
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2013

Clustering of Search Trajectory and its Application to Parameter Clustering of Search Trajectory and its Application to Parameter

Tuning Tuning

Linda Lindawati
Singapore Management University, lindawati.2008@smu.edu.sg

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Citation Citation
Lindawati, Linda; LAU, Hoong Chuin; and LO, David. Clustering of Search Trajectory and its Application to
Parameter Tuning. (2013). Journal of the Operational Research Society. 64, (12), 1742-1752.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1806

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Clustering of Search Trajectory and Its Application to Parameter Tuning

Lindawati, Hoong Chuin Lau and David Lo
School of Information Systems, Singapore Management University

1

Abstract. This paper is concerned with automated classifi-
cation of Combinatorial Optimization Problem (COP) instances for
instance-specific parameter tuning purpose. We propose theCluPa-
Tra Framework, a generic approach to CLUster instances based on
similar PAtterns according to search TRAjectories and apply it on
parameter tuning. The key idea is to use the search trajectory as
a generic feature for clustering problem instances. The advantage
of using search trajectory is that it can be obtained from anylocal-
search based algorithm with small additional computation time. We
explore and compare two different search trajectory representations,
two sequence alignment techniques (to calculate similarities) as well
as two well-known clustering methods. We report experimentre-
sults on two classical problems: Traveling Salesman Problem (TSP)
and Quadratic Assignment Problem (QAP) and show thatCluPaTra
offers encouraging result both in cluster quality and overall perfor-
mance. We also apply theCluPaTra framework on an industrial case
study involving 8 parameters, and compare with the performance of
default settings used by the company.
Keywords. generic feature, search trajectory, instance-based auto-
mated parameter tuning, sequence alignment, local search algorithm

1 Introduction

Meta-heuristic algorithms play an important role in solving combi-
natorial optimization problems (COP) in many practical applications.
Even though a meta-heuristic algorithm does not guarantee global
optimality, it generally provides good solutions in reasonable time
[5]. Previous studies reveal that the performance of a meta-heuristic
is dependent on the instance specific characteristics/features that de-
termine its intrinsic difficulty [25]. Consequently, therehas been in-
creasing interest in finding the instances features that have impact on
difficulty in terms of performance to improve the algorithm perfor-
mance [2, 11, 12, 32, 33, 36, 37, 38, 39, 40, 41].

Various problem specific features have been proposed for a wide
range of combinatorial optimization problems in the literature. Some
notable features are flow dominance for QAP [11, 37, 38, 40] and
population correlation structure and constraint slackness for Knap-
sack Problem [12, 33]. The most straightforward features are those
that are extracted from the problem or instance definition itself, such
as the number of variables and constraints, which can be derived to
numerous candidate features using computational feature extraction
processes [36]. Other non-straightforward features may require large
scale experimental studies and highly dependent on the knowledge of
a domain expert in a particular problem. Not only does it taketremen-
dous human effort, the features, most of the time, cannot be reused
on another problem.

1This is an extended version of the conference paper that appears in LION5

On a separate front, there have been approaches that attempted
to find problem-independent features using correlation of the ob-
jective function and the search space (fitness landscape analysis)
[2, 14, 32, 39]. Problem-independent features can be used ondif-
ferent combinatorial optimization problem, such as TSP [32], QAP
[2] and Knapsack Problem [39]. Examples of these features are fit-
ness distance correlation (FCD) [32, 14] and ruggedness coefficient
[2, 14]. Unfortunately, these features can only be measuredafter an
extensive analysis of the landscape which proves to be time consum-
ing and to some extends are impossible for certain instances.

Our work is aimed at finding problem-independent feature within
reasonable computation time. In this paper, we propose the CluPaTra
framework (CLUstering instances with similar PAtterns according to
search TRAjectories) where we introduce the notion of an instance’s
search trajectory, which is defined as the path that a local search algo-
rithm follows as it searches from an initial solution to its neighbour
from one iteration to the next, as the problem-independent feature
and exploit data-mining techniques to cluster problem instances ac-
cording to their search trajectories. The rationale of thisfeature is
predicated on the relationship between fitness landscape and search
trajectories [8, 9]. We use search trajectory as a proxy for the fitness
landscape. The advantage of our approach lies in the fact that the
search trajectory may be computed from a local-search basedalgo-
rithm. Hence our approach is problem-independent and may concep-
tually be applied to any local search-based algorithm.

We implement our proposed framework on instance-specific pa-
rameter tuning scheme where we use the framework to cluster train-
ing instances and apply an existing one-size-fits-all algorithm (such
as CALIBRA or ParamILS) to derive the best parameter configura-
tions for the respective clusters. This cluster-based treatment has been
proven effective in solving the parameter tuning problem [20, 23, 26].
Our approach is similar to ISAC [20], but instead of using problem-
specific features, we propose a problem-independent feature. It builds
on two earlier works: (1) the tight correlation between fitness land-
scape and search trajectories [8, 9], and (2) the tight correlation be-
tween the fitness landscape and algorithm performance [32].Our
bold conjecture is that trajectory patterns can provide guidance for
setting parameter configurations; more precisely, we believe that if
a parameter configuration works well for a particular instance, then
it will also work well for instances with similar fitness landscapes
(which can be inferred from their trajectory patterns).

This paper extends the vanilla CluPaTra framework recentlypro-
posed by the same authors in [24] by considering different variants
for its three major components: search trajectory representation, sim-
ilarity calculation, and clustering method. We explore these different
techniques in seeking to improve the accuracy of clustering. On the
search trajectory representation, we introduce the transition sequence
representation, and compare it with the exact sequence representa-
tion proposed in [24]. We experiment with two variants of pairwise
sequence alignment to calculate search trajectories similarity, and we

1

apply two well-studied clustering methods to cluster the instances.
We examine the effects of these different techniques experimentally.
Hence, the major contributions (and thus the flow) of this paper are
summarized as follows:

• We propose a new problem-independent feature extracted from
the instance’s search trajectory.

• We present CluPaTra, a novel framework for clustering problem
instances using the problem-independent feature, and extend the
earlier version by introducing and comparing new differentvari-
ants for CluPaTra framework components.

• We implement CluPaTra on instance-specific parameter tuning
scheme to find good set of parameter for a particular algorithm.

• We investigate experimental performance in two classical COP
problems: the Traveling Salesmen Problem (TSP) and Quadratic
Assignment Problem (QAP), as well as an industrial case study.

2 Problem Statement and Definition

In this section, we define the clustering and parameter tuning prob-
lem.

2.1 Clustering Problem

We define the clustering problem as follows:

Definition 1 (Clustering Problem [CP]) Let I be a set of problem
instances andW be a set of pairwise similarity score for all instance
in I, theCP is the partitioning ofI into k clusters{C1, C2, C3, ...,
Ck} such that the cluster quality is maximized.

The different formulas to compute the pairwise similarity score
will be proposed in the subsection 3.3. We measure thequality of
a clustering by usingextrinsicmethod. Extrinsic method compares
the clusters against the known class labels orground-truthclusters
(i.e. the set of clusters which represents the ideal/optimal clustering)
[10]. We define the cluster quality as follows:

Let I (resp. It) be a set of training (resp. testing) instances,C

be the set of clusters generated from the training phase andCg be
theground-truth clusters. Each cluster inc ∈ C has an associated
homeclustercg ∈ Cg which contains the largest number of instances
contained inc (ties broken arbitrarily).

Definition 2 (Training Clusters Quality Score [Qtrain]) For each
clusterc ∈ C, let max(c) count the number of instances in the clus-
ter that belong to the associated home cluster.Qtrain is defined as
the sum ofmax(c) over allc ∈ C divided by the number of instances
in I.

Definition 3 (Testing Instance Mapping Score [Qtest]) For each
instancei ∈ It, we say thati is ”matched” if it is mapped to a cluster
c ∈ C whose home clustercg ∈ Cg also containsi. Qtest is defined
as total number of such matches divided by the number of instances
in It.

2.2 Parameter Tuning Problem

For instance-specific parameter tuning, we refer the algorithm whose
performance is being tuned/configured as thetarget algorithmwhile
the one used to tune/configure as theconfigurator.

Training
Problem
Instances

Target Algorithm

Call for each
Training Instances

Return Search
Trajectory

Call with different
Parameter Setting

Return
Solution Cost

Parameter Domains & Initial Value

Instance- based Automated Tuning Parameter

Cluster 1

Cluster 3

Cluster 2 Configuration
Process

Cluster 1

Cluster 3

Cluster 2

Conf.1

Conf.2

Conf.3

Clustering
Process

Testing
Problem
Instances

Search
Trajectory

Best
Configuration

Figure 1: CluPaTra Framework

We measure the target algorithm performance based on the qual-
ity of their solutions. We define target algorithm performanceH as
follows:

Definition 4 (Performance Metric [H]) Let i be a problem in-
stance, andAx(i) be the objective value of the corresponding so-
lution for instancei obtained by a target algorithmA when executed
under configurationx. LetOPT (i) denote the best known values for

instancei. Hx(i) is formulated as:Hx(i) =
|OPT (i)−Ax(i)|

OPT (i)

For benchmark instances with known global optimum value, we
use the known global optimum value as itsOPT (i), while for new
instances, we use the target algorithm’s best previously known so-
lution. The functionH is highly non-linear and very expensive to
compute as the parameter and instance space may be extremelylarge.
Using performance metricH, we define the instance-specific param-
eter tuning problem as follows.

Definition 5 (Instance-Specific Parameter Tuning [ISPT]) Given
a set of instancesI, a parameter configuration spaceΘ for a target
algorithmA and a performance metricH, the ISPT problem is to
find a parameter configurationx ∈ Θ for eachi ∈ I such thatHx(i)
is minimized overΘ.

3 CluPaTra

In this section, we present the CluPaTra framework and its three
major components: search trajectory representation, similarity cal-
culation and clustering method and propose different variants for
these components. We then describe the implementation of CluPa-
Tra framework in instance-specific parameter tuning.

3.1 CluPaTra Framework

The CluPaTra framework illustrated in Fig. 1 is divided intotwo
parts: the training and testing phase. In training phase first we ex-
ecute each training instance and record the solutions visited. Then
transform them to a directed-sequence. We calculate the similarity of
each sequence using pairwise sequence alignment and perform clus-
tering using hierarchical clustering.

In testing phase, we record a testing instance’s search trajectory
and match it against the clusters to find the most similar cluster. The
steps involved in the training and testing phases are shown in Fig. 2.

2

Procedure TrainingPhase
Inputs: A: Target algorithm;

I : Training instances;
xinit: Initial configuration;

Outputs: C: Set of clusters of instances inI ;
Method:
1: LetTRAJ = set of search trajectories obtained from runningA

on I usingxinit;
2: LetSEQ = set of sequences derived fromTRAJ ;
3: For each pair of instances (i, j) in I x I

4: Lets1 = SEQ(i);
5: Lets2 = SEQ(j);
6: Score[s1,s2] = similarity(s1 ,s2);
7: LetC = set of clusters obtained by clustering based onScore;
8: OutputC;

Procedure TestingPhase
Inputs: A: Target algorithm;

i: Arbitrary testing instance;
C: Set of clusters (output from training phase);
xinit: Initial configuration;

Outputs: BestClust: best match cluster;
Method:
1: Let traj = a search trajectories obtained from runningA

on i usingxinit;
2: Letseq = a sequences derived fromtraj;
3: For each clusterc ∈ C

4: LetScore[c] = average similarity fromseq to all instances inc;
5: LetBestClust = c, whereScore[c] ≥ Score[c′] for all c′ 6= c in C;
6: OutputBestClust;

Figure 2: Training and Testing Phase

3.2 Search Trajectory Representation

Search trajectory is defined as a path of solutions discovered by the
target algorithmA as it searches through the neighborhood search
space [14]. Search trajectory may vary for each instance; depen-
dent on the number of movements that the target algorithmA makes.
It can be represented as a directed sequence of symbols. In the fol-
lowing, we propose theexact sequenceand transition sequenceto
transform the search trajectory into directed sequence of symbols.

3.2.1 Exact Sequence

In an exact sequence, a symbol on the sequence represents a solution
along the trajectory. It encodes two solution attributes:deviation
andposition type combined into a symbol with the first two digits
being the deviation of the solution quality and the last digit being the
position type.

The deviation is computed as the the deviation of solution qual-
ity from OPT (as defined in Definition 4). It represents in a sense a
global property of the solution (since it is compared with the global or
best known valueOPT). The position type represents in a sense the
local property of a solution with respect to its search neighborhood,
and is defined based on the topology of the local search neighbor-
hood [14]. There are 7 position types, determined by evaluating the
solution objective value with all its local direct neighbors’ objective
values - whether it is better, worse or equal. The 7 positionstypes are
given in Table 1.

Since not all local search algorithm explore all solution’sdirect
neighbors (as in ”best improvement” strategy), we exploren addi-

Table 1: Position Types of Solution

Position Type Label Symbol< = >

SLMIN (strict local min) S + - -
LMIN (local min) M + + -
IPLat (interior plateau) I - + -
SLOPE P + - +
LEDGE L + + +
LMAX (local max) X - + +
SLMAX (strict local max) A - - +

’+’ = present, ’-’ = absent; referring to the presence of
neighbors with larger (’<’), equal (’=’) and smaller
(’>’) objective values with larger (’<’), equal (’=’) and
smaller (’>’) objective values

tional random direct neighbors (if needed) to determine itsposition
types. This may not be the ”actual” position types, but it is suffi-
cient to represent the local topology for each solution. Thesteps to
transform the search trajectory into an exact sequence are as follows:

• When running the target algorithm, for each solution, we record
its quality and its direct neighbor position. The direct neighbor
position is explored based on the target algorithm’s neighbor-
hood structure (i.e.:2-opt, 3-opt, LK, etc). Direct neighbor posi-
tion is represented as 3 binary digits with 1 (yes) and 0 (no) for
direct neighbor that has same, better and worse objective value
respectively. Each time the target algorithm find direct neighbor
that has the same, better or worse objective value, the neigh-
bor position is updated to 1. Generally, this exploration isdone
by the target algorithm during the local search with small addi-
tional computation time. For some target algorithm, we needto
run additional neighborhood exploration to find direct neighbor
position. We explore few numbers of random direct neighbor
and stop the exploration as soon as we find at least one neighbor
that has the same, better and worse objective value.

• For each solution, we calculate its deviation and determineits
neighbor position based on Table 1. We then combine those two
attributes into a symbol.

• We compress the search trajectory sequence by removing the
consecutive repetition symbols and represent it by only onesym-
bol.

• To cater to the fact that some target algorithms may allow cycles
and (random) restarts, we add two additional symbols: ’C’ and
’J’. ’C’ is used when the target algorithm returns to a position
that has been discovered previously, while ’J’ is used when the
local search restarted.

These steps only run once for each instance. An example of these-
quence representing the eil51 search trajectory in Fig. 4 is15L-11L-
09L-07L-07P-06P-04S-05L-J-21L-19L. For each solution in eil51
search trajectory, the quality and neighbor position is recorded and
then transform to a sequence (note that the neighbor position is not
illustrated in the figure). Notice that after position 8, thetarget al-
gorithm performs a random restart, hence we add ’J’ symbol after
position 8.

3

3.2.2 Transition Sequence

In contrast to the exact sequence representation, a transition sequence
is made up of symbols that represent a transition (or movement) be-
tween two neighboring solutions in the search trajectory. Here we no
longer focus on the solution position, but rather we track the move-
ment along the search trajectory in order to detect trajectories that
move in parallel but may not be identical (their corresponding po-
sitions differ by a constant value). We use transition sequence to
capture similarity across different size instances.

In transition sequence, each symbol contains three parts: (I) the ab-
solute difference in deviation between the first and second solutions;
(II) the position type of the first solution; and (III) the position type of
the second solution. Note that the transition sequence can be derived
from the exact sequence.

Similar to an exact sequence, a transition sequence may alsohave
two additional symbols: ’C’ and ’J’. These attributes are also generic
and can be easily retrieved/computed from any local-search-based al-
gorithm albeit different problems. An example of the transition se-
quence representing the eil51 search trajectory in Fig. 5 is4LL-2LL-
2LL-0LP-1PP-2PS-1SL-J-2LLwhich is derived from the trajectory
sequence15L-11L-09L-07L-07P-06P-04S-05L-J-21L-19L.

3.3 Similarity Calculation

Having represented trajectories as linear sequences, it isnatural to
apply pairwise sequence alignment to obtain the similarityscore be-
tween a pair of trajectories. In the following, we introducetwo tech-
niques for pairwise sequence alignment to calculate searchtrajectory
similarities.

3.3.1 Basic Sequence Alignment

This is the basic sequence alignment in [24], which applies astan-
dard sequence alignment method to maximize the number of matched
symbols between two sequences sequentially, allowing gaps. A pair
of matched symbols gives a positive score (+1), while a gap gives
a negative score (-1). An example of sequence alignment for the
kroa100andbier127search trajectories from Fig. 4 is illustrated in
Table 2.

Since the length of a search trajectory may vary, we implement a
local alignment strategy that align only portions of the sequences but
not the entire length. One well-known algorithm that performs such
sequence alignment is theSmith-Waterman algorithm[10] that works
by comparing all possible alignments regardless of their lengths, start
and end positions. It then chooses the best alignment as the alignment
that maximizes the similarity score, which is the sum of the scores
for matched symbols and gaps in the alignment. Note that the best
alignment may start and end anywhere in the two sequences, solong
as it produces the best similarity score. In our paper, we adapt the
Smith-Waterman algorithm and use the best similarity scorefor each
pair of sequences. The final similarity score will be normalized by
dividing this score by12 × (|Sequence1| + |Sequence2|).

3.3.2 Robust Sequence Alignment

The difference between robust sequence alignment and basicse-
quence alignment is the matching rule. In the latter, two symbols
are a match if and only if the two symbols are exactly identical, while
in robust sequence alignment, we consider partial matching. This re-
laxed similarity calculation allows us to capture search trajectory’s

Table 2: Example of Sequence Alignment from 2 TSP instances

kroa100 19L 19P 18P 17P 16P 15P 14P 13P 11P 10P
| | | | | | | | |

bier127 19P 18P 17P 15P 13P 11P 10P

score +1 +1 +1 -1 +1 -1 +1 +1 +1

similarity more robustly. Under robust sequence alignment, a match
occurs if one of the following conditions is satisfied: (I) The two
symbols are identical, and (II) Theposition typeof the symbols is the
same and the absolute difference in thedeviationattribute of the two
symbols is less than a certain threshold (for simplicity, weset this
threshold value to 1 in our experiment).

Both sequence alignment techniques are implemented using stan-
dard dynamic programming [10], with a complexity ofO(n2). To
cluster instances (see subsection below), we need to compute similar-
ity scores for all possible pairs of training instances. Hence, the total
time complexity for sequence alignment isO(m2×n2), wherem is
the number of instances in the training set andn is the maximum
sequence length of the sequences.

3.4 Clustering

After having computed the similarity scores, we derive the distance
scores by taking the reciprocal of the corresponding similarity scores,
upon which instances are then clustered. We apply two well-known
clustering approaches: AGNES [22] andk-medoids clustering [21].

3.4.1 AGNES

AGNES or AGglomerative NESting is a well-studied hierarchical
clustering approach in data mining and machine learning [22]. It
works by creating clusters for each individual instance andthen merg-
ing two closest clusters (i.e., a pair of clusters with the smallest dis-
tance) resulting in fewer number of clusters of larger sizesuntil all
instances belong to the same cluster or a termination condition is
reached (e.g. a prescribed number of clusters is reached).

To determine the minimal number of clusters to be used, we apply
the L method [34]. TheL method works by using the evaluation
graph where thex-axis is the number of clusters and they-axis is the
value of the evaluation function atx clusters, which in this paper, is
the average distance among all instances in two different clusters.L
method determines the number of clusters by fitting the evaluation
graph into two lines that most closely fit the curveand choosing the
intersection point between those two lines as the optimum number
of clusters. The intersect point is the point of maximum curvature
of this graph which has minimum average distance (calculated using
root mean square error) for both the left and right side of theintersect
point. It is calculated using the following formula:

c∗ = min

[

RMSE(L)

nL

+
RMSE(R)

nR

]

(1)

where: RMSE(L) is root mean squared error in the left side ofc;
nL is number of points in the left side ofc; RMSE(R) is root mean
squared error in the right side ofc; andnR is number of points in the
right side ofc

This method only requires AGNES algorithm to be run once, since
all the clusters generated by AGNES can be recorded in one run. And

4

A
ve

ra
ge

 d
is

ta
nc

e
am

on
g

al
l i

ns
ta

nc
es

in

 tw
o

di
ff

er
en

t c
lu

st
er

Number of Clusters

Figure 3:L-Method Illustration

since we want to produce a compact set of clusters, we limit the num-
ber of clusters to less then 10. Thus, thex-axis only show the number
of clusters from 1 to 10. The overall complexity of AGNES withL

method isO(n2) with n being the number of instances.

3.4.2 k-medoids

k-medoids is a partition-based clustering method that repeatedly
breaks the data set up intok groups as an attempt to improve clusters’
evaluation function [21], which in this paper, is the average distance
among all instances in two different cluster. It is a variantof k-means
method but it selects real data points as centers (medoids orexem-
plars) instead of imaginary points. Here we implement the simplest
k-medoids approach, which is Partitioning Around Medoids (PAM)
[30].

To obtaink-medoids clusters, PAM begins with an arbitrary selec-
tion of k instances as medoids and assign all non-medoids instances
to the closest medoids. Then in each step, a swap between a medoids
and a non-medoid is made as long as such swap would result in an
improvement of cluster evaluation value. PAM stops when theswap
no longer improve the cluster evaluation value. The complexity of
PAM is O(k(n − k)2) with k being the number of clusters andn be-
ing the number of instances. We need to manually specify the number
of clusters (i.e., the parameterk).

3.5 Instance-Specific Parameter Tuning

Using the cluster from CluPaTra, we apply existing one-size-fits-all
algorithms (such as CALIBRA, ParamILS or GGA) to derive the best
parameter configurations for the respective clusters. Subsequently,
given an arbitrary instance, we first map its search trajectory to the
closest cluster. The tuned parameter configuration for thatcluster is
then returned as the parameter configuration for this instance.

4 Experiment Design

Here we briefly explain our experimental design for two classical
problems, Traveling Salesmen Problem (TSP) and Quadratic Assign-
ment Problem (QAP).

Traveling Salesmen Problem (TSP)

Table 3: Parameters for Target Algorithm

Parameter Description Range
I. ILS on TSP
Pert number of perturbations being done [1,10]
n improve max non-improving moves [1,10]
choice perturbation strategy where: 3=3-opt

change and 4=double-bridge move
[3,4]

acp acceptance criteria strategy where:
0=accept only improving moves and
1=accept all moves

[0,1]

II. SA-TS on QAP
Temp Initial temperature of SA [100,5000]
Alpha Cooling factor [0.1,0.9]
Length Length of tabu list [1,10]
Pct Percentage of non-improving iterations [0.01,0.1]

The target algorithm to solve TSP is a well-known Iterated Local
Search (ILS) algorithm as implemented in [9] with 4 discreteparam-
eters to be tuned as describe in Table 3(I). For all instances, we set
the maximum number of iteration to 1000. We applied our target al-
gorithm to 70 benchmark instances extracted from TSPLib. For best
known values, we used the optimum/best values from TSPLib. Fifty
six random instances were used as training instances and theremain-
ing 14 instances as testing instances. The problem size (thenumber
of cities) varies from 51 to 3038.

Quadratic Assignment Problem (QAP)
The target algorithm to solve QAP is the hybrid Simulated An-

nealing and Tabu Search (SA-TS) algorithm (presented in [29]). It
uses the Greedy Randomized Adaptive Search Procedure (GRASP)
to obtain an initial solution, and then using a combined Simulated
Annealing (SA) and Tabu Search (TS) algorithm to improve thesolu-
tion. There are four parameters, discrete and continuous, to be tuned
as described in Table 3(II). For continuous parameter, we discretize it
to 20 possible values by simple enumeration from minimum to max-
imum value. For all instances, we set the maximum number of iter-
ation to 500. We used 50 benchmark instances from QAPLib, and
randomly selected 40 instances for training and 10 for testing. The
problem size (number of facilities) varied from 20 to 150. For best
known values, we used the optimum/best values from QAPLib.

Experiment Setting and Setup
We construct four instantiations of CluPaTra resulting from two

search trajectory representations (exact and transition)and two sim-
ilarity calculation techniques (basic and robust) using AGNES as its
clustering method. The terminology used subsequently is given in
Table 4. Note that the ”Standard” instantiation is the one proposed
in [24].

To record the search trajectory, we run the target algorithmagainst
all instances using a random configuration and record all themoves
of the target algorithm, unless stated other wise. The length may be
vary. We did not set any parameter for CluPaTra since it does not
have parameter.

We compared our experiment results with the ISAC method, a sim-
ilar clustering-approach that uses problem specific features, that we
implemented based on [20]. Since ISAC requires problem-specific
features, we selected the standard deviation of the city distances, the
variance of the normalized nearest neighbour distances andthe coef-
ficient of variation of the normalized nearest neighbour distances for

5

(a) kroa100 (b) bier127 (c) eil51
Parameter Configuration I

(d) kroa100 (e) bier127 (f) eil51
Parameter Configuration II

Figure 4: Search Trajectories of 3 TSP instanceskroa100, bier127
andeli51using two random parameter configuration

Table 4: CluPaTra instantiations for Performance Comparison

Instantia-
tion

Search Trajectory
Representation

Similarity Calcula-
tion

Standard Exact sequence Basic Seq. Align.
Trans Transition sequence Basic Seq. Align.
Robust Exact sequence Robust Seq. Align.
Trans-
Robust

Transition sequence Robust Seq. Align.

TSP [35] and flow dominance and sparsity of flow matrix for QAP
[37].

Tuning Setup

We chose to use ParamILS [19] as the one-size-fits-all configura-
tor. For each cluster (or training set), we randomly sorted the in-
stances, ran ParamILS 5 times and took the average performance. To
ensure unbiased evaluation, we then run 5-fold cross-validation [10]
over those instances and measured the average performance over all
folds. To do 5-fold cross validation, we randomly divided the in-
stances into 5 random groups and used 4 groups as training instances
and 1 group as testing instances. We repeat the process 5 times and
take the average. We did a non-parametric Wilcoxon signed-rank test
to compare CluPaTra’s overall performance with that of ParamILS.
We considered p-value below 0.05 to be statistically significant (con-
fidence level 5%).

All experiments were performed on a 1.7GHz Pentium-4 machine
running Windows XP. We measured runtime as the CPU time needed
by this machine. As an input to the configuratior, we set a cutoff
time of 10 seconds per run for the TSP target algorithm and 100sec-
onds for the QAP target algorithm. For each CluPaTra cluster, we
allowed each configuration process to execute the target algorithm
for a maximum of two CPU hours and to call the target algorithm
for a maximum of 25 xn times, wheren is the number of instances
in the cluster. To ensure fair comparison, we set the time budget for
ISAC and ParamILS to be equal to the average total time neededto
run a full process of CluPaTra instantiations. This time budget is the
stopping condition for ISAC and ParamILS.

krob2
00

u159

u1060pcb442

pr152

vm1084

pr1002

berlin52

ch150

lin105

rd100

lin318

linhp318

pr107

pr136

eil51

gil262

kroa200

pr299

kroa100

pr226eil76

d198
rat195

d2103

a280

rl1889

rl1323

vm1748

rl1304

rat99
ch130

d493

kroc100 pr76

kroe100 krob150

krob100

(a) Trans CluPaTra

rat783

u1432

u2152

d657

rat575

pcb1173

nrw1379

fl1400

p654
st70

pr2392

Training

Testing

d1655

fl1577

fl3795

u2319

bier127

ts225 eil101

kroa150

krod100

pr124

pr144

pr439
pr264

d1291

fl417

pcb3038

rd400

u1817

tsp225

u574

u724

krob200

u159

u1060

pcb442

pr152
vm1084

pr1002

berlin52

ch150
lin105

rd100

lin318

linhp318

pr107pr136

eil51

gil262
kroa200

pr299

kroa100

pr226

eil76

d198
rat195

d2103

a280

rl1889

rl1323

vm1748

rl1304

rat99ch130

d493

kroc100

pr76

kroe100

krob150

krob100

(b) ISAC

rat783

u1432
u2152

d657
rat575

pcb1173

nrw1379
fl1400

p654

st70

pr2392

Training

Testing

d1655
fl1577

fl3795

u2319

bier127

ts225

eil101

kroa150

krod100 pr124

pr144
pr439

pr264
d1291

fl417

pcb3038

rd400
u1817

tsp225

u574

u724

Figure 6: TSP Cluster Result Comparison. (a) Trans CluPaTra; and
(b) ISAC.

5 Verification of Similarity Preservation

Prior to presenting experimental results, we provide a scientific argu-
ment for our approach.

Recall that CluPaTra departs from existing approaches in parame-
ter tuning in that it does not rely on problem-specific features; rather,
it makes use of search trajectory patterns as a generic feature. As
mentioned earlier, the rationale of using this feature is predicated on
the relationship between fitness landscape and search trajectories [9],
and the tight correlation between the fitness landscape and algorithm
performance [32]. Since generating the entire fitness landscape for
each instance is time consuming and generally impractical,we pro-
pose to use the search trajectory as a proxy for the fitness landscape.
Granted that different parameter configurations may produce (very)
different search trajectories for a given instance, our claim is that the
similarityof search trajectories between instances is preserved across
configurations.

In the following, we will justify this claim by providing a series of
experimental observations.

First, we provide a visual intuition for similarity preservation
across different parameter configurations. Fig. 4 shows thetrajec-
tories obtained by 10 consecutive moves of an Iterated LocalSearch
(ILS) algorithm for three TSP instances, namelykroa100, bier127
andeil51when the algorithm is run on two random parameter config-
urations, namely configuration I and configuration II. Thexy plane
represents the search space whilez axis represent the objective value.
To layout the moves into a 2-dimensionalxy plane, we calculate the
distance between two solutions (e.g., number of different cities in
TSP) and apply”the spring model”[8]. ”The spring model”provides
a heuristic for good layout where the Euclidean distance between 2
solutions in thexy plane is roughly proportional to their Hamming
distance. In this example, we observe that for both configurations,
kroa100andbier127 exhibit very similar topology ((a) and (b), (d)
and (e)), whileei151has a different topology compared to the simi-
larity of kroa100andbier127.

Next, we provide a statistical verification of the notion similarity
preservation on the trajectories produced by the TSP and QAPtar-
get algorithms used in our experiments (ILS and SA-TS, see section
following). For this purpose, we verify on random pairs of instances

6

(a) a280 similarity

0

100

200

300

0 1 2 3 4 5 6 7 8 9 10
Instances

S
im

il
ar

it
y

S
co

re

(b) berlin52 similarity

0

100

200

300

0 1 2 3 4 5 6 7 8 9 10
Instances

S
im

il
ar

it
y

S
co

re

(c) chr20 similarity

0

100

200

0 1 2 3 4 5 6 7 8 9 10
Instances

S
im

il
ar

it
y

S
co

re

(d) sko100b similarity

0

100

200

0 1 2 3 4 5 6 7 8 9 10
Instances

S
im

il
ar

it
y

S
co

re

Confg. I Confg. II Confg. III Confg. IV Confg. V

Figure 5: Search Trajectory Similarity Score between TSP (a280,
berlin51) and QAP (chr20a, sko100b) instance and 10 other random
instances using 5 Different Random Parameter Configurations.

Table 5: Similarity Score of Instance Pairs

Instances σ µ cv σ µ cv

I. TSP a280 berlin52
ch150 32.70 82.20 0.40 12.42 52.20 0.24
d1655 57.47 181.20 0.32 6.02 25.60 0.00
d657 35.31 144.60 0.24 15.54 36.20 0.43
fl3795 14.81 262.00 0.06 2.24 16.40 0.14
kroa150 4.12 25.80 0.16 6.73 78.80 0.09
krob100 3.58 11.00 0.33 24.33 84.20 0.29
lin105 18.18 77.20 0.24 9.35 62.40 0.15
pr152 7.78 18.80 0.41 22.38 77.40 0.29
rd100 25.32 50.80 0.50 17.85 60.40 0.30
ts225 39.55 201.60 0.20 3.88 22.40 0.17

II. QAP chr20a sko100b
chr22a 6.49 104.80 0.06 0.00 16.00 0.00
chr22b 4.13 113.40 0.04 1.20 10.60 0.11
lipa50b 6.83 118.40 0.06 0.00 24.00 0.00
nug28 0.75 12.20 0.06 0.00 18.00 0.00
nug30 0.75 10.80 0.07 0.00 16.00 0.00
sko100e 1.60 6.80 0.24 2.87129.40 0.02
sko90 1.60 8.80 0.18 5.04 121.20 0.04
ste36a 4.71 103.20 0.05 0.00 26.00 0.00
tai30a 4.71 12.20 0.39 0.00 13.00 0.00
wil100 0.40 5.20 0.08 0.00 41.00 0.00
σ=standard deviation;µ=mean;cv=coefficient of variation;

across different parameter configurations. We do the following: first,
we randomly select 2 source instances (namely, benchmark instances
a280, berlin52for TSP andchr20a, sko100bfor QAP); we next se-
lect randomly 10 other destination TSP (resp. QAP) instances. We
randomly generate 5 parameter configurations for each of thetarget
algorithms, and generate the trajectory for each instance.To sim-
plify the experiment, we take the first 300 solutions obtained from
the target algorithm as the search trajectory samples and calculate its
similarity score.

For each source-destination pair and each configuration, wecom-
pute their similarity score (based on the Standard instantiation). The
results are presented in Fig. 5. Observe that most pairs of instances
maintain their similarity across different parameter configurations as
shown by the small scatter of similarity values in each column (with
the exception of several instances in the a280 case). The deviation and
mean of similarity values for the different parameter configurations
are given in Table 5. We also calculate the coefficient of variance
(CV) which predicted the likelihood difference in each similarity val-
ues [28]. The lower the CV, the higher the likelihood that there was
no difference in similarity values. For most pairs, the coefficient of
variance (CV) value is low (especially for QAP pairs), whichmeans
that the similarity score across different parameter configurations do
not differ substantially from one another.

Based on the above observations, we argue that even though a
given instance may have different search trajectories under different
configurations, thesimilarity between 2 instances is preserved across
configurations. In other words, two instances whose trajectories are
similar under one configuration will also likely be similar under an-
other configuration. This similarity preservation property allows us

tai64c

tai25a tai100a

tai60a

tai80a

tai40a

tai20a tai50a

chr20a

chr20b

chr20c

chr22a

tai17a

chr22b

chr25a

tho40

nug22
nug24

sko100c

nug27

sko100a

nug30

nug28

sko100d

sko90

sko100f

sko42
sko49

sko64

sko56

tho150

tho30
wil50

sko81

kra32 kra30aste36a scr20ste36b

(a) Trans CluPaTra

tai30a

sko100b

tai35akra30b

ste36c

tai12a tai15a

nug25 sko100e

Training

Testing

sko72

tai64c

tai100a
tai60a

tai80a
tai50a

chr20a

chr20b

chr20c

chr22a

tai25a
tai40atai20a

tai17a

chr22b

chr25a
tho40

nug24

nug22

sko100c

nug27

sko100a

nug30

nug28

sko100d

sko90
sko100f sko42

sko49

sko64
sko56

tho150

tho30

wil50

sko81

kra32kra30a ste36ascr20 ste36b

(b) ISAC

tai30a

sko100b

tai35a

kra30b

ste36c tai12a tai15a

nug25sko100e wil100

Training

Testing

sko72

tai30a

wil100

Figure 7: QAP Cluster Result Comparison. (a) Trans CluPaTra; and
(b) ISAC.

to perform clustering of instances using an arbitrary parameter con-
figuration.

6 Clusters Result

In this section, we report our cluster results and time performance
for Traveling Salesmen Problem (TSP) and Quadratic Assignment
Problem (QAP).

7

Table 6: Empirical Result
TSP QAP

Technique Training Testing Training Testing

I. Clustering Analyses
Standard - - 0.68 0.70
Trans - - 0.85 0.90
Robust - - 0.78 0.70
Trans-Robust - - 0.7 0.80
ISAC - - 0.80 0.80

II. Total Computation Time
Standard 5.58 0.04 8.20 0.01
Trans 5.46 0.05 8.23 0.01
Robust 6.02 0.07 9.01 0.03
Trans-Robust 6.05 0.07 9.05 0.03

III. Performance Comparison+

ParamILS 2.671 2.022 2.212 2.273
(0.29) (0.22) (0.15) (0.25)

ground-truth - - 1.928∗ 2.094∗

(0.15) (0.21)
Standard 2.222∗ 1.929∗ 1.991∗ 2.195∗

(0.24) (0.26) (0.19) (0.20)
Trans 2.011∗ 1.715∗ 1.878∗ 2.081∗

(0.23) (0.27) (0.17) (0.24)
Robust 2.102∗ 1.812∗ 1.889∗ 2.101∗

(0.21) (0.27) (0.18) (0.28)
Trans-Robust 2.056∗ 1.927∗ 1.901∗ 2.185∗

(0.27) (0.23) (0.16) (0.21)
ISAC 2.020 1.884 1.982 2.153

(0.25) (0.21) (0.19) (0.21)

IV. Different Clustering
AGNES 2.012 2.053 1.718 1.771
k-medoids 1.879 1.898 2.083 2.161
+ = mean (coefficient of variation)
* = statistically significant against ParamILS

6.1 Clustering Analyses

We compare the clusters generated by CluPaTra and ISAC and take
theground-truthclassification (if exists) as the benchmark. Average
number of clusters from 5-folds for CluPaTra (standard, trans, robust,
trans-robust) and ISAC for TSP are 3, 6, 6, 6, and 5.8 respectively;
while for QAP are 4.2, 6, 6, 6, and 5.8 respectively. The example
of cluster generated by the Trans CluPaTra instantiation and ISAC is
reported in Fig. 6 for TSP and Fig. 7 for QAP.

For TSP, we observe that Trans CluPaTra method is able to cap-
ture the similarity of instances with differing sizes whichmay have
different search trajectory symbols but have similar transitions along
the search trajectories. Because the non-existence of theground-truth
classification for TSP benchmark instances, we cannot compute the
cluster qualities (Qtrain andQtest) directly instead it is inferred from
the performance of the target algorithm which is describe inlater sec-
tion.

For QAP, we use the existing well-studied classification based on
the distance and flow metrics [38] as theground-truthclassification.

[38] divided the instances into 5 groups: (1) random and uniform dis-
tances and flows, (2) random flows on grids, (3) real-life problems,
(4) characteristics of real-life problems and (5) non-uniform, random
problems. Due to the limitation of the target algorithm (which is un-
able to solve groups (4) and (5) problems), we only use instances
from groups (1), (2) and (3). The clusters from CluPaTra and ISAC
are shown in solid boxes while theground-truthclassification (for
QAP only) are shown in dashed boxes. Notice that the clustering by
Trans CluPaTra is almost the same as theground-truthclassification.
Furthermore, Trans CluPaTra constructs better clusters compared to
the Standard CluPaTra and ISAC with respect to cluster quality met-
ric (Qtrain andQtest) as defined in Definition 2 and 3 as shown in
Table 6(I). We observe that the cluster quality score for Trans Clu-
PaTra is the highest compared to other CluPaTra instantiation and
ISAC.

6.2 Time Performance

Two most time-consuming procedures in the training phase are those
of calculating the similarity of trajectories and running the one-size-
fits-all configurator (for each cluster). Evidently, different similar-
ity calculation techniques require different computational budget for
calculating the similarity. The Robust sequence alignmenttech-
nique take almost four times longer than the basic sequence align-
ment. This happens because it requires more computation time to
find partial-match symbols. For TSP, the average time neededto cal-
culate the similarity of trajectories for Standard, Trans,Robust and
Trans-Robust are 10, 12, 38 and 42 minutes respectively. ForQAP,
the average time needed to calculate the similarity of trajectories for
Standard, Trans, Robust and Trans-Robust are 8, 9, 32 and 35 minutes
respectively.

The other procedures in the training phase are relatively fast. Even
with different techniques, all of them require less than 1 minute to
complete. The average total time (in hour) needed to run the overall
process in training phase for each fold is shown in Table 6(II).

7 Parameter Tuning Result

In this section, we report our parameter tuning result for Traveling
Salesmen Problem (TSP) and Quadratic Assignment Problem (QAP).

7.1 Performance Comparison

We evaluate the effectiveness of four CluPaTra instantiations against
the vanilla one-size-fits-all configurator (ParamILS) and ISAC. We
measure the performance by using the performance metric described
in Definition 4. Table 6(III) shows the results of the averagecom-
parison. Comparing the four CluPaTra instantiations, we observe that
the performance of Trans, Robust and Trans-Robust is significantly
superior to the Standard instantiation.

To verify the CluPaTra effectiveness in providing best configura-
tion for each testing instance, we run the target algorithm for all QAP
testing instance in Fig. 7 using parameter configurations from each
cluster and show the result in Table 7. From the table we observe
that each testing instance, except for tai35a, has the best performance
using parameter configuration from the most similar cluster.

8

Table 7: Testing Instances Performance using Different Cluster’s Pa-
rameter Configuration

Parameter Configuration for each Cluster
Instance Cluster C#1 C#2 C#3 C#4 C#5 C#6

nug25 1 0.48 0.64 0.69 0.58 0.58 0.58
tai12a 1 0 0 0 0 0 2.80
tai15a 1 0.19 0.76 0.52 1.22 1.72 2.66
tai30a 1 1.86 2.81 2.20 2.57 3.03 2.65
tai35a 1 1.49 1.38 3.37 3.75 3.047 3.95
kra30b 2 0.07 0.07 0.97 0.07 1.88 1.18
ste36c 2 1.91 1.71 5.08 8.95 7.84 7.82
sko100b 3 0.69 1.22 0.53 1.16 1.31 1.29
sko100e 3 1.18 1.18 1.10 1.30 1.34 1.21
wil100 3 0.65 0.69 0.63 0.81 0.96 0.93
Parameter Configuration for:
C#1: Temp=4000, Alpha=0.9, Length=7,Pct=0.08
C#2: Temp=2000, Alpha=0.5, Length=7,Pct=0.09
C#3: Temp=3000, Alpha=0.3, Length=10,Pct=0.1
C#4: Temp=4000, Alpha=0.3, Length=10,Pct=0.07
C#5: Temp=100, Alpha=0.3, Length=10,Pct=0.03
C#6: Temp=5000, Alpha=0.1, Length=1,Pct=0.08

Table 8: Parameters for SA on Industrial Case Study

Parameter Description Range
maxSuccess max successes number [100, 1000]
maxTries max tries [100, 1000]
maxComp max solutions generated [1000, 50000]
maxConsReject max consecutive rejections [100, 1000]
maxChangeG max change in a variable value [100, 1000]
maxTriesG max tries to generate a feasible

solution
[100, 1000]

coolingFactor factor to reduce the temp [0.5, 1]
oracleStrictness the strictness of the oracle

function
[0, 100]

7.2 Comparison on Clustering Method

Next, we analyze the effects of different clustering methods by ap-
plying AGNES andk-medoids clustering methods on the Trans in-
stantiation. We setk to be equal to the AGNES cluster number. Ta-
ble 6(IV) shows that AGNES performs slightly better thank-medoids
even though it is not statistically significant.

7.3 Industrial Case Study

In this section, we report results on an industrial case study. We ap-
ply CluPaTra to tune an algorithm for an aircraft spares inventory
optimization problem of a large commercial aircraft maker based in
Europe. The objective of this algorithm is to determine the optimal
inventory allocation strategy that can fulfill specific target services
levels. The target algorithm is aSimulated Annealing(SA) algorithm
[6] which has 8 parameters that used to control SA behavior asde-
scribed in Table 8.

We apply CluPaTra to 50 sample instances, with 25 randomly
picked instances as training instances and the remaining 25as testing
instances. We set cutoff times of 500 seconds per run and allowed

Table 9: Industrial Case Study Result

Default ParamILS CluPaTra

Training 2.574 2.676 0.226+∗

Testing 2.391 1.521+ 0.154+∗

+ = statistically significant against Default Configuration
* = statistically significant against ParamILS Configuration

each configuration process to execute the target algorithm for a maxi-
mum of 48 CPU hours and to call the target algorithm for a maximum
of 25 x n times, wheren is the number of instances in the cluster. In
Table 9, we present the average of percentage deviation value (Def-
inition 4). We compare the result of the three approaches with the
best known values used by our industry partner. The result shows that
the CluPaTra results are superior to the default and ParamILS results.

8 Discussion and Future Direction

As shown from the experimental results, the CluPaTra framework
yields a significant improvement in performance compared with the
pure one-size-fits-all configurator ParamILS, under different instan-
tiations. We also observe that Trans, Robust and Trans-Robust in-
stantiations of CluPaTra perform significantly superior tothe stan-
dard CluPaTra instantiation. Those three instantiations yield results
that are statistically equivalent to one another but the latter two re-
quire higher computational budget compared to Trans. Basedon this
result, we confirm the result in [24] that dividing the instances into
clusters using CluPaTra, especially using the Trans. Configuration,
before running one-size-fits-all configurator provides better param-
eter configuration for each instance and significantly improves the
performance.

The effect of different clustering methods is also evaluated by two
well-studied clustering approaches, AGNES andk-medoids. Our
result shows that there is no significant difference with these two
clustering methods, this may indicate that the underlying clustering
method does not have a substantial effect on CluPaTra. We will ex-
plore this issue further in future work.

To represent the search trajectory, we need the best
known/optimum solution value (OPT) for each instance. We
use either (a) the known global optimal value, or (b) when the
global optimal value is unknown, the best known value. For all
TSP instances and several QAP instances, we use the known global
optimal value from TSPLib and QAPLib respectively while for
other QAP instances, we use best known value from QAPLib. For
industrial case study instances, we use best known solutionused by
our industrial partner. From the experiment result, we observe that
CluPaTra method using either known global optimal value or best
known value, is able to generate good clusters and hence improve
the overall performance. We will further explore this issuein future
work.

In [24], we also show that CluPaTra is statistically equivalent with
the existing and well-known QAP instances classification [38]. We
expand those results by comparing CluPaTra with ISAC, an instance-
specific algorithm configuration which use problem specific features,
and show that CluPaTra is significantly better then ISAC. In future
work, we would like to explore this further for ISAC using more com-
plex specific-features.

9

In dealing with complex optimization problem for an industrial
case study, we show that CluPaTra can provide better parameter con-
figurations than the default manually tuned parameters. It illustrates
the practical impact of our proposed approach on tuning local search
algorithms. In a world where new local search algorithms arebeing
designed for solving large complex optimization problems,the power
of our approach rests in its ability to produce effective andinstance-
specific parameter settings automatically in a computationally effi-
cient manner, rather than to rely on the tedious and mostly adhoc
manual tuning. As future direction, wee would like to extendCluPa-
Tra for other purposes such as algorithm selection or hyperheuristic.

9 Related Work

9.1 Instance Features

Recently, there has been increasing interest in finding the features of
instances that can provide an insight on what make the problem hard
and its relationship with algorithm performance. We dividethe fea-
tures into two, namely: problem-specific and problem-independent
features. Various problem-specific features have been explored in the
literature, most of these are extracted based on extensive study on
the problem knowledge domain. Example of problem-specific fea-
tures are flow dominance for QAP [11, 37, 38, 40] and population
correlation structure and constraint slackness for Knapsack Problem
[12, 33]. A comprehensive study on problem-specific features of six
combinatorial optimization problem is reviewed in [36].

On problem-independent features, one successful approachis to
characterize the instances based on its search space (fitness landscape
analysis) [2, 14, 32, 39]. A fitness landscape is a defined by a set of
solutionsω, a fitness functionφ and a neighborhood relationNk over
the set ofω [14, 36]. It can be imagined as mountainous regions
where each points represent the possible solution inω with the fitness
functionφ as its altitude and the neighborhood relationNk as its dis-
tance [7]. Examples of features extracted from fitness landscape are
fitness distance correlation (FCD) [32, 14] and ruggedness coefficient
[2, 14]. A detail review on fitness landscape and its featurescan be
found in [14].

9.2 Automated Parameter Tuning

A wide variety of strategies for automated parameter configuration
have been explored in the literature. Some of these were proposed
for a specific target algorithm than a generic algorithm. These ap-
proaches focus on finding the best parameter configuration for the
entire set (or distribution) of problem instances by using the average
quality or other statistical measures. We term these approaches as
one-size-fits-allautomated tuning. There are broadly two schemes:
model-based and model-free approaches. Recent approachesin
model-free approaches areF-Race[4], ParamILS[19], RCS[23] and
GGA [3]; while in model-based ones areCALIBRA[1], SPO+ [18]
andSMAC[17]. A good review of three recent automated parameter
tuning methods can be found in [13].

All of the above studies focus on finding the best algorithm con-
figuration for an entire set (or distribution) of problem instances.
Such approaches may not be suitable for large and diverse setof
problem instances. There have been approaches that attempted
to select the best parameter configuration on a per-instancebasis
[15, 16, 20, 27, 31]. Approaches like [15, 16, 31] use regression

model to construct a model based on the instance’s features that will
determine the configurator’s strategy, while other like [20, 24] use
clustering to divide the instances and find a good parameter configu-
ration on the cluster created. Unfortunately, these approaches tend to
be problem-specific because they make use of problem-specific fea-
tures. As an example, ISAC [20] uses problem specific features to
identify the characteristic of instances of a particular problem; for
instance, it uses 24 specific features for Set Covering from [26].

10 Conclusion

Given the high complexity of the tuning problem that demands
instance-based accuracy, we have proposed a solution framework that
is a relatively intuitive, computationally efficient and generic vis-à-
viz existing approaches (which are mostly problem-specific). As on-
going work, we are exploring ways to address the two limitations of
our proposed approach. First, in terms of scope, our approach can
only be applied to target algorithms which are local-search-based,
since our approach uses search trajectory as the feature. Second, there
is an inherent computational bottleneck introduced by the method
used for sequence alignment whose worst-case time complexity is
O(m2×n2) (wherem is the number of instances in the training set
andn is the maximum length of the sequences).

References

[1] B. Adenso-Dı́az and M. Laguna. Fine-tuning of algorithms us-
ing fractional experimental design and local search.Operations
Research, 54(1):99–114, 2006.

[2] E. Angel and V. Zissimopoulos. On the hardness of the
quadratic assignment problem with metaheuristics.Journal of
Heuristics, 8(4):399–414, 2002.

[3] C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based
genetic algorithm for the automatic configuration of algorithms.
In 15th international Conference on Principles and Practice of
Constraint Programming, pages 142–157, 2009.

[4] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A rac-
ing algorithm for configuring metaheuristics. InGenetic and
Evolutionary Computation Conference, pages 11–18, 2002.

[5] C. Blum and A. Roli. Metaheuristcs in combinatorial optimiza-
tion: Overview and conceptual comparison.ACM Computing
Surveys, 35(3):268–308, 2003.

[6] A. Gunawan, H. C. Lau, and E. Wong. Real-world parame-
ter tuning using factorial design with parameter decomposition.
In MIC 2011: The IX Metaheuristics International Conference,
2011.

[7] S. Halim. An Integrated White+Black Box Approach for De-
signing and Tuning Stochastic Local Search Algorithms. Ph.D.
thesis, National University of Singapore, Singapore, 2009.

[8] S. Halim, Y. Yap, and H.C. Lau. Viz: A visual analysis suite for
explaining local search behavior. In19th ACM symposium on
User Interface Software and Technology, pages 57–66, 2006.

[9] S. Halim, Y. Yap, and H.C. Lau. An integrated white+blackbox
approach for designing and tuning stochastic local search.In
LNCS: 13th International Conference on Principles and Prac-
tice of Constraint Programming, pages 332–347, 2007.

[10] J. Han and M. Kamber.Data Mining: Concept and Techniques,
2nd Edition. Morgan Kaufman, San Francisco, 2006.

10

[11] W. Herroelen and A. Van Gils. On the use of flow dominance in
complexity measures for facility layout problems.International
Journal of Production Research, 23:97–108, 1985.

[12] R.R. Hill and C.H. Reilly. The effects of coefficient correla-
tion structure in two-dimensional knapsack problems on solu-
tion procedure performance.Management Science, 46(2):302–
317, 2000.

[13] H.H. Hoos. Automated algorithm configuration and parameter
tuning. In Youssef Hamadi, Eric Monfroy, and Frdric Saubion,
editors,Autonomous Search, pages 37–72. Springer, 2012.

[14] H.H. Hoos and T. Stützle.Stochastic Local Search: Foundation
and Application. Morgan Kaufman, San Francisco, 2004.

[15] F. Hutter and Y. Hamadi. Parameter adjustment based on perfor-
mance prediction: Towards an instance-aware problem solver.
In Technical Report. Microsoft Research, 2005.

[16] F. Hutter, Y. Hamadi, H.H. Hoos, and K. Leyton-Brown. Per-
formance prediction and automated tuning of randomized and
parametric algorithms. InLNCS: Principles and Practice of
Constraint Programming 2006, pages 213–228, 2006.

[17] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Sequential model-
based optimization for general algorithm configuration. In
LNCS: 5nd Learning and Intelligent OptimizatioN Conference,
2011.

[18] F. Hutter, H.H. Hoos, K. Leyton-Brown, and K. Murphy. Time-
bounded sequential parameter optimization. InLNCS: 4nd
Learning and Intelligent OptimizatioN Conference, 2010.

[19] F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. Stützle.
Paramils: An automatic algorithm configuration framework.
Journal of Artificial Intelligence Research, 36:267–306, 2009.

[20] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. Isac-
instance-specific algorithm configuration. In19th European
Conference on Artificial Intelligence, 2010.

[21] J. Kaufman and P. J. Rousseeuw. Clustering by means of
medoids.Statistical Data Analysis Based on the L Norm.

[22] L. Kaufman and P.J. Rousseeuw.Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley-Interscience, 1990.

[23] H.C. Lau and F. Xiao. Enhancing the speed and accuracy of
automated parameter tuning in heuristic design. In8th Meta-
heuristics International Conference, 2009.

[24] Lindawati, H.C. Lau, and D. Lo. Instance-based parameter tun-
ing via search trajectory similarity clustering. InLNCS: 5nd
Learning and Intelligent OptimizatioN Conference, 2011.

[25] W. Macready and D. Wolpert. What makes an optimization
problem hard.Complexity, 5:40–46, 1996.

[26] Y. Malitsky and M. Sellmann. Stochastic offline programming.
In IEEE International Conference on Tools with Artificial Intel-
ligence, 2009.

[27] D. McAllester, B. Selman, and H. Kautz. Evidence for invari-
ants in local search. In14th National Conference on Artifical
Intelligence, page 321326. AAAI Press, 1997.

[28] D.C. Montgomery and G.C. Runger.Applied Statistics and
Probability for Engineers 2nd Edition. John Wiley & Son, 1999.

[29] K.M. Ng, A. Gunawan, and K.L. Poh. A hybrid algorithm for
the quadratic assignment problem. InInternational Conf. on
Scientific Computing, pages 14–17, 2008.

[30] R.T. Ng and J. Han. Efficient and effective clustering methods
for spatial data mining. In20th International Conference on
Very Large Databases, pages 144–155, 1994.

[31] D.J. Patterson and H. Kautz. Auto-walksat: A self-tuning im-

plementation of walksat.Electronic Notes in Discrete Mathe-
matics, 9:360–368, 2001.

[32] C.R. Reeves. Landscapes, operators and heuristic search. An-
nals of Operations Research, 86(1):473–490, 1999.

[33] C.H. Reilly. Synthetic optimization problem generation: Show
us the correlations!INFORMS Journal on Computing, 21:458–
467, 2009.

[34] S. Salvador and P. Chan. Determining the number of
clusters/segments in hierarchical clustering/segmentation algo-
rithms. In 16th IEEE International Conference on Tools with
Artificial Intelligence, pages 576–584, 2004.

[35] K. Smith-Miles, J. Hemert, and X.Y. Lim. Understandingtsp
difficulty by learning from evolved instances. InLNCS: 4th
Learning and Intelligent OptimizatioN Conference, pages 266–
280, 2010.

[36] K. Smith-Miles and L. Lopes. Measuring instance difficulty for
combinatorial optimization problems.Computer and Opera-
tions Research, 39:875–889, 2012.

[37] T. Stützle and S. Fernandes. New benchmark instances for the
qap and the experimental analysis of algorithms. InLNCS: Evo-
lutionary Computation In Combinatorial Optimization, 2004.

[38] É.D. Taillard. Comparison of iterative searches for the quadratic
assignment problem.Location Science, 3(2):87–105, 1995.

[39] J. Tavares, FB. Pereira, and E. Costa. Multidimensional knap-
sack problem: a fitness landscape analysis.IEEE Trans Syst
Man Cybern B Cybern, 38(3):604–616, 2008.

[40] T.E. Vollmann and E.S. Buffa. The facilities layout problem in
perspective.Management Science, 12(10):450–468, 1966.

[41] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Satzilla:
Portfolio-based algorithm selection for sat.Journal of Artificial
Intelligence Research, 32:565–606, 2008.

11

	Clustering of Search Trajectory and its Application to Parameter Tuning
	Citation

	CluPaTra.DVI

