 = t1, z
′−
n0,l0

, c|M) ∝ (m
(1)−
n0,t1 + α) ·

m
(2)−
t1,c1 + η

sum
(2)−
t1

p(z′n0,l0 = t1t1, z
′−
n0,l0

, c|M) (2)

∝ (m
(1)−
n0,t1 + α) ·

sum
(4)−
n,t1 (m

(2)−
t1,c2 + η)

sum
(2)−
t1 (sum

(2)−
t1 + 1)

·
m

(3)−
t1,t1 + λψ

sum
(3)−
t1

p(z′n0,l0 = t1t2, z
′−
n0,l0

, c|M)

∝ (m
(1)−
n0,t1 + α) ·

sum
(4)−
n,t1

sum
(2)−
t1

·
m

(2)−
t2,c2 + η

sum
(2)−
t2

·
m

(3)−
t1,t2 + ψ

sum
(3)−
t1

This however is done at the cost of losing one count on
topic-channel count m(2) since this set of latent variables do
not record which unsubscribed channel was considered as the
first topic, i.e., we use the observed channels to estimate the
topic-channel distribution, not the set of unsubscribed channels
that users considered before changing to an available channel.

Multiple z′n,l are then sampled from the same probability
distribution, one for each watching channel. This is much
more efficient since one probability distribution is utilized
by multiple watching channels. Since count m(1) is retained
from the previous iteration and the counts m(2) and m(3)

are hardly affected by just one user, the modified probability
distribution is very close to the probability distributions built
for sampling the latent variables one by one. With all latent
variables sampled for all her watching channels, we finally
update the countsm(1) (after a reset),m(2) andm(3) together.

V. EXPERIMENTS

A. Dataset Description

Availability constraint is a novel concept, and current
public datasets have not included this information. Similarly
to previous works on TV datasets [6], we need to rely on a
proprietary dataset, because there is a lack of suitable public
dataset. An Asian media company provided us a dataset on
customers’ TV subscriptions and their watching histories over
a month. Due to the restrictions from the company, we cannot
disclose too much details about the dataset.

Our dataset includes approximately 100 channels which
are grouped into a handful of bundles. In the actual setting,
customers select bundles to subscribe. As mentioned in Sec-
tion II, the appropriate evaluation task is thus to predict bun-
dles, rather than individual channels, because a customer may
effectively subscribe to some channels not due to preferences,
but simply due to their being in the same bundle as other
preferred channels. For each customer with at least 4 bundle
subscriptions, we randomly “hide” one bundle, and predict this
hidden bundle based on only the watching history from the

remaining bundles. For example, if a customer subscribes to
bundles 1, 2, 3 and 5, and 1 is randomly chosen as the bundle
to be “hidden”, we then remove all channels in bundle 1 from
her watching history. As customers must subscribe at least 3
bundles, it makes no sense to predict the third bundle with two
bundles, thus we consider customers with at least 4 bundles.

We further define a watching session as a continuous
interval on a channel at least 15 minutes long, because some
short intervals may be due to channel surfing. To more effec-
tively learn their preferences, we select those customers who
have 100 watching sessions or more. Finally, we obtain a set
of approximately 7000 customers, whose average number of
watching sessions is about 142.

B. Prediction Measures

For each customer, LTM outputs topic distributions ~θn for
each customer n, and topic-channel distribution ~βt for each
topic t. The preference pn,c of customer n on channel c, is
thus computed by pn,c =

∑T
t=1 θn,tβt,c.

To predict the next bundle that she may subscribe, we need
to compute the preferences over bundles from the preferences
over channels. As mentioned in Section II, bundle configura-
tion [17], [18] is not the focus of our problem, because the
bundles are specified in the dataset. The summation aggrega-
tion used in previous work [17], [18] is inappropriate because it
favors larger bundles, and in our case the bundles vary in sizes.
Thus, to compute the preferences over bundles more equitably,
we adopt two aggregate measures: Average and Maximum.

1) A customer may subscribe to a bundle when she
generally likes all channels in the bundle. Average measure
takes the average of pn,c over all the channels in a bundle.
For a bundle b ∈ B − Sn, where B is the set of all bundles
and Sn is the set of bundles customer n has subscribed to, the
average preference of customer n on bundle b is computed by
avg(n, b) = 1

|b|
∑
c∈b pn,c.

2) A customer may also subscribe to a bundle because she
particularly likes one channel in the bundle, and she does not
have the option to subscribe to that channel only. Maximum
measure takes the maximum value of pn,c over all channels in
a bundle, i.e., for b ∈ B−Sn, the maximum preference of cus-
tomer n on bundle b is computed by max(n, b) = maxc∈b pn,c.

The predicted bundle b for user n is the bundle with
the highest measure, i.e., either argmaxb∈B−Sn

avg(n, b) or
argmaxb∈B−Sn

max(n, b). Accuracy is the percentage of users
for which the predicted bundle b is the correct “hidden” bundle.

C. Baselines

As explained in Section II, we would focus on comparisons
with other approaches that model preferences as probability
distribution over channels/bundles, rather than absolute rating
prediction (MF or CF). The first baseline, Frequent Immediate
Superset, models probabilities based on the frequencies of
bundles alone, which showcases a comparison to a non-topic
modeling approach. The second baseline, LDA, models prob-
abilities based on topics but not transition, which showcases a
comparison to a non-transition topic modeling approach.

Frequent Immediate Superset (FIS). This approach mod-
els the conditional probability that a customer will pick a
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Fig. 3. Effect of model parameters on LDA and LTM

bundle b, given that she has already adopted a subset of bundles
S ⊂ B, where B is the universal set of bundles. Let ‖S‖ be
the number of customers who subscribe to at least the bundles
in S, and ‖S∪{b}‖ be the number who subscribe to S as well
as b. The probability p(S ∪ {b}|S) is estimated by ‖S∪{b}‖‖S‖ .
This is equivalent to finding the most frequent immediate
superset as the prediction for customers with subscription S,
i.e., arg maxb∈B−S ‖S∪{b}‖. We call this Frequent Immediate
Superset (FIS) method, and it predicts the “hidden” bundles
correctly for 52.4% of the customers.

LDA. As introduced in Section II, LDA is a randomized
algorithm, we therefore ran LDA at T = 5, thirty times
with different random number generator seeds, and took the
average. Considering the number of channels (∼ 100) is not
large compared to the number of words when discovering
topics from documents, we first took a 5% sample, ran
the Gibbs sampling for 100 iterations, and then ran for the
whole set of customers for 10 iterations. Figure 3(a) presents
LDA’s prediction accuracy on the Average measure at various
values of η ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000} when
α ∈ {1, 2, 5, 10, 20}. When α is too large (> 20), i.e., the
topic preference is more homogeneous for each user, LDA
does not outperform the FIS method since difference on
topic preferences among different users is less pronounced.
However, when α ≤ 10, there is a significant improvement
over the FIS baseline, shown in Figure 3(a).

Because of LDA’s better performance than FIS, we will
subsequently compare against only LDA, adopting the same
setting which does best for LDA, namely α = 2 and η = 200.

D. Effect of Transition Priors on LTM

We consider the effect of LTM’s transition priors ψ and
λ. Figure 3(b) and Figure 3(c) show the prediction accuracies
on the Average measure at various pairs of ψ and λ for LTM
at T = 5. Each line in Figure 3(b) is plotted with a fixed λ,
while each line in Figure 3(c) is plotted with a fixed ψ.

Figure 3(b) shows the prediction accuracies on the Average
measure with λ ∈ {0.01, 0.02, 0.05, 0.1, 0.2}. All curves
decline when ψ goes large. The larger ψ is, the less dominant
is the count m(3)

t1,t2 in determining the transition probability
from t1 to t2. Thus, larger ψ makes the difference between
across-topic transitions (transitions from t1 to t2, compared
with transitions from t3 to t2) less obvious (note that the

difference between within-topic transitions and across-topic
transitions are controlled by λ). If we had assumed that the
second-choice topic is independent of the first-choice topic in
Section III, larger ψ should not have made an impact to the
prediction accuracy since transition probabilities do not matter
much in determining the second-choice topic. However, the
prediction accuracies go down, which means the transition
patterns indeed depend on the topic t1 a user n takes as
her first-choice topic. That shows it is important to consider
topic transitions rather than to take the her second-choice topic
t2 as another sample from her topic preference θn. On the
other hand, the performance goes down as λ increases in
Figure 3(c). As within-topic transitions are parameterized by
λψ, this shows the transitions happen less likely within the
same topics, but more often, from one topic to another.

The best setting for ψ and λ at ψ = 5 and λ = 0.02 gives
the prediction accuracy of 72.4%, i.e., LTM correctly predicts
for three quarters of the customers on their “hidden” bundles.
We will use this setting to compare against LDA subsequently.

E. Comparisons between LTM and Baselines

We now compare LTM against LDA for different T . In
experiments, we find that both LTM and LDA perform best
for relatively small T . We hypothesize that this is due to the
relatively low number of bundles. High T , such as ≥ 30, cause
overfitting, with all methods dropping below 60% accuracy.

LTM vs. LDA Figures 4(a) and 4(b) show the prediction
accuracies on both the Average and Maximum measures respec-
tively. For each T , we run both LDA and LTM thirty times each
(with 30 seeds), and calculate the mean and standard errors of
the prediction accuracy. As shown in Figures 4(a) and 4(b),
with error bars presenting the standard errors, LTM generally
performs better than LDA on both measures, as shown by
LTM’s generally higher mean in prediction accuracy.

To test the statistical significance of the outperformance
by LTM, we conduct one-tailed paired-sample t-test [26] for
each T . The null hypothesis H0 is there is no difference
between the two samples. Table III summarizes the p-values
with different alternative hypotheses H1 (first column). p-value
is the probability of erroneously rejecting H0 in favor of H1.
We can reject H0 and accept H1 if p ≤ γ, where γ is the
significance level (usually 0.01 or 0.05). The lower the p-value,
the more significant is the result. In the first row, H1 is LTM
performs better than LDA on the Average measure. Except for
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(b) LDA vs. LTM: Maximum Measure
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Fig. 4. Comparisons between LDA and LTM on both Average and Maximum measure with different number of topics

H1 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10 T = 11 T = 12
LTM Avg better than LDA Avg 2e-01∗ 3e-04 7e-10 2e-10 9e-10 6e-09 4e-04 2e-01∗

LTM Max better than LDA Max 9e-01∗ 3e-02 6e-05 6e-03 1e-04 7e-06 9e-02∗ 5e-01∗

LTM Avg better than LTM Max 2e-08 5e-11 7e-13 3e-10 1e-09 6e-08 1e-05 3e-04
LDA Avg better than LDA Max 2e-06 4e-07 1e-05 2e-06 7e-06 4e-08 3e-04 6e-04

TABLE III. P-VALUE ON PAIRED-SAMPLE T-TEST (ENTRIES WITHOUT ASTERISKS ARE STATISTICALLY SIGNIFICANT)

the few asteriated entries, the p-values are very low, and we can
accept H1 at 0.01 significance level. In the second row, H1 is
that LTM performs better than LDA on the Maximum measure.
Again, except for the asteriated entries, we can accept H1 at
0.05 significance level for T = 6, and at 0.01 significance level
for the rest. We therefore conclude LTM is significantly better
than LDA for many of the T settings (6 to 11). For T > 12,
there is insufficient statistical evidence to reject H0. This is
still acceptable as both LDA and LTM overfit and perform
worse than for T ≤ 12. Therefore, we do not show them here
due to the overfitting issue.

Average v.s. Maximum Measures. In most of the figures
above, we only plotted the prediction accuracies on the Average
measure, since the Average measure reports a higher accuracy
than the Maximum measure in all settings of T for LTM,
which is shown in Figure 4(c). Average is also better than
Maximum for LDA, though the corresponding figure for LDA
is not shown here due to space constraint. This outperformance
by Average measure is statistically significant, both for LTM
and LDA, as shown by the last two rows of Table III, where the
low p-values show that we can accept H1 at 0.01 significance
level. This means most people would subscribe to a bundle
because they generally like the channels in the bundle, rather
than a particular channel in the bundle. This is intuitive since
a consumer spends more on items she likes packaged together,
while she may be less willing to spend if her preferences
towards the items in the package are very different.

Running Time. As explained in Section IV, the optimiza-
tion by collapsing latent variables results in a two-order-of-
magnitude improvement in the runtime of our algorithm. Due
to the extremely large improvement, we do not show the
runtime for the unoptimized algorithm, because then it will
obscure the much smaller difference between the optimized
LTM and the baseline LDA. Figure 5 shows that there is not
much difference between the running times of LDA and LTM.
Based on per iteration, the difference increases as T goes
larger. In most cases, LTM’s running time is only marginally
higher, which gives a difference of less than 2 seconds.
Therefore, our optimized algorithm is considered efficient.
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F. A Case Study

We give a case study here with T = 10, α = 2, η = 200,
ψ = 5 and λ = 0.02, to illustrate the discovered topics and
the transitions among topics. The topics in terms of channels
are presented in Table IV. The second column are the names
that we manually give to each topic for ease of identification.
The upper row of the third column are the leading channels
that are present in the topic t, sorted by ascending order of
βt,c. The lower row of the third column lists the destinations
that the topic transitions to. The percentages are the transition
probabilities. Those with probability < 5% are not shown.

The topics found in Table IV are generally intuitive. For
instance, most of the Chinese language channels are grouped
together into t9. In our dataset, most of the people who watch
such channels are not likely to watch shows in other languages
(e.g., English shows). However, kids channels are split into two
topics, t3 and t8, where channels in t3 are more for toddlers
and younger kids, but channels in t8 are for elder kids, even
teenagers. This can be even observed from the transitions. As
elder kids are more exposed to other channels, we shall expect
to see some transitions from unavailable channels (which they
might have watched before at friends’ house) to t8. This is
certainly true as topics t1, t2, t5 and t7 all transition to t8
with probabilities more than 5%, but not to t3.

Similarly, there are also two topics for Education channels,
t2 and t5. We think the difference between t2 and t5 is that,



Manual Label Top Channels and Top Transitions

t1 Mixed One HD, Asian Food Channel, Discovery Channel,
National Geographic Channel
t5 (21.9%), t1 (20.5%), t10 (20.2%), t8 (18.2%), t2
(14.0%)

t2 Education-A BBC Knowledge, Discovery Channel, National Geo-
graphic Channel, History
t8 (68.9%), t10 (10.1%), t5 (15.3%)

t3 Kids-Younger Disney Junior, Nick Jr, Baby TV, CBeebies, JimJam,
Boomerang
t3 (88.0%)

t4 Entertainment FOX, AXN, Universal Channel, FOXCRIME, Ani-
max, WarnerTV
t10 (33.0%), t5 (31.8%), t2 (16.1%), t4 (7.9%), t6
(6.1%)

t5 Education-B History, Crime & Investigation Network, National
Geographic Ch, Discovery Ch
t2 (50.8%), t8 (24.6%), t10 (12.7%), t4 (6.1%)

t6 News Sky News, CNBC, BBC World News, CNN, FOX
News Channel
t10 (39.1%), t2 (27.8%), t5 (21.3%), t4 (7.5%)

t7 Entertainment-HD Star World HD, FOX HD, AXN HD, Universal Chan-
nel HD, FOXCRIME HD
t8 (53.2%), t2 (17.0%), t5 (13.6%), t10 (7.8%)

t8 Kids-Elder Disney Channel, Nickelodeon, Cartoon Network,
Boomerang, Disney Junior
t8 (90.6%)

t9 Chinese TVBS Asia, One, CTI TV, E City, Star Chinese
Channel, TVBS News
t9 (97.5%)

t10 Lifestyle Star World, E! Entertainment, Food Network Asia,
BBC Lifestyle
t10 (95.8%)

TABLE IV. CASE STUDY: TOPICS BY CHANNELS AND TRANSITIONS

t5 contains more serious educational channels with narrower
range of audiences, e.g., Crime & Investigation Network. So
transitions happen from harder to understand channels to easier
ones, for example, there are significantly more transitions from
t5 to t2 than from t2 to t5, there are also more transitions from
other topics to t10 (Lifestyles) than from t10. Users who wish
to find substitutes for channels in t2 may probably turn to t8
(easier) than to t5. Less transitions are observed from t5 to t8
than from t2 to t8, which confirms that the transitions reduce
with the difference between the levels of target audiences.

Another interesting finding is that, HD channels (e.g., t7)
do not transition to channels in the same category but with nor-
mal resolution (e.g., t4). This goes against our initial intuition
that, when people find HD channels are not available, they
would replace them by the corresponding normal channels.
But the transition pattern of topic t7 suggests otherwise. When
we consider it further, this actually makes sense. The same
channels, whether in HD or normal resolution, are perfect
substitutes of one another. Most people think of “interests”
in terms of the content, and not the resolution of the channels.
Thus the transitions from a HD channel to its normal channel is
never observed. Meanwhile, we would expect that an HD topic
and the corresponding normal topic share similarities between
their transition patterns. This is indeed the case, demonstrated
by the frequent transitions from t4 or t7 to t10, t5 and t2.

VI. CONCLUSION

We propose Latent Transition Model (LTM) to model user
preferences in the presence of availability constraints. The key
novel concept is availability-based topic transition, whereby a
user transitions from one topic to another if the first-chosen
item is not available for consumption. LTM is validated with
a real dataset, and shown to be effective and efficient in
predicting unsubscribed bundles. As future work, we plan
to investigate the issue of multiple transitions for a single

observation, where the observed channel is not necessarily the
first choice or the second choice, but rather the n-th choice. It
is also interesting to factor in economic considerations, such
as when items are available at different prices.
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