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Abstract

Limit theory is developed for continuous co-moving systems with mildly explosive re-

gressors. The theory uses double asymptotics with infill (as the sampling interval tends

to zero) and large time span asymptotics. The limit theory explicitly involves initial

conditions, allows for drift in the system, is provided for single and multiple explosive

regressors, and is feasible to implement in practice. Simulations show that double as-

ymptotics deliver a good approximation to the finite sample distribution, with both finite

sample and asymptotic distributions showing sensitivity to initial conditions. The meth-

ods are implemented in the US real estate market for an empirical application, illustrating

the usefulness of double asymptotics in practical work.

Keywords: Cointegrated system; Explosive Process; Moderate Deviations from Unity;

Double Asymptotics; Real Estate Market.

JEL classification: C12, C13, C58

1 Introduction

The recent global financial crisis has motivated econometricians to study potentially explo-

sive behavior in financial time series and develop technologies for the detection of bubbles in

∗Phillips acknowledges support from the NSF under Grant No. SES 12-58258. Yu acknowledges finan-

cial support from Singapore Ministry of Education Academic Research Fund Tier 2 under the grant number

MOE2011-T2-2-096.
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financial markets. For example, Phillips, Wu and Yu (2011) and Phillips, Shi and Yu (2015a,

b) use mildly explosive representations to capture market exuberance in financial time series

and recursive regressions to provide dating algorithms. Both these studies use machinery

that draws on work of Phillips and Magdalinos (2007) on mildly explosive processes and the

limit theory associated with these processes, which have a growing number of applications

in economics and finance. Other recent research has focussed on mechanisms for generating

financial bubbles rather than reduced form methods. Among his many wide-ranging contri-

butions to econometrics and finance, Christian Gourieroux has recently explored new ways

of generating explosive bubbles via non-causal forward-looking processes (Gourieroux and

Zakoian, 2013).

Long run equilibrium relationships among nonstationary variables are often modeled in

terms of cointegrated systems. In a typical cointegrated system variables are assumed to be

integrated I (1) processes and the model is formulated in discrete time. However, financial

applications often use continuous time representations, given the presence of high frequency

observations, making these representations popular in empirical work. Phillips (1991) showed

how to formulate a cointegrated system in continuous time and proposed an inferential pro-

cedure for such systems based on frequency domain techniques. That work maintained the

usual I(1) process assumption, thereby excluding episodes of exuberance in the data.

Extending the framework of co-movement in data to mildly explosive variables, Magdalinos

and Phillips (2009, MP hereafter) developed a generalized cointegrated system with multiple

variables that may be mildly explosive, leading to mixed normal limit theory and mildly

explosive rates of convergence, just as in the univariate autoregression studied in Phillips and

Magdalinos (2007). Like autoregressive roots that are local to unity, mildly explosive roots

depend on the sample size but deliver parameterizations that lie in a wider vicinity of unity.

The limit theory in such systems is independent of the initial condition when, as is often the

case, the initialization is assumed to be asymptotically negligible relative to the order of the

sample observations. Other cases, where the initialization is non-negligible and may figure in

the limit theory in various ways are considered in other work (Andrews and Guggenberger,

2012; Phillips and Magdalinos, 2009).

In a recent study, Wang and Yu (2014, WY hereafter) developed a double asymptotic

theory for an explosive continuous time model, where the sampling interval passes to zero and

the time span passes to infinity. In this double asymptotic setting, the explosive continuous

time model implies mildly explosive behavior in discrete time but with an autoregressive pa-

rameter that depends on the sampling frequency, not the sample size, by virtue of the discrete

time solution of the continuous system. In empirical work the value of the autoregressive
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coeffi cient is also often taken to depend on the frequency of observation. This is because the

use of higher frequency data typically leads to a more persistent autoregressive coeffi cient

estimate and expectations do not change over short time horizons as much as they do over

long horizons. For these reasons dependence of the autoregressive parameter on sampling

frequency often provides greater realism in empirical work where it is necessary to model near

unit root phenomena in discrete time. The limit theory in WY contains a term that explicitly

depends on initial conditions, thereby differing from the (large span) limit theory in Phillips

and Magdalinos (2007). This difference arises from the different order of magnitude implied

for the initial conditions in the two approaches. Simulations in WY reveal that double as-

ymptotics involving initial condition dependencies typically outperform in finite samples the

asymptotics that are free of the initial condition. The changes in the limit theory induced by

these initial condition dependences are suffi cient to materially change conclusions in empirical

work.

This paper extends work by Phillips (1991) on continuous system cointegration by de-

veloping asymptotics for continuous models where the variables are mildly explosive. The

model differs from MP’s mildly explosive system in three ways. First, our model is formu-

lated and parameterized in continuous time whereas MP uses a discrete time specification.

This difference is important because the implied (discrete time) autoregressive parameter of

the continuous system depends on the known sampling frequency, not on the sample size in

terms of an unknown localizing coeffi cient. Pivotal limit theory is therefore possible in the

continuous time formulation. Second, the initial conditions in the two models are different.

Third, the continuous time model allows for a drift in the regressor, which affects the limit

theory. In developing double asymptotics, we utilize the limit theory of MP while adjusting

for the initial condition, the drift, and the autoregressive specification, all of which affect the

resulting limit distribution.

There are good reasons for extending discrete time cointegrated systems to continuous

time. Continuous time models now enjoy a wide range of empirical applications both in

macroeconomics and financial economics. They provide for discrete sampling at any fre-

quency, including intermittent random sampling, and they allow for convenient handling of

both stock variables and flow variables, the latter by simple time aggregation. Importantly

in the present setting, the use of a continuous time framework readily accommodates initial

condition and drift effects, with a limit theory that is easy to implement in practice with no

nuisance parameters. In particular, the limit theory in the continuous system here depends

on a persistence parameter (κ) which is consistently estimable. By contrast, discrete time

models with local to unity and mildly integrated or mildly explosive autoregressive parame-
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ters typically involve localizing coeffi cients that enter the limit theory as nuisance parameters

and are not generally consistently estimable, thereby complicating inference.

The paper is organized as follows. Section 2 introduces the model and gives our main

results, providing connections between the continuous time framework considered here and

the discrete time cointegrated systems in MP. The limit theory of MP is modified to allow for a

discrete time model with initial condition and drift induced by the continuous system, which

assists in delivering double asymptotics for the least squares estimator in the continuous

system. Section 3 extends the limit results to the multivariate setting. Section 4 reports

simulations studying the finite sample performance of the methods. An empirical application

of the methodology to US real estate data is given in Section 4. Section 5 concludes. Proofs

are given in the Appendix.

2 Continuous Systems with a Mildly Explosive Regressor

We start our investigation with the following scalar continuous time model in the two variates

y (t) and x (t)

dy(t) = βdx(t) + σ00dB0(t), (2.1)

dx (t) = κ (µ− x (t)) dt+ σxxdBx(t), x (0) = x0 = Op (1) , κ < 0, (2.2)

where B0(t) and Bx(t) are two correlated standard Brownian motions. The parameter of

central interest for inference is the coeffi cient β which captures the co-movement between y(t)

and x(t). The driver process x(t) follows an Ornstein—Uhlenbeck equation with persistence

parameter κ. For κ > 0 the process x(t) is stationary, for κ = 0 it is Brownian motion,

and for κ < 0 it is explosive. For data over a large time span several different regimes of κ

might be contemplated, possibly with break points separating the regimes. The present paper

focuses on the explosive case of κ < 0. The scalar model is important particularly in financial

applications and leads to simple results that avoid some of the complications of systems with

multiple explosive regressors, which are considered in the next section.

Suppose data are recorded at N equally spaced points, {th}Nt=1, over a time interval [0, T ],

with sampling interval h and overall time span T so that N = T/h. To develop asymptotics

we assume that both h→ 0 and T →∞. The exact discrete time representation of (2.1)-(2.2)
is (Phillips, 1972)

yth = βxth + u0,th, (2.3)

xth = ah (κ)x(t−1)h + gh + ux,th, x0h = x0 = Op (1) , (2.4)
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where

ah (κ) = exp (−κh) ,

gh = µ
(

1− e−κh
)
,

ux,th = σxx

∫ th

(t−1)h
e−κ(th−s)dBx (s)

d
= N

(
0,
σ2xx
2κ

(
1− e−2κh

))
,

u0,th = N
(
0, σ200h

)
.

The autoregressive parameter ah (κ) = exp (−κh) depends directly on the sampling frequency

h. Indirectly, h and ah (κ) are both related to the sample size N. When T is fixed, h =

T/N = O
(
N−1

)
→ 0, and when T → ∞, h = O (T/N) → 0. Gaussianity follows from

the Brownian motion driver processes in (2.1)-(2.2). The standard error of ux,th is λh =

σxx
√

(1− e−2κh) /2κ ∼ σxx
√
h→ 0, concordant with the sample path continuity of x (t).

Re-standardizing the equations (2.3)-(2.4) by λh we have

ỹth = βx̃th + ũ0,th, (2.5)

x̃th = ah (κ) x̃(t−1)h + g̃h + ũx,th, x̃0h = x0h/λh, ũx,th
iid∼ N (0, 1) , (2.6)

where ỹth = yth/λh, x̃th = xth/λh, g̃h = gh/λh, ũ0,th = u0,th/λh
d
= N

(
0, σ̃200

)
, and σ̃200 =

hσ200/λ
2
h. Clearly, σ̃

2
00 → σ200/σ

2
xx as h→ 0. When T →∞ and h→ 0, we have

1

Nh
=

1

T
→ 0, ah (κ) = exp {−κh} = 1− κh+O

(
h2
)
→ 1.

Hence x̃th in (2.6) is a mildly explosive process as in Phillips and Magdalinos (2007). Fur-

thermore, since κ < 0, when h→ 0 we have

x̃0h = x0h/λh = Op

(
h−1/2

)
since λh ∼

√
h,

(ah (κ))−N = exp {κhN} = exp {κT} = o (1/T ) ,

g̃h ∼ O
(√

h
)
.

Thus, in the standardized discrete system (2.5)-(2.6) the order of magnitude of the initial

condition is x̃0h ∼ Op
(
h−1/2

)
while in the original system (2.1)-(2.2) it is x0 ∼ Op(1). In

addition, the order of magnitude of the drift is O
(√

h
)
in model (2.6) but is Op(1) in (2.2).

MP (2009) analyzed the triangular system

yt = Axt + u0t, (2.7)

xt = RNxt−1 + uxt, x0 = op(N
α/2), (2.8)
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where Rn = IK + C
Nα , α ∈ (0, 1), C = diag (c1, . . . cK) , and discrete observations {yt, xt}Nt=0

are available. In this system, A is the matrix of cointegrating (or, more specifically in the

development below, co-mildly explosive) coeffi cients; RN represents moderate deviations from

a unit root in the sense of Phillips and Magdalinos (2007); xt is a moderately integrated time

series as Nα → ∞ when N → ∞. If C > 0, xt is a mildly explosive time series. The vector

(u0t, uxt) is a sequence of zero mean, weakly dependent linear process errors which satisfy

certain standard regularity conditions. The analysis of MP covers both cases C > 0 and

C < 0, our focus here is on asymptotics for the mildly explosive case C > 0.

There are some common features in model (2.5)-(2.6) and the MP model (2.7)-(2.8): both

systems imply co-movement between y and x, and in both models xt may be mildly explosive.

But there are also important differences between these discrete time systems. First, the

moderate deviations from unity in the autoregressive coeffi cient take different forms: in (2.6)

the autoregressive coeffi cient is a function of the sampling interval h, whereas in (2.8) it is

formulated as a function of the overall sample size N . A second difference is that, while in (2.8)

the initial condition for xt is assumed to be op(Nα/2) = op
(
h−1/2

)
, in (2.6) it is Op

(
h−1/2

)
,

which translates to x0 = Op(1) in the original continuous time system (2.1)-(2.2). So, the

initial condition in (2.6) has the larger order of magnitude Op
(
h−1/2

)
, which corresponds to

a distant past initialization in the terminology of Phillips and Magdalinos (2009), where it is

shown that such initializations do affect the limit theory. The third difference in the models

occurs in the drift. In (2.8) there is no intercept, and if a constant intercept were present it

would typically dominate the asymptotics. By contrast, in (2.6) the intercept

g̃h = gh/λh = µ
(

1− e−κh
)
/λh =

µ
(
1− e−κh

)
σxx
√

(1− e−2κh) /2κ
=

µκh

σxxh1/2
{1 + o (h)} = O

(√
h
)

is asymptotically negligible as h→ 0, so the intercept does not affect the double asymptotics.

The limit theory of MP (2009) is readily modified to take into account this new initial condition

and drift.

To fix ideas, consider the modified MP model

yt = Axt + u0t, (2.9)

xt = µ+RNxt−1 + uxt, x0 = x0N = Op

(
Nα/2

)
, µ = Op

(
N−α/2

)
. (2.10)

Let x̃0 = x0NN
−α/2 ⇒ X∗ and µ̃ = Nα/2µ ⇒ µ∗. The error ut = [u0t, uxt]

′ is an i.i.d.

sequence with mean zero and covariance

[
σ200 σ0x

σ0x σ2xx

]
. This model extends (2.7)-(2.8) by

allowing for a larger initial condition and a (local to zero) drift. The following theorem gives

the limit theory for the LS estimator of A in (2.9) for the case of a single scalar regressor xt.
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Theorem 2.1 For the discrete time system (2.9)-(2.10) with RN = 1 + c
Nα , α ∈ (0, 1), and

c > 0, when N →∞, we have
(i)
(
RNNN

α
)−1∑N

t=1 xtu0t ⇒
σ00
2c U0

(
σxxUx + (2c)1/2D

)
,

(ii)
(
RNNN

α
)−2∑N

t=1 x
2
t ⇒

(
1
2c

)2 (
σxxUx + (2c)1/2D

)2
,

where (U0, Ux)
d
= N (0, I2) , D = X∗ + µ∗

c , and so

RNNN
α
(
Â−A

)
⇒ 2c

σ00U0

σxxUx + (2c)1/2D
. (2.11)

Remark 1 If x̃0 = − µ̃
c , then D = 0 and the limit (2.11) is simply

RNNN
α
(
Â−A

)
⇒ 2c

σ00U0
σxxUx

= 2c
σ00
σxx

C, (2.12)

where C is a standard Cauchy variate. This limit distribution is the same as that given by MP
(2009, p. 496) and depends on the localizing coeffi cient c, although the standardized estimation

error satisfies
RNN

R2N − 1

(
Â−A

)
⇒ σ00

σxx
C, (2.13)

when D = 0 and this limit does not depend on c. In the general case where D 6= 0

RNN
R2N − 1

(
Â−A

)
⇒ σ00U0

σxxUx + (2c)1/2D
. (2.14)

Remark 2 The limit distribution of µ̂, the LS estimator of the intercept parameter µ, follows

simply as

√
N (µ̂− µ)

=
√
N

(∑N
t=1 x

2
t−1

)(∑N
t=1 uxt

)
−
(∑N

t=1 xt−1
)(∑N

t=1 xt−1uxt
)

N
(∑N

t=1 x
2
t−1

)
−
(∑N

t=1 xt−1
)2

=
√
N

(
RNNN

α
)−2∑N

t=1 x
2
t−1

(
1
N

∑N
t=1 uxt

)
− 1

N

{(
RNNN

α
)−1∑N

t=1 xt−1
}{(

RNNN
α
)−1∑N

t=1 xt−1uxt
}

N
N

{(
RNNN

α
)−2∑N

t=1 x
2
t−1

}
− 1

N

{(
RNNN

α
)−1∑N

t=1 xt−1
}2

=
1√
N

N∑
t=1

uxt + op (1)⇒ N
(
0, σ2xx

)
.

This result is useful in testing for µ = 0 in the modified MP model.

Remark 3 Self normalized statistics based on Â have a much simpler limit theory that is

convenient for inference. For instance, defining the regression residuals û0t = yt − Âxt and
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noting that the residual variance estimate s20 = N−1
∑N

t=1 û
2
0t

p→ σ200, it follows immediately

from Theorem 2.1 that the usual t statistic for testing H0 : A = A0 satisfies

tA =
Â−A0
sA

=
Â−A0{

s20

(∑N
t=1 x

2
t

)−1}1/2 =
RNNN

α
(
Â−A0

)
{
s20

(
1

R2NN N2α

∑N
t=1 x

2
t

)−1}1/2
⇒

2c σ00U0
σxxUx+(2c)

1/2D

σ00

{(
1
2c

)2 (
σxxUx + (2c)1/2D

)2}−1/2 = U0
d
= N (0, 1) , (2.15)

and standard methods of inference apply.

Remark 4 Let R̂N be the LS estimator of RN and ĉ = Nα
(
R̂N − 1

)
. The limit theory for

R̂N and ĉ follows from Remark 3. Defining the regression residuals ûxt = xt−R̂Nxt−1− µ̂ and
noting that the residual variance estimate s2x = N−1

∑N
t=1 û

2
xt

p→ σ2xx, we have the following

result for the t statistic for testing H0 : RN = R0N ,

tRN =
R̂N −R0N
sRN

=
R̂N −R0N{

Ns2x

(
N
∑N

t=1 x
2
t−1 −

(∑N
t=1 xt−1

)2)−1}1/2

=
RNNN

α
(
R̂N −R0N

)
{
s2x

(
1

R2NN N2α

∑N
t=1 x

2
t−1 − 1

N

(
1

RNNN
α

∑N
t=1 xt−1

)2)−1}1/2

⇒
2c σxxUx

σxxUx+(2c)
1/2D

σxx

{(
1
2c

)2 (
σxxUx + (2c)1/2D

)2}−1/2 = Ux
d
= N (0, 1) .

Similarly, given RN = 1 + c
Nα , we have sc = NαsRN and ĉ− c0 =

(
R̂N −R0N

)
Nα. Hence, if

α is known, the t statistic for testing H0 : c = c0 is

tc =
ĉ− c0
sc

=
(
R̂N −R0N

)
NαN−αs−1RN ⇒ Ux

d
= N (0, 1) .

However, if α is unknown, the standard error sc = NαsRN is unavailable and inference using

this limit theory for ĉ is infeasible. As discussed below, this infeasible feature of the discrete

time case is quite different in continuous time.

8



Remark 5 The limit distribution (2.11) is a ratio of two independent Gaussian variates and

has heavy tails, just as the Cauchy limit in the special case (2.13) where D = 0. Observe that

RNNN
α
(
Â−A

)
⇒ 2c

σ00U0

σxxUx + (2c)1/2D
= b

U0
Ux + d

, b =
2cσ00
σxx

, d =
(2c)1/2

σxx
D.

When D ≥ 0, the density of U = U0
Ux+d

is,

pU (u) =
e−

1
2
d2

π (1 + u2)

[
1 +

q

ϕ (q)

∫ q

0
ϕ (y) dy

]
, ϕ (y) =

e−y
2/2

√
2π

, q =
d√

1 + u2
,

(e.g., see Marsaglia, 1965) and has Cauchy-like tails.

We have the following expression for the LS estimator β̂ of the slope coeffi cient in the

continuous time model (2.1), which is given by

β̂ − β =

(
N∑
t=1

x2th

)−1( N∑
t=1

xthu0,th

)
=

(
N∑
t=1

x̃2th

)−1( N∑
t=1

x̃thũ0,th

)
. (2.16)

The associated limit theory is given in the following theorem.

Theorem 2.2 For the continuous time system (2.3)-(2.4) with κ < 0, when h → 0 and

T →∞, we have
aNh
h

(
β̂ − β

)
⇒ (−2κ)

σ00U0

σxxUx + (−2κ)1/2 (x0 − µ)
. (2.17)

Remark 6 The limit distribution (2.17) follows directly from (2.11) by replacing σ00, σxx,

and D in Theorem 2.1 with σ00
σxx
, 1, and D∗ = x0−µ

σxx
respectively, giving the stated result.

Remark 7 The continuous time counterpart of Nα is 1/h which is known for any given data,

so there is no need to estimate the rate parameter α. The continuous time counterpart of c

is −κ which can be consistently estimated by the least squares method as long as T → ∞.
Analogous to (2.15), self normalized statistics are free of nuisance parameters and hypothesis

testing about β can be conducted using the residual variance estimate s20 = N−1
∑N

t=1 u
2
0,th,

which satisfies h−1s20
p→ σ200. Theorem 2.2 and results (8.11) and (8.12) in the Appendix then

give the following double asymptotics for the usual t statistic for testing H0 : β = β0

tβ =
β̂ − β0

sβ
=

β̂ − β0{
s20

(∑N
t=1 x

2
th

)−1}1/2 =

(
β̂ − β0

)
aNh /h{

s20

(
a2Nh
h2
∑N

t=1 x̃
2
thσ

2
xxh
)−1}1/2

9



=

(
β̂ − β0

)
aNh /h{

h−1s20

(
a2Nh
h2
∑N

t=1 x̃
2
thσ

2
xx

)−1}1/2
⇒

(−2κ) σ00U0
σxxUx+(−2κ)1/2(x0−µ)

σ00

{(
1
−2κ

)2 (
Ux + (−2κ)1/2D∗

)2
σ2xx

}−1/2 = U0
d
= N (0, 1) ,

which leads to feasible inference concerning the slope coeffi cient β in continuous time, just as

in (2.15) for the coeffi cient A in the modified MP model.

Remark 8 Following Remark 7, we can obtain the double asymptotic distributions for âh
and κ̂. Defining s2x = N−1

∑N
t=1 u

2
x,th, which satisfies h

−1s2x
p→ σ2xx, the t statistic for âh is:

tah =
âh − a0h
sah

=
âh − a0h{

s2x

(∑N
t=1 x

2
(t−1)h −

1
N

(∑N
t=1 x(t−1)h

)2)−1}1/2

=

(
âh − a0h

)
aNh /h{

s2x

(
1

a2Nh /h2

∑N
t=1 x

2
(t−1)h −

1
N

(
1

aNh /h

∑N
t=1 x(t−1)h

)2)−1}1/2

⇒
−2κ σxxUx

σxxUx+(−2κ)1/2D

σxx

{(
1
−2κ

)2 (
σxxUx + (−2κ)1/2D

)2}−1/2 = Ux
d
= N (0, 1) .

Similarly, given ah = exp (−kh), we have hsκ = sah +op (h). Following Wang and Yu (2014),

we have

aNh
(
κ̂− κ0

)
⇒ 2κ

σxxUx

σxxUx + (−2κ)1/2D
,

and

tκ =
κ̂− κ0
sκ

=
κ̂− κ0{

h−2Ns2x

(
N
∑N

t=1 x
2
(t−1)h −

(∑N
t=1 x(t−1)h

)2)−1}1/2

=
aNh
(
κ̂− κ0

){
s2x

(
1

a2Nh /h2

∑N
t=1 x

2
(t−1)h −

1
N

(
1

aNh /h

∑N
t=1 x(t−1)h

)2)−1}1/2

⇒
−2κ σxxUx

σxxUx+(−2κ)1/2D

σxx

{(
1
−2κ

)2 (
σxxUx + (−2κ)1/2D

)2}−1/2 = Ux
d
= N (0, 1) .

10



Clearly, tκ is a feasible statistic for testing H0 : κ = κ0 in contrast to the discrete time case

where the test statistic relies on the unknown rate parameter α.

Remark 9 If x0 = µ, we have D∗ = 0 and

aNh
h

(
β̂ − β

)
⇒ (−2κ)

σ00U0
σxxUx

= (−2κ)
σ00
σxx

C. (2.18)

3 Continuous Systems with Multiple Explosive Regressors

This section extends the results above to continuous time systems with more than one mildly

explosive regressor. We allow for regressors with multiple forms of explosive behavior using

the approach developed in MP (2009) for discrete systems. As above, we establish the limit

theory for a modified MP model that incorporates an intercept term and allows for a larger

initial condition. This theory is applied to the continuous system by assuming T → ∞ and

h→ 0. Following MP, two different cases will be examined which lead to somewhat different

limit behavior: (i) when all the regressors have distinct explosive roots; and (ii) when all the

regressors share the same explosive root.

3.1 Limit Results in the Discrete Time Framework

We start with the following system with multiple mildly explosive regressors, based on MP

(2009),

yt = Axt + u0t, (3.1)

xt = µ+RNxt−1 + uxt, with x0 = x0N = Op

(
Nα/2

)
and µ = Op

(
N−α/2

)
. (3.2)

In this case, yt and xt are m× 1 and K × 1 vector respectively, and A is a m×K matrix of

coeffi cients. In addition, RN = IK+C/Nα is a K×K matrix with C = diag (c1, c2, . . . , cK) >

0. We assume that the errors satisfy

ut =
[
u′0t, u

′
xt

]′ iid∼ (0,Ω) with Ω =

[
Ω00 Ω0x

Ω0x Ωxx

]
.

Let the standardized initialization and intercept satisfy x̃0 = x0NN
−α/2 ⇒ X∗ and µ̃ =

Nα/2µ ⇒ µ∗. The model now modifies MP (2009) in two ways: (i) the initial value for x

is Op
(
Nα/2

)
which is larger than the op

(
Nα/2

)
initialization in MP; (ii) a non-zero drift

term of order Op
(
N−α/2

)
is included. Following closely the approach of MP, we obtain the

limit theory for the LS estimator Â under two scenarios: (i) where C has distinct diagonal

11



elements, i.e., ci 6= cj for i 6= j; (ii) where C is a scalar matrix and does not have distinct

diagonal elements, so that ci = cj , for all i, j. In what follows we will frequently use a zero

affi x to denote the true value of the associated element or matrix.

3.1.1 ci 6= cj for i 6= j

Theorem 3.1 For the discrete time system (3.1)-(3.2) with RN = IK + C/Nα, α ∈ (0, 1),

C = diag (c1, c2, . . . , cK) > 0 and ci 6= cj for i 6= j, when N →∞, we have

(i) vec
(

1
Nα

∑N
t=1 u0tx

′
tR
−N
N

)
⇒
(∫∞

0 e−pC
(
D + Ũx

)(
D + Ũx

)′
e−pCdp⊗ Ω00

)1/2
W0,

(ii) 1
N2α

∑N
t=1R

−N
N xtx

′
tR
−N
N =

∫∞
0 e−pC

(
D + Ũx

)(
D + Ũx

)′
e−pCdp+ op (1),

(iii)

vec
{
Nα

(
Â−A

)
RNN

}
⇒
{(∫ ∞

0
e−pC

(
D + Ũx

)(
D + Ũx

)′
e−pCdp

)−1/2
⊗ Ω

1/2
00

}
W0

d
= MN

(
0,

(∫ ∞
0

e−pC
(
D + Ũx

)(
D + Ũx

)′
e−pCdp

)−1
⊗ Ω00

)
, (3.3)

whereW0
d
= N (0, ImK), Ũx =

(∫∞
0 e−pCΩxxe

−pCdp
)1/2

Ux, Ux
d
= N (0, IK), D = X∗+C−1µ∗,

MN represents a mixed normal distribution.

Remark 10 If x̃0 = −C−1µ̃, then D = 0 and the limit (3.3) becomes

vec
{
Nα

(
Â−A

)
RNN

}
⇒MN

(
0,

(∫ ∞
0

e−pCŨxŨ
′
xe
−pCdp

)−1
⊗ Ω00

)
.

This limit distribution corresponds to that in Theorem 4.1 of MP (2009, p. 496).

Remark 11 The limit distribution of µ̂ is

√
N (µ̂− µ)

=
√
N


1
N

∑N
t=1 uxt − 1

N

(
1
Nα

∑N
t=1 uxtx

′
t−1R

−N
N

)
(

1
N2α

∑N
t=1R

−N
N xt−1x′t−1R

−N
N

)−1 (
1
Nα

∑N
t=1R

−N
N xt−1

)
NN − 1

N

(
1

Nα

N∑
t=1

x′t−1R
−N
N

)(
1

N2α

N∑
t=1

R−NN xt−1x
′
t−1R

−N
N

)−1(
1

Nα

N∑
t=1

R−NN xt−1

)
−1

=
1√
N

N∑
t=1

uxt + op (1)⇒ N (0,Ωxx) .
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Remark 12 Let Aj and Âj denote the jth m×1 column of A and Â, and xjt the jth element

of xt. Define the equation residuals û0t = yt − Âxt, the error variance matrix estimate

S00 = N−1
N∑
t=1

û0tû
′
0t

p→ Ω00,

and the corresponding estimate of the variance matrix of Âj

SAjAj =

(
N∑
t=1

x2jt

)−1
S00.

The limit distribution of Âj is given by

Nα
(
Âj −Aj

)
ρNj ⇒MN

(
0,

(∫ ∞
0

e−2pcj
(
Dj + Ũxj

)2
dp

)−1
Ω00

)
d
= MN

0,
2cjΩ00(

Dj + Ũxj

)2


where ρj = 1 +
cj
Nα , and Dj and Ũjx are the jth element of D and Ũx for j = 1, . . . ,K.

Using Theorem 3.1, we obtain the following limit distribution for the Wald statistic for testing

H0 : QjAj = QjA
0
j = qj , where Qj is a g ×m restriction matrix of full row rank g ≤ m and

qj is a given g × 1 vector,

WAj :=
{
QjÂj − qj

}′ (
QjSAjAjQ

′
j

)−1 {
QjÂj − qj

}
=

{
QjN

α
(
Âj −Aj

)
ρNj

}′(N−2αρ−2Nj

N∑
t=1

x2jt

)−1
QjS00Q

′
j

−1 {QjNα
(
Âj −Aj

)
ρNj

}
⇒ χ2g,

where χ2g denotes a chi-squared variate with g degrees of freedom.

Remark 13 Let RjN and R̂jN denote the jth K × 1 column of RN and R̂N , and define

Ĉj =
(
R̂j − ej

)
Nα, where ej is the jth unit vector with unity in the jth position and zeros

elsewhere. Setting ûxt = xt − R̂Nxt−1 − µ̂, the residual second moment matrix is

Sxx = N−1
N∑
t=1

ûxtû
′
xt

p→ Ωxx,

and the corresponding estimate of the variance matrix of R̂jN is

SRjRj =

 N∑
t=1

x2jt−1 −
1

N

(
N∑
t=1

xjt−1

)2−1 Sxx.
13



The Wald statistic for testing the (full rank) restrictions H0 : QjRjN = QjR
0
jN = qj , where

Qj is a g ×K restriction matrix of full row rank g ≤ K and qj is a given g × 1 vector, is:

WRjN :=
{
QjR̂jN − qj

}′ (
QjSRjRjQ

′
j

)−1 {
QjR̂jN − qj

}
⇒ χ2g,

under the null. Similarly, given RN = IK + C/Nα, we can set SCjCj = N2αSRjRj where

Cj is the jth column of C, SCjCj is the covariance matrix of Ĉj. Further Ĉj − C0j =(
R̂jN −R0jN

)
Nα leads to the following limit theory for Ĉj

(
Ĉj − C0j

)
ρNj ⇒MN

(
0,

(∫ ∞
0

e−2pcj
(
Dj + Ũxj

)2
dp

)−1
Ωxx

)
d
= MN

0,
2cjΩxx(

Dj + Ũxj

)2
 .

Hence, if α is known, we have the corresponding feasible Wald statistic for testing the restric-

tions H0 : QjCj = QjC
0
j = qj,

WCj :=
{
QjĈj − qj

}′ (
QjSCjCjQ

′
j

)−1 {
QjĈj − qj

}
⇒ χ2g,

under the null and with full row rank Qj . If α is unknown, just as in the scalar model, the

estimated variance matrix SCjCj = N2αSRjRj is unavailable and inference using this limit

theory for Ĉj is infeasible. Note that under the null C0j = c0jej . Imposing this (maintained)

restriction on the form of C0j implies that the null can be rewritten as H0 : cj = c0j and a

test analogous to the scalar case can be mounted using the jth diagonal element of the (unre-

stricted) estimate Ĉ or a similar estimate obtained by imposing the maintained restriction on

Cj and estimating the system as a seemingly unrelated regression (SUR). Similar constraints

on inference due to the infeasibility of the tests apply in each of these cases.

3.1.2 ci = cj for all i, j

When ci = cj = c, for all i, j, the limiting standardized form of the signal matrix
∑N

i=1 xtx
′
t

is singular due to commonality in the explosive behavior of the components of xt. Let RN =

ρNIK with ρN = 1 + c/Nα. Following MP (2009), we rotate regression coordinates to address

the singularity using an orthogonal random matrix HN = [HcN , H⊥N ] where HcN = xN

(x′NxN)
1/2

and H⊥N is a K × (K − 1) orthogonal complement matrix such that H ′⊥NHcN
a.s.
= 0. Then,

H ′⊥NH⊥N = IK−1 andH⊥NH ′⊥N
a.s.
= IK−HcNH

′
cN . The limit ofH⊥N is denoted asH⊥, which

satisfies H⊥H ′⊥ = IK −XcX
′
c where Xc is defined in (3.4) in Theorem 3.2 below. Next, rotate

the regressor xt byHN and transform to the variate zt = H ′Nxt = [H ′cNxt, H
′
⊥Nxt] =: [z′1t, z

′
2t]
′.

The following result gives the required limit theory for the LS estimator Â in this case.
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Theorem 3.2 For the discrete time system (3.1)-(3.2) with RN = IK+C/Nα, C = diag (c1, c2, . . . , cK)

with ci = c > 0 for i = 1, . . . ,K, when N →∞, we have,
(i) 1

N1+α

∑N
t=1 z2tz

′
2t ⇒M , with M = H ′⊥

(
µ∗

c
µ∗′

c + 1
2cΩxx

)
H⊥,

(ii) 1
N(1+α)/2 vec

(∑N
t=1 u0tz

′
2t

)
⇒ {M ⊗ Ω00}1/2 × N

(
0, Im(K−1)

)
, where H⊥ is a K ×

(K − 1) random matrix that is an orthogonal complement to

Xc =
(
D + Ũx

)
/

{(
D + Ũx

)′ (
D + Ũx

)}1/2
, (3.4)

satisfying H⊥H ′⊥ = IK −XcX
′
c and with

Ũx ≡
(∫ ∞

0
e−pcΩxxe

−pcdp

)1/2
Ux = Ω1/2xx Ux/ (2c)1/2 , and D = X∗ + µ∗/c,

(iii)

N (1+α)/2vec
(
Â−A

)
⇒
(
H⊥M

−1/2 ⊗ Ω
1/2
00

)
×N (0, ImK)

d
= MN

(
0, H⊥M

−1H ′⊥ ⊗ Ω00
)
. (3.5)

Remark 14 The limit distribution of µ̂ is obtained as follows:

√
N (µ̂− µ)

=
√
N


N∑
t=1

uxt −
(

N∑
t=1

uxtx
′
t−1HN

)(
N∑
t=1

H ′Nxt−1x
′
t−1HN

)−1( N∑
t=1

H ′Nxt−1

)N −
(

N∑
t=1

uxtx
′
t−1HN

)(
N∑
t=1

HNxt−1x
′
t−1H

′
N

)−1( N∑
t=1

H ′Nxt−1

)
−1

=
√
N

 1

N

N∑
t=1

uxt −
1

N

(
1

N (1+α)/2

N∑
t=1

uxtz
′
t−1

)(
1

N (1+α)

N∑
t=1

zt−1z
′
t−1

)−1(
1

N (1+α)/2

N∑
t=1

zt−1

)NN − 1

N

(
1

N (1+α)/2

N∑
t=1

uxtz
′
t−1

)(
1

N (1+α)

N∑
t=1

zt−1z
′
t−1

)−1(
1

N (1+α)/2

N∑
t=1

zt−1

)
−1

=
1√
N

N∑
t=1

uxt + op (1)⇒ N (0,Ωxx) .

Remark 15 Let û0t = yt − Âxt, the estimate of the error variance matrix be

S00 = N−1
N∑
t=1

û0tû
′
0t

p→ Ω00,
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and the estimated variance matrix of Âj be

SAjAj =

(
N∑
t=1

x2jt

)−1
S00.

Following Theorem 3.2, we have the following limit theory for the Wald statistic for testing

H0 : QjAj = QjA
0 = qj

WAj :=
{
QjÂj − qj

}′ (
QjSAjAjQ

′
j

)−1 {
QjÂj − qj

}
⇒ χ2g.

Remark 16 Let ûxt = xt − R̂Nxt−1 − µ̂, giving the error variance matrix estimate

Sxx = N−1
N∑
t=1

ûxtû
′
xt

p→ Ωxx,

and the corresponding estimate of the variance matrix of R̂N (in column vector form)

SRR =

 N∑
t=1

xt−1x
′
t−1 −

1

N

(
N∑
t=1

xt−1

)(
N∑
t=1

xt−1

)′−1 ⊗ Sxx.
Then the Wald statistic for testing H0 : Qvec (RN ) = Qvec

(
R0N
)

= r, where Q is a g ×mK
restriction matrix of full row rank g ≤ mK, is

WRN :=
{
Qvec

(
R̂N −R0N

)}′ (
QSRRQ

′
)−1 {

Qvec
(
R̂N −R0N

)}
⇒ χ2g,

since

N (1+α)/2Qvec
(
R̂N −R0N

)
⇒MN

(
0, QH⊥M

−1H ′⊥ ⊗ ΩxxQ
′
)
,

and

N1+αQSRRQ
′

= Q

 1

N1+α

N∑
t=1

xt−1x
′
t−1 −

1

N2+α

(
N∑
t=1

xt−1

)(
N∑
t=1

xt−1

)′−1 ⊗ SxxQ′
= QHN

(
1

N1+α

N∑
t=1

zt−1z
′
t−1

)−1
H
′
N ⊗ SxxQ

′
+ op (1)

⇒ Q
(
H⊥M

−1H ′⊥ ⊗ Ωxx

)
Q
′
.

Similarly, given RN = 1 + C
Nα , we have SCC = N2αSRR and

vec
(
Ĉ − C0

)
N

1−α
2 ⇒MN

(
0, H⊥M

−1H
′
⊥ ⊗ Ωxx

)
.
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Hence, given α, we have the following feasible Wald test,

WC :=
{
Qvec

(
Ĉ − C0

)}′ (
QSCCQ

′
)−1 {

Qvec
(
Ĉ − C0

)}
⇒ χ2g.

Again as in the scalar model, if α is unknown (which is the usual situation in practical work),

the estimated variance matrix SCC = N2αSRR is unavailable and inference using this limit

theory for Ĉ is infeasible.

Importantly, for the common explosive root case when α is known, we are able to perform

statistical inference concerning the full matrix coeffi cients RN and C using Wald tests because

the normalization factor N1+α is common and thereby commutable with the restriction matrix

Q. However, for the distinct explosive roots case, we can only perform statistical inference

about individual column vectors of RN and C, as demonstrated in Remark 13. The same

phenomenon applies for tests involving the matrix A. As shown below, these features carry

over to inference in the continuous time system although in this case the sampling frequency

is known so there is no diffi culty relating to an unknown rate parameter α.

3.2 Limit Results in the Continuous Time Framework

The above results apply to the multivariate continuous time system

dy(t) = βdx(t) + Ω
1/2
00 dB0(t), (3.6)

dx (t) = κ (µ− x (t)) dt+ Ω1/2xx dBx(t), x (0) = x0 = Op (1) , κ < 0, (3.7)

where B0(t) and Bx(t) are m− and K− vectors of standard Brownian motion. The driver
process x(t) follows a multivariate Ornstein—Uhlenbeck process with persistence matrix κ,

where κ = diag (κ1, κ2, . . . κK) is a K ×K diagonal matrix. We focus on the explosive case

where κi < 0 for i = 1, . . . ,K. As in the discrete time case, we are interested in β, an m×K
matrix of coeffi cients which captures co-movement between y(t) and x(t).

The exact discrete time representation of (3.6)-(3.7) is given by (see Phillips, 1972)

yth = βxth + u0,th, (3.8)

xth = ah (κ)x(t−1)h + gh + ux,th, x0h = x0 = Op (1) ,

where

ah (κ) = exp (−κh) ,

gh = κ−1
(
IK − e−κh

)
κµ,

ux,th =

∫ th

(t−1)h
e−κ(th−s)ΩxxdBx (s) ∼ N (0,Ωxxh) ,
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since

E
(
ux,thu

′
x,th

)
=

∫ th

(t−1)h
e−2κ(th−s)Ωxxds =

1

2
κ−1

(
IK − e−2κh

)
Ωxx.

Thus, upon restandardization by
√
h, the system becomes

ỹth = βx̃th + ũ0,th, (3.9)

x̃th = ah (κ) x̃(t−1)h + g̃h + ũx,th, x̃0h = h−1/2x0h, ũx,th
iid∼ N (0,Ωxx) , (3.10)

where ỹth = h−1/2yth, x̃th = h−1/2xth, g̃h = h−1/2gh, ũ0,th = h−1/2u0,th
d
= N (0,Ω00), and

ũx,th = h−1/2ux,th
d
= N (0,Ωxx). As in the univariate case, the order of the initial value

x̃0h = h−1/2x0h is Op
(
h−1/2

)
, and the order for the drift term g̃h is Op

(
h1/2

)
.

For the continuous time system (3.9)-(3.10), the double asymptotic theory for the LS

estimator of the coeffi cient matrix β when κ has distinct diagonal elements (i.e., κi 6= κj for

i 6= j) is given in the following theorem.

Theorem 3.3 For the continuous time system (3.9)-(3.10) with κ = diag (κ1, κ2, . . . , κK)

with κi 6= κj, for i 6= j, and κi < 0 for i = 1, . . . ,K, when h→ 0 and T →∞, we have

vec

{
1

h

(
β̂ − β

)
aNh

}
⇒
[(∫ ∞

0
epκ
(
D + Ũx

)(
D + Ũx

)′
epκdp

)−1
⊗ Ω00

]1/2
×N (0, ImK) .

(3.11)

Remark 17 The double asymptotic distribution (3.11) follows directly from (3.3) with µ∗ =

κµ, C = −k and D = x0 − µ. To enhance readability in terms of the relationship between the
systems, we provide in the following Table 1 the correspondence between the models, variables

and parameters in the discrete and continuous time cases.

Remark 18 The LS estimator of κ is consistent since h is known. Let S00 = N−1
∑N

t=1 u0,thu
′
0,th,

which satisfies

h−1S00
p→ Ω00,

and the corresponding estimate of the covariance matrix of β̂j is

Sβjβj =

(
N∑
t=1

x2jth

)−1
S00.

The Wald statistic for testing the full rank restrictions H0 : Qjβj = Qjβ
0
j = rj is then

Wβj =
{
Qj

(
β̂j − β0j

)}′ (
QjSβjβjQ

′
j

)−1 {
Qj

(
β̂j − β0j

)}
⇒ χ2g,

leading to feasible inference about βj in the continuous time framework.
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Table 1: Correspondence between systems (3.1)-(3.2) and (3.9)-(3.10).

Discrete Time Continuous Time

yt = Axt + u0t ỹth = βx̃th + ũ0,th

xt = µ+RNxt−1 + uxt x̃th = ah (κ) x̃(t−1)h + g̃h + ũx,th

x0 = x0N = Op
(
Nα/2

)
x̃0h = h−1/2x0h = Op

(
h−1/2

)
µ = Op

(
N−α/2

)
g̃h = Op

(
h1/2

)
C −κ
µ with Nα/2µ→ µ∗ g̃h with h−1/2g̃h → κµ

X∗ + C−1µ∗ x0 − µ

Remark 19 Let aj be the jth column of ah(κ). The Wald statistic for testing the full rank

restrictions H0 : Qjaj = Qja
0
j = qj for given (Qj , qj) has the following chi-squared limit

Waj :=
{
Qj
(
âj − a0j

)}′ (
QjSajajQ

′
j

)−1 {
Qj
(
âj − a0j

)}
⇒ χ2g,

where Sajaj =

(∑N
t=1 x

2
j(t−1)h −

1
N

(∑N
t=1 xj(t−1)h

)2)−1
Sxx and Sxx = N−1

∑N
t=1 ûx,thû

′
x,th

satisfying h−1Sxx
p→ Ωxx where ûx,th = xth − âhx(t−1)h − ĝh are regression residuals. Let κj

denote the jth column of κ. Given the matrix exponential relation, we have the covariance

matrix of κ̂j which satisfies h2Sκjκj = Sajaj + o (h) and so

(
κ̂j − κj0

)
e−kjN ⇒MN

(
0,

(∫ ∞
0

e2pκj
(
Dj + Ũjx

)2
dp

)−1
Ωxx

)
d
= MN

0,
−2κjΩxx(
Dj + Ũjx

)2
 .

Then the Wald statistic for testing the (full rank) restrictions H0 : Qjκ
j = Qjκ

j0 = qj satisfies

Wκj :=
{
Qj κ̂

j − qj
}′ (

QjSκjκjQ
′
j

)−1 {
Qj κ̂

j − qj
}
⇒ χ2g.

Remark 20 The OLS estimates, âh and κ̂, do not take account of the diagonal structure

of ah and κ. If the known diagonal structure is imposed, we can use either SUR estimation

or restricted OLS (in which only the diagonal elements of the original OLS estimates are

employed). The simulation section below explores the finite sample performance of these three

estimates.
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Now we consider the case where the localizing explosive coeffi cients are identical, so that

κi = κ for i = 1, . . . ,K.

Theorem 3.4 For the continuous time system (3.9)-(3.10) with κ = diag (κ1, κ2, . . . , κK)

and κi = κ < 0 for i = 1, . . . ,K, when h→ 0 and T →∞, we have

vec
{√

N/h
(
β̂ − β

)}
⇒
[
H⊥

{
H ′⊥

(
µµ′ +

1

−2κ
Ωxx

)
H⊥

}−1/2
⊗ Ω

1/2
00

]
×N (0, ImK) .

(3.12)

Remark 21 The double asymptotic distribution (3.12) follows directly from (3.5). with µ∗ =

κµ and c = −k.

Remark 22 The Wald statistic for testing H0 : Qvec (β) = Qvec
(
β0
)

= q for full row rank

(Q, q) is then

Wβ :=
{
Qβ̂ − q

}′ (
QSββQ

′)−1 {Qβ̂ − q}⇒ χ2g,

leading to feasible inference about the matrix coeffi cient β in the continuous time framework.

Inference about the full matrix β is possible in this case because of the common factorization

convergence rate in (3.12).

Remark 23 The Wald statistics for testing full rank restrictions on ah and κ such as H0 :

Qvec (ah) = Qvec
(
a0h
)

= q and H0 : Qvec (κ) = Qvec
(
κ0
)

= q are defined in a similar way

and have the following chi-squared limits:

Wah := {Qvec (âh)− q}′
(
QSaaQ

′)−1 {Qvec (âh)− q} ⇒ χ2g,

and

Wκ := {Qvec (κ̂)− q}′
(
QSκκQ

′)−1 {Qvec (κ̂)− q} ⇒ χ2g,

again leading to feasible inference on ah and κ because of the common factorization conver-

gence rate.

Remark 24 When xt has a common explosive root, OLS estimation by âh and κ̂ produces

biased estimates due to endogeneity in the regressor, as shown in Phillips and Magdalinos

(2013). The bias distorts the Wald test statistics and the distortion will be demonstrated in

the Monte Carlo simulation below.
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Table 2: Comparison of the finite sample and double asymptotic distributions of β̂, when the

initial value is x0 = 0.

Time Span T = 4 T = 10

Frequency C test 1% 2.50% 10% 90% 97.50% 99% 1% 2.50% 10% 90% 97.50% 99%

Daily new -32.233 -13.222 -3.027 3.063 12.063 29.452 -32.233 -13.222 -3.027 3.063 12.063 29.452

(h=1/252) Finite Sample -36.346 -13.501 -3.271 2.870 11.647 30.428 -28.528 -12.100 -2.889 3.166 13.304 32.007

Weekly new -32.233 -13.222 -3.027 3.063 12.063 29.452 -32.233 -13.222 -3.027 3.063 12.063 29.452

(h=1/52) Finite Sample -31.973 -11.329 -3.006 2.973 11.752 27.031 -32.775 -12.919 -3.145 3.018 12.735 35.756

Monthly new -32.233 -13.222 -3.027 3.063 12.063 29.452 -32.233 -13.222 -3.027 3.063 12.063 29.452

(h=1/12) Finite Sample -34.772 -12.327 -2.889 2.793 12.284 27.255 -31.209 -11.698 -2.922 2.842 11.947 32.185

t test

Daily new -2.326 -1.960 -1.282 1.282 1.960 2.326 -2.326 -1.960 -1.282 1.282 1.960 2.326

(h=1/252) Finite Sample -2.305 -1.950 -1.271 1.253 1.915 2.256 -2.380 -1.976 -1.277 1.301 2.015 2.359

Weekly new -2.326 -1.960 -1.282 1.282 1.960 2.326 -2.326 -1.960 -1.282 1.282 1.960 2.326

(h=1/52) Finite Sample -2.334 -2.004 -1.292 1.318 1.956 2.340 -2.375 -2.000 -1.286 1.248 1.936 2.285

Monthly new -2.326 -1.960 -1.282 1.282 1.960 2.326 -2.326 -1.960 -1.282 1.282 1.960 2.326

(h=1/12) Finite Sample -2.452 -2.072 -1.326 1.331 2.057 2.463 -2.434 -1.977 -1.301 1.306 1.969 2.301

4 Monte Carlo Studies

This section examines the performance of the double asymptotic limit theory in simulations.

We generate data from model (2.3)-(2.4) with κ = −2, σ00 = σxx = 1, µ = 0, and consider

three sampling intervals, h = 1/12, 1/52, 1/252, corresponding to monthly, weekly and daily

frequencies. The initial value x0 is set at (0, 3, 10) and time spans of T = 4 and T = 10 years

are considered. We report percentiles at levels {1%, 2.5%, 10%, 90%, 97.5%, 99%} in the limit
distribution (2.17) and the finite sample distribution of the coeffi cient based test (called the

C test hereafter) aN

−2κh

(
β̂ − β

)
and tβ from Remark 7. In addition, we provide comparisons

of the densities of the limit distributions and finite sample distributions of the C test statistic

and tβ statistic. The number of replications is set at 10,000.

Tables 2, 3, and 4 report the percentiles when x0 = 0, 3, 10 by using the true values of κ and

µ. It can be seen that the double asymptotic distribution and the finite sample distribution are

both sensitive to changes in initial condition. In all cases the new limit distribution provides

a good approximation to the finite sample distribution.

Figure 1, 2, and 3 plot the densities of the C test statistic and t test statistic when T = 4.

The result is similar to the case of T = 10, which is not reported. These plots show the limit
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Table 3: Comparison of the finite sample and double asymptotic distributions of β̂, when the

initial value is x0 = 3.

Time Span T = 4 T = 10

Frequency C test 1% 2.50% 10% 90% 97.50% 99% 1% 2.50% 10% 90% 97.50% 99%

Daily new -0.427 -0.348 -0.220 0.219 0.347 0.426 -0.427 -0.348 -0.220 0.219 0.347 0.426

(h=1/252) Finite Sample -0.416 -0.338 -0.215 0.215 0.341 0.412 -0.426 -0.350 -0.220 0.218 0.346 0.418

Weekly new -0.427 -0.348 -0.220 0.219 0.347 0.426 -0.427 -0.348 -0.220 0.219 0.347 0.426

(h=1/52) Finite Sample -0.413 -0.338 -0.215 0.215 0.337 0.414 -0.411 -0.341 -0.218 0.212 0.336 0.413

Monthly new -0.427 -0.348 -0.220 0.219 0.347 0.426 -0.427 -0.348 -0.220 0.219 0.347 0.426

(h=1/12) Finite Sample -0.385 -0.324 -0.204 0.205 0.321 0.386 -0.391 -0.318 -0.200 0.207 0.322 0.391

t test

Daily new -2.326 -1.960 -1.282 1.282 1.960 2.326 -2.326 -1.960 -1.282 1.282 1.960 2.326

(h=1/252) Finite Sample -2.275 -1.924 -1.271 1.249 1.947 2.283 -2.369 -1.989 -1.290 1.285 1.993 2.358

Weekly new -2.326 -1.960 -1.282 1.282 1.960 2.326 -2.326 -1.960 -1.282 1.282 1.960 2.326

(h=1/52) Finite Sample -2.331 -1.976 -1.309 1.300 1.985 2.340 -2.352 -1.965 -1.285 1.249 1.950 2.320

Monthly new -2.326 -1.960 -1.282 1.282 1.960 2.326 -2.326 -1.960 -1.282 1.282 1.960 2.326

(h=1/12) Finite Sample -2.439 -2.072 -1.325 1.327 2.050 2.469 -2.397 -1.986 -1.293 1.311 1.963 2.364
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Table 4: Comparison of the finite sample and double asymptotic distributions of β̂, when the

initial value is x0 = 10.

Time Span T = 4 T = 10

C test 1% 2.50% 10% 90% 97.50% 99% 1% 2.50% 10% 90% 97.50% 99%

Daily new -0.118 -0.099 -0.064 0.064 0.099 0.117 -0.118 -0.099 -0.064 0.064 0.099 0.117

(h=1/252) Finite Sample -0.114 -0.096 -0.063 0.063 0.098 0.115 -0.119 -0.100 -0.064 0.064 0.099 0.117

Weekly new -0.118 -0.099 -0.064 0.064 0.099 0.117 -0.118 -0.099 -0.064 0.064 0.099 0.117

(h=1/52) Finite Sample -0.114 -0.097 -0.064 0.063 0.097 0.116 -0.116 -0.096 -0.063 0.061 0.094 0.115

Monthly new -0.118 -0.099 -0.064 0.064 0.099 0.117 -0.118 -0.099 -0.064 0.064 0.099 0.117

(h=1/12) Finite Sample -0.109 -0.092 -0.059 0.060 0.092 0.108 -0.110 -0.091 -0.059 0.060 0.090 0.110

t test

Daily new -2.326 -1.960 -1.282 1.282 1.960 2.326 -2.326 -1.960 -1.282 1.282 1.960 2.326

(h=1/252) Finite Sample -2.274 -1.924 -1.271 1.249 1.947 2.283 -2.369 -1.989 -1.290 1.285 1.993 2.358

Weekly new -2.326 -1.960 -1.282 1.282 1.960 2.326 -2.326 -1.960 -1.282 1.282 1.960 2.326

(h=1/52) Finite Sample -2.331 -1.976 -1.309 1.300 1.985 2.340 -2.352 -1.965 -1.285 1.249 1.950 2.320

Monthly new -2.326 -1.960 -1.282 1.282 1.960 2.326 -2.326 -1.960 -1.282 1.282 1.960 2.326

(h=1/12) Finite Sample -2.439 -2.072 -1.325 1.327 2.050 2.469 -2.397 -1.986 -1.293 1.311 1.963 2.364
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Figure 1: Density comparision between C test and t test for both finite sample distribution

and limit distribution, when the initial value is x0 = 0.

distribution well approximates the finite sample distribution for both tests.

To examine the performance of the limit theory in the multivariate setup, we consider a

bivariate model using monthly data (h = 1
12) with time span T = 20. Data are generated

from the continuous time system (3.8), with β = [1, 1]′, x (0) = [3, 1]′,

Ω =


1.5 −0.9 −0.8

−0.9 2 0.8

−0.8 0.8 1

 ,
µ = [1, 1]′, vec (κ) = [κ1, 0, 0, κ2]

′ with κ1 = −0.2 and κ2 = −0.4 in the first case and

κ1 = κ2 = −0.2 in the second case. Therefore, a1 = exp (−κ1h) = 1.0168 and a2 = 1.0339 in

the first case and a1 = a2 = 1.0168 in the second case. In Table 5, we report the percentiles

of the finite sample distribution with those of the limit distribution for Wβ, WOLS
κ , WReOLS

κ ,

and WSUR
κ , where W indicates the Wald test statistic for the parameter of interest, rβ =

[1, 1]′, rah = [1.0168, 1.0339]′, rκ = [−0.2,−0.4]′ in the first case, rah = [1.0168, 1.0168]′,

rκ = [−0.2,−0.2]′ in the second case. In addition, OLS corresponds to the OLS estimates,

ReOLS to the estimates based on the diagonal elements of OLS estimates, and SUR to the
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Figure 2: Density comparision between C test and t test for both finite sample distribution

and limit distribution, when the initial value is x0 = 3.
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Figure 3: Density comparision between C test and t test for both finite sample distribution

and limit distribution, when the initial value is x0 = 10.
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Table 5: Comparison of the finite sample distribution and the double asymptotic distributions

of the Wald tests related to β̂2×1 and κ̂2×1.

Case 1: κ1 = -0.2, κ2 = -0.4 Case 2: κ1 = -0.2, κ2 = -0.2

Wald Test Percentile 1% 2.50% 10% 90% 97.50% 99% 1% 2.50% 10% 90% 97.50% 99%

Asymptotic χ2g 0.020 0.051 0.211 4.605 7.378 9.210 0.020 0.051 0.211 4.605 7.378 9.210

Wβ Finite 0.023 0.057 0.206 4.626 7.373 9.354 0.021 0.055 0.226 4.831 7.871 9.760

WOLS
κ Finite 0.020 0.048 0.209 5.264 9.215 12.752 7.645 8.953 11.391 20.142 24.165 26.482

WReOLS
κ Finite 0.000 0.000 0.000 0.044 1.466 7.980 5.035 6.104 8.082 17.906 22.410 24.899

WSUR
κ Finite 0.020 0.050 0.201 4.589 7.509 9.688 0.021 0.050 0.225 5.087 8.215 10.347

estimates based on the seemingly unrelated regressions.

Several conclusions can be drawn from this Monte Carlo study. First, for β, our limit

distribution well approximates the finite sample distribution in both cases. Second, for κ,

the limit distribution is closer to the finite sample distribution based on SUR than those

based on OLS or ReOLS. While in Case 1 where the explosive roots are distinct, the three

finite sample distributions are very close to each other, in Case 2 where there is a common

explosive root, the the limit distribution is much closer to the finite sample distribution based

on SUR than to those based on either OLS or ReOLS, suggesting that one should use the

limit distribution to make inference about κ based on SUR.

To understand why SUR provides much better results than OLS for testing hypotheses

about κ in Case 2, Table 6 reports the mean and variance of the two sets of estimates of

κ in both cases. While SUR produces slightly better estimates than OLS in Case 1, it

yields much better estimates of κ in Case 2. As shown in Phillips and Magdalinos (2013),

due to the endogeneity problem in the VAR models when there is a common explosive root,

the OLS estimate of the common explosive autoregression parameter is biased downward,

suggesting that the estimate of κ is biased upward. Naturally this bias distorts the asymptotic

appraximation of the Wald statistic.

5 Empirical Illustration for the US Real Estate Market

This section illustrates use of the limit theory in an empirical study of the relationship between

the U.S. nationwide real estate market and 13 metropolitan real estate markets respectively

between January 2000 and April 2006. We apply the limit theory for univariate co-moving

system (2.1)-(2.2) to real estate data using the S&P/Case-Shiller home price composite 20-
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Table 6: Finite sample comparison of β̂2×1 and κ̂2×1 for the OLS and SUR estimates.

Case 1: κ1 = -0.2, κ2 = -0.4 Case 2: κ1 = -0.2, κ2 = -0.2

Method OLS SUR OLS SUR

Parameter TRUE Mean VAR Mean VAR TRUE Mean VAR Mean VAR

κ1 -0.200 -0.187 4.60E-03 -0.197 7.16E-04 -0.200 0.042 9.03E-02 -0.197 7.50E-04

κ2 -0.400 -0.400 1.38E-05 -0.400 2.17E-07 -0.200 0.200 1.05E-01 -0.195 1.12E-03

city index and 13 metropolitan area indices. The S&P/Case-Shiller home price indices are

the leading measures of U.S. residential real estate prices, tracking changes in the value of

residential real estate nationwide. Monthly data for these indices between February 2000 and

August 2014 were downloaded from the St. Louis Fed.1

Similar to the capital asset pricing model CAPM, we use the composite 20 index to measure

overall market movements. A multi-equation continuous time system (2.1)-(2.2) is estimated

with xt as the composite 20 index and each yt being one of the 13 metropolitan area indices.

The coeffi cient β then measures the co-movement of each metropolitan area index with the

nationwide index. With monthly data, the sampling interval is set to h = 1/12. The initial

value in each equation of the system is set to the composite 20 index in January 2000, i.e.,

x0 = 100.59.

We focus on the sample period between January 2000 and April 2006 (in this case T =

6.25). The choice of the sample period is guided by a recent work (Phillips and Yu, 2011)

documenting the presence of the explosive behavior in the U.S. real estate market over much of

this period. Before estimating the main model (2.1), we examine for the presence of explosive

behavior in xth and yth by estimating κ and κy. The LS estimate of κ is −0.1187, with

the estimated standard error of 0.00045, and the t statistics is −7.147, confirming explosive

behavior over this period, consistent with the results in Phillips and Yu (2011). For other city

indices yth, we report their estimator of κy in the second block of Table 7. In addition, we

report the estimated standard error and the t statistic. The second block of Table 7 reports

these estimates. The results indicate that all of the 13 metropolitan area indices are explosive

over this sample period. Estimates of β for the 13 areas together with 99% and 90% confidence

intervals using both the C test and t test are reported in Table 7. The results reported in

Table 7 indicate that the coeffi cient based test produces tighter confidence bands than the t

test. Hence, there is some empirical advantage to using the C test. Table 7 shows that the

1http://research.stlouisfed.org/fred2/release?rid=199
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Table 7: Estimated autoregressive coeffi cients in yt and confidence intervals for β in U.S. real

estate data

City κy Se(κy) t(κy) β Se(β) C test 99% CI C test 90% CI t test 99% CI t test 90% CI

LA -0.205 8.414E-04 -7.062 1.170 2.287E-03 1.143 1.198 1.152 1.188 1.047 1.308 1.109 1.257

LasVegas -0.168 4.127E-03 -2.610 1.045 2.057E-03 1.020 1.072 1.028 1.062 0.929 1.169 0.987 1.124

Miami -0.320 4.858E-04 -14.518 1.130 2.095E-03 1.104 1.157 1.113 1.147 1.012 1.256 1.071 1.210

Phoenix -0.455 3.227E-03 -8.018 0.935 1.443E-03 0.914 0.958 0.921 0.949 0.837 1.022 0.886 0.990

DC -0.167 8.481E-04 -5.725 1.132 1.011E-03 1.114 1.151 1.120 1.144 1.051 1.193 1.092 1.171

Chicago -0.106 9.811E-04 -3.397 0.886 6.231E-04 0.872 0.901 0.877 0.896 0.822 0.924 0.854 0.910

Boston 0.152 1.236E-03 4.311 1.006 8.130E-04 0.990 1.023 0.995 1.016 0.932 1.055 0.969 1.037

Portland -0.484 1.004E-03 -15.269 0.832 5.133E-04 0.819 0.845 0.823 0.840 0.773 0.862 0.802 0.851

Dallas 0.233 1.245E-02 2.092 0.753 2.628E-03 0.724 0.783 0.734 0.772 0.621 0.911 0.687 0.853

Detroit 0.213 6.056E-03 2.738 0.772 2.178E-03 0.745 0.799 0.754 0.789 0.652 0.903 0.712 0.855

Seattle -0.402 7.602E-04 -14.583 0.848 5.522E-04 0.835 0.862 0.839 0.857 0.787 0.881 0.818 0.869

Tampa -0.368 9.694E-04 -11.819 1.015 5.329E-04 1.002 1.028 1.006 1.023 0.955 1.047 0.985 1.035

NY -0.111 4.169E-04 -5.432 1.047 7.883E-05 1.042 1.053 1.044 1.051 1.024 1.052 1.036 1.050

90% confidence intervals are quite tight and comfortably reject the null hypothesis H0 : β = 0

in all cases. The confidence intervals can also be used to assess whether β = 1 versus β < 1

or β > 1. If β > 1 (respectively, β < 1) the index of the associated metropolitan area moves

faster (slower) than the nationwide index, giving a useful perspective on the relationship of

different metropolitan area indices to the national index. The results show that LA, Las

Vegas, Miami, DC, Boston, Tampa and NY have more “aggressive”real estate markets in the

U.S. than the nation as a whole. The epithet “aggressive”is interpreted in the sense that the

index for these cities moves more than the countrywide index.

6 Conclusion

This paper studies co-moving systems with explosive regressors in a continuous time frame-

work. The exact discretized model corresponds to a modified version of the discrete time

model of Magdalinos and Phillips (2009) but allows for larger initial condition effects and an

asymptotically negligible intercept. The limit theory is developed for this modified model,

enabling us to obtain double asymptotic limit theory for a continuous time system in which

the span T → ∞ and the sampling interval h → 0. The extensions have some important

implications for practical work. First, the limit distribution depends explicitly on the initial

condition. This dependence mimics a corresponding property in the finite sample distribution
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and thereby improves the quality of the double asymptotic limit theory as a finite sample

approximation. Second, the localized coeffi cient c, whose counterpart in continuous time is

−κ, is consistently estimable in continuous time using the LS estimator, facilitating a coeffi -
cient based test for mildly explosive behavior. Finally, pivotal inference is facilitated in the

continuous time case because the sampling interval is known whereas in discrete time system

the corresponding localizing rate parameter is unknown.

The double asymptotic limit theory is developed for univariate and multivariate systems

in continuous time. Simulations suggest that for the coeffi cient based test and the t test

statistics, these asymptotics well approximate the finite sample distributions. An empirical

illustration with US real estate prices at national and various metropolitan areas shows how

the methods assist in identifying regions where real estate markets are more aggressive than

others.
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8 Appendix

Proof of Theorem 2.1. The arguments here and in much of what follows closely mirror

those of MP (2009) in the mildly explosive case. We therefore provide only the main new

details here. The limit theory of
∑N

t=1 x
2
t and

∑N
t=1 xtu0t is obtained using split sample

arguments replacing summations in
∑N

t=1 by
(∑mN

t=1 +
∑N

t=mN+1

)
where mN is such that

mN
Nα + N

mN
→∞ so that with c > 0 and α ∈ (0, 1) we have

R−mNN ∼
(

1 +
c

Nα

)−mN
→ 0,

Nα

RN−mNN

→ 0. (8.1)

(i) Start by writing xt in (2.9) as:

xt = RtNx0 +

t∑
j=1

Rt−jN uxj +
1−RtN
1−RN

µ, (8.2)
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so the standardized numerator can be decomposed as

(
RNNN

α
)−1 N∑

t=1

xtu0t

=
(
RNNN

α
)−1 N∑

t=1

RtNu0t

(
x0 −

µ

1−RN

)
+
(
RNNN

α
)−1 N∑

t=1

u0t
µ

1−RN

+
R−NN√
Nα

(
mN∑
t=1

+
N∑

t=mN+1

)
u0t

 1√
Nα

t∑
j=1

Rt−jN uxj

 . (8.3)

For the first term on the right hand side of (8.3), since x̃0 = x0NN
−α/2 ⇒ X∗ and

µ̃ = Nα/2µ⇒ µ∗, we have

DN = N−α/2x0 −
N−α/2µ

1−RN
= N−α/2x0 −

Nα/2µ

−c+ o (1)
⇒ X∗ +

µ∗

c
= D. (8.4)

setting DN = N−α/2
(
x0 − µ

1−RN

)
, we then have,

(
RNNN

α
)−1 N∑

t=1

RtNu0t

(
x0 −

µ

1−RN

)

= N−α/2
N∑
t=1

R
−(N−t)
N u0t

{
N−α/2

(
x0 −

µ

1−RN

)}
= DNN

−α/2
N∑
t=1

R
−(N−t)
N u0t

= DN−α/2
N∑

t=mN+1

R
−(N−t)
N u0t + op (1) , with D := X∗ +

µ∗

c
. (8.5)

where we assume the probability space is expanded in such a way so that the weak convergence

⇒ can be replaced by
p→ . Also note that

E

{
N−α/2

mN∑
t=1

R
−(N−t)
N u0t

}2
= σ00N

−α
mN∑
t=1

R
−2(N−t)
N = σ00N

−αR−2N+1N

1−R2mNN

1−R2N

= σ00
R−2N+1N −R−2N+1+2mNN

−2c
= o (1) ,

so that

N−α/2
mN∑
t=1

R
−(N−t)
N u0t = op (1) , (8.6)

and then (
RNNN

α
)−1 mN∑

t=1

RtNu0t

(
x0 −

µ

1−RN

)
= op (1) .
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Hence, for the first term of (8.3) we have by virtue of the martingale central limit theorem

(MCLT), as in Phillips and Magdalinos (2007),

(
RNNN

α
)−1 N∑

t=1

RtNu0t

(
x0 −

µ

1−RN

)
= DN

(
RNNN

α/2
)−1 N∑

t=1

RtNu0t

= D
1√
Nα

N∑
t=mN+1

R
−(N−t)
N u0t + op (1) = D

(
1√
Nα

N−mN−1∑
k=0

R−kN u0N−k

)

= D

(
1√
Nα

N−mN−1∑
k=0

R−kN u′0k

)
⇒ Dσ00

(2c)1/2
U0,

where u′0k := u0N−k
iid∼
(
0, σ200

)
and U0 = N (0, 1) since 1

Nα

∑N−mN−1
k=0 R−2kN = 1

Nα

1−R−2NN

1−R−2N
∼

1
Nα

1
R2N−1

→ 1
2c .

For the second term on the right hand side of (8.3), noting thatR−NN
√
N =

(
1 + c

Nα

)−N √
N =

O
(
e−c

N
Nα
√
N
)

= o (1) for all α ∈ (0, 1) we obtain

(
RNNN

α
)−1 N∑

t=1

u0t
µ

1−RN
∼ R−NN

√
N

µ

−c
1√
N

N∑
t=1

u0t = O

(
e−c

N
Nα

√
N

Nα

)
Op (1) = op (1) .

(8.7)

The third term on the right hand side of (8.3) is

R−NN√
Nα

(
mN∑
t=1

+
N∑

t=mN+1

)
u0t

 1√
Nα

t∑
j=1

Rt−jN uxj


=

1√
Nα

mN∑
t=1

R
−(N−t)
N u0t

 1√
Nα

t∑
j=1

R−jN uxj

+
1√
Nα

N∑
t=mN+1

R
−(N−t)
N u0t

 1√
Nα

t∑
j=1

R−jN uxt


=

1√
Nα

N∑
t=mN+1

R
−(N−t)
N u0t

 1√
Nα

mN∑
j=1

R−jN uxj

+ op (1) ,

where we use the fact that N−α/2
∑mN

t=1 R
−(N−t)
N u0t = op (1) from (8.6). We now use a joint

MCLT for the components

(U0N , UxN ) =

 1√
Nα

N∑
t=mN+1

R
−(N−t)
N u0t,

1√
Nα

mN∑
j=1

R−jN uxj


=

 1√
Nα

N∑
t=1

R
−(N−t)
N u0t,

1√
Nα

N∑
j=1

R−jN uxj

+ op (1)
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⇒
(

σ00

(2c)1/2
U0,

σxx

(2c)1/2
Ux

)
with

(
U ′0, U

′
x

)′ ∼ N (0, I2) ,

just as in Phillips and Magdalinos (2007) and MP (2009), using the fact that the limit variates

(U0, Ux) are independent because

E


(

1√
Nα

N∑
t=1

R
−(N−t)
N u0t

) 1√
Nα

N∑
j=1

R−jN uxj

 =
N1−α

RNN
σ0x → 0.

Hence

R−NN√
Nα

(
mN∑
t=1

+
N∑

t=mN+1

)
u0t

 1√
Nα

t∑
j=1

Rt−jN uxj

 =
1√
Nα

N∑
t=mN+1

R
−(N−t)
N u0t

 1√
Nα

mN∑
j=1

R−jN uxj

+ op (1)

⇒
(

σ00

(2c)1/2
U0

)(
σxx

(2c)1/2
Ux

)
=
σ00σxx

2c
U0Ux.

Combining the above results and using (8.4) we obtain

(
RNNN

α
)−1 N∑

t=1

xtu0t

=
(
RNNN

α
)−1 N∑

t=1

RtNu0t

(
x0 −

µ

1−RN

)
+
(
RNNN

α
)−1 N∑

t=1

u0t
µ

1−RN

+
R−NN√
Nα

N∑
t=mN+1

u0t

 1√
Nα

t∑
j=1

Rt−jN uxj

+ op (1)

=
(
RNNN

α
)−1 N∑

t=1

RtNu0t

(
x0 −

µ

1−RN

)
+
R−NN√
Nα

N∑
t=mN+1

u0t

 1√
Nα

t∑
j=1

Rt−jN uxj

+ op (1)

⇒ Dσ00

(2c)1/2
U0 +

σ00σxx
2c

U0Ux =
σ00

(2c)1/2
U0

(
D +

σxx

(2c)1/2
Ux

)
, (8.8)

giving the limit of the numerator.

(ii) From the identity

x2t = R2Nx
2
t−1 + µ2 + u2xt + 2RNµxt−1 + 2RNxt−1uxt + 2µuxt,

we have

(
R2N − 1

) N∑
t=1

x2t = R2Nx
2
N−R2Nx20−2RNµ

N∑
t=1

xt−1−2RN

N∑
t=1

xt−1uxt−Nµ2−
N∑
t=1

u2xt−2µ
N∑
t=1

uxt.

(8.9)
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We show in the following that each of the following standardized terms

R2Nx
2
0

R2NN Nα
,
Nµ2

R2NN Nα
,
2µ
∑N

t=1 uxt

R2NN Nα
,

∑N
t=1 u

2
xt

R2NN Nα
,
RNµ

∑N
t=1 xt−1

R2NN Nα
,
RN

∑N
t=1 xt−1uxt

R2NN Nα

are asymptotically negligible. In particular, since the standardized initial condition and drift

satisfy x̃0 = x0NN
−α/2 ⇒ X∗ and µ̃ = Nα/2µ⇒ µ∗ we find that

R2Nx
2
0

R2NN Nα
= Op

(( x0

Nα/2

)2 1

R2NN

)
= op (1) ,

Nµ2

R2NN Nα
= Op

(
N1−2α

R2NN

)
= op (1) ,

2µ
∑N

t=1 uxt

R2NN Nα
=

(
1

R2NN

)(
2µ
√
N

Nα

)(
1√
N

N∑
t=1

uxt

)
= Op

(
1

R2NN

)
×Op

(
N

1
2
− 3
2
α
)
×Op (1) = op (1) ,

∑N
t=1 u

2
xt

R2NN Nα
=

N

R2NN Nα

1

N

N∑
t=1

u2xt = Op

(
N1−α

R2NN

)
×Op (1) = op (1) ,

RN
∑N

t=1 xt−1uxt
R2NN Nα

= Op

(∑N
t=1 xt−1uxt
RNNN

α

)
×Op

(
1

RNN

)
= op (1) ,

since
(
RNNN

α
)−1∑N

t=1 xt−1uxt = Op (1) just as in the analysis of
(
RNNN

α
)−1∑N

t=1 xtu0t in

part (i); and finally

RNµ
∑N

t=1 xt

R2NN Nα
=

µ

Nα/2RNN

N∑
t=1

xt

Nα/2RtN

RtN
RNN

= Op

(
1

NαRNN

)
×Op (N) = op (1) .

Hence, from (8.9) and (8.2) we deduce that(
R2N − 1

)∑N
t=1 x

2
t

R2NN Nα
=

R2Nx
2
N

R2NN Nα
{1 + op (1)} =

(
xN

RNNN
α/2

)2
{1 + op (1)}

=

 x0

Nα/2
+

1

Nα/2

N∑
j=1

R−jN uxj +
Nα/2

c
µ


2

{1 + op (1)}

⇒
(

σxx

(2c)1/2
Ux +D

)2
. (8.10)

(iii) Combining the results (8.8) and (8.10), we have

(
RNNN

α
)−1∑N

t=1 xtuxt
(R2N−1)
R2NN Nα

∑N
t=1 x

2
t

∼
(
RNNN

α
)−1∑N

t=1 xtuxt
2c

R2NN N2α

∑N
t=1 x

2
t

⇒
σ00

(2c)1/2
U0

(
D + σxx

(2c)1/2
Ux

)
(

σxx
(2c)1/2

Ux +D
)2
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=

σ00
(2c)1/2

U0

σxx
(2c)1/2

Ux +D
=

σ00U0

σxxUx + (2c)1/2D
.

Therefore,

RNNN
α
(
Â−A

)
=

(
RNNN

α
)−1∑N

t=1 xtuxt(
R2NN N2α

)−1∑N
t=1 x

2
t

⇒ 2c
σ00U0

σxxUx + (2c)1/2D
,

giving the stated result.

Proof of Theorem 2.2. The proof follows from Theorem 2.1 by noting the mappings

σ200 7→ σ̃200 =
σ200
σ2xx

, σ2xx 7→ 1, RN 7→ ah = e−κh, X∗ 7→ x0
σxx

, µ 7→ µκ

σxx
h1/2, µ∗ 7→ µκ

σxx
,

DN 7→ Dh = x̃0hh
1/2 − h−1/2g̃h

κ
→ D∗ =

x0
σxx
− µ

σxx
,

with h = 1/Nα. It follows that

a−Nh h
N∑
t=1

x̃thũ0,th ⇒ σ̃00
−2κ

U0

(
Ux + (−2κ)1/2D∗

)
, (8.11)

a−2Nh h2
N∑
t=1

x̃2th ⇒
(

1

−2κ

)2 (
Ux + (−2κ)1/2D∗

)2
, (8.12)

and hence

aNh
h

(
β̂ − β

)
⇒ (−2κ)

σ̃00U0

Ux + (−2κ)1/2D∗
= (−2κ)

σ00U0

σxxUx + (−2κ)1/2 (x0 − µ)
.

Proof of Theorem 3.1. First, we rewrite xt by backward recursion as,

xt = (I −RN )−1 µ+RtN

(
x0 − (I −RN )−1 µ

)
+

t∑
j=1

Rt−jN uxj .

(i) With this expression, we have

vec

(
1

Nα

N∑
t=1

u0tx
′
tR
−N
N

)
(8.13)

= vec

 1

Nα

N∑
t=1

u0t

(I −RN )−1 µ+RtN

(
x0 − (I −RN )−1 µ

)
+

t∑
j=1

Rt−jN uxj


′

R−NN


=

1

Nα
vec

(
N∑
t=1

u0t

{
x0 − (I −RN )−1 µ

}′
Rt−NN

)
+

1

Nα
vec

(
N∑
t=1

u0tµ
′
(I −RN )−1R−NN

)
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+
1

Nα
vec

(mN∑
t=1

+
N∑

t=mN+1

)
u0t

 t∑
j=1

Rt−jN uxj

′ R−NN
 .

For the first item on the right side of (8.13), letting DN = N−α/2
(
x0 +NαC−1µ

)
, we obtain

1

Nα
vec

(
N∑
t=1

u0t

{
x0 − (I −RN )−1 µ

}′
Rt−NN

)

=
1

Nα/2
vec

(
N∑
t=1

u0tD
′
NR

t−N
N

)
=

1

Nα/2

N∑
t=1

(
Rt−NN ⊗ u0t

)
vec

(
D′N
)

=
1

Nα/2

N∑
t=mN+1

(
Rt−NN ⊗ u0t

)
D + op (1) with D := X∗ + C−1µ∗,

since DN = N−α/2x0+Nα/2C−1µ⇒ X∗+C−1µ∗ = D and by replacing the weak convergence

with convergence in probability in an expanded space for the final step. In addition, we have

E

∥∥∥∥∥ 1

Nα/2

mN∑
t=1

(
Rt−NN ⊗ u0t

)∥∥∥∥∥
2

= N−α
mN∑
t=1

∥∥∥R2(t−N)N

∥∥∥E ‖u0t‖2 =
N−α ‖RN‖−2(N−1)

(
1− ‖RN‖2mN

)
1− ‖RN‖2

E ‖u0t‖2

=
E ‖u0t‖2

−max1≤i≤K ci
o (1) = o (1) assuming E ‖u0t‖2 <∞.

The result implies

1

Nα/2

mN∑
t=1

(
Rt−NN ⊗ u0t

)
= op (1) and

1

Nα/2

mN∑
t=1

(
Rt−NN ⊗ u0t

)
D = op (1) .

Hence, for the first item of (8.13), we have

1

Nα
vec

(
N∑
t=1

u0t

{
x0 − (I −RN )−1 µ

}′
Rt−NN

)

=
1

Nα/2

N∑
t=mN+1

(
Rt−NN ⊗ u0t

)
D + op (1) =

1

Nα/2

N−mN−1∑
j=0

(
R−jN D ⊗ u0N−j

)

=
1

Nα/2

N−mN−1∑
j=0

(
R−jN D ⊗ ũ0j

)
,

where ũ0j = u0N−j
d
= N (0,Ω00).
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For the second item of (8.13), we have

1

Nα
vec

(
N∑
t=1

u0tµ
′
(I −RN )−1R−NN

)

=
−1

Nα
vec

(
N∑
t=1

u0tµ
′
C−1R−NN Nα

)
= vec

(
−

N∑
t=1

u0t√
N
µ
′
C−1R−NN

√
N

)
= op (1) ,

since R−NN
√
N = O

(
e−CN

1−α√
N
)

= op (1).

For the third item of (8.13), we have

1

Nα
vec

(mN∑
t=1

+
N∑

t=mN+1

)
u0t

 t∑
j=1

Rt−jN uxj

′ R−NN


=
1

Nα
vec

(mN∑
t=1

+
N∑

t=mN+1

)
u0t

 N∑
j=1

Rt−jN uxj

′ R−NN
+ op (1)

=

(
1

Nα/2

mN∑
t=1

R
−(N−t)
N ⊗ u0t

)
vec

 1

Nα/2

N∑
j=1

R−jN uxj

′ +
(

1

Nα/2

N∑
t=mN+1

R
−(N−t)
N ⊗ u0t

)
vec

 1

Nα/2

N∑
j=1

R−jN uxj

′

=

(
1

Nα/2

N∑
t=mN+1

R
−(N−t)
N ⊗ u0t

) 1

Nα/2

mN∑
j=1

R−jN uxt

+ op (1)

=
1

Nα/2

N∑
t=mN+1

R
−(N−t)
N UxN ⊗ u0t + op (1) , with UxN =

mN∑
j=1

R−jN uxt,

since we have shown
∑mN

t=1 R
−(N−t)
N ⊗ u0t = op (1). Note that, from MP

UxN ⇒
(∫ ∞

0
e−pCΩxxe

−pCdp

)1/2
Ux =: Ũx,

with Ux = N (0, IK) . Hence the third item has the following form:

1

Nα
vec

(
mN∑
t=1

+

N∑
t=mN+1

)
u0t

 t∑
j=1

Rt−jN uxj

′ R−NN
=

1

Nα/2

N∑
t=mN+1

R
−(N−t)
N UxN ⊗ u0t + op (1) .
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Combining the above results and using (8.13), we have the limit result for the numerator as,

vec

(
1

Nα

N∑
t=1

u0tx
′
tR
−N
N

)

=
1

Nα/2

N∑
t=mN+1

R
−(N−t)
N (UxN +D)⊗ u0t + op (1)

⇒
(∫ ∞

0
e−pC

(
D + Ũx

)(
D + Ũx

)′
e−pCdp⊗ Ω00

)1/2
W0

d
= MN

(
0,

∫ ∞
0

e−pC
(
D + Ũx

)(
D + Ũx

)′
e−pCdp⊗ Ω00

)
, (8.14)

where W0 = N (0, ImK). Due to the sample splitting at t = mN , as N →∞ the limit variate

W0 is independent of the limit variate Ux.

(ii) From the identity

xtx
′
t = µµ′+RNxt−1µ

′+uxtµ
′
+µx′t−1RN+RNxt−1x

′
t−1R

′
N+uxtx

′
t−1RN+µu

′
xt+RNxt−1u

′
xt+uxtu

′
xt,

we have

(RN ⊗RN − IK×K)

N∑
t=1

vec
(
xtx
′
t

)
(8.15)

= (RN ⊗RN ) vec
(
xNx

′
N

)
− (RN ⊗RN ) vec

(
x0x

′
0

)
−Nvec

(
µµ′
)
−

N∑
t=1

vec
(
RNxt−1µ

′)− N∑
t=1

vec
(
uxtµ

′
)

−
N∑
t=1

vec
(
µx′t−1RN

)
−

N∑
t=1

vec
(
uxtx

′
t−1RN

)
−

N∑
t=1

vec
(
µu
′
xt

)
−

N∑
t=1

vec
(
RNxt−1u

′
xt

)
−

N∑
t=1

vec
(
uxtu

′
xt

)
.

We show in the following that each of the following terms standardized byN−α
(
R−NN ⊗R−NN

)
(RN ⊗RN ) vec

(
x0x

′
0

)
, Nvec

(
µµ′
)
,
N∑
t=1

vec
(
RNxt−1µ

′) , N∑
t=1

vec
(
µu′xt

)
,
N∑
t=1

vec
(
uxtx

′
t−1RN

)
,
N∑
t=1

vec
(
uxtu

′
xt

)
are asymptotically negligible. In particular, we have

N−α
(
R−NN ⊗R−NN

)
(RN ⊗RN ) vec

(
x0x

′
0

)
=

(
R
−(N−1)
N ⊗R−(N−1)N

)
vec

(
N−α/2x0x

′
0N
−α/2

)
= op (1) ,

N−α
(
R−NN ⊗R−NN

)
Nvec

(
µµ′
)

= Op

(
N1−2αR−NN ⊗R−NN

)
= op (1) ,

N−α
(
R−NN ⊗R−NN

) N∑
t=1

vec
(
µu′xt

)
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= N
1
2
−α
(
R−NN ⊗R−NN

)
(IK ⊗ µ)

1√
N

N∑
t=1

uxt

= Op

(
N

1−3α
2

)
Op

(
R−NN ⊗R−NN

)
Op (1) = op (1) ,

N−α
(
R−NN ⊗R−NN

) N∑
t=1

vec
(
uxtx

′
t−1RN

)
= N−α

(
R−NN ⊗R−NN

)
(RN ⊗ IK)

N∑
t=1

vec
(
uxtx

′
t−1
)

= R
−(N−1)
N ⊗R−NN N−α

N∑
t=1

vec
(
uxtx

′
t−1
)

= Op

(
R
−(N−1)
N

)
⊗Op (1) = op (1) ,

sinceR−NN N−α
∑N

t=1 vec
(
uxtx

′
t−1
)

= Op (1) following the same argument thatR−NN N−α
∑N

t=1 vec (u0tx
′
t) =

Op (1). Finally,

N−α
(
R−NN ⊗R−NN

) N∑
t=1

vec
(
RNxt−1µ

′)
= N−α

(
R−NN ⊗R−NN

)
(µ⊗RN )

N∑
t=1

xt−1 = N−α
(
R−NN µ⊗R−(N−1)N

) N∑
t=1

xt−1

= R−NN µN−α/2 ⊗
N∑
t=1

R
−(N−1−t)
N N−α/2R−tN xt−1 = R−NN µN−α/2 ⊗Op (Nα) .

Therefore, for the denominator, we have from (8.15) that

N−α (RN ⊗RN − IK×K)
(
R−NN ⊗R−NN

) N∑
t=1

vec
(
xtx
′
t

)
= N−α

(
R
−(N−1)
N ⊗R−(N−1)N

)
vec

(
xNx

′
N

)
+ op (1)

= vec

{(
N−α/2R

−(N−1)
N xN

)(
N−α/2R

−(N−1)
N xN

)′}
+ op (1)

⇒ vec

((
D + Ũx

)(
D + Ũx

)′)
,

since

N−α/2R−NN xN

= N−α/2R−NN

(I −RN )−1 µ+RNN

(
x0 − (I −RN )−1 µ

)
+

N∑
j=1

RN−jN uxj .


40



= R−NN C−1Nα/2µ+N−α/2x0 +Nα/2C−1µ+N−α/2
N∑
j=1

R−jN uxj

⇒ D +

(∫ ∞
0

e−pCΩxxe
−pCdp

)1/2
Ux = D + Ũx.

Hence, we have

N−2α
(
R−NN ⊗R−NN

) N∑
t=1

vec
(
xtx
′
t

)
= (C ⊗ IK + IK ⊗ C)−1 vec

((
D + Ũx

)(
D + Ũx

)′)
+ op (1)

= vec

(∫ ∞
0

e−pC
(
D + Ũx

)(
D + Ũx

)′
e−pCdp

)
+ op (1) . (8.16)

(iii) Combining results from (8.14) and (8.16), we obtain

vec
{
Nα

(
Â−A

)
RNN

}
= vec

Nα

(
N∑
t=1

u0tx
′
t

)(
N∑
t=1

xtx
′
t

)−1
RNN


=

{N−2α N∑
t=1

R−NN xtx
′
tR
−N
N

}−1
⊗ Im

 vec{N−α N∑
t=1

u0tx
′
tR
−N
N

}

⇒
[(∫ ∞

0
e−pC

(
D + Ũx

)(
D + Ũx

)′
e−pC

)−1
⊗ Im

](∫ ∞
0

e−pC
(
D + Ũx

)(
D + Ũx

)′
e−pCdp⊗ Ω00

)1/2
W0

=

[(∫ ∞
0

e−pC
(
D + Ũx

)(
D + Ũx

)′
e−pC

)−1/2
⊗ Ω

1/2
00

]
W0,

giving the stated result.

Proof of Theorem 3.2. Given the following limit result obtained in the proof of

Theorem 3.1

N−α/2R−NN xN ⇒ D +

(∫ ∞
0

e−pCΩxxe
−pCdp

)1/2
Ux = D + Ũx,

we have

H⊥NH
′
⊥N = IK −

xNx
′
N

x′NxN
⇒ IK −

(
D + Ũx

)(
D + Ũx

)′
(
D + Ũx

)′ (
D + Ũx

)
= IK −XcX

′
c := H⊥H

′
⊥,
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where Xc :=
(
D + Ũx

)
/

{(
D + Ũx

)′ (
D + Ũx

)}1/2
and D + Ũx is the same as the limit

given in Theorem 3.1 but with C = cIK . The subvector z2t can be written as

z2t = −H ′⊥Nµ
N−t∑
j=1

ρ−jN −H
′
⊥N

N−t∑
j=1

ρ−jN uxt+j , (8.17)

by the reverse autoregression

z2t = −ρ−1N H ′⊥Nµ+ ρ−1N z2t+1 − ρ−1N H ′⊥Nuxt+1.

Using the following expression for the scaled error in the LS estimator of A

N (1+α)/2
(
ÂN −A

)
=

(
N−(1+α)/2

N∑
t=1

u0tz
′
t

)(
N∑
t=1

ztz
′
t

)−1
H ′N ,

we can write the expression in component form as(
1

N (1+α)/2

N∑
t=1

u0tz
′
t

) Op

(
N1−αρ−2NN

)
Op

(
ρ−NN

)
Op

(
ρ−NN

) (
N−(1+α)

∑N
t=1 z2tz

′
2t

)−1
+ op (1)

H ′N

=

(
1

N (1+α)/2

N∑
t=1

u0tz
′
2t

)(
1

N1+α

N∑
t=1

z2tz
′
2t

)−1
H ′⊥N + op (1) .

(i) Letting Z1 = [z11, z12, . . . z1N ]′ and Z2 = [z11, z12, . . . z1N ]′, we have

(
1

N1+α

N∑
t=1

ztz
′
t

)−1
=

 (
Z′1Z1
N1+α

)−1
+ Π1N

(
Z′2Q1Z2
N1+α

)−1
Π′1N −Π1N

(
Z′2Q1Z2
N1+α

)−1
−
(
Z′2Q1Z2
N1+α

)−1
Π′1N

(
Z′2Q1Z2
N1+α

)−1
 ,

with Q1 = IN − Z1 (Z ′1Z1)
−1 Z ′1 and Π1N = (Z ′1Z1)

−1 Z ′1Z2. We show in the following that(
1

N1+α

N∑
t=1

ztz
′
t

)−1
=

 Op

(
N1−αρ−2NN

)
Op

(
ρ−NN

)
Op

(
ρ−NN

) (
1

N1+α

∑N
t=1 z2tz

′
2t

)−1
+ op (1)

 . (8.18)

First, Z ′1Z1 = Op
(
ρ2NN N2α

)
since∥∥∥∥∥ρ−2NN

N2α
Z ′1Z1

∥∥∥∥∥ =
ρ−2NN

N2α

∥∥∥∥∥
N∑
t=1

z1tz
′
1t

∥∥∥∥∥ =
ρ−2NN

N2α
‖HcN‖

∥∥H ′cN∥∥
∥∥∥∥∥
N∑
t=1

xtx
′
t

∥∥∥∥∥ = Op (1) , (8.19)

and
∑N

t=1 xtx
′
t = Op

(
ρ2NN N2α

)
.
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Second, we show Z ′1Z2 = Op
(
ρNNN

2α
)
. Using (8.17) and

z1t = H ′cN

Nα

−c µ+ ρtN

(
x0 +

Nα

c
µ

)
+

t∑
j=1

ρt−jN uxj

 ,

we have the following representation for Z ′1Z2:

N∑
t=1

z1tz
′
2t =

N∑
t=1

H ′cN


(
Nα

−c µ+ ρtN
(
x0 + Nα

c µ
)

+
∑t

j=1 ρ
t−j
N uxj

)(
−µ′ 1−ρ

t−N
N

ρN−1
−
∑N

j=t+1 ρ
−(j−t)
N u′xj

) H⊥N

=
N∑
t=1

H ′cN


Nα

c
1−ρt−NN
ρN−1

µµ′ − ρtN−ρ
2t−N
N

ρN−1
(
x0 + Nα

c µ
)
µ′

−1−ρ
t−N
N

ρN−1
∑t

j=1 ρ
t−j
N uxjµ

′ + Nα

c µ
∑N

j=t+1 ρ
−(j−t)
N u′xj

−ρtN
(
x0 + Nα

c µ
)∑N

j=t+1 ρ
−(j−t)
N u′xj −

∑t
j=1 ρ

t−j
N uxj

∑N
j=t+1 ρ

−(j−t)
N u′xj

H⊥N .

Hence,∥∥∥∥∥ρ−NNN2α

N∑
t=1

z1tz
′
2t

∥∥∥∥∥ 6 ρ−NN
N2α

∥∥H ′cN∥∥ ‖H⊥N‖

(
Nα

c

)2 ∥∥∥∑N
t=1

(
1− ρt−NN

)
µµ′
∥∥∥+

∥∥∥∥∑N
t=1

ρtN−ρ
2t−N
N

ρN−1
(
x0 + Nα

c µ
)
µ′
∥∥∥∥

+

∥∥∥∥∑N
t=1

1−ρt−NN
ρN−1

∑t
j=1 ρ

t−j
N uxjµ

′
∥∥∥∥+

∥∥∥∑N
t=1

Nα

c µ
∑N

j=t+1 ρ
−(j−t)
N u′xj

∥∥∥
+
∥∥∥∑N

t=1 ρ
t
N

(
x0 + Nα

c µ
)∑N

j=t+1 ρ
−(j−t)
N u′xj

∥∥∥+
∥∥∥∑N

t=1

∑t
j=1 ρ

t−j
N uxj

∑N
j=t+1 ρ

−(j−t)
N u′xj

∥∥∥


= Op (1) ,

since

ρ−NN
N2α

(
Nα

c

)2 ∥∥∥∥∥
N∑
t=1

(
1− ρt−NN

)
µµ′

∥∥∥∥∥
=

ρ−NN
c2

(
N − ρ

−(N−1)
N − ρN

1− ρN

)∥∥µµ′∥∥
=

ρ−NN
c2

(
N − ρ

−(N−1)
N − ρN

1− ρN

)
N−α

∥∥µ∗µ∗′∥∥+ op (1) = op (1) ,

ρ−NN
N2α

∥∥∥∥∥
N∑
t=1

ρtN − ρ
2t−N
N

ρN − 1

(
x0 +

Nα

c
µ

)
µ′

∥∥∥∥∥
=

ρ−NN
N2α (ρN − 1)

(
ρN
(
1− ρNN

)
1− ρN

−
ρ−NN ρ2N

(
1− ρ2NN

)
1− ρ2N

)∥∥∥∥(x0 − Nα

c
µ

)
µ′
∥∥∥∥
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=
2ρN + ρ2N

2c2

∥∥∥∥x∗µ∗′ − 1

c
µ∗µ∗′

∥∥∥∥ = Op (1) ,

and

ρ−NN
N2α

∥∥∥∥∥∥
N∑
t=1

1− ρt−NN

ρN − 1

t∑
j=1

ρt−jN uxjµ
′

∥∥∥∥∥∥ = op (1) ,

as

ρ−NN
N2α

E

∥∥∥∥∥∥
N∑
t=1

1− ρt−NN

ρN − 1

t∑
j=1

ρt−jN uxjµ
′

∥∥∥∥∥∥ = 0.

Similarly,∥∥∥∥∥∥
N∑
t=1

Nα

c
µ

N∑
j=t+1

ρ
−(j−t)
N u′xj

∥∥∥∥∥∥ = op (1) and

∥∥∥∥∥∥
N∑
t=1

ρtN

(
x0 −

Nα

c
µ

) N∑
j=t+1

ρ
−(j−t)
N u′xj

∥∥∥∥∥∥ = op (1) .

Further, we have from MP (2009) that

ρ−NN
N2α

E

∥∥∥∥∥∥
N∑
t=1

t∑
j=1

ρt−jN uxj

N∑
j=t+1

ρ
−(j−t)
N u′xj

∥∥∥∥∥∥ 6 B, where B is some constant.

In summary, combining the above results, we have

Z ′1Z2 = Op
(
ρNNN

2α
)
, Z ′1Z1 = Op

(
ρ2NN N2α

)
,Π1N =

(
Z ′1Z2

)−1 (
Z ′1Z1

)
= Op

(
ρ−NN

)
,

Z ′2Q1Z2
N1+α

=
Z ′2Z2
N1+α

+Op
(
Nα−1) .

Next, we derive the limit distribution for Z′2Z2
N1+α . Considering that z2N = 0 by construction,

we have

Z ′2Z2 =

N−1∑
t=1

(
−ρ−1N H ′⊥Nµ+ ρ−1N z2t+1 − ρ−1N H ′⊥Nuxt+1

) (
−ρ−1N H ′⊥Nµ+ ρ−1N z2t+1 − ρ−1N H ′⊥Nuxt+1

)′
,

which leads to

ρ2N − 1

N

N−1∑
t=1

z2tz
′
2t

=
z2Nz

′
2N

N
− z0Nz

′
0N

N
+

1

N
H⊥N

N−1∑
t=1

µµ′H ′⊥N −
1

N
H ′⊥N

N−1∑
t=1

µz′2t+1

+
1

N
H ′⊥N

N−1∑
t=1

µu′xt+1H⊥N −
1

N

N−1∑
t=1

z2t+1µ
′H⊥N −

1

N

N−1∑
t=1

z2t+1u
′
xt+1H⊥N
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+
1

N
H⊥N

N−1∑
t=1

uxt+1µ
′H ′⊥N −

1

N
H ′⊥N

N−1∑
t=1

uxt+1z
′
2t+1 +

1

N
H ′⊥N

N−1∑
t=1

uxt+1u
′
xt+1H⊥N

=
1

N
H ′⊥N

N−1∑
t=1

uxt+1u
′
xt+1H⊥N −

1

N

N−1∑
t=1

z2t+1µ
′H⊥N −

1

N
H ′⊥N

N−1∑
t=1

µz′2t+1 + op (1)

=
1

N
H ′⊥NΩxxH⊥N +

2

c
H ′⊥Nµ

∗µ
∗′H⊥N + op (1) ,

since the following hold:

(1)
z2Nz

′
2N

N
= Op

(
N−1

)
= op (1) ,

(2)
z0Nz

′
0N

N
= Op

(
Nα−1) = op (1) ,

(3)

1

N
H ′⊥N

N−1∑
t=1

uxt+1z
′
2t+1

=
1

N
H ′⊥N

N−1∑
t=1

u′xt+1

−µ
N−1−t∑
j=1

ρ−jN −
N−1−t∑
j=1

ρ−jN uxt+1+j


′

H⊥N

= op (1) ,

(4)

1

N
H ′⊥N

N−1∑
t=1

µz′2t+1 =
1

N
H ′⊥Nµ

N−1∑
t=1

−µ
N−t−1∑
j=1

ρ−jN −
N−t−1∑
j=1

ρ−jN uxt+1+j


′

H⊥N

= − 1

N
H ′⊥N

N−1∑
t=1

N−1−t∑
j=1

ρ−jN µµ′H⊥N + op (1)

= − 1

N1+α
H ′⊥N

N−1∑
t=1

ρ−1N

(
1− ρ−(N−t−1)N

)
1− ρ−1N

µ∗µ
∗′H⊥N + op (1)

= −1

c
H ′⊥Nµ

∗µ
∗′H⊥N + op (1) ,

(5)

1

N
H ′⊥N

N−1∑
t=1

uxt+1u
′
xt+1H⊥N =⇒ 1

N
H ′⊥NΩxxH⊥N ,

and
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(6)

1

N
H⊥N

N−1∑
t=1

µµ′H ′⊥N = op (1) .

Hence, by the same argument as in Lemma 4.3 of MP, we have

ρ2N − 1

N

N−1∑
t=1

z2tz
′
2t

= H ′⊥NΩxxH⊥N +
2

c
H ′⊥Nµ

∗µ
∗′H⊥N + op (1)

⇒ H ′⊥ΩxxH⊥ +
2

c
H ′⊥µ

∗µ
∗′H⊥,

where H⊥ is a K × (K − 1) matrix (an orthogonal complement of the vector Xc) satisfying

H⊥H
′
⊥ = IK −

(
D + Ũx

)(
D + Ũx

)′
(
D + Ũx

)′ (
D + Ũx

) .
Therefore,

1

N1+α

N∑
t=1

z2tz
′
2t ⇒ H ′⊥

(
1

2c
Ωxx +

µ∗

c

µ
∗′

c

)
H⊥.

(ii) Normalizing by N−1, the component N−1
∑N

t=1 u0tz
′
2t is asymptotically negligible,

since

1

N

N∑
t=1

u0tz
′
2t =

1

N

N∑
t=1

u0t

−H ′⊥NµN−t∑
j=1

ρ−jN −H
′
⊥N

N−t∑
j=1

ρ−jN uxt+j

′ = op (1) .

Hence, when normalized by 1
N(1+α)/2 , we have

1

N (1+α)/2
vec

(
N∑
t=1

u0tz
′
2t

)
(8.20)

= − 1

N (1+α)/2
vec

 N∑
t=1

u0tµ
′
N−t∑
j=1

ρ−jN H⊥N

− 1

N (1+α)/2
vec

 N∑
t=1

u0t

N−t∑
j=1

ρ−jN u′xt+jH⊥N

 .

For the first item on the right side of (8.20), we have

− 1

N (1+α)/2
vec

 N∑
t=1

u0tµ
′
N−t∑
j=1

ρ−jN H⊥N


= − 1

N (1+α)/2
vec

 N∑
t=1

u0tµ
′

N∑
j=t+1

ρ
−(j−t)
N H⊥N
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= − 1

N (1+α)/2
vec

(
N∑
t=1

u0t

(
1− ρ−(N−t)N

)
µ′H⊥N

Nα

c

)

= −1

c

1√
N
vec

(
N∑
t=1

u0tµ
∗′H⊥N

)
+

1

c

1√
N
vec

(
N∑
t=1

ρ
−(N−t)
N u0tµ

∗H⊥N

)

= −H ′⊥N
µ∗

c
⊗
(

1√
N
vec

(
N∑
t=1

u0t

))

⇒ H ′⊥
µ∗

c
⊗N (0,Ω00)

d
= N

(
0, H ′⊥

µ∗

c

µ∗′

c
H⊥ ⊗ Ω00

)
. (8.21)

The second item on the right handside of (8.20) is asymptotically negligible, since

− 1

N (1+α)/2

N∑
t=1

u0t

N−t∑
j=1

ρ−jN u′xt+jH⊥N = − 1

N (1+α)/2

N∑
t=mN+1

u0t

N∑
j=t+1

ρ
−(j−t)
N u′xt+jH⊥N+op (1) ,

(8.22)

and

− 1

N (1+α)/2
vec

 N∑
t=mN+1

u0t

N∑
j=t+1

ρ
−(j−t)
N u′xt+jH⊥N

⇒ N

(
0,

1

2c
H ′⊥NΩxxH

′
⊥N ⊗ Ω00

)
.

(8.23)

(1) For equation (8.22), we have

E

∥∥∥∥∥∥ 1

N (1+α)/2

mN∑
t=1

u0t

N∑
j=t+1

ρ
−(j−t)
N u′xt+j

∥∥∥∥∥∥
2

=
E ‖u0t‖2

N1+α
E

∥∥∥∥∥∥
mN∑
t=1

N∑
j=t+1

ρ
−(j−t)
N u′xt+j

∥∥∥∥∥∥
=

E ‖u01‖2 E ‖ux1‖2

N1+α

mN∑
t=1

N∑
j=t+1

ρ
−2(j−t)
N = O

(
Nα−1) .

(2) The result (8.23) follows from Lemma 4.4 of MP.

Combining (8.21) and (8.23), the limit distribution of 1
N(1+α)/2

∑N
t=1 u0tz

′
2t is

1

N (1+α)/2
vec

(
N∑
t=1

u0tz
′
2t

)

⇒
(
H ′⊥

µ∗

c

µ∗′

c
H⊥ ⊗ Ω00

)1/2
×N

(
0, Im×(K−1)

)
+

(
1

2c
H ′⊥ΩxxH⊥ ⊗ Ω00

)1/2
×N

(
0, Im×(K−1)

)
=

(
H ′⊥

(
µ∗

c

µ∗′

c
+

1

2c
Ωxx

)
H⊥ ⊗ Ω00

)1/2
×N

(
0, Im×(K−1)

)
,
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since we have the following independent structure asymptotically

lim
N→∞

E


(

1√
N

N∑
t=1

u0tµ
∗′

) 1

N (1+α)/2

N∑
t=mN+1

u0t

N∑
j=t+1

ρ
−(j−t)
N u′xt+j

′ = 0.

(iii) Using the results from (i) and (ii), we obtain

N (1+α)/2vec
(
Â−A

)
= vec

N (1+α)/2

(
N∑
t=1

u0tz
′
2t

)(
N∑
t=1

z2tz
′
2t

)−1
H ′⊥N

+ op (1)

=

H⊥N
(

1

N1+α

N∑
t=1

z2tz
′
2t

)−1⊗ Im
 vec{ 1

N (1+α)/2

N∑
t=1

u0tz
′
2t

}
+ op (1)

⇒
[
H⊥

{
H ′⊥

(
µ∗

c

µ∗′

c
+

1

2c
Ωxx

)
H⊥

}−1
⊗ Im

]{
H ′⊥

(
µ∗

c

µ∗′

c
+

1

2c
Ωxx

)
H⊥ ⊗ Ω00

}1/2
×N

(
0, Im×(K−1)

)
=

[
H⊥

{
H ′⊥

(
µ∗

c

µ∗′

c
+

1

2c
Ωxx

)
H⊥

}−1/2
⊗ Ω

1/2
00

]
×N (0, Im×K)

d
= MN

(
0, H⊥

{
H ′⊥

(
µ∗

c

µ∗′

c
+

1

2c
Ωxx

)
H⊥

}−1
H ′⊥ ⊗ Ω00

)
,

giving the stated result.
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