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Clustering of Search Trajectory and Its Application to Pagger Tuning

Lindawati, Hoong Chuin Lau and David Lo
School of Information Systems, Singapore Management Wsitye

1 On a separate front, there have been approaches that agtempt

Abstract.  This paper is concerned with automated classife find problem-independent features using correlationhef ¢b-
cation of Combinatorial Optimization Problem (COP) instem for jective function and the search space (fitness landscapgses)a
instance-specific parameter tuning purpose. We propos@ltiea- [2, 14, 32, 39]. Problem-independent features can be usaitifon
Tra Framework, a generic approach to Céter instances based orierent combinatorial optimization problem, such as TSH,[GAP
similar PAtterns according to search TRe&tories and apply it on [2] and Knapsack Problem [39]. Examples of these featureditar
parameter tuning. The key idea is to use the search trajeator ness distance correlation (FCD) [32, 14] and ruggedned$icest
a generic feature for clustering problem instances. Themage [2, 14]. Unfortunately, these features can only be measafted an
of using search trajectory is that it can be obtained fromlaogl- extensive analysis of the landscape which proves to be tamsum-
search based algorithm with small additional computatimet We ing and to some extends are impossible for certain instances
explore and compare two different search trajectory rgmtegions,  Our work is aimed at finding problem-independent featurdnimit
two sequence alignment techniques (to calculate simiajias well reasonable computation time. In this paper, we proposeliifeaTra
as two well-known clustering methods. We report experiment framework (CLUstering instances with similar P#erns according to
sults on two classical problems: Traveling Salesman ProlfleSP) search TRAectories) where we introduce the notion of an instance’s
and Quadratic Assignment Problem (QAP) and show@laPaTra search trajectory, which is defined as the path that a loaatkalgo-
offers encouraging result both in cluster quality and olgrerfor- rithm follows as it searches from an initial solution to itsighbour
mance. We also apply theluPaTra framework on an industrial casefrom one iteration to the next, as the problem-independesiife
study involving 8 parameters, and compare with the perfaceaf and exploit data-mining techniques to cluster problemainsgs ac-
default settings used by the company. cording to their search trajectories. The rationale of fh&ture is
Keywords. generic feature, search trajectory, instance-based apiedicated on the relationship between fitness landscapaearch
mated parameter tuning, sequence alignment, local selyatithm trajectories [8, 9]. We use search trajectory as a proxytferfitness

landscape. The advantage of our approach lies in the facthba
search trajectory may be computed from a local-search balged

1 Introduction rithm. Hence our approach is problem-independent and nmagems
tually be applied to any local search-based algorithm.
Meta-heuristic algorithms play an important role in sotyicombi- ~ We implement our proposed framework on instance-specific pa

natorial optimization problems (COP) in many practicallaggtions. rameter tuning scheme where we use the framework to clusiaer t
Even though a meta-heuristic algorithm does not guarariealy ing instances and apply an existing one-size-fits-all algor (such
optimality, it generally provides good solutions in reasble time as CALIBRA or ParamlILS) to derive the best parameter condigur
[5]. Previous studies reveal that the performance of a tetaistic tions for the respective clusters. This cluster-basedrreat has been
is dependent on the instance specific characteristicst=athat de- Proven effective in solving the parameter tuning problet 23, 26].
termine its intrinsic difficulty [25]. Consequently, theilas been in- Our approach is similar to ISAC [20], but instead of usinglpem-
creasing interest in finding the instances features that ilapact on SPecific features, we propose a problem-independent tedtiuilds
difficulty in terms of performance to improve the algorithrerfor- 0N two earlier works: (1) the tight correlation between fitniéand-
mance [2, 11, 12, 32, 33, 36, 37, 38, 39, 40, 41]. scape and search trajectories [8, 9], and (2) the tight ledioa be-
Various problem specific features have been proposed foda wiveen the fitness landscape and algorithm performance [GRic
range of combinatorial optimization problems in the litara. Some P0ld conjecture is that trajectory patterns can provideigoce for
notable features are flow dominance for QAP [11, 37, 38, 4@] a¥ftling parameter confl_gurat|ons; more premse_ly, We_\lzxelihat if
population correlation structure and constraint slackrfes Knap- & parameter configuration works well for a particular insgarthen
sack Problem [12, 33]. The most straightforward featuresthose it W!|| also Wor_k well for mstan_ces Wlth similar fitness laschpes
that are extracted from the problem or instance definitiseifsuch (Which can be inferred from their trajectory patterns).
as the number of variables and constraints, which can beetdetdo ~ This paper extends the vanilla CluPaTra framework recepry
numerous candidate features using computational feaktracon Posed by the same authors in [24] by considering differeriwts
processes [36]. Other non-straightforward features mawire large for its three major components: search trajectory reptatien, sim-
scale experimental studies and highly dependent on thelledge of ilarity calculation, and clustering method. We exploresthifferent
a domain expert in a particular problem. Not only does it tadmmen- techniques in seeking to improve the accuracy of cluster@igythe
dous human effort, the features, most of the time, cannotbsed Search trajectory representation, we introduce the tiansiequence

on another problem. representation, and compare it with the exact sequencesema-
tion proposed in [24]. We experiment with two variants ofrpase
This is an extended version of the conference paper thatappeLION5 sequence alignment to calculate search trajectoriessityjland we



apply two well-studied clustering methods to cluster th&tances. Parameter Domains & Iniial Value
We examine the effects of these different techniques exygarially.

Hence, the major contributions (and thus the flow) of thisgpagye Instance based ~ Automated Tuning Parameter
summarized as follows: Cluster 1 Cluster

e We propose a new problem-independent feature extracteu fro Lame c| ) Cont1 T;;ac’g:y Tesing
the instance’s search trajectory. nsances, | Cisieing |-y r — C"P”rzgclé':s‘b”—flﬁ—‘ —— Prodlem

rocess Conf2 .

e We present CluPaTra, a novel framework for clustering pobl i|=|| Cluster3 Cluster Best i|=||
instances using the problem-independent feature, andcitte Cont3 || Configuration
earlier version by introducing and comparing new diffeneanri- Callforeach  Callvith difierent
ants for CluPaTra framework components. Training Instances Parameter Setting

Retum

* We implement CluPaTra on instance-specific parameter gunin  Reun Sea h Soluton Cost

scheme to find good set of parameter for a particular algaorith )
Figure 1: CluPaTra Framework

e We investigate experimental performance in two classicPC
problems: the Traveling Salesmen Problem (TSP) and Queadrat

Assignment Problem (QAP), as well as an industrial caseystud \we measure the target algorithm performance based on the qua
ity of their solutions. We define target algorithm perforroafi{ as
- follows:

2 Problem Statement and Definition oTows
Definition 4 (Performance Metric []) Let ¢ be a problem in-
stance, andAx (i) be the objective value of the corresponding so-
lution for instance obtained by a target algorithmd when executed
under configuratiorx. LetOPT (i) denote the best known values for

instancei. H, () is formulated asH, (i) = W

In this section, we define the clustering and parameter tupinb-
lem.

2.1 Clustering Problem

We define the clustering problem as follows:
For benchmark instances with known global optimum value, we

Definition 1 (Clustering Problem [CP]) Let I be a set of problem use the known global optimum value as @$7°(i), while for new
instances andl’ be a set of pairwise similarity score for all instancénstances, we use the target algorithm’s best previousbyvkinso-

in I, the CPis the partitioning off into & clusters{C1, C2, Cs, ..., lution. The function is highly non-linear and very expensive to
C} such that the cluster quality is maximized. compute as the parameter and instance space may be extiargely
Using performance metritl, we define the instance-specific param-

The different formulas to compute the pairwise similaritpre eter tuning problem as follows.

will be proposed in the subsection 3.3. We measureqtradity of
a clustering by usingxtrinsicmethod. Extrinsic method compares
the clusters against the known class labelgm@und-truthclusters
(i.e. the set of clusters which represents the ideal/opiifnatering)
[10]. We define the cluster quality as follows:

Let I (resp. I;) be a set of training (resp. testing) instanc@s,
be the set of clusters generated from the training phaseCgrioe
the ground-truth clusters. Each cluster ine C has an associated
homeclusterc, € C, which contains the largest number of instanc
contained irc (ties broken arbitrarily). %S CluPaTra

Definition 5 (Instance-Specific Parameter Tuning [ISPT]) Given
a set of instance$, a parameter configuration spac¢g for a target
algorithm A and a performance metri¢{, the ISPT problem is to
find a parameter configuratiox € © for eachi € I such that,(7)
is minimized oveP.

In this section, we present the CluPaTra framework and itseth

Definition 2 (Training Clusters Quality Score [Q;,4:.]) For each ) . . L
najor components: search trajectory representationagityi cal-

clusterc € C, letmax(c) count the number of instances in the clu lati d clusteri thod and diff ¢ i
ter that belong to the associated home clusigy,..;,, is defined as culation and ciustering method and propose diierent wasiaor

the sum ofnax(c) over allc € C divided by the number of instance hese components. We then d_e_scnbe the mplementaﬂonuﬁi—?l
in 7. ra framework in instance-specific parameter tuning.

Definition 3 (Testing Instance Mapping Score D;.:]) For each 31 cluPaTra Framework
instance € I, we say that is "matched” if it is mapped to a cluster

¢ € C'whose home clustet, € C, also contains. Q... is defined The CluPaTra framework illustrated in Fig. 1 is divided irttwo
as total number of such matches divided by the number ofrineg parts: the training and testing phase. In training phaseviiesex-
in I;. ecute each training instance and record the solutionsedisiThen
transform them to a directed-sequence. We calculate thasity of

each sequence using pairwise sequence alignment andmenfics-
tering using hierarchical clustering.

For instance-specific parameter tuning, we refer the dlyorivhose  In testing phase, we record a testing instance’s searobctoay
performance is being tuned/configured astrget algorithmwhile and match it against the clusters to find the most similarteiu3he
the one used to tune/configure as toafigurator steps involved in the training and testing phases are showigi 2.

2.2 Parameter Tuning Problem



Ersgg:jurzzrg?éré?zgisrﬁhm; Table 1: Position Types of Solution
i : Tr?:’;:ggl'gzﬁi';cuer:ﬂon_ Position Type Label Symbol< = >
init - ’
Outputs: C: Set of clusters of instances i SLMIN (strict local min) S + - -
Method: LMIN (local min) M + + -
1: LetTRAJ = set of search trajectories obtained from runnihg IPLat (interior plateau) I -+ -
on I usingX;ni¢; SLOPE P + -+
2: LetSEQ = setof sequences derived fraftRA.J; LEDGE L + 4+ 4+
3: For each pair of |‘nstances inIxI LMAX (local max) X -+ 4
4 Lets; =SEQ); SLMAX (strictlocal max) A - - ¥
5.  Letss = SEQ(®);
6:  Score[si,s2] = similarity(s:,s2); '+ = present, -’ = absent; referring to the presence of
7: LetC =set of clusters obtained by clustering basedoore; neighbors with larger &), equal ('=") and smaller
8: OutputC; ('>") objective values with larger ¢’), equal (‘=) and
_ smaller (>’) objective values
Procedure TestingPhase
Inputs: A: Target algorithm;
@ Arbitrary testing instance; N tional random direct neighbors (if needed) to determingitsition
¢ Set c.)f.dUSter.S (OUt.pUt from training phase); types. This may not be theattual’ position types, but it is suffi-
Xinst: INitial configuration; . .
Outputs:  BestClust: best match cluster: cient to represent the Io_cal top(_)logy for each solution. Steps to
Method: transform the search trajectory into an exact sequencesdodl@ws:
b I;itfﬁgingiji?mh rajectories abtained from runnitg e When running the target algorithm, for each solution, weréc
2: Letseq = a sequences derived froma; its quality and its direct neighbor position. The directgigior
3: Foreachclustet € C position is explored based on the target algorithm’s neighb
4:  LetScore|c| = average similarity fronseq to all instances iw; hood structure (i.e2-opt, 3-opt, LK etc). Direct neighbor posi-
5: LetBestClust = ¢, whereScore[c] > Score[c] forall ¢’ # cin C, tion is represented as 3 binary digits with 1 (yes) and 0 (op) f
6: OutputBestClust; direct neighbor that has same, better and worse objectlue va

respectively. Each time the target algorithm find direcghbbr

that has the same, better or worse objective value, the heigh
bor position is updated to 1. Generally, this exploratiodage

by the target algorithm during the local search with smatliad
tional computation time. For some target algorithm, we rneed
run additional neighborhood exploration to find direct mdigr
position. We explore few numbers of random direct neighbor
and stop the exploration as soon as we find at least one neighbo
that has the same, better and worse objective value.

Figure 2: Training and Testing Phase

3.2 Search Trajectory Representation

Search trajectory is defined as a path of solutions discdveyehe
target algorithmA as it searches through the neighborhood search
space [14]. Search trajectory may vary for each instanceerde
dent on the number of movements that the target algorihmakes.
It can be represented as a directed sequence of symbolse folth ) _ o N
lowing, we propose thexact sequencand transition sequencéo e For each solution, we calculate its deviation and deterrime

transform the search trajectory into directed sequencgmbsls. neighbor position based on Table 1. We then combine those two
attributes into a symbol.

3.2.1 Exact Sequence . .
e We compress the search trajectory sequence by removing the

In an exact sequence, a symbol on the sequence represefii@nso consecutive repetition symbols and represent it by onlysyne

along the trajectory. It encodes two solution attributdsviation bol.

and position type combined into a symbol with the first two digits

being the deviation of the solution quality and the lasttiging the e To cater to the fact that some target algorithms may allovesyc

position type. and (random) restarts, we add two additional symbols: '@ an
The deviation is computed as the the deviation of solutioal-qu 'J". 'C’ is used when the target algorithm returns to a pasiti

ity from OPT (as defined in Definition 4). It represents in a sense a that has been discovered previously, while 'J' is used when t

global property of the solution (since it is compared wité ¢fiobal or local search restarted.

best known valu€® PT’). The position type represents in a sense the

local property of a solution with respect to its search neighood,  These steps only run once for each instance. An example séthe

and is defined based on the topology of the local search nefghlguence representing the eil51 search trajectory in Fig1&ls11L -

hood [14]. There are 7 position types, determined by evailgahe 09L-07L-07P-06P-04S-05L-J-21L-19Eor each solution in eil51

solution objective value with all its local direct neighBbobjective search trajectory, the quality and neighbor position i®reéed and

values - whether it is better, worse or equal. The 7 positippss are then transform to a sequence (note that the neighbor posginot

given in Table 1. illustrated in the figure). Notice that after position 8, tlaeget al-
Since not all local search algorithm explore all solutiogiect gorithm performs a random restart, hence we add 'J’ symber af

neighbors (as inBest improvemenitstrategy), we explore: addi- position 8.



3.2.2 Transition Sequence ) )
Table 2: Example of Sequence Alignment from 2 TSP instances

In contrast to the exact sequence representation, a icanséquence kroal00 19L 19P 18P 17P 16P 15P 14P 13P 11P 10P
is made up of symbols that represent a transition (or movenhen | | | | | | | | |

tween two neighboring solutions in the search trajectosreHve no bier127 19P 18P 17P 15P 13P 11P 10P
longer focus on the solution position, but rather we trackrtiove-
ment along the search trajectory in order to detect trajexstdhat score 1 41 41 -1 +1 -1 41 +1 41

move in parallel but may not be identical (their correspogdpo-
sitions differ by a constant value). We use transition segaeo
capture similarity across different size instances.

In transition sequence, each symbol contains three pérthe(ab-
solute difference in deviation between the first and secohdisns;
(I1) the position type of the first solution; and (l11) the ptisn type of
the second solution. Note that the transition sequence eaetived
from the exact sequence.

Similar to an exact sequence, a transition sequence mayalso
two additional symbols: 'C’ and 'J'. These attributes argoadieneric
and can be easily retrieved/computed from any local-selaasked al-

gorithm albeit different problems. An example of the tréiosi se- o complexity for sequence alignment@m?xn?), wherem is

quence representing the eil51 search trajectory in FigABis2LL- the number of instances in the training set anis the maximum
2LL-0LP-1PP-2PS-1SL-J-2LWwhich is derived from the trajectorySequence length of the sequences

sequencd5L-111L-09L-07L-07P-06P-04S-05L-3-21L-19L

similarity more robustly. Under robust sequence alignmambatch
occurs if one of the following conditions is satisfied: (I) el'two
symbols are identical, and (II) Theosition typeof the symbols is the
same and the absolute difference in tlewiationattribute of the two
symbols is less than a certain threshold (for simplicity, se¢ this
threshold value to 1 in our experiment).

Both sequence alignment techniques are implemented using s
dard dynamic programming [10], with a complexity ©fn?). To
cluster instances (see subsection below), we need to cemjuitar-
ity scores for all possible pairs of training instances. ¢¢grihe total

3.3 Similarity Calculation 3.4 Clustering

After having computed the similarity scores, we derive tigtathce
scores by taking the reciprocal of the corresponding sritylacores,
upon which instances are then clustered. We apply two weiak
clustering approaches: AGNES [22] ahdnedoids clustering [21].

Having represented trajectories as linear sequencesndtigal to
apply pairwise sequence alignment to obtain the similadtyre be-
tween a pair of trajectories. In the following, we introdts® tech-
nigues for pairwise sequence alignment to calculate segajgctory
similarities.

3.4.1 AGNES

33.1 Basic Sequence Alignment AGNES or AGglomerative NESting is a well-studied hieraoethi

This is the basic sequence alignment in [24], which applissaa- clustering approach in data mining and machine learning. [22

dard sequence alignment method to maximize the number chet works by creating clusters for each individual instancetaed merg-

symbols between two sequences sequentially, allowing. gamsir ing two closest clusters (i.e., a pair of clusters with thaléest dis-

of matched symbols gives a positive score (+1), while a gapsgitance) resulting in fewer number of clusters of larger sizesil all

a negative score (-1). An example of sequence alignmenthfer instances belong to the same cluster or a termination dondi

kroal00andbier127 search trajectories from Fig. 4 is illustrated ineached (e.g. a prescribed number of clusters is reached).

Table 2. To determine the minimal number of clusters to be used, wé/app
Since the length of a search trajectory may vary, we impleéraerthe L method [34]. TheL method works by using the evaluation

local alignment strategy that align only portions of thetsmtpes but graph where the-axis is the number of clusters and tpaxis is the

not the entire length. One well-known algorithm that parfersuch value of the evaluation function atclusters, which in this paper, is

sequence alignment is tlenith-Waterman algorithid 0] that works the average distance among all instances in two differeistets. L

by comparing all possible alignments regardless of thaiytles, start method determines the number of clusters by fitting the atiin

and end positions. It then chooses the best alignment afighex@nt graph into two lines that most closely fit the curveand chogshe

that maximizes the similarity score, which is the sum of tberss intersection point between those two lines as the optimumbmu

for matched symbols and gaps in the alignment. Note that ¢se of clusters. The intersect point is the point of maximum etmve

alignment may start and end anywhere in the two sequencésngo of this graph which has minimum average distance (calatilasing

as it produces the best similarity score. In our paper, wetaiti@ root mean square error) for both the left and right side ofritersect

Smith-Waterman algorithm and use the best similarity stmreach point. Itis calculated using the following formula:

pair of sequences. The final similarity score will be normedi by

dividing this score by, x (|Sequence;| + |Sequences|).

¢ =min

RMSE(L) , RMSE(R)

nr nRr

1)
3.32 Robust Sequence Alignment where: RM SE(L) is root mean squared error in the left sidecof
The difference between robust sequence alignment and basicny, is number of points in the left side of RM SE(R) is root mean
qguence alignment is the matching rule. In the latter, twolsyls1 squared error in the right side ofandn r is number of pointsin the
are a match if and only if the two symbols are exactly idemtighile right side ofc

in robust sequence alignment, we consider partial matchihig re-  This method only requires AGNES algorithm to be run onceesin
laxed similarity calculation allows us to capture seardjetrtory’s all the clusters generated by AGNES can be recorded in oné\nuh
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Figure 3:L-Method lllustration

since we want to produce a compact set of clusters, we limitthm-

ber of clusters to less then 10. Thus, ¥h&xis only show the number

of clusters from 1 to 10. The overall complexity of AGNES with
method isO(n?) with n being the number of instances.

3.4.2 k-medoids

k-medoids is a partition-based clustering method that tepéa

breaks the data set up ift@roups as an attempt to improve cluster

Table 3: Parameters for Target Algorithm

Parameter Description Range

I.ILSon TSP

Pert number of perturbations being done [1,10]

n.improve max non-improving moves [1,10]

choice perturbation strategy where: 3=3-opi3,4]
change and 4=double-bridge move

acp acceptance criteria strategy wherd0,1]

O=accept only improving moves and
1=accept all moves
Il. SA-TS on QAP

Temp Initial temperature of SA [100,5000]
Alpha Cooling factor [0.1,0.9]
Length Length of tabu list [1,10]

Pct Percentage of non-improving iterations  [0.01,0.1]

The target algorithm to solve TSP is a well-known Iterateddlo
Search (ILS) algorithm as implemented in [9] with 4 discredeam-
eters to be tuned as describe in Table 3(l). For all instareeset
the maximum number of iteration to 1000. We applied our ticadre
gorithm to 70 benchmark instances extracted from TSPLilp.oEst
known values, we used the optimum/best values from TSPLifty F
six random instances were used as training instances amelrtizén-
ing 14 instances as testing instances. The problem sizen(timber

of cities) varies from 51 to 3038.

evaluation function [21], which in this paper, is the averatstance Quadratic Assignment Problem (QAP)

among all instances in two different cluster. It is a variai’t-means
method but it selects real data points as centers (medoidgeon-
plars) instead of imaginary points. Here we implement thepsést
k-medoids approach, which is Partitioning Around MedoidsNIp
[30].

The target algorithm to solve QAP is the hybrid Simulated An-
nealing and Tabu Search (SA-TS) algorithm (presented if).[29
uses the Greedy Randomized Adaptive Search Procedure (BRAS
to obtain an initial solution, and then using a combined Jatad
Annealing (SA) and Tabu Search (TS) algorithm to improvesthle-

To obtaink-medoids clusters, PAM begins with an arbitrary seletion. There are four parameters, discrete and continuot tuned
tion of k£ instances as medoids and assign all non-medoids instamsadescribed in Table 3(Il). For continuous parameter, sereiize it
to the closest medoids. Then in each step, a swap betweenadsedo 20 possible values by simple enumeration from minimum as-m
and a non-medoid is made as long as such swap would result itnaum value. For all instances, we set the maximum numbereof it

improvement of cluster evaluation value. PAM stops whensthap
no longer improve the cluster evaluation value. The comfjexX
PAM is O(k(n — k)?) with k being the number of clusters ance-
ing the number of instances. We need to manually specifydheer
of clusters (i.e., the parametky.

3.5

Using the cluster from CluPaTra, we apply existing one-§itzeall

Instance-Specific Parameter Tuning

ation to 500. We used 50 benchmark instances from QAPLIib, and

randomly selected 40 instances for training and 10 forrtgstirhe
problem size (number of facilities) varied from 20 to 150.r Best
known values, we used the optimum/best values from QAPLib.

Experiment Setting and Setup

We construct four instantiations of CluPaTra resultingrfrtwo
search trajectory representations (exact and transiéiot)two sim-
ilarity calculation techniques (basic and robust) using\E s as its
clustering method. The terminology used subsequentlyviengin

algorithms (such as CALIBRA, ParamiLS or GGA) to derive test Taple 4. Note that the "Standard” instantiation is the oreppsed

parameter configurations for the respective clusters. &juently,
given an arbitrary instance, we first map its search trajgdimthe
closest cluster. The tuned parameter configuration fordater is
then returned as the parameter configuration for this istan

4 Experiment Design

Here we briefly explain our experimental design for two dlzes

problems, Traveling Salesmen Problem (TSP) and QuadrasgA-
ment Problem (QAP).

Traveling Salesmen Problem (TSP)

in [24].

To record the search trajectory, we run the target algorédbainst
all instances using a random configuration and record alivtbees
of the target algorithm, unless stated other wise. The kengty be
vary. We did not set any parameter for CluPaTra since it do¢s n
have parameter.

We compared our experiment results with the ISAC methodma si
ilar clustering-approach that uses problem specific feafuhat we
implemented based on [20]. Since ISAC requires problensiipe
features, we selected the standard deviation of the citgnties, the
variance of the normalized nearest neighbour distanceghencbef-
ficient of variation of the normalized nearest neighboutatises for
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Figure 6: TSP Cluster Result Comparison. (a) Trans CluRaima
Table 4: CluPaTra instantiations for Performance Comparis (b) ISAC.

Instantia- Search  Trajectory Similarity Calcula-

tion Representation __tion 5 Verification of Similarity Preservation
Standard Exact sequence Basic Seq. Align.

Trans Transition sequence Basic Seq. Align. Prior to presenting experimental results, we provide ansifie argu-
Robust Exact sequence Robust Seq. Align. ~ ment for our approach.

Trans- Transition sequence  Robust Seq. Align. Recall that CluPaTra departs from existing approachesrianpa:
Robust ter tuning in that it does not rely on problem-specific feasyrather,

it makes use of search trajectory patterns as a genericréeatds
mentioned earlier, the rationale of using this feature &ljmated on
the relationship between fitness landscape and searcbttnags [9],
Alqu the tight correlation between the fitness landscapelgodtam
performance [32]. Since generating the entire fitness tzapsfor
each instance is time consuming and generally impracticalpro-
pose to use the search trajectory as a proxy for the fitnedsdape.
Granted that different parameter configurations may prequery)

We chose to use ParamlILS [19] as the one-size-fits-all Cmac_iglpifferent search trajectories for a given instance, ouncia that the
tor. For each cluster (or training set), we randomly sortesl in- similarity of search trajectories between instances is preservedsacro

TSP [35] and flow dominance and sparsity of flow matrix for Q
[37].

Tuning Setup

stances, ran ParamiLS 5 times and took the average perfoemain Configurations.

ensure unbiased evaluation, we then run 5-fold crossatatid [10] !N the following, we will justify this claim by providing a sies of
over those instances and measured the average performzercallo €xPerimental observations. S _
folds. To do 5-fold cross validation, we randomly dividee tin- ~ First, we provide a visual intuition for similarity preseition

stances into 5 random groups and used 4 groups as traintagges across different parameter configurations. Fig. 4 showdrtjec-
and 1 group as testing instances. We repeat the process $aimde tories obtained by 10 consecutive moves of an Iterated LSeatch
take the average. We did a non-parametric Wilcoxon sigaettest (ILS) algorithm for three TSP instances, namétpal0Q bier127
to compare CluPaTra’s overall performance with that of Péis. andeil51when the algorithmis run on two random parameter config-

We considered p-value below 0.05 to be statistically sigaift (con- urations, namely configuration | and configuration Il. Theplane
fidence level 5%). represents the search space whiis represent the objective value.

To layout the moves into a 2-dimensional plane, we calculate the

All experiments were performed on a 1.7GHz Pentium-4 machiistance between two solutions (e.g., number of differémscin
running Windows XP. We measured runtime as the CPU time ieed&P) and applithe spring model”[8]. "The spring model”provides
by this machine. As an input to the configuratior, we set aftuta heuristic for good layout where the Euclidean distance/éen 2
time of 10 seconds per run for the TSP target algorithm ands&80 solutions in thery plane is roughly proportional to their Hamming
onds for the QAP target algorithm. For each CluPaTra cluster distance. In this example, we observe that for both conftgms,
allowed each configuration process to execute the targetitign kroal00andbier127 exhibit very similar topology ((a) and (b), (d)
for a maximum of two CPU hours and to call the target algorithamd (e)), whileeil51has a different topology compared to the simi-
for a maximum of 25 x: times, wheren is the number of instancedarity of kroal00andbier127.
in the cluster. To ensure fair comparison, we set the timegéufbr Next, we provide a statistical verification of the notion Barity
ISAC and ParamlLS to be equal to the average total time netedegreservation on the trajectories produced by the TSP and QAP
run a full process of CluPaTra instantiations. This timedrids the get algorithms used in our experiments (ILS and SA-TS, settose
stopping condition for ISAC and ParamILS. following). For this purpose, we verify on random pairs oftances



Table 5: Similarity Score of Instance Pairs

Instances o o Co o " Co
200 (a) a280 similarity o (b) berlin52 similarity
. X ’: . I. TSP a280 berlin52
Sa0d ™ « S 200 | ch150 32.70 82.20 0.40 12.42 52.20 0.24
; X % [ g d1655 57.47 181.20 0.32 6.02 25.60 0.00
gmo, >’< .3 -‘—gloof ¥ M - d657 35.31 144.60 0.24 15.54 36.20 0.43
@ X § i i 2] ¥ " ; 2 ¥ 5 fl3795 14.81 262.00 0.06 2.24 16.40 0.14
ol Ee %a ol ¥Cx ¥ kroal50 412 2580 0.16 6.73 78.80 0.09
0123456780910 012345678910 krobl00 ~ 3.58 11.00 0.33 24.33 84.20 0.29
lin105 18.18 77.20 0.24 9.35 62.40 0.15
sop () CN120 similarity oo (@) 5k0100D similarity pri52 7.78 18.80 0.41 22.38 77.40 0.29
rd100 25.32 50.80 0.50 17.85 60.40 0.30
. ts225 39.55 201.60 0.20 3.88 22.40 0.17
" ! ‘ (] ! %
2100 % 3 2100
%’ ié’ Il. QAP chr20a skol100b
@ @ % chr22a 6.49 104.80 0.06 0.00 16.00 0.00
o xxyx X S X X chr22b 413 11340 0.04 120 10.60 0.11
0123345678590 012345678910 lipa50b 6.83 118.40 0.06 0.00 24.00 0.00
« Confg. | = Confg. 1l a Confg. Il x Confg. IV xConfg.V‘ nhug28 0.75 12.20 0.06 0.00 18.00 0.00
nug30 0.75 10.80 0.07 0.00 16.00 0.00
Figure 5: Search Trajectory Similarity Score between T&P30, skol00e 1.60 6.80 0.24 2.87129.40 0.02
ko90 1.60 8.80 0.18 5.04121.20 0.04

berlin51) and QAP ¢hr20a, sko100binstance and 10 other randor

instances using 5 Different Random Parameter Configurstion st_e36a 4.71 103.20 0.05 0.00 26.00 0.00
9 g tai30a 471 1220 039 0.00 13.00 0.00
wil100 0.40 5.20 0.08 0.00 41.00 0.00

o=standard deviationi=mean;c,=coefficient of variation;

across different parameter configurations. We do the fofigwfirst,

. 3 (a) Trans CluPaTra (b) ISAC
we randomly select 2 source instances (namely, benchmsidnices | 1, Training
1 . - p— — BBl ) —-— -
a280, berlin5Zor TSP andchrZO_a, sko100for QAP); we next se Tote | Joom wo0m ) I B ;Skm
lect randomly 10 other destination TSP (resp. QAP) instanbée  [J\ @174 1 k1000 WSO || EE hitinds
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randomly generate 5 parameter configurations for each dftiget |
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the target algorithm as the search trajectory samples dodlate its
similarity score.

For each source-destination pair and each configuratiorwone =

pute their similarity score (based on the Standard insitiati). The

results are presented in Fig. 5. Observe that most pairsstdrines Testing
maintain their similarity across different parameter cgmfations as | =g —==—rmrme-tm
shown by the small scatter of similarity values in each calymith =

the exception of several instances in the a280 case). Thatdevand
mean of similarity values for the different parameter camfigions
are given in Table 5. We also calculate the coefficient ofarare
(CV) which predicted the likelihood difference in each damity val-

ues [28]. The lower the CV, the higher the likelihood thatréheas
no difference in similarity values. For most pairs, the ot of
variance (CV) value is low (especially for QAP pairs), whitleans
that the similarity score across different parameter comdigons do
not differ substantially from one another.

1
angz I sko100e ‘wil 100 skolOO*

ste36¢

Figure 7: QAP Cluster Result Comparison. (a) Trans CluR&ard
(b) ISAC.

to perform clustering of instances using an arbitrary patamcon-
figuration.

Based on the above observations, we argue that even though a
given instance may have different search trajectories udifferent 6 Clusters Result
configurations, theimilarity between 2 instances is preserved across
configurations. In other words, two instances whose trajeet are In this section, we report our cluster results and time perémce
similar under one configuration will also likely be similander an- for Traveling Salesmen Problem (TSP) and Quadratic Assagiim
other configuration. This similarity preservation progeatiows us Problem (QAP).



[38] divided the instances into 5 groups: (1) random andarnifdis-

Table 6: Empirical Result tances and flows, (2) random flows on grids, (3) real-life prois,
TSP QAP (4) characteristics of real-life problems and (5) non-anif, random
Technique Training Testing Training Testing  problems. Due to the limitation of the target algorithm (ahis un-
able to solve groups (4) and (5) problems), we only use igs&n
|. Clustering Analyses from groups (1), (2) and (3). The clusters from CluPaTra B®d
Standard - - 0.68 0.70 are shown in solid boxes while tlground-truthclassification (for
Trans - - 0.85 0.90 QAP only) are shown in dashed boxes. Notice that the clusjdry
Robust - - 0.78 0.70 Trans CluPaTra is almost the same asgteind-truthclassification.
Trans-Robust - - 0.7 0.80 Furthermore, Trans CluPaTra constructs better clusterpaced to
ISAC - - 0.80 0.80 the Standard CluPaTra and ISAC with respect to cluster tyualet-
rc (Qirain aNd Qycs¢) as defined in Definition 2 and 3 as shown in
II. Total Computation Time Table 6(I). We observe that the cluster quality score fon$r&lu-
Standard 558 0.04 8.20 0.01 PaTra is the highest compared to other CluPaTra instaoriaind
Trans 5.46 0.05 8.23 0.01 ISAC.
Robust 6.02 0.07 9.01 0.03
Trans-Robust 6.05 0.07 9.05 0.03

6.2 Time Performance
1. Performance Comparison™

ParamILS 2671  2.022 2212 2273 Two most time-consuming procedures in the training phaséharse
(0.29) (0.22)  (0.15) (0.25) of calculating the similarity of trajectories and runnirgtone-size-
ground-truth - - 1928 2.094 fits-all configurator (for each cluster). Evidently, diféet similar-
(0.15) (0.21) ity calculation techniques require different computasibpudget for
Standard 2222 1929 199 2195 calculating the similarity. The Robust sequence alignnteoh-
(0.24) (0.26)  (0.19) (0.20) nique take almost four times longer than the basic sequeige a
Trans 201r 1715 1878 2.08T ment. This happens because it requires more computatianttm
(0.23) (0.27)  (0.17) (0.24) find partial-match symbols. For TSP, the average time netaledl-
Robust 2102 1.812 1889 2.10r culate the similarity of trajectories for Standard, TraRsbust and
(0.21) (0.27)  (0.18) (0.28) Trans-Robust are 10, 12, 38 and 42 minutes respectivelyQRGt,
Trans-Robust 2086 1927 190 2185 the average time needed to calculate the similarity of ¢tajees for
(0.27) (0.23)  (0.16) (0.21) Standard, Trans, Robust and Trans-Robust are 8, 9, 32 anih@tes
ISAC 2.020 1.884 1.982 2.153 respectively.
(0.25)  (0.21) (0.19)  (0.21) The other procedures in the training phase are relatively Even
) _ with different techniques, all of them require less than humé to
IV. Different Clustering complete. The average total time (in hour) needed to runveeat
AGNES_ 2.012 2.053 1718 1771 process in training phase for each fold is shown in Table).6(ll
k-medoids 1.879 1.898 2.083 2.161

+ = mean (coefficient of variation)

* = statistically significant against ParamILS .
Y50 ° 7 Parameter Tuning Result

6.1 Clustering Analyses In this section, we report our parameter tuning result favéling

Salesmen Problem (TSP) and Quadratic Assignment Probl&)Q
We compare the clusters generated by CluPaTra and ISAC ked ta

the ground-truthclassification (if exists) as the benchmark. Average

number of clusters from 5-folds for CluPaTra (standardydraobust, 7 1 Performance Comparison

trans-robust) and ISAC for TSP are 3, 6, 6, 6, and 5.8 resdyti

while for QAP are 4.2, 6, 6, 6, and 5.8 respectively. The eXxampVe evaluate the effectiveness of four CluPaTra instaotiatagainst

of cluster generated by the Trans CluPaTra instantiatidi8AC is the vanilla one-size-fits-all configurator (ParamILS) aSAC. We

reported in Fig. 6 for TSP and Fig. 7 for QAP. measure the performance by using the performance metricided
For TSP, we observe that Trans CluPaTra method is able to dagPefinition 4. Table 6(lll) shows the results of the averagen-

ture the similarity of instances with differing sizes whigtay have parison. Comparing the four CluPaTra instantiations, ws=ole that

different search trajectory symbols but have similar titaorss along the performance of Trans, Robust and Trans-Robust is signifiy

the search trajectories. Because the non-existence gfabead-truth superior to the Standard instantiation.

classification for TSP benchmark instances, we cannot ctatpe  To verify the CluPaTra effectiveness in providing best agunfa-

cluster qualitiesQ;,qin andQ;.:) directly instead it is inferred from tion for each testing instance, we run the target algorithinafl QAP

the performance of the target algorithm which is descrildater sec- testing instance in Fig. 7 using parameter configurationsfeach

tion. cluster and show the result in Table 7. From the table we obser
For QAP, we use the existing well-studied classificatioreldasn that each testing instance, except for tai35a, has the bdsrmance

the distance and flow metrics [38] as t@und-truthclassification. using parameter configuration from the most similar cluster



Table 7: Testing Instances Performance using Differensi@lts Pa-
rameter Configuration

Parameter Configuration for each Cluster

Instance Cluster C#1 C#2 C#3 C#4 C#5 C#6
nug25 1 0.48 0.64 0.69 0.58 0.58 0.58
tail2za 1 0 0 0 0 0 2.80
tailba 1 0.19 0.76 052 1.22 1.72 2.66
tai30a 1 1.86 2.81 220 257 3.03 2.65
tai3ba 1 1.49 1.38 3.37 3.75 3.047 3.95
kra30b 2 0.07 0.07 0.97 0.07 1.88 1.18
ste36c 2 191 1.71 5.08 8.95 7.84 7.82
skol100b 3 0.69 1.22053 1.16 1.31 1.29
sko100e 3 1.18 1.181.10 1.30 1.34 1.21
will00 3 0.65 0.69 0.63 0.81 0.96 0.93

Parameter Configuration for:

C#1: Temp=4000, Alpha=0.9, Length=7,Pct=0.08
C#2: Temp=2000, Alpha=0.5, Length=7,Pct=0.09
C#3: Temp=3000, Alpha=0.3, Length=10,Pct=0.1
C#4: Temp=4000, Alpha=0.3, Length=10,Pct=0.07
C#5: Temp=100, Alpha=0.3, Length=10,Pct=0.03
C#6: Temp=5000, Alpha=0.1, Length=1,Pct=0.08

Table 8: Parameters for SA on Industrial Case Study

Parameter Description Range
maxSsuccess max successes humber [100, 1000]
maxTries max tries [100, 1000]
maxComp max solutions generated [1000, 50000

maxConsReject max consecutive rejections [100, 1000]

maxChangeG max change in a variable value [100, 1000]

maxTriesG max tries to generate a feasiblgt00, 1000]
solution

coolingFactor  factor to reduce the temp [0.5, 1]

oracleStrictness the strictness of the oracl®, 100]
function

7.2 Comparison on Clustering Method

Next, we analyze the effects of different clustering methby ap-

Table 9: Industrial Case Study Result

Default ParamlILS CluPaTra
Training 2.574 2.676 0.226"*
Testing 2.391 1.521 0.154F*

+ = statistically significant against Default Configuration
* = gtatistically significant against ParamILS Configuratio

each configuration process to execute the target algoritherhaxi-
mum of 48 CPU hours and to call the target algorithm for a maxm
of 25 x n times, where: is the number of instances in the cluster. In
Table 9, we present the average of percentage deviation (Bkf-
inition 4). We compare the result of the three approachek thig¢
best known values used by our industry partner. The resoltsihat
the CluPaTra results are superior to the default and Par&mdsults.

8 Discussion and Future Direction

As shown from the experimental results, the CluPaTra fraonkew
yields a significant improvement in performance compareith thie
pure one-size-fits-all configurator ParamlILS, under déferinstan-
tiations. We also observe that Trans, Robust and Trans-$toiu
stantiations of CluPaTra perform significantly superiothe stan-
dard CluPaTra instantiation. Those three instantiatioalsl yesults
that are statistically equivalent to one another but theeddtvo re-
quire higher computational budget compared to Trans. Basetis
esult, we confirm the result in [24] that dividing the instes into
lusters using CluPaTra, especially using the Trans. Coraigpn,
before running one-size-fits-all configurator providegdreparam-
eter configuration for each instance and significantly inapsothe
performance.

The effect of different clustering methods is also evalddig two
well-studied clustering approaches, AGNES dndhedoids. Our
result shows that there is no significant difference withs¢éhéwo
clustering methods, this may indicate that the underlyingtering
method does not have a substantial effect on CluPaTra. Wexvil
plore this issue further in future work.

To represent the search trajectory, we need
known/optimum solution value (OPT) for each instance.

the best
We

plying AGNES andk-medoids clustering methods on the Trans iise either (a) the known global optimal value, or (b) when the

stantiation. We set to be equal to the AGNES cluster number. Taflobal optimal value is unknown, the best known value.

ble 6(1V) shows that AGNES performs slightly better thamedoids
even though it is not statistically significant.

7.3

In this section, we report results on an industrial caseystuée ap-
ply CluPaTra to tune an algorithm for an aircraft spares ritvey
optimization problem of a large commercial aircraft makasdd in
Europe. The objective of this algorithm is to determine tpéroal
inventory allocation strategy that can fulfill specific targervices
levels. The target algorithm issimulated Annealin¢SA) algorithm

Industrial Case Study

For al
TSP instances and several QAP instances, we use the knobal glo
optimal value from TSPLib and QAPLIib respectively while for
other QAP instances, we use best known value from QAPLib. For
industrial case study instances, we use best known solusied by
our industrial partner. From the experiment result, we pleséhat
CluPaTra method using either known global optimal value estb
known value, is able to generate good clusters and henceoumpr
the overall performance. We will further explore this isguduture
work.

In [24], we also show that CluPaTra is statistically equeveilwith
the existing and well-known QAP instances classificatioB].[3Ve

[6] which has 8 parameters that used to control SA behaviateas expand those results by comparing CluPaTra with ISAC, aaite-

scribed in Table 8.

specific algorithm configuration which use problem specdattires,

We apply CluPaTra to 50 sample instances, with 25 randomalyd show that CluPaTra is significantly better then ISAC.utuffe
picked instances as training instances and the remainiag g&sting work, we would like to explore this further for ISAC using neazom-
instances. We set cutoff times of 500 seconds per run andiedlo plex specific-features.



In dealing with complex optimization problem for an indusltr model to construct a model based on the instance’s featiuagsvill
case study, we show that CluPaTra can provide better pagacget- determine the configurator’s strategy, while other like,[28] use
figurations than the default manually tuned parameterdlulitiates clustering to divide the instances and find a good parametdigu-
the practical impact of our proposed approach on tuning eearch ration on the cluster created. Unfortunately, these amhesmtend to
algorithms. In a world where new local search algorithmshaieg be problem-specific because they make use of problem-spasfi
designed for solving large complex optimization probleths,power tures. As an example, ISAC [20] uses problem specific feattoe
of our approach rests in its ability to produce effective arslance- identify the characteristic of instances of a particulaskpem; for
specific parameter settings automatically in a computatipreffi- instance, it uses 24 specific features for Set Covering f2éh [
cient manner, rather than to rely on the tedious and mostlycad
manual tuning. As future direction, wee would like to extétidPa-

Tra for other purposes such as algorithm selection or hgpeistic. 10 Conclusion

Given the high complexity of the tuning problem that demands

9 Related Work instance-based accuracy, we have proposed a solutionfi@ehat
is a relatively intuitive, computationally efficient andrggic vis-a-
9.1 Instance Features viz existing approaches (which are mostly problem-spgcifis on-

) o o going work, we are exploring ways to address the two linutagiof
Recently, there has been increasing interest in findingeatufes of proposed approach. First, in terms of scope, our approac

instances that can provide an insight on what make the prob&d o)y pe applied to target algorithms which are local-sedrabed,
and its relationship with algorithm performance. We diviie fea- gjnce our approach uses search trajectory as the featuren@ehere
tures into two, namely: problem-specific and problem-iri®fent s an inherent computational bottleneck introduced by thethod
features. Various problem-specific features have beemmeegin the |5eq for sequence alignment whose worst-case time corhpiexi

literature, most of these are gxtracted based on extensidy BN O(m2xn?) (wherem is the number of instances in the training set
the problem knowledge domain. Example of problem-specg f 54,, is the maximum length of the sequences).

tures are flow dominance for QAP [11, 37, 38, 40] and poputatio

correlation structure and constraint slackness for KreipBaoblem
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