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Abstract

Sustainable supply chain management has been an
increasingly important topic of research in recent
years. At the strategic level, there are computa-
tional models which study supply and distribution
networks with environmental considerations. At
the operational level, there are, for example, routing
and scheduling models which are constrained by
carbon emissions. Our paper explores work in tac-
tical planning with regards to vehicle resource al-
location from distribution centers to customer loca-
tions in a multi-echelon logistics network. We for-
mulate the bi-objective optimization problem ex-
actly and design a memetic algorithm to efficiently
derive an approximate Pareto front. We illustrate
the applicability of our approach with a large real-
world dataset.

1 Introduction
Having contributed significantly to economic growth, in-
creasing employment, and the creation of a global market-
place, the logistics sector is now leading in efforts and setting
trends and standards on environmental sustainability. This
development has been triggered by the assessment report
from the Intergovernmental Panel on Climate Change 2007
[Metz et al., 2007], in which it was claimed that the trans-
portation sector, which includes both freight and passenger
transportation, accounts for 14% of the global greenhouse gas
(GHG) emission. In response to the need to reduce green-
house gas emissions, green logistics, which focuses on how
to reduce the environmental effects of transportation, is at-
tracting great interest in research.

From the managerial decision support point of view,
there is an increasing emphasis in the literature on supply
chain management dealing with environmental issues under
the emerging concept of green supply chain management
(GrSCM), which ranges from the green design of products
to green operations. Srivastava conducted a comprehensive
review on GrSCM which focuses on green operations Srivas-
tava. Topics related to green operations are broad, and could
potentially cover decision makings that are strategic, tactical,
and operational in nature. In this paper, we study a tacti-

cal planning problem involving vehicle allocation in a multi-
echelon logistics network with environmental considerations.

2 Related Works
As introduced earlier, research work on GrSCM can be clas-
sified according to the level of decision making, which can be
strategic, tactical, or operational. At the strategic level, which
mainly deals with the design of supply chain networks, re-
searchers have explored the impacts of a wide range of cost
elements. For example, the CO2 emission cost by vehicle
weight is considered by [Elhedhli and Merrick, 2012], and
they demonstrate that such consideration would significantly
change the configuration of the supply chain. Separately,
Wang et al. investigate the trade-off between the total cost
of supply chain and the environmental impact [Wang et al.,
2011], and come up with the conclusion that the investment
on environmental protection is most beneficial when the de-
mand level is high. A wide variety of mathematical frame-
works are utilized depending on the complexity of the for-
mulation. For example, a Lagrangian heuristic and a multi-
objective mixed-integer formulation are utilized by the for-
mer and the latter examples respectively. From the litera-
ture, we also see examples using enhanced genetic algorithms
(e.g., see [Chang, 2010]).

At the tactical level, network designs are given and the re-
search questions are mostly related to the planning of fleets
and the routing of vehicles in the fleet. For example, a vehi-
cle routing problem constrained by both the fuel tank capacity
and the availability of fuel stations is studied in [Erdoğan and
Miller-Hooks, 2012]. This problem is modeled as a mixed
integer linear program and solved heuristically. In another
example with multiple objectives on environmental consid-
eration and overall efficiency [Siu et al., 2012], it is shown
that by using genetic algorithms, Pareto optimality could be
achieved in over 90% of the problem instances.

In this paper, we are interested in studying multi-objective
tactical planning problem in the GrSCM domain. In partic-
ular, we would like to consider both service levels and en-
ergy consumption for a given three-tier logistics network. Al-
though there is much past work on multi-objective routing
problem, none can be directly applied to our problem, due to
its three-tier structure. To handle the complexity of the prob-
lem, we implemented a meta-heuristic algorithm to solve the
vehicle allocation problem in the GrSCM. This tactical plan-



ning problem is motivated based on an actual industrial case
study and to the best of our knowledge, it has not been ex-
plored by other researchers. Our main interest is to efficiently
generate Pareto frontier and use it to understand the trade-off
between service level and energy requirement given a set of
demand and resource constraints.

The paper is organized as follows: Section 3 describes the
problem definition followed by detailed explanation of the
meta-heuristic approach used in our problem in section 4.
Next, we discuss different scenarios and interpret the trade-
off between solutions. A conclusion will be given in the final
section.

3 Problem Formulation
We are given a fixed set of vehicles which have varying ca-
pacities and fuel efficiencies. In general, the higher the ca-
pacity of the vehicle, the lower the fuel efficiency (this holds
in general, but not always). It is not immediately clear what
would make a good solution since if one utilizes the truck
with high capacity more, one needs to make fewer trips but
at the same time could potentially consume more fuel. In ad-
dition, we are given a set of demand points, and for each de-
mand point, we are given the tonnage required and a specific
time window for which the required tonnage must arrive. The
time horizon is 24 hours, representing a typical day. The dis-
tribution network we consider is a three-echelon one, where
goods are to be distributed from regional distribution centers
(RDCs) to distribution centers (DCs), and finally to various
demand points. If necessary, it is also possible to send goods
directly from RDCs to demand points. In addition, DCs have
storage/processing capacity constraints, and in this paper, we
model this as a capacity constraint on the incoming tonnage
to a DC. The decision is to assign dedicated trucks to serve
links between pairs of locations. Each truck is allowed to
make multiple trips but is only allowed to serve a given link.
The objectives are twofold: 1) maximize the service level,
which is defined as the tonnage served at demand points (not
exceeding requested amount); 2) minimize the total fuel con-
sumed by all service trucks.

3.1 A Mixed Integer Linear Programming Model
We first attempt to formulate the truck assignment problem
as a mixed integer linear programming (MILP) model, which
comes with two objective functions. Assume that the prob-
lem is defined on a directed graph G = (V,E), such that
V = I ∪ J and I = I1 ∪ I2, where I1, I2 and J are the sets
of RDCs, DCs, and demand points respectively. Let E de-
notes set of all links that allow loaded trips. In practice, nodes
from higher echelon can only make loaded trips to nodes be-
longing to lower echelons, thus E can be formally defined
as E = {(i1, i2)|i1 ∈ I1, i2 ∈ I2} ∪ {(i1, j)|i1 ∈ I1, j ∈
J} ∪ {(i2, j)|i2 ∈ I2, j ∈ J}. For every link (i, j) ∈ E,
Dij denotes the distance from locations i to j. For simplicity,
we assume that distances are symmetric, i.e., Dij = Dji. Do
note that although the graph is asymmetric by definition, an
emptied truck has to move back from j to i if it’s scheduled
to serve more demands along the same link (such movements
are implicit and paired with loaded trips, therefore they are
not included in set E).

The capacity at each DC i ∈ I2 is denoted as wi.
Each demand point j ∈ J is characterized by a three-tuple
(dj , Sj , Fj), denoting the tonnage required, earliest, and lat-
est delivery times respectively. Let K be the set of available
vehicles, and for each vehicle k ∈ K, we denote by ck its
capacity, and ek its fuel efficiency (fuel consumed per unit
distance). We assume that all vehicles share the same aver-
age speed of V . For each vehicle assigned to link (i, j) ∈ E,
it can make at most Nij number of trips. We now define the
decision variables as follows:
• δijk: a binary variable indicating whether vehicle k is

assigned to serve link (i, j) ∈ E (1 is true, 0 otherwise).
• nijk: number of loaded trips made by vehicle k using

link (i, j). Since each vehicle is dedicated to only one
link, to make nijk deliveries, k has to traverse link (i, j)
nijk times, while returning on link (j, i) (nijk−1) times.
• βijk: tonnage flowing from i to j using vehicle k.
• tijk: the time when vehicle k first departs from location
i and move to j.

The two objective functions are defined below:
1. Maximize the service level, defined as the total served

tonnage at demand points:∑
j∈J

∑
i∈I

∑
k∈K

βijk.

2. Minimize the fuel consumption of all loaded trips, which
is a proxy for total fuel consumption:∑

(i,j)∈E

∑
k∈K

nijkDijek.

Subject to the following constraints:
1. Number of traveled trips for a link (i, j) is positive only

if a vehicle is assigned to it; M is a large number.

0 ≤ nijk ≤Mδijk , (i, j) ∈ E, k ∈ K.

2. Each vehicle assigned to at most one link in the network:∑
(i,j)∈E

δijk ≤ 1 , k ∈ K.

3. Served flow cannot exceed available vehicle capacity:

βijk ≤ nijkck , (i, j) ∈ E, k ∈ K.

4. Upper bound on the number of trips made on link (i, j):

nijk ≤ Nij , (i, j) ∈ E, k ∈ K.

5. Outgoing tonnage at DCs cannot exceed incoming ton-
nage: ∑

i1∈I1

∑
k∈K

βi1i2k ≥
∑
j∈J

∑
k∈K

βi2jk , i2 ∈ I2.

6. Incoming tonnage cannot exceed DC capacity:∑
i∈I1

∑
k∈K

βijk ≤ wj , j ∈ I2.



7. Constraint on earliest delivery time at demand points:

δijkSj ≤ tijk +
Dij

V
, i ∈ I, j ∈ J, k ∈ K.

8. Constraint on latest delivery time at demand points:

tijk + (2nijk − 1)
Dij

V
≤ δijkFj , i ∈ I, j ∈ J, k ∈ K.

9. Served tonnage should not exceed demand:∑
i∈I

∑
k∈K

βijk ≤ dj , j ∈ J.

10. Domains of decision variables:

δijk ∈ {0, 1} , nijk ∈ Z≥0,
βijk ≥ 0, tijk ∈ R≥0 , (i, j) ∈ E, k ∈ K.

3.2 Max-Flow Problem with Variable Capacity
The problem described above contains an interesting com-
binatorial subproblem when we restrict ourself to consider
just the first objective function (i.e. maximizing the service
level). The problem becomes one of constructing a flow net-
work with the best maximum flow, where the nodes are fixed,
but we are given flow capacity (in term of vehicles) as re-
sources to be distributed among the links. Each vehicle will
contribute a certain amount of flow capacity when assigned to
a link, depending on the capacity of the vehicle and the num-
ber of trips it can make on that link, due to the inherent con-
straint of the link. When assigned to a link adjacent to a de-
mand point, the number of possible trips is further restricted
by the time window specified at the demand point, whichever
is the lower. Hence, when assigned to different links, it is
likely that a vehicle will contribute different amount of flow
capacity. This, and the discrete nature of the vehicles make
the problem nontrivial.

This problem consists of two levels of decision making. At
the lower level, given an assignment of vehicles to links, we
can construct a flow network corresponding to the resulting
distribution network. The capacity of a link in the flow net-
work represents the maximum number of goods that can be
sent through that link. Maximizing the service level in the
distribution network is then equivalent to finding the maxi-
mum flow of the flow network. This is a well-studied prob-
lem, and efficient solutions are readily available. Given a
flow network, the value of its maximum flow is unique and
equivalent to the maximum service level achievable on the
corresponding distribution network. On the higher level, the
assignment of vehicles to links is another decision problem,
which is combinatorial in nature. We are required to find an
assignment of vehicles to links such that the corresponding
resulting flow network has the highest maximum flow among
all possible vehicles assignment. Such flow problems, with
variable capacity sizing, have been considered in the litera-
ture, see [Huang et al., 2002] for example.

To be more precise, given an instance of the problem de-
fined on the directed graph G = (V,E), and an assign-
ment of vehicles to links, we can construct the flow network
G′ = (V ′, E′), such that V ′ = V ∪ {0} ∪ {∅} ∪ I ′2 is the

nodes of the flow network. It consists of the additional source
node 0, sink node ∅, and duplicates of the DC nodes I ′2. For
each i ∈ I2, there is a corresponding i′ ∈ I ′2. The links of
the flow network consist of the following, E′ = {(0, i)|i ∈
I1} ∪ {(i1, i2)|i1 ∈ I1, i2 ∈ I2} ∪ {(i, j)|i ∈ I1, j ∈ J} ∪
{(i, i′)|i ∈ I2, i′ ∈ I ′2}∪{(i′, j)|i′ ∈ I ′2, j ∈ J}∪{(j, ∅)|j ∈
J}. The capacity of each link in E′ is defined as follows.
Each link (0, i), i ∈ I1 going from the source to an RDC node
has infinity capacity. Each vehicle k ∈ K assigned to the link
(i1, i2) ∈ E, i1 ∈ I1, i2 ∈ I2 will contribute Ni1i2ck capac-
ity to the link (i1, i2) ∈ E′ in the flow network. Each vehicle
k ∈ K assigned to a link (i, j) ∈ E, i ∈ I1, j ∈ J will con-
tribute min{Nijck, b(Fj−Sj)ck/(2Dij/V)c+1} capacity to
the link (i, j) ∈ E′, where the second term is the maximum
flow allowed by the time window constraint. Similarly, each
vehicle k ∈ K assigned to link (i, j) ∈ E, i ∈ I2, j ∈ J will
contribute capacity given by the same expression to the link
(i′, j) ∈ E′. Each link (i, i′) ∈ E′, i ∈ I2, i

′ ∈ I ′2 has the
capacity equals to wi, the holding capacity of DC i. Finally,
each link (j, ∅) ∈ E′, j ∈ J has the capacity equals to dj the
amount of goods required by demand point j.

Figure 1: (Left) The tuple on a link represents the maximum
number of trips and vehicle capacity respectively. The num-
ber on a DC is its holding capacity, and the number on a de-
mand point is the requested quantity. (Right) The flow net-
work constructed from the assignment, with max flow of 215,
providing 61.43% service level.

It is not difficult to see that the max flow of the constructed
network gives the maximum achievable service level given
the assignment. Figure 1 shows an example of an assign-
ment of vehicles to links and the corresponding flow network.
In our solution approach, we will be using the property de-
scribed here to decompose the problem.

4 Solution Approach
As shown above, our problem can be formulated as a bi-
objective MILP model. Since the two objectives are po-
tentially conflicting, a standard approach is to represent the
trade-off between two conflicting objectives as a Pareto front,
which is essentially a plot of all non-dominated solutions.
One way to generate the Pareto front is to fix a range of ser-
vice levels and for each service level, solve the MILP model
to minimize the fuel consumption. Unfortunately, such exact
approach is not scalable. For even a small model with just 1
RDC, 2 DCs and 10 demand points, it takes on average more
than 16 hours to obtain a single solution point.

As the generation of Pareto fronts is computationally in-
tractable for multi-objective optimization problems of prac-



tical size, past research has to rely on different heuristic
approaches to approximately solve the problem (e.g., see
[Bringmann et al., 2011]). An important class of such ap-
proaches is the class of evolutionary algorithms (EA) which
depends on an evolving population of candidate solutions.
EA is particularly popular among researchers in the field
since a pool of feasible solutions are available at all times,
and solutions will keep improving over time.

As our problem comes with a special structure (a variant
of the fixed capacity max-flow problem), which we embed
into our algorithm design. The resulting algorithm is a com-
bination of local search algorithm which considers the prob-
lem structure, and the EA which maintains and evolves the
solution population. In the EA literature, such combination
is commonly termed as a memetic algorithm (see [Moscato,
1989] for a recent survey). Our design of the memetic algo-
rithm is presented next.

4.1 A Memetic Algorithm
The pseudo code of our Memetic Algorithm for Green logis-
tics (MAG) is given in Algorithm 1. Besides the problem data
introduced in the previous section, additional parameters are
required to execute MAG: Np denotes the size of population,
No denotes number of offspring to be generated,G is number
of generations, q is the probability that a parent is chosen from
non-dominated solution, rc is the point where the crossover
should occur, and finally qm is the mutation probability.

In Algorithm 1, the initial population is generated in line 1.
For each new generation, each solution in the current popu-
lation is first improved using local search (line 4). After all
solutions are improved, both parents are sampled indepen-
dently with parameter q (the probability that a parent must
be chosen from the non-dominated set). The crossover then
happens at rc (line 9). The newly created offspring are then
subject to mutations with probability qm (lines 10 and 11).
After No offspring are generated, the top Np solutions are
then selected as the next generation (line 15). The details of
Algorithm 1 are explained next.

4.2 Solution Representation & Fitness Function
A solution is represented by an array A of size |K|, where
each elementA[i] represents the link that vehicle i is assigned
to. If vehicle i is not assigned to any link, a special code na
is used. The domain of A[i] is set K plus na.

A solution’s fitness is a two-tuple which contains both the
service level and the total fuel consumption. To compute both
service level and fuel consumption, we need to first construct
the flow network (where link capacities are derived from vehi-
cle assignments) and then solve the max-flow problem. After
solving the max-flow problem, the fuel consumption can be
obtained based on the actual distances traveled by all vehicles
on their respective links times their fuel efficiencies.

The construction of the flow network from vehicle assign-
ment is given as follows:

1. Start with the same number of vertices as the number of
(RDCs + DCs + Demand Points).

2. An edge exists in the flow network if there is at least one
vehicle assigned to the corresponding link.

Algorithm 1: Memetic Algorithm for Green logistics
(MAG).

Input: All problem-related data, Np, No, G, q, rc, qm.
Output: Final population.

1 P0 ← INIT(Np)
2 t = 0, Pt+1 ← {}
3 while t ≤ G do
4 Pt ←

⋃
p∈Pt
{LOCALSEARCH(p)}

5 i = 1
6 while i ≤ No do
7 p1 = SAMPLE(Pt, q)
8 p2 = SAMPLE(Pt, q)
9 (p′1, p

′
2) = CROSSOVER(p1, p2, rc)

10 p′1 = MUTATE(p′1, qm)
11 p′2 = MUTATE(p′2, qm)
12 Pt+1 ← Pt+1

⋃
{p′1, p′2}

13 i = i+ 2
14 end
15 Pt+1 ← SELECTION(Pt+1, Np)
16 t = t+ 1
17 end
18 return PG

3. The capacity of an edge is the total capacity of vehicles
assigned to the corresponding link.

4. Replace each vertex corresponding to a DC by a pair of
vertices d and d′, and create an edge from d to d′ with
capacity equals the capacity of the DC. Incoming edges
to the DC go to d, outgoing edges from the DC go out of
d′.

5. Add a source vertex and an edge from the source vertex
to each RDC vertex with infinite capacity.

6. Add a sink vertex and an edge from each demand vertex
to the sink vertex with capacity equals the demand at the
corresponding demand demand point.

The algorithm used for computing maximum flows is the
standard Ford-Fulkerson algorithm. It runs in time O(|V |3),
|V | being the number of vertices in the flow network. The
computation of total fuel consumption is straightforward.

4.3 Initialization
The initialization procedure is given as follows:

1. Generate a random real number p between 0 and 1 (ex-
clusive), which becomes the probability of a vehicle be-
ing assigned to a link.

2. Create a solution where each vehicle will be assigned
to a (uniformly) randomly chosen link with probability
p (in other words, with probability (1 − p), the vehicle
will be assigned na).

3. Repeat the above steps until the population size is
reached.

4.4 Local Search
Local search is performed on each non-dominated solution in
the current population as follows. A neighbor of a solution



is another solution with the same array differing only in one
position (one vehicle). First, a set of random neighbors is
generated, the size of which is given as a parameter. Second,
for each of superior neighbors in the set, where a superior
neighbor is one that dominates the current solution, compute
its distance from the incumbent. The superior neighbor with
maximum distance will be chosen. If no superior neighbor
can be found in the set, keep the incumbent solution. The
distance between two solutions p1 and p2 is computed as:

1

M
(p1.fuel− p2.fuel)2 + (p1.service− p2.service)2, (1)

where 1/M is the normalizing factor. Repeat the above steps
until maximum number of iterations is reached.

4.5 Crossover and Mutation
The crossover and mutation operators are described as fol-
lows:

1. With probability q, a parent is uniformly chosen from
the set of non-dominated solutions of current population
(Pt), otherwise it is uniformly chosen from the whole
population.

2. Crossover is performed by exchanging at fixed point (de-
noted as rc), segment 1 from p1 and segment 2 from p2
will form the first offspring, while segment 2 from p1
and segment 1 from p2 will form the second offspring.
Note that feasibility is always maintain in crossover.

3. This operation is performed until the maximum number
of offspring is reached (No).

4. The children are then added to the next population.
5. In the mutation step, each solution in the population has

a fixed probability (qm) of being mutated, where an ele-
ment of its array is changed randomly.

4.6 Selection
Of all the newly generate offspring in the population Pt+1,
the non-dominated solutions (against all other solutions in
Pt+1) are chosen first. If there are still vacancies, the domi-
nated solutions whose closest distance to the non-dominated
set is smallest will be chosen first. The distance between two
solutions is computed as in (1).

5 Experimental Results
In our empirical study, we perform two sets of experiments.
The first set, using generated data with certain properties,
aims to analyze the effectiveness and efficiency of our solu-
tion approach. This is done by comparing our solutions with
the exact solutions obtained from running CPLEX. The sec-
ond set, using real-world data obtained from a large logistics
company, aims to demonstrate the capability of our solution
in supporting real-world decision makers. In particular, we
quantify the impact of two types of investment decisions that
this company can make: 1) improving fuel efficiency of the
fleet, and 2) relocating DCs).

The parameters used by all our experiments are given as
follows: N=100; No=500; G=10; q=0.5; qm=0.25; and rc
(i.e. the crossover point) is set at elements b0.75|K|c and
b0.25|K|c for p1 and p2 respectively.

5.1 Run Time vs Optimality
We generate three sets of data that are used to compare our
solution approach with the exact method. Each set of data
describes a small distribution network of 1 RDC, 2 DCs, and
6 demand points. The differentiating features between the
sets are the types and the number of vehicles used. The first
set uses 34 vehicles with high capacities and high fuel con-
sumptions. The second set uses 68 vehicles with medium ca-
pacities and fuel consumptions, while the third set uses 270
vehicles with low capacities and fuel consumptions. In terms
of computational efforts, the three sets are in increasing or-
der of difficulty. To generate the exact solutions, we fix a
range of service levels with interval of 0.1 as constraints, and
for each service level, we solve the MILP optimally using
CPLEX solver (on a machine with Intel i5@3GHz proces-
sor). The time limit is set to 10 hours for each data set. We
believe that this is a reasonable limitation, given that our solu-
tion approach returns its solutions within minutes on the same
machine. The results are shown in Figure 2.

The exact method manages to return all solution points on
the first data set (Figure 2a), up to 0.5 service level on the sec-
ond (Figure 2b), and only up to 0.3 service level on the third
(Figure 2c). The inability of the exact method to generate
enough points for a reasonably sized data justifies the use of
heuristic method in this case. We observe that our method is
able to give a good approximation of the exact solutions espe-
cially at 0.75 service level or less. At higher service level we
see a drop in performance of the approach (Figure 2a). This
is one issue that we will address in our future work. One pos-
sible extension that might overcome this problem is to focus
on the part of the population that are around the given range.
This will also give us a greater control on the population’s
evolution.

5.2 Real-World Case Study
The data used for the second set of experiments is based on
an actual business operational problem. Here, the distribu-
tion network designed to deliver finished goods to customers
is three-echelon. There are 5 regional distribution centers
(RDCs) and 13 distribution centers (DCs) to serve more than
1800 demand points. Each demand point can be character-
ized by the total tonnage of the goods to be delivered to that
particular demand point. Also, there are restrictions on the
time periods for which the goods must arrive, failing which
results in a case of service failure. In order to support the
scale of operations, more than 5000 vehicles are deployed.
There are 10 different types of vehicles being used, and they
are of varying capacity and fuel efficiency. Quick review also
shows that for the existing fleet, trucks with higher capacity
tend to have a lower fuel efficiency. Moreover, trucks are as-
signed to the facilities (either RDCs, or DCs) which will then
be used to serve specific lanes originating out from the fa-
cilities. With increasing environmental concerns, it is there-
fore important to develop an understanding on how the dif-
ferent strategies impact fuel consumption and service levels
at the same time. This will help to design a truck assign-
ment/deployment approach that balances both environmental
and commercial concerns. Our results are shown in Figure 3.
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(a) Low number of vehicles with high capaci-
ties and fuel consumptions.
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(b) Medium number of vehicles with medium
capacities and fuel consumptions.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

F
u
e
l 
C

o
n
s
u
m

p
ti
o
n

Service Level

Approximated Solutions
Exact Pareto Front

(c) High number of vehicles with low capaci-
ties and fuel consumptions

Figure 2: Comparing against the exact method.
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(a) The performance of original setup.
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(b) Increase vehicles’ fuel efficiencies by
20%.
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(c) Reduce the distances from DCs to demand
points by an overall 10%.

Figure 3: Analysis using our method on a set of real-world operational data.

Figure 3a shows the evolution of the algorithm on this data.
It shows the states of the population at three different iteration
points: at initialization, at iteration 5, and at final stage (iter-
ation 10). One property that we observe is that our approach
converges quickly to local optima. After iteration 10, addi-
tional iterations would not increase the quality of the popula-
tion significantly. This is why we set the number of iteration
to 10 for this particular case, giving us the balance between
running time and the quality of solutions. It takes about one
hour to complete 10 iterations.

We then make two separate modifications on the data, and
re-run our algorithm on the two modified datasets, to see how
sensitive the solutions are to these changes. The first modi-
fication is on the vehicles. For each type of vehicles we in-
crease its fuel efficiency by 20%, and the result is given in
Figure 3b, which shows that from around 0.27 to 0.55 service
level, fuel consumptions are reduced by around 4.2%. It is
safe to assume that the improvement will be quite uniform
across the whole range of service levels. The reason why we
are saving only 4.2% of fuel and not 20% is due to the bias to-
wards service level in the fitness function, and we recognize it
as a limitation of our current approach. The second modifica-
tion is a reduction in the overall distance from DCs to demand
points by 10%. Here, we ask the question: if it is possible to
relocate the DCs such that the overall distance to the demands
points are reduced by 10%, how much saving can we expect

from fuel consumptions? The result, as plotted in Figure 3c,
shows that we can expect a saving of around 9% across the
whole range of service levels. Therefore, the solutions are
much more sensitive to changes in connecting distances than
to changes in fuel efficiencies. This is one demonstration of
how our solution approach can be used to better guide deci-
sion makers in deciding the kind of investments to make and
their impact to the company’s performance in terms of service
level and environmental sustainability.

6 Conclusions
With the increasing emphasis on sustainable transportation
planning, there has been a lot of research on developing opti-
mization models that can help planners with decision making.
Inspired by a real world case study, we developed a mixed
integer bi-criteria optimization model to solve a tactical plan-
ning problem in vehicle resource allocation. We then pro-
posed a memetic algorithm to derive an approximate Pareto
front for the problem, and demonstrated with different se-
tups that the method allowed us to develop insights into how
different scenarios have led to different conclusions. Future
works will address some limitations of our current approach,
which include: (1) Drop in performance in the higher range of
service levels, and (2) Bias in the fitness function. We would
also like to compare our approach to existing (meta-)heuristic
multi-objective optimization methods.
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