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Best Upgrade Plans for Large Road Networks

Yimin Lin and Kyriakos Mouratidis

School of Information Systems
Singapore Management University
80 Stamford Road, Singapore 178902
{yimin.lin.2007, kyriakos } @smu.edu.sg

Abstract. In this paper, we consider a new problem in the context of road net-
work databases, named Resource Constrained Best Upgrade Plan computation
(BUP, for short). Consider a transportation network (weighted graph) G where a
subset of the edges are upgradable, i.e., for each such edge there is a cost, which
if spent, the weight of the edge can be reduced to a specific new value. Given
a source and a destination in G, and a budget (resource constraint) B, the BUP
problem is to identify which upgradable edges should be upgraded so that the
shortest path distance between source and destination (in the updated network) is
minimized, without exceeding the available budget for the upgrade. In addition
to transportation networks, the BUP query arises in other domains too, such as
telecommunications. We propose a framework for BUP processing and evaluate
it with experiments on large, real road networks.

1 INTRODUCTION

Graph processing finds application in a multitude of domains. Problems in transporta-
tions, telecommunications, bioinformatics and social networks are often modeled by
graphs. A large body of research considers queries related to reachability, shortest path
computation, path matching, etc. One of the less studied topics, which however is of
large practical significance, is the distribution of available resources in a graph in or-
der to achieve certain objectives. Here we consider road networks in particular, and the
objective is to minimize the traveling time (shortest path distance) from a source to a
destination by amending the weights of selected edges.

As an example, consider the transportation authority of a city, where a new hospital
(or an important facility of another type) is opened, and the authority wishes to upgrade
the road network to ease access to this facility from another key location (e.g., from
the airport). While several road segments (network edges) may be amenable to physical
upgrade, this comes at a monetary cost. The Resource Constrained Best Upgrade Plan
problem (BUP) is to select some among the upgradable edges so that the traveling time
between source and destination is minimized and at the same time the summed upgrade
cost does not exceed a specific budget (resource constraint).

Another, more time-critical application example is an intelligent transportation sys-
tem that monitors the traffic in the road network of a city, and schedules accordingly the
traffic lights in road junctions in real-time. Assume that a major event is taking place in
the city and heavy traffic is expected from a specific source (e.g., a sports stadium) to



a specific destination (e.g., the marina). With appropriate traffic light reconfiguration,
the driving time across some edges in the network can be reduced, at the cost of longer
waits for walkers at affected pedestrian crosses. Assuming that along with each upgrad-
able edge there is a cost associated to capture the burden imposed to pedestrians, a BUP
could indicate which road segments to favor in the traffic light schedule so that (i) the
traveling time from the stadium to the marina is minimized and (ii) the summed cost
against pedestrian priority does not exceed a certain value.

Although we focus on transportation networks, BUP finds application in other do-
mains too. Consider for example a communication network, where on-demand dynamic
allocation of bandwidth and QoS parameters (e.g., latency) is possible for some links
between nodes (routers). In the usual case of leased network infrastructure in the Inter-
net Protocol (IP) layer, upgrading a link in terms of capacity or QoS access parameters
would incur a monetary cost. When a large volume of time-sensitive traffic (e.g., VoIP)
is expected between two nodes, BUP would indicate to the network operators which
links to upgrade in order to minimize the network latency between the two nodes, sub-
ject to the available monetary budget.

Figure 1 shows an example of BUP query in a road network. The edges drawn
as dashed lines are upgradable. Each upgradable edge is associated with a triplet of
numbers (e.g., (9]10|16)), indicating respectively the new weight (if the edge is chosen
for upgrade), the cost for the upgrade, and the original weight of the edge. For normal,
non-upgradable edges, the number associated with them indicates their (unchangeable)
weight; weights are only illustrated for edges that affect our example (all the rest are
assumed to have a weight of 15).

—— edge
@ source/destination
----- upgradable edge

9)10j16 upgraded weight [cost |original weight

Fig. 1. Example of BUP query



The input of the query is a source node s and a destination node ¢ in the network,
plus a resource constraint B. Let U be the set of upgradable edges. The objective in
BUP is to select a subset of edges from U which, if upgraded, will lead to the minimum
possible shortest path distance from s to ¢, while the sum of their upgrade costs does
not exceed B. Assuming a resource constraint B = 20, the output of BUP in our
example includes edge (b4, bs) and leads to a shortest path distance of 58 via path
{s,b1,bs, b3, by, b5, bg, t}. The resource consumption in this case is 10, i.e., smaller than
B, and thus permissible. Note that if B were larger, an even shorter distance could be
achieved (namely, 53) by upgrading edges (a1, as), (a2, as) and (ag, a; ). This however
would incur a cost of 24 that exceeds our budget B.

There are several bodies of research that are related to BUP, such as methods to
construct from scratch or modify the topology of a network to serve a specific objec-
tive [1-3]. Currently, however, there is no work on BUP, while algorithms for related
problems cannot be adapted to address it.

In this paper, we formalize BUP and propose a suite of algorithms for its efficient
processing. As will become clear in Section 3, the main performance challenge in BUP
is the intractability of the search space and the requirement for numerous shortest path
computations. We develop techniques that limit both these factors with the aim of ef-
ficient processing. To demonstrate the practicality of our framework, we conduct an
extensive empirical evaluation using large, real road networks.

2 RELATED WORK

There are several streams of work related to BUP query. In this section, we give a brief
overview of these areas and indicate their differences from our problem.

2.1 Road Network Databases

There has been considerable research in the area of road network databases, including
methods for network storage and querying (e.g., ranges and nearest neighbors) [4-6],
the processing of queries that involve a notion of dominance based on proximity [7],
continuous versions of proximity queries [8], etc. There have also been several studies
on materialization with the purpose of accelerating shortest distance/path queries [9,
10]. All these techniques focus on data organization and querying mechanisms on a
network that is used as-is, i.e., they do not consider the selective amendment of edge
weights. The closest related piece in this area is [11], which considers shortest path
computation over time-dependent networks, i.e., where the weight of each edge is given
by a function of time. Again, there is no option to select edges for upgrade nor any
control over edge weights.

2.2 Network Topology Modification

Another related body of work includes methods to modify the network topology in
order to meet specific optimization objectives.



Algorithms on network topology optimization and network design compute/derive
a topology for nodes and edges in a network (e.g., number of nodes, placement of
nodes and edges, etc) to meet certain goals. Literature on this topic falls under wireless
networks [12, 13], wired backbone networks [14—17] and service overlay networks [18—
21]. These methods design the topology of the network, affecting its very structure. In
BUP, instead, the topology is preserved and the question is which edges to upgrade
within a specific budget (the budget not being a consideration among methods in this
category).

In the network hub allocation problem the purpose is to locate hubs and allocate
demand nodes to hubs in order to route the traffic between origin-destination pairs
[22]. There are different lines of work: p—hub median techniques, p—hub center algo-
rithms, hub covering, and hub allocation methods with fixed costs. These are essentially
location-allocation problems, and far from the BUP setting.

2.3 Resource Allocation and Network Improvement

In this section, we review work which does not seek to modify the network topology,
but is intended to allocate resources or select certain nodes/edges from the network to
meet specific optimization objectives.

The resource allocation problem in networks is to efficiently distribute resources to
users, such as bandwidth and energy, in order to achieve certain goals, like upholding
QoS contracts. Most of the work in this field focuses on pricing and auction mechanisms
[1,23,24]. Game theory is the main vehicle to address these problems, whose objectives
differ from BUP.

Probably the closest related topic to BUP is the network improvement problem. The
setting is similar to BUP, with an option to lower the weights of edges, but the objective
is to reduce the diameter of the network, i.e., the maximum distance between any pair of
nodes. In [2], the authors discuss the complexity of the problem with budget constraints.
Budget constraints are also considered in [25], which proposes methods to minimize
the diameter of a tree-structured network. [26] addresses the g—upgrading arc problem,
where q edges are selected for upgrading to minimize the diameter of the graph. In [3]
the problem is to identify the non-dominated paths in a space where each is represented
by its upgrade cost and the overall improvement achieved in traveling time across a
set of source-destination pairs if the path is upgraded. The problem definitions in this
body of work are fundamentally different from BUP, and the proposed algorithms are
inapplicable to it.

In a resource constrained shortest path problem, there are different types of re-
sources required to cross each edge and the goal is to identify the shortest path that
does not exceed the available budget in each resource type [27-30]. Restricted shortest
path is another example where each edge is associated with a cost and a delay. The ob-
jective is to identify the path which incurs the minimum cost while the delay along the
path does not exceed a specific time limit. Both exact and approximate methods have
been proposed [31-33]. In both aforementioned problems, the choice is whether to pass
through a certain edge or not, as opposed to choosing whether to upgrade it.



3 PROBLEM FORMALIZATION

We first formalize the problem and identify the key challenges for its processing.

Let G = (V, E) be a road network (weighted graph), where V is the set of nodes
(vertices) and FE is the set of edges (arcs). Every edge e = (v;,v;) in E is associated
with a weight e.w that models the traveling time from v; to v; via e. For simplicity,
we assume an undirected network (but our methods can be easily extended to directed
ones too). A subset U of the network’s edges are upgradable. That is, every e € U is
also associated with an upgrade cost e.c (where e.c > 0), and a new weight value e.w’
(where e.w’ < e.w), indicating that if e.c is spent, the weight of e can drop to e.w’. In
this graph G, the BUP problem is defined as follows.

Given a budget (resource constraint) B, a source node s € V, and a destination node
t € V, the BUP problem is to select a subset R of the edges in U for upgrade so that
(i) the summed upgrade cost in R does not exceed budget B and (ii) the shortest path
distance between s and ¢ in the updated network is minimized. Formally, the output R
of BUP is the result of the following optimization problem:

argmin  SP(s,t, R)
RCU
subject to Z ec< B
ecER

where SP(s,t, R) is the (traveling time along the) new shortest path between s and ¢
when edges in R are upgraded. If there are multiple subsets R that abide by the resource
constraint and lead to the same smallest traveling time between s and ¢, BUP reports
the one with the smallest total cost.

We now define some terms and establish conventions. Any subset R C U is called
a plan. The total cost of R is denoted by C(R), i.e., C(R) = > .pe.c. If C(R) is no
greater than B, we say that R is a permissible plan. For brevity, we call length of a path
the total traveling time along it. For ease of presentation, we use SP(s,t, R) to refer
both to the shortest path (between s and ¢ in the updated network) and to its length,
depending on the context. Table 1 summarizes frequently used notation.

To provide an idea about the difficulty of the problem, and to identify directions to
tackle it, we consider a straightforward BUP processing method. A naive approach is
to consider all possible subsets of U. For each subset R, we check whether it is permis-
sible, and if so, we evaluate it. That is, we compute the shortest path SP(s, ¢, R) when
the edges in R (and only those) are upgraded. After considering all possible subsets, we
report the permissible plan R that leads to the smallest SP(s, t, R).

The number of all possible subsets of U is 2!! (technically, the set of all subsets of
U is called power-set). The problem of the naive approach is that it needs to examine an
excessive number of alternative plans, and for each (permissible) of them, to perform
a shortest path computation. To give an example, if |[U| = 20, the number of possible
plans is 1,048,576, which are too many to even enumerate, let alone to evaluate.

In the following, we center our efforts on a two fold objective, i.e., we aim to reduce
(i) the number of evaluated plans and (ii) the cost to evaluate each of them. We refer
to item (i) as the search space of the problem. Item (ii) is bound to the cost of shortest



Symbol Meaning
G = (V, E) Road network with node set V and edge set F/
U Set of upgradable edges (U C E)

|U| The cardinality of U
B Resource constraint (budget)
R Edges chosen for upgrade (R C U)
e.w Original weight of edge e
e.c,e.w’ Upgrade cost and upgraded weight of e € U
s, t Source and destination nodes

C(R) Sum of upgrade costs (across all edges) in R
SP(s,t,R) Shortest path (Iength) after upgrades in R
Ge Concise graph, BUP-equivalent to G (Section 4)
Riemyp A permissible, heuristic BUP solution (Section 4)
A(G.) Augmented version of G (Section 5.1)
U. Set of upgradable edges in G (Section 5.2)
length(p, R) Length of path p after upgrade R (Section 5.2)
Rz Maximum improvement set (Section 5.3)
I(Rmaz) Total weight improvement in Rpqz (Section 5.3)
Table 1. Notation

path search and is directly dependent on the size of the graph (which we aim to re-
duce). Towards this dual goal, we propose graph reduction techniques in Section 4 and
elaborate algorithms in Section 5. Graph reduction techniques assist towards both our
design goals, while our algorithms are targeted at search space reduction in particular
(i.e., limiting the number of evaluated plans).

4 Graph-size Reduction Techniques

In this section, we propose two orthogonal methods to reduce G into a concise graph
G, which is BUP-equivalent to G, i.e., the BUP solution R on (the much smaller) G,
is guaranteed to be the solution of BUP on the original network G. The first method is
graph shrinking by edge pruning. The second is a resource constraint preserver tech-
nique that abstracts the remaining part of G (after pruning) into a concise graph which
is BUP-equivalent to the original G.

4.1 Graph Shrinking via Edge Pruning

Our intuition is that any edge (upgradable or not) that lies too far from s and ¢ cannot
affect BUP processing and, thus, is safe to prune, i.e., to remove from G. We start with
two important lemmas.

Lemma 1. Let R be the BUP result and SP(s,t, R) be the achieved shortest path in
the updated network. R includes only upgradable edges along the path SP(s,t, R).

Proof. The lemma is based on our problem definition, and specifically on the fact that
among permissible plans that lead to the same (minimal) distance between s and ¢, BUP



reports the lowest-cost one. We prove it by contradiction. Suppose that the BUP result
R includes an upgradable edge e which is not along SP(s, ¢, R). If we apply upgrade
set R — {e}, the shortest path between s and ¢ will pass through exactly the same edges
as with R, and we will have achieved the same shortest path distance at a cost reduced
by e.c, which contradicts the hypothesis that R is the BUP result.

Lemma 2. Let R be the BUP solution in G. Any subgraph of G that includes all the
edges along SP(s,t, R) is BUP-equivalent to G.

Proof. Consider the subgraph G, of G that comprises only the (upgradable and non-
upgradable) edges along path SP(s,t, R). A direct implication of Lemma 1 is that if
we solved BUP on G, we would derive the same result R. In turn, this means that any
subgraph of G that is a supergraph of G, is BUP-equivalent to G.

Lemma 2 asserts that we can safely prune any edge, upgradable or not, that does
not belong to SP(s,t, R) (where R is the BUP solution). We show how edges can be
pruned safely, without knowing R in advance.

Consider the fully upgraded network G, i.e., where all edges in U are upgraded.
SP(v;,v;,U) denotes the distance between a pair of nodes v;,v; in this graph. By
definition, SP(v;, v;, U) is the lower bound of the distance between v; and v; after any
possible upgrade plan R C U.

Let T be the length of SP(s,t, R), where R is the BUP solution, and assume that
we somehow know T in advance. We will show that certain edges (be them upgradable
or not) lie too far from s and ¢ to belong to R, and are therefore safe to prune.

Lemma 3. It is safe to prune every edge e = (v;,v;) for which:

(i) SP(s,v;,U) +w+ SP(vj,t,U) > T and

(ii) SP(s,v;,U) + w+ SP(v;, t,U) > T

where w equals e.w' if e is upgradable, or simply e.w if e is not upgradable.

Proof. The shortest possible path between s and ¢ that passes through edge e is the one
that corresponds to a fully upgraded G. The length of that path is either SP(s,v;,U) +
w + SP(vj,t,U) or SP(s,v;,U) +w + SP(v;,t,U), whichever is smaller. If that
minimum value is greater than T, edge e could not possibly belong to SP(s,t, R)
(where R is the final BUP result) and, therefore, e can be safely pruned.

Value T is not known in advance. However, Lemma 3 can be applied if T is replaced
by any number that is greater than or equal to 7. The closer that number to 7', the
more effective the lemma. We use SP(s,t, Rtemp) instead of T', where Rycpp is a
permissible (suboptimal) plan that leads to a sufficiently short distance from s to ¢.

Effective R;.,,), selection: To derive R;.,;, quickly and effectively, we first com-
pute the shortest path SP(s,t,U) in the fully upgraded graph. Next, we form Ryey,p
using only the upgradable edges included in SP(s,t,U). If Riemyp exceeds the resource
constraint, we execute a knapsack algorithm [34] to derive the subset of Ry, that
achieves the minimum sum of weights along path SP(s,t, Riemp) without violating
B. Note that this is different from a BUP problem, because we essentially fix the path



to SP(s,t, Riemyp) and seek the permissible subset of its upgradable edges that mini-
mizes the path length along the specific path only. The result of the knapsack algorithm
is used as the R;eyyy for pruning.

Figure 2 continues the running example of Figure 1. Assuming a weight of 15 units
for every edge whose weight is not explicitly illustrated, and a SP(s, t, Riemyp) distance
of 60, Lemma 3 prunes every edge out of the inner (green-border) closed curve.

remaining nodes
@and edges after
pruning
Fig. 2. Example of edge pruning

Implementation: To implement pruning, we perform two Dijkstra expansions [34]
from s and ¢ on the fully upgraded graph. Each expansion reaches up to distance
SP(s,t, Riemp) from its start node (s and ¢, respectively). All edges that are not en-
countered or encountered by only one of the expansions, are pruned. Each of the re-
maining edges is checked against Lemma 3 and pruned (or not) accordingly.

4.2 Resource Constraint Preserver

In this section, we propose the resource constraint preserver technique, which trans-
forms the remaining part of G (after pruning) into a concise graph G, that is BUP-
equivalent to G, i.e., a much smaller graph whose BUP solution (for the same s, ¢, B
input) is guaranteed to be identical to the original road network. The concepts of key
nodes and plain paths are central to this technique.

Definition 1. Key node. A node v € V is a key node iff it is s, t, or the end-node of
some upgradable edge.



Definition 2. Plain path. A path is plain if it does not include any key nodes (except
for its very first and very last nodes).

We construct the network abstraction G.. as follows. First, we compute the shortest
plain path for any pair of key nodes. The shortest plain path between key nodes v;
and v; is the shortest among the plain paths that connect them. Computing this path
can be done using any standard shortest path algorithm, by treating key nodes other
than v; and v; as non-existent (thus preventing the reported path from including any
intermediate key node). The second step to produce G.. is to replace each shortest plain
path by a virtual edge, whose weight is equal to the length of the path. The edge set
of G, comprises only virtual and upgradable edges; the non-upgradable edges of the
original graph are discarded. The node set of GG, includes only key nodes.

Lemma 4. G, is BUP-equivalent to the original network G.

Proof. Let R be the BUP solution in G. Consider the sequence of key nodes in SP(s, ¢, R)
in order of appearance (from s to t). For every pair of consecutive key nodes v;, v; in
this sequence, either v;, v; are the end-nodes of the same upgradable edge, or they are
connected by a plain path. In the latter case, that plain path between v;, v; is also the
shortest (by definition, every sub-path of a shortest path, is the shortest path between the
intermediate nodes it connects). Thus, SP(s,t, R) is a sequence of upgradable edges
and shortest plain paths. Since G preserves the upgradable edges and includes all short-
est plain paths between key nodes (in the form of equivalent virtual edges), it contains
all edges comprising SP(s, t, R). Hence, by Lemma 2, G is BUP-equivalent to G.

Further shrinking: If the majority of edges are not upgradable, the preserver method
will reduce the graph size. However, creating a fully connected graph among key nodes
introduces many virtual edges, most of which unnecessary. To cure the problem, we
apply Lemma 3 to each virtual edge before inclusion into GG, and prune it if the lemma
permits.

Implementation: To accelerate the construction of G., we incorporate Lemma 3
into the computation of shortest plain paths. Specifically, for each key node v; we per-
form a Dijkstra search (with source at v;). When another key node v; is encountered
(i.e., popped by the Dijkstra heap), we add a virtual edge between v; and v; to G.
However, we do not expand v; (i.e., we do not push into the heap the adjacent nodes of
v;) s0 as to ensure plain paths. Let M be the smallest of SP(s,v;,U) and SP(v;,t,U)
(both these values are known since the pruning stage). The Dijkstra search can safely
terminate if it has reached up to distance SP(s,t, Riemp) — M from v; (any virtual
edge longer than that threshold is useless according to Lemma 3), where Ryc,y,, is the
heuristic (suboptimal) BUP solution from Section 4.1.

Figure 3 shows the G abstraction derived in our running example by the resource
constraint preserver technique.

S BUP Processing Algorithms

In this section, we present algorithms to compute the BUP solution on G, i.e., the graph
resulting after the application of the edge pruning and resource preserver techniques



/'/ virtual edge

Fig. 3. The resulting graph G,

from Section 4. G includes upgradable and virtual edges. For brevity, in the following
we refer to virtual edges simply as edges. We denote by U.. the set of upgradable edges
in G, (since some edges in U have been pruned, U, C U).

Even with a smaller set of candidate edges for upgrade, the approach of evaluating
arbitrary subsets of U, is not only impractical, but not very meaningful either. That is,
Lemma 1 suggests that the BUP solution R includes only upgradable edges along the
shortest path from s to ¢ (in the updated network). If candidate plans (subsets of U.)
were arbitrarily chosen for evaluation, in the majority of cases, their upgradable edges
would fall at random and irrelevant locations, rather than on the shortest path from s to
t. This observation motivates our processing methodology, which is path-centered.

Our approach is to iteratively compute alternative paths (from s to ¢) in increasing
order of length, and evaluate them in this order. We distinguish three variants of this
general approach, depending on which version of G is used for the incremental path
exploration; it could be the original G, the fully upgraded G, or another version of G
that we call augmented. Regardless of the underlying graph, we use the path ranking
method of [35] to incrementally produce paths from s to ¢ in increasing length order.

5.1 Augmented Graph Algorithm

Our first technique relies on the augmented version of G.., denoted as A(G..), to which
it also owes its name, i.e., Augmented Graph algorithm (AG). The augmented graph has
the same node set as G, but its edge set is a superset of G .. Specifically, every edge e
in G. becomes an edge in A(G..), retaining its original weight e.w (be it upgradable or
not). Additionally, for every e € U,, the augmented graph also includes a second edge
¢’ between the same end-nodes as e, but with weight equal to e.w’ (i.e., the new weight
if e is upgraded).

Figure 4 gives an example, showing the original G on the left and its augmented
version A(G.) on the right. For the sake of the example, assume that non-upgradable
edges have a unit weight. All edges of G.. appear in A(G.) with their original weights.
Since edges e1, 2, e3 are upgradable in G, graph A(G.) additionally includes €/, €}, e
with the respective upgraded weights (shown next to the edge labels).

AG calls the path ranking algorithm of [35] in A(G.), and iteratively examines
paths in increasing length order. In our example, assume that the budget is B = 20. The
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Fig. 4. Augmented graph example

shortest path in A(G.) is p1 = {s,d1, da, f1,t} via €} and e} (both are upgraded links).
The length of p; is 21. It passes via upgraded edges e/ and e5, thus requiring a total
cost of eg.c + e3.c = 26. That cost exceeds B and the path is ignored. The path ranking
algorithm is probed again to produce the next best path, that is py = {s, ¢y, c2, f1,t}
via e} and ej. Its length is 22, but its cost e;.c + e3.c = 21 exceeds B. Hence, this
path is ignored too, and the path ranking algorithm is probed to produce the next best
path, which is p3 = {s,d1,ds, f1,t} via ¢}, and ez (upgraded and non-upgraded link,
respectively). Its length is 24. The path passes via one upgraded edge, e/, which means
that the total path cost is es.c = 10. That is within our budget, and AG terminates here
with result R = {e3}, achieving SP(s,t, R) = 24.

Observe that every path p output by path ranking in A(G.) corresponds to a specific
upgrade plan, namely, to the plan that includes all upgraded links €’ that p passes from.
Consider a pair of paths p and p’ in A(G,) that are identical, except that p passes via
edge e, while p’ passes from that edge’s upgraded counterpart ¢’. For what path ranking
in A(G.) is concerned, these are two different paths (since e and e’ are modeled as
different edges) corresponding to different upgrade plans.

Correctness: Path ranking, if probed enough times, will output all possible paths
between s and ¢ in A(G.). Hence, SP(s,t, R) is guaranteed to be among them (where
R is the BUP result), as long as AG does not terminate prematurely. AG stops probing
the path ranking process when the latter outputs the first path p that abides by resource
constraint B. Since path ranking outputs paths in increasing length order, p is guaran-
teed to be the shortest permissible path, i.e., to coincide with SP(s,t, R).

Note that, in the worst case, path ranking will need to output all possible paths
between s and t in A(G.). This is still preferable to evaluating all subsets of U, because
AG essentially considers only combinations of upgradable edges along acyclic paths
from s to t. For example, in Figure 4(b), path ranking would never output a path that
includes both €] and e}, while a blind evaluation of U, subsets would consider (and
waste computations for the evaluation of) plan {e}, e }.



5.2 Fully Upgraded Graph Algorithm

In this section, we present the Fully Upgraded Graph algorithm (FG). FG runs path
ranking on the fully upgraded G, where all edges e € U, have their upgraded (reduced)
weight e.w’. On this graph, each path p from s to ¢ has the minimum possible length
under any upgrade plan (permissible or not); we denote this length as length(p, U,)
and use it as a lower bound for the length of p under any plan.

For every path p output by the path ranking algorithm, if the summed cost along its
upgradable edges exceeds B, we perform a process similar to the computation of Ryeyy,,
in Section 4.1. That is, we execute a knapsack algorithm among the upgradable edges
along the specific path, and report their subset that minimizes the length of p under
budget constraint B. Let R, be the result of the knapsack algorithm, and length(p, R,)
be the length of p under plan R,,. The knapsack process asserts that 2, is permissible,
and therefore length(p, R,) is an achievable traveling time from s to ¢. In a nutshell,
FG treats each path p output by path ranking as an umbrella construct representing all
possible upgrade plans among the upgradable edges in p, and from these plans it keeps
the best permissible plan, z,,.

While the path ranking algorithm iteratively reports new paths, we keep track of
the one, say, p* (and the respective R,~ set) that achieves the smallest length(p, R,)
among all paths considered so far.! Once path ranking reports a path p whose length
(on the fully upgraded graph) is greater than length(p*, Ry ), FG terminates with R,
as the BUP result (achieving length SP(s,t, R,+) = length(p*, Rp+)).

Referring to our example in Figure 4, the fully upgraded G. would look like Fig-
ure 4(a) with weights 12, 11, and 8 for edges e, e2, and es, respectively. Path rank-
ing would first report path p; = {s,d,ds, f1,t} with length 21. A knapsack algo-
rithm on its set of upgradable edges (i.e., on set {ez, e3}) with resource constraint
B = 20 reports R,, = {e2} and length(p1, Ry,) = 24. The next path output by
path ranking is po = {s,c1, ¢, f1,t} with length 22. If that length were larger than
length(p1, R, ) = 24, FG would terminate. This is not the case, so a knapsack process
on the upgradable edges along p; reports that R,,, = {e; } with length(pz, Rp,) = 25.
Path ranking is probed again, but reports NULL (i.e., all paths from s to ¢ have been
output) and FG terminates with result R = R,, = {e2}.

Correctness: If probed enough times, path ranking in the fully upgraded G, will
report all possible paths from s to ¢ on this graph. The paths are reported in increasing
length(p, U.) order. Our termination condition guarantees that all paths not yet output
by path ranking have length(p, U.) greater than length(p*, Rp+), and therefore could
not lead to a shorter traveling time between s and ¢ under any plan (permissible or not).

A note here is that every path output by path ranking in the augmented graph A(G..)
(in Section 5.1) corresponds to an upgrade plan. In FG, instead, each path p output by
path ranking in the fully upgraded G leads to the consideration of all possible upgrade
plans along p (this is essentially what the knapsack-modeled derivation of R, does).

"' In case of tie between two alternative paths, we keep as p* the one with the smallest C'(Rp+).



5.3 Original Graph Algorithm

The Original Graph algorithm (OG) executes path ranking in the original G, i.e., as-
suming that no edge is upgraded. For every path p output by path ranking, it solves a
knapsack problem to derive the subset R, of the upgradable edges along p that achieves
the minimum path length length(p, R,,) without violating the resource constraint B.
While new paths are being output by path ranking, OG maintains the path p* (and the
respective R~ set) that achieves the smallest length(p, R,) so far.

Regarding the termination condition of OG, we introduce the maximum improve-
ment set R, q... Among all permissible subsets of U., R, 1s the one that achieves the
maximum total weight reduction (regardless of where the contained edges are located
or whether they contribute to shorten the traveling time from s to ¢). We denote the total
weight reduction achieved by R,z as I(Rpaz). The latter serves as an upper bound
for the length reduction in any path under any permissible plan.

In the example of Figure 4(a), to derive R4, (and I( R4z )), we solve a knapsack
problem on U, = {ey, ea, e3}. Their individual weight reductions (i.e., values e.w’ —
e.w) are 7, 5, 3 and their costs (e.c) are 5, 10, 16. The knapsack problem uses limit B =
20 for the total cost. The result is Rynq. = {e1, e2} with total reduction I (R4, ) = 12.

Returning to OG execution, let p be the next best path output by path ranking in
the original (un-updated) G.. Under any permissible upgrade plan, the length of p can
be reduced at maximum by (R4 ), i-€., under any upgrade plan the new length of
p cannot be lower than length(p,0) — I(Rmaz)- If the latter value is greater than
length(p*, Rp-), OG can safely terminate with BUP result R = R),-.

In the original G in Figure 4(a), edges e1, e2, and e3 have weights 19, 16, and 11,
respectively. Path ranking would first report path p; = {s, d1, ds, f1,t} with length 29.
For p; we derive (via a knapsack execution on its upgradable edges) R,,, = {e2} and
length(p1, Rp,) = 24. The next path output by path ranking is p, = {s, ¢1, c2, f1,t}
with length 32. Before we even solve a knapsack problem for p,, we know that un-
der any permissible plan its length cannot drop below length(pz, ) — I[(Rpmaz) =
32 — 12 = 20. If that last value were greater than length(p1, R,,) = 24, OG would
terminate. This is not the case, so a knapsack process on p, reports R,, = {e1} with
length(ps, Rp,) = 25. Path ranking is probed again, reports NULL (since all paths
from s to ¢ have been output), and OG terminates with BUP result R = R,,, = {e2}.

Correctness: The correctness of OG relies on similar principles to FG. First, path
ranking, if probed enough times, will output all paths from s to ¢. For each of these
paths p, OG computes the best permissible plan along its edges, i.e., I2,,. Therefore, it
will discover the optimal plan R at some point, unless terminated prematurely. Since
path ranking in the original G, outputs paths p in increasing length(p,}) order, the
termination condition of OG guarantees that all paths not yet output, even if improved
to the maximum possible degree (i.e., I (R,q2)), cannot become shorter than p*.

6 EXPERIMENTAL EVALUATION

In this section, we first experimentally evaluate the effectiveness of our graph-size re-
duction techniques (from Section 4). Then proceed to compare the efficiency of our
processing algorithms (from Section 5).



As default network G we use the road network of Germany, which has 28,867 nodes,
30,429 edges, and a diameter (i.e., maximum distance between any pair of nodes) of
14,383. The network is available at: www.maproom.psu.edu/dcw/. We study the impact
of three parameters: (original) path length between source and destination; upgrade
ratio; and resource ratio. The upgrade ratio indicates the ratio of upgradable edges over
their total number (i.e., |U|/|E|). Upgradable edges are selected randomly from F.
Their new weight is set to e.w’ = z - e.w, where x is a random number between 0.5
and 1. The upgrade cost is set to e.c = y - e.w, where y is a random number from O to
1. The resource ratio indicates how strict the budget B is. Specifically, for each query
we compute the sum of upgrade costs of all upgradable edges in the shortest path from
s to t in the original network; let this sum be C. We set B to a fraction of this cost. The
resource ratio equals B/C. Table 2 shows the parameter values tested and their default
(in bold). In every experiment, we vary one parameter and set the other two to their
default. Each measurement is the average over 20 queries. We use an Intel Core 2 Duo
CPU 2.40GHz with 2GB RAM and keep the networks in memory.

Parameter Value Range
Path length 1000, 2000, 4000, 6000
Upgrade ratio| 0.04, 0.06, 0.08, 0.1

Resource ratio 0.2,04,0.6,0.8
Table 2. Experiment parameters

6.1 Evaluation of Graph-size Reduction Methods

In this section, we leave aside BUP processing, and evaluate our graph-size reduction
methods in three aspects: reduction of number of nodes, reduction of number of edges,
and running time. We report results for pruning (from Section 4.1) when applied alone,
and when applied in tandem with the preserver method (from Section 4.2).

Effect of path length: In Figure 5, we vary the path length and plot the number
of remaining nodes/edges with each approach. We also present their running times; for
each method (“Pruning” and “Pruning+Preserver”’) we include its full-fledged version
(with all optimizations described in Section 4) and its version without the implementa-
tion optimization in the last paragraph of Section 4.1.

The original network has 28,867 nodes and 30,429 edges, out of which fewer than
500 nodes and 800 edges remain after pruning, achieving a vast reduction. The latter are
further reduced by the preserver technique to fewer than 60 and 100, respectively, low-
ering down the problem size dramatically, even for the most distant source-destination
pairs we tried. The number of remaining nodes/edges grows with the path length, be-
cause SP(s,t, Rtemp) increases and, hence, Lemma 3 prunes fewer edges (recall that
Riemp is a permissible, heuristic BUP solution, and SP(s,t, Riemyp) 18 the length of the
shortest path from s to ¢ under plan R;¢,,;). In terms of running time, both approaches
take longer for larger path lengths, because the reduced graph is larger. The optimized
versions of the algorithms are very efficient, requiring fewer than 250msec in all cases.
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Effect of upgrade ratio. In Figure 6, we vary the upgrade ratio from 0.04 to 0.1,
i.e., 4% to 10% of the network edges are upgradable. Lemma 3 is applied on the fully
upgraded G, considering for each edge e its shortest possible distance from s and ¢,
in order to guarantee correctness. Hence, a higher upgrade ratio implies looser pruning
(equivalently, more remaining nodes and edges).

300 400 500
Pruning —&— b Pruning —&—
Pruning+Preserver —<— Pruning+Preserver —<— 200

o a >
8 g 300 e o ———H4
2 200 3 -
g g g 30
£ £ = Pruning —5—
3 g 20 g Pruning+Preserver —x—
£ £ = 200 Pruning (no optimization) —%—
2 100 2 Pruning+Preserver (no optimization) —&—
S 2 100 &
* * 100

0 0 M 0

004 0.06 008 01 004 006 008 01 004 0.06 008 01

Upgrade ratio Upgrade ratio Upgrade ratio

(a) No. of remaining nodes

(b) No. of remaining edges (c) Processing time

Fig. 6. Effect of upgrade ratio

Effect of resource ratio. In Figure 7, we vary the resource ratio from 0.2 to 0.8
— that is, B ranges from 20% to 80% of C' (described in the beginning of the ex-
periment section). A greater ratio implies a larger budget B and, therefore, a smaller
SP(s,t, Riemp). In turn, this means more extensive pruning by Lemma 3.
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6.2 Evaluation of BUP Processing Algorithms

Given a reduced graph G, (produced either by “Pruning” or “Pruning+Preserver”), in
this section we evaluate the three BUP algorithms from Section 5. For understandability,
in the plots we label AG as “Augmented”, FG as “Full”, and OG as “Original”.

In Figure 8, in addition to Germany, we use two other real road networks; one
smaller (San Joaquin County, with 18,263 nodes and 23,874 edges, from www.cs.utah.edu/
~lifeifei/SpatialDataset.htm) and the other larger (India, with 149,566 nodes and 155,483
edges, from www.maproom.psu.edu/dcw/). For each road network, we present the pro-
cessing time of all three BUP algorithms, assuming reduction by “Pruning” or “Prun-
ing+Preserver”, for the default parameter values in Table 2.

We observe that OG consistently outperforms alternatives, with FG being the runner-
up. An interesting fact is that the running time of all algorithms in India is longer. This
is irrelevant to the size of the network. A path length of 4,000 (default) in India corre-
sponds to paths with much more edges than paths of the same length in the other two
networks?. To see this, after “Pruning” in Germany the remaining nodes/edges are 238
and 331, while for India the corresponding numbers are 711 and 1,087.
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Fig. 8. Running time of BUP algorithms on different networks

Having established the general superiority of OG, in Figure 9 we examine the ef-
fect of path length, upgrade ratio and resource ratio on its running time, plotting also
measurements for the runner-up (FG) for the sake of comparison. The experiments use
our default network (Germany) after reduction by “Pruning+Preserver”. We observe a
direct correlation between the running time of the BUP algorithms and the size of the
reduced graph (investigated in Section 6.1) — for example, performance in Figure 9(a)
follows the trends in Figures 5(a) and 5(b). This verifies that indeed the size of graph
G, is a major performance determinant and justifies our design effort in Section 4 to
reduce it.

2 We did not apply any normalization on edge weights across the three networks in order to
retain their original distance semantics.
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7 CONCLUSION

In this paper, we study the Resource Constrained Best Upgrade Plan query (BUP). In a
road network where a fraction of the edges are upgradable at some cost, the BUP query
computes the subset of these edges to be upgraded so that the shortest path distance
for a source-destination pair is minimized and the total upgrade cost does not exceed a
user-specified budget. Our methodology centers on two axes: the effective reduction of
the network size and the efficient BUP processing in the resulting graph. Experiments
on real road networks verify the effectiveness of our techniques and the efficiency of
our framework overall. A direction for future work is the consideration of multiple
concurrent constraints (on different resource types). Another is BUP processing when
the optimization goal involves multiple source-destination pairs instead of a just one.
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