
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2014

Air Indexing for On-Demand XML Data Broadcast Air Indexing for On-Demand XML Data Broadcast

Weiwei SUN
Fudan University

Rongrui QIN
University of Adelaide

Jinjin WU
Fudan University

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
SUN, Weiwei; QIN, Rongrui; WU, Jinjin; and ZHENG, Baihua. Air Indexing for On-Demand XML Data
Broadcast. (2014). IEEE Transactions on Parallel and Distributed Systems. 25, (6), 1371-1381.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1834

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1834&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

Air Indexing for On-Demand XML Data
Broadcast

Weiwei Sun, Yongrui Qin, Jingjing Wu, Baihua Zheng, Zhuoyao Zhang, Ping Yu, Peng Liu, Jian Zhang

Abstract—XML data broadcast is an efficient way to disseminate semi-structured information in wireless mobile environments. In this
paper, we propose a novel two-tier index structure to facilitate the access of XML document in an on-demand broadcast system. It
provides the clients with an overall image of all the XML documents available at the server side and hence enables the clients to locate
complete result sets accordingly. A pruning strategy is developed to cut down the index size and a two-tier structure is proposed to
further remove any redundant information. In addition, two index distribution strategies, namely naive distribution and partial distribution,
have been designed to interleave the index information with the XML documents in the wireless channels. Theoretical analysis and
simulation experiments are also put forward to show the benefits of our indexing methods.

Index Terms—XML data broadcast, air indexing, two-tier index, index distribution, on-demand broadcast.

�

1 INTRODUCTION

Wireless technology has become deeply embedded in
everyday life. At the end of 2011, there were 6 billion
mobile subscriptions, estimated by the International T-
elecommunication Union (2011). That is equivalent to
87 percent of the world population, and is a huge
increase from 5.4 billion in 2010 and 4.7 billion mobile
subscriptions in 2009. According to ABI research, mobile
application revenue hits 8.5 billion in 2011, and it will
reach an estimated 46 billion in 2016. Obviously, the
market for mobile applications will become “as big as
the internet” in the near future.

Fundamentally, mobile information access via various
wireless technologies (e.g., Bluetooth, WiFi, Satellite)
can be classified into two basic methods: point-to-point
access and broadcast. Point-to-point access employs a pull-
based approach where a mobile client initiates a data
access request to the server which then processes the
requirement and returns the requested data to the client
over an exclusive point-to-point wireless channel. It is
suitable for lightly loaded systems in which wireless
channels and server processing capacity are not severely
contended. However, as the number of requirements
increases, the system performance is deteriorated as the
server has to create a point-to-point channel for each
requirement.

Different from point-to-point communication, wireless
broadcast requires the server to push data to the clients
over a dedicated broadcast channel. It allows an arbi-
trary number of clients to access data simultaneously

• Weiwei Sun, Jingjing Wu, Zhuoyao Zhang, Ping Yu, Peng Liu, and Jian
Zhang are with School of Computer Science, Fudan University. E-mail:
{wwsun, wjj, zhangzhuoyao, pingyu, liupeng, zhang jian}@fudan.edu.cn

• Baihua Zheng is with School of Information Systems, Singapore Manage-
ment University. Email: bhzheng@smu.edu.sg

• Yongrui Qin is with School of Computer Science, The University of Ade-
laide, Adelaide, SA 5005, Australia. Email: yongrui.qin@adelaide.edu.au

and thus is particularly suitable for heavily loaded sys-
tems or the systems in which the users share similar
data access patterns. For example, during London 2012
Olympics, a wireless broadcast system can update the
mobile users with live results, calendar schedule, and
medal tables. Another example is that a museum/gallary
may broadcast its hours, current attractions, and profiles
of artworks to its visitors, whereas point-to-point access
is used only for fulfilling occasional, ad hoc requests.

Wireless data broadcast services have been available
as commercial products for many years, e.g. StarBand
and Hughes Network. Recently, there has been a push
for such systems from the industry and various standard
bodies. For example, born out of the ITU “IMT-2000” ini-
tiative, the Third Generation Partnership Project 2 is de-
veloping Broadcast and Multicast Service in CDMA2000
Wireless IP network. Systems for Digital Audio Broad-
cast (DAB) and Digital Video Broadcast (DVB) are capa-
ble of delivering wireless data services. Recent news also
reported that XM Satellite Radio (www.xmradio.com)
and Raytheon have jointly built a communication sys-
tem, known as the Mobile Enhanced Situational Aware-
ness (MESA) Network, that would use XMs satellites to
relay information to soldiers and emergency responders
during a homeland security crisis.

Depending on whether or not the client has the ability
to submit requests, broadcast methods can be divided
into two categories, push-based broadcast and on-demand
broadcast. For push-based broadcast, the client does not
submit any request to the server but just listens to the
broadcast channels and it is the client’s responsibility to
find the answers to its requests. For on-demand broad-
cast, clients can submit their requests to the server like in
the ordinary on-demand access mode, while the server
transfers information to clients on public broadcasting
channels.

On the other hand, more information has been avail-
able as semi-structured or unstructured data over the

Digital Object Indentifier 10.1109/TPDS.2013.87 1045-9219/13/$31.00 © 2013 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

past few years. XML holds the potential to become the
de facto standard for data integration. The fact is that
most Internet browsers provide support for XML in their
later versions and nearly all the major IT companies (e.g.,
Microsoft, Oracle, and IBM) have integrated XML into
the software products which further demonstrates the
popularity of XML. In the near future, XML documents,
like HTML Web pages, might become a part of our daily
life. Consequently, XML has attracted attentions from
database community recently and there has been a large
body of research work focusing on XML, such as XML
filtering, querying and indexing [1], [2], [3].

We focus on the access of XML documents in wireless
on-demand broadcast systems in this paper. We propose
a novel two-tier indexing approach and a partial index
distribution to facilitate the dissemination of XML doc-
uments in on-demand wireless broadcast environments.
Our target is a general and scalable on-demand broad-
cast system that can support requests on a large XML
documents collection from a huge client population.

In our preliminary study [13], we proposed a novel
two-tier index structure to improve the index size as well
as tuning time performance. In this paper, we extend our
previous work in the following aspects:

• Two index distribution strategies, namely naive dis-
tribution, and partial distribution, have been pro-
posed to interleave the index information with the
XML document over the wireless channels.

• A cost model has been proposed to achieve a better
trade off between access time and tuning time in
order to satisfy different system requirement.

• A more comprehensive experimental study has been
performed. First, we use larger datasets. Compared
with the dataset used in our preliminary study that
contains only 1000 XML documents, the datasets
used in our new study contain a larger number
of XML documents, ranging from 100 to 100,000.
Second, new sets of experiments have been conduct-
ed to compare the performance of proposed two-
tier structure against existing XML indexes, and to
report the space requirement and construction cost
of two-tier index structure.

The rest of the paper is organized as follows. Section 2
presents the preliminaries of the problem. Section 3
shows the overview of our work. Section 4 describes
the two-tier indexing method, including the pruning
technology and the two-tier structure. Section 5 explains
index distribution strategies, together with theoretical
analysis. Section 6 explains the simulation model and
reports the performance evaluation results. Finally, Sec-
tion 7 concludes our work.

2 PRELIMINARIES

In this section, we first describe the on-demand data
broadcast model and list all the assumptions. Thereafter,
we briefly review related air indexing techniques.

2.1 On-demand data broadcast

In this paper, we adopt a general system model, as
depicted in Fig. 1. It consists of three parts: 1) the
communication mechanism; 2) the broadcast server; and
3) the mobile clients. Our target is to deliver XML docu-
ments according to user requests efficiently. We assume
that users submit their requests in the form of XPath
queries to the server over the uplink channel, and then
wait for the result documents via listening to the broad-
cast channel. The server, after receiving user queries,
identifies the result documents and calls the scheduler
to arrange the broadcast program based on different
scheduling algorithms. It is noticed that scheduling of
XML documents is not the focus of our work and we
assume the server invokes some existing algorithms (e.g.
[4], [5]) to generate the broadcast program.

XML

Documents Set

Scheduler

Fig. 1. A general system model

We adopt on-demand broadcast in this paper to im-
prove the usability of the wireless channel. The reasons
are two-fold. First, on-demand mode can adapt to the
change of client’s access patterns, since the organization
of each broadcast cycle is dynamically determined by
the server based on the current pending queries. Second,
on-demand mode can utilize the scarce bandwidth more
efficiently because the users are usually only interested
in a small portion (e.g., 1%) of the entire document
collection, and documents not requested by users will
not be broadcast in this mode.

We assume the server accumulates the user requests
(i.e., XPath queries) in a local queue and answers part
of the pending queries in each broadcast cycle based
on the scheduling strategy. Without loss of generality,
we assume that a result set of an XPath query contains
one or multiple XML documents and an XML document
might satisfy multiple XPath queries. In addition, the
result set for each request is not empty and the user
aims at retrieving all the result XML documents.

As mobile clients are typically powered by batteries
with limited capacity, the main concerns of a wireless
broadcast system are i) how fast a request could be
satisfied; and ii) how battery energy of mobile clients
could be conserved. Accordingly, two performance met-
rics, namely Access Time (AT) and Tuning Time (TT),
are commonly used to measure access efficiency and
energy consumption for mobile clients in a wireless data
broadcast system [6], respectively. The former is the
time elapsed from the moment a query is issued to the
moment it is answered and the latter is the time a mobile
client stays in active mode to receive the requested XML
documents and index information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

... ...

Fig. 2. An example of scheduled sequence of on-demand broadcast

2.2 Air Indexing

Air indexing techniques are often used for conserving
the energy of mobile clients [7]. The basic idea is that
the broadcast server pre-computes indexing information
(including searchable attribute and delivery time of data
objects) and interleaves it with data objects (e.g., XML
documents) in the broadcast channel. By examining the
index, mobile clients are aware of the arrival time of
desired data objects and know when to switch to active
mode for data retrieval. Similarly, appending to each
data object, the delivery time of the next index helps
the clients to schedule the sleep time for sub-sequential
data access. Some well-known air indexes are reviewed
in Appendix-A.

Fig. 2 shows an example of a broadcast program.
Within each broadcast cycle, the server broadcasts the
index first and then the XML documents. With the help
of index, the client can access the XML documents in the
following steps. First, in Initial Probe step the client sends
a query to the server, and then tunes into the channel
to find out the arrival time of the next index. Second,
in Index Search step the client tunes into the channel to
retrieve the index and find out the broadcast time of the
result documents. Then, in Document Retrieval step the
client downloads the result documents when they are
broadcast. The client repeats the index search step and
document retrieval step until all the result documents
are retrieved. Appendix-B illustrates how a query is
processed at client side to facilitate the understanding
of XML document retrieval.

After explaining the client side process, we are ready
to discuss server side process. In order to support on-
demand XML data broadcast, the server needs to sched-
ule the broadcast program and decide the content of the
index. As we focus on air indexing in this paper, we
assume the server treats each XML document as a data
item and adopts some existing scheduling algorithms
for data broadcast. As for the index structure, a simple
approach is to adjust existing XML index schemes to
the broadcasting environments. However, those index
schemes are designed for normal storage media (e.g.,
hard disks) and are usually big in size [8], [9], [10], [11],
[12]. Given the fact that the bandwidth of a wireless
channel is limited and the storage capacity of mobile
users is very low, those index schemes are not suitable
for XML data broadcast. On the other hand, there are
some works on wireless XML streaming [14], [15], [16],
[17]. They assume the mobile clients keep listening to
the wireless channel and processing the XML data con-
tinuously. Those schemes enable the mobile clients to
receive the data without sending queries to the server.

In other words, those index schemes do not provide an
overall picture of the XML data and hence the clients
do not know whether all the matched XML data have
been retrieved. Consequently, they are not suitable for
on-demand XML broadcast. We will demonstrate the
inefficiency of those works in Section 6.

3 OVERVIEW OF OUR WORK

In this section, we sketch the main idea of our approach,
with the architecture of our air indexing method depict-
ed in Fig. 3. There are two main components included,
namely index constructor and index distributor, whose
functionalities will be detailed later.

Fig. 3. The architecture of the air indexing method

The index constructor is responsible for building the
index structure to support on-demand XML data broad-
cast, and it involves three sub-tasks as shown in Fig. 3.
First, we adopt an existing XML index scheme (e.g.,
DataGuides [3] in our implementation) to index the
structural information of each XML document in the
collection. The indexes corresponding to individual XML
documents are combined to form compact index. Second,
pruning techniques are applied to remove unnecessary
nodes from the index according to the current query set
pending at server side, and the resulting index is named
as pruned compact index. Third, a two-tier index is built to
further improve the system performance via eliminating
the common pointers shared by multiple requests, and
we will detail the index structure in Section 4.

Once the index is constructed, the index distributor
starts the distribution step to interleave the index infor-
mation and XML documents and form the broadcast pro-
gram. A simple approach is to broadcast the index in the
beginning of each broadcast cycle so that the clients can
locate all the qualified documents (i.e., IDs and arrival
time of qualified documents) by listening to one index.
However, as the index is constructed based on all the
pending requests whose number might be large, its size
could be very big which will extend the broadcast cycle
and hence prolong the access latency. Alternatively, we

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

propose an efficient index distribution strategy, namely
partial distribution, that strikes a balance between access
time and tuning time performance. Section 5 will present
the index distribution strategies in detail.

4 THE TWO-TIER INDEXING METHOD

In this section, we introduce a novel two-tier index
structure that is based on the combined DataGuides [3].
We first introduce the concept of combined DataGuides
which captures the path information of all the doc-
uments. Then, we present the pruning techniques to
further reduce the index size in an on-demand envi-
ronment. Finally, we introduce the two-tier structure.
To facilitate our discussion, a sample XML document
collection is depicted in Fig. 4, and a sample query set
is listed in Table 1. Although the sample XDL document
collection contains only five XML documents, we want
to highlight that our system has excellent scalability
and it can support various XML document collections
containing a large number of documents (e.g., 100, 000).

Fig. 4. Sample XML document set

TABLE 1
Sample XPath query set

Q ID list of matched documents
q1:/a/b/a d1, d2
q2:/a/c/a d4, d5
q3:/a//c d2, d3, d4, d5
q4:/a/b d1, d2, d3, d5
q5:/a/c/* d2, d4, d5
q6:/a/c/a d4, d5

4.1 Combined DataGuides

As each DataGuide (refer to Appendix-C for a brief intro-
duction of DataGuide) is built for one single XML doc-
ument, we adopt RoxSum [18] to integrate DataGuides
of all the XML documents in collection into a Compact
Index. Fig. 5 shows the integrated version of all the
DataGuides related to the sample XML documents. The
compact index enables path sharing among a set of XML
documents and hence significantly reduces the index
size. For our sample XML documents, the compact index
has only 9 nodes while the original DataGuides contain
in total 24 nodes.

Fig. 5. The Compact index

flag <entry, pointer>... <doc, pointer> ...

Fig. 6. The structure of an index node

Given the compact index, we propose a three-block
index structure, as depicted in Fig. 6, to carry the in-
formation. The first block contains a flag to indicate the
type of the corresponding index node. There are three
kinds of nodes in the compact index, i.e., internal nodes
with flag = 0, leaf nodes with flag = 1, and root nodes
with flag set to the real index values. The second block
contains 〈entry, pointer〉 tuples, carrying the child nodes’
information. The last block is made up of 〈doc, pointer〉
tuples pointing to real XML documents which are going
to be broadcasted. A node might not necessarily have
all three blocks. For example, a leaf node only has
flag and 〈doc, pointer〉 tuples, while an internal node
usually only has flag and 〈entry, pointer〉 tuples. Note
that, an internal node of the compact index may also
have 〈doc, pointer〉 tuples in addition to 〈entry, pointer〉
tuples, e.g., n3 in Fig. 5. The detailed contents as well
as the broadcast order of all the nodes are depicted in
Fig. 7.

Fig. 7. The index of sample XML document
With the help of the compact index, query processing

is straightforward. Take query q1, that asks for docu-
ments satisfying the XPath query /a/b/a, as an example.
Suppose that the client knows the start of the index and
tunes into the channel when n1 is to be broadcast. It first
retrieves n1. Since the value of n1 is ’a’ which matches
the first part of q1, it exams 〈entry, pointer〉 to look for
the entry with value ’b’ (i.e., n2). Then, it follows the
pointer to access n2 and similarly later retrieves n4. As
node n4 is a leaf node, the result documents are located,
i.e., d1 and d2. The client can then tune into doze mode
for energy saving and tune into the channel only when
d1 or d2 is to be broadcast. The query can be satisfied
when all the result documents are downloaded.

4.2 Index pruning
It is noticed that the compact index is built based on
the entire document collection. However, in on-demand
broadcast mode, the requested document set could be
much smaller than the original collection. According to
the Pareto principle, roughly 80% of the users only ask
for 20% of the documents. Consequently, many index
nodes actually point to the documents not requested by
any user. Motivated by this observation, we propose a
pruning strategy to eliminate all the dead nodes that will
not be accessed by any pending query.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

The pruning process works as follows. Given the
compact index, all the paths that match at least one query
pending at the server side are marked. Thereafter, a
Pruned Compact Index containing only the marked nodes
is built. It is noticed that when a node n has some of
its child nodes pruned, and meanwhile the path from
the root node to node n actually satisfies some queries,
node n has to check the documents associated with the
pruned child nodes as well to avoid the loss of qualified
document information caused by node pruning. It has
to re-associate with itself all the documents that are
exclusively associated with any of its pruned child nodes.
In case the pruned child node is not in the leaf level, the
document re-association has to be propagated from the
leaf level to its parent node and finally reaches node n.
The pruning algorithm is described in Algorithm 1 of
Appendix-D, together with an explanation of its imple-
mentation issues.

We use an example to explain the pruning process.
We assume the query set Q pending at the server side
is {/a/b, /a/b/c, /a//c}. Fig. 8 is the pruning result of
the original compact index (shown in Fig. 5). It is noticed
that only nodes n1, n2, n3 and n5 match the queries, and
the rest nodes are discarded.

Fig. 8. An example of pruned compact index

4.3 The two-tier index structure
As we mentioned in Section 2, an XML document might
satisfy multiple queries and hence it is included in
multiple result document sets. Take document d2 as an
example. It matches the XPath queries a/b/a, a/b/c
and a/c/b. As a result, the tuple 〈d2, p2〉 appears three
times in the index (see Fig. 7). In order to reduce
the duplication, we propose a two-tier index structure
which removes the pointers to the result documents
from the current index structure and packets them into a
second-tier document pointer list. Specifically, instead of
maintaining 〈doc, pointer〉 tuples in the compact index,
the two-tier index only stores the IDs of all the result
documents in the format of 〈di, dj , · · · , dk〉 tuple in the
first tier. The pointer information of documents is moved
to the second-tier in the format of 〈doc, pointer〉 tuple.
Fig. 9 depicts the new placement of the pruned compact
index of the running example, with its one-tier structure
shown in Fig. 7. We explain the theory behind the design
of the two-tier structure in Appendix-E.

With the two-tier structure index, the query processing
involves two phases, i.e., finding the result documents
and retrieving the result documents. Back to q1 = /a/b/a
as an example. First, the client retrieves the first-tier
index to find the document IDs of all the result doc-
uments, i.e., d1 and d2. Then, it listens to the second-tier

Fig. 9. Two-tier structure

to find out when d1 and d2 will be broadcast, and follows
the pointers to download the documents.

Although the major motivation of the two-tier struc-
ture index is to eliminate the redundant pointer infor-
mation in the index, the separation of the identification
of result documents and the pointer information can
bring other advantages for the XML broadcast system.
For example, with the two-tier index, the client needs
to access the first-tier index only once to find the IDs
of the matched documents, no matter when the result
documents are scheduled to broadcast. Consequently,
the client only needs to listen to the second tier index
in the following broadcast cycles until all the result
documents are retrieved, which significantly improves
the tuning time performance. In addition, the two-tier
structure offers great flexility for the distribution of the
index, and its benefit will be further demonstrated in
Section 5 where we introduce the index distribution
strategies.

5 INDEX DISTRIBUTION

Once the index is constructed, the server needs to dis-
seminate it in the wireless channel. We propose two s-
trategies, namely naive distribution and partial distribution,
to interleave the index information with XML documents
in wireless channels. The former simply distributes the
index once in the beginning of each broadcast cycle.
This approach is straightforward and it guarantees that
the client can find out the complete document set in
terms of IDs by listening to the index once. However,
it has to broadcast the entire index in every broadcast
cycle even most of the documents indexed might not
be available during the current cycle. Consequently, this
approach suffers from a prolonged broadcast cycle which
actually extends clients’ access time. In order to address
this issue, a partial distribution strategy is proposed
which tries to strike a balance between tuning time
and access time. Table 2 lists notations used in the
following description. Note that the formal definitions
of complete index, partial index, and broadcast round
will be presented in Section 5.2.

5.1 Naive distribution
We assume the naive index is constructed based on
the entire XML document collection and pruned by
the queries pending at the server side right before the
broadcast of the current cycle. As the index enables the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

clients who submit the queries before the beginning of
the current broadcast cycle to locate the IDs of all the
result documents, it is named as complete index to be
distinguished from the index used by the partial dis-
tribution to be introduced in Section 5.2. Concluded by
Appendix-F in which query processing of naive distribu-
tion is discussed as well as the pseudo-code, the average
tuning time, denoted as TTn, can be approximated in
Equation (1).

TTn = LI + cn × LII + dxml × rn (1)

Note that we use the size of the information needed to
be accessed to represent the tuning time. We ignore the
analysis of the average access time ATn as it is highly
dependent on the scheduling results.

5.2 Partial Distribution

Given the fact that only a small collection of documents
indexed by the complete index are broadcast within
each cycle, broadcasting the complete index of those
unavailable documents in the current cycle actually
wastes bandwidth. Consequently, a new index distribu-
tion strategy, namely partial distribution, is proposed. It
builds a partial index based on the documents that will
be distributed in the current cycle to reduce the index
size and hence the access time. Partial index is usually
much smaller than complete index, which means more
XML data could be broadcast within a cycle given that
the cycle size is fixed. However, the partial index only
gives a local view of the documents broadcast within
each broadcast cycle, and it fails to provide the clients
with a global view of the entire document collection. By
only listening to the partial indexes, the client cannot
assert whether all the required documents matching
their queries have been identified. They may have to
continuously listen to the wireless broadcast channel
which definitely extends the access time.

The solution we propose in this paper is to introduce a
new concept, namely broadcast round that is a collection
of m adjacent broadcast cycles. Within each broadcast
round, the complete index built based on the entire XML
document collection is broadcast once, in the beginning

TABLE 2
Notations for two-tier index

Notation Description
LI the size of the first-tier of a complete index
Lp
I the size of the first-tier of a partial index

LII the size of the second-tier index
LD the size of the documents broadcast in the first cycle in

a broadcast round
Lp
D the size of the documents broadcast in non-first cycle in

a broadcast round
LC the size of a broadcast cycle
dxml the average size of an XML document
rn the average cardinality of a result set
cn the average number of cycles broadcast between the

clients’ starting retrieving the first index and the time
when all the result documents are retrieved

m the number of broadcast cycles within one broadcast
round

of the first broadcast cycle within the broadcast round.
Thereafter, in the beginning of the rest (m−1) broadcast
cycles within the broadcast round, a partial index is
broadcast. Notice that a partial index corresponding
to a broadcast cycle is built based on the documents
broadcast within that broadcast cycle only.

We present the detailed client side query processing
under partial distribution in Appendix-G.

Since we broadcast the complete index once every m
broadcast cycles, the value of m has a direct impact on
the system performance. In order to quantify m’s impact,
we conduct a theoretical study in the following. We
would like to highlight that we assume the broadcast
cycle generated by the server is only dependent on
the scheduling algorithm and the pending queries, but
not the index distribution strategy. In other words, the
broadcasting order of XML documents is fixed.

First, we analyze the average tuning time under the
partial index distribution, denoted as TTp. As shown in
Equation (2), it involves four components, which are i)
The retrieval time of the first-tier of the partial index; ii)
The retrieval time of the first-tier of the complete index:
the processing of the query cannot be completed until
the first-tier of a complete index is retrieved; iii) The
retrieval time of the second-tier index: the client needs
to access on average cn second-tier index; and iv) The
retrieval of the result XML documents.

TTp =
m− 1

2
× Lp

I + LI + cn × LII + dxml × rn (2)

Under our assumption that the broadcast order of
XML documents is fixed, the access time is determined
by the bandwidth occupied by the index within each
cycle. The larger the index is, the more the bandwidth
it occupies. Consequently, less bandwidth is available
for dissemination of XML documents and longer access
time is expected. Based on this observation, we can
conclude that average access time is proportional to the
bandwidth allocated to data and it can be estimated
based on Equation (3). Here, AvgBp/AvgBn stands for
the average bandwidth allocated to broadcast data un-
der partial/naive index distribution. To standardize the
comparison, we use the amount of data broadcast within
one broadcast round.

ATp/ATn ≈ AvgBp

AvgBn
= m×LD

LD+(m−1)Lp
D

(3)

ATp ≈ m×LD

LD+(m−1)Lp
D
×ATn (4)

Based on Equation (2) and the deduction presented in
Appendix-H, we understand that a large m favors access
time but results in long tuning time. On the contrary, a
small m helps to improve the tuning time but extends
the access time. In order to consider both the tuning
time and the access time, Equation(5) is adopted as a
cost function to evaluate the impact of m on the system
performance, with w indicating the importance of access
time with regard to tuning time. For example, w = 1
indicates that access time and tuning time are equally
important, and w = 0 means only access time is counted.

Cost = w · TTp +ATp (5)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

Given a constant w, the optimal setting of m is approx-
imated in Equation (6). Please refer to Appendix-I for the
detailed derivation, and we will verify its correctness in
our simulation.

opt m ≈
√

2 ·ATn

w · LC
(
LI − Lp

I

Lp
I

) (6)

6 EXPERIMENTS AND EVALUATION
In this section, we first evaluate the effectiveness of our
indexing method, including the pruning techniques and
the two-tier structure, and then compare the two-tier in-
dex scheme with the existing works. Finally, we evaluate
the performance of the index distribution strategies.

Similar to existing works [1], [2], we use simple XPath
queries in our experiments1. A simple query can be ex-
pressed as a path expression of format Q = /N |//N |QQ
with N = E|∗. Here, E is the element label, / denotes
the child axis, // denotes the descendant axis, and *
is the wildcard. We use News Industry Text Format
(NITF) DTD and XML Documents generated using the
IBM’s Generator tool [19]. We implement the modified
version of the generator [2] to generate synthetic XPath
queries without predicates, and use YFilter to filter the
documents and generate the ID list of matched docu-
ments for each query. In our study, we also evaluate
the performance of our approaches based on NASA
document set. As the findings are pretty much the same,
we only report the results of NITF.

We treat XML documents as data items and adopt the
algorithm proposed in [20] as the underlying scheduling
algorithm to generate broadcast programs. The average
length of a broadcast cycle is 5% of the size of the
document set. In other words, the average number of
the documents broadcast within a cycle is about 5% of
the number of the total documents. The average size of
an XML document is 12.8KB. We allocate two bytes to
represent an ID of an XML document and four bytes
to represent a pointer. Table 3 summarizes the system
parameters. Please refer to Appendix-J for a detailed
explanation of the simulation settings.

It is noted that for a given scheduling algorithm, the
broadcast of XML document is independent on the index
structure. In other words, no matter which kind of index
is adopted, the time used to retrieve the documents is
constant. Thus, in the following simulations, we only
present the tuning time incurred during index search
without considering the document retrieval. In addition,
we use the number of bytes retrieved to represent the
tuning time.
6.1 Evaluation of indexing design
We have proposed two techniques to improve the pro-
posed index structure, i.e., index pruning that prunes
away index nodes corresponding to non-requested docu-
ments and a two-tier structure that removes the duplicat-
ed pointers to the XML documents. Their effectiveness
is evaluated as follows.

1. All these experiments are simulated in Windows 7 of Pentium
Dual-Core CPU E5400 4G RAM.

TABLE 3
Experiment setup

Variable Description Default value
ND The number of XML documents 10000
NQ The number of queries submitted to

the server during the broadcasting
period of each cycle

10000

P The probability of wildcard * and
double slash // in queries

0.1

DQ Maximum depth of queries 10

6.1.1 Effectiveness of index pruning

The pruning technology can reduce the index size. First,
we compare the index size under different query set size
NQ settings, as reported in Fig. 10(a). We observe that
even the compact index before pruning is small (around
2.3MB), only around 1.8% of the size of the complete
XML document set. The pruning technology can further
reduce the index size, with the size of pruned compact
index on average about 56.5% of that of compact index.
As NQ increases, more XML documents are requested
and hence the index becomes larger, which is consistent
with our expectation. However, we can observe that the
index size increases at a very slow pace. For example,
when NQ increases from 2.5K to 20K, the increase of the
index size is less than 50%. This is because the impact of
NQ is considerably reduced by index combination and
index pruning which in turn proves the effectiveness of
our approach.

Second, we evaluate the index size under different
wildcard and double slash probability (P) settings, as
depicted in Fig. 10(b). We find that the size of compact
index remains unchanged with the increase of P because
it is mainly determined by the document set and is
independent of the queries. On the other hand, the size
of pruned compact index is proportional to P because a
higher possibility of * and // in the query set implies
that more documents will be included in the result set
which deteriorates the efficiency of the index pruning.

Finally, we study the index size with different query
depth DQ values, and the result is shown in Fig. 10(c).
When DQ increases, the index sizes of pruned compact
index get shrunk. The reason is that, a larger DQ implies
a smaller query selectivity which in turns results in a
smaller result set for each query. On average, the pruned
compact index can reduce at least 25% index size in most,
if not all, the cases, compared with the compact index.

6.1.2 Effectiveness of two-tier structure on index size

Our second set of experiments is to evaluate the savings
in terms of index size brought by the two-tier structure,
with the result reported in Fig. 11. It is observed that
two-tier structure significantly reduces the index size
under different NQ, P , DQ. It implies a better access time
and tuning time. From the above experimental results,
we can prove the effectiveness of both the pruning tech-
nique and the two-tier structure. To be more accurate, the
final index size can be reduced to 0.3%-0.6% compared
with the data size.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

��� ��� ��� ���� ���� ���� ���� ����
�

���

����

����

����

����

�

�

�
��
��
��

�
	

�
�
�� �����

����	
���
����

�����������	
���
����

(a) Number of queries

��� ��� ��� ���
�

���

����

����

����

����

�

�

�
��
��
��

�
	

�

���������	
��

����
�����������	
��

(b) Probability of * and //

� � �� �� ��
�

���

����

����

����

����

�

�

�
��
��
��

�
	

�
�

���������	
��

����
�����������	
��

(c) Maximum depth of queries
Fig. 10. Effect of index pruning

��� ��� ��� ���� ���� ���� ���� ����
�

���

����

����

����

�

�

�
��
�
��
�
�
	

�
�
�� �����

����	
���

�

�	
���

(a) Number of queries

��� ��� ��� ���
�

���

����

����

����

�

�

�
��
�
��
�
�
	

�

���������

��	
�����

(b) Probability of * and //

� � �� �� ��
�

���

����

����

����

�

�

�
��
�
��
�
�
	

�
�

���������

��	
�����

(c) Maximum depth of queries
Fig. 11. Comparison of index size

��� ��� ��� ���� ���� ���� ���� ����
��

�

��
�

��
�

��
�

�

�

�
�
�
��
�
��
��

�
�	

�
�

�
�
�� �����

����	
���

�

�	
���

(a) Number of queries

��� ��� ��� ���
��

�

��
�

��
�

��
�

�

�

�
�
�
��
�
��
��

�
�	

�
�

�

���������

��	
�����

(b) Probability of * and //

� � �� �� ��
��

�

��
�

��
�

��
�

�

�

�
�
�
��
�
��
��

�
�	

�
�

�
�

���������

��	
�����

(c) Maximum depth of queries
Fig. 12. Tuning time under one-tier vs. two-tier structures

6.1.3 Effectiveness of two-tier structure on tuning time

Our third set of experiments is to evaluate the savings
in terms of the tuning time brought by the two-tier
structure. When the index is broadcast as a one-tier
structure, the client has to retrieve multiple index until
all the result documents are retrieved. In our settings,
each client has to listen to 33 broadcast cycles on average
to complete one query. Consequently, if the index size is
not small, this approach forces the clients to waste lots
of energy accessing the index information repeatedly. Al-
ternatively, the client only needs to access the second-tier
index to retrieve the result documents if the document
list is available in the second-tier.

The simulation result is depicted in Fig. 12, with
different NQ, P , and DQ settings. As expected, two-tier
structure outperforms one-tier structure significantly. We
also observe that parameters NQ, P , and DQ have a
less significant impact on two-tier structure, compared
with one-tier structure. The reason behind is that as
NQ, or P , or DQ increases, more result documents are
included into the answer set, and hence more cycles are
expected to be accessed in order to finish one request.
Clients need to download the first-tier index once under
the two-tier structure and then listen to the second-tier
index. Because the second-tier index is much smaller
than the first-tier index, the access of the first-tier index

dominates the tuning time and hence retrieving several
more second-tier index does not change the tuning time
a lot. On the other hand, access of first-tier index is time-
consuming which explains the significant increase of the
tuning time for the one-tier structure with the growing
of NQ, P , or DQ.

6.1.4 Comparison of two-tier structure and existing XML
indexes
We compare the performance of the two-tier structure
against existing XML indexes of wireless XML streaming
(i.e., Path Summary [14], DIX and clustered-DIX [15]).
Please refer to Appendix-K for a brief introduction of
Path Summary, DIX, and clustered-DIX.

First, we compare the index size. Since Path Summary,
DIX and clustered-DIX are independent of queries, the
result of index size under different variables (i.e. varying
NQ, P and DQ) is the same. Consequently, we only
compare their sizes against that of our two-tier index
under the default settings as listed in Table 3. The
index sizes of Path Summary, DIX and clustered-DIX
under the default settings are 13.09MB, 18.49MB, and
23.71MB respectively, while that of our two-tier index
is only about 0.62MB. This verifies our statement made
in Section 1 that traditional XML indexes designed for
normal storage media are big in size.

Next, we evaluate their tuning time performance in-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

��� ��� ��� ���� ���� ���� ���� ����
��

�

��
�

��
�

��
�

������������� �	
���
���
��

���������������� ������

�

�

�
�
�
��
�
��
��

�
�	

�
�

�
�
�� �����

(a) Number of queries

��� ��� ��� ���
��

�

��
�

��
�

��
�

�

�

�
�
�
��
�
��
��

�
�	

�
�

�

������������� �	
���
���
��

���������������� ������

(b) Probability of * and //

� � �� �� ��
��

�

��
�

��
�

��
�

������������� �	
���
���
��

���������������� ������

�

�

�
�
�
��
�
��
��

�
�	

�
�

�
�

(c) Maximum depth of queries

��� ���� ����� ������
��

�

��
�

��
�

��
�

��
�

������������� �	
���
���
��

���������������� ������

�

�

�
�
�
��
�
��
��

�
	

�
�

�
�

(d) Number of documents

Fig. 13. Comparison of the index tuning time of different XML index schemes

curred by the index search, as reported in Fig. 13. It is
observed that our two-tier index performs consistently
much better than the existing XML index schemes. The
small index size contributes to the short tuning time
performance. Besides, our two-tier index also has a good
scalability in varying number of documents from 100 to
100,000 in Fig. 13(d). With the increasing of documents
collection size, both the number of matched documents
per query and the index size grow. Consequently, each
client has to download a bigger index that results in a
longer tuning time. However, we notice that compared
with other index structures, the size of documents col-
lections has a less significant impact on our two-tier
structure. This is because a bigger documents collection
actually leads to a more compact index that explains why
two-tier structure increases the tuning time performance
at a slower pace, compared with others.

6.2 Evaluation of index distribution strategies

In this set of experiments, we evaluate the performance
of naive distribution and partial distribution strategies.
We also verify our theoretical model developed in Sec-
tion 5 through the experiments. It is noticed that naive
distribution is a special instance of partial distribution
with m = 1.

First, we compare the optimal m values derived based
on theoretical analysis (in Equation (6)) with that ob-
tained based on real experiments with w = 5, under
different ND settings. The result is shown in Table 4 with
NQ equals to ND in each experiment. Though the theo-
retical optimal m is not exactly the same as the real one,
the system performance (i.e., the Cost function defined
in Equation 5) under the theoretical optimal m is actually
approaching the real optimal system performance. The
system performance under theoretical optimal m is at
most 0.3% larger than the real optimal performance.

TABLE 4
Optimal m values

ND
Analysis Results Simulation Results

opt m cost (×106) opt m cost (×106)
2000 10.1 47.722 9 47.613
4000 10.1 94.144 9 94.106
6000 10.9 142.729 8 142.337
8000 10.0 184.611 8 184.432
10000 10.6 229.517 8 229.260

Second, we present the cost under partial distribution
(w = 5) with different m values, and report the result in
Fig. 14. The result of naive distribution is the same as that
under partial distribution with m = 1. We can observe

that the cost under partial distribution is improved first
as m grows, and then gets increased. This is because
initially as m increases, the client benefits more from the
reduced index size. However, as m becomes too large,
the benefit received from the reduced index size does
not pay off the overhead of the extended tuning time
performance. Here, the overhead includes longer access
time and longer tuning time. The former is caused by
the less frequent broadcast of the complete index, and
the latter is caused by more index retrieval.

� � � � � � � � 	 �
 �� ��

��

���

�	

�	�

�

�
�

��

���

�
�
��
��
�
�
	

�

������������

���

��

���

���

���

���

�

�

��	
�
������

Fig. 14. Cost of partial-index under different m values
(w=5, ND = 10000)

� � � � ��
���

���

���

���

���

���

���

�	�

���

�
�

�

�

�
�
��
��
�
�
	

�

����������	
���	�
�

���
	�������	
���	�
�

Fig. 15. Comparison of naive-index and partial-index
under different w values

� � � � � � � � 	 �
 �� ��

�

�
�

��

���

�

�

��
�
�
�
��
	
�

��
�
�

�

�

Fig. 16. index
broadcast round of partial-index under different m

values (w=5)
Third, we evaluate the performance of different index

distribution under various w value, with results reported
in Fig. 15. Note that we set m to 1 for naive distribution
and set it to the optimal values (derived by Equation (6))
for partial distribution. The cost is reduced under partial
distribution compared to the naive distribution as more
bandwidth is saved to improve the access time. Thus,
the partial distribution with the theoretical optimal m
values performs well.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

6.3 Evaluation of index space requirement
Now we evaluate the space requirement of index. Fig. 16
shows percentage of the space allocated for one broad-
cast cycle, which is used for index dissemination, i.e.,

index
broadcast round under different m values. When m = 1,
partial distribution degrades to naive distribution, and
roughly 11% of the bandwidth is actually for index.
However, with m increasing, the percentage decreases
sharply first, and remains around 2.3% when m is larger
than 10.
6.4 Evaluation of Index Construction Cost
Our last set of experiments is to evaluate the index
construction cost. In general, it involves following four
tasks, 1) constructing Non-deterministic Finite Automa-
ton (NFA) with submitted queries; 2) Generating docu-
ments broadcasting sequence by scheduling algorithms
according to the pending queries at the moment; 3)
Constructing the compact index based on scheduled
documents; 4) Use the constructed NFA and Compact
Index to build Pruned Compact Index. Notice that the
construction of NFA is necessary for us to use YFilter
to find all the matched documents for each submitted
query. We can see that Task 1 and Task 2 can be per-
formed paralleled, Task 2 and Task 3 are serial, and
Task 4 is serial with Task 1 and Task 3 respectively.

In our implementation, NFA is built incrementally and
we update NFA whenever a new query is submitted to
the server. Consequently, the time cost of building NFA
incrementally during a cycle can be neglected. Task 2
depends on the scheduling algorithm which is not the
focus of our work. For Task 3, we build the compact
index in advance as it is only dependent on the whole
XML document collection that remains unchanged dur-
ing broadcast. In other words, the time cost of Task 4
actually dominates the index construction cost.

The experimental study result is reported in Fig.17.
Obviously, the construction time grows with the increas-
ing queries and arrives almost 900ms when the number
of queries reaches 100,000. However, compared to the
fact that dissemination of an XML document in NITF
dataset takes more than 100ms in a wireless broadcast
channel with 1Mbps, the index construction time is
acceptable. In addition, the index construction can be
further improved via distributed computing.

�� �� �� �� �� �� �� 	�
� ���
���

���

��

�

�

���
�
��
�

��

�
�
�������

Fig. 17. Maintenance time under different number of
queries
7 CONCLUSION
In this paper, we present a wireless on-demand broad-
cast method to support XPath queries and provide XML

document retrieval. First of all, a two-tier index structure
based on DataGuides is proposed. We develop a pruning
technology to reduce the index size via removing all the
nodes that are not requested by any client, and design a
two-tier structure that can further cut down the index
size and facilitate the index distribution. In addition,
two distribution strategies, namely naive distribution
and partial distribution, are presented to interleave the
index information with XML documents in the wireless
channels efficiently. We have conducted a comprehensive
set of experiments to evaluate the performance of pro-
posed index structure as well as the index distribution
strategies. In the near future, we plan to study the impact
of user query patterns on the system performance and
develop a prototype to demonstrate the practical power
of our proposed two-tier indexing method.

REFERENCES
[1] K. Candan, W. Hsiung, S Chen, J. Tatemura, D. Agrawal, “AFilter:

Adaptable XML Filtering with Prefix-Caching Suffix-Clustering,”
VLDB’06, pp. 559-570, 2006.

[2] Y. Diao, M. Altinel, M. Franklin, H. Zhang, P. Fischer, “Path Sharing
and Predicate Evaluation for High-Performance XML Filtering,”
TODS, vol. 28, no. 4, pp. 467-516, 2003.

[3] R. Goldman, and J. Widom, “DataGuides: Enabling Query Formu-
lation and Optimization in Semistructured Databases,” VLDB’97,
pp.436-445, 1997.

[4] N. Prabhu and V. Kumar, “Data Scheduling for Multi-item and
Transactional Requests in On-demand Broadcast,” MDM’05, pp.
48-56, 2005.

[5] G. Lee, S. Lo, “Broadcast Data Allocation for Efficient Access of
Multiple Data Items in Mobile Environments,” MONET, vol. 8,
no.4, pp. 365-375, 2003.

[6] J. Xu, D. L. Lee, Q. Hu, and W.-C. Lee, “Data Broadcast,” Handbook
of Wireless Networks and Mobile Computing, Chapter 11, ISBN 0-471-
41902-8, pp. 243-265, 2002.

[7] T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Data on Air:
Organization and Access,” TKDE, vol. 9, no.3, pp. 353-372, 1997.

[8] Tova Milo, Dan Suciu, “Index Structures for Path Expressions,”
ICDT’99, pp. 277-295, 1999.

[9] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, Ehud Gudes,
“Exploiting Local Similarity for Indexing Paths in Graph-
Structured Data,” ICDE’02, pp. 129-140, 2002.

[10] Chen Qun, Andrew Lim, Kian Win Ong, “D(k)-Index: An Adap-
tive Structural Summary for Graph-Structured Data,” SIGMOD’03,
pp. 134-144, 2003.

[11] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, Henry
F. Korth, “Covering indexes for branching path queries,” SIG-
MOD’02, pp. 133-144, 2002.

[12] Wei Wang, Hongzhi Wang, Hongjun Lu, Haifeng Jiang, Xuemin
Lin, Jianzhong Li, “Efficient Processing of XML Path Queries Using
the Disk-based F&B Index,” VLDB’06, pp. 145-156, 2005.

[13] Weiwei Sun, Ping Yu, Yongrui Qin, Zhuoyao Zhang, Baihua
Zheng: Two-Tier Air Indexing for On-Demand XML Data Broad-
cast. ICDCS’09, pp. 199-206, 2009.

[14] S. Park, J. Choi, S. Lee, “An Effective, Efficient XML Data Broad-
casting Method in a Mobile Wireless Network,” DEXA’06, pp. 358-
367, 2006.

[15] J. P. Park, C. -S. Park, and Y. D. Chung, “Energy and Latency
Efficient Access of Wireless XML Stream,” JDM, vol. 21, no. 1, pp.
58-79, 2010.

[16] Chang-Sup Park, Chung Soo Kim and Yon Dohn Chung, “Effi-
cient Stream Organization for Wireless Broadcasting of XML Data,”
ACCOMS’05, pp. 223-235, 2005.

[17] Jun Pyo Park, Chang-Sup Park and Yon Dohn Chung, “Lineage
Encoding: An Efficient Wireless XML Streaming Supporting Twig
Pattern Queries,” TKDE, 2011.

[18] Z. Vagena, M. Moro, V. Tsotras, “RoXSum: Leveraging Data
Aggregation and Batch Processing for XML Routing,” ICDE’07, pp.
1466-1470, 2007.

[19] A. Diaz, and D. Lovell, XML Generator,
http://www.alphaworks.ibm.com/tech/xmlgenerator, 1999.

[20] Weiwei Sun, Zhuoyao Zhang, Ping Yu, Yongrui Qin, “Efficient
data scheduling for multi-item queries in on-demand broadcast,”
EUC’08, pp. 17-20, 2008.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

Weiwei Sun received his bachelor’s degree in
Computer Science and Technology at Fudan
University in June 1992. From Sept.1995 to July
1998 and Sept.1998 to Dec.2001, he received
his master and Ph.D’s degree respectively in
Computer Software and Theory at Fudan U-
niversity. Now he is an associate professor of
School of Computer Science and the Director of
Mobile Data Management Laboratory of Fudan
University. His interests include wireless data
broadcast, spatial database, service computing
in ad hoc and etc.

Yongrui Qin received the bachelor’s degree and
the master’s degree in Computer Science and
Technology at Fudan University in 2005 and in
2008. He also worked as Assistant Software
Engineer and Research Assistant before Ph.D
study. He is currently a Ph.D student in School
of Computer Science, the University of Adelaide.
His research interests include internet of things,
pervasive computing and mobile data manage-
ment.

Jingjing Wu received the bachelor’s degree in
Computer Science and Technology at Fudan U-
niversity in 2009, After that, she went on working
toward the master’s degree in Computer Science
and Theory at Fudan University. Her research
interests include wireless data broadcast and
XML data broadcast.

Baihua Zheng received the bachelor’s degree
from Zhejiang University and the Ph.D’s de-
gree in the Department of Computer Science,
Hong Kong University of Science and Technol-
ogy. She currently is an associate professor of
the School of Information Systems, Singapore
Management University. Her research interests
include mobile/pervasive computing and spatial
database.

Zhuoyao Zhang received the bachelor’s degree
and master’s degree in Computer Science and
Technology at Fudan University in 2006 and in
2009. She is pursuing a Ph.D’s degree in the De-
partment of Computer and Information Science
at the University of Pennsylvania. Her research
interests include distributed resource manage-
ment, data sharing in distributed system, mobile
computing and ad hoc networks.

Ping Yu received the bachelor’s degree of Com-
puter Software from Huazhong University of Sci-
ence and Technology in 1993, then she got her
master’s degree of Computer Software in Sun
Yat-Sen University in 1996. In 2005, she started
to work for the Ph.D’s degree of Computer Soft-
ware and Theory in Fudan University and got her
Ph.D’s degree in 2008. Her interests include mo-
bile data management, mobile computing and
database.

Peng Liu received the bachelor’s degree in
Computer Science and Technology at Fudan
University in 2008, and now he is working for his
master’s degree in school of Computer Science
and Technology at Fudan University. His re-
search interests include wireless data broadcast
and XML data broadcast.

Jian Zhang received the bachelor’s degree in
Computer Science and Technology at Sun Yat-
Sen University in June 2011. Now he is working
for his master’s degree in School of Computer
Science and Technology at Fudan University. His
research interests include wireless data broad-
cast and XML data broadcast.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

	Air Indexing for On-Demand XML Data Broadcast
	Citation

	untitled

