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ABSTRACT
Nowadays, content-based retrieval methods are still the de-
velopment trend of the traditional retrieval systems. Im-
age labels, as one of the most popular approaches for the
semantic representation of images, can fully capture the
representative information of images. To achieve the high
performance of retrieval systems, the precise annotation for
images becomes inevitable. However, as the massive num-
ber of images in the Internet, one cannot annotate all the
images without a scalable and flexible (i.e., training-free)
annotation method. In this paper, we particularly investi-
gate the problem of accelerating sparse coding based scal-
able image annotation, whose off-the-shelf solvers are gen-
erally inefficient on large-scale dataset. By leveraging the
prior that most reconstruction coefficients should be zero,
we develop a general and efficient framework to derive an
accurate solution to the large-scale sparse coding problem
through solving a series of much smaller-scale subproblems.
In this framework, an active variable set, which expands and
shrinks iteratively, is maintained, with each snapshot of the
active variable set corresponding to a subproblem. Mean-
while, the convergence of our proposed framework to global
optimum is theoretically provable. To further accelerate the
proposed framework, a sub-linear time complexity hashing
strategy, e.g. Locality-Sensitive Hashing, is seamlessly in-
tegrated into our framework. Extensive empirical exper-
iments on NUS-WIDE and IMAGENET datasets demon-
strate that the orders-of-magnitude acceleration is achieved
by the proposed framework for large-scale image annota-
tion, along with zero/negligible accuracy loss for the cases
without/with hashing speed-up, compared to the expensive
off-the-shelf solvers.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; I.2.6 [Learning]: Knowledge acquisition
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1. INTRODUCTION
With the integration of semantic information in image rep-

resentation, content-based retrieval approach is still one of
the most popular methods for image retrieval. Many efforts
[16, 24, 25] have been devoted to improving the performance
of retrieval methods. However, many retrieval methods can-
not be performed unless the training process is completely
operated. This becomes impracticable due to the massive
number of images in the Internet. One possible way to im-
prove the retrieval system is to focus on the semantic rep-
resentation of images, and to this end, the automatic image
annotation is thus inevitable.

In this paper, we aims to improve the retrieval system
by proposing a scalable and flexible method for image an-
notation. Traditionally, the image annotation problem has
been extensively studied for decades. The existing algo-
rithms can be roughly divided into three categories, namely
the classifier-based approaches, the probabilistic modeling-
based approaches, and the graph-based approaches. The
classifier-based approaches [4, 9, 10] are based on the foun-
dation of discriminative classifiers, e.g. Support Vector Ma-
chine (SVM), and perform image annotation by encoding
images as bags of localized features or other global features.
The probabilistic modeling-based algorithms, e.g. [15, 32],
attempt to infer the correlations or joint probabilities be-
tween images and annotation labels. Specifically, Feng et
al. [15] proposed a multiple Bernoulli relevance model for
image annotation. Wang et al. [32] used the probabilistic
topic model to predict the labels of images. Besides, non-
parametric graph-based algorithms [6, 21, 30], which con-
struct informative graphs to propagate label information,
are also widely explored. In particular, Tang et al. [30]
proposed a graph-based semi-supervised sparse learning ap-
proach to harness both labeled and unlabeled data for image
label propagation.

Due to the complex visual contents in images, calculat-
ing effective image signatures has become a long-standing
challenge for image annotation task. Recently, the sparse
coding-based image annotation, proposed by [33], shows that
the semantic similarity between two images with overlapped
labels can be well recovered in a reconstruction-based way.
Chen et al. [7] adopted an exclusive LASSO model with
overlapped groups for multi-labels image annotation. The
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success of [7, 33] inspired us to study image annotation prob-
lem based on sparse coding in this work. Moreover, moti-
vated by the fact that these works [7, 33] mainly focus on
the algorithmic effectiveness, yet are generally quite unsatis-
factory in efficiency aspect, we particularly focus on acceler-
ating the sparse optimization for large-scale datasets. Note
that most recent sparse optimization methods [13, 19, 23],
which are based on gradient descent, are only practical for
small-scale or medium-scale sparse optimization problems.
When handling large-scale settings, the computational bur-
den of gradient computation becomes unbearable. In such
case, even the first order methods might become inefficient,
since the gradient with respect to all variables needs to be
calculated at every iterative step.

Therefore, the key challenge of efficient optimization for
large-scale sparse coding comes from the large number of
variables to be optimized. Fortunately, the sparsity itself
implies that most of variables should be zero when reach-
ing the optimal solution. By leveraging such a strong prior,
we can eliminate these zero variables and simplify the orig-
inal problem into a much smaller-scale problem if these ir-
relevant variables can be identified. Though we can the-
oretically solve a large-scale image annotation problem by
transforming it into a smaller one, it is still difficult and
time-consuming to detect non-zero variables from a large set
of variables corresponding to all the data. To address this
issue, an effective and efficient approach is proposed by em-
bedding a sub-linear time complexity method, e.g. locality-
sensitive hashing (LSH) [2, 11, 18, 30], for efficiently seeking
non-zero variables, with the theoretic convergence guaran-
teed. As the sparsity property and high efficiency of our
solution, our framework is particularly suitable for the prob-
lem of large-scale image annotation.

To the best of our knowledge, it is worthy to highlight the
main contributions of this work:

• Inspired by the success of sparse coding on image an-
notation problem, we propose a scalable and efficient
framework which drives the optimal solution to the
original large-scale image annotation problem by solv-
ing a series of simpler and much smaller-scale subprob-
lems.

• In order to efficiently maintain the active variable set,
which constructs a small-scale subproblem at each it-
erative step, the LSH method is seamlessly integrated
into our framework to search the nearest neighbors
of the intermediate residue vector in sub-linear com-
plexity. The two strategies together bring orders-of-
magnitude speed-up in sparse coding optimization, yet
with almost negligible accuracy sacrifice in image an-
notation.

• As the size of the aforementioned active variable set is
usually small and controllable, and the solution to each
subproblem is usually a good initialization to the suc-
cessive subproblem, the intermediate small-scale sub-
problems can be efficiently solved by applying any off-
the-shelf sparse optimization methods.

The remainder of this paper is organized as following. Sec-
tion 2 introduces the sparse coding and the theoretic founda-
tion of LSH. In Section 3, we elaborate the proposed frame-
work in terms of problem formulation and algorithm anal-
ysis. Experiments which extensively evaluate the proposed
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Figure 1: An illustration of sparse coding for scal-
able image annotation. Given an unlabeled testing
image, its feature vector is sparsely reconstructed
by a dictionary of labeled training images by solv-
ing a sparse coding problem. Then, the label(s) of
this testing image are propagated from the labeled
training images via the derived sparse reconstruc-
tion coefficients.

framework for image annotation problem are conducted in
Section 4. Finally, conclusions and future works are listed
in Section 5.

2. PRELIMINARIES
In this section, we will briefly introduce sparse coding and

LSH, which together lay down the technical foundation of
our proposed framework for accelerating image annotation.

2.1 Sparse Coding
Given a set of over-complete bases, sparse coding aims

to find a succinct representations of stimuli. In the image
annotation field, each stimulus, namely, unlabeled testing
sample, can be approximately described as a weighted lin-
ear combination of a small subset of labeled training samples
from the over-complete image set. Those training samples
involved in the reconstruction usually well preserve the se-
mantic information of the testing sample [6].

Concretely, given a set of n labeled training images A =
[a1, · · · , an], an unlabeled testing sample y usually can be
reconstructed by using a sparse vector of weights x ∈ Rn,
i.e., y = Ax, if the set A is over complete. The sparse vector
x, which is also known as reconstruction coefficient vector, is
assumed to be zero for most of its components. The obtain
x, it is generally to solve the following minimization problem

min ‖ x ‖0 s.t. y = Ax. (1)

Unfortunately, problem (1) requires combinatorial search,
and thus is usually intractable. Some greedy algorithms,
such as the matching pursuit [27] and orthogonal matching
pursuit [28], are proposed. Another approximate method,
called basis pursuit [5], suggests using the l1-norm to replace
the l0-norm, and converting the problem (1) into

min
x

1

2
‖ Ax− y ‖22 + γ‖ x ‖1. (2)

Problem (2), which is proved to give the same solution to
problem (1) under certain assumptions, is convex and thus
easier to be solved [12]. Figure 1 illustrates the idea of how
to perform image annotation based on problem (2).

Many recent works [1, 14, 20, 26] focus on efficiently solv-
ing the problem (2). However, the proposed algorithms are
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based on direct iterative minimization, which is usually com-
putationally expensive, especially when n is large. There-
fore, reducing the computational complexity is valuable and
essential, especially for large-scale problems.

2.2 Locality-Sensitive Hashing
This subsection briefly introduces LSH, which is a key

module of our schema to improve the efficiency of large-
scale sparse coding. Generally speaking, LSH is a approx-
imate hashing method which aims to perform probabilistic
dimension reduction on high-dimensional space [18]. It can
search the approximate nearest neighbors in sub-linear time
complexity. Particularly, LSH generates several randomized
hash functions to guarantee that the collision probability
of two samples is inversely proportional to their “distance”,
where the specific meaning of “distance” is task dependent.
In other words, the larger the “distance” is, the smaller the
collision probability is.

Formally, let d = (·, ·) be a distance function. For any
p ∈ S, where S is the dataset to be indexed, denote R(p, r)
as the set of samples from S with distance to p less than r.

Definition 1. Let h denotes a random choice of hash
function from a family H. The family H is called (r1, r2, p1, p2)-
sensitive for d = (·, ·) if for any p, q ∈ S

• If p ∈ R(q, r1), then Pr[hH(q) = hH(p)] ≥ p1,

• If p /∈ R(q, r2), then Pr[hH(q) = hH(p)] ≤ p2.

In order to utilize the family of functions, it must satisfy
p1 > p2 and r1 < r2. For a B-bits LSH, it defines a bucket
family G = {g : S → Ub} so that

g(p) = (h1(p), h2(p), · · · , hB(p)),

where hb ∈ H, 1 ≤ b ≤ B. Supposing M is the number of
hash tables, LSH choosesK groups of functions g1, g2, · · · , gK
from G independently, uniformly and randomly. During the
preprocessing stage, all the samples in dataset are mapped
into the B hash tables which are indexed by

gk(p) = (hk1(p), hk2(p), · · · , hkB (p)),

with k = 1, 2, · · · ,K. To search a query p, LSH only needs
to traverse the samples among the union of hash buckets
indexed by p exhaustively.

Particularly, Datar et al. [11] proposed a novel LSH schema
which works on samples in Euclidean space under l2-norm
without embedding. In this approach, the query can be re-
trieved in time O(log(n)). Furthermore, this hash method
works more effectively if the data is extremely high-dimensional
but sparse. In this paper, we utilize LSH to retrieve ap-
proximate nearest neighbors, so as to improve the overall
efficiency of our framework on large-scale datasets.

3. OUR PROPOSED FRAMEWORK
In this section, we will elaborate our proposed framework

for the problem of sparse coding based image annotation.
First of all, we present some basic concepts and theoretic
foundations. Then, a general framework, Sparsity Induced
Scalable Optimization (SISO), is proposed to efficiently solve
the sparse coding problem. Due to the seamless conver-
sion between the expansion of active variable set and re-
trieval result of LSH, we integrate LSH into our framework,

i.e., the Hash-accelerated SISO, to further improve the effi-
ciency of our approach on large-scale dataset. Finally, the
algorithmic convergence and computational complexity of
Hash-accelerated SISO are carefully analyzed.

3.1 Problem Formulation and Analysis
Denote a set of n training images A = [a1, · · · , an] where

ai ∈ Rm is the i-th sample of A. The corresponding label set
of training samples is represented by matrix L = [l1, · · · , ln],
where lij is set as 1 if ai is annotated with the j-th label;
otherwise 0. Given a testing sample y ∈ Rm, we assume that
y can be approximately reconstructed by A by the following
way:

y ≈ Ax =

n∑
i=1

aixi, (3)

where x = [x1, x2, · · · , xn]T is the reconstruction coefficients.
Therefore, we can roughly predict the labels ly of the testing
sample y by

ly =

n∑
i=1

lixi. (4)

Note that the number of images with similar label infor-
mation may be huge on a large-scale image dataset, a “tiger”
object in a testing sample, for example, can be semantically
reconstructed by various training samples with “tiger” label.
However, there are usually discrepancies between the “tiger”
object in the training samples and the reconstructed test-
ing sample. Meanwhile, those training samples, which are
used to reconstruct the testing sample, may contain many
irrelevant labels. For a good performance, we need to find
certain training samples, which can not only precisely recon-
struct the information of“tiger”object in the testing sample,
but also contain as less irrelevant information as possible.
On the other hand, as it is often the case that the dimen-
sion of features is typically smaller than the sample num-
ber in large-scale dataset, the problem (3) may be under-
determined, and the solution becomes ambiguous. Fortu-
nately, the sparse coding, owing to its convexity property,
can properly handle those problems, and thus demonstrates
good performance in reconstructing label information of the
testing sample. Particularly, the image annotation problem
is reformulated as a LASSO problem [31] in problem (2).

Although the sparse coding is effective in image annota-
tion problem, its inefficiency greatly discourages its applica-
tions in large-scale dataset. Before introducing our approach
for speed-up, some definitions are firstly provided as follow-
ings.

Definition 2. For the reconstruction coefficient vector
x ∈ Rn in problem (1), the indices of all non-zero com-
ponents of x, σ(x) = {i|xi 6= 0, xi ∈ x}, are called as its
support.

Definition 3. Let I = {1, 2, · · · , n} denotes the index
set for all samples in A, and PI denotes the problem (2),
which contains the whole set of samples as bases. Given any
subset C ⊆ I, we define the subproblem PC by instantiating
the i-th reconstruction coefficient xi as zero in problem PI
if i ∈ I/C.

Definition 4. Let |C| denotes the cardinality of index
set C. All the |C| reconstruction coefficients in subproblem
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PC , which are presented by a vector xC , constitute the ac-
tive variable set of PC . Particularly, xi is called an active
variable if xi ∈ xC .

Obviously, C is the index set of active variable set xC in
subproblem PC , and denote AC as the corresponding bases
in dictionary A. In order to transform xC into a correspond-
ing x, we can simply copy the values of xC into x, and set
the rest values of x as zero. On the other hand, we can di-
rectly discard the variable xi if i ∈ I/C and keep the rest to
transform x into xC .

Let f(x) = 1
2
‖ Ax− y ‖22 + γ‖ x ‖1, and according to the

properties of convexity, the subproblem PC inherits the con-
vexity property of PI :

Theory 1. In the problem PI , if f(x) is a convex func-
tion and the value field of x is a convex region, then for any
subset C ⊆ I, the subproblem PC is also convex.

This theorem can be easily proved based on the definition
of convexity and we omit the proof here.

Theory 2. If x∗ is the optimal solution to the problem
PI , and let the index set C contains the support of x∗, i.e.,
σ(x∗) ⊆ C, then x∗C is the solution to the subproblem PC .

Formally, Theorem 2 points out that if

x∗ = arg min
x

1

2
‖ Ax− y ‖22 + γ‖ x ‖1, (5)

i.e., x∗ is the global optimal solution to the problem PI .
Then, for any index set C containing all the non-zero ele-
ments of x∗, namely, σ(x∗) ⊆ C, the following equation is
always satisfied:

x∗C = arg min
xC

1

2
‖ ACxC − y ‖22 + γ‖ xC ‖1. (6)

As aforementioned, in the large-scale image annotation
task, we need to solve the sparse coding problem (2). Since
|σ(x∗)| � n in this task, Theorem 2 indicates implicitly that
we can solve the problem PI quickly by solving a proper sub-
problem. So far, the key challenge lies on the determination
of a proper subproblem PC , or a proper index set C.

3.2 Sparsity Induced Scalable Optimization
Though it is difficult to construct a proper C directly, a

proper strategy for solving the problem is to iterative de-
duction. Most existing sparse optimization methods are
based on the gradient descent strategy. Specifically, starting
from an initialization x0, this strategy moves along a path
{x(0), x(1), · · · , x(t), x(t + 1), · · · , x∗} with f(x) monotoni-
cally decreased. Due to the sparse property of x∗, this pro-
cess can be greatly accelerated if we can always move along
a path with a small index set C. In other words, we can iter-
atively solve and update the much smaller subproblems PC ,
until getting the optimal solution x∗. Based on this idea,
we propose the SISO approach, which iterates between two
phases, namely, shrinkage phase and expansion phase.

3.2.1 Shrinkage Phase
In the shrinkage phase, assuming the current active vari-

able set is xC(t), we solve the subproblem PC(t) firstly if
xC(t) is not the solution to PC(t). When solving the sub-
problem PC(t), the initialization is set as xC(t). In the opti-
mization process of solving PC(t), x moves along a segment

of path with |σ(xC(t))| ≤ |C(t)|, and f(x) is monotonically
decreasing. Obviously, some components in xC(t) may be-
come zero, and thus the active variable set shrinks when
setting C(t) = σ(xC(t)), i.e., all zero components in the ac-
tive variable set are discarded. Therefore, this phase is called
shrinkage phase, whose time complexity is O(|C(t)|).

3.2.2 Expansion Phase
In the expansion phase, xC(t) is already the solution to the

subproblem PC(t). Then, we need to check whether x(t),
which is transformed from xC(t), is the solution of PI or
not. If yes, we can conclude that x∗ = x(t); Otherwise,
some variables outside C(t) should be activated and added
into C(t+ 1).

Denote the Lagrangian function of the subproblem PC as

LC(xC) =
1

2
‖ ACxC − y ‖22 + γ‖ xC ‖1. (7)

Usually, LC(xC) is non-differentiable, but has sub-differential
∂

∂xC
LC(xC), which is the set of all sub-gradients of LC(xC).

According to the generalized KKT condition [17], if x∗C is
the solution to PC , then

0 ∈ ∂

∂xi
LC(x∗C), ∀i ∈ C. (8)

Formula (8) serves as a criterion to determine whether
or not the solution x∗C to the subproblem PC can be trans-
formed into the global optimal solution x∗ to the problem
PI . If not, Formula (8) can also provide us a tool to guide
the expansion of active variable set.

Note that if x∗ is the solution to the problem PI , according
to the generalized KKT condition, we also have

0 ∈ ∂

∂xi
L(x∗), ∀i ∈ I, (9)

where L(x) is the Lagrangian function of PI .
Given a subproblem PC(t) and its derived solution x∗C(t),

we have ∂
∂xi

L(x(t)) = ∂
∂xi

LC(t)(x
∗
C(t)) = 0 if i ∈ C(t), where

the vector x(t) is transformed from x∗C(t). Therefore, we
only need to consider the partial derivative of L(x(t)) with
respect to xi, where i /∈ C(t). Let S = {i|0 /∈ ∂

∂xi
L(x(t))}

be the expansion set. According to the generalized KKT
condition, if S is empty, then x(t) is already the solution to
PI . Otherwise, we only need to add variables according to
S into the active variable set xC(t) to generate xC(t+1), i.e.,
setting C(t+ 1) = σ(x∗C(t)) ∪ S.

Denote z(x) the sub-gradient of |x|, we have

z(x) =
∂

∂x
|x| =


1, if x > 0

z, if x = 0

−1, if x < 0

, (10)

where z is any value within the closed interval [-1,1].
Let e(x) = 1

2
‖ Ax− y ‖22, then

∂

∂x
L(x) = e′(x) + γ ∗ z(x), (11)

where e′(x) = AT (Ax− y), and the generalized KKT condi-
tion 0 ∈ ∂

∂x
L(x) can be expressed as

ei
′(x) =


−γ, if i ∈ I, and xi > 0

−γ ∗ z, if i ∈ I, and xi = 0

γ, if i ∈ I, and xi < 0

, (12)
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where ei
′(x) = aTi (Ax− y).

In the same way, if x∗C(t) is the solution to the subproblem

PC(t), then 0 ∈ ∂
∂x∗

C(t)
LC(t)(x

∗
C(t)), that is,

ei
′(x∗C(t)) =


−γ, if i ∈ C(t), and xi > 0

−γ ∗ z, if i ∈ C(t), and xi = 0

γ, if i ∈ C(t), and xi < 0

, (13)

Since |z| ≤ 1, we can summarize the index set of the
expansion set as

S = {i | |ei′(x∗C(t))| ≥ γ}. (14)

Meanwhile, as

ei
′(x∗C(t)) =

∂

∂x∗i
e(x∗C(t)) = aTi (AC(t)x

∗
C(t) − y), (15)

where ai ∈ AC(t). Thus, we can obtain that

S = {i | |aTi (AC(t)x
∗
C(t) − y)| ≥ γ}. (16)

Here, γ is a natural threshold to select the expansion set,
and is empirically set as α‖ AT y ‖∞ in our experiments to
make the solution sparse, where α = 0.002.

Since σ(x∗C(t)) ⊂ C(t + 1) and 0 /∈ ∂
∂xi

L(x(t)) where

i ∈ C(t+1)/σ(x∗C(t)), the new subproblem PC(t+1) definitely
can be further optimized such that f(x(t + 1)) < f(x(t)),
where the vectors x(t+ 1) and x(t) are derived from x∗C(t+1)

and x∗C(t) respectively. Eventually, the function f(x) will
always arrive at the global optimum. If f(x) does not con-
verge, there must exist at least one sample xi such that
0 /∈ ∂

∂xi
L(x(t)), which conflicts with the convergent condi-

tion. To control the complexity, when |S| is too large, we
usually select k variables in S, corresponding to the top-
k largest values of |aTi (AC(t)x

∗
C(t) − y)|, where k is set as

100-200 in our experiments.
In conclusion, we solve a subproblem containing a much

smaller number of variables than original problem in the
shrinkage phase. Usually, some active variables in the de-
rived solution become inactive, and thus the active variable
set shrinks. In the expansion phase, we expand the active
variable set to form a new subproblem for the next shrinkage
phase. Therefore, the iteration of these two phases leads to
an efficient iterative procedure, and reaches the global opti-
mal solution to the original problem eventually.

3.3 Hash Acceleration for SISO
Obviously, the expansion set casts an important role in

our proposed approach. However, its computational com-
plexity is heavily dependent on n, which is the number of
bases and is extremely large in large-scale dataset. As afore-
mentioned, with the current residue vector rC = y−ACxC ,
the expansion set can be obtained by

S = {i | |aTi (ACx
∗
C − y)| ≥ γ}

= {i | |aTi (−rC)| ≥ γ}
, (17)

i.e.,

S = {i | aTi rC ≥ γ or aTi rC ≤ −γ}. (18)

Assuming each basis ai is l2-normalized as in general imple-
mentation, we can obtain

S = {i | − 1

2
‖ ai −

rC
‖ rC ‖

‖
2

+ 1 ≥ γ

‖ rC ‖

or
1

2
‖ ai −

−rC
‖ rC ‖

‖
2

− 1 ≤ − γ

‖ rC ‖
}
. (19)

Let d(p, q) =‖ p − q ‖ be the l2-distance between vector p
and q, we have

S = {i |d(ai,
rC
‖ rC ‖

) ≤
√

2(1− γ

‖ rC ‖

or d(ai,−
rC
‖ rC ‖

) ≤
√

2(1− γ

‖ rC ‖
}
. (20)

To make the formula (20) valid, γ ≤‖ rC ‖ must satisfy. If
we use l2-norm to measure similarity between training sam-

ples and the intermediate residue, the value of
√

2(1− γ
‖rC‖

)

is the threshold for finding expansion set. For the consid-
eration of efficiency, one does not always want to find the
exact similar training samples to the intermediate residue,
but use the approximately similar samples instead. Based
on this idea, to further enhance the efficiency of SISO, we
utilize LSH to retrieve the approximate nearest neighbors
of vector rC

‖rC‖
from A, as well as the approximate near-

est neighbors of − rC
‖rC‖

. Compared with Hash-based KNN,

the LSH in our framework aims to search the approximate
nearest neighbors of normalized residue rC , instead of re-
constructed sample y.

A proper type of hashing function in [11], with O(log(n))
computational complexity, is adopted in our experiments.
Specifically, this hashing function can directly perform on
samples in Euclidean space with lp-norm, where p ∈ (0, 2].
Obviously, we can directly use the LSH with l2-norm-based
hash function for our implementation.

To be efficient, the size of expansion set should be small,
and is usually set as 100 to 200 in our experiments. Overall,
as |C| � |I| and because of the limited number of iterations
before convergence, the time for calculating the solution of
subproblems can be ignored. Thus, the main computational
complexity of our approach is on the part of searching ap-
proximate nearest neighbor.

Formally, let m be the dimension of features. The gradi-
ent strategy, which thoroughly goes through each training
sample and calculates its sub-differential, requires O(nm)
time complexity. Comparatively, the hash-based approach,
which can quickly obtain the approximate nearest neighbors
by directly mapping the residue vector into similar buckets,
is proved of the same time complexity with hashing search,
i.e., O(log(n)) [11].

In conclusion, our proposed framework, i.e., Hash-accelerated
SISO, is summarized in Algorithm 1. Since there is no re-
striction on the methods to solve the subproblem PC , any
appropriate off-the-shelf sparse optimization method can be
applied. Meanwhile, the LSH can also be substituted by
many other appropriate approximated nearest neighbors search-
ing methods. Therefore, Algorithm 1 essentially provides a
very general and effective framework to accelerate sparse op-
timization on large-scale problems. Note that in each round
of shrinkage and expansion, the overall objective function
value shall not be increased, and obviously be lower bounded
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Algorithm 1 Hash-accelerated Sparsity Induced Scalable
Optimization

1: Input: The large-scale sparse optimization problem PI ,
including the training samples A, the initialization x(0),
and the parameter k.

2: Initialization: C(0) = σ(x(0)), transform x(0) into
xC(0), and normalize each basis in A;

3: Preprocessing: Create LSH tables and map all sam-
ples in A to the buckets;

4: while x(t+ 1) is not the solution to PI do
5: Solve the sub-problem PC(t) with initialization of

xC(t), and update xC(t) as the new solution;
6: Set C(t) = σ(xC(t)); {shrinkage}
7: Calculate rC(t) = y −AC(t)xC(t);
8: Construct the expansion set S according to the

approximate nearest neighbours of
rC(t)

‖ rC(t) ‖
and

−
rC(t)

‖ rC(t) ‖
by LSH;

9: if S is empty then
10: xC(t+1) is the solution to PI , break;
11: else
12: Add S into C(t + 1) and update xC(t+1) ; {expan-

sion}
13: end if
14: end while
15: Output: The solution to PI .

by zero. Thus, the algorithmic convergence can be naturally
guaranteed.

4. EXPERIMENTS
This section presents a set of extensive experiments to

evaluate the efficiency and effectiveness of Hash-accelerated
SISO on large-scale dataset, including NUS-WIDE [8], its
subset NUS-WIDE-LITE, and ImageNet [3]. The experi-
ment results indicate that our proposed framework outper-
form most of competitors with less running time. Compared
with LASSO and SISO, Hash-accelerated SISO proves of sig-
nificant acceleration with negligible accuracy loss. All exper-
iments are conducted on a PC equipped with Intel X5472
CPU of 3.00 GHz and 32.0 GB RAM.

4.1 Datasets
The first experiment are conducted on a large-scale real-

world image dataset NUS-WIDE-LITE, whose images are
randomly crawled from some popular image sharing web-
sites, such as Flickr.com. The diversity and complexity of
images in this dataset make it a good test-bed for large-scale
image annotation problem [6, 8]. Meanwhile, the larger-scale
image annotation experiments are conducted on the super-
set of NUS-WIDE-LITE, known as NUS-WIDE. To further
highlight the efficiency of our proposed framework, we also
conduct the experiments on ImageNet. For the experiments
on ImageNet, we use the provided 1,000-D features (bag of
visual words) to represent images and evaluate the efficiency
of our framework on about 1.2 million training images and
50,000 testing images with 1,000 labels. For the evaluation
of accuracy, we use the flat cost by predicting 5 labels per
testing image.

NUS-WIDE-LITE consists of 55,615 images in total, within
which 27,808 images are selected as the training set, and the

rest of them are used as testing set. Each image is combined
with a 81-D label vector to indicate its relationship to 81
distinct concepts. For the convenience, multiple types of lo-
cal visual features for these images are provided, including
225-D blockwise color moments, 128-D wavelet texture, and
75-D edge direction histogram. To comprehensively demon-
strate the performance of algorithms, we use variant per-
centages of labeled data. The percentage, which is denoted
as τ ∈ (0, 1] in our experiments, ranges from 10% to 100%
with a step of 10%.

NUS-WIDE contains 269,648 images. For each image,
an 81-D label vector is maintained. Multiple types of local
visual features, including 225-D blockwise color moments,
128-D wavelet texture, and 75-D edge direction histogram,
are also provided in this dataset. The training image set
consists of 161,789 images, and the rest of them are used
for testing. Analogously, the same sampling strategy in the
experiment of NUS-WIDE-LITE is adopted on this dataset.

ImageNet contains about 1.2 million training images with
1,000 object labels and one label per image. For each image,
a 1,000-D bag of visual words through vector quantization,
including vector quantized SIFT features, are provided. In
the experiments, we randomly select several different num-
bers of training images from the training image set, ranging
from 200,000 to 1.2 million with a step of 200,000. For dif-
ferent training set, we mainly evaluate the average running
time of our framework on 50,000 testing images.

Table 1: The comparison algorithms

Name Methods
KNN k-Nearest Neighbors

SVM [10] Support Vector Machine
RRML Ridge Regression for Multi-Label Annotation

LNP [34] Linear Neighborhood Propagation
EGSSC [29] Entropic Graph Semi-Supervised Classification
LSMP [6] Large-Scale Multi-label Propagation

4.2 Evaluation Criteria and Algorithms
In the experiments on NUS-WIDE-LITE and NUS-WIDE,

we compare our approach with five state-of-the-art algo-
rithms as reported in Table 1. Generally, those algorithms
can be divided into three categories, namely classifier-based
algorithms,reconstruction-based algorithms, and graph-based
algorithms.

Classifier-based Algorithms: In this category, we se-
lect the traditional classification algorithm SVM [10] as the
representative. In the experiments, SVM is implemented as
multi-class classifier with RBF kernel by adopting One-vs-
All approach. Particularly, we train several SVMs for each
category by using different parameters C and γ, and select
the optimal models for evaluation.

Reconstruction-based Algorithms: The main idea of
the approaches in this category is to use training dataset as
bases, and calculate the reconstruction coefficients for test-
ing data on these bases. Then, the labels of testing data
are calculated by multiplying the labels of training data and
the reconstruction coefficients. As well-known approaches,
KNN and RRML with different parameters are selected in
this category. Note that sparse coding, e.g. LASSO, also
belongs to this category. In the experiments, the implemen-
tation of LASSO is provided by the SLEP [22] package.
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Table 2: The running time (unit: hour) of algorithms on NUS-WIDE-LITE dataset

Algorithm Construction Time[1] Prediction Time Total Time Ratio[2]

SVM 7.27 2.95 10.22 29.20
RRML 0.00 3.43 3.43 9.80
KNN 2.82 0.12 2.94 8.40
LNP 2.69 0.03 2.72 7.77

EGSSC 1.54 0.04 1.58 4.51
LSMP 0.68 0.03 0.72 2.06

Hash-accelerated SISO 0.01 0.34 0.35 1

1. Construction Time is the time for constructing graph or calculating the reconstruction coefficients.
2. Ratio = Total T ime of One Method

Total T ime of Hash-accelerated SISO

Graph-based Algorithms: Graph-based algorithms are
extensively used for image annotation. In the experiments,
three graph-based algorithms are selected as competitors.
LNP [34], which is based on a linear-construction criterion,
aims to propagate the supervision information by a local
propagation and updating process. In our implementation,
Local and Global Consistency (LGC) [36] is used as the in-
ference algorithm of LNP. As an entropic graph-regularized
semi-supervised classification method, EGSSC [29] is on the
foundation of minimizing a Kullback-Leibler divergence over
the graph created by k-NN Gaussian similarity. LSMP [6],
which is also founded on the Kullback-Leibler divergence,
uses hash strategies to accelerate the construction of l1-
graph.

The criteria used for comparing performance on NUS-
WIDE-LITE and NUS-WIDE is the mean average precision
(MAP) among all the labels. More importantly, the run-
ning time for model construction and label prediction among
all algorithms are also compared. Particularly, the exper-
iments on computational time and performance of LASSO
and SISO are also conducted on NUS-WIDE-LITE and NUS-
WIDE to highlight the significant acceleration of our frame-
work. The experiment results indicate that Hash-accelerated
SISO outperforms most other competitors in terms of MAP
with least running time. Note that some competitors are
not completely performed on NUS-WIDE due to the im-
mense running time. For example, we only select 1000 test-
ing samples from NUS-WIDE at random for the evaluation
of LASSO.

As the huge size of ImageNet, we only conduct the full-
scale experiment on ImageNet with Hash-accelerated SISO.
For the LASSO and SISO, we only randomly select 1,000 un-
labeled samples for testing. To evaluate the performance, we
predict 5 labels for each testing image, and calculate the flat
cost. Experiment results show that Hash-accelerated SISO
can even achieve orders-of-magnitude acceleration when com-
pared with LASSO and SISO.

Table 3: The running time (unit: hour) of LASSO,
SISO and Hash-accelerated SISO on NUS-WIDE-
LITE dataset

Algorithm Total Time Ratio[1]

LASSO 133.03 380.08
SISO 2.52 7.20

Hash-accelerated SISO 0.35 1

1. Ratio = Total T ime of One Method
Total T ime of Hash-accelerated SISO
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Figure 2: The MAPs of competitors and Hash-
accelerated SISO on NUS-WIDE-LITE with various
percentages of training dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

0.15

0.2

0.25

The value of parameter �

M
ea

n 
av

er
ag

e 
pr

ec
is

io
n

 

 

LASSO SISO Hash-accelerated SISO

Figure 3: The MAPs of LASSO, SISO and Hash-
accelerated SISO on NUS-WIDE-LITE with various
percentages training dataset

4.3 Experiments on NUS-WIDE-LITE
In this experiment, we compare Hash-accelerated SISO

with six state-of-the-art algorithms as reported in Table 2,
including KNN, SVM, RRML, LNP, EGSSC and LSMP.
Generally, we use various percentages, ranging from 10%
to 100%, of labeled images as training data, and carefully
tune the optimal parameters for each algorithm. Specifi-
cally 1) The number of nearest neighbors in KNN is set as
500 2) RBF kernel is adopted in SVM, and the searching
ranges of its two parameters are γ ∈ {0.1, 0.2, ..., 1.0} and
C ∈ {0.5, 1, 2}. The optimal values of γ and C are set as 0.6
and 1 respectively. 3) The single parameter of RRML, de-
noted as k, is searched within {0.1, 0.2, ..., 1.0, 2.0, ..., 20.0},
and the optimal value of k is set as 8 in our experiments.
4) For LNP, LGC is selected as its inference algorithm.
The fraction of useful label information that one image re-
ceives from its neighbors in LNP is denoted as α, and α ∈
{0.8, 0.9, 0.95, 0.99}. The optimal value of α is 0.95. The
number of nearest neighbors in LNP is searched among K ∈
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Table 4: The running time (unit: hour) of algorithms on NUS-WIDE dataset.

Algorithm Construction Time[1] Prediction Time Total Time Ratio[2]

SVM 153.1 15.5 168.6 26.76
KNN 143.6 0.7 144.3 22.90
LNP 56.4 0.9 57.3 9.09

EGSSC 35.4 1.4 36.8 5.84
LSMP 21.6 0.5 22.1 3.51

Hash-accelerated SISO 0.1 6.2 6.3 1

1. Construction Time is the time for constructing graph or calculating the reconstruction coefficients.
2. Ratio = Total T ime of One Method

Total T ime of Hash-accelerated SISO

{5, 10, 20, ..., 100}, and is set as 10. 5) In EGSSC, the values
of its three parameters µ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1},
ν ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}, and β ∈ {1, 2, 3} are set
as 0.1, 1, and 2 respectively. To be specific, µ and ν are
used for weighting the divergence term of Kullback-Leiber
and Shannon entropy term respectively; β ensures the con-
vergence of those two similar probability measures. 6) For
LSMP, the two parameters, namely, µ ∈ {1, 2, 5, 10} and
β ∈ {1, 2, 5, 10}, which are used to leverage the balance be-
tween terms, are set as 10 and 5 respectively. In our pro-
posed framework, the threshold γ for expansion set is set as
α‖ AT y ‖∞, where α is empirically set as 0.002. The maxi-
mal number of expansion set, denoted by k, is set as 100 in
this experiment. The results of all algorithms are presented
in Figure 2 and Table 2 in terms of MAP and running time
respectively.

We have the following observations from Figure 2 and Ta-
ble 2:

• As the number of training samples increases, the over-
all performances of all methods generally rise. Overall,
the MAP of Hash-accelerated SISO outperforms KNN,
LNP, EGSSC, RRML, SVM, and LSMP for most set-
tings. Especially when τ < 0.6, Hash-accelerated SISO
maintains much higher MAP than LNP, EGSSC, and
RRML.

• Table 2 shows that Hash-Accelerated SISO is faster
than any other methods on NUS-WIDE-LITE. Par-
ticularly, compared with SVM, RRML, and LNP, our
framework achieves much higher computational speed-
up on NUS-WIDE-LITE dataset by several times. For
example, SVM spends about 7.27 hours on training
and about 2.95 hours on prediction. However, Hash-
accelerated SISO only requires 0.35 hour for prediction
with negligible construction time. It is almost orders-
of-magnitude saving in terms of time.

• Note that the relatively low MAPs of other LASSO
related algorithms, e.g. LSMP, result from the simpli-
fication in the LASSO step for efficiency consideration,
To be specific, LSMP only considers a small number
of nearest neighbors before performing LASSO, which
causes the inaccuracy of initialization.

Additionally, we also compare the MAP and running time
of LASSO, SISO and Hash-accelerated SISO for image an-
notation problem on NUS-WIDE-LITE with varying num-
bers of training samples. The results are reported in Fig-
ure 3 and Table 3. It is worthwhile to note that SISO has
zero MAP loss, and achieves about 7 times of acceleration

when compared with LASSO. The experiment result also
shows that Hash-accelerated SISO is the most efficient ap-
proach, though LASSO and SISO do not require construc-
tion time (i.e., training-free). Compared with LASSO, Hash-
accelerated SISO is much (more than 300 times) faster, with
only less than 1% loss of MAP.
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Figure 4: The MAPs of competitors and Hash-
accelerated SISO on NUS-WIDE with various per-
centages training dataset.

4.4 Experiments on NUS-WIDE
In this experiment, we run five image annotation algo-

rithms as competitors which are presented in Table 4, in-
cluding KNN, SVM, LNP, EGSSC and LSMP. The experi-
ment of RRML is omitted due to the lack of memory. The
MAPs of each algorithm with various percentages of training
data are presented in Figure 4. Simultaneously, the running
time of each algorithm is reported in Table 4.

The parameters of these algorithms are set as following:
1) The number of nearest neighbors in KNN is 1000. 2) For
SVM, RBF kernel are also adopted, and its two parameters γ
and C are set as 0.8 and 2. 3) For LNP, the optimal fraction
of label information is set as 0.99 in this experiment, and
the number of nearest neighbors is 20. 4) EGSSC has three
parameters, including µ, ν, and β which are set as 0.5, 1,
and 1 respectively. 5) Two parameters of LSMP, µ and η,
are set as 10 and 8 respectively. In our proposed algorithm,
γ is just the same as the experiment on NUS-WIDE-LITE,
and the maximal number of expansion set is set as 200 in
this experiment.

From Figure 4 and Table 4, we may have the following
observations:

• With the increasing number of training images, the
MAP of each algorithm varies and monotonically in-
creases. Generally, our proposed algorithm consistently
performs better than most other methods. However,
the MAP of SVM is higher than Hash-accelerated SISO

954



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.15

0.1

0.15

0.2

0.25

The value of parameter �

M
ea

n 
av

er
ag

e 
pr

ec
isi

on

 

 

SISO Hash-accelerated SISO

Figure 5: The MAPs of SISO and Hash-accelerated
SISO on NUS-WIDE with various percentages train-
ing dataset

when τ > 0.7. This situation may be caused by the in-
accuracy of approximated nearest neighbors returned
by LSH when the number of training samples increases.

• As we can see from Table 4, Hash-accelerated SISO re-
quires nearly negligible time for constructing LSH on
161,789 training images, and spends only 6.2 hours on
predicting the labels of 107,859 testing images. Com-
pared with the competitors, our framework achieves
significant speed-up by about 4-26 times. Note that
our framework spends only 0.14 second on average on
predicting the labels of each image when using the
whole set of training samples. This is a huge im-
provement and indicates that Hash-accelerated SISO
can provide significant improvement on handling large-
scale dataset.

Additionally, we compare the MAP only between SISO
and Hash-accelerated SISO on NUS-WIDE due to the un-
realistic running time of image annotation by LASSO. The
experiment result, which is presented in Figure 5, indicates
that Hash-accelerated SISO can achieve comparable MAP
when compared with SISO. Meanwhile, we should note that
the MAP of SISO is higher than the corresponding MAP of
SVM. For example, the MAP of SISO is 23.1% when τ = 1.0;
While the corresponding MAP of SVM is 23.0%.

Table 5: The average time (unit: second) of LASSO,
SISO and Hash-accelerated SISO on NUS-WIDE
dataset

Algorithm Average Time Ratio[1]

LASSO 124.05 886.07
SISO 1.78 12.71

Hash-accelerated SISO 0.14 1

1. Ratio = Total T ime of One Method
Total T ime of Hash-accelerated SISO

To estimate the prediction speed of LASSO, we run the
LASSO on part of NUS-WIDE by randomly selecting 1000
testing samples from testing set, and using the whole train-
ing dataset of NUS-WIDE for reconstruction. The result is
presented in Table 5 in terms of time cost. Experiment re-
sult shows that Hash-accelerated SISO performs much faster
than SISO and LASSO. Especially when compared with

LASSO, Hash-accelerated SISO significantly accelerates by
more than 800 times.

4.5 Experiments on ImageNet
In this part, we only use Hash-accelerated SISO to run

the experiment on the whole training dataset with original
1,000-D features. Due to the inefficiency of implementing
other competitors, we mainly focus on the efficiency and
speed-up achieved by Hash-accelerated SISO. For robust-
ness, we randomly select various numbers of images, rang-
ing from 200,000 to 1.2 million, from the training dataset of
ImageNet for training. Meanwhile, 50,000 images are used
as testing samples. We evaluate the performance of Hash-
accelerated SISO on two aspects, i.e., flat cost and average
time.

The parameters of Hash-accelerated SISO are set as fol-
lowing: k = 200, γ = α‖ AT y ‖∞, where α = 0.002. As
Table 6 demonstrates, the larger the number of training im-
ages is, the better the performance is. Specifically, when the
number of training images is larger than 800,000, the perfor-
mance of Hash-accelerated SISO is better than the baseline
in [3], whose flat cost is 0.80. Note that many participants
of ImageNet Large Scale Visual Recognition Challenge 2010
[3] achieve better performance than ours, which may owe
to the additional features extracted by themselves. Impor-
tantly, the running time of our proposed framework increases
slowly when the number of training images rises. Even when
the number of training images reaches up to 600,000, the
average time to predict the label of one image is only 1.24
second.

Table 6: The time (unit: hour) and flat cost of Hash-
accelerated SISO on ImageNet dataset
Training Image Number Total Time Flat Cost

200,000 3.84 0.869
400,000 10.60 0.835
600,000 15.58 0.808
800,000 17.55 0.791

1,000,000 19.14 0.776
1,200,000 21.07 0.764

For comparison, we again randomly select 100 testing im-
ages and predict their labels by applying the LASSO and
SISO over the whole training image dataset. Table 7 indi-
cates that the average time of LASSO and SISO for predic-
tion are about 3445.20 seconds and 45.82 seconds respec-
tively. When compared with Hash-accelerated SISO, our
proposed framework can significantly accelerate the speed
of original LASSO and SISO by more than 2,000 and 30
times, respectively.

Table 7: The average time (unit: second) of
LASSO, SISO and Hash-accelerated SISO on Im-
ageNet dataset

Algorithm Average Time Ratio[1]

LASSO 3445.20 2266.58
SISO 45.82 30.14

Hash-accelerated SISO 1.52 1

1. Ratio = Total T ime of One Method
Total T ime of Hash-accelerated SISO
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5. CONCLUSION AND FUTURE WORK
This paper aims to improve the retrieval system via the

precise annotations of images. To effectively and efficiently
annotate images, this paper turns to accelerate sparse cod-
ing optimization in the context of large-scale image annota-
tion. Distinguished from the previous approaches, our pro-
posed solution well utilizes the fact that the reconstruction
coefficient vector is sparse in large-scale dataset, and solves
the large-scale sparse coding problem by solving a series of
much smaller-scale subproblems. The solution includes two
phases, i.e., the shrinkage phase and the expansion phase.
As the main computational burden is in the expansion phase,
to further accelerate the optimization, we utilize the LSH
technique to select new active variables more efficiently. Ex-
tensive experiments of large-scale image annotation problem
show that the proposed solution is superior in both effective-
ness and efficiency.

One of the promising future directions is to further eval-
uate the efficiency of our proposed solution on even larger-
scale web multimedia dataset, and also evaluate whether
other graph-based algorithms may benefit from the efficiently
derived l1-graph over the complete data by using the pro-
posed solution instead of approximate l1-graph over KNN
as in [30]. It is also noted that LSH can only return the
approximate nearest neighbors, thus it is valuable to inves-
tigate whether we can further improve the effectiveness of
the proposed solution through incorporating other more ad-
vanced hashing approaches, e.g. spectral hashing [35].
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