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Abstract 
Collaborative Filtering (CF) systems generate 
recommendations for a user by aggregating item ratings of 
other like-minded users. The memory-based approach is a 
common technique used in CF. This approach first uses 
statistical methods such as Pearson’s Correlation Coefficient 
to measure user similarities based on their previous ratings 
on different items. Users will then be grouped into different 
neighborhood depending on the calculated similarities. 
Finally, the system will generate predictions on how a user 
would rate a specific item by aggregating ratings on the item 
cast by the identified neighbors of his/her. However, current 
memory-based CF method only measures user similarities 
by simply looking at their rating trends while ignoring other 
aspects of overall rating patterns. To address this limitation, 
we propose a novel factor-based approach by incorporating 
user rating average, user rating variance, and number of 
overlapping ratings into the measurement of user similarity. 
The proposed method was empirically evaluated against the 
traditional memory-based CF method and other existing 
approaches including case amplification, significance 
weighting, and z-score using the MovieLens dataset. The 
results showed that the prediction accuracy of the proposed 
factor-based approach was significantly higher than existing 
approaches. 

Introduction 
Collaborative Filtering (CF) research was initiated a 
decade ago by three articles (Hill et al. 1995; Resnick et al. 
1994; Shardanand & Maes 1995) and has drawn a lot of 
attention from both academics and industry since then. 
Nowadays, CF has been widely adopted in e-commerce, 
such as Amazon.com and Netflix.com, as an essential part 
of their business models to improve cross-selling and 
enhance customer loyalty (Sarwar et al. 2000). In October 
2006, Netflix started a world-wide, multi-year contest of 
CF-based recommender systems. Anyone who can develop 
a system that improves the company’s current 
recommender system by at least 10% will win a one 
million dollar prize (O'Brien 2006). 
 Collaborative filtering automates the word-of-mouth 
recommendation process, in which people share their 
preferences on items among friends to help each other find 

preferable ones. The underlying assumption of CF is that 
people who share similar preference on different items in 
the past tend to have similar preference on other items 
again in the future. 
 In CF systems, a user’s preference is represented by 
his/her ratings on different items and those ratings are used 
to measure the similarity of different users’ preferences. 
Therefore, in order to predict how a user (i.e., the active 
user) would rate a specific item (i.e., the target item), for 
which he/she has not rated, a CF system will first identify a 
group of users (called neighborhood) who are similar to the 
active user in terms of their preferences in the past and 
have already rated that item. Ratings on the target item 
from users in the neighborhood will then be used to 
generate the prediction for the active user. We use the 
following example to illustrate how a typical CF-based 
recommender system works. 

Movies 

Users
Titanic Star

Wars
Shrek Harry 

Potter 
Minority 
Report 

Jack 4 5 5 1 5
Heather 5 4 5 2

Kyle 3 5 5 2
David 5 4 4 4
Linda 5 1 5 1

Table 1. A User-Item Matrix in a Movie Recommender 
System 
Table 1 shows a simplified user-item matrix that a CF-
based recommender system maintains. Each row in the 
matrix represents a user, and each column stands for an 
item (a movie in this case). The value stored in each cell 
represents a specific user’s rating on an item using a 1~5 
scale. A rating of 5 means that the user considers a movie 
as one of his/her favorites, while a rating of 1 means that 
the user does not like that movie at all. Those empty cells 
indicate that certain users have not watched or rated a 
movie yet. In order to predict how Kyle (i.e., the active 
user) may rate the movie “Minority Report” (i.e., the target 
item), a recommender system compares four ratings on 
different movies that Kyle has already given with those on 
the same movies given by others. Obviously Kyle and Jack 
have very close ratings on the movies that both have rated, 
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implying that they have similar preferences on movies. 
Because Jack has rated “Minority Report” very high, the 
system infers that Kyle may also likely rate high for 
“Minority Report”. As a result, this movie should be 
recommended to Kyle. Note that in reality an active user 
tends to have similar preferences to not just one but rather 
a group of users, who are usually referred to as the 
neighbors of the active user. 
 In this paper, we discuss problems with the current 
memory-based CF methods on how they measure user 
similarities on item preferences. A novel approach is 
proposed to address those problems and improve the 
performance of CF systems by incorporating several new 
factors to refine user weighting. We used the well-known 
MovieLens dataset to test the performance of the proposed 
technique against existing ones. Result shows that the 
factor-based approach significantly outperformed current 
methods. 

Background
In general, there are two major approaches to collaborative 
filtering, namely memory-based CF and model-based CF 
(Breese et al. 1998). Memory-based CF systems utilize the 
original, entire user-item rating matrix to generate every 
prediction (Resnick et al. 1994), while model-based CF 
methods recommend items by first developing a 
descriptive model of user ratings based on a user-item 
matrix via different machine learning approaches such as 
Bayesian network and clustering. The generated model is 
then used for future prediction about user preferences 
(Breese et al. 1998). Although model-based CF methods 
overcome some shortcomings of memory-based 
counterparts, such as low scalability and high online 
computation overhead, some studies show that they are 
generally inferior to memory-based ones in terms of 
prediction accuracy (Breese et al. 1998; Calderon-
Benavides et al. 2004; Herlocker et al. 1999). This study 
focuses on improving the accuracy of memory-based CF. 

Memory-based Collaborative Filtering  
The prediction process of memory-based CF usually 
involves three steps: user similarity measurement, 
neighborhood selection, and prediction generation. 
User Similarity Measurement This is the first and most 
important step of the method. The goal of this step is to 
measure the similarity weight wx,y between a user pair x
and y, based on their ratings on common items. Different 
similarity measures have been proposed in the CF literature 
(Breese et al. 1998; Herlocker et al. 1999; Shardanand & 
Maes 1995). Among them, Pearson’s Correlation 
Coefficient (PCC) (Resnick et al. 1994) and Cosine Vector 
Similarity (CVS) (Breese et al. 1998) are the two most 
commonly used. Previous studies have shown that PCC 
performs better than CVS (Breese et al. 1998; Herlocker et 

al. 1999). Pearson’s correlation coefficient is usually 
calculated in a general form as follows: 
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where rx,i denotes the rating cast by user x on item i and Ix,y

stands for the set of items that both x and y have rated. '
xr ,

the mean rating given by user x on items that both users 
have rated, is define as: 
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where ,x yI  is the number of items rated by both user x and 

y. By definition, the similarity weight wx,y [-1,1] measures 
linear dependencies between two users’ preferences. A 
value of 1 indicates ratings of user x correlate perfectly 
with those of user y, while a value of -1 corresponds to a 
perfect negative correlation between two users’ ratings. 
Furthermore, a value of wx,y equal to zero implies no linear 
relationship between the ratings of the two. 
 Cosine vector similarity measures the similarity weight 
wx,y by computing the cosine of the angle  between N-
dimensional vectors  and , which represent the rating 
profiles of users x and y, respectively. N is equal to the 
number of items for which both users have cast votes (i.e.,

x y

,x yI ). A general cosine vector similarity between two 
rating vectors is defined as follows: 
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where x y  denotes the dot product between rating vectors 
of users x and y. x  and y  denote the norm (or length) 
of the vectors x and y, respectively. 
 By comparing (1) and (3), it is easily seen that the only 
difference between PCC and CVS is that PCC works with 
centered ratings, that is, ratings that have been shifted by 
the sample mean so as to have an average of zero. 
However, both PCC and CVS, when they are used to 
measure user similarity in CF, are examining the same 
aspect of user ratings, namely the overall linear 
dependency in terms of how two users rate items. 
 Once user similarity weights are calculated, a subset of 
similar users (i.e., the neighborhood) is then selected for 
generating final prediction for the active user. Commonly 
used methods for neighborhood selection are similarity 
thresholding and best-N-neighbors. 
Neighborhood Selection The similarity thresholding 
approach uses a certain threshold value L to filter out users 
whose similarity with the active user is lower than L
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(Shardanand & Maes 1995). The best-N-neighbors method 
considers the top N users that are most similar to the active 
user for generating predictions (Herlocker et al. 1999). The 
values L and N is determined by balancing the tradeoff 
between the accuracy of predictions and the coverage of a 
system, which is defined as the percentage of missing 
ratings that can be predicted by the system. Existing 
approaches pick an optimal value of L and N based on 
empirical test on specific datasets (Shardanand & Maes 
1995; Herlocker et al. 1999). 
Prediction Generation Finally, a prediction of preference 
pa,i for the active user a on an item i can be computed by 
aggregating ratings on i given by all users in a’s
neighborhood and their similarity weights wa,x calculated in 
the first step. The most widely used form of aggregation 
function is shown as follows (Resnick et al. 1994; Breese 
et al. 1998): 
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where ar  and xr  denote the mean ratings for all rated items 
cast by the active user a and user x respectively. N stands 
for the set of users in the neighborhood of the active user 
identified in the second step. The generally accepted 
justification for the form of aggregation function is that it 
accommodates different users’ rating habits (e.g., some 
generous users tend to rate all items relatively high, while 
other picky users tend to do just the opposite). Therefore, 
only the rating differences rather than the real value of the 
ratings from neighborhood users are taken into account in 
the prediction. The resulting prediction is calculated as the 
active user’s average score adjusted by the weighted rating 
differences of the neighborhood users. 

Problems with Current Memory-based CF 
Method

Items 

Users
A B C D E

a 2 4 3 2 ? 
b 2 4 3 2 4
x 3 5 4 3 5
y 1 5 3 1 5
z 4 3 3

Table 2. A User-Item Matrix Illustrating Different Factors 
The analysis on user similarity measurement shows that 
PCC measures the degree to which two user ratings are 
linearly dependent. A positive PCC value indicates that 
whenever one user rates an item with a high score, so does 
the other. However, the PCC score does not necessarily 
reflect the true difference between two users’ preferences. 
This method only measures one kind of user rating patterns 
while ignores other aspects and, in turn, may fail to 
measure the true differences in user preferences. The 
following example illustrates some problems with current 

memory-based CF method that is based solely on PCC 
similarity measure. 
 In Table 2, there are five users who have rated either all 
or some of the five items listed. The active user a has not 
rated the item E (target item). Using traditional PCC 
calculation (Equation 1), the weight ,a b a zw w , , which 
means that users b and z have the same amount of weights 
(or influence) when generating predictions for the active 
user on item E using Equation (4). They are treated as 
equally close to the active user a. However, if we further 
examine the ratings in Table 2, we can see that b and z
have different numbers of overlapping ratings (i.e., number 
of items rated by both users) with the active user a. User b
shares 4 overlapping ratings with user a while user z only 
shares 2. Intuitively, given the same level of correlation, 
the more a user shares overlapping ratings with the active 
user, the more reliable the user’s rating can be used for 
prediction, and accordingly the higher the weight he/she 
should contribute to the prediction function (4). 
Unfortunately, current PCC-based CF system cannot 
differentiate users b and z.

Clearly, the effectiveness of a memory-based CF system 
can be improved if we use refined metrics to further 
differentiate users and evaluate user similarity revealed in 
their rating patterns. More importantly, greater 
improvement can be achieved if the method is more 
effective in differentiating users who have high weighting 
values because those users play a significant role in the 
final prediction. In the following section, we briefly review 
some existing schemes to improve the similarity weight. 
We then discuss their limitations and propose our new 
method. 

Existing Approaches to Improving Similarity 
Weighting Schemes 
There have been several approaches proposed to improving 
traditional similarity weighting schemes, such as case 
amplification, significance weighting, and z-Score. 
Case Amplification Case amplification is a method of 
rescaling the original PCC weight by a nonlinear 
transformation. It is designed to reward high weights that 
are close to 1, or equivalently, punish low weights that are 
close to 0 (Breese et al. 1998). In particular, weights are 
transformed using the following function: 
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where  is a value larger than 1. The transformed weight 
 will then be used to replace w'

,a xw a,x in Equation (4). 
Previous studies have found that there is no significant 
effect of case amplification on system performance 
measured by Mean Absolute Error (MAE) (Breese et al. 
1998). The problem with the case amplification approach 
is that it only focuses on the values of weights without 
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differentiating those weights with strong evidence from 
those without. For example, case amplification will yield 
the same transformed value  in the previous 
example since their original value is the same. 
Additionally, the choice of  is rather arbitrary, which may 
hurt the generalizability of this method. 

'
,a b a zw w'

,

Significance Weighting Significance weighting is 
designed to devalue those similarity weights that are based 
on a very small number of overlapping ratings (Herlocker 
et al. 1999). The adjusted weight is calculated as follows: 
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where ,a xI  is the number of items rated by both user x
and the active user. Therefore, weights generated based on 
less than 50 overlapping ratings are devalued. It is found 
that significance weighting improves accuracy of the 
system by a large amount (Herlocker et al. 1999). 
Although this method partially solves the problem found in 
case amplification, its effectiveness is limited by the 
inability to differentiate those weights with large number 
of overlapping ratings.  
Z-Score In order to account for the differences in users’ 
rating distribution, z-scores of user ratings are used in 
place of rating differences in the prediction generation 
function (Herlocker et al. 1999). Formula (4) is 
transformed into the following form: 
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where a and x are standard deviations of the rating 
samples for the active user a and user x, respectively. No 
improvement on performance was found using z-score 
approach over original CF method in the previous study 
(Herlocker et al. 1999). However, in our opinion, 
normalizing the rating in the prediction function is a valid 
step to help improve the prediction accuracy since it 
explicitly takes into account each neighborhood user’s 
rating variance, which is another useful measurement for 
user similarity in the rating pattern. 
 By introducing the existing approaches, we can see that 
major efforts in prior work are made towards either 
revising the prediction components or adjusting the 
weights in the original prediction Equation (4). Previous 
studies show positive support that further differentiating 
neighborhood users is an effective way to improve 
prediction accuracy. 

A Factor-based Approach 
In this section, we propose a novel approach to enhance the 
accuracy of current memory-based CF techniques. The 
proposed method incorporates several factors to strengthen 
the role of individual users who are genuinely similar to 
the active user on item preferences while reducing the 
weight of users who are different from the active user in 
terms of rating patterns.  

A New Factor Treatment 
Our general goal is to address the current limitations in 
similarity weight calculation in memory-based CF 
approaches by incorporating a few new factors using 
certain treatment. Since users who are identified as close 
neighbors of the active user should be more influential in 
the prediction, the treatment should be more potent in 
differentiating wa,x when its value is close to 1 than when it 
is close to 0. Therefore, our emphasis is to further 
differentiate those users whose PCC weights are close to 1 
and reduce the weights of those much dissimilar 
neighborhood users to weaken their roles in the prediction. 
In this study, we chose and tested the exponential 
treatment. 
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Figure 1. Exponential Treatment 

Exponential Treatment The treatment takes weight 
transformation using a power function, as illustrated in 
Figure 1. The transformed weight  is determined as 
follows: 
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where , 1,1a xw , 0 1, 0n , , 1a x .
 Intuitively, the scaling exponent in the power function 
should not be too large or too small. If the scaling exponent 
is close to 1, the power function is close to a straight line. 
The difference between the transformed value and the 
original value is too small and will not serve our 
differentiation purpose. The higher the scaling exponent, 
the more the curve is tilted towards the point (1, 0), i.e., the 
bottom right corner in Figure 1. Consequently, if the 
scaling exponent is too large, the power function loses its 
differentiating effectiveness because the curve is too skew 
such that the functional transformation can only be 
effective to differentiate a small range of weights that are 
close to 1 but mistakenly treat all other eights equally 
useless in the prediction generation. Therefore, there is 
subtle tradeoff between extracting more information from 
genuine close users and discarding useful information in 
the prediction. Design of the power function requires 
careful selection of its parameters  and n.

Here our treatment takes three logical steps. First, the 
value of a,x is used to identify close users who share 
similar patterns other than those captured by wa,x. It will be 
shown shortly in the next section that the higher the a,x,
the higher the distance (dissimilarity) between a user pair. 
For a given value of wa,x, the power function will transform 
it into a lower new weight if it has a higher a,x. This is 
desirable. Nevertheless, as we will show later, the value of 

a,x varies differently across users and may not fall in the 
most effective range to set close neighbors apart from 
those dissimilar ones. Therefore, as the second step, a 
factor n R+ is used to adjust the value of a,x to yield the 
best test result for the treatment. The value n is picked 
empirically in this study, as will be discussed in the 
evaluation section. Furthermore, since our interest is to 
further distinguish users who have wa,x close to 1, we take 
the third step to make the weight reduction even more 
effective. Applying a fractional factor  to the original 
weight wa,x can effectively amplify the transformed 
functional difference while preserving the property of the 
identified closeness captured by a,x. After the three-step 
mapping, we are able to significantly reduce the weights of 
those neighborhood users who have high PCC weights but 
are not truly similar to the active user.  
 In order to find the optimal , we first define potency of 
the exponentiation. The potency P of the exponentiation, as 
shown in Figure 1, is defined as the vertical distance 
between  and , which can be 
expressed as follows: 

'
,a x a xw w ,

,'
, ,( ) a x

a x a xw w

. (9) ,
, , ,( ) a x

a x a x a xP w w w

Since Equation (9) is a concave function within our 
defined region for parameter values, P must have a 
maximum value that can be found by taking the first 
derivative with respect to wa,x:

,

1
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,

1 a x

a x
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 Because our focus is on users whose wa,x’s are close to 1, 
we can define  as the optimal value in Equation (10). The 
transformation function (8) will effectively bring those
wa,x’s that are close to 1 to the neighborhood of , and 
therefore, obtain the maximal differentiation power.  

*
,a xw

 Since a,x may take different values for different user 
pairs, the question is what value of a,x should be used in 
the calculation of the optimal . We pick a,x using an 
empirical approach, which will be described in detail in the 
evaluation section. Note that the case amplification method 
discussed in the previous section takes advantage of the 
nature of exponentiation too. However, we go one step 
further by distinguishing close neighbors from others using 
additional cues. 
 Finally, we used the adjusted weight  to replace the 
original weight w

'
,a xw

a,x in Equation (4) for prediction 
generation purpose. 

Identify Factors 
As we suggested before, PCC can only detect the 
difference in the overall trend of how users rate items. 
There are other features of user rating patterns that can be 
used to measure the true similarity of users’ preferences, 
such as rating average, rating variance, and number of 
overlapping ratings. 
Rating Average As mentioned earlier, users may have 
different mindsets when rating items. Rating average can 
be used to distinguish those users who tend to rate items in 
the same trend as the active user but probably using a 
different rating scale. For example, ratings of users a and x
shown in Table 2 share the same trend and their PCC 
weight is equal to 1, but their rating averages are indeed 
different.  
 As discussed in the previous section, the rating average 
has somewhat already been taken into consideration in 
current memory-based CF approach. However, as shown in 
Equation (4), the current approach only considers the effect 
of the difference in the weighting components without 
affecting the determination of weight wa,x in the prediction. 
We believe the influence of users who have different rating 
averages in comparison to the active user should be 
weakened by lowering their weights during prediction 
generation. In this study, rating average factor ,a x  is used 
and it is defined as follows: 

,

/

/
x a a

a x
a x a x

if

if
x , (11) 

where a and x are the rating averages of the active user 
and user x, respectively. 
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Rating Variance Users may also have different ways to 
express their preferences. Some users like to rate items 
using extreme ratings (i.e., 1 or 5), while others may 
hesitate to do that. For example, users a and y in Table 2 
rate items following the same trend and even have the 
same rating averages, but their rating variances are 
different. 
 The z-score approach discussed earlier is designed to 
take into consideration the different user rating variances 
(Herlocker et al. 1999). Because of the disappointing 
results, researchers of that study concluded that rating 
variance does not help in the prediction generation. 
However, in our opinion, rating variance can still be 
helpful to distinguish users who are truly similar to the 
active user on item preference from those who are not. As 
a matter of fact, different from Herlocker et al. (Herlocker 
et al. 1999), we find z-score performs better than the 
original CF method. Nevertheless, z-score approach 
focuses on the prediction components but fails to directly 
decrease weights of those neighbors who do not share 
similar rating variance with the active user. In order to 
overcome this shortcoming, we used rating variance ,

v
a x ,

which is defined as follows: 

,

var / var var var

var / var var var
x a av

a x
a x a

if

if
x

x

, (12) 

where vara and varx are the rating variance of the active 
user and user x, respectively. Additionally, the rating 
variance factor, after being taken into account in our 
approach, is expected to be complimentary to the z-score 
approach when they are combined.  
Number of Overlapping Ratings As mentioned in the 
previous section, when users share very few commonly 
rated items, weights generated using PCC will become 
very unreliable. For example, in Table 2, users a and z cast 
exactly the same ratings on 2 out of 5 items. However, user 
z’s rating should not be used with full confidence on 
prediction generation for user a, when comparing to users 
(e.g., b) who rate exactly the same as user a on more items. 
 Significance weighting method (Herlocker et al. 1999) 
only punishes users with fewer than 50 overlapping ratings 
with the active user and ignores the differences among 
others. A more general approach should take full 
consideration of the impact of the factor. Here, the rating 
overlap factor ,

o
a x  for exponential treatment is defined as 

follows:

,
,

( , )a xo
a x

a x

MIN I I
I

, (13) 

where Ia and Ix stand for the set of all items rated by the 
active user a and user x, respectively. ( ,a x )MIN I I , the 
smaller value of the total numbers of items rated by a and 

x, is used because it is the maximum possible number of 
commonly rated items by both users. 

Evaluation
We evaluated the proposed factor-based CF approach by 
comparing its predictive performance with four existing 
approaches, namely traditional memory-based CF 
(baseline), case amplification, significance weighting, and 
z-score. We adopted a commonly used task for evaluation, 
where individual items are presented one at a time to the 
user along with a prediction generated by the system 
(Shardanand & Maes 1995). As to the evaluation metric, 
Mean Absolute Error (MAE) was used in the study. MAE 
has been used to measure predictive accuracy of a 
recommender system and is defined as the average 
absolute deviation of the predictions generated by a system 
(i.e., px,i) on how users would rate different items to the 
actual ratings (i.e., rx,i) on those items cast by users (Breese 
et al. 1998; Herlocker et al. 2004). If , ,x i xS p r i is the 
error of each individual prediction, MAE can be calculated 
using the following formula: 

, ,
t

x i x i
i I

t

p r
S

I
, (14) 

where It is the set of all items that are selected for 
evaluation, and tI  the number of items in the set. 
 We developed a prototype memory-based CF system 
using the MovieLens dataset, which was made publicly 
available by the GroupLens research group at University of 
Minnesota. The dataset contains about 1 million ratings 
cast by 6,040 users on 3,706 movies. Ratings range from 1 
to 5, with 1 indicating the least favorable and 5 indicating 
the most favorable. Each user rated at least 20 movies and 
all the ratings were submitted between April 2000 and 
March 2003. This dataset has been widely used in 
collaborative filtering research (e.g., (Herlocker et al. 
1999; Calderon-Benavides et al. 2004)). 
 In this study, we used the entire dataset to evaluate the 
effectiveness of all three factors with our treatment. The 
evaluation was carried out in a number of rounds. In each 
round, like previous studies (Herlocker et al. 1999), we 
randomly selected 10% of all users from the dataset. Each 
selected user (different from round to round) was treated as 
the active user. We then randomly selected a rating of that 
user and ‘hid’ it from the system as the target item—the 
one going to be predicted by the system using the rest of 
the data. This method is also referred to as the “All-but-
one” technique (Breese et al. 1998; Herlocker et al. 2004). 
An MAE value was computed for each round. We repeated 
such process for 100 rounds for each method tested. The 
same test process and user-item combination are used to 
measure the performance of CF methods enhanced by each 
of the three factors with the proposed exponential 
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treatment as well as that of four existing methods without 
such enhancement.  
 Although the choice of neighborhood selection method 
will affect the performance of the system, we believe an 
effective weight adjustment mechanism will be sufficient 
since a weight equal to almost zero will only have 
negligible effect on the prediction generation. Therefore, 
no neighborhood selection method was used in the 
experiment. In another word, every user was considered in 
the final prediction generation process as long as he/she 
had rated the target item. 

Results

             Methods
MAE Improvement

over baseline P-value 

Baseline 0.7240
Case Amplification 0.7232 0.117% 0.00**

Z-Score 0.7204 0.495% 0.00**

Sig. Weighting 0.7171 0.956% 0.00**

w/o Z 0.7216 0.343% 0.00**Rating 
Average w/ Z 0.7177 0.876% 0.00**

w/o Z 0.7211 0.407% 0.00**Rating 
Variance w/ Z 0.7178 0.859% 0.00**

w/o Z 0.7120 1.671% 0.00**Overlapping
Ratings No. w/ Z 0.7029 2.924% 0.00**

** P<0.01 
Table 3. Summary of MAE Results  
 We used the paired t-test to compare the mean 
difference in the final MAE results obtained by using 
different methods. A summary of the results is listed in 
Table 3. 
 Our finding on significance weighting shows that it 
outperforms baseline method, which confirms previous 
finding. However, our results show some differences from 
other studies. Case amplification (when 1.5 ) actually 
performed better than the baseline algorithm by a small 
margin. z-score also yielded improvement against the 
baseline method. The positive result from the z-score 
approach also motivated us to test effectiveness of the 
method by combining z-score with each of the three factors 
we proposed. Results showed that all combinations 
outperformed both standalone z-score approach and their 
pure factor-based counterparts.
 In order to pick an optimal n value, different candidate 
values were tested. The result reveals that for the rating 
average factor, which has a relatively small value range 
( ,a x [1,5]), an n value that is larger than 1 (e.g., 1.4n )
can improve the performance. On the other hand, rating 
variance factor ( ,

v
a x [1,117]) and number of overlapping 

ratings factor ( ,
o
a x [1,304]) require n values that are less 

than 1 (e.g.,  and 0.6, respectively) in order to 
achieve better results. As noted earlier, the most effective n
should be the one that effectively adjusts the factor 

0.9n

a,x so 
that, on average, the scaling exponent in the power 
function has a shape not too flat (when the scaling 

exponent is close to 1) and not too tilted towards the corner 
(when the scaling exponent is too large). 
 During the evaluation, we found that we achieved better 
results when  was not 1. This is because when  equals to 
1, a,x will lose its effect on those weights wa,x that are 
equal to 1. However, users with their weights wa,x
associated with the active user equal to 1 have the largest 
influence on the final prediction result. Therefore, a  less 
than 1 can eliminate the problem.   
 Although system performance depends on the choice of 

, we observed that the performance variations are 
relatively stable as the value of  changes in its 
neighborhood. Theoretical analysis in the previous section 
did suggest a way to find an optimal value of , upon 
effectively identifying a representative a,x. We use the 
following empirical method to choose the representative 

a,x and determine the corresponding optimal value for 
based on the one-to-one correspondence relationship in 
Equation (10). 
 First, we recorded all the values of a,x for each pair of 
users. It turned out that the distributions of a,x among user 
pairs for different factors share similar patterns. For all 
three factors, more than 90% of the user pairs have a,x
values lower than one tenth of its maximum value listed 
earlier. What value of a,x will be representative is not 
clear-cut. For each factor, we picked a series of a,x spread 
out in its whole range to calculate  using Equation (10). In 
our experiment, those optimal ’s all appeared when a,x
values were within the range of 1 to one tenth of the 
maximum a,x value, where many similar values of a,x
clustered together. This is because, as we believe, those 
optimal  values represent the majority of the population 
for different factors in the system. We find that the system 
performance variation is not too sensitive to the exact 
value of a,x or, accordingly, the choice of  as long as a,x
is within the high density region. Therefore, as our 
empirical recommendation, a representative a,x could be 
chosen in the region with the highest density. For each 
factor, we recorded the results with the highest accuracy in 
Table 3. 
 Among the proposed factors, rating average had the 
smallest improvement margin, while overlap rating factor 
combined with z-score approach resulted in the largest 
improvement compared with the baseline. 

Discussion
Similarity measurement is arguably the most important 
part of collaborative filtering systems. In this study, we 
aimed to develop methods that measure user preference 
similarity in CF based on different aspects of user rating 
patterns. The result shows that the proposed factor-based 
approach significantly outperformed existing memory-
based CF methods. The exponential treatment is also 
proved to be an effective approach to integrate additional 
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factors into user similarity measurement. This is because 
the exponential treatment is able to set apart users that are 
different from the active user on their rating patterns using 
different factors. More importantly, our proposed 
exponential treatment is more effective than traditional 
methods in differentiating users whose weights are close to 
1 and identifying genuinely close users who play critical 
roles in final prediction generation.   
 Among the three proposed factors, the one based on the 
number of overlapping ratings performed the best and it 
outperformed significance weighting approach, which 
focuses on the same aspect of user rating pattern, both with 
or without z-score combined. Rating variance based factor 
came in second, followed by the factor based on rating 
average. It is not surprising that the number of overlapping 
ratings factor performed the best, because with few 
overlapped ratings, similarity measures computed by PCC 
can be very unreliable and biased. The fact that the number 
of overlapping ratings factor has the widest range of values 
(from 1 to 304) shows that it has higher power in 
distinguishing users than the other two factors. The result 
also shows that the case amplification method can only 
slightly improve the performance of CF systems without 
taking into account other similarity features from users. 
Furthermore, different from the arguments in (Herlocker et 
al. 1999), we find that the variance of user ratings indeed 
has effect on prediction generation and can be used to 
improve predictive accuracy of the system. Both z-score 
approach and rating variance based factor treatment 
performed better than the original CF method. 
Additionally, these two approaches were also found to be 
complementary to each other in improving prediction 
accuracy.
 Although our proposed approach demonstrates superior 
results than existing methods, there are several extensions 
that can be pursued in the future. A natural next step is to 
design methods for combining the three proposed factors. 
Our initial tests using a naïve integration technique yielded 
good performance improvement. However, we believe by 
using more advanced ways to combine factors the system 
has the potential to improve accuracy even further. 
 Secondly, we plan to use different datasets, tasks, and 
metrics to further investigate the performance of the 
system. The MovieLens dataset, one of the most popular 
dataset used in CF research, was used in this study. We 
plan to confirm the results using other datasets that are 
available to the public, such as EachMovie and Book-
Crossing dataset. In order to focus on the accuracy of the 
system, this study employed a very simple task. We can 
adopt other tasks, like “find all good items” or 
“recommend sequence” (Herlocker et al. 2004) to evaluate 
the factor-based approach. Similarly, we expect other 
metrics, such as ROC curves, can offer us some different 
insights as to the effectiveness of the method. 
 Sparsity of the user-item rating matrix is an inherent 
problem in CF research and has huge effect on the 
performance of a CF system. Therefore, we plan to further 
evaluate the factor-based approach using rating matrices at 

different sparsity levels. We will test how sensitive the 
system performance is to different user-item matrices with 
various sparsity levels. 
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