
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

8-2013 

FloTra: Flower-shape trajectory mining for instance-specific FloTra: Flower-shape trajectory mining for instance-specific 

parameter tuning parameter tuning 

Lindawati LINDAWATI 
Singapore Management University, lindawati.2008@smu.edu.sg 

Feida ZHU 
Singapore Management University, fdzhu@smu.edu.sg 

Hoong Chuin LAU 
Singapore Management University, hclau@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems 

Engineering and Industrial Engineering Commons 

Citation Citation 
LINDAWATI, Lindawati; ZHU, Feida; and LAU, Hoong Chuin. FloTra: Flower-shape trajectory mining for 
instance-specific parameter tuning. (2013). Metaheuristics International Conference 10th MIC 2013, 
August 5-8. 1-3. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1838 

This Conference Paper is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1838&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


MIC 2013: The X Metaheuristics International Conference id–1

FloTra: Flower-shape Trajectory Mining for
Instance-specific Parameter Tuning

Lindawati, Feida Zhu, Hoong Chuin Lau

Singapore Management University
80 Stamford Road, 178902, Singapore
lindawati, fdzhu, hclau@smu.edu.sg

1 Introduction

Meta-heuristic algorithms play an important role in solving Combinatorial Optimization Problems (COP)
in many real-life applications. The caveat is that the performance of a meta-heuristic algorithm is highly
dependent on its parameter configuration which controls thealgorithm behavior. Furthermore, finding the
optimal parameter configuration, especially instance-specific configuration, is often a difficult, tedious
and frustrating task. Among the proposed approaches for automated parameter tuning,CluPaTra [3]
andSufTra [4] address the requirements of generic instance-specific automated parameter tuning. It
introduces the notion ofsearch trajectoryas a generic feature. Search Trajectory, modeled as a sequence,
is a series of solutions discovered by meta-heuristic algorithm as it searches for the best solutions over
its neighborhood search space.

Although CluPaTra and SufTra have been proven to give a significant improvement over one-
size-fits-all approach, it suffers from descriptiveness issue due to their sequence representation model.
CluPaTra andSufTra may oversimplify the search trajectory and lose finer-granularity details in some
structural patterns. For example, Fig. 1 shows the sequenceand graph representation for three search
trajectories of Quadratic Assignment Problem (QAP) instances. The three sequences have many similar
subsequences (Fig. 1a) but the real search trajectories (asshown in Fig. 1b) are different; two search
trajectories have a smoother search while the other one has many cycles.

In this work, we introduceFloTra, a technique to uncover important patterns fromsearch trajectory
graph for generic instance-specific automated parameter tuning. FloTra is an extension ofCluPaTra
andSufTra that overcomes their limitation on descriptiveness.FloTra constructs a graph representation
of search trajectory and conducts a graph pattern mining to discover specific and important patterns in
search trajectory. Using these patterns,FloTra then clusters the instances and computes a corresponding
optimal parameter configuration for each cluster. We have applied our approach on QAP and SCP and
show thatFloTra gives an encouraging improvement for the overall performance.

2 Solution Approach

FloTra is designed as a cluster-based instance-specific automatedparameter tuning framework which
works in two stages: training and testing. The first step in the training phase is the clustering process
where we record the search trajectory of an instance and transform it into a graph. We continue to extract
relevance features, calculate similarities and perform clustering. We then apply a tuning procedure to
derive the best parameter configuration for each cluster. Inthe testing phase, we match the search trajec-
tory of testing instance against the clusters to find the mostsimilar cluster. We then return the parameter
configuration found for that cluster (during the training phase) as the recommended parameter configu-
ration. In this paper, we focus on clustering process by introducing a new feature extraction method. For
tuning, we simply use the existing one-size-fits-all configurator,ParamILS [1].

In search trajectory graph, a node is a solution presented asa symbol containing two solution at-
tributes: position type and performance metric [4], and an edge is the movement from one solution to
another. Search trajectory graph is a special graph that hastwo distinctive structures which are: (1) a long
skinny path representing solution movement from an initialsolution to an end solution and (2) multiple
short paths and loops representing cycles to/from local optimal. We consider the skinny long path as a
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stem and the short paths and loops as petals and thorns. To differentiate petals and thorns from stem, we
assume that petal and thorn length should be shorter than that of stem.
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(b) Graph Representation of Search Trajectories
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(a) Sequence Representation of Search Trajectories

Figure 1: Search Trajectories Representation for 3
Quadratic Assignment Problem (QAP) instances, (a)
sequence representation and (b) graph representa-
tion.

FloTra aims is to find a set of frequent patterns
(subgraphs) from a set of search trajectory graphs.
For that,FloTra has two parameters:minlength

and minsupport. minlength determines the mini-
mum length of subgraph (which is translated to a
minimum length of a stem and maximum length
of thorns and petals) whereasminsupport deter-
mines minimum number of graphs that contains
a frequent subgraph. In this paper, the values of
minlength andminsupport are fixed beforehand.

FloTra works in three stages. It first mines
short frequent paths (thorns and petals) from all
nodes, except the initial node. It then continues
to mine long skinny path (long stem) from ini-
tial node. After having a set of thorns, petals and
stems, FloTra then assembles the thorns, petals
and stems together. The detail is as follows:
Stage 1: Mining Flower Thorns and Petals.To
find petals and thorns, we only select nodes which
are visited more than once in the search process. Hence, the number of edges must be greater than one.
We first enumerate all the paths from the selected nodes usingDepth-First Search (DFS) algorithm. For
paths with length less thanminlength, we construct a Suffix Tree structure as inSufTra. This suffix tree is
used to mine similar thorns and petals across different instances. To avoid redundancy, we only insert the
same path once and run a checking mechanism before we insert it. We then retrieve frequent substrings
from different search trajectory graphs that occur more than minsupport as frequent patterns for flower
thorns and petals.
Stage 2: Mining Long Stem. Aside from flower thorns and petals, another important structure that
we want to retrieve is a long stem structure. The process is similar to stage 1. We first enumerate all
paths from initial node using a DFS algorithm. For paths withlength equal or more thanminlength, we
construct a Suffix Tree and find all frequent paths. We retrieve the frequent substrings from different
search trajectory graphs that occur more thanminsupport as frequent patterns for long stem.

Table 1: Parameters for QAP and SCP
Problem Parameter Range
QAP Temp [100,5000]

Alpha [0.1,0.9]
Length [1,10]
Pct [0.01,0.1]

SCP fTSLength [1000,10000]
iNonImprove [5,200]
iProbRandom [1,20]
iDeterministic [0,1]

Stage 3: Assembling the Flower.At this stage, we as-
semble the flower thorns and petals from stage 1 with
the long stem set from stage 2. For each long stem set
that contains the node in flower thorn and petal set, we
attach the flower thorn and petal and consider it as a
new candidate pattern. If the new candidate occurs no
less thanminsupport times, we accept it as a frequent
pattern. Because frequent paths from both previous
stages are generated from multiple segments in search
trajectory, the assembling process may discover some
gaps among those frequent paths. We allow these gaps
and calculate the gap minimum and maximum number
of node in between. After assembling the flower, we
set all the found frequent pattern features if it occurs in
at leastminsupport number of graphs.

As in SufTra [4], we calculate the similarity for each pair ofinstances by Cosine Similarity. With the
similarity score for each pair of instances, we cluster the instances using a well-known hierarchical
clustering approach AGNES (AGglomerative NESting) withL method to determine the cluster number.
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We then tune each cluster using existing one-size-fits-all configurator,ParamILS [1].

3 Experiment Result

Table 2: Performance Result

Technique Training Testing p-value
QAP ParamILS 1.07 2.12

ISAC 0.83 1.12
SufTra 0.81 1.16
FloTra 0.78 1.07 0.0421

SCP ParamILS 1.53 0.82
ISAC 0.42 0.77
SufTra 0.35 0.78
FloTra 0.27 0.52 0.0362

We conducted an experiment on Quadratic Assignment
Problem (QAP) using a hybrid Simulated Annealing
and Tabu Search (SA-TS) algorithm [6] and Set Cov-
ering Problem using tabu search [5]. These two algo-
rithms have four parameters to tune as shown in Ta-
ble. 1. We use 500 generated instances for QAP and
80 instances from [2] for SCP. We compared the tar-
get algorithm performance using parameter configura-
tion from SufTra and FloTra, as well as the existing
instance-specific configuratorISAC [2] and one-size-
fits-all configuratorParamILS [1]. Since ISAC re-
quires problem-specific features, we used 2 features for
QAP: flow dominanceandsparsity. For SCP, we use
clusters in [2].

We show the average of percentage deviation from best known value in Table. 2. We also perform
a t-test betweenSufTra andFloTra result and consider p-value below 0.05 to be statistically signifi-
cant (confidence level 5%). Notice thatFloTra outperforms other methods in both training and testing
instances.

4 Conclusion

In this paper, we proposed a new generic instance-specific parameter tuning via clustering of patterns
according to instance search trajectories graph usingFloTra technique as a feature extraction technique.
We verifyFloTra’s performance on QAP and SCP and observed a promising improvement compared to
ISAC andSufTra. Up to this stage of our work,FloTra can only be applied to local search algorithms,
since it uses local search trajectory as the generic feature. As future our work, we will investigate how
to generate clusters from population-based-algorithm using generic features pertaining to population
dynamics.
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