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Abstract

This paper examines the finite sample properties of the quasi maximum likelihood (QML) esti-
mators of the fixed effects spatial panel data (FE-SPD) models of Lee and Yu (2010). Following the
general bias correction methods recently developed by Yang (2015), we derive up to third-order bias
corrections for the QML estimators of the FE-SPD model, and propose a simple bootstrap method
for their practical implementation. Monte Carlo results reveal that the QML estimators of the spa-
tial parameters can be quite biased and that a second-order bias correction effectively removes the
bias. The validity of the bootstrap method is established. Variance corrections are also considered,
which together with bias corrections lead to improved inferences.

Key Words: Bias correction, Variance correction, Bootstrap, Spatial panel, Individual fixed effects,
Time fixed effects, Quasi maximum likelihood, Spatial lag, Spatial error, Spatial ARAR.

JEL Classification: C10, C13, C21, C23, C15

1 Introduction

Recently there has been growing interest in panel data models with spatial interactions.! For the
random effects specification, Anselin (1988) provides a panel regression model with error components
and spatial autoregressive (SAR) disturbances, and Kapoor et al. (2007) propose a different specification
with error components and an SAR structure in the overall disturbance. Baltagi et al. (2013) suggest an
extended model without restrictions on implied SAR structures in the error component and the remaining
disturbance, which nests the Anselin (1988) and Kapoor et al. (2007) models. As an alternative to the
random effects specification, Lee and Yu (2010) investigate the asymptotic properties for quasi-maximum
likelihood (QML) estimation of spatial panel models under fixed effects specification. The fixed effects
model has the advantage of robustness because fixed effects are allowed to depend on included regressors.
It also provides a unified model framework, because different random effects models in Anselin (1988),
Kapoor et al. (2007) and Baltagi et al. (2013) reduce to the same fixed effects model.

However, finite sample properties of the QML estimators of fixed effects spatial panel data models
are to be unveiled. When considering the finite sample properties of the QML estimators (QMLESs) of
spatial panel models, one key feature to be recognized is the fact that the spatial parameters enter the

*Corresponding Author: 90 Stamford Road, Singapore 178903. Phone: +65-6828-0852; Fax: +65-6828-0833. E-mail:
zlyang@smu.edu.sg.

1See, e.g., Anselin (1988), Baltagi et al. (2003, 2013), Kapoor et al. (2007), Yu et al. (2008, 2012), Yu and Lee (2010),
Lee and Yu (2010), Baltagi and Yang (2013a,b), and Su and Yang (2015) for some related works on spatial panel models.



log-likelihood function in a highly non-linear manner that makes it the main source of bias. Direct bias
and variance corrections are difficult as closed form evaluations of the expected values related to the
bias and variance terms are in general extremely complicated, even with simplifying assumptions such
as normality of disturbances. In the current paper, we adopt the approach in Yang (2015) to propose a
simple and effective method for correcting the bias and variance of the QMLEs for fixed effects spatial
panel data models. Yang (2015) employs a concentrated log-likelihood function of the spatial parameters
only, applies a stochastic expansion (Rilestone et al. 1996) to capture bias up to third-order, and uses a
simple bootstrap technique to estimate the expected values of higher order quantities that are difficult to
derive analytically. Prior to Yang (2015), there are other approaches in the literature that try to tackle
the bias problem in spatial linear regression models including Bao and Ullah (2007) and Bao (2013), and
also the bias problem in standard panel data models such as Nickell (1981), Kiviet (1995), Hahn and
Kuersteiner (2002), Hahn and Newey (2004), Bun and Carree (2005), Hahn and Moon (2006), Arellano
and Hahn (2005), to name a few. The advantage of the method of Yang (2015) over the existing methods
comes by way of ease of implementation, effectiveness, and generality. It is able to capture biases up to
third-order, but typically a second-order bias correction effectively removes the bias. It can be applied
to a more complicated model such as the model considered in the current paper.

Compared to Yang (2015), we need to consider the incidental parameter problem caused by the
individual and time effects of the spatial panel model (Neyman and Scott, 1948; Lancaster, 2000).
Following the ideas of Neyman and Scott (1948), Lee and Yu (2010) observe that when conducting a
direct estimation using the likelihood function where all the common parameters and the fixed effects
are estimated together, the estimate of the variance parameter is inconsistent when 7' is finite while n
is large. Further, the direct approach is shown to yield consistent estimates for the spatial parameters
and the regression coefficients. With data transformations to eliminate the fixed effects as in Lee and
Yu (2010), one can avoid the incidental parameter problem, and the data can be pooled after this data
transformation so that the ratio of n and T does not affect the asymptotic properties of estimates.
The QMLESs derived after the transformation are shown to be consistent, and, except for the variance
estimate, are identical to those from the direct approach. In this paper, we follow the transformation
approach of Lee and Yu (2010) to examine the finite sample properties of the parameter estimates.
Monte Carlo results reveal that the QMLESs of the spatial parameters can be quite biased, in particular
for the models with spatial error dependence, and that a second-order bias correction effectively removes
the bias. The validity of the bootstrap method is established. Variance corrections are also considered,
which together with bias corrections lead to improved inferences.

The rest of the paper is organized as follows. Section 2 introduces the spatial panel data model
allowing both spatial lag and spatial error, and both time-specific effects and individual-specific effects,
and its QML estimation based on the transformed likelihood function. Section 3 presents a third-order
stochastic expansion for the QML estimators of the spatial parameters, a third-order expansion for
the bias, and a third-order expansion for the MSE or variance of the QML estimators of the spatial
parameters. Section 3 also addresses issues on the bias of QMLEs of other model parameters, and on
the inferences following bias and variance corrections. Section 4 introduces the bootstrap method for
estimating various quantities in the expansions, and presents theories for the validity of such a method.
Section 5 presents Monte Carlo results, and Section 6 concludes the paper.

2 The Model and Its QML Estimation

For the spatial panel data (SPD) model with fixed effects (FE), we can investigate the case with both
spatial lag and spatial error, where n is large and T could be finite or large. We include both individual
effects and time effects to have a robust specification. The FE-SPD model under consideration is

Y;Lt - )\OWIHY;Lt + Xntﬁo + Cpo + at0l7z + Unt, Unt = pOWQHUnt + ‘/nta t= la 27 ceey Ta (21)

where, for a given t, Y+ = (Y1t, Y2t, - - -, Ynt)' is an n x 1 vector of observations on the response variable,
Xt is an n X k matrix containing the values of k£ nonstochastic, individually and time varying regressors,



Vit = (v1t, U2ty - - ., Unt)’ 18 an nx 1 vector of errors where {v;:} are independent and identically distributed
(iid) for all i and ¢ with mean 0 and variance o2, ¢, is an n x 1 vector of fixed individual effects, and
is the fixed time effect with /,, being an n x 1 vector of ones. W7, and Ws,, are given n X n spatial weights
matrices where W1, generates the ‘direct’ spatial effects among the spatial units in their response values
Y.+, and Ws,, generates cross-sectional dependence among the disturbances U,;. In practice, Wi, and
W, may be the same.

In Lee and Yu (2010), QML estimation of (2.1) is considered by using either a direct approach or
a transformation approach. The direct approach is to estimate the regression parameters jointly with
the individual and time effects, which yields a bias of order O(T~!) due to the estimation of individual
effects and a bias of order O(n~1!) due to the estimation of time effects. The transformation approach
eliminates the individual and time effects and then implements the estimation, which yields consistent
estimates of the common parameters when either n or T is large. In the current paper, we will follow
the transformation approach so that it is free from the incidental parameter problem.

To eliminate the individual effects, define Jp = (It — %lTl’T) and let [Fpp_1, %ZT] be the orthonor-
mal eigenvector matrix of Jp, where Fp p_q is the T'x (T'—1) submatrix corresponding to the eigenvalues
of one, It is a T x T identity matrix and I is a T x 1 vector of ones.? To eliminate the time effects, let
Jn and F), ,_1 be similarly defined, and let Wi, and Ws,, be row normalized.? For any n x T matrix
[Zn1,- -+, Zyr), define the (n — 1) x (T — 1) transformed matrix as

[ ;1’ X Z;,T—l] = Fr/z,n—l[an’ R ZnT]FT7T—1' (2-2)
This leads to, for t = 1,...,7 -1, Y, Uy, V", and X, ; for the jth regressor. As in Lee and Yu

ntr “ntr Yn nt,j

(2010), let Xy = [ X 1, X5y 00 "’X;t,k]’ and Wy = F), , {WhinFyn-1,h = 1,2. The transformed
model we will work on thus takes the form:

Y =AW Yo + X560 +Ur, Uk =poWa, U + Vi, t=1,...,T—1. (2.3)
After the transformations, the effective sample size becomes N = (n — 1)(T — 1). Stacking the vec-
tors and matrices in (2.3), i.e., letting Yn = (Y1,....Yr), Unv = (U31,...,U'r 1), VN =
VAo, .. .,V;’T_l)’, Xn = (X, .. .,X;:T_l)’, and denoting Wyn = Ir_1 @ Wy, h = 1,2, we have the

following compact expression for the transformed model:
YN =XWinYy +Xnbo+ Uy, Uny=poWonUn + Vy, (2.4)

which is in form identical to the spatial autoregressive model with autoregressive errors (SARAR),
showing that the QML estimation of the two-way fixed effects panel SARAR model is similar to that of
the linear SARAR model. The key difference is that the elements of V y may not be iid though they
are uncorrelated and homoskedastic as shown below. This may have a certain impact on the bootstrap
method (see next section for details).

It is easy to show that the transformed errors {v},} are uncorrelated for all ¢ and ¢ by using the

identity ( 771/’ AR :,/T—l)/ = (Fi/",T—l & Fr/z,n—l)( 7:1’ RS AT)/,
E( 771/, ceey :,/T—l)/( :1/, e ,V:,/T—l) = 0-(2)(F’1/",T—1 ® Fr/z,n—l)(FT7T—1 ® Fn,n—l) = U(Q)IN-

Hence, {v},} are iid N(0,02) if the original errors {v;:} are iid N(0,02). It follows that the (quasi)
Gaussian log likelihood function for (2.3) is, letting ¢ = (3, \, p)’, and 6 = (5,02, A, p)’,

() = 5 In(2m0%) + In A ()] + I B ()] — 575 VA(OV(O), (25)

2In dynamic panel data models, the first difference and Helmert transformation have often been used to eliminate the
individual effects; see Anderson and Hsiao (1981) and Arellano and Bover (1995), among others. A special selection of
Frr_1 gives rise to the Helmert transformation where V;,¢ is transformed to (Ti;t_l W2Vt — 77 (Vairr + -+ Var)l,
which is of particular interest for dynamic panel data models.

3When Wj, are not row normalized, the linear SARAR presentation of (2.4) for the spatial panel model will no
longer hold. In that case, a likelihood formulation would not be feasible, and alternative estimation methods, such as the
generalized method of moment, would be possible. Such an estimation approach is beyond the scope of this paper.




where AN()\) = IN — )\WlN, BN(p) = IN — prN, and VN(C) = BN(,O)[AN()\)YN — XNB]
Now, letting Yn(\) = An(A)Yy and Xy (p) = By(p)Xy, the constrained QMLEs of 3 and o2,
given A and p, can be expressed in the following simple form:

By(Ap) = [Xy(p)Xn ()] 'Xy(p)Bn(p)Yn(N), (2.6)
(g = NTYN()My(p)Yn (), (2.7)

where My (p) = Biy (9){ I =X (o) X}y (o)X ()] Xy (0)}Buv (p). Substituting By (A, p) and 5% (A, p)
back into (2.5) gives the concentrated log likelihood function of (A, p):

(5 (0 p) = — 5 (1n(2m) + 1)+ In| A ()] +1n B ()| — 5 &% (A, ). (2.8)

Maximizing £5 (A, p) in (2.8) gives the unconstrained QMLEs An and py of A and p, and substituting
(S\N, pn) back into (2.6) and (2.7) gives the unconstrained QMLEs of 8 and o2 as By = By (S\N, pn) and
6% = 63(An, pn).* Write Oy = (B, An, pn, 6%)". Lee and Yu (2010) show that 6y is v/ N-consistent
under some mild conditions. These conditions are stated in Appendix A to facilitate the subsequent
developments for the higher-order results. The v/N-consistency of BN and 6% immediately follows. It
follows that the QML estimators of any of the submodels discussed below will be v/ N-consistent as well
where N can be (n —1)(T — 1), n(T — 1), (n — 1)T, or nT.

The linear SARAR representation (2.4) is seen to have greatly facilitated the QML estimation of
the general FE-SPD model. It will also be helpful for the subsequent developments in bias and variance
corrections. Based on this representation, the results developed for this general model can easily be
reduced to suit simpler models. For example, setting p or A to zero in (2.4) gives an FE-SPD model with
only the spatial lag (SL) effect or an FE-SPD model with only the spatial error (SE) effect; dropping
either ayo or ¢, in (2.1) (or dropping either F), ,,—1 or Frp_1 in (2.2)) leads to a submodel with only
the individual-specific effects or a submodel with only the time-specific effects; finally, dropping both c,q
and ayp in (2.1) leads to a model that is essentially the linear SARAR model discussed in Yang (2015,
Sec. 4) for bias corrections. On the other hand, the spatial panel model considered in this paper can also
be extended to include more spatial lag terms in both the response and the disturbance, in particular
the former. Software can be developed to facilitate the end users of the methodologies developed in this
paper.

3 Third-Order Bias and MSE for FE-SPD Model

3.1 Third-order stochastic expansions for nonlinear estimators

In a recent paper, Yang (2015) presents a general method for up to third-order bias and variance
corrections on a set of nonlinear estimators based on stochastic expansions and bootstrap. The stochastic
expansions provide tractable approximations to the bias and variance of the nonlinear estimators and the
bootstrap make these expansions practically implementable. The method is demonstrated, through a
linear SAR model, to be very effective in correcting the bias and improving inferences. It was emphasized
in Yang (2015) that in estimating a model with both linear and nonlinear parameters the main source
of bias and the main difficulty in correcting the bias are associated with the estimation of the nonlinear
parameters, and hence one should focus on the concentrated estimation equations. By doing so, the
dimensionality of the problem can be greatly reduced, and more importantly the additional variations
from the estimation of the linear and scale parameters are captured in correcting the nonlinear estimators,

4 Numerical maximization of £5; (X, p) can be computationally demanding if N is large due to the need of repeated calcu-

lations of the two determinants. Following simplifications help alleviate such a burden: |[Ax(X)| = |In_1 — AW, |T_1 =
(ﬁ [T, — AW1n| )T_l (ﬁ (1= Awli))T_l, where wy; are the eigenvalues of W1y, the middle equation from
Lee and Yu (2010), and the last equation is from Griffith (1988). Similarly the determinant of |B(p)| is calculated.



thus making the bias and variance corrections more effective. In the current paper, we follow the approach
of Yang (2015) to tackle the bias problem in a more complicated model, the FE-SPD model.
Let § be the vector of nonlinear parameters of a model, and §y defined as

on = arg{n(8) = 0}, (3.1)

be its VN -consistent estimator, with N (0) being referred to as the concentrated estimating function
(CEF) and ¢n(0) = 0 the concentrated estimating equation (CEE). Let H,n(0) = V"¢n(d),r = 1,2, 3,
where the partial derivatives are carried out sequentially and elementwise, with respect to 0. Let
Yy =¢¥n(do), Hrv = Hyn(00) and Hey = Hyny — E(H,n),r = 1,2, 3. Note that here and hereafter the
expectation operator ‘E’ corresponds to the true model parameters . Define Qn = —[E(Hiy)]"!. Yang
(2015), extending Rilstone et al. (1996) and Bao and Ullah (2007), gives a set of sufficient conditions
for a third-order stochastic expansion of dy = arg{1n(0) = 0}, based a general CEF 1y (d), which are
restated here to facilitate the development of higher-order results for the FE-SPD model:

Assumption G1. dxn solves @N(é) =0 and dn — 6o = OP(N_l/Q).

Assumption G2. ¥y () is differentiable up to the rth order for § in a neighborhood of 8, E(H,n) =
O(1), and HSy = O,(N~Y/2), r =1,2,3.

Assumption G3. [E(H;y)]"' = O(1), and Hyy = O,(1).

Assumption G4. [|H,.n(0) — Hr-n(60)|] < |0 — do||Un for 6 in a neighborhood of 6o, 7 = 1,2,3,
and E|Uy| < ¢ < o0 for some constant c.

Under these conditions, a third-order stochastic expansion for Sy takes the following form:
SN — g = a_1/2+a—1 +a_3/2+OP(N_2), (32)

where a_ /o represents a term of order O,(N —s/ 2) for s = 1,2, 3, having the expressions

a_ip = QnUn,
a1 = QnH{ya_i2+ sQNE(Han)(a—1/2 ® a_1/2),
a_z;p = QOnH{ya_i+2QnHSy(a_1/2®a_q)2)

+3ONE(Hon)(a—1/2 ® a1 + a1 @ a_y2)
++ONE(Hsn)(a—1/2 ® a_1/2 ® a_q/2),

where ® denotes the Kronecker product. In moving from the stochastic expansion given in (3.2) to
third-order expansions for the bias, MSE and variance of dx, it is assumed that E(@N) =O(N~1) and
that a quantity bounded in probability has a finite expectation. The latter is a simplifying assumption to
ensure that the remainders are of the stated order. A third-order expansion for the bias of dy is

Bias(dn) = b_1 +b_3/5 + O(N2), (3.3)

where b_1 = E(a_1/24+a—_1) and b_3/5 = E(a_3/2), being respectively the second- and third-order biases.
Similarly, a third-order expansion for the mean squared error (MSE) of 0y is

MSE(SN) =m_1+m_g/+m_z+ O(N_5/2), (3.4)

where m_; = E(a_l/ga’_l/Q), m_zso = E(a_1/20" | + a_la’_l/Z) and m_s = E(a_1a’ ; + a_l/ga/_3/2 +

a_gsa’ /2), and the third-order expansion for the variance of dy is

Var(SN) =v_1+v_3p2+v_2+ O(N_5/2), (3.5)

where v_1 = Var(a_i2), v_3/2 = Cov(a_1/2,a-1) + Cov(a_1,a_1/2), and v_y = Cov(a_1/2,a_3/2) +
Cov(a_s/2,a_1/2) + Var(a_1 + a_g/2); or simply v_1 =m_1, v_3/5 = m_3/2, and v_p = m_s — b% ;.



Therefore, we can improve the statistical inference in finite samples by correcting the bias and
standard deviation of estimates. From (3.3), we can use

(5}%?2 = SN — b_1 or (SR[CS = SN - b—l - b—3/2,

to yield an estimator unbiased up to order O(N~!) or an estimator unbiased up to order O(N~3/2).
With estimated b_; and b_3/5, feasible (5}{,& and (55’\,?3 can be constructed.

Similar procedures can be applied to increase the precision of variance estimate from (3.5). Under
the assumption b_; —b_; = O,(N~3/2) and 5_3/2 —b_3/2 = Op(N~2), we have

Var(0%%) = v_1 +v_3/9 + v_2 — 2ACov(dn,b_1) + O(N~%/2), (3.6)

and Var(6%°?) = Var(6%%3) + O(N~°/2), where ACov denotes asymptotic covariance. See Section 4 for
details on the practical implementations of bias and variance corrections.

3.2 Third-order bias and variance for spatial estimators

In this subsection, we first derive all the quantities required for the third-order expansions for the
FE-SPD model, and then discuss conditions under which the results (3.2)-(3.6) hold under the FE-SPD
model instead of going through the detailed proofs of them. As seen from Section 2, the set of nonlinear
parameters in the FE-SPD model are 6 = (A, p)’. The CEF leading to the QMLE on = (An, pn) is
YN (8) = % 205,(5), which is shown to have the form:

B Y; (A) N(P)Win Yy
G = o)+ 5 LM Y03 .
- / 1) )

"3, ( >MN<,0>YN<A>’
where Ton(A) = &tr(WinAR V), Kon(p) = Htr(WanBR!(p)), and M{(p) = LMy(p).5 The
conditions for the v/N-consistency of Sn are given in Lee and Yu (2010), and also in Appendix A.

To derive the rth order derivative, H,n(6), of N () w.rt. ¢, r =1,2,3, for up to third-order bias
correction, define T, (A) = £tr[(Win AN (V)] and K, (p) = £ tr[(WanBy (p) ], 7 =0,1,2,3.

Let Mg\];)(p) be the kth derivative of My (p) w.r.t. p, k = 1,2, 3,4. Define
Yy(AO)My(p)WinYy

_ Y Wi yMny(p)WinYy
) = S M (DY ) on ) = S My ()Y ()
co YROMP (WinYy YW MY (WinYy
QkN((S) - Y’ ()\)I\J/IVN(,O)YN()\) ,k - 172,37 QkN( ) NY/ (Q)MN(,O)YN()\) ,k = 1,27
(k)

T Y ()‘)MN(IO)YN()‘)
which have the following properties
%f;@ — 2R2,(6) — Ran(6), Oanl0) — 2Ry n(8)Ran (9),
QL (9 9Qp N (8

2D < 2R (D)QLy(0) ~ QD). PR =2 () Qi (0),
290 — 2Ry N (8) S (8) — 2Q] v (0);

SR0) — QI y(0) = Rin(d)Sin(0), 2R = Q1 (5) — Ran(8)Sin(0),

‘””“’ = QL () — QLy(9)S1n(6), QW’ = QL (6) — QL (9)S1n (),
ng,‘s— = Ss1.n(8) — Sin (6)S1n(0).

5Lee and Yu (2010) provide another useful identity for calculating the inverse: (In—1 — AW},)~! = F;L77L_1(In_1 —
AWh,L)_lan_l. Based on this, the inverses of A x(A) and By () can easily be calculated as they are block-diagonal.



Write ¢y (8) = ($1n5(5), dan (6)) with ¥y n(8) = —Ton (A)+Rin(8) and 1han (6) = —Kon (p)—Sin (6).
Denote the partial derivatives of 1,y () by adding superscripts A and/or p sequentially, e.g., 33 (8) =

8>\2¢1N( ), and 955" (8) = 8A828A¢2N( ). Thus, Hin(8) has 1st row {17y (8),95(8)} and 2nd row
{¢2N( ),¢2N( )}, which gives

~Tin(A) = Ron(8) +2R34(8), Q1 n(8) — Rin(6)Sin () )

)= ( Qly(8) — Rin(6)Sin (9), ~Kiw(p) — 38 (0) + 1525 (6)

Hy (0) has rows {2 (0), 2% (9), W9N (9), 944, (8)} and {33 (8), 3% (8), ¥4 (8), 945, (9)}, where
) = —2T2N<A> — 6R1n(8) Ran () + 83y (0),
T (0) = —Qin(8) + 4R N (9)Q  (8) + Ran(9)S1n (6) — 4R3 y (8)S1n (9),
P0) = Q! ( ) = 2Q1 y(0)S1n (8) + 2R1n(8)S2y (8) — Rin(8)San (6),
£2.(9) = —2K2N< ) = $S5n(0) + £513(8)San (6) — S5y (6),
(8) = VYN (8) = 3% (8), and 3% (6) = ¥EN (6) = 7R (6).

H3n(0) is obtained by taking partial derivatives w.r.t. 8’ of every element of Hon(d). It has elements:

AA
N6

IN(8) = —6T3n(N) + 6R3y(8) — 48RT N (6) Ran(6) + 48Ry (0),

AN (8) = —6Q1 y (8)Ran (8) + 12R1 N (6) Ran (8)Sin (8) — 6Ry N (6)Q} y (6),
+24R2  (9)[Q1 4 (8) — Rin(8)Sin (9)],

~i\]€}')\(6) = QQ{N((S)RW((S) + 12R1N(8)Ran(6)S1n(6) — 6R1N(6)QIN(6)
+8R2 \ (0)Q1 5 (8) — 20R3 4 (8)S1n (6),

J20(8) = — Qb (p) +2Q% 5 (p)Sin (8) — 2R2N(6>S N (8) + Ron (8)San (8) + 4Q1 3(5)
—16R1N(6>51N<6>Q1N(6> + AR N (0)Qbn (8) + 12R2 y(6)S2 5 (8) — 4R2 5 (8)San (6),

PR (6) = —Qbn (8) + Q5 N (D) Rin () + 2Q3 v (0)S1n (8) + 4Q] 3(8) — 16R1n(5) Q] (8)S1n (0)
—Rm )San (8) + 12R3 5 (8) 53y (6) — 2Ran(8)S3x (6) — 453 (8)S2n (6),

PERE(8) = QLN (8) — BQI N (9)S1n (8) + 6QT 4 (9)S2y (6) — 3QT 5 (8)S2n(6) — 6R1n (8)S5y (6)
+6R1N(5)S1N(5)52N(5) — Rin(6)S3n (9),

JORN(6) = Qb v (8) — Rin(8)Ssn (8) — 3Q1 y (8)San(8) + 6R1n (8)S1 3 (6)San (6)
—-351n (0 )Q;N( )+ 6S7x (6 )QJ{N( ) — 6R1n(6)S3 5 (6),

Do (0) = —6K5n (p) — 55w (6) + 2518 (0)S5n (8) + 53 (8) — 652n(6)STx (8) + 351y (6).

PN (8) = 915 (8) = U (6), 91N (8) = UnRf (6) = i (0),
PR (8) = ki (6) = 5N (), and 757 (8) = ¥ (8) = W5 (6)-

The expressions of MS\];)(p), p, k=1,2 3,4, are lengthy, and hence are relegated to Appendix B.

For the general results (3.2)-(3.6) to be valid when the CEF ty(8) corresponds to the FE-SPD
model, it is sufficient that this function satisfies Assumptions G1-G4 listed in Section 3.1. First the
\/N~ -consistency of Sy in Assumption G1 is given in Theorem A.1l in Appendix A. The differentiability
of ¥n(0) in Assumption G2 is obvious. From Section 4.1 we see that the R-, S- and @-quantities at the
true parameter values are all ratios of quadratic forms in V, having the same denominator Vi, M%, 'V i
where M$, = Iy — Xn(po)[ Xy (p0)Xn (p0)] !Xy (po). It can be shown that + ViM% V. converges



to 03 (> 0) with probability one. Hence, with Assumptions A1-A8 in Appendix A, for the H-quantities
to have proper stochastic behavior, it would typically require the existence of the 6th moment of v;;
for the second-order bias correction, and the existence of the 10th moment of v;; for the third-order
bias correction. Variance corrections have stronger moment requirements. However, these moment
requirements are no more than those under a joint estimating equation with analytical approach. The
condition E(¢py) = O(N™1) is required so that b_ is truly O(N~1). This condition is not restrictive
as the asymptotic normality of dy, i.e., as N — oo, VN ((5N — dg) converges to a centered bivariate
normal distribution, established by Lee and Yu (2010)7 implies that E(n) = o(N~'/2). The other
conditions are likely to hold by the FE-SPD model. With these and Assumptions A1-A8 in Appendix
A, the results (3.2)-(3.6) are likely to hold. For these reasons, we do not present detailed proofs of the
results (3.2)-(3.6) for the FE-SPD model, but rather focus on the validity of the bootstrap methods for
the practical implementation of these bias and variance corrections.

3.3 Reduced models

Letting either p = 0 or A = 0 leads to two important submodels, the FE-SPD model with SL
dependence only and the FE-SPD model with SE dependence only. Bias and variance corrections
become much simpler in these cases, in particular the former.

FE-SPD model with SL dependence. The necessary terms for up to third-order bias and
variances correction for the FE-SPD model with only SL dependence are:

Y ()\)MO WinY YW MO WinY
Rin() = S oomMvaoy o v = iR

dn() = =Ton(A) + Rinv(N),

Hin(A) = —Tin(A) — Ran(A) + 2R3y (N),

Hon(A) = —2Ton(A) = 6Rin(N)Ran(X) +8Ri (),

Han()) = —6Tsn(A) + 6R2y(A) — 48Ry (N Ran (A) + 48R4 (),

where MY = My (0) = Iy — Xy (XyXxn) tX/y. These results contain, as a special case, the results
for linear SAR model considered in detail in Yang (2015), showing the usefulness of the linear SARAR
representation for the fixed effects spatial panel data model given in (2.4).

FE-SPD model with SE dependence. The necessary terms for up to third-order bias and
variances correction for the FE-SPD model with only SE dependence are:

’ (k)
_ Mk_1234

Skn(p) = Y\ My () YN’

dn(p) = —Konlp) — $Sin(p),

Hin(p) = —Kin(p) = 35w (p) + 55in(p).

Han(p) = —2Kan(p) — 555w (p) + 3518 (p)San(p) — Sin(p),
Hsn(p) = —6Ksn(p) — $S5in(0) + 2S1n(6)San (8) + 2555 (6)

—6S2n3(6)ST N (0) + 3515 (0).

These results contain, as a special case, the results for the linear SED model considered in Liu and Yang
(2014). Again, these results show the usefulness of the linear SASAR representation for the fixed effects
spatial panel data model given in (2.4).

Simplifications to a one-way fixed effects model are easily done by dropping either F3, ,—1 or Fpr 11
in defining the transformed variables Y,3;, Uy;, and V5, and the transformed matrices X}, and W} ,

h = 1,2. Obviously, when the model contains only individual-specific effects, t = 1,...,7 — 1 and
N =n(T — 1), and when model contains only the time-specific effects, t =1,...,7 and N = (n — 1)T.



3.4 Bias correction for non-spatial estimators

Note that 3y = By (0n) and 6% = 6% (0n), where Gy (6) and 62(6) are the constrained QMLESs of 3
and o2 defined in (2.6) and (2.7). As B (o) is an unbiased estimator of 3, and 5% () is an unbiased
estimator of ¢2, it is natural to expect that, with a bias-corrected QMLE (ASJ][{,C of 6, B}{,C = BN(S}{,C)
and &JQ\,bC = Nk ~12v((5bc) would be much less biased than the original QMLEs. Thus, with a bias-
corrected nonlinear estimator, the QMLEs of the linear and scale parameters may be automatically
bias-corrected, making the overall bias correction much easier. This is another point stressed by Yang

(2015) in supporting the arguments that one should use CEE to perform bias correction on nonlinear
parameters. We now present some results to support this point.

First, from (2.6), By = Bn(0n) :~FN(,6N)YN(5\N), where Fn (p) = [X/y(0)Xn(p)] "X\ (p)Bn (p).
Let B(k)( ) be the kth derivative of Sx(d) w.r.t. &', and F(k)(p) the kth derivative of Fy(p) w.r.t. p.
A notational convention is followed: By = BN((SO) B(k) = BJ(\};)((SO), Fy = Fn(po), Ay = An()\o),
Bx = Bn(po), etc. Assume E( ~J(\],€)) exists and B(k) E( J(\];)) = O,(N71/2),k = 1,2. By a Taylor series
expansion, we obtain,

Br(n) = By + By (O —00) + 353 (O — o) ® (O — 80)] + Op(N72/2), (3:8)
By + B( ~](\}'1))(3N —60) + bya_1/2 + 1E( ~J(\?))(a—uz ® a_1/2) + Op(N73/2),

where E(3{)) = [-FNGnXnfo, FYXno], Gy = WinAR, by = [-FNGyBy' Vy, FYBR V],
and E(3Y) = [0kx1, —FW GyXnbo, —FYGNXnfo, FUXn o). Recall a_yjp = Qniby. It is easy
to see that the expansion (3.8) holds when 0 is replaced by dk¢%. It follows that

Bias(An) = E(BV)Bias(dn) + E(bxa_1/2) + LEBT)E(a 1/ © a_1/s) + O(N-3/2),
Bias(G%2) = E(bya_1/2) + 3E(BY)E(a_1/2 ® a_1/5) + O(N~3/2). (3.9)

The key term E( ~J(\}))Bias((5N) of order O(N~1) in the bias of Sy (dx) is absorbed into the error term
when by is replaced by SbCQ in defining the estimator for By. Thus, it can be expected that the resulting
bias reduction can be big, and the estimator BbCQ BN (3}{?2) is essentially second-order bias-corrected,
if E(bya_1/2) + §E( J(v))E(a_l/g ® a_1/2) is ‘small’. In general, using (3.9), BbCQ can easily be further
bias-corrected to be ‘truly’ second-order unbiased. However, our Monte Carlo results given in Section 5
suggest that this may not be necessary. Finally, FS\];)(p), k = 1,2, can be easily derived.

Now, from (2.7), 6% = 6% (0n) = Y5 (AN )My (5n) YN (An) = £Qn(6n). Let Q¥ (6) be the kth
partial derivative of Qn(6) w.r.t. ¢, and similarly QS\];) = 55)(60). Assume +E( S\I;)) = O(1) and
S\};) — E( S\Iﬁ))] = O0,(N~Y/2) for k = 1,2. A Taylor series expansion gives,

5% (bn) = 3%+ 2QW(0n — d0) + QW [(6x — 60) ® (B — §o)] + Op(N73/2),
= 5%+ £BQW) (O — 80) + ana_ 1o + 55 BQW) (0172 ® a_1y2) + O(N~/2)(3.10)

~l

where the exact expressions for ¢n and E( g\lﬁ)), k =1,2, are given in Appendix B. It is easy to see that
the expansion (3.10) holds when Sy is replaced by (5bC2. It follows that

Bias[x26% (0n)] = wEQV)Bias(dn) + x:E(gna_1/2)
+ 5 EQN )E(a- 12 ® a_1/) + O(N~3/2),
Bias[ 52565 (03] = gE(anva 1)) + s BQRV)E(@ 1/ @ a_1/9) + O(N~3/2). (3.11)

Again, the key bias term 7E( S\}))Bias(&v) is removed when dy is replaced by 3}{,& in defining the
estimator for o2, and our Monte Carlo results in Section 5 show that NL%&JQV(S}{,CQ) is nearly unbiased

for 02. In any case, one can always use (3.11) to carry out further bias correction on 2—52 SbCQ).
0 y Y N-kINUN



3.5 Inferences following bias and variance corrections

The impacts of bias correction for spatial estimators on the estimation of the regression coefficients
and error standard deviation were investigated in the earlier subsection. It would be interesting to
further investigate the impacts of bias and variance corrections for spatial estimators on the statistical
inferences concerning the spatial parameters or the regression coefficients. One of the most interesting
type of inferences for a spatial model would be the testing for the existence of spatial effects. With the
availability of QMLEs Sn and its asymptotic variance ) NE(qﬁN%V)Q N, one can easily carry out a Wald
test. However, given the fact that Sy can be quite biased, it is questionable that this asymptotic test
would be reliable when N is not large. With the bias and variance correction results presented in Section
3, one can easily construct various ‘bias-corrected” Wald tests. For testing Hy : A = p = 0, i.e., the joint
non-existence of both types of spatial effects, we have,

WRARAR = (037) Var,  (037)63%7, (3.12)

where 3}?] is the jth-order bias-corrected 5 ~ and Vark(g}i,cj ) is the kth-order corrected variance of 3}?] .
When j =k =1, de = 4w, Varfl(SbC1) ONE(NY)y ), and the test is an asymptotic Wald test.
The details on estimating Vark(éb 7Y, in particular, Vars(6%¢3), are given at the end of Section 4.
Similarly, for testing the non-existence of one type of spatial effects, allowing the existence of the
other type of spatial effects, i.e., Hy : A = 0, allowing p, or Hy : p = 0 allowing A, we have, respectively,

WIAR = A3 /\/ Varyy (8 or WRER = %7 /1 / Varas (05 7), (3.13)

where Var;; k(é ) denotes the i-th diagonal element of Vark(é}i,cj ). Furthermore, we can easily construct
improved tests for testing the non-existence of spatial effect in the two reduced models, i.e., testing
Hy:A=0,given p=0,0r Hy: p=0, given A =0:

J\S/;E = )\bC]/\/Var;€ )\bC] or J\S,EJ],? = A]R,Cj/ Varg(p Abc] (3.14)

where Vary (A37) and Vary(p27) are the k-order corrected variances of the jth-order bias-corrected
estimators based on the corresponding reduced models described in Section 3.3.

Another important type of inference is the testing or confidence interval construction for /Gy, a
linear combination of the regression parameters. For an improved inference, we need the bias-corrected
variance estimator for BbCQ By (3.8) with SN replaced by (5bC2 we have,

Var(63¢2) = Var[Ax + E(G$)(a_1/2 + a—1) + bya_1 s + 2E(BY) (@ 172 @ a_1 )] + Op(N72).

This variance can be easily estimated based on the bootstrap method described at the end of Section 4.
For testing Hy : /By = 0, the following two statistics may be used:

Tna1 = C’BN/ c’A/V\aLr(BN)c, and Ty oo =¢ A}{,CZ/ c’@(ﬁ}{,&)c, (3.15)

where A/V\ar(ﬁN) is the estimate of the asymptotic variance of 3y and \7:5( 3%¢2) is the bootstrap estimate

of Var( A}{,CQ) (see the end of Section 4). These results can easily be simplified for the two simpler models.
4 Bootstrap for Feasible Bias and Variance Corrections

For practical purpose, we need to evaluate the expectations of a_, /o for s = 1,2, 3, and the expecta-
tions of their cross products. Thus, we need to compute expectations of all the R-, S-, and Q-ratios of

quadratic forms defined below (3.7), expectations of their powers, and expectations of cross products of
powers, which seem impossible analytically. The use of a joint estimating equation (JEE) as in Bao and
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Ullah (2007) and Bao (2013) may offer a possibility. However, even for a second-order bias correction
of a simple SAR model (Bao, 2013), the formulae are seen to be very complicated already. Further-
more, the analytical approach runs into another problem with variance corrections and higher-order bias
corrections — it may involve higher than fourth moments of the errors of which estimation may not be
stable numerically. In the current paper, we follow Yang (2015) to use the CEE, ¢ () = 0, which not
only reduces the dimensionality but also captures additional bias and variability from the estimation
of linear and scale parameters, making the bias correction more effective. We then use bootstrap to
estimate these expectations involved in the bias and variance corrections, which overcomes the difficulty
in analytically evaluating the expectations of ratios of quadratic forms and avoids the direct estimation
of higher-order moments of the errors.

4.1 The bootstrap method

We follow Yang (2015) and propose a bootstrap procedure for the FE-SPD model with SARAR
effects. Note YN()\O) = XNBQ + B;/vl(po)VN, WINYN = GN[XNBO + B]T[I(pO)VN], where GN =
Gn(Ao) = WinA71(\), and My (p)Xx = 0. The R-ratios, S-ratios and Q-ratios at § = g defined
below (3.7) can all be written as functions of {y = (5, dy)’ and V, given Xy and Wy, j=1,2:

ViBY"MyGN(Xnfo +By' V)

Rin(¢o,VN) = VI MV , (4.1)
XnGBo+BVVa)G I MyGN(XnGo + BV
Ron(Co, V) = (Xnfo + By N>V3JVVM§JVVVJJVV( NOT N N>, (4.2)
-1 (k) -1
t v _ (XNBO‘FBN VN) MN GN(XNﬂO +BN VN) 43
Qin(C0, V) VI M,V ) (4.3)
XnBo + By V)Y GAMWP Gy (XnGo + By V)
Qin(Co. VN) = X/ + By VgMgVN( 0N : (4.4)
— ) -1
(XnBo + BJ\rIVN)/lV[S\Ir€ (XnfBo+ By V)
S Vv = 4.5
kN(CO, N) VE\/‘M?\[VN ) ( )

where M3, = Iy — Xn(po) Xl (00)Xn (00)] Xy (p0), and ME = MW (pg). It follows that ¢y =

Un(Co, V) and Hyy = Hon(Co, Vi), 7= 1,2, 3.
Now, define the QML estimate of the error vector V in the FE-SPD model (2.4):

Vi =By (pn)[AAN) YN — Xn v (4.6)
Let \A/'J*v be a bootstrap sample based on V. The bootstrap analogs of various quantities are simply
Ui =9n (N, VR) and Hpy = Hov (v, Vi), 7= 1,23,
Thus, the bootstrap estimates of the quantities in bias and variance corrections are,% for example,
E(Wy ® Hy) = E*[Un(ly, Vi) ® Hon(Cy, Vi), and
E(@N @Yn@¢Yy) = E* WN(CCN, Vi) @ On(Cn, V) @ on (Cn, VJ*V)] ;

where E* denotes the expectation with respect to the bootstrap distribution. The bootstrap estimates
of other quantities are defined in the same manner. To make these bootstrap expectations practically
feasible, we first follow Yang (2015) and propose the following iid bootstrap procedure:

6To facilitate the bootstrapping, the a_g/9 in (3.2) can be re-expressed so that the random quantities are put together,
using the well-known properties of Kronecker product: (A® B)(C ® D) = AC @ BD and vec(ACB) = (B’ ® A)vec(C),
where ‘vec’ vectorizes a matrix by stacking its columns. For example, Hi QNN = (¥ ® Hin)vec(Q2y), and a_1/2®

a_12®a_1/0=(QAN@QAN® QN)(&N ® &N ® &N) Alternatively, one can follow the ‘two-step’ procedure given in Yang
(2015, Sec. 4).
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Algorithm 4.1 (#d Bootstrap)

1. Compute QCN and VN, and center VN,
2. Draw a bootstrap sample V1, i.e., make N random draws from the elements of centered Vi,

3. Compute @N(QCN,VJ*V7b) and HT.N(QCN,VJ*V7b),T =1,2,3,
4. Repeat steps 2-3 for B times to give approximate bootstrap estimates as
E(ﬁN ® HT'N) = % Zszl [&N(CCN, V?\I,b) ® HT‘N(CAN7 V?\I,b)]’ and
E(y ® ¥y @ 1) LY [ (v, Vi) ® Un(Cn, Vi) ® Un(Cn, Vi)l

Note that the approximation in the last step of Algorithm (4.1) can be made arbitrarily accurate by
choosing an arbitrarily large B, and that the scale parameter o3 and its QMLE 6% do not play a role

in the bootstrap process as they are hidden in either Vy or V.

The iid bootstrap procedure requires that the underlining error vector Vy contains iid elements,
which apparently may not be true in general if the original errors are not normal. However, the fact that
the elements of V are uncorrelated and homoskedastic suggests that applying the iid bootstrap may
give a very good approximation although it may not be strictly valid. Nevertheless, when the original
errors are nonnormal, the following wild bootstrap or perturbation procedure can be used.

Algorithm 4.2 (Wild Bootstrap)

1. Compute QCN and VN, and center VN,
2. Compute VJ*V,b = VN O &y, where ® denotes the Hadamard product, and €y is an N -vector of iid

draws fror@ a distribution of mean zero and all higher moments 1, and is independent of V.7
3. Compute Yn(Cn, Vi) and Hon (N, Vi), m=1,2,3,
4. Repeat steps 2-3 for B times to give approximate bootstrap estimates as
~ ) B - 2 = PN
E(yny @ Hyy) = 520 [ON(CN, Vi) @ Hen(Cv, V)], and
~ - ~ ~ B r+ 2 o - A - A s
E(Yn @ YN @ n) B 2ot [ON (N, Vi) @ Un(Cn, Vi) @ On (v, Vi) ]-

Note that the common applications of the wild bootstrap method are to handle the problem of
unknown heteroskedasticity, which clearly is not the main purpose of this paper. In our model, the
(transformed) errors are homoskedastic in the usual sense, i.e., variances are constant. Also, the errors
are uncorrelated. However, the transformed errors are, strictly speaking, heteroskedastic in the sense
that their third and higher order moments may not be constant. The wild bootstrap here aims to capture
these non-constant higher-order moments. Also, there may be higher-order dependence, which the wild
bootstrap is not able to capture. We see in the next section that this can be ignored.

4.2 Validity of the bootstrap method

In discussing the validity of the bootstrap method, we concentrate on the bias corrections. The fact
that the elements of the transformed errors Vy = {v}} are uncorrelated and homoskedastic (up to
second moment) across 4 and ¢, and its observed counterpart Vy is consistent provide the theoretical
base for the proposed iid bootstrap method. However, these may not be sufficient in general for the
classical iid bootstrap method to be strictly valid, as our estimation requires matching of the higher-
order bootstrap moments with those of v};. There are important special cases under which the classical
iid bootstrap method is strictly valid.

"We are unaware of the existence of such a distribution. However, the two-point distribution suggested by Mammen
(1993): ep; = —(v/5—1)/2 or (v/5+1)/2 with probability (v5+1)/(2v5) or (v/5—1)/(2v/5), has mean zero, and second
and third moments 1. Another two-point distribution: €, ; = —1 or 1 with equal probability, has all the odd moments zero
and even moments 1. See Liu (1988) and Davidson and Flachaire (2008) for more details on wild bootstrap.
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First, we note that the original errors {v;} are iid normal, the transformed errors {v},} are again iid
normal. Further, Lemma 4.1 shows that if the original errors {v;} are iid with mean zero, variance o2,
and cumulants k, = 0,r = 3,4, ..., then the transformed errors {v},} will also have mean zero, variance
0(2), and rth cumulant being zero for r = 3,4,.... Furthermore, the rth order joint cumulants of the
transformed errors are also zero. The iid bootstrap procedure essentially falls into the general framework
of Yang (2015) and hence its validity is fully established. We have the following proposition.

Proposition 4.1 Suppose the conditions leading to the third-order bias expansion (3.3) are satisfied
by the FE-SPD model. Assume further that the rth cumulant k. of {vit} is 0, r = 3,...,10. Then the iid
bootstrap method stated in Algorithm 4.1 is valid, i.e., Bias(0%?) = O(N~3/?) and Bias(6%*) = O(N~?).

Second, for the important submodel with individual effects only and small T, the transformed errors,
Vo, ‘/;:iT_l] = [Va1, -+, Va,r)Fr,r—1 are iid across i, i.e., the rows of the matrix [V',..., ‘/;:iT_l]
are iid whether the original errors are normal or nonnormal, where N = n(T — 1). As T is small and
fixed, the asymptotics depend only on n. The bootstrap thus proceeds by randomly drawing the rows
of the QML estimate of [V;y;,..., V" 7_,]. We have the following proposition.

n

Proposition 4.2 Suppose the conditions leading to the third-order bias expansion (3.3) are satisfied
by the FE-SPD model with only individual effects. Assume further that the rth cumulant k, of {vi}
exists, T = 3,...,10, and T is fized. Then the bootstrap method making iid draws from the rows of the
QML estimates of [V,y, ...,V p_4] is valid, i.e., Bias(0%¢%) = O(N—3/2) and Bias(6%) = O(N~2).

For the general FE-SPD model with two-way fixed effects, T" being small or large, and the original
errors being iid but not necessarily normal, the classical iid bootstrap may not be strictly valid, because
the transformed errors (on which the iid bootstrap depend) are not guaranteed to be iid, although they
are uncorrelated with mean zero and constant variance o2. In particular, the transformed errors may not
be independent, and their higher-order moments (3rd-order and higher) may not be constant. On the
other hand, making random draws from the empirical distribution function (EDF) of the centered Vi
gives bootstrap samples that are of iid elements. Thus, the classical iid bootstrap does not fully mimic
or recreate the random structure of V, rendering its validity questionable. The following proposition
says that the wild bootstrap described in Algorithm 4.2 is valid.

Proposition 4.3 Suppose the conditions leading to the third-order bias expansion (3.3) are satisfied
by the FE-SPD model. Assume further that the rth cumulant k. of {vi:} exists for r =3,...,10. Then
the wild bootstrap method stated in Algorithm 4.2 is valid for the general FE-SPD model, provided that
the joint cumulants of the transformed errors {vi,} up to rth order, r = 3,...,10, are negligible.

Proof: We now present a collective discussion/proof of the Propositions 4.1-4.3. Very importantly,
we want to ‘show’ that the classical iid bootstrap method can give a very good approximation in cases
it is not strictly valid, i.e., the ‘missing parts’ can be ignored numerically.

Let Vo = (Vih1, ..., V.7)" be the vector of original errors in Model (2.1), which contains iid elements
of mean zero, variance o2, cumulative distribution function (CDF) F, and cumulants k,.,r = 3,4, .. ., 10.
Let Fpr.n = Frr—1 ® Fy n—1 be the nT" x N transformation matrix. We have

Vi = Fyp x Vo (4.7)
For convenience, denote the elements of V by v;, and the ith column of F,r ny by fi,¢ =1,...,N.
Let #,(-) denote the rth cumulant of a random variable, and k(-,...,-) the joint cumulants of random

variables. Let ® denote the Hadamard product. A vector raised to rth power is operated elementwise.

From the definition of the bias terms b_,/2, s = 2,3, we see that b_;/o = b_/2(¢o, Kn) Where Ky
contains the cumulants or joint cumulants of {v;}. From (4.1)-(4.6), it is clear that the bootstrap
estimates of b_, /o are such that 3_5/2 = b_s/g(é.]\}', k) where £} contains the cumulants of {v}} w.r.t.
the bootstrap distribution. With the v/N-consistency of éN, how the set &% match the set xp, becomes
central to the validity of the bootstrap method. Following lemmas reveal their relationship.
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Lemma 4.1 If the elements of V7 are iid with mean zero, variance o3, CDF F, and higher-order
cumulants k,.,r = 3,4, ..., then,

(a) k1(vi) =0, ka(vi) =03, and k. (vi) =kr ari, 7>3,i=1,...,N,
() k(vi,v;) =0 fori#j, and k(vi,..., Vi) =kr aiy,_ i, T >3,

where ar; = U0t aiy, i =& ©---0f), and {i1,...,i} are not all the same.

Lemma 4.1 shows clearly how the cumulants behave when v}s deviate from being iid. First, a,; are
constant across ¢ only when r = 1 and 2, i.e., a1 ; = 0 and ag ; = 1. Thus, k. (v;),r > 3, are not constant
across ¢ unless k, = 0. Second, v;s are not independent as a;, .. ;. # 0 for r > 3. However, simple
calculation shows that a;, .. ;. is very small for any » > 3 and any choice of {i1,...,4,} with at least
two different elements. The larger the r, the smaller is a;,,. ;.. These suggest that the higher-order
dependence among {v;} can be ignored. The question left is how well the two sets of cumulants match.

Lemma 4.2 Let v* be a random draw from {v;,i =1,..., N}. Then, under the conditions of Lemma
4.1, we have

RI(V) = 0, k3(v*) = 0f + Op(N"2), and k7(v*) = kya, + Op(N~/2), 1 > 3,
where G, = + Zf\il ar;, and k%(-) denotes rth cumulant w.r.t. the EDF Gy of {v;,i=1,...,N}.

Lemma 4.2 shows that the iid bootstrap is able to capture, to a certain degree, the higher-order
moments of v; (a, versus a,;), but is unable to capture the higher-order dependence. However, as
shown by Lemma 4.1, the latter does not have a significant effect as such dependence is weak and
negligible. As both {a,;} and their variability are not big and get smaller as r increases, the results
of Lemmas 4.1-4.3 strongly suggest that the simple iid bootstrap method may be able to give a good
approximation in the situations where the original errors are not far from normal.

Lemma 4.3 Supp0§e Assumptions A1-A8 and the conditions of Lemma 4.1 hold. Let v* be a random
drawn from the EDF Gn of {¥V1,...,Vn}, and v* a random draw from the EDF Gy of {vi...,VN}.
Then,

Kk (VY) = KE(V) + Op(NTY2), or ki, (Gn) = kr(GN) + Op(NTH3), 1 > 3,

where K5(V*) is the rth cumulant of v* w.r.t. Gn, and k5(v*) is the rth cumulant of v* w.r.t. Gy.

In case of severe nonnormality, it may be more important to be able to match the even moments, in
particular the kurtosis, than the odd moments as a, is typically very small when r is odd. This point
is also reflected by the fact that the variance of the joint score function (given in Theorem A.1) is free
from the third cumulant of the original error. In this spirit, the simple two-point distribution with equal
probability described in Footnote 7 may provide satisfactory results.

*

Lemma 4.4 Suppose Assumptions A1-A8 and the conditions of Lemma 4.1 hold. Let v} = V¥,
where * is independent of v;, having a distribution with mean 0 and rth moment 1, v > 2. Then,

E*(¥Y) =0, and B*[(¥})] = %7, r > 2,

79
where E* corresponds to the distribution of €*.

Lemma 4.3 shows that moving from the model errors to their observed counterparts introduces errors
of smaller order and hence can be ignored asymptotically. With the results of Lemma 4.4, the validity
of the wild bootstrap follows. The proofs of Lemmas 4.1-4.4 are given in Appendix C.

Variance corrections. A final note is given to the variance correction before ending this sec-
tion. Note that the bootstrap estimate of a bias term or a variance term typically has a bias of or-
der O(N~1) multiplied by the order of that term, i.e., Bias(b_1) = O(N~2), Bias(d_1) = O(N~?),
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Bias(9_3/2) = O(N~%/2), etc. This is sufficient for achieving a third-order bias correction, but not for
a third-order variance correction. Thus, to achieve a third-order variance correction (up to O(N~2)), a
further correction on the bootstrap estimate ©_; of v_; is desirable. Yang (2015) proposed a method
based on the first-order variance term obtained from the joint estimating function. To avoid algebraic
complications, in the current paper, we adopt a simple approximation method: replacing 01 evaluated
at the original QMLE 9N, by ©P¢ evaluated at the second-order bias-corrected QMLE 9bC2 Monte Carlo
results given in the next section show that this approximation works well.

To have a third-order variance correction for 653, we also need to estimate ACov(dx,b_1) in (3.6).

Following Yang (2015), we write ACOV((SN,b_l) = ACOV(SN,QCN)E(b’_LcO), where b_1 ¢, is the partial
derivative of b_; with respect to ¢, and ACOV(SN, Cn) is the submatrix of

1

B30 (00)) ™ Var (v (00)) B( 50w (60))

where ¢ (0) = 8Q,EN(Q). The detailed expressions of ¢ (8) = 8Q,EN( ), Var(wN(Ho)), and E(a%(,)wjv (90))
are given in Theorem A.1 in Appendix A. We estimate E(b_1 ¢,) by 13_1 ¢y the numerical derivatives.
E(ai%wN(e())) can simply be estimated by the plug-in method as it involves only the parameter-vector

0o. Var(a%oﬁ N (6o)) involves ky4, the fourth cumulant of the original errors, besides the parameter-vector
0. The results of Lemmas 4.1-4.3 suggest that k4 can be consistently estimated by

]214 = @21,‘64(\7]\[),

where k4 (VN) is the fourth sample cumulant of the QML residuals V, and ay is give in Lemma 4.2.

Finally, to estimate \7:5( 32¢2) in (3.15): (i) calculate the estimates of all the non-stochastic quantities
with analytical expressions by plugging in (5}{?2 and BbCQ for 69 and [y, (#) calculate the new QML
residuals based on (5}{,& and BbCQ, and (4i7) bootstrap the new residuals to give bootstrap estimates of
the other quantities in Var(3%¢2), including Qn and E(Hay), and hence the final estimate \7a\r(BbC2) of
Var( AbCQ) For snnphmty, the estimates of Qy and E(Hzy) from the early stage bootstrap based on the
original QMLESs dn and BN can be directly used.

5 Monte Carlo Study

We present Monte Carlo results to show (i) the finite sample performance of the QMLE o and the
bias-corrected QMLESs (5}{,& and (5bC3, (ii) the impact of bias corrections for Sn on the estimations for Jé]
and o2, and (iii) the impact of bias and variance correction on the inferences for spatial or regression
coefficients. The simulations are carried out based on the following data generation process (DGP):

Y;Lt = )\OWIHY;Lt + Xlntﬁlo + X2ntﬁ20 +Cno + at0l7z + Unt, Unt = pOWQHUnt + ‘/nta t= la ERE] T.

For all the Monte Carlo experiments, By = (310, 320)" is set to (1,1)', 63 = 1, Ao and py take values
form {-0.5,—-0.25,0,0.25,0.5}, n takes values from {25, 50, 100,200,500}, and T = {3,10}. Each set
of Monte Carlo results is based on M = 5000 Monte Carlo samples, and B = 999 bootstrap samples
within each Monte Carlo sample. The weight matrices, the regressors, and the idiosyncratic errors are
generated as follows.

Weights Matrices. We use four different methods for generating the spatial weights matrices Wy,
and Wa,: (i) Rook contiguity, (ii) Queen contiguity, (i74) Circular neighbors, and (iv) Group
Interaction. The degree of spatial dependence specified by layouts (i) — (i#i) are all fixed while in (iv)
it may grow with the increase in sample size. This is attained by relating the number of groups, k, to
the sample size n, e.g., k = n?®. In this case, the degree of spatial dependence is reflected by the average
group size n/k. For more details on generating spatial weights matrices see Yang (2015).
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Regressors. The exogenous regressors are generated according to REG1: {Xjn:} N (0,1)/V2,
and are independent across k = 1,2, and ¢t = 1,...T. In case when the spatial dependence is in the form
of group interaction, the regressors can also be generated according to REG2: the ith value of the kth
regressor in the gth group is such that Xy ;4 e (224 + zig)/ V10, where (24, 2ig) e N(0,1) when
group interaction scheme is followed; { Xy iq} are independent across k and ¢, {z,} iid, and {z;,} iid.

Error distributions. v;; = ope;+ are generated according to DGP1: {e;:} are iid standard normal;
DGP2: {e,;} are iid normal mixture with 10% of values from N(0,4) and the remaining from N(0, 1),
standardized to have mean 0 and variance 1; and DGP3: {e, ;} iid log-normal (i.e., loge; g N(0,1)),
standardized to have mean 0 and variance 1.

The estimators of spatial parameters. The finite sample performance of the QMLEs and bias-
corrected QMLEs of the spatial parameters is investigated. Monte Carlo results are summarized in
Tables 1a, 1b, 2, 3a and 3b, where Tables la-1b correspond to the model with p = 0, i.e., the spatial
lag dependence model; Table 2 the model with A = 0, i.e., the spatial error dependence model; and
Tables 3a-3b the general model. All the reported results correspond to the iid bootstrap method given
in Algorithm 4.1. The results (unreported for brevity) using the wild bootstrap method described in
Algorithm 4.2 show that the wild bootstrap gives almost identical results as the iid bootstrap, consistent
with remarks below Lemma 4.2.

From Tables 1la and 1b, we see that regular QMLEs of the spatial parameters can be very biased,
depending on the spatial layouts, the true values of the parameters, and the way that the regressors
are generated. First, when the number of cross sectional units increases from 50 to 500, the magnitude
of the bias becomes small. The bias is apparent for n = 50 and negligible for n = 500, which implies
that bias correction is especially needed for the data with a small sample size. Also, when the spatial
weights matrix becomes denser (from the queen matrix to the group interaction matrix), the bias of
regular QMLEs becomes larger. When the true value of spatial effect parameter becomes larger in
absolute value, the bias becomes larger. Either reducing the magnitude of the regression parameters (3
or increasing the value of the error standard deviation increases the bias of the QMLE of the spatial
parameter. The magnitude of the bias is also influenced by the way that the regressors are generated.
The DGPs with normal errors and lognormal errors give a smaller bias than the DGP with normal
mixture errors. For the bias correction, we see that our bias correction procedure works very well,
independent of the spatial layouts, model parameters, and the way the regressors being generated. We
see that even for the small sample case of n = 50, the bias correction procedure produces nearly unbiased
estimates. By comparing 5\2C2 and S\BCS, we see that in most of the situations considered, a second-order
bias correction has essentially removed the bias of the QMLESs and the third-order bias correction might
not be needed.

The results in Table 2 show that the patterns observed from the spatial lag model for the regular
QMLEs and bias corrections generally hold for the spatial error model. A noticeable difference is that
the regular QMLE of the spatial error parameter can be much more biased and the bias can be much
more persistent than the QMLE of the spatial lag parameter in the spatial lag model. Therefore, the
bias correction procedures developed in the current paper works even more effectively for the spatial
error model. Furthermore, unlike the case of spatial lag model, the magnitude of 8 and o does not affect
the performance of pn much.

From Tables 3a and 3b where the third-order bias correction results are omitted for brevity, we see
that the general patterns we observed for the two special models hold for the general model as well.
However, we observe that the QMLE of the spatial error parameter can be much more biased than the
QMLE of the spatial lag parameter, in particular when the regressors are generated in a non-iid manner.
The bias of the QMLE of the spatial error parameter can be very persistent and even when n = 500,
there can still exist very noticeable bias.

The results show that in general the QMLEs of the spatial panel data models need to be bias-corrected
even when sample size is not small, and that the proposed bias correction method is very effective in
removing the bias. As far as the bias correction is concerned, a simple iid bootstrap may well serve the
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purpose. The method can easily be applied and thus is recommended to the practitioners.

The estimators of non-spatial parameters. The finite sample properties of BN and 6%, and
their bias-corrected versions B}{,C and &i}bc defined in Section 3.4 are investigated. Monte Carlo results
reveal some interesting phenomena. The biases of the non-spatial estimators BN and 63, depend very
much on whether Ay is biased, not much on whether py is biased. In general the biases of BN and 6%
are not problems of serious concern (at most 6-7% for the experiments considered). Consistent with the
discussions in Section 3.4, B}{,C is nearly unbiased in general. When the error distribution is skewed, &i}bc
may still encounter a bias of less than 5% when n = 50 and T' = 3, and in this case the method given in
Section 3.4 can be applied for further bias correction. Partial results are summarized in Table 4.

Inferences following bias and variance corrections. To demonstrate the potential gains from
bias and variance corrections, we present Monte Carlo results concerning the finite sample performance of
various tests for spatial effects, and the tests concerning the regression coeflicients, presented in Section
3.5. Partial results are summarized in Tables 5a-5c, and 6. More comprehensive results are available
from the authors.

Table 5a presents the empirical sizes of, respectively, the joint tests for the lack of both SLD and SED
effects given in (3.12), and the one-directional tests for the lack of SLD effect allowing the presence of
SED effect or the lack of SED effect allowing the presence of SLD effect, given in (3.13). The results show
that the third-order bias and variance corrections on the spatial estimators lead to tests that can have
a much better finite sample performance over the tests based on the original estimates and asymptotic
variances. The tests based on second-order corrections offer improvements over the asymptotic ones but
may not be satisfactory. All the reported results are based on the wild bootstrap with the perturbation
distribution being the simple two-point (1 and —1) distribution with equal probability. Consistent with
the results of Section 4.2, in case of severe nonnormality such as the lognormal errors, the wild bootstrap
perform better than the iid bootstrap; in case of normal errors, the iid bootstrap performs slightly better
than the wild bootstrap and both show excellent performance of the third-order corrected Wald tests.
Due to its robustness, the wild bootstrap may be a better choice in the case of testing for spatial effects.
Tables 5b and 5¢ present the empirical sizes of the tests given in (3.14) for the two simpler models, from
which the same conclusions are drawn.

Table 6 presents partial results for the empirical sizes of the tests for the equality of the two regression
slopes given in (3.15), based on iid bootstrap. The results show that the tests with merely second-order
bias and variance corrections significantly outperforms the standard tests with the original estimate and
asymptotic variance. With smaller values of the slope parameters, the size distortion for the standard
tests becomes more persistent. The results (unreported for brevity) shows that when the spatial depen-
dence becomes milder the performance of the asymptotic test improves, but is still outperformed by the
proposed bias-corrected test.

6 Conclusion and Discussion

We have introduced a general method for correcting the finite sample bias of QMLEs of the two-way
fixed effects spatial panel data models where the spatial interactions can be in the form of either spatial
lag or spatial error, or both, and the panels can be either short or long. The proposed method follows
that of Yang (2015), and is seen to be very easy to implement, and very effective. If only bias-correction is
of concern, a second-order correction using iid bootstrap suffices. For improved inferences for the spatial
parameters, a third-order variance correction seems necessary and a wild bootstrap method seems to
perform better. However, for improved inferences concerning the regression coefficients, the second-order
bias and variance corrections seem sufficient, and the resulting inferences can be much more reliable than
those based on the standard asymptotic methods. All the methods proposed in the current paper can
easily be built into the standard statistical software to facilitate the practical applications.
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Appendix A: Some First-Order Results

The following list summarizes some frequently used notations in the paper:
e 0= (\p), and ¢y is its true value.

e For an integer m, J,, = I,,, — %lmlﬁn where I,,, is an m x 1 vector of ones. [Fy, m—1, \/Lmlm] is the
eigenvector matrix of J,,, where Fy, ,,,_1 corresponds to eigenvalue of ones.

d W;LKn = F;z,n—lWhnFn,n—l, h= 1, 2.
o A,(\) =1, — \Wy, and B, (p) = I, — pWa,.
o [Z*

, .
nls: Z:;T_l] = Fn7n_1[Zn1a ERE] ZnT]FT,T—l for any n X T matrix [ana e aZnT]-

e Yy=(YY,.. .,}/'7:‘7’T_1)’, XN = (XY, .. .,X;::T_l)’, and Wyy =Ir_1 @ Wy ,h=1,2.
[ ] AN()\) = IN — )\WlN, and BN(p) = IN _pWQN.
e My (p) = Biy(p){In — Xn(p)[Xy (0)Xn(p)] " Xy ()} B (p)-

The following set of regularity conditions from Lee and Yu (2010) are sufficient for the v/ N-consistency
of the QMLE 0,,7 defined by maximizing (2.8), and hence the v/N-consistency of the QMLEs 3y and o3
of 3 and o2, which are clearly essential for the development of the higher-order results for the QMLEs.

Assumption Al. Wi, and Ws, are row-normalized nonstochastic spatial weights matrices with
zero diagonals.

Assumption A2. The disturbances {vit}, it =1,2,...,n and t = 1,2,...,T, are iid across i and t
with zero mean, variance o3 and E|Uit|4+" < 00 for some n > 0.

Assumption A3. A, ()\) and B, (p) are invertible for all X\ € A and p € P, where A and P are
compact intervals. Furthermore, Ao is in the interior of A, and py is in the interior of P.8

Assumption A4. The elements of X,: are nonstochastic, and are bounded uniformly in n and t.
Under the setting in Assumption A6, the limit of %XQVXN exists and is nonsingular.

Assumption A5. Wy, and Wa, are uniformly bounded in both row and column sums in absolute
value (for short, UB).° Also A,;1()\) and B;,'(p) are UB, uniformly in X\ € A and p € P.

Assumption A6. n is large, where T can be finite or large.'°

Assumption A7. FEither (a): lim, o Hn(p) is nonsingular Yp € P and lim, o Q1n(p) # 0 for
p# po: or (): limyrng Qon(8) £ 0 for 8 7 8o, where

Hy(p) = +Xn, WinAy'Xn58)By(p)By(p)( Xy, WinAN Xy o),
Qinlp) = nil (1n|0(2)B;1/JnB;1| —1In |072L(,0)B;1(,0)/J7LB;1(,0)|) )
Q2,(6) = n%l (In |a§B;1’A;1’JnA7—LlB;1| —1In |0'72L(5)3;1(p)’A;l()\)/JHA;LI()\)B;l(p)|) ,
2
a2(8) = FZ5tr[(Ba(p)An(N AL B Ju(Bu(p) An (N AL B )], and a2 (p) = 02 (8)[a=x,-

Assumption A8. The limit of (n_%)Q [tr(CsCo)tr(Dy D) — tr*(C5Dy)] is strictly positive, where

Cn = Jnén - %u__cl'ﬂt]n and D, =J,H, - %u__li[u‘t]n; with Hy, = WQnB;l and én = Bn(WlnA;l)B;l-

8Due to the nonlinearity of A and p in the model, compactness of A and P is needed. However, the compactness of the
space of 8 and o2 is not necessary because the § and o2 estimates given A and p are least squares type estimates.
9A (sequence of n x n) matrix P, is said to be uniformly bounded in row and column sums in absolute value if
SUP,,>1 [|Pnlloe < 00 and sup,, > [|Pally < oo, where ||Poll o = supy<icpn 2271 [Pijn| and [ Pally = supi<j<pn 3251 [Pijonl
are, respectively, the row sum and column sum norms.
10The case with a finite n and large T is of less interest as the incidental parameter problem does not occur in this
model. The consistency and asymptotic normality of QML estimate still hold under a finite n and a large T'.
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Theorem A.1 (Lee and Yu, 2010) Under Assumptions A1-A8, we have Oy -2 6y, and
VN(@Bx —60) = N0, limy oo 5 (60)Tn (60) 25" (60)], (A.1)

where X (6p) = %E[%;%EN(@O)] assumed to be positive definite for large enough N, and T'n(6p) =
%E[(Q%OKN(%))(Q%OKN(@O))/] assumed to exist.

The results of Theorem A.1 serve two purposes: one is the VN -consistency of éN, which is crucial
for the higher-order results developed in this paper, and the other is the asymptotic VC matrix of éN,
which is needed in the third-order variance correction. With the set of compact notations introduced in
Section 2, the component ¥ (6p) of the VC matrix takes the following form:

EN(Q ) B ~, 2_‘1761—, N%%tr(BﬁlGNBN), N_Lgtr(WQNBJT/'l)
0) — % )
~ ~, Tin+Tiy+ NLUS,’,’;\/'T’N? Ty
~ ~, ~, KlN + KTN

where ny = GNXnfo, Tiy = +tr(By 'GYByByGABY!), Kiy = +tr(Byy "W,/ W5iBy'), and
Tyy = +tr(By "GN Way + By "G\ By WonBL).

To obtain the other component 'y (6y) of the VC matrix, it is helpful to express the score vector in
terms of the original errors using (4.7):

1
No'g A&/lnT“/"T
1 1
1 00x(00) ) ~302 + nor VarAbur Var
= 1 1
N 890 _TON + No'g V;LTAZ%LTV"T + No'g b;LTV"T
_KON + N}TS V;LTAilnTV"T
where b, = For NByny, Anr = For NBN XN, Agpr = For NF 7 v, Azt = ]FnT,NBNGNBXrllF;LT,N,
and Aypr = Frr nWa NB;]F;LT n- Letting a;,7 be the diagonal vector of A;,7, and denoting
i = tr[Amr(Ajnr + A%, p)] + kad, rajnT,

we obtain, referring to Lemma A.4 of Lee and Yu (2010) and its proof,

1 / / 1 /
N—O'SXNBNBNXN’ 0, N_o'gAlnTb"T’ 0
1 1 1
T (9 ) _ ~ 40.31—1227 20.8 H237 20.8 H24
MR Iss + <L b/ b il
~, ~, 33 + NoZ PnrPnT; 34
~y ~y ~y H44

Appendix B: Some Higher-Order Results

Derivatives of My (p) defined below (2.7).

We have My (p) = Cn(p) — Cn(p)XnDn (p)XyCn(p) where Cn(p) = Biy(p)Bn(p) and Dn(p) =
[XNOn(p)XN]7L Let Cj(\f)(p) and Dg\};)(p) be, respectively, the kth order partial derivatives of Cn(p)
and Dy (p) w.r.t. p. The derivatives of My (p) are given as follows,

My (p) = O () = O (0)Xn D (p) Xy O (0) — O (p)Xov DY (0) X1y O (p)

1
—Cn ()X D (p) Xy CY (),
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M (p) = cﬁ’(g) — O (p)Xn Dy (9)XyCrv(p) - 2O§¢’<p1>xND§&’<p1>x9ch<p>
—204 (p)Xn D (9) Xy O\ (p) — 2Cn (9)Xn D (9) X O ()
—Cn(p)Xn D (9) Xy Cn (p) — O (p)Xn D (p) X C 2 (p)

M (p) = =3C (XN DY XN C (p) — 30 (0)X v D ()X CR (1)

—30 (XN DY (p)XNCn(p) — 6CY (0)Xn DY (0)XCF (p)
1 2 2 1
=30 (0) Xy D (9) Xy C (p) = 3Cn (p) XN DY (0 XN CY ()

~3CNn()Xn DY (0) Xy O (p) — Cx(p) Xy DY (0) X v (p)

MY (p) = —6C (0)Xn DS X Cn(p) — 1208 (0) Xy DY (9) XNy CY ()
~6CK) (p) Xy D (p)XK CY () = 4K ()X N DY ()X Ciy (p)
—4Cx (p)Xn DY ()X O (p) = 1201 (p)Xn DY (0) X}y C ()
—120(p)Xn DY (0) Xy CF(p) — 6Cn ()X DY ()X CF ()
~Cn (p)Xn DY (p) X5 Cx (p).
For the derivatives of Cn(p), we have CJ(\})(,O) = —-WiyBn(p) — By (p)Wan, CJ(\?)(,O) = 2W/, Wy,

and Cj(\f)(p) = 0,k > 3. For the derivatives of Dy(p), denoting Py(p) = XNCn(p)Xn and its kth
derivative PJ(\f )(,0), we have,

DY (p) = —Dn(p) P\ () D (p),
DS (p) = -D§ (0P (p) D (p

DY (p) = —Dﬁ)l(p)va1 )1(/0)DN (1,0 g g
—2D ()P (0) D (p) — 2D () P () DY (),

)
)
(
DY () = =D ()PY (1) (p) = Dn (o) PR (9) DR (0) = 3D (0) P (p) Dv ()
2 1 1
3D ()P (P)D) (p) = 3D ()P () D (p) = 3Dx () PY () DR ()
1
~6D\ ()P (p) DY (p).
Clearly, Pj(f )(,0) can be obtained from Cj(\f)(p), and both are zero when k > 3.

Dn(p)PE (0) D (p) — Dn(p) P () DY (),
Dn(p)PY (9D (p) — 2D (0) P (0) D (p)

Additional quantities required in (3.10).
Letting E( S\})) = (81, 82), qn = (83, 84) and E[Qﬁ)(éo) = (s5, 56, 57, 53), we have

s1 = 28X/, G| y\MyXyfo — 202t1[G yMy (ByyBy) 1],

53 = 20, XN MW Xy o + o2tr MY (B By )],

s3 = —ABXNGI Ny MNBR' Vy — 2V B GyMyBy' Vi + 203tr[GyMpy (ByBy) 7Y,
s1.= 20X MBI Vv + VB MY/ B Vi — o3 (M (ByBx) '),

s5 = 28X/ G WMy Gy Xy fo + 202tr[G, yMy Gy (B By )71,

s6 = a1 = —20h X Gl y MY Xy By — 203t [GyME (ByBy) 7],

sy = ByXANMP Xy By + o2t MY (B By) "1,

where My = My (po) and MS\];) = MS\I;)(,OO).

Appendix C: Proofs for Section 4

Proof of Lemma 4.1: The results of (a) follows from the following properties of cumulants: for two
independent random variables X and Y and a constant ¢, (i) k1(X +¢) = k1(X) + ¢, (i) k(X 4+ ¢) =
kr(X),r > 2, (ii1) £r(cX) = "kr(X), and () k(X +Y) = ko (X) + k- (Y). See, e.g., Kendall and

20



Stuart (1969, Sec. 3.12). The results of (b) follows from the definition of the joint cumulants, and some
straightforward but tedious derivations.

Proof of Lemma 4.2: Note that the rth cumulant w.r.t. the EDF Gy of {v;,i=1,..., N} is just
the rth sample cumulant of {v;,i =1,..., N}. This immediately gives x}(v*) = & >, v; = 0.

To show r}(v*) = 02 + O,(N~1/2), note that E(x3(v*)) = + E(VEVVN) = 02. From Lemma 4.1, we
have Var(v?) = kyaq i + 204, Cov(vi,v3) = ksai; jj = ka Zm Rl and thus

Var(£ VA Vy) = %vaIVar(V )+ 2= ZZ 12}\? Cov( VI,VJQ)
= %(k4@4+200)+N—k4Zz 122 Zm Filn m
= %(k4a4+20’0)+Nik Zz 12] 12 1f72nz mj k4&4
ks 208 + ks Sy (5 P (S F2) —
O(N~Y),

due to the fact that Zf\il f2; is bounded, uniformly in m = 1,2,...,nT. It follows by the generalized

Chebyshev’s inequality that x%(v*) = o2 + O,(N~1/2).

For the general results with » > 3, it is easy to verify that E(x}(v*)) = kya, + O(
results of Lemma 4.1 and the fact that Zf\il | fmi|” is bounded, uniformly in m = 1,2,...,
straightforward, though tedious, to show that Var(kx(v*)) = O(N~1). The result thus follows.

N~—1/2). By the
nT, it is

Proof of Lemma 4.3: As Vy is defined by replacing 6y in Vy by Oy, the result follows directly
from the v/N-consistency of 0.

Proof of Lemma 4.4: The roof is trivial.
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Table la. Empirical Mean[rmse](sd) of Estimators of A\, 2FE-SPD Model with SLD, T'=3,8 = (1,1)',0 =1

A AN Abe2 Abe3 | AN Abe2 Abe3
(a) Queen Contiguity, REG1 (b) Group Interaction, REG2
Normal Error, n=50
.50 .484[.120](.119) .502[.120](.120) .502[.120](.120) .469[.095](.089) .497[.088](.088) .499[.088](.088)
.25 .234[.142](.141) .248[.143](.143) .250[.143](.143) .210[.130](.124) .250[.123](.123) .251[.123](.123)
.00 | -.010[.158](.158) .001[.161](.161) .002[.161](.161) | -.049[.167](.159) -.001[.160](.160) .001[.160](.160)
-.25 | -.258[.161](.161) -.251[.164](.164) -.250[.165](.165) | -.303[.189](.182) -.250[.184](.184) -.248[.184](.184)
-.50 | -.504[.163](.163) -.503[.166](.166) -.502[.167](.167) | -.565[.214](.204) -.509[.208](.208) -.507[.208](.208)
Normal Mixture, n=50
.50 .483[.119](.117) .500[.118](.118) .501[.118](.118) .470[.091](.086) .498[.084](.084) .499[.084](.084)
.25 .238[.139](.139) .253[.141](.141) .254[.141](.141) .209[.128](.121) .248[.120](.120) .249[.120](.120)
.00 | -.013[.155](.154) -.002[.157](.157) -.001[.157](.157) | -.048[.160](.152) -.001[.153](.153) .001[.153](.153)
-.25 | -.257[.158](.158) -.251[.161](.161) -.250[.162](.162) | -.301[.188](.181) -.248[.182](.182) -.247[.183](.183)
-.50 | -.504[.163](.163) -.503[.166](.166) -.503[.167](.167) | -.556[.206](.199) -.500[.203](.203)  -.498[.203](.203)
Lognormal Error, n=50
.50 .485[.111](.110) .501[.111](.111) .502[.111](.111) .470[.090](.085) .497[.083](.083) .498[.083](.083)
.25 .239[.133](.133) .253[.134](.134) .254[.134](.134) .212[.122](.116) .249[.115](.115) .251[.115](.115)
.00 | -.010[.146](.146) .001[.149](.149) .002[.149](.149) | -.045[.154](.147) .000[.147](.147) .002[.147](.147)
-.25 | -.255[.151](.151)  -.249[.154](.154) -.248[.154](.154) | -.302[.178](.171) -.251[.173](.173) -.250[.173](.173)
-.50 | -.498[.152](.152) -.499[.155](.155) -.499[.156](.156) | -.556[.204](.196) -.503[.200](.200) -.501[.200](.200)
Normal Error, n=100
.50 .493[.079](.078) .502[.078](.078) .502[.078](.078) .482[.067](.065) .500[.064](.064) .501[.064](.064)
.25 .243[.095](.095) .251[.095](.095) .252[.095](.095) .222[.096](.092) .248[.092](.092) .248[.092](.092)
.00 | -.007[.110](.109) .000[.110](.110) .000[.110](.110) | -.031[.123](.119) .000[.120](.120) .001[.120](.120)
-.25 | -.255[.114](.114) -.250[.115](.115) -.250[.115](.115) | -.289[.146](.141) -.254[.143](.143) -.253[.143](.143)
-.50 | -.503[.117](.117) -.501[.118](.118) -.501[.118](.118) | -.538[.162](.158) -.503[.162](.162) -.503[.162](.162)
Normal Mixture, n=100
.50 .490[.078](.078) .499[.078](.078) .500[.078](.078) .482[.067](.065) .500[.065](.065) .500[.065](.065)
.25 .241[.095](.095) .249[.095](.095) .250[.095](.095) .224[.095](.091) .250[.091](.091) .250[.091](.091)
.00 | -.006[.106](.106) .001[.107](.107) .002[.107](.107) | -.034[.122](.117) -.002[.118](.118) -.002[.118](.118)
-.25 | -.255[.112](.112) -.250[.113](.113) -.250[.113](.113) | -.286[.144](.140) -.251[.142](.142) -.250[.142](.142)
-.50 | -.502[.117](.117) -.499[.119](.119) -.499[.119](.119) | -.535[.160](.156) -.500[.159](.159) -.500[.159](.159)
Lognormal Error, n=100
.50 .492[.075](.075) .501[.075](.075) .501[.075](.075) .482[.065](.062) .500[.062](.062) .500[.062](.062)
.25 .242[.091](.091) .250[.091](.091) .250[.091](.091) .225[.093](.090) .250[.090](.090) .250[.090](.090)
.00 | -.006[.102](.102) .001[.103](.103) .001[.103](.103) | -.029[.116](.113) .001[.113](.113) .002[.113](.113)
-.25 | -.255[.110](.110) -.250[.111](.111) -.250[.111](.111) | -.283[.138](.134) -.249[.136](.136) -.248[.136](.136)
-.50 | -.503[.112](.112) -.500[.113](.113) -.500[.113](.113) | -.526[.157](.154) -.492[.159](.159) -.495[.159](.159)
Normal Error, n=500
.50 .498[.033](.033) .500[.033](.033) .500[.033](.033) .495[.034](.033) .500[.033](.033) .500[.033](.033)
.25 .249[.040](.040) .251[.041](.041) .251[.041](.041) .242[.050](.049) .249[.049](.049) .249[.049](.049)
.00 | -.001[.047](.047) .000[.047](.047) .000[.047](.047) | -.009[.065](.064) .000[.065](.065) .000[.065](.065)
-.25 | -.252[.050](.050) -.251[.050](.050) -.251[.050](.050) | -.260[.080](.079) -.249[.079](.079) -.249[.079](.079)
-.50 | -.501[.050](.050) -.501[.050](.050) -.501[.050](.050) | -.514[.096](.095) -.501[.095](.095) -.501[.095](.095)
Normal Mixture, n=500
.50 .498[.033](.033) .500[.033](.033) .500[.033](.033) .495[.034](.033) .500[.033](.033) .500[.033](.033)
.25 .249[.040](.040) .250[.040](.040) .250[.040](.040) .242[.050](.049) .249[.049](.049) .249[.049](.049)
.00 | -.002[.045](.045) -.001[.045](.045) -.001[.045](.045) | -.007[.066](.066) .002[.066](.066) .002[.066](.066)
-.25 | -.251[.048](.048) -.250[.048](.048) -.250[.048](.048) | -.261[.081](.081) -.250[.081](.081) -.250[.081](.081)
-.50 | -.501[.050](.050) -.500[.050](.050) -.500[.050](.050) | -.514[.095](.094) -.501[.094](.094) -.501[.094](.094)
Lognormal Error, n=500
.50 .498[.032](.032) .500[.032](.032) .500[.032](.032) .496[.034](.034) .501[.034](.034) .501[034](.034)
.25 .248[.040](.040) .250[.040](.040) .250[.040](.040) .243[.050](.049) .250[.049](.049) .250[.049](.049)
.00 | -.003[.046](.046) -.001[.046](.046) -.001[.046](.046) | -.009[.065](.064) .000[.064](.064) .000[.064](.064)
-.25 | -.250[.048](.048) -.249[.048](.048) -.249[.048](.048) | -.259[.080](.080) -.248[.080](.080) -.248[.080](.080)
-.50 | -.501[.049](.049) -.501[.049](.049) -.501[.049](.049) | -.514[.095](.094) -.501[.095](.095) -.501[.095](.095)
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Table 1b. Empirical Mean[rmse](sd) of Estimators of A, 2FE-SPD Model with SLD, T'= 3,8 = (.5,.5)",0 = 1

A AN Abe2 Abe3 | AN Abe2 Abe3
(a) Queen Contiguity, REG1 (b) Group Interaction, REG2
Normal Error, n=50
.50 .477[.133](.132) .500[.133](.133) .500[.132](.132) .449[.122](.111) .498[.105](.105) .500[.105](.105)
.25 .231[.157](.156) .251[.159](.159) .252[.158](.158) .179[.171](.156) .248[.150](.150) .250[.150](.150)
.00 | -.015[.176](.175) .000[.180](.180) .002[.180](.180) | -.086[.214](.196) -.002[.191](.191) .001[.191](.191)
-.25 | -.261[.180](.180) -.252[.185](.185) -.251[.185](.185) | -.348[.247](.227) -.252[.224](.224) -.249[.224](.224)
-.50 | -.505[.185](.184) -.502[.190](.190) -.501[.190](.190) | -.609[.283](.262) -.504[.261](.261) -.502[.262](.262)
Normal Mixture, n=50
.50 .478[.133](.132) .501[.133](.133) .500[.132](.132) .449[.120](.109) .498[.103](.103) .500[.103](.103)
.25 .229[.158](.157) .248[.159](.159) .249[.159](.159) .180[.168](.153) .248[.147)(.147) .250[.147](.147)
.00 | -.017[.174](.173) -.002[.177](.177) .000[.177)(.177) | -.088[.212](.193) -.003[.188](.188) .000[.188](.188)
-.25 | -.260[.176](.176) -.251[.181](.181) -.250[.181](.181) | -.346[.247](.227) -.250[.224](.224) -.247[.225](.225)
-.50 | -.502[.181](.181) -.499[.186](.186) -.499[.186](.186) | -.608[.281](.260) -.503[.260](.260) -.500[.260](.260)
Lognormal Error, n=50
.50 .480[.123](.122) .502[.123](.123) .502[.122](.122) .454[.112](.102) .502[.097](.097) .504[.097](.097)
.25 .229[.148](.147) .249[.150](.149) .250[.149](.149) .184[.157](.143) .251[.138](.138) .254[.138](.138)
.00 | -.013[.162](.161) .002[.165](.165) .003[.165](.165) | -.079[.193](.176) .003[.172](.172) .006[.172](.172)
-.25 | -.258[.168](.167) -.248[.172](.172) -.247[.172](.172) | -.341[.225](.206) -.247[.203](.203)  -.244[.203](.203)
-.50 | -.504[.173](.172) -.501[.177](.177) -.501[.178](.178) | -.598[.258](.239) -.495[.239](.239) -.493[.240](.240)
Normal Error, n=100
.50 .490[.090](.090) .502[.090](.090) .502[.089](.089) .469[.087](.081) .499[.079](.079) .500[.079](.079)
.25 .242[.108](.108) .253[.109](.109) .253[.109](.109) .205[.127](.119) .248[.117)(.117) .248[.117](.117)
.00 | -.003[.122](.122) .006[.123](.123) .006[.123](.123) | -.058[.166](.155) -.004[.153](.153) -.003[.153](.153)
-.25 | -.256[.130](.129) -.250[.131](.131) -.249[.131](.131) | -.313[.192](.181) -.249[.179](.179) -.249[.179](.179)
-.50 | -.505[.131](.131) -.503[.133](.133) -.503[.133](.133) | -.578[.223](.209) -.506[.209](.208) -.506[.209](.209)
Normal Mixture, n=100
.50 .491[.088](.088) .502[.088](.088) .502[.088](.088) .470[.087](.082) .500[.080](.080) .500[.079](.079)
.25 .241[.105](.105) .252[.106](.106) .252[.106](.106) .207[.124](.116) .249[.113](.113) .250[.113](.113)
.00 | -.010[.120](.120) -.002[.121](.121) -.001[.121](.121) | -.056[.160](.150) -.001[.148](.148) -.001[.148](.148)
-.25 | -.254[.129](.129) -.248[.131](.131) -.247[.131](.131) | -.314[.195](.184) -.251[.182](.182) -.250[.182](.182)
-.50 | -.503[.130](.130) -.500[.131](.131) -.500[.132](.132) | -.567[.217](.207) -.496[.206](.206) -.495[.206](.206)
Lognormal Error, n=100
.50 .490[.084](.084) .502[.084](.084) .502[.084](.084) .470[.084](.079) .500[.077](.077) .500[.077](.077)
.25 .235[.102](.101) .246[.102](.102) .246[.102](.102) .208[.120](.113) .250[.110](.110) .251[.110](.110)
.00 | -.005[.116](.116) .004[.117](.117) .004[.117](.117) | -.050[.151](.143) .003[.141](.141) .004[.141](.141)
-.25 | -.258[.121](.121) -.252[.123](.123) -.252[.123](.123) | -.316[.185](.172) -.253[.171](.171) -.253[.171](.171)
-.50 | -.502[.125](.125) -.499[.126](.126) -.499[.126](.126) | -.565[.208](.197) -.495[.197](.197) -.495[.197](.197)
Normal Error, n=500
.50 .498[.039](.039) .500[.039](.039) .500[.039](.039) .490[.050](.049) .501[.048](.048) .501[.048](.048)
.25 .247[.048](.048) .250[.048](.048) .250[.048](.048) .234[.073](.071) .250[.071](.071) .250[.071](.071)
.00 | -.001[.055](.055) .001[.055](.055) .001[.055](.055) | -.021[.097](.094) .000[.094](.094) .000[.094](.094)
-.25 | -.251[.058](.058) -.250[.058](.058) -.250[.058](.058) | -.275[.117](.114) -.249[.113](.113) -.249[.113](.113)
-.50 | -.500[.060](.060) -.499[.061](.061) -.499[.061](.061) | -.530[.139](.136) -.500[.135](.135) -.500[.135](.135)
Normal Mixture, n=500
.50 .499[.039](.039) .501[.039](.039) .501[.039](.039) .490[.048](.047) .501[.047](.047) .501[.047](.047)
.25 .247[.048](.048) .249[.048](.048) .249[.048](.048) .233[.074](.072) .249[.071)(.071) .249[.071](.071)
.00 .000[.054](.054) .002[.055](.055) .002[.055](.055) | -.020[.095](.093) .002[.092](.092) .002[.092](.092)
-.25 | -.250[.059](.059) -.249[.059](.059) -.249[.059](.059) | -.279[.119](.116) -.253[.115](.115) -.253[.115](.115)
-.50 | -.501[.059](.059) -.500[.060](.060) -.500[.060](.060) | -.529[.137](.134) -.499[.133](.133) -.499[.133](.133)
Lognormal Error, n=500
.50 .497[.037](.037) .500[.037](.037) .500[.037](.037) .491[.047](.046) .502[.046](.046) .502[.046](.046)
.25 .248[.048](.048) .250[.048](.048) .250[.048](.048) .234[.072](.070) .251[.069](.069) .251[.069](.069)
.00 | -.002[.053](.053) .000[.053](.053) .000[.053](.053) | -.020[.094](.092) .001[.091](.091) .001[.091](.091)
-.25 | -.252[.057](.057) -.251[.058](.058) -.251[.058](.058) | -.277[.116](.112) -.250[.112](.112) -.251[.112](.112)
-.50 | -.499[.059](.059) -.499[.059](.059) -.499[.059](.059) | -.530[.139](.136) -.498[.135](.135) -.499[.135](.135)
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Table 2. Empirical Mean[rmse](sd) of Estimators of A - 2FE-SPD Model with SED, T'= 3,8 = (1,1),0 =1

A AN Abe2 Abe3 | AN Abe2 Abe3
(a) Queen Contiguity, REG1 (b) Group Interaction, REG2
Normal Error, n=50
.50 .481[.144](.142) .500[.143](.143) .500[.142](.142) .457[.139](.132) .503[.116](.116) .503[.115](.115)
.25 .233[.171](.170) .252[.171](.171) .254[.171)(.171) .177[.202](.188) .258[.167](.167) .260[.167](.166)
.00 | -.018[.190](.189) -.001[.190](.190) .001[.191](.190) | -.115[.266](.240) -.004[.221](.221) -.001[.220](.220)
-.25 | -.271[.202](.201)  -.255[.203](.203) -.254[.204](.204) | -.382[.299](.268) -.250[.256](.256) -.249[.256](.256)
-.50 | -.516[.203](.202) -.503[.205](.205) -.502[.206](.206) | -.637[.321](.290) -.496[.287](.287) -.497[.288](.288)
Normal Mixture, n=50
.50 .480[.139](.138) .500[.138](.138) .500[.137](.137) .458[.137](.130) .504[.114](.114) .504[.113](.113)
.25 .233[.166](.165) .252[.166](.166) .251[.166](.166) .168[.210](.194) .251[.172](.172) .250[.171](.171)
.00 | -.016[.186](.185) .002[.186](.186) .003[.186](.186) | -.108[.258](.234) .004[.214](.214) .003[.214](.214)
-.25 | -.267[.195](.194) -.252[.196](.196) -.250[.197](.197) | -.381[.293](.262) -.248[.251](.251) -.249[.251](.251)
-.50 | -.511[.198](.197) -.498[.200](.200) -.498[.201](.201) | -.636[.313](.282) -.493[.280](.280) -.495[.281](.281)
Lognormal Error, n=50
.50 .483[.135](.133) .504[.134](.134) .503[.133](.133) .454[.136](.128) .502[.112](.112) .502[.111](.111)
.25 .237[.160](.159) .256[.161](.160) .255[.160](.160) .174[.196](.181) .257[.160](.160) .256[.160](.160)
.00 | -.012[.179](.179) .006[.180](.180) .005[.180](.180) | -.105[.242](.218) .009[.199](.199) .002[.199](.199)
-.25 | -.264[.186](.186) -.248[.188](.188) -.249[.188](.188) | -.368[.273](.247) -.233[.235](.235) -.239[.236](.235)
-.50 | -.512[.191](.191) -.499[.194](.194) -.499[.194](.194) | -.632[.305](.275) -.489[.272](.272) -.489[.274](.273)
Normal Error, n=100
.50 .490[.096](.095) .500[.095](.095) .500[.095](.095) .467[.107](.102) .501[.093](.093) .501[.093](.093)
.25 .241[.119](.119) .251[.119](.119) .251[.118](.118) .196[.152](.142) .252[.132](.132) .251[.132](.132)
.00 | -.011[.132](.132) -.001[.132](.132) .000[.132](.132) | -.074[.192](.177) -.002[.171](.171) -.002[.171](.171)
-.25 | -.259[.141](.140) -.249[.141](.141) -.249[.141](.141) | -.333[.215](.199) -.255[.199](.199) -.255[.199](.199)
-.50 | -.510[.142](.142) -.501[.143](.143) -.501[.143](.143) | -.574[.220](.207) -.500[.215](.215) -.500[.215](.215)
Normal Mixture, n=100
.50 .489[.095](.094) .500[.094](.094) .500[.094](.094) .465[.104](.098) .500[.090](.090) .500[.090](.090)
.25 .240[.118](.117) .250[.117](.117) .250[.117])(.117) .196[.149](.139) .253[.130](.130) .253[.130](.130)
.00 | -.010[.130](.130) .001[.130](.130) .001[.130](.130) | -.073[.189](.174) .000[.168](.168) .000[.168](.168)
-.25 | -.260[.138](.138) -.250[.138](.138) -.249[.138](.138) | -.327[.211](.196) -.249[.197](.197) -.249[.197](.197)
-.50 | -.510[.138](.138) -.501[.139](.139) -.501[.139](.139) | -.569[.220](.209) -.495[.219](.219) -.495[.219](.219)
Lognormal Error, n=100
.50 .494[.088](.088) .505[.088](.088) .505[.088](.088) .465[.107](.101) .501[.092](.092) .500[.092](.092)
.25 .240[.110](.110) .251[.110](.110) .251[.110](.110) .198[.145](.135) .256[.126](.126) .256[.126](.125)
.00 | -.006[.126](.126) .004[.127](.126) .003[.127](.126) | -.064[.174](.162) .010[.156](.156) .010[.156](.156)
-.25 | -.259[.136](.136) -.250[.136](.136) -.249[.136](.136) | -.320[.200](.188) -.239[.189](.188) -.239[.189](.189)
-.50 | -.508[.135](.135) -.500[.136](.136) -.500[.136](.136) | -.561[.214](.205) -.485[.215](.215) -.486[.215](.215)
Normal Error, n=500
.50 .497[.041](.041) .499[.041](.041) .499[.041](.041) .487[.060](.059) .500[.057](.057) .500[.057](.057)
.25 .249[.051](.051) .251[.051](.051) .251[.051](.051) .226[.090](.087) .249[.083](.083) .249[.083](.083)
.00 | -.003[.058](.058) -.001[.058](.058) -.001[.058](.058) | -.033[.121](.116) .000[.112](.112) .000[.112](.112)
-.25 | -.252[.062](.061) -.250[.062](.062) -.250[.062](.062) | -.292[.148](.142) -.249[.137](.137) -.249[.137](.137)
-.50 | -.500[.063](.063) -.499[.063](.063) -.499[.063](.063) | -.549[.170](.162) -.499[.158](.158) -.499[.158](.158)
Normal Mixture, n=500
.50 .498[.040](.040) .500[.040](.040) .500[.040](.040) .485[.060](.058) .499[.056](.056) .499[.056](.056)
.25 .247[.051](.051) .250[.051](.051) .250[.051](.051) .226[.091](.088) .250[.084](.084) .249[.084](.084)
.00 | -.001[.058](.058) .001[.058](.058) .001[.058](.058) | -.035[.120](.114) -.001[.110](.110) -.002[.110](.110)
-.25 | -.252[.062](.062) -.250[.062](.062) -.250[.062](.062) | -.291[.146](.140) -.249[.136](.136) -.249[.136](.136)
-.50 | -.504[.063](.063) -.502[.063](.063) -.502[.063](.063) | -.551[.173](.165) -.500[.161](.161) -.500[.161](.161)
Lognormal Error, n=500
.50 .498[.040](.040) .500[.040](.040) .500[.040](.040) .485[.062](.060) .500[.058](.058) .499[.058](.058)
.25 .249[.050](.050) .251[.050](.050) .251[.050](.050) .227[.088](.085) .252[.081](.081) .252[.081](.081)
.00 | -.003[.057](.056) -.001[.056](.056) -.001[.056](.056) | -.030[.112](.108) .006[.104](.104) .005[.104](.104)
-.25 | -.251[.060](.060) -.249[.060](.060) -.249[.060](.060) | -.290[.141](.135) -.245[.131](.130) -.246[.130](.130)
-.50 | -.503[.062](.062) -.501[.062](.062) -.501[.062](.062) | -.545[.168](.162) -.492[.158](.157) -.493[.158](.157)
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Table 3a. Empirical Mean[rmse](sd) of Estimators of A and p, 2FE-SPD Model with SARAR, T'=3,3 = (1,1)’,0 = 1, Queen Contiguity, REG-1

P Y AR pn R An AR | o R
(a) Normal Error, n = 50 (b) Lognormal Error, n = 50
.50 .50 .484[.116](.115) .500[.116](.116) .483[.143](.142) .500[.143](.143) .486[.105](.104) .502[.105](.105) .484[.131](.130) .502[.131](.131)
.25 .484[.119](.117) .501[.118](.118) .226[.176](.174) .242[.175](.175) .485[.114](.113) .501[.113](.113) .233[.162](.161) .250[.161](.161)
.00 .483[.118](.116) .500[.117](.117) | -.019[.192](.191) -.002[.192](.192) .486[.110](.109) .503[.110](.110) | -.015[.177](.176) .002[.177)(.177)
-.25 .482[.124](.122) .500[.123](.123) | -.267[.202](.202) -.251[.203](.203) .487[.112](.111) .503[.112](.112) | -.265[.193](.193) -.249[.193](.193)
-.50 .484[.125](.123) .500[.124](.124) | -.513[.208](.208)  -.498[.209](.209) .489[.111](.110) .505[.111](.111) | -.514[.195](.194) -.499[.196](.196)
-.50 .50 | -.502[.158](.158) -.500[.161](.161) .486[.144](.143) .504[.144](.144) || -.502[.145](.145) -.500[.148](.148) .486[.132](.131) .504[.132](.131)
.25 | -.506[.165](.165) -.504[.168](.168) .232[.174](.173) .249[.174](.174) || -.505[.152](.151)  -.503[.155](.154) .233[.161](.160) .250[.160](.160)
.00 | -.501[.163](.163) -.499[.167](.167) | -.006[.187](.187) .010[.187](.187) || -.499[.159](.159) -.497[.162](.162) | -.018[.180](.179) -.001[.180](.180)
-.25 | -.500[.164](.164) -.498[.168](.168) | -.262[.209](.209) -.246[.210](.210) || -.501[.152](.152) -.499[.155](.155) | -.263[.197](.197) -.246[.197](.197)
-.50 | -.506[.169](.169) -.505[.172](.172) | -.518[.207](.206) -.503[.208](.208) || -.498[.157](.157) -.497[.160](.160) | -.513[.194](.194) -.498[.195](.195)
(c) Normal Error, n = 100 (d) Lognormal Error, n = 100
.50 .50 .4941.078](.077) .502[.078](.078) .4901.096](.096) .4991[.096](.096) .4901.078](.078) .4991.078](.078) .493[.090](.090) .502[.090](.090)
.25 .4901.080](.080) .4991.080](.080) .2441.117](.116) .253[.117](.117) .491[.081](.080) .5001.080](.080) .243[.111](.111) .252[.111](.111)
.00 .493[.083](.083) .502[.083](.083) | -.011[.132](.131) -.002[.131](.131) .494[.079](.079) .503[.079](.079) | -.009[.126](.126) .001[.126](.126)
-.25 .491[.084](.083) .500[.083](.083) | -.258[.142](.142) -.249[.142](.142) .4901[.077](.077) .499[.077](.077) | -.264[.138](.137) -.254[.138](.137)
-.50 .4901.079](.078) .499[.078](.078) | -.509[.142](.141) -.499[.142](.142) .493[.077](.077) .501[.077](.077) | -.509[.137](.137) -.499[.137](.137)
-.50 .50 | -.494[.118](.118)  -.493[.119](.119) .492[.094](.094) .501[.094](.094) || -.503[.106](.106) -.503[.107](.107) .491[.089](.088) .500[.088](.088)
.25 | -.501[.119](.119) -.500[.121](.121) .242[.117)(.117) 251[.117)(.117) || -.502[.112](.112) -.501[.113](.113) .240[.111](.111) .249[.111](.111)
.00 | -.496[.115](.115) -.495[.117](.117) | -.008[.133](.133) .001[.133](.133) || -.498[.114](.114) -.498[.115](.115) | -.007[.129](.129) .003[.128](.128)
-.25 | -.505[.118](.118)  -.504[.120](.120) | -.258[.143](.143) -.248[.143](.143) || -.497[.112](.112) -.496[.113](.113) | -.257[.136](.136) -.248[.136](.136)
-.50 | -.501[.118](.118) -.500[.120](.120) | -.504[.148](.148) -.495[.149](.149) || -.505[.109](.109) -.504[.110](.110) | -.507[.137](.137) -.498[.138](.137)
(e) Normal Error, n = 500 (f) Lognormal Error, m = 500
.50 .50 .497[.033](.033) .4991.033](.033) .499[.041](.041) .501[.041](.041) .4991[.030](.030) .501[.030](.030) .497[.040](.040) .499].040](.040)
.25 .497[.033](.033) .4991[.033](.033) .247[.052](.052) .2491.052](.052) .4991[.032](.032) .501[.032](.032) .2491.050](.050) .250[.050](.050)
.00 .4991.033](.033) .501[.033](.033) .001[.057](.057) .003[.058](.057) .498].033](.033) .500[.033](.033) | -.001[.057](.057) .001[.057](.057)
-.25 .498].033](.032) .499[.033](.033) | -.254[.062](.062) -.252[.062](.062) .498].033](.033) .500[.033](.033) | -.250[.061](.061) -.248[.061](.061)
-.50 .498][.032](.032) .500[.032](.032) | -.503[.062](.062) -.501[.062](.062) .497[.032](.032) .499[.032](.032) | -.501[.062](.062) -.499[.062](.062)
-.50 .50 | -.502[.049](.049) -.501[.049](.049) .498][.041](.041) .500[.041](.041) || -.499[.049](.049) -.499[.049](.049) .498].040](.040) .500[.040](.040)
.25 | -.503[.051](.051) -.502[.051](.051) .249][.051](.051) .250[.051](.051) || -.500[.051](.051) -.499[.051](.051) .248].050](.050) .250[.050](.050)
.00 | -.501[.050](.050) -.501[.050](.050) | -.001[.060](.060) .001[.060](.060) || -.501[.051](.051) -.500[.052](.052) | -.002[.058](.058) .000[.058](.058)
-.25 | -.502[.051](.050) -.502[.051](.051) | -.253[.061](.061) -.251[.061](.061) || -.499[.051](.051) -.498[.051](.051) | -.252[.062](.062) -.250[.062](.062)
-.50 | -.500[.049](.049) -.499[.049](.049) | -.501[.063](.063) -.499[.064](.064) || -.500[.048](.048) -.500[.049](.049) | -.503[.062](.062) -.502[.062](.062)
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Table 3b. Empirical Mean[rmse](sd) of Estimators of A and p, 2FE-SPD Model with SARAR, T'= 3,8 = (1,1)’,0 = 1, Group Interaction, REG-2

P Y AR pn R I AR | o R
(a) Normal Error, n = 50 (b) Lognormal Error, n = 50
.50 .50 .4841.095](.094) .499[.092](.092) .453[.156](.149) .500[.129](.129) .484[.089](.088) .5001.087](.087) .456][.146](.140) .505[.121](.121)
.25 .4801[.103](.101) .497[.099](.099) .162[.238](.221) .248[.194](.194) .484[.096](.095) .501[.093](.093) .161[.237](.220) .251[.193](.193)
.00 .481[.104](.102) .498[.100](.100) | -.120[.298](.272) .001[.243](.243) .4861[.097](.096) .501[.093](.093) | -.120[.301](.276) .005[.247](.247)
-.25 .481[.104](.102) .496[.100](.100) | -.408[.362](.326) -.257[.299](.299) .488][.097](.096) .502[.094](.094) | -.407[.365](.330) -.252[.306](.306)
-.50 .4841.099](.098) .498[.096](.096) | -.685[.400](.354) -.512[.335](.334) .491[.095](.095) .504[.093](.093) | -.682[.413](.370) -.506[.354](.354)
-.50 .50 | -.527[.218](.216)  -.499[.218](.218) .453[.158](.150) .501[.130](.130) || -.522[.214](.213) -.494[.215](.215) .458][.147](.141) .507[.123](.122)
.25 | -.534[.237](.235) -.505[.237](.236) .164[.235](.219) 251[.191](.191) || -.524[.226](.225) -.495[.227](.227) .171[.220](.205) .259[.179](.179)
.00 | -.532[.239](.237) -.504[.239](.239) | -.117[.301](.277) .004[.249](.249) || -.528[.239](.237) -.501[.239](.239) | -.114[.293](.270) .010[.242](.242)
-.25 | -.530[.237](.235) -.504[.237](.237) | -.407[.357](.320) -.257[.295](.295) || -.519[.240](.240) -.494[.241](.241) | -.396[.349](.317) -.243[.293](.293)
-.50 | -.524[.233](.232) -.500[.233](.233) | -.689[.403](.355) -.518[.337](.336) || -.528[.251](.250) -.505[.252](.252) | -.661[.399](.364) -.489[.345](.345)
(c) Normal Error, n = 250 (d) Lognormal Error, n = 250
.50 .50 .497[.044](.044) .501[.044](.044) .477[.082](.079) .500[.074](.074) .497[.043](.043) .500[.042](.042) .477[.081](.078) .500[.073](.073)
.25 .497[.043](.043) .5001[.043](.043) .209[.124](.117) .250[.110](.110) .497[.042](.042) .500[.042](.042) .209[.119](.112) .250[.105](.105)
.00 .497[.041](.040) .499[.040](.040) | -.056[.161](.151) .001[.142](.142) .498].040](.040) .500[.039](.039) | -.056[.158](.148) .002[.138](.138)
-.25 .498].038](.038) .500[.038](.038) | -.327[.204](.189) -.253[.178](.178) .498].038](.038) .500[.038](.038) | -.322[.194](.180) -.247[.169](.169)
-.50 .4991.035](.035) .500[.035](.035) | -.590[.232](.214) -.501[.203](.203) .5001[.035](.035) .501[.035](.035) | -.588[.229](.211) -.497[.200](.200)
-.50 .50 | -.508[.123](.122) -.498[.122](.122) .476[.082](.078) .499[.073](.073) || -.509[.122](.121) -.498[.121](.121) .476[.081](.078) .500[.073](.073)
.25 | -.510[.118](.118) -.502[.118](.118) .213[.121](.115) .253[.108](.108) || -.504[.118](.118) -.496[.118](.118) .210[.120](.113) .251[.106](.106)
.00 | -.507[.116](.116) -.500[.116](.116) | -.063[.167](.155) -.005[.146](.146) || -.509[.113](.113) -.502[.113](.113) | -.058[.161](.150) .000[.140](.140)
-.25 | -.502[.105](.105) -.497[.105](.105) | -.326[.201](.186) -.252[.175](.175) || -.507[.105](.105) -.502[.105](.105) | -.320[.192](.179) -.245[.169](.169)
-.50 | -.506[.099](.099) -.502[.099](.099) | -.592[.235](.216) -.503[.204](.204) || -.503[.100](.100) -.499[.100](.100) | -.589[.234](.217) -.498[.205](.205)
(e) Normal Error, n = 500 (f) Lognormal Error, m = 500
.50 .50 .498][.030](.030) .5001[.030](.030) .484[.065](.063) .5001.060](.060) .498][.030](.030) .5001[.030](.030) .4841.065](.063) .501[.060](.060)
.25 .4991[.029](.029) .500[.029](.029) .2201[.098](.093) .248].089](.089) .498][.029](.029) .5001[.029](.029) .223[.096](.092) .252[.087](.087)
.00 .5001[.027](.027) .501[.027](.027) | -.040[.128](.122) .001[.116](.116) .500[.027](.027) .501[.027](.027) | -.044[.128](.120) -.001[.114](.114)
-.25 .5001[.025](.025) .501[.025](.025) | -.303[.160](.151) -.249[.144](.144) .500[.025](.025) .501[.025](.025) | -.305[.158](.148) -.249[.141](.141)
-.50 .4991.023](.023) .500[.023](.023) | -.562[.187](.176) -.496[.168](.168) .4991[.022](.022) .500[.022](.022) | -.565[.192](.180) -.497[.172](.172)
-.50 .50 | -.505[.087](.087) -.500[.087](.087) .485[.065](.063) .500[.060](.060) || -.505[.085](.085) -.499[.085](.085) .4841.064](.062) .501[.059](.059)
.25 | -.507[.082](.082) -.503[.082](.082) .2201[.098](.094) .248].089](.089) || -.504[.081](.081) -.500[.081](.081) .223[.096](.092) .252[.088](.088)
.00 | -.503[.075](.075) -.500[.075](.075) | -.041[.131](.124) .000[.118](.118) || -.502[.075](.075) -.499[.075](.075) | -.044[.127](.119) -.001[.113](.113)
-.25 | -.504[.070](.070) -.502[.070](.070) | -.303[.161](.152) -.249[.145](.145) || -.501[.071](.071) -.499[.071](.071) | -.303[.159](.150) -.248[.143](.143)
-.50 | -.501[.065](.065) -.499[.065](.065) | -.569[.192](.179) -.503[.171](.171) || -.502[.065](.065) -.500[.065](.065) | -.562[.187](.176) -.494[.168](.168)




Table 4. Empirical Means of the Non-Spatial Estimators, 2FE-SPD Model with SLD
Group Interaction, REG2,T =3

X BN Bon 5% 3¢ b o | v Bon 5% 3b¢ b e
@ B=(1,1),0=1 ®) B=(5,5),0=1
Normal Error, n=50
.50 1.041 1.035 0.984 0.996 0.998 0.992 | 0.533 0.530 0.985 0.496 0.499 0.991
.25 1.039 1.030 0.982 0.997 0.995 0.992 | 0.532 0.524 0.981 0.498 0.496 0.991
.00 1.035 1.023 0.980 0.997 0.992 0.992 | 0.529 0.519 0.978 0.498 0.494 0.991
-.25 1.032 1.023 0.978 0.997 0.995 0.992 | 0.524 0.519 0.975 0.496 0.496 0.992
-.50 1.030 1.019 0.974 0999 0.994 0.989 | 0.527 0.514 0.970 0.501 0.494 0.990
Normal Mixture, n=50
.50 1.040 1.031 0.975 0.996 0.994 0.982 | 0.532 0.520 0.981 0.495 0.490 0.988
.25 1.041 1.030 0.973 1.000 0.996 0.982 | 0.531 0.523 0.973 0.497 0.495 0.983
.00 1.038 1.030 0.973 1.001 0.998 0.984 | 0.526 0.518 0.973 0.495 0.493 0.986
-.25 1.035 1.025 0.966 1.001 0.997 0.980 | 0.524 0.515 0.963 0.496 0.492 0.979
-.50 1.028 1.023 0.969 0.997 0.997 0.985 | 0.521 0.520 0.962 0.496 0.500 0.981
Lognormal Error, n=50
.50 1.036 1.031 0.944 0.994 0.995 0.951 | 0.529 0.523 0.946 0.493 0.493 0.952
.25 1.036 1.032 0.947 0.996 0.999 0.957 | 0.529 0.521 0.946 0.496 0.494 0.956
.00 1.028 1.020 0.936 0.992 0.990 0.947 | 0.525 0.519 0.944 0.495 0.494 0.957
-.25 1.029 1.019 0.942 0.996 0.992 0.955 | 0.522 0.517 0.943 0.494 0.494 0.959
-.50 1.026 1.017 0.940 0.996 0.993 0.956 | 0.518 0.514 0.926 0.494 0.494 0.945
Normal Error, n=100
.50 1.028 1.023 0.993 1.000 0.999 0.996 | 0.526 0.521 0.993 0.501 0.499 0.996
.25 1.027 1.019 0.991 1.000 0.996 0.995 | 0.524 0.517 0.990 0.500 0.496 0.995
.00 1.023 1.020 0.990 0.998 0.999 0.996 | 0.524 0.516 0.991 0.501 0.496 0.997
-.25 1.020 1.020 0.989 0.996 1.000 0.995 | 0.521 0.514 0.988 0.499 0.496 0.995
-.50 1.024 1.018 0.988 1.002 0.999 0.995 | 0.520 0.514 0.986 0.500 0.497 0.994
Normal Mixture, n=100
.50 1.026 1.022 0.990 0.998 0.998 0.993 | 0.523 0.518 0.988 0.497 0.497 0.991
.25 1.024 1.019 0.987 0.998 0.996 0.992 | 0.525 0.519 0.986 0.501 0.498 0.990
.00 1.022 1.018 0.985 0.997 0.996 0.990 | 0.522 0.515 0.985 0.499 0.496 0.991
-.25 1.023 1.018 0.987 1.000 0.998 0.994 | 0.523 0.517 0.983 0.501 0.499 0.991
-.50 1.022 1.019 0.982 1.000 1.001 0.989 | 0.518 0.515 0.983 0.498 0.498 0.992
Lognormal Error, n=100
.50 1.024 1.021 0.973 0.997 0.998 0.977 | 0.524 0.518 0.969 0.499 0.497 0.972
.25 1.025 1.023 0.964 1.000 1.002 0.968 | 0.522 0.516 0.966 0.498 0.496 0.971
.00 1.023 1.015 0.963 0.999 0.995 0.969 | 0.520 0.514 0.962 0.497 0.495 0.968
-.25 1.022 1.016 0.970 0.999 0.997 0.977 | 0.520 0.516 0.964 0.499 0.498 0.972
-.50 1.021 1.012 0.960 1.000 0.995 0.966 | 0.516 0.514 0.958 0.497 0.498 0.967
Normal Error, n=250
.50 1.011 1.010 0.997 0.999 0.998 0.999 | 0.512 0.512 0.997 0.499 0.499 0.998
.25 1.010 1.009 0.996 0.998 0.997 0.998 | 0.512 0.512 0.996 0.500 0.500 0.998
.00 1.009 1.009 0.996 0.998 0.997 0.998 | 0.509 0.509 0.996 0.497 0.497 0.998
-.25 1.009 1.010 0.996 0.997 0.998 0.999 | 0.508 0.511 0.995 0.497 0.500 0.998
-.50 1.009 1.010 0.995 0.998 0.999 0.998 | 0.511 0.510 0.994 0.500 0.499 0.997
Normal Mixture, n=250
.50 1.014 1.013 0.997 1.002 1.000 0.998 | 0.513 0.509 0.996 0.500 0.497 0.997
.25 1.012 1.010 0.993 1.000 0.998 0.995 | 0.512 0.511 0.995 0.500 0.498 0.996
.00 1.010 1.011 0.995 0.998 0.999 0.997 | 0.510 0.512 0.993 0.498 0.500 0.996
-.25 1.012 1.011 0.996 1.001 1.000 0.998 | 0.510 0.510 0.997 0.498 0.498 1.000
-.50 1.009 1.008 0.994 0.998 0.997 0.996 | 0.510 0.509 0.993 0.499 0.498 0.996
Lognormal Error, n=250
.50 1.011 1.010 0.986 0.999 0.998 0.987 | 0.511 0.511 0.982 0.498 0.498 0.983
.25 1.012 1.013 0.985 1.000 1.001 0.987 | 0.513 0.513 0.986 0.501 0.501 0.988
.00 1.010 1.009 0.983 0.998 0.998 0.985 | 0.511 0.511 0.984 0.499 0.499 0.987
-.25 1.010 1.009 0.982 0.999 0.997 0.985 | 0.512 0.510 0.984 0.500 0.498 0.987
-.50 1.007 1.007 0.985 0.996 0.997 0.987 | 0.509 0.508 0.983 0.498 0.497 0.986
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Table 5a. Empirical Sizes: Two-Sided Tests of Spatial Dependence in SARAR Model
Group Interaction, REG2, T'=3,8=(1,1),0=1

n Test | 10% 5% 1% ] 10% 5% 1% ] 10% 5% 1%
Normal Errors Normal Mixture Lognormal Errors
EO A= P = 0
50 Wi | 1974 1288 .0546 | .1918 .1232 .0450 | .1616 .1062 .0456
Wao | 1896 .1196 .0516 | .1846 .1222 .0470 | .1584 .1008 .0408
Wis3 | .1520 .0906 .0388 | .1428 .0874 .0302 | .1318 .0778 .0300
100 Wip | 1732 1048 .0348 | .1652 .0964 .0384 | .1416 .0860 .0286
Wao | 1754 1116  .0366 | .1684 .1070 .0388 | .1416 .0858 .0284
Wiss | .1290 .0764 .0224 | .1228 .0734 .0266 | .1192 .0676 .0208
250 W1 | 1406 .0808 .0208 | .1364 .0736 .0198 | .1104 .0620 .0162
Wao | .1390 .0788 .0234 | .1350 .0758 .0206 | .1170 .0712 .0196
Wiss | .1148 .0618 .0174 | .1102 .0576 .0154 | .1026 .0564 .0170
500 W1 | 1334 .0740 .0176 | .1168 .0682 .0142 | .1128 .0630 .0136
Wao | 1358 .0752 .0178 | .1270 .0674 .0176 | .1338 .0730 .0196
Wis3 | .1088 .0548 .0128 | .1000 .0528 .0118 | .1096 .0552 .0118
Hp:A=0, (truep=0)
50 Wi | 1660 .1024 .0392 | .1436 .0920 .0320 | .1450 .0920 .0360
Wao | 1622 .1044 .0382 | .1578 .0968 .0378 | .1590 .0970 .0410
Wiss | .1354 .0842 .0294 | .1260 .0758 .0246 | .1284 .0798 .0286
100 Wip | 1362  .0798 .0256 | .1352 .0812 .0268 | .1302 .0734 .0230
Wao | .1532  .0908 .0282 | .1494 .0906 .0294 | .1332 .0758 .0230
Wiss | .1174  .0668 .0212 | .1162 .0686 .0202 | .1186 .0670 .0178
250  Wipp | 1232 0732 .0174 | .1228 .0690 .0158 | .1134 .0576 .0154
Wao | .1266 .0726 .0170 | .1238 .0682 .0160 | .1174 .0616 .0154
Wiss | .1126  .0630 .0132 | .1100 .0594 .0118 | .1052 .0542 .0126
500 W1 | 1108 .0578 .0142 | .1094 .0556 .0116 | .1116 .0616 .0138
Wao | .1198 .0588 .0148 | .1120 .0576 .0128 | .1198 .0662 .0160
Ws3 | .1050 .0530 .0122 | .1030 .0524 .0098 | .1070 .0572 .0130
Ho:p=0 (true A=0)

50 Wi | 1730 .1054 .0392 | .1714 .1070 .0382 | .1498 .0902 .0328
Wao | .1366 .0850 .0326 | .1418 .0822 .0312 | .1202 .0692 .0192
Wiss | .1268 .0794 .0280 | .1214 .0710 .0262 | .1056 .0598 .0170
100 Wi | .1604 .0980 .0268 | .1478 .0856  .0250 | .1292 .0710 .0198
Wao | 1302 .0758 .0252 | .1274 .0732 .0260 | .1142 .0672 .0220
Wiss | .1124  .0630 .0198 | .1056 .0612 .0196 | .0952 .0568 .0164
250 W1 | 1358 .0742 .0192 | .1304 .0724 .0192 | .1030 .0506 .0122
Wao | 1216  .0694 .0166 | .1226 .0670 .0176 | .1036 .0552 .0168
Wis3 | .1074 .0570 .0132 | .1054 .0556 .0126 | .0880 .0456 .0132
500 W1 | 1306 .0704 .0158 | .1126 .0600 .0140 | .0976 .0514 .0124
Wao | .1208 .0682 .0170 | .1110 .0590 .0150 | .1154 .0616 .0146
Wis3 | .1030 .0528 .0114 | .0928 .0466 .0106 | .0966 .0478 .0116

Note: W;; are defined in (3.12) for joint tests and (3.13) for one-directional tests.
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Table 5b. Empirical Sizes: Two-Sided Tests of Hp : A = 0 in SLD Model

Group Interaction, REG2, T'=3,8=(1,1),0=1.

7T;; are defined in (3.14)

n_ Test | 10% 5% 1% | 10% 5% 1% | 10% 5% 1%
Normal Errors Normal Mixture Lognormal Errors

50 Ty1 | 1422 0850 .0232 | .1254 .0676 .0190 | .1068 .0552 .0140
Too | 1348 .0808 .0212 | .1154 .0586 .0162 | .1042 .0586 .0134

T33 | 1120 .0616 .0146 | .0992 .0472 .0126 | .0918 .0484 .0102

100 Ty1 | 1224 0622 0174 | .1186 .0660 .0136 | .1070 .0590 .0116
Tyo | 1142  .0604 .0128 | .1214 .0654 .0158 | .1108 .0600 .0130

T33 | .1004 .0478 .0102 | .1046 .0518 .0118 | .0958 .0502 .0084

250 Ty1 | 1148 .0584 .0176 | .1042 .0540 .0112 | .1006 .0512 .0142
Ty | 1130 .0622 .0172 | .1128 .0604 .0128 | .1140 .0572 .0150

T33 | 1006 .0526 .0130 | .0946 .0506 .0086 | .0996 .0466 .0124

500 Ty1 | (1126 .0560 .0106 | .1082 .0528 .0122 | .0970 .0472 .0082
Tyo | 1154 .0646 .0140 | .1066 .0564 .0118 | .1064 .0554 .0106

733 | .1010 .0554 .0110 | .0972 .0484 .0104 | .0960 .0474 .0080

Table 5c. Empirical Sizes: Two-Sided Tests of Hg : p = 0 in SED Model

Group Interaction, REG2, T'=3,3=(1,1),0 = 1.

7T;; are defined in (3.14)

n_ Test | 10% 5% 1% | 10% 5% 1% ] 10% 5% 1%
Normal Errors Normal Mixture Lognormal Errors
50 Ty1 | 1572 .0920 .0282 | .1492 .0846 .0236 | .1282 .0666 .0164
Tyo | 1386 .0758 .0234 | .1242 .0734 .0220 | .1030 .0572 .0152
T33 | 1146 .0620 .0172 | .1152 .0640 .0176 | .0928 .0518 .0142
100 Ty1 | 1420 0798  .0224 | .1324 .0738 .0142 | .1170 .0598 .0126
Tyo | 1274 0736 .0202 | .1248 .0700 .0160 | .1010 .0550 .0140
T33 | 1116 .0594 .0154 | .1054 .0540 .0112 | .0840 .0444 .0116
250 Ti1 | 1224 .0630 .0140 | .1128 .0568 .0114 | .1028 .0544 .0124
Ty2 | 1190 .0656 .0172 | .1096 .0560 .0142 | .1056 .0566 .0166
733 | .1006 .0518 .0124 | .0882 .0450 .0114 | .0880 .0466 .0114
500 Ty1 | 1124 0578 .0120 | .1126 .0526 .0098 | .1004 .0518 .0116
Tao | 1136 .0624 .0142 | .1202 .0604 .0148 | .1164 .0610 .0178
T33 | 0952 .0492 .0098 | .1004 .0482 .0108 | .0982 .0476 .0126
Table 6. Empirical Sizes: Two-Sided Tests of Hg : 81 = B2 in SARAR Model
Group Interaction, REG2, T=3,0=1,A=p=0
n_ Test | 10% 5% 1% | 10% 5% 1% ] 10% 5% 1%
Normal Errors Normal Mixture Lognormal Errors
50 Ty1 | 1608 1020 .0386 | .1630 .1046 .0386 | .1604 .0978 .0344
To2 | 1154 .0650 .0214 | .1190 .0678 .0206 | .1138 .0614 .0204
100 Ty1 | 1334 0744 0228 | .1344 .0794 .0218 | .1334 .0782 .0218
T2 | 1012 .0546 .0138 | .1042 .0536 .0126 | .1032 .0534 .0120
250 Ty1 | 1240 0642 .0166 | .1210 .0680 .0204 | .1196 .0670 .0184
T2 | 1066 .0524 .0120 | .1060 .0564 .0152 | .1018 .0580 .0114
500 Ty1 | 1092 0548 .0116 | .1100 .0564 .0140 | .1154 .0616 .0200
Too | 0958 .0472 .0092 | .0978 .0472 .0100 | .1022 .0536 .0146
50 Ty1 | 1624 1004 .0376 | .1624 .1024 .0390 | .1610 .0992 .0376
Too | 1136 .0654 .0196 | .1204 .0666 .0208 | .1136 .0640 .0216
100 Typ | 1282 0742 .0196 | .1394 .0810 .0208 | .1420 .0808 .0250
Taz | 0968 .0496 .0114 | .1068 .0540 .0090 | .1060 .0564 .0118
250 Ty1 | 1254 0688  .0190 | .1224 .0642 .0140 | .1146 .0622 .0180
To2 | (1050 .0568 .0142 | .1024 .0480 .0094 | .0990 .0526 .0132
500 Ty1 | 1240 0626 .0152 | .1130 .0594 .0130 | .1220 .0650 .0160
Too | 1102 .0502 .0124 | .0978 .0482 .0096 | .1084 .0552 .0122

Note: 8 = (1,1)’ for upper panel, and (.5,.5)" for lower panel. 7;; are defined in (3.15).
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