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ABSTRACT
The robustness of a network is determined by how well its
vertices are connected to one another so as to keep the net-
work strong and sustainable. As the network evolves, its ro-
bustness changes and may reveal events as well as periodic
trend patterns that affect the interactions among users in the
network. In this paper, we develop R-energy as a new mea-
sure of network robustness based on the spectral analysis of
normalized Laplacian matrix. R-energy can cope with dis-
connected networks, and is efficient to compute with a time
complexity of O(|V | + |E|) where V and E are the vertex
set and edge set of the network respectively. This makes R-
energy more efficient to compute than algebraic connectivity,
another well known network robustness measure. Our experi-
ments also show that removal of high degree vertices reduces
network robustness (measured by R-energy) more than that
of random or small degree vertices. R-energy can scale well
for very large networks. It takes as little as 40 seconds to com-
pute for a network with about 5M vertices and 69M edges.
We can further detect events occurring in a dynamic Twit-
ter network with about 130K users and discover interesting
weekly tweeting trends by tracking changes to R-energy.

Author Keywords
R-energy; network robustness; normalized Laplacian matrix.

ACM Classification Keywords
G.2.2. Graph Theory: Spectra of graphs; Paths and
connectivity problems

General Terms
Measurement; Performance

1. INTRODUCTION
The popularity of web, mobile phones and other portable de-
vices has propelled the growth of large scale social networks
such as Facebook and Twitter. These networks dynamically
evolve as users join and leave, and as their interaction inten-
sity changes over time. To characterize the strength of these
large scale networks, we need some measures for their robust-
ness.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WebSci’13, May 2–4, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1015-4/12/05...$10.00.

The ability to measure the robustness of networks can bene-
fit several useful applications. For example, in a phone call
network, dense and frequent calls among users in the net-
work reduce the likelihood of churn. The same can be ob-
served for online social networks. Network robustness is
also studied in other applications such as disease transmis-
sion [4][13], and network security [16], etc. For example, the
robustness of IP networks affects service quality and secu-
rity. Service providers therefore aim to monitor, manage and
optimize their networks to keep their networks robust.

As today’s networks are usually of very large scale, efficient
measurement of network robustness is therefore a challenge.
There are several previously proposed robustness measures
in the research literature. They include: (a) node connectiv-
ity [12], (b) edge connectivity [12] and (c) algebraic connec-
tivity [14]. Node (or edge) connectivity �(G) (or "(G)) of
a network G is defined by the number of nodes (or edges)
that may be removed to break the networks into multiple con-
nected components. Large node and edge connectivity values
suggest that a network is robust.

Algebraic connectivity �(G) is defined by the second small-
est eigenvalue of the Laplacian matrix of the network. Al-
gebraic connectivity is closely related to node connectivity
and edge connectivity by the following inequality: �(G) 
�(G)  "(G) [14]. For example, both the node connectivity
and edge connectivity of the network example in Figure 1(a)
are 2. According to the above inequality, the algebraic con-
nectivity of the network is therefore 2.

In combinatorics, an expander graph is a connected and undi-
rected graph in which every small subset of the vertex set has
a large boundary (to be explained shortly). The goodness (or
robustness) of the expander graph can be measured by vertex
expansion [5] and edge expansion [17]. Let G = (V,E) be
a connected and undirected network. The vertex expansion
h
v

(G) and edge expansion h
e

(G) are defined in Equations 1
and 2 respectively.

h
v

(G) = min
S⇢V,0<|S| |V |

2

|@
out

(S)|
|S| (1)

h
e

(G) = min
S⇢V,0<|S| |V |

2

|@(S)|
|S| (2)

where @
out

(S) is the outer vertex boundary of S (i.e., the set
of vertices in V \S with at least one neighbor in S) and @(S)
is the edge boundary of S (i.e., the set of edges with exactly
one endpoint in S). A robust expander graph contains fewer
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Figure 1: Two networks in the running example

graph Connectivity Expansion
node edge algebraic vertex edge

Figure 1(a) 2 2 2 1 1
Figure 1(b) 2 2 2 1 1.5

Table 1: Robustness metrics for networks in Figure 1

bridges or bottlenecks. Its vertex expansion and edge expan-
sion measures are also related to algebraic connectivity by the
Cheeger’s Inequality [2]. Considering all cuts of the network
in Figure 1(b), the vertex expansion and edge expansion are
1 and 1.5 respectively.

However, these measures have the following shortcomings:

• They are only applicable to connected networks. Even
though a highly robust giant component exists in a network
with very few connected components, the network is con-
sidered not robust at all as all these measures return zero
values.

• They quantify robustness using specific (optimal) combi-
nations of nodes (for node connectivity), specific combina-
tion of edges (for edge connectivity), and specific eigen-
value (for algebraic connectivity). For example, the net-
work in Figure 1(b) is intuitively more robust than another
network in Figure 1(a). However, the node, edge, algebraic
connectivity and vertex expansion in Table 1 show that the
robustness of the two networks are the same.

• They are difficult to scale for large networks of millions
vertices and edges. Even though the edge expansion mea-
sure correctly tells us that the network in Figure 1(b) is
more robust than that in Figure 1(a), it is computed by
checking all cuts of the network, an expensive operation.
For algebraic connectivity, we need to compute the second
smallest eigenvalue of the Laplacian matrix. For node con-
nectivity, edge connectivity and vertex expansion, we have
to check all cuts of the network. These are all time con-
suming operations for large networks.

In this paper, we aims to address the problem of efficiently
measuring network robustness which should be defined in a
principled way. As the same network may contain one or
more connected components over time, our network robust-
ness should be able to cope with the dynamicity of network
evolution. We summarize our contribution to the study of net-
work robustness as follows:

• We propose R-energy as an efficient measure for network
non-robustness. Network robustness is thus the inverse of
R-energy. The new measure, defined based on normalized
Laplacian matrix, demonstrates several nice properties. It
can also handle networks with multiple connected com-
ponents and can be computed with good time complexity
O(|V |+ |E|), where V and E are node set and edge set of
a network.

• We apply R-energy to both synthetic and real networks.
For a network with close to 5M vertices and 69M edges, the
computation takes not more than 40 seconds. This shows
that R-energy can cope with large scale networks comfort-
ably.

• We further apply R-energy to a dynamic Twitter commu-
nity with about 130K users to detect events and regular
trend patterns that affect the network robustness. We em-
pirically show that several significant events can be de-
tected, and that users tend to be more active engaging each
other on Sundays and Mondays, but not on Saturdays.

For the rest of the paper, we first give a brief survey of re-
lated work in Section 2. Next, we introduce some basic no-
tations in Section 3 before presenting R-energy and its algo-
rithm in Section 4. In Section 5, we show some observations
and the performance of R-energy on both synthetic and real
networks. In Section 6, we show some patterns and events
found using R-energy on a dynamic Twitter user community.
Finally, we conclude this paper with directions for future re-
search.

2. RELATED WORK

Robustness
The traditional network robustness measures, node connec-
tivity and edge connectivity were proposed by Dekker and
Colbert [12]. Graph expansion can also be used to mea-
sure network robustness. Different formulations of expander
give rise to different measures of expander, e.g., edge expan-
sion [17], vertex expansion [5] and spectral expansion [22].
Larger edge or vertex expansions indicate less bottleneck in-
side a network. Nevertheless, these measures do not work
well for networks with multiple connected components.

Jamakovic and Mieghem proposed to use the second small-
est eigenvalue of the Laplacian matrix also known as alge-
braic connectivity to measure network robustness [18, 14].
Malliaros, et al. described the relationship between algebraic
connectivity and node/edge connectivities [22]. According
to Cheeger’s Inequality, Chung found that the expansion of
a graph is closely related to the spectral gap between the
largest and the second largest eigenvalues of adjacency ma-
trix. Malliaros et al. confirmed the findings of Chung in [22].
This measure is however costly to compute and is sensitive
to the network size. Hence, it is not appropriate for compar-
ing networks of different sizes. Albert et al. used diameter to
measure robustness of networks [1] but the measure does not
capture network connectivity which should be considered in
robustness measures.
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Graph Energy
The energy of a graph G has always been defined to be some
form of deviation of eigenvalues of some graph matrix from
the mean of eigenvalues. For example, Gutman defined graph
energy on an adjacency matrix as the absolute deviation of
eigenvalues from the mean of eigenvalues which is zero for
any adjacency matrix [15]. In [25, 27], Laplacian energy has
been defined on the combinatorial Laplacian matrix. In [7],
normalized Laplacian energy is defined on the normalized
Laplacian matrix in a similar manner.

Day and So studied graph energy changes with edge or ver-
tex removals [11][10]. There are some existing works which
derive the lower and upper bounds for different energy defi-
nitions including Gutman’s graph energy [3], Laplacian en-
ergy [25][27] [28] and normalized Laplacian energy [7].
They are not appropriate measures for network robustness of
a graph as computing them would be time costly.

3. PRELIMINARIES
Our proposed R-energy measure is based on normalized
Laplacian matrix, random walk on graphs, and some other
important concepts which will be covered in this section.

Normalized Laplacian
Consider an undirected graph G = (V,E) with vertex set V
and edge set E (Let |V | = n, and |E| = m). Let A

G

denote
the adjacency matrix representing G and is defined as:

A
G

(i, j) :=

⇢
1, if (v

i

, v
j

) 2 E;
0, otherwise.

The degree of a vertex v, d(v), and degree matrix D
G

can be
defined as:

d(v) := |{u|(v, u) 2 E}| (3)

D
G

(i, j) :=

⇢
d(v

i

), if i = j and v
i

2 V ;
0, otherwise. (4)

Based on matrixes A
G

and D
G

, we define the normalized
Laplacian matrix in Definition 1.

DEFINITION 1. The normalized Laplacian matrix N
G

of
a graph G with nonnegative adjacency matrix A

G

is given by

N
G

:= I �D
�1/2
G

A
G

D
�1/2
G

.

We denote

0 = ⇣1  ⇣2  · · ·  ⇣
n

(5)

as the eigenvalues of the normalized Laplacian matrix N
G

.

There are several important properties about the eigenvalues
of normalized Laplacian matrix as presented in Lemma 1.

LEMMA 1. The eigenvalues of the normalized Laplacian
matrix of a graph with n vertices satisfy the following prop-
erties:

(i) 0  ⇣2  n

n�1  ⇣
n

 2, for i = 1, 2, · · · , n;

(ii) ⇣2 = · · · = ⇣
n

= n

n�1 if and only if G is a clique;

(iii) ⇣
n

= 2 if and only if G is a biclique;

(iv) G has at least i connected components if and only if
⇣
j

= 0, for j = 1, 2, · · · , i.
Property (i) says that the eigenvalues of normalized Laplacian
matrix range from 0 to 2. As a special case, when all except
the smallest eigenvalue equal n

n�1 , the graph is a clique as
shown in Property (ii). Property (iii) states that the largest
eigenvalue takes the upper bound value 2, the graph will be a
biclique. A network therefore resemble a biclique when the
largest eigenvalue is close to 2, or a clique when many eigen-
values are close to n

n�1 . Property (iv) states that each addi-
tional connected component corresponds to having the next
smaller eigenvalue assigned with a zero value. ⇣1 is therefore
0 in any network.

Normalized Laplacian matrix is important when modeling
random walk on a graph. We thus introduce the relationship
between normalized Laplacian matrix and random walk next.

Random Walk
Given a graph and a starting vertex, we select a neighbor of it
at random, and move to this neighbor. From there, we repeat
the step by selecting another neighbor at random, and move
to it and so on. The random sequence of vertices visited in
this way is known as a random walk on the graph.

Let P = (p
ij

)1i,jn

denote the transition probabilities of
random walk, where p

ij

denotes the probability of visiting v
j

from v
i

in one step. So

p
ij

:=

⇢
1

d(vi)
, if (v

i

, v
j

) 2 E;
0, otherwise.

In the matrix form, transition probability matrix can be de-
fined as:

P = D�1
G

·A
G

.

Furthermore, the rule of random walk can be expressed by the
simple equation:

W t = P ·W t�1 = p2 ·W t�2 = · · · = P t ·W 0, (6)

where W 0 represents the initial state of the random walk and
W t represents the state after t steps.

Nevertheless, P is not a symmetric matrix and this compli-
cates its eigenvalue analysis. An important fact is that the
eigenvalues of normalized Laplacian matrix N

G

are closely
related to the eigenvalues of P . With this, we can use the
N(G) to analyze spectrum for random walker. Formally,

LEMMA 2. Let ⇣1, · · · , ⇣n’s be the eigenvalues of N(G).
P have the eigenvalues equal to 1� ⇣

i

, for i = 1, 2, · · · , n.
PROOF. Note that

N
G

= I �D
�1/2
G

A
G

D
�1/2
G

= D
1/2
G

(I � P )D�1/2
G

.

Suppose that v is an eigenvector of N
G

, with eigenvalue ⇣.
We have

N
G

· v = ⇣ · v

91



Let q = D
�1/2
G

· v, then,

⇣ · v = D
1/2
G

(I � P )D�1/2
G

· v = D
1/2
G

(I � P ) · q (7)

By multiplying by D
�1/2
G

to Equation 7, we obtain

(I � P ) · q = ⇣ ·D�1/2
G

· v = ⇣ · q.
Therefore, q is an eigenvector of I�P with eigenvalue ⇣.

2-step commute probability
Based on the spectral analysis of normalized Laplacian ma-
trix, our proposed robustness metric is closely related to 2-
step commute probability of vertices in the random walk
(elaborated in next section).

In Equation 6, each entry pt
ij

of P t is the probability that,
starting at v

i

, the walker reaches v
j

in t steps. Specially, the
entry p2

ii

represents the probability of reaching v
i

from v
i

in
exactly 2 steps. This is also known as the 2-step commute
probability of vertex v

i

. Computationally,

p2
ii

=
nX

j=1

p
ij

· p
ji

2-step commute probability is very important as it measures
the possibility of a random walk returning to vertex v

i

after 2
steps. A lower value suggests that the walker starting from v

i

is less likely to return in 2 steps, but more likely to visit the
other vertices.

EXAMPLE 1. Figures 1(a) and 1(b) show two undirected
graphs with 4 vertices in a circle. Thus, the transition proba-
bility matrixes can be derived as

P =

0

BB@

0 1
2 0 1

2
1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0

1

CCA , Q =

0

BB@

0 1
3

1
3

1
3

1
2 0 1

2 0
1
3

1
3 0 1

3
1
2 0 1

2 0

1

CCA

We then compute the 2-step commute probabilities of vertex
v3 as

p233 =
4X

j=1

p3j · pj3 = 0 · 0 + 1

2
· 1
2
+ 0 · 0 + 1

2
· 1
2
=

1

2

q233 =
4X

j=1

p3j · pj3 =
1

3
· 1
3
+

1

3
· 1
2
+ 0 · 0 + 1

3
· 1
2
=

4

9

Comparing the two 2-step commute probabilities, we know
that v3 in Figure 1(b) can reach the other vertices more easily
than that in Figure 1(a) which follows our intuition.

4. R-ENERGY
In this section, we give the definition of R-energy and present
an efficient approach to compute R-energy.

R-energy
According to Lemma 1, for a network G that is sparsely con-
nected and is far from being a clique, its ⇣2 is small but ⇣

n

is
large. In contrast, a network that are densely connected and

similar to a clique will have ⇣2 not much smaller than ⇣
n

. In
other words, a robust network should have a small gap be-
tween ⇣2 and ⇣

n

. This gap between ⇣2 and ⇣
n

can therefore
be used to measure network robustness.

In statistics, the range of a set of data values is measured by
variability, which is defined by the gap between the largest
and the smallest data values [26]. For networks, we may
use some variability measures over their eigenvalue sequence
⇣2, ⇣3, · · · , ⇣n. Recall that ⇣1 is always zero. Examples of
such variability measures include variance, standard devia-
tion and relative variability [26]. In the following definition,
we use the variance of the eigenvalues to measure network
robustness and call the new measure robustness energy.

DEFINITION 2. Let G be a network. The robustness en-

ergy (or R-energy) of G is defined as:

ER(G) :=
1

n� 1

nX

i=2

(⇣
i

� ⇣)2

where ⇣ = 1
n�1

P
n

i=2 ⇣i.

R-energy is always non-negative and the smaller is R-energy,
the more robust is the network. This is because smaller vari-
ability of ⇣2, ⇣3, · · · , ⇣n implies that the network is closer to
a clique.

R-energy can be used to measure the robustness of both con-
nected and disconnected networks. Networks with multi-
ple connected components will see larger variability of their
eigenvalues (as more ⇣

i

’s are zeros) leading to larger R-
energy values.

The naive approach to compute R-energy after obtaining all
eigenvalues of the normalized Laplacian matrix is computa-
tionally expensive. In the next subsection, we therefore ana-
lyze the spectrum of normalized Laplacian matrix, and pro-
pose a simple and efficient approach to compute R-energy in
O(|V |+ |E|) time complexity.

Computation of the R-energy
To compute the variance of eigenvalues ⇣2, ⇣3, · · · , ⇣n, we
compute the mean using Theorem 1.

THEOREM 1. The mean of eigenvalues ⇣2, ⇣3, · · · , ⇣n of
a network with n vertices, ⇣, is n

n�1 .
PROOF. According to linear algebra, the trace of a matrix

is defined by the sum of all its diagonal elements, and this is
also equal to the sum of all eigenvalues of the matrix. Re-
call Definition 1, each entry N

G

(i, j) of N
G

(i.e., normalized
Laplacian matrix) is as follows:

N
G

(i, j) =

8
<

:

1, if i = j and d(v
i

) 6= 0;
� 1p

d(vi)d(vj)
, if A

G

(i, j) 6= 0;

0, otherwise.
(8)

92



Each diagonal element of N
G

is therefore 1. Note that ⇣1 = 0.
Thus,

1

n� 1

nX

i=2

⇣
i

=
1

n� 1

nX

i=1

⇣
i

=
1

n� 1
· tr(N

G

) =
n

n� 1
.

where tr(N
G

) denotes the trace of matrix N
G

.

With the mean of the eigenvalue sequence, we can now com-
pute R-energy using Theorem 2.

THEOREM 2. The R-energy of G satisfies Equation 9.

ER(G) =
1

n� 1

nX

i=1

nX

j 6=i

A
G

(i, j)

d(v
i

)d(v
j

)
� n

(n� 1)2
. (9)

PROOF. According to Theorem 1, the R-energy of G can
be expressed as:

ER(G) =
1

n� 1

nX

i=2

(⇣
i

� n

n� 1
)2

=
1

n� 1

nX

i=2

⇣2
i

� 2n

(n� 1)2

nX

i=2

⇣
i

+
n2

(n� 1)2

=
1

n� 1

nX

i=1

⇣2
i

� n2

(n� 1)2

According to Equation 8, the ith diagonal element of N(G)2

is
nX

j=1

N
G

(i, j)N
G

(j, i) =
nX

j 6=i

A
G

(i, j)

d(v
i

)d(v
j

)
+ 1.

Applying an important property of the trace, i.e.,
P

n

i=1 ⇣
2
i

=
tr(N(G)2), we obtain the following:

ER(G) =
1

n� 1

nX

i=1

nX

j 6=i

A
G

(i, j)

d(v
i

)d(v
j

)
� n

(n� 1)2

Interestingly, the first term of the above ER(G) equation rep-
resents the average 2-step commute probability of vertices in
G. Recall that the 2-step commute probability of all vertices
can be computed as:

1

n

nX

i=1

p2
ii

=
1

n

nX

i=1

nX

j 6=i

p
ij

· p
ji

=
1

n

nX

i=1

nX

j 6=i

A
G

(i, j)

d(v
i

)d(v
j

)
,

Equation 9 can be further simplified to Equations 10 and 11.

ER(G) = n

n�1

�
1
n

P
n

i=1

P
n

j 6=i

AG(i,j)
d(vi)d(vj)

� 1
n�1

�
(10)

= 1
n�1

P
(vi,vj)2E

1
d(vi)d(vj)

� n

(n�1)2 (11)

The factor n

n�1 in Equation 10 can be considered as a reward
factor for the network of n vertices. Larger graphs are there-
fore more robust due to monotonically decreasing n

n�1 as n
increases. This factor facilitates the comparison of R-energy
for networks with different sizes.

Note that the 2-step commute probability of a clique with n
vertices is 1

n�1 . The right side of Equation 10 is thus the dif-
ference between the average 2-step commute probability and
the 2-step community probability of a clique with the same
size. Hence, the R-energy of G combines the reward of net-
work size with the difference between the 2-step commute
probability of G and that of a clique.

As R-energy can be expressed by Equation 11, we can effi-
ciently compute it by scanning all edges of the network af-
ter computing the degrees of vertices in the network. Algo-
rithm 1 depicts the steps to compute the R-energy of a net-
work. The algorithm consists of two main steps. One is to
compute the degree of vertices (Lines 1-3). Another is to ag-
gregate the 2-step commute probabilities of vertices at Lines
4-6. The R-energy is finally obtained at Line 7. Both the time
and space complexities of the algorithm are O(|V |+ |E|).
Using Algorithm 1, the R�energies of networks shown in
Figures 1(a) and 1(b) are 0.222 and 0.074 respectively. The
R-energy values of the networks match our intuition that the
former is more robust than the latter. Compared to other
measures shown in Table 1, our proposed R-energy measure
is better than most existing robustness measures (except for
edge expansion).

Similar to the existing normalized Laplacian energy [7], we
can also define a robustness measure using absolute deviation
of eigenvalue sequence ⇣2, ⇣3, · · · , ⇣n. The measure however
cannot be computed efficiently.

R-energy can measure the robustness of both connected and
disconnected graphs. Suppose that network G has N con-
nected components, denoted as {C

k

}N
k=1. In Equation 12,

the energy is derived by weighted sum of the average 2-step
commute probability of vertices from each connected compo-
nent.

ER(G) =
n

n� 1

� NX

k=1

n
k

n
P
Ck �

1

n� 1

�
(12)

where P
Ck is the average 2-step commute probability of ver-

tices from connected component C
k

in Equation 13.

P
Ck =

1

n
k

X

(vi,vj)2Ck

A
G

(i, j)

d(v
i

)d(v
j

)
, k = 1, · · · , N (13)

R-energy therefore considers a large disconnected network G
to be robust if G contains a robust giant component.

5. ROBUSTNESS OF LARGE STATIC NETWORKS
In this section, we evaluate our proposed R-energy and other
robustness measures on static networks including syntheti-
cally created networks and some real world networks. We
design a set of experiments to compare the effectiveness and
scalability of R-energy with algebraic connectivity. We also
seek to find any common patterns that appear in the networks.
The experiments on synthetic networks were implemented in
Matlab while those on real networks were implemented in
Java. They were all conducted on a dual core 64-bit proces-
sor with 3.06 GHz CPUs and 128GB of RAM.
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ALGORITHM 1: calEnergy(G)

Input: input graph: G = (V,E);
Output: the R-energy of G: e;

1 for each vertex v 2 V do
2 deg(v) = |{u|(v, u) 2 E}|;
3 end
4 for each edge (v, u) 2 E do
5 e e+ 1

deg(v)deg(u) ;
6 end
7 e e

n�1 �
n

(n�1)2 ;
8 return e
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Figure 2: Size of largest SCCs (giant components)

Networks
Synthetic networks. We generate different synthetic net-
works of N (1K  N  30K) vertices with power law
degree distribution using the graph generation algorithm pro-
posed by Palmer and Steffan [24]. Each synthetic network
with N vertices is denoted by Syn N . In essence, the algo-
rithm starts with a graph with N vertices but no edges. It then
assigns a degree k to each vertex v such that Pr[deg(v) =
k] ⇡ k�↵ where ↵ is the exponent > 2. Finally, the vertices
are processed in decreasing degree order, and are assigned
neighbors according to their degrees.

Real networks. We use four static real networks with dif-
ferent sizes from Stanford Large Network Dataset Collection,
namely Epinions, Web graph, Internet topology and LiveJour-
nal 1. The descriptive statistics of these networks are shown in
Table 2. In this work, we consider these networks unweighted
and undirected.

To evaluate the algebraic connectivity, we extract the largest
connected component and use it as a representative of the en-
tire graph as there is always a giant component in each of
these networks [9]. Figures 2(a) and 2(b) confirm the giant
components in both synthetic and real networks.

Efficiency and scalability of R-energy
Figure 3(a) illustrates the elapsed time of computing both R-
energy and algebraic connectivity on synthetic networks. We
observe that Matlab takes almost one hour to compute the

1http://snap.stanford.edu/data/index.html

ID network name vertices edges density

EP Epinion [8] 75,879 508,837 1.767⇥ 10�4

WG Web graph [21] 875,713 5,105,039 1.331⇥ 10�5

IT Internet topology [20] 1,696,415 11,095,298 7.710⇥ 10�6

LJ LiveJournal [21] 4,846,609 68,475,391 5.830⇥ 10�6

Table 2: Descriptive statistics of real networks
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Figure 3: Performance of computing the R-energy

algebraic connectivity of the network with 30, 000 vertices2.
On the other hand, the elapsed time of R-energy computation
for the same network is more than 4 order of magnitude faster
than that of the algebraic connectivity for a large network. We
further observe that the elapsed time for R-energy scales lin-
early with the number of edges making it ideal for networks
with millions vertices.

We evaluate the correlation between R-energy and algebraic
connectivity on the different synthetic networks to see if they
produce similar robustness results. Note that small R-energy
suggests high robustness, while high algebraic connectivity
suggests high robustness. As shown in Figure 3(b), the two
measures are negatively correlated with Pearson correlation
coefficient �0.62. This shows that the correlation between
them is strong (< �0.5).

Figure 3(c) depicts the elapsed time of computing R-energy
and algebraic connectivity for four real networks. The
elapsed time for algebraic connectivity for the smallest real
network, i.e., Epinion, is more than 12 hours. For the largest
network LiveJournal [21] with 4.8M vertices and 68.5M
edges, R-energy takes less than 40 seconds to compute. Fig-
ure 3(b) shows R-energies for these real networks.

Impact of vertex removal to R-energy
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Figure 4: R�energies of static graphs

Complex networks with heavy-tail are known to be highly
robust against random removal of vertices [9], but are hyper-
sensitive to removal of high degree vertices [1][6]. We would
like to verify this using R-energy measure.

We experiment with three vertex removal options, namely, (a)
remove in decreasing degree order; (b) remove in increasing
degree order; and (c) remove in random order. For each op-
tion, after removing x fraction of vertices from the largest
connected component, we compute R-energy to measure the
new network robustness. Figure 4 illustrates the R-energy of
resultant network for the three options compared with the R-
energy of the original network. From the figure, we obtain
three important observations as follows.

OBSERVATION 1. Networks become less robust sooner
when vertices of the highest degrees are removed.

Compared with the original graph, R-energy increases sooner
when vertices of the highest degrees are removed than when
vertices of random degrees or small degrees are removed.
This is the case since vertices of high degrees tend to have
smaller 2-step commute probabilities. Removing them leads
to an increase in average probability. Therefore, the network
becomes less robust.

OBSERVATION 2. Networks remain robust or become
slightly more robust when vertices of the smallest degrees are
removed.

Figure 4 shows that R-energy remains constant or decreases
slightly when vertices of the smallest degrees are removed
from the network. Again, the smallest degree vertices have
larger 2-step commute probabilities. Removing the smallest
degree vertices results in little decrease in the average of the
probabilities.

2We employ Matlab function eigs(L, 2,�1.0) to compute two
eigenvalues which are closest to -1, i.e., the smallest and the sec-
ond smallest eigenvalues of L, where L is a sparse matrix.

OBSERVATION 3. Networks become less robust when ver-
tices are randomly removed. However, the change is slower
than that of removing vertices of highest degrees.

This observation can be attributed to the fact that each vertex
has a certain chance to decrease its degree when we remove
vertices at random. That means the 2-step commute probabil-
ity of each vertex increases with certain probability. However,
vertices of smallest degree are more likely to be removed in
scale-free networks. Hence, vertices of large 2-step commute
probabilities are more likely to be removed leading to a de-
crease in graph energy.

The above three observations are also consistent to the results
of Albert et al.’s work which uses diameter to measure robust-
ness of networks [1]. They found that scale-free networks
are robust to random vertex removals, but not to removals
of most connected vertices. The diameter of a network de-
creases when vertices of the smallest degrees are removed
and the network becomes highly robust.

6. DETECTING EVENTS AND TRENDS USING ROBUST-
NESS
Networks evolve with time and so are their robustness. In this
section, we apply R-energy on dynamic and time-evolving
Twitter network so as to evaluate robustness as a possible
measure to detect events and trends. Before that, we use the
number of replies or retweets to detect events. A few events
are found due to intense fluctuation in these time series. Un-
like the previous event and trend detection research which
considers time series of messages or news articles generated
in social media, our approach utilizes dynamic changes to
network structure. These are the changes that cause a network
to become suddenly more robust or less robust than usual.

Data collection
Twitter is a popular microblogging site with users generating
and sharing short message contents in real time [19]. In this
experiment, we first selected a set of Twitter users U who
are the followers and followees of a small set of seed user
accounts that belong to US politicians and analysts. These are
the users who are more likely to tweet about political topics.
We crawled the Twitter data generated by U from 1st May,
2012 to 29th July, 2012.

From U , we further selected users who write, reply or retweet
at least a tweet per month over three months. There are
129,056 such users and we keep them in the user set U dis-
carding the remaining users and their tweets. Each day, a
subset of users in U may reply or retweet one another. We
therefore construct a reply network and another retweet net-
work for day t and denote them by GRE(t) and GRT (t) re-
spectively. An undirected edge (u, v) is included in the reply
network for day t if user u replies at least a tweet from user
v, or user v replies at least a tweet from user u in day t. The
edges in retweet network on day t are created in a similar
manner.

Event detection
We show the R�energies of GRE(t) and GRT (t) in Fig-
ures 5(a) and 5(b). To facilitate reading, we add vertical lines
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Figure 5: R-energy on GRE and GRT (Note: Vertical lines
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representing Sundays to the figures. From the figures, we
aim to determine events that are characterized by bursts and
drops of communication (replies or retweets) by many users.
We call these the internal and external events as the former
can be explained by the bursty content but not the latter. For
example, a sport event may draw user attention away from
tweeting about politics. In addition to event detection, we
also want to explain internal events by searching the web.

Suppose (e1, e2 · · · , e90) is the sequence of R-energy val-
ues. We calculate the absolute first-order difference of en-
ergy sequence, denoted as (d1, d2 · · · , d90), where d1 = 0
and d

t+1 = |e
t+1 � e

t

| for 1  t  89. Based on the mean
and standard deviation of {d

t

}, we can detect an event at time
t0 statistically if |d

t

0�mean({d
t

})| > �·stddev({d
t

}) where
mean({d

t

}) and stddev({d
t

}) denote the mean and standard
deviation of {d

t

} respectively. In other words, an event is
found when the absolute first-order difference deviates from
mean more than � times the standard deviation. However,
mean is known to be sensitive to anomalies. We therefore
employ trimmed mean that is defined as the mean after dis-
carding the smallest and largest ⌧% · d

t

values. In this work,
we set � = 3 and ⌧ = 5 empirically. Selecting values for
these parameters is an interesting research but we shall leave
this to our future work.

To describe an event at day t, we need to extract relevant event
description keywords from tweets (which can be replies or
retweets) generated on the same day t. We denote the words
extracted from reply tweets (or retweets) on day t by WRE(t)
(or WRT (t)) and the frequency of word w 2 WRE(t) (or
WRT (t)) by fRE(w, t) (or fRT (w, t)). We define the first-
order frequency difference of word w for day t as df⇤(w, t) =
f⇤(w, t) � f⇤(w, t � 1)3. From {df⇤(w, t)}, we derive the
mean and standard deviation as mean⇤(w) and stddev⇤(w)
respectively.

Table 3 shows the means and standard deviations of absolute

3* denote RE or RT .
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network absolute energy diff. word frequency diff.

mean({dt}) stddev({dt}) mean⇤(w) stddev⇤(w)

GRE 0.0093 0.0075 23.5 145.8
GRT 0.0098 0.0093 148.3 1230.2

Table 3: Descriptive statistics of reply and retweet networks

energy difference sequence and word frequency difference se-
quence of the dynamic reply and retweet networks.

Take the largest difference of energy from both GRE and
GRT on 28 June 2012 as an example. The top three
words from retweets with highest frequency difference are
“tax”,“Obamacar” and “scotu” (Supreme Court of United
States) after stopword removal and word stemming. By
searching the web using these keywords, we verified that
the Obamacare healthcare law was upheld by the Supreme
Court of United States, and there were concerns about tax in-
crease as its outcome. This event attracted a lot of replies
and retweets on June 28. The word frequency difference of
“Obamacar” in retweets subsided quickly on 29 Jun, 2012 as
shown by a negative dfRT (“Obamacar”, 29 Jun) value.

For each day t, we define the average frequency difference
of the three words w1, w2 and w3 with highest df⇤(·, t) as
M⇤(t) = 1

3

P3
i=1 df

⇤(w
i

, t). If M⇤(t) deviates far away
from the mean mean⇤(w) w.r.t. the value stddev⇤(w), an
event is considered to happen on day t.

Formally, we define the normalized M⇤(t) on day t as

N⇤(t) =
M⇤(t)�mean⇤(w)

stddev⇤(w)

The larger the N⇤(t) is, the more likely the top words are able
to explain some event on t. Empirically, we use the words
with N⇤(t) � 8 to help us to explain internal events. On the
other hand, an external event may prevent people from com-
municating in Twitter. In this case, N⇤(t) may be small due
to very few users generating tweets. We nevertheless tried to
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date
(N⇤(t), G⇤) event description

5th Jun.
(15.6, GRT )

wisconsin(21089)
walker(20726)
wirecal(16213)

Tom Barr. Wisconsin voters
rejected a year-long effort to recall
Gov. Scott Walker.

15th Jun.
(10.6, GRT )

obama(17652)
immigr(11284)
illeg(10588)

President Obama is way out of
line with his June 15th
immigration amnesty.

20th Jun.
(16.7, GRT )

fastandfuri(23295)
holder(19991)
obama(18974)

White House has asserted
executive privilege on ”fast and
Furious” documents.

21st Jun.
(2.3, GRT )

lebron(3816)
nba(2694)
twitter(2517)

Twitter goes down in worst crash
in 8 months.

28th Jun.
(36.2, GRT )

tax(52444)
obamacar(51390)
scotu(30247)

Obamacare is the largest tax
increase in the history of the
world.

30th Jun.
(1.7, GRE )

natgat(1898)
republic(1061)
storm(1049)

Honorable Bio visited California
to bring the power loss.

20th Jul.
(10.0, GRT )

shoot(25860)
gun(24103)
aurora(20480)

A gunman killed 12 people at a
midnight showing of the new
Batman movie in Aurora,
Colorado.

Table 4: Detected events from GRE and GRT

use the frequent words on day t to search the web to confirm
if an event is external.

Figure 6 illustrates the N⇤(t) values of both GRE and GRT .
Table 4 lists seven events found from GRE and GRT using R-
energy. The first column shows the date of event and N⇤(t)
value. The second column shows the top three words derived
by top frequency differences in GRE or GRT depending on
which of the two networks is used to detect the event. The fi-
nal column shows the description of events manually derived
from the Google search results of the top words.

Instead of using R-energy, we also experimented with time
series of daily reply and retweet counts using a similar event
detection method. Unlike the R-energy time series, we could
detect only two events on 28 June and 30 June listed in Ta-
ble 4. This is due to reply and retweet counts fluctuates very
much over time. We therefore detect fewer bursty events than
that using R-energy. The results also show that R-energy can
help detecting events that are different.

Periodic Trend Pattern Detection
Other than ad hoc events, Mann-Kendall trend test [23] indi-
cates that a periodic pattern significantly exists in GRE and
GRT of Figure 5. We also want to detect weekly trend pat-
terns from the figure by examining the regularities in network
energy changes. This weekly pattern can be even more dis-
tinct when the ad hoc events are removed.

In this section, we therefore focus on detecting weekly
pattern. Based on a pre-defined threshold ✓ (= 0.1 ⇥
mean({d

t

)}), we first derive three kinds of energy changes
from the previous day, namely (i) energy increase (‘+’), (ii)
energy decrease (‘�’), and (iii) insignificant change (null).
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Figure 7: Weekly pattern detecting

Given a day of a week x, e.g., Tuesday, we count the number
of ‘+’s, ‘�’s, and null’s and denote them by p(x), n(x), and
null(x) respectively. After ignoring the ad hoc events, we in-
crement p(x) if the energy change is more than ✓; increment
n(x) if the energy change is smaller than �✓; or increment
null(x) otherwise. The proportions of ‘+’s and ‘�’s on x
across multiple weeks can be defined as:

prop(‘+’, x) =
p(x)

p(x) + n(x) + null(x)

prop(‘�’, x) =
n(x)

p(x) + n(x) + null(x)

prop(null, x) =
null(x)

p(x) + n(x) + null(x)

Let max
prop

(x) be maximum value of prop(‘+’, x),
prop(‘�’, x) and prop(null, x). We assign a label l to day
x as follows:

l =

( ‘+’, if prop(‘+’, x) equal to max
prop

(x)
‘�’, if prop(‘�’, x) equal to max

prop

(x)
null, otherwise

(14)

In case of prop(‘+’, x) = prop(‘�’, x) = max
prop

(x), we
assign a null label to the day x.

For example, suppose out of 13 weeks, there are 12 Mondays
with ‘�’s, one with ‘+’ and zero with null. The composi-
tions of positive, negative, and null energy changes on Mon-
day are 7.7%, 92.3% and 0% respectively. Monday therefore
is assigned to ‘�’. By assembling the proportions of positive,
negative, null energy changes for different days of week, we
obtain the weekly trend pattern of GRE and GRT .

Figure 7 illustrates the composition of weekly pattern for
GRE and GRT . According to label assignment rule, we ob-
tain the weekly trend pattern “���+�+�” for GRE , and
another weekly trend pattern “� � � + + + �” for GRT .
Other than Friday, the two weekly trend patterns obtained
from GRE and GRT are very similar.

From the weekly trend pattern, we can casually conclude that
users are less likely to tweet on Saturdays but tweet a lot on
Sundays as well as Mondays.

7. CONCLUSION
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Measuring and explaining the robustness of large scale net-
works is an important and challenging task both in network
science theories and applications. The robustness of a net-
work is related to the connectivity of its vertices. In this paper,
based on the normalized Laplacian matrix, we define a new
robustness measure called R-energy which is closely related
to the average 2-step commute probability. The computation
of R-energy is highly efficient as it involves a single scan of
the vertices and edges of the network. This new measure can
therefore be applied to large dynamic networks. This paper
also presents the results of applying R-energy to large dy-
namic Twitter networks so as to detect events and trends. Our
empirical study shows that interesting events and trends can
be found among tweeting users.

As part of our future work, we plan to develop other robust-
ness measures for directed and weighted networks given that
such networks are common on social media (e.g., Twitter,
Google+, etc.). We can also apply robustness measures to
discover tightly connected sub-communities in the networks.
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r�1 of graphs. Linear Algebra and its Applications 433,
1 (2010), 172–190.

8. Cho, E., Myers, S. A., and Leskovec, J. Friendship and
mobility: User movement in location-based social
networks (2011). 1082–1090.

9. Cohen, R., Erez, K., ben Avraham, D., and Havlin, S.
Resilience of the internet to random breakdowns.
Physical Review Letters 85 (2000), 4626–4228.

10. Day, J., and So, W. Singular value inequality and graph
energy change. Electronic Journal of Linear Algebra 16
(2007), 291–299.

11. Day, J., and So, W. Graph energy change due to edge
deletion. Linear Algebra Application 428 (2008),
2070–2078.

12. Dekker, A. H., and Colbert, B. D. Network robustness
and graph topology. In ACSC (2004), 359–368.

13. Eubank, S., Guclu, H., Kumar, V., Marathe, M.,
Srinivasan, A., Toroczkai, Z., and Wang, N. Modeling
disease outbreaks in realistic urban social networks.
Nature 429 (2004), 180–184.

14. Fiedler, M. Algebraic connectivity of graphs.
Czechoslovak Mathematical Journal 23, 98 (1973),
298–305.

15. Gutman, I. The energy of a graph. BeT. Math.-Stai’ist.
Sekt. FOTschnngsz. Gmz 103 (1978), 1–22.

16. Hasegawa, T., and Masuda, N. Robustness of networks
against propagating attacks under vaccination strategies.
Journal of Statistical Mechanics: Theory and
Experiment 429 (2011), P09014.

17. Hoory, S., Linial, N., and Wigderson, A. Expander
graphs and their applications. Journal: Bulletin of The
American Mathematical Society 43, 4 (2006), 439–562.

18. Jamakovic, A., and Mieghem, P. V. On the robustness of
complex networks by using the algebraic connectivity.
In Networking (2008), 183–194.

19. Java, A., Song, X., Finin, T., and Tseng, B. Why we
twitter: Understanding microblogging usage and
communities. In WEBKDD (2007).

20. Leskovec, J., Kleinberg, J., and Faloutsos, C. Graphs
over time: Densification laws, shrinking diameters and
possible explanations (2005). 177–187.

21. Leskovec, J., Lang, K., Dasgupta, A., and Mahoney, M.
Community structure in large networks: Natural cluster
sizes and the absence of large well-defined clusters.
Internet Mathematics 6, 1 (2009), 29–123.

22. Malliaros, F. D., Megalooikonomou, V., and Faloutsos,
C. Fast robustness estimation in large social graphs:
Communities and anomaly detection. In SDM (2012),
942–953.

23. Mann, H. B. Nonparametric tests against trend.
Econometrica 13 (1945), 245–259.

24. Palmer, C. R., and Steffan, J. G. Generating network
topologies that obey power laws. In Globecom (2000),
33–37.

25. Robbiano, M., and Jiménez, R. Applications of a
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laplacian energy of graphs. MATCH 60 (2008), 441–446.

98


	R-energy for evaluating robustness of dynamic networks
	Citation

	1. Introduction
	2. Related Work
	Robustness
	Graph Energy

	3. Preliminaries
	Normalized Laplacian
	Random Walk
	2-step commute probability

	4. R-energy
	R-energy
	Computation of the R-energy

	5. Robustness of Large Static Networks
	Networks
	Efficiency and scalability of R-energy
	Impact of vertex removal to R-energy

	6. Detecting Events and Trends using Robustness
	Data collection
	Event detection
	Periodic Trend Pattern Detection

	7. Conclusion
	Acknowledgements
	REFERENCES 

