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Abstract

In this paper we consider estimation of common structural breaks in panel data models

with unobservable interactive fixed effects. We introduce a penalized principal component

(PPC) estimation procedure with an adaptive group fused LASSO to detect the multiple

structural breaks in the models. Under some mild conditions, we show that with probabil-

ity approaching one the proposed method can correctly determine the unknown number of

breaks and consistently estimate the common break dates. Furthermore, we estimate the

regression coefficients through the post-LASSO method and establish the asymptotic dis-

tribution theory for the resulting estimators. The developed methodology and theory are

applicable to the case of dynamic panel data models. Simulation results demonstrate that

the proposed method works well in finite samples with low false detection probability when

there is no structural break and high probability of correctly estimating the break numbers

when the structural breaks exist. We finally apply our method to study the environmental

Kuznets curve for 74 countries over 40 years and detect two breaks in the data.
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Principal component analysis.
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1 Introduction

As the availability of panel or longitudinal data increases in the last few decades, panel data

studies have become increasingly popular among a wide group of statisticians and econome-

tricians. Analysis of panel data sets has various advantages over that of purely time series or

cross-sectional data sets. A relatively less exploited advantage of the panel data is that it pro-

vides researchers with more flexibility to model cross-sectional dependence over individual units

and uncover possible structural changes over time. Structural breaks are, indeed, quite common

in many areas such as economics and finance, and may occur for various reasons. For example,

the celebrated environmental Kuznets curve may shift as a result of a growing public awareness

of environmental issues, a technological breakthrough, or an international coordination and co-

operation on environmental protection. If such structural changes are ignored in the modelling,

subsequent statistical analyses may lead to incorrect inferences or misleading predictions.

In recent years, there has been a growing literature on the estimation and test of structural

breaks in panel data models. Generally speaking, most of the existing literature falls into two

categories depending on whether the parameters of interest are allowed to be heterogenous across

subjects or not. The first category focuses on homogenous panel data models (e.g., De Watcher

and Tzavalis, 2012; and Qian and Su, 2015b) and the second category considers estimation and

inference of common breaks in heterogenous panel data models (e.g., Bai, 2010; Kim, 2011;

Baltagi et al., 2015). Despite the vast literature on multiple structural breaks in the time

series framework (e.g., Csörgö and Horváth, 1997; Bai and Perron, 1998; Qu and Perron, 2007;

Harchaoui and Lèvy-Leduc, 2010; Chan et al., 2014; Qian and Su, 2015a), most of the existing

work on panel structural breaks focuses on the estimation and inference of a single structural

break in panel data models. The only exception is the paper by Qian and Su (2015b) which

considers shrinkage estimation of common breaks in panel data models. However, Qian and

Su’s (2015b) modelling framework does not allow the existence of cross-sectional dependence,

which limits the applicability of their techniques as cross-sectional dependence commonly exists

in many panel data sets nowadays (such as the panel climate and environmental data).

In this paper, we aim to estimate multiple structural breaks in panel data models with

cross-sectional dependence which is described through the unobservable interactive fixed effects.

Such a cross-sectional dependence structure has received increasing interest in the analysis of

panel data in recent years; see Pesaran (2006), Bai (2009), Bai and Li (2014), and Moon and

Weidner (2014, 2015), among others. However, to the best of our knowledge, there is virtually no
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work on estimating multiple structural breaks in panel data models with interactive fixed effects

and possible dynamic structure (such as the dynamic autoregressive panel data models). As in

Qian and Su (2015b), we apply the shrinkage idea through the adaptive group fused LASSO

(AGF-LASSO) to estimate the multiple structural break dates. Nevertheless, the existence of

the unobservable interactive fixed effects in our model makes the estimation techniques and the

development of the asymptotic theory much more involved than those in Qian and Su (2015b). In

Section 2 below, we introduce a novel penalized principal component (PPC) estimation procedure

via AGF-LASSO to estimate both the regression coefficients and the factor loadings. Similar

to the sparsity result in the high-dimensional variable selection literature (e.g., Fan and Li,

2001, 2006), we establish the consistency for the detection of multiple structural breaks, which

indicates that both the number of breaks and the break dates can be consistently estimated.

Furthermore, we also estimate the regression coefficients through the post-LASSO method and

then establish the asymptotic distribution theory of the resulting estimators, which generalizes

the results in Bai (2009) and Moon and Weidner (2014) where there is no structural break.

The simulation studies show that the proposed PPC method has a high probability of correctly

estimating the number of breaks when the structural breaks exist in panel data models, and a

low probability of false detection when there is no structural break. Furthermore, we study the

environmental Kuznets curve for 74 countries over 40 years by using our method and find that

there exist two structural breaks in the data.

The rest of the paper is organized as follows. Section 2 introduces the model and the PPC

estimation method. Section 3 gives the asymptotic properties for the PPC estimator as well as

the post-LASSO estimator. Section 4 discusses the determination of the number of the factors

and the choice of the tuning parameter in the PPC estimation procedure and reports the Monte

Carlo simulation results. Section 5 gives the empirical application of the proposed model and

method. Section 6 concludes the paper. Appendices A and B give the assumptions and the

proofs of the asymptotic results, respectively. Some technical lemmas as well as their proofs are

collected in Appendix C of the supplemental document.

Notation. For an ×  real matrix A we denote its transpose as A0 its Frobenius norm as

kAk (≡ [tr(AA0)]12) its spectral norm as kAksp (≡ [max (AA0)]12) and its Moore-Penrose
generalized inverse as A+ where max (·) denotes the maximum eigenvalue of a square matrix.

Let P = A (A
0A)+A0 and M = I − P where I is an × identity matrix. When

A is symmetric with  = , we use (A) to denote its th largest eigenvalue by counting

multiple eigenvalues multiple times, and max(A) and min(A) to denote the largest and smallest
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eigenvalues of A, respectively. Let vec(A) be the vectorization of A and Tr(A) the trace of a

square matrix A. Let 0 denote a null matrix or vector whose size may change from line to line,

and 1{·} be the usual indicator function. The operator → denotes convergence in probability,
→ convergence in distribution, and plim probability limit. We use ( )→∞ to denote that

both  and  pass to infinity jointly.

2 Model and estimation

In this section, we first introduce a panel data model with interactive fixed effects and an

unknown number of structural breaks, and then propose the PPC estimation method.

2.1 The model

Let  be the dependent variable for subject  measured at time  where  = 1  and

 = 1   . We consider the following panel data model with interactive fixed effects

 = 0 + 0 +   = 1    = 1   (2.1)

where  is a  × 1 vector of explanatory variables,  is a  × 1 vector of unknown slope
coefficients which may change over time,  and  denote an 0×1 vector of unobservable factor
loadings and common factors, respectively, both of which may be correlated with , and 

is the idiosyncratic error term. The dimension of the unknown coefficient vector,  ≡  , is

allowed to be diverging as ( )→∞, and the dimension of the vectors for the factor loadings
and common factors, 0, is a fixed positive integer. Throughout the paper, we denote the true

value of a parameter vector with a superscript 0. For instance, 0 , 
0
 and 0 denote the true

values of ,  and , respectively. We allow the regression coefficients to vary over the time

and model (2.1) thus includes the classical linear panel data models with interactive fixed effects

(e.g., Pesaran, 2006; Bai, 2009; Moon and Weidner, 2015) as a special case. As in these papers,

we assume that both the cross-sectional size  and the time series length  pass to infinity,

which is called as “large dimensional panel” in the literature.

In this paper we assume that the true regression coefficients
©
01  

0


ª
exhibit certain

sparse nature such that the total number of distinct vectors in the set is given by 0+1 which

is unknown but typically much smaller than the time series length  . We allow 0 ≡ 0
 to be

divergent at an appropriate rate as  →∞. More specifically, we let

0 = 0 for  =  0−1  
0
 − 1 with  = 1 0 + 1
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where we adopt the convention that  00 = 1 and  0
0+1 =  + 1 The indices  0 ,  = 1 

0,

indicate that there are 0 unobserved break points/dates and the number 0 + 1 denotes the

total number of regimes. We are interested in estimating the unknown number of structural

breaks, the unobservable break dates, and the regression coefficients in different regimes. Let

β =
¡
01  

0


¢0
 α = (01  

0
+1)

0 Λ =
¡
1 2  

¢0
 F =

¡
1 2  

¢0
 and T =

(1  )  Throughout the paper, we use 
0 α0

0 =
¡
001   

00
0+1

¢0
and T 0

0 =
¡
 01   

0
0

¢
to denote the true number of structural breaks, the true vector of distinct regression coefficients,

and the set of true break dates, respectively.

2.2 PPC estimation

We consider the PPC estimation of the unknown components
¡
β0Λ0F 0

¢
, the true values of¡

βΛF
¢
. Let  =

¡
1  

¢0
and  =

¡
1 

¢0
. In order to apply the PPC method,

we define the objective function through

̃

¡
βΛF

¢
=

1



X
=1

X
=1

¡
 − 0

 − 0
¢2
+





X
=2

̇

°° − −1
°°  (2.2)

which can be written as

1



X
=1

( − −Λ)0 ( − −Λ) +




X
=2

̇

°° − −1
°° 

where  ≡   0 is a tuning parameter and ̇ is a data-driven weight defined by

̇ =
°°̇ − ̇−1

°°−  = 2   (2.3)

̇,  = 1   , are the preliminary estimates of the regression coefficients , and  is a user-

specified positive constant that usually takes value 2 in the literature. In this paper, the pre-

liminary estimation
©
̇  = 1  

ª
is constructed to minimize the first term of the objective

function in (2.2) by ignoring the penalization device.

By concentrating F out in the first term of the objective function (2.2), we can readily obtain

the following objective function

̂ (βΛ) = ̂ (βΛ) +




X
=2

̇

°° − −1
°°  (2.4)

where ̂ (βΛ) =
1



P
=1 ( −)

0MΛ ( −)  Following Moon andWeidner (2014),

we can further concentrate Λ out in (2.4) and obtain the objective function

̄ (β) = ̄ (β) +




X
=2

̇

°° − −1
°°  (2.5)
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where

̄ (β) =
1



X
=0+1



"
1



X
=1

( −) ( −)
0
#
 (2.6)

It can be seen that the penalization device in the above objective functions is closely related

to the literature on the adaptive LASSO (Zou, 2006), the group LASSO (Yuan and Lin, 2006),

and the fused LASSO (Tibshirani et al., 2005; Rinaldo, 2009). The use of the Frobenius norm k·k
for the vector difference − −1 generalizes the fused LASSO to the group fused LASSO; and

the use of the weights {̇} makes the LASSO procedure adaptive. Therefore, we can call our

penalized estimation procedure as an adaptive group fused LASSO (AGF-LASSO) procedure.

Following Bai and Ng’s (2002) principal component method under the identification restric-

tions that Λ0Λ = I0 and F
0F is a diagonal matrix, the minimizers to the objective function

defined in (2.4), β̂ =
¡
̂
0
1  ̂

0


¢0
and Λ̂ satisfy that

β̂ = argmin


̂(β Λ̂) (2.7)

and h 1



X
=1

¡
 −̂

¢¡
 −̂

¢0i
Λ̂ = Λ̂V  (2.8)

where V  is a diagonal matrix consisting of the 0 largest eigenvalues of the matrix in the

square brackets in (2.8) arranged in descending order. Furthermore, the common factor F 0 can

be estimated by

F̂ = (̂1 ̂2  ̂ )
0 with ̂ = −1Λ̂

0
( −̂) (2.9)

An iterative algorithm based on (2.7) and (2.8) can be implemented in practice to estimate β0

and Λ0. Note that the above calculations are different from those in the existing literature such

as Bai (2009) and Lu and Su (2015) by switching the role of Λ and F , because the regression

coefficients are heterogeneous over time.

With the estimated regression coefficients ̂, the set of estimated break dates are given

by T̂̂ = (̂1  ̂̂) where 2 ≤ ̂1    ̂̂ ≤  such that k̂ − ̂−1k 6= 0 at  = ̂

for  = 1  ̂. The set T̂̂ divides the time interval [1  ] into ̂ + 1 regimes such that the

parameter estimates remain constant within each regime. Notice that if ̂̂ =  the last break

occurs at the end of the sample and the (̂+ 1)th regime has only one time series observation

for each cross-sectional unit. Let ̂0 = 1 and ̂̂+1 =  +1. Define ̂ = ̂(T̂̂) = ̂
̂−1 as the

estimate of 0 for  = 1  ̂+ 1 In the sequel, we usually suppress the dependence of ̂ on

T̂̂ (or the tuning parameter ) unless necessary. For example, we let α̂̂ =
¡
̂01 ̂

0
2  ̂

0
̂+1

¢0
which denotes α̂̂(T̂̂) =

£
̂1(T̂̂)0 ̂2(T̂̂)0  ̂̂+1(T̂̂)0

¤0
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3 Asymptotic properties

In this section, we give the large sample theory including the consistency of the proposed PPC

estimator and the limiting distribution of the post-LASSO estimator.

3.1 Consistency of the PPC estimator

We start with the consistency result of the PPC estimator β̂ with preliminary convergence rates.

Theorem 3.1 Suppose that Assumptions 1 and 2(i)-(ii) in Appendix A holds. Then we have

(i)
°°β̂ − β0°°2 =  ( + 1 ) = 

³
−2

´
, and (ii)

°°°̂ − 0

°°° = 

³
−1

´
, where

 = min(
p


√
 ).

Theorems 3.1 (i) and (ii) establish the preliminary mean square and point-wise convergence

rates of {̂} respectively, which is a very general result by allowing the existence of multiple
jumps or drops in the regression coefficients. As we allow the regression coefficients to vary

over time, there is less observational information available for the estimation of each regression

coefficient (compared with the model without any structural break). This would in turn affect

the estimation accuracy of the factor loading matrix and convergence rates for the parameter

estimators. The divergent dimension of the regression coefficients at each time point further

slows down the convergence rates. Note that the total number of the unknown elements in the

set {0 } is  . Hence, it is not surprising that in Theorem 3.1 we can only obtain the 

¡
−1

¢
convergence rate for the PPC estimator ̂, which is much slower than the optimal root-( )

rate obtained by Bai (2009) and Moon and Weidner (2014) (after bias correction) when there is

no change point for the regression coefficients and the dimension of the regression coefficients is

fixed.

Recall that T 0
0 =

©
 01   

0
0

ª
denotes the set of true break dates. Let T  = {2  }

\T 0
0 . Let 

0
1 = 01, ̂1 = ̂1, 

0
 = 0 − 0−1 and ̂ = ̂ − ̂−1 for  = 2   The following

theorem establishes the detection consistency, which, in some sense, is analogous to the sparsity

result in the high-dimensional variable selection literature.

Theorem 3.2 Suppose that Assumptions 1 and 2 in Appendix A hold. Then lim( )→∞ P
¡°°̂°° =

0 for all  ∈ T 
¢
= 1

Theorem 3.2 shows that with probability approaching one (w.p.a.1), all the zero vectors

in
©
0
ª
must be estimated as exactly zero, which is a well-known sparsity result in the high-

dimensional variable selection literature (c.f., Fan and Li, 2006). On the other hand, by Theorem

7



3.1(ii), we know that the estimators of the nonzero vectors in
©
0
ª
are consistent by noting that

̂− ̂−1 consistently estimates 0 = 0 −0−1. A combination of Theorems 3.1 and 3.2 implies
that the AGF-LASSO penalty has the ability to identify the true regression model with the

correct number of structural breaks and the correct break dates, which is stated in the following

corollary.

Corollary 3.3 Suppose that Assumptions 1 and 2 in Appendix A hold. Then (i) lim( )→∞ P(̂

= 0) = 1 and (ii) lim( )→∞ P(̂1 =  01   ̂0 =  0
0) = 1

3.2 Post-LASSO estimation

We next introduce the post-LASSO estimation of the regression coefficients, which can improve

the convergence rate of the PPC estimation given in Theorem 3.1. For any (+1)-dimensional

vector α =
¡
01  

0
+1

¢0
and T = {1  } with 1  1     ≤  we define the

objective function by



¡
αΛF ; T

¢
=

1



+1X
=1

−1X
=−1

X
=1

¡
 − 0

 − 0
¢2

=
1



+1X
=1

−1X
=−1

( − −Λ)0 ( − −Λ)  (3.1)

By concentrating F out in the above objective function, we readily obtain the following post-

LASSO objective function



¡
αΛ; T

¢
=

1



+1X
=1

−1X
=−1

¡
 −

¢0
MΛ

¡
 −

¢
 (3.2)

Let α̃ (T) =
£
̃1(T)0  ̃+1(T)0

¤0
and Λ̃ (T) =

£
̃1(T)  ̃(T)

¤0
denote the mini-

mizers of the objective function defined in (3.2) for given T By setting T as T̂̂ = (̂1  ̂̂),
the set of the estimated break dates constructed in Section 2.2, we obtain the post-LASSO es-

timators α̃̂ ≡ α̃̂(T̂̂) and Λ̃ ≡ Λ̃(T̂̂).
We next study the asymptotic distribution of the post-LASSO estimators. Corollary 3.3

above implies that w.p.a.1 ̂ = 0 and ̂ =  0 for  = 1 0. Hence, it follows that ̃̂

is asymptotically equivalent to the infeasible estimator α̃0(T0) which is obtained only if one

knows the set T 0
0 of the true break dates. Let  ( ) =  0 −  0−1,

B (1) =
£
1(1)

0  0+1(1)
0¤0 and

B (2) =
£
1(2 1)

0 −1(2 2)
0  0+1(2 1)

0 −0+1(2 2)
0¤0
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where for  = 1 0 + 1

(1) =
1

2 ( )

 0 −1X
= 0−1

 0
M Λ̃

0
εε0Λ̃0

¡ 1

Λ00Λ̃0

¢+¡ 1

F 00F 0

¢+
0 

(2 1) =
1

 ( )

 0 −1X
= 0−1

 0
Λ

0
¡ 1

Λ00Λ0

¢+¡ 1

F 00F 0

¢+¡ 1



X
=1

0 
0

¢


(2 2) =
1

 ( )

 0 −1X
= 0−1

 0
Λ

0
¡ 1

Λ00Λ0

¢+¡ 1

F 00F 0

¢+¡ 1



X
=1

0 
0

∗


¢


and ∗ =
1


P
=1  with  = 00

¡
1

F 00F 0

¢+
0 , ε = (1   ) with  =

¡
1  

¢0
.

We then define

B = Ω
+


£
B (1) +B (2)−B (3)

¤


where Ω and B (3) are defined in Appendix A. Let

D = diag
np

1( ) 
q
0+1( )

o
⊗ I

where ⊗ denotes the Kronecker product, and S be a 0 × (0 + 1) matrix with full row rank

and 0 being a fixed positive integer.

Theorem 3.4 Suppose that Assumptions 1—3 in Appendix A hold. Then conditional on ̂ =

0 we have

SD

¡
α̃̂ −α0 +B

¢ −→ N
¡
0 SΩ+0 Ω1Ω

+
0 S

0¢
where Ω0 and Ω1 are defined in Assumption 3 in Appendix A.

Despite the use of different notations and proof strategies, Ω+B (1) and Ω
+
B (2)

correspond to the terms − and − in Bai (2009) or −−13 and −−12 in Moon and

Weidner (2014), respectively. However, these two papers assume that the dimension  is fixed

and there is no structural break on the regression coefficients. Hence, our asymptotic distribution

theory is derived under a more general framework. Like the term −−11 in Moon and Weidner

(2014), Ω+B (3) arises here because we allow the regressor vector  to contain lagged

dependent variable (e.g., −1) and it is vanishing under Bai’s (2009) conditions A-E that

include the independence between  and ( 
0
  

0
 ) for all     and thus rule out dynamics

in the regression equation. As Bai (2009) remarks, in the absence of both serial/cross-sectional

correlations and heteroskedasticity and under his Assumption D, all of these three bias terms are

9



asymptotically negligible. In the general case, the bias terms of the post-LASSO estimates can

be removed by constructing a bias-corrected estimate. Following Bai (2009) in the case of static

panels or Moon and Weidner (2014) in the case of dynamic panels, one can easily construct a

bias corrected version of our post-LASSO estimate. We omit the details as the extension is quite

straightforward.

Note that the above theorem holds without requiring that  and  diverge to infinity at the

same speed and the latter condition was assumed in both Bai (2009) and Moon and Weidner

(2014). For the easiness of presentation, we need to assume that  ( ) =  0 −  0−1 ∝ 0 in

Assumption 3(ii) in Appendix A, which implies that each regime-specific regression coefficient

vector 0 can be estimated at the same convergence rate  (
p
0( )) after possible bias

correction. Apparently, it is possible to weaken this last assumption to  0 − 0−1 →∞ and then

we anticipate that ̃ (T)’s would have different convergence rates to their true values across
different regimes.

4 Practical issues in model estimation and simulation study

In this section we first discuss the determination of the number of factors and the choice of the

tuning parameter  in the PPC estimation procedure, then introduce the algorithm to implement

the estimation method, and finally conduct a set of Monte Carlo experiments to evaluate the

finite sample performance of the proposed method.

4.1 Determination of the number of factors

In the above analysis we assume that the number of factors 0 is known. In practice, one has to

determine it from data. Here we use  to denote a generic number of factors and assume that

it is bounded from above by a finite integer max ≥ 0 We propose a BIC-type information

criterion to determine 0 before embarking on the AGF-LASSO procedure.

Let ̇ ̇ and ̇ denote the PCA estimators (without the penalization device) of 

 and  by assuming  factors in the model using the normalization rule: Λ0Λ = I

and F 0F is a diagonal. Note that we have made the dependence of the parameters and their

estimators on  explicitly here. Let β̇ =
³
̇
0
1  ̇

0


´0
 Define

 ( β̇) =
1



X
=+1



"
1



X
=1

³
 −̇

´³
 −̇

´0#
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Following Bai and Ng (2002), we consider the BIC-type information criterion defined by

BIC () = ln ( β̇) + 1 (4.1)

where 1 ≡ 1 is pre-determined which plays the role of ln ( ) ( ) in the case of the

conventional BIC criterion. Let ̂ = argmin0≤≤max BIC (), which estimates the number of

the factors.

Theorem 4.1 Suppose that Assumptions 1—4 in Appendix A hold. Then

P
³
̂ = 0

´
→ 1 as ( )→∞.

The above theorem shows that the use of BIC () can consistently estimate 0 To implement

the above information criterion, one needs to choose the penalty coefficient 1. Following Bai

and Ng (2002), we can set

1 =
( +  ) 


ln

µ


 + 

¶
or 1 =

( +  ) 


ln
¡
2

¢
where  = min{

√

√
} is defined as in Section 3. The penalty coefficient in Bai and Ng

(2002) corresponds to  = 1 in the above definitions of 1 In our simulations we use the first

specification of 1 and search for ̂ in the range of {1 2     5} when 0 = 2.

4.2 Choice of the tuning parameter

We now discuss the choice of the tuning parameter  in the PPC estimation procedure, which

is an important issue when the penalized methodology is used in practice. Let

α̃̂
= α̃̂

(T̂̂
) =

£
̃1(T̂̂

)0  ̃̂+1(T̂̂
)0
¤0

denote the set of the post-LASSO estimates of the regression coefficients based on the break

dates in T̂̂
= T̂̂

(), where we make the dependence of various estimates on  explicitly.

Let ̃2(T̂̂
) = 

¡
α̃̂

 Λ̃ F̃ ; T̂̂

¢
, where F̃ is defined similarly to F̂ in (2.9) with Λ̂ and

̂ replaced by Λ̃ and ̃(T̂̂
) when ̂−1 ≤  ≤ ̂ − 1. We then propose to select the tuning

parameter  by minimizing the following information criterion:

IC () = ln
£
̃2(T̂̂

)
¤
+ 2

¡
̂ + 1

¢
 (4.2)

where 2 ≡ 2 is pre-determined such that 2 → 0 and 2
2
 →∞. Let ̂ =argmin IC () 

11



Theorem 4.2 Suppose that Assumptions 1—2 and 3(ii) and 5 in Appendix A hold. Then

P
¡
̂̂ = 0

¢→ 1 as ( )→∞

The above theorem shows that by minimizing IC (), we can obtain a data-driven ̂ that

ensures the correct determination of the number of breaks. When we minimize the objective

function in (4.2), we do not restrict  to satisfy Assumptions 3(i) and (iii) in Appendix A. If

these two additional conditions also hold, we know from Corollary 3.3 that ̂̂ = 0 w.p.a.1.

But in practice, it is hard to ensure such conditions and Theorem 4.2 becomes handy.

In the following simulation, we choose 2 =  log(min( ))min( ), where  is a positive

constant. This choice of 2 satisfies the two restrictions specified above. To implement the

information criterion in practice, we find an upper bound for the tuning parameter, max, that

would yield zero break in every data generating process (DGP), and a lower bound min that

would yield many breaks. We then search for the optimal tuning parameter on the 20 evenly-

distributed logarithmic grids in the interval [min max]. To determine , we use a data-

driven method that is similar to the one in Hallin and Liska (2007). Specifically, given an

0  0, we examine subsamples (),  = 1   ,  = 1   , where  = 1      and

0  1  · · ·   =  . Note that we do not consider subsamples along the time dimension

because we allow for structural breaks over time. We examine a range of possible values for

, say [min max], where min leads to a large number of breaks and max leads to zero break

for all choices of . For each , we find the number of breaks in each subsample, ̂, with

 = 1      . Let ̄ =
1


P
=1 ̂, we select the smallest  ∈ [min max] that satisfies  =

1


P
=1 (̂ − ̄)

2 = 0 and ̄   − 1. Intuitively, the constant  should be chosen such
that the estimated number of breaks is constant across the subsamples, given the intuitive

explanation in Hallin and Liska (2007). In our simulations we set  =  −  +  and  = 3 to

save computation time.

4.3 Implementation of the estimation method

The implementation of the PPC estimation method consists of two steps. In the first step, the

preliminary estimation ̇ is obtained along with the estimated number of factors ̂. Given

a generic number of factors, ̇ is obtained by minimizing the first term of ̃

¡
βΛF

¢
in

(2.2). The minimization problem is solved using an iterative algorithm based on (2.7) and (2.8)

with ̂(β Λ̂) replaced by ̂ (β Λ̂), the first term of ̂(β Λ̂). The starting values

12



for the iteration are chosen to be the pooled least squares estimates, assuming that coefficients

are time-invariant and that no factor structure exists.

In the second step, given a generic tuning parameter , we use the following iterative al-

gorithm to minimize ̂

¡
βΛ

¢
in (2.4), yielding the set of breaks corresponding to . Let

1 = 1 and  =  − −1,  = 2      , and let θ = (1      )0.

(1) Initialize θ(0), which implies an initial set of breaks and parameter estimates in each regime.

(2) Given θ(−1) (and thus β()), calculate factor loadings Λ() using eigenvalue decomposition,

where the superscript () denotes the -th iteration.

(3) Given Λ(), update θ() (or equivalently β()) that minimizes ̂(βΛ
()) in (2.4). This

calculation utilizes a block-coordinate-descent algorithm similar to that used in Qian and

Su (2015b). The updated θ() implies a new set of breaks, and the post-LASSO procedure

is used to obtain new estimates of parameters in each regime.

(4) Repeat (2)-(3) until kθ()−θ(−1)k drops below a pre-determined threshold. Use the post-
LASSO procedure to obtain the final estimate of parameters, factors and their loadings.

In the above iterative algorithm, the starting values for the iterations are chosen to be the

preliminary estimates of the coefficients obtained in the first step. The post-LASSO procedure

minimizes 

¡
αΛF ;T

¢
in (3.1) with T replaced by the estimated set of break dates

in each iteration and with the starting values chosen to be the pooled least squares estimates

as in the first step. Finally, we obtain the set of break dates using the tuning parameter that

minimizes IC () defined in (4.2).

4.4 Simulation

We consider the following data generating processes:

 = 1 + 2 + 0 +   = 1      = 1     

where  =
£
(1) (2)

¤0
and  =

£
(1) (2)

¤0
are two-dimensional random vectors, and

• DGP-1 (benchmark): 
∼ N(0 1),  = 1, 

∼ N(0 I2), 
∼ N(0 I2), both 

and  are independent of , 
∼ N(0 1) and is independent of ,  and ;

13



• DGP-2 (serial correlation in the common factor and heteroskedasticity in the error): ,

, and  are defined as in DGP-1, each of the two element in  is an AR(1) process

with unit variance: () = 05−1() + () with  =
£
(1) (2)

¤0 ∼ N(0 075I2),

 =
¡
075 + 0152

¢12
∗ with ∗

∼ N(0 1) and independent of ,  and ;

• DGP-3 (dependent factors and serial correlation in the error):  = 05
0
 + 05(

0
 +

 0) + ¦ with ¦
∼ N(0 1) and  = (1 1)0,  and  are defined as in DGP-1, 

is defined as in DGP-2, for each ,  is an independent ARMA(1,1) process with unit

variance such that  = 05−1 +  + 05

−1, where 




∼ N(0 37);

• DGP-4 (dynamic panel):  = −1, 
∼ N(0 1),  and  are defined as in DGP-1,

 is defined as in DGP-2.

In order to evaluate the performance under different noise levels, we select the free parameter

 to be either 0.5 or 1. In DGP-1 with no breaks,  = 1 roughly corresponds to a signal-to-noise

ratio of 1. We also experiment on different levels of factor loadings  and find that the impact

of the magnitude of the factor loadings on the performance of our method is small.

DGP-1 serves as the benchmark case where both the regressor and the idiosyncratic error

are sequences of strong white noise. DGP-2 introduces serial correlation in the common factor

 and conditional heteroskedasticity in the model errors. DGP-3 allows the dependence of both

the factor loadings and common factors on the regressor. In addition, DGP-3 introduces serial

correlation into the model errors. DGP-4 has a dynamic panel AR(1) structure. We experiment

on four combinations of dimensions: ( ) = (40 40), ( ) = (80 40), ( ) = (40 80),

and ( ) = (80 80). The data-driven method to select both the constant  in 2 and the

tuning parameter  is computationally intensive. As a result, we set the number of Monte Carlo

replications to be 250.

For the DGPs 1—3, we set 1 = 2 = 1 for all  when no break exists, 1 = 2 = 1{1 ≤
 ≤ 2} when there is one break, and 1 = 2 = 1{1 ≤  ≤ b3c}+ 1{2   ≤ } when
there are two breaks. For the DGP-4, we set 1 = 2 = 05 for all  when there is no break,

1 = 2 = 05 · 1{1 ≤  ≤ 2} when there is only one break, and 1 = 2 = 05 · 1{1 ≤  ≤
b3c}+ 05 · 1{2   ≤ } when there are two breaks.

We first evaluate the probability of falsely detecting breaks when there is no break in the

simulation design. Then we experiment on the DGPs with one or two breaks. We evaluate the

probability of correctly detecting the number of breaks and the accuracy of break date estimation

when breaks are detected. Tables 1, 2, and 3 report simulation results for the above DGPs. The
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Table 1: The probabilities for falsely detecting breaks when there are none and of correctly

detecting the breaks when there are breaks

DGP  ==40 =40,=80 =80,=40 ==80

0 = 0, % of falsely detecting breaks when there are none.

0.5 0 0 0 0
1

1 0 0 0 0

0.5 0 0 0 0
2

1 0.4 0 0 0

0.5 2.8 1.2 0.4 0
3

1 1.2 0 0.4 0

0.5 0 0 0 0
4

1 0.4 0 0 0

0 = 1, % of correctly detecting one break

0.5 100 100 100 100
1

1 98.8 99.6 100 100

0.5 100 100 100 100
2

1 99.6 99.2 100 100

0.5 99.2 100 100 100
3

1 91.6 98 100 99.6

0.5 97.6 99.6 100 100
4

1 79.2 76.8 95.2 98

0 = 2, % of correctly detecting two breaks

0.5 100 100 100 100
1

1 99.2 98.4 100 100

0.5 99.6 100 100 100
2

1 98 99.2 100 100

0.5 99.2 100 100 100
3

1 87.2 92.4 98 99.2

0.5 94 92.8 99.2 100
4

1 54.8 58.4 94 94.4

first panel of Table 1 reports the percentages of falsely detecting breaks when there is no break

(0 = 0). The second and the third panels report the percentages of correctly estimating the

number of breaks when the true number of breaks is one and two, respectively. In Table 2,

we report the ratio of average Hausdorff distance (HD) between the estimated and true sets

of breaks to  , i.e., 100·HD(bTT 00) , conditional on correct estimation of the number of

breaks. Here the average is taken over 250 replications and the HD between two sets  and

 is defined as HD() = max{D ()  D ()} with D () ≡ sup∈ inf∈ |− |.
The mean squared or absolute errors of the parameter estimates are roughly proportional to the

Hausdorff error of the break-date estimation and hence are not reported. In Table 3 we report

the percentages of correctly estimating the number of factors in the Monte Carlo replications.
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Table 2: Estimation accuracy for the break dates when there is one or two structural breaks

DGP  ==40 =40,=80 =80,=40 ==80

0 = 1
0.5 0.000 0.000 0.000 0.000

1
1.0 0.000 0.005 0.000 0.000

0.5 0.000 0.000 0.000 0.000
2

1.0 0.005 0.000 0.000 0.000

0.5 0.000 0.000 0.000 0.000
3

1.0 0.066 0.051 0.000 0.000

0.5 0.020 0.030 0.000 0.000
4

1.0 0.423 0.540 0.037 0.092

0 = 2
0.5 0.000 0.000 0.000 0.000

1
1.0 0.010 0.005 0.000 0.000

0.5 0.000 0.000 0.000 0.000
2

1.0 0.010 0.015 0.000 0.000

0.5 0.000 0.000 0.000 0.000
3

1.0 0.006 0.011 0.000 0.005

0.5 0.027 0.032 0.000 0.000
4

1.0 0.246 0.300 0.011 0.053

Note. The table reports 100 ·HD(T  T 00) averaged over 250 replications.

We summarize the major findings from these tables. (i) When there is no break in the

DGPs, the probabilities of falsely detecting breaks decline to zero as either  or  increases.

(ii) When there are one or two breaks, the probabilities of correctly estimating the number of

breaks increase fairly quickly to 100% or near 100% as both  and  increase. The detection

procedure performs slightly better at lower idiosyncratic noise levels ( = 05) than at higher

noise level ( = 1). The performance is robust to serial correlation in the common factor, serial

correlation and conditional heteroskedasticity in the errors, and the dependence of both the

factors and their loadings on the regressor. For the dynamic panel (DGP-4), the procedure

performs less satisfactorily. However, this may be due to the fact that the signal-to-noise ratio

in this case is roughly 13, much less than that in the other three DGPs. (iii) Conditional on the

correct estimation of the number of breaks, our procedure estimates the break dates accurately,

which can be seen from Table 2. (iv) Finally, Table 3 shows that the BIC-type information

criterion specified in (4.1) can accurately determine the number of factors for the interactive

fixed effects structure.

16



Table 3: The probabilities for correctly estimating the number of factors

DGP  ==40 =40,=80 =80,=40 ==80

0 = 0
0.5 100 100 100 100

1
1 98.8 100 100 100

0.5 100 100 100 100
2

1 100 100 100 100

0.5 100 100 100 100
3

1 98 100 100 100

0.5 100 100 100 100
4

1 98.8 100 100 100

0 = 1
0.5 100 100 100 100

1
1 99.6 100 100 100

0.5 100 100 100 100
2

1 100 100 100 100

0.5 100 100 100 100
3

1 97.6 100 100 100

0.5 100 100 100 100
4

1 98.4 100 100 100

0 = 2
0.5 100 100 100 100

1
1 99.6 100 100 100

0.5 100 100 100 100
2

1 100 100 100 100

0.5 100 100 100 100
3

1 97.6 100 100 100

0.5 100 100 100 100
4

1 98.8 100 99.6 100
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5 An empirical application to the environmental Kuznets curve

The environmental Kuznets curve (EKC) has become a standard feature in the environmental

policy literature. It hypothesizes that the relationship between income and the emission of

chemicals like sulfur dioxide (SO2) and carbon dioxide (CO2) or the natural resource usage has

an inverted U-shape, which is similar to the relationship between income and inequality in the

Kuznets curve hypothesis in economics. In this section we consider the following specification:

 = 0 + 1 + 2
2
 + 3 + 0 + 

where  represents the logarithm of per capita CO2 emission for country  in year ,  represents

the logarithm of per capita income in 2000 USD (gross domestic product, abbreviated as GDP),

 represents the logarithm of per capita consumption of energy,  is a vector of unobservable

common factors and  is a vector of factor loadings. Our data-driven BIC criterion determines

that the number of factors is five. The controlling of energy consumption in EKC studies was

used in the time series regression setting in Ang (2007), and the panel data setting in Apergis and

Payne (2009, 2010), Lean and Smyth (2010), Arouri et al. (2012) and Farhani et al. (2014). The

panel data studies in the existing literature, however, assume that the coefficients are constant

over time. In our specification, we not only introduce the interactive fixed effects in the panel

data models but also allow time-varying coefficients that may capture the instability of the EKC

brought by the changing social, political, and economic environment in the past few decades.

We obtain the panel data set fromWorld Bank Development Indicators. The CO2 emission is

measured in metric tones per capita, income is measured using per capita real GDP in constant

2000 USD, and energy consumption is measured with kilogram of oil equivalent per capita. The

time frame is selected to be 1971-2010. We exclude OPEC countries, small countries whose

populations are less than six million, and other countries with missing observations during the

time span. In total, we have  = 74 countries and  = 40 time points.

The results are summarized in Table 4. The information criterion defined in (4.2) selects a

tuning parameter that identifies two breaks (̂ = 2) in 1990 and 1992. In the first regime of 1971-

1990, the EKC hypothesis is confirmed, as the coefficient on the squared income is significantly

negative, implying an inverted U-shape. The elasticities of CO2 emission per capita with respect

to real income per capita in the regime is (0198− 002), where  denotes the logarithm of real

GDP per capita. The threshold, or the turning points of the EKC, occurs at the per capita

income of 19,900 USD. The second regime is a short one, covering only two years, 1990 and

1991. In this regime, the coefficients on both  and 
2
 are statistically insignificant. The signs
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Table 4: A panel data estimation of the EKC for 74 countries from 1971 to 2010

̂ Variables 1971-1989 1990-1991 1992-2010 IC

Intercept −5816(0075) −4641(1168) −6222(0187)
 0198(0020) −0028(0239) 0332(0037)

2 2 −0010(0001) −0004(0014) −0017(0002) -5.948

 0847(0003) 0798(0041) 0821(0005)

Intercept −5841(0037)
 0248(0010)

0 2 −0013(0001) -5.940

 0842(0002)

Note. Superscript   and  denotes significance level at 10%, 5%, and 1%, respectively. Standard errors

are given in parentheses.

of these coefficients do not point to an inverted U-shape. This suggests that, using a short panel

or cross-section data set collected in a certain time period, one may reject the EKC hypothesis,

while a longer panel data would arrive at the opposite conclusion. In the third regime of 1992-

2010, the EKC hypothesis is again confirmed. The elasticities of CO2 emission per capita with

respect to real income per capita in the regime is (0332−0034), implying a threshold of 17,400
USD. Comparing with the first regime, we may conclude that the EKC has shifted leftward in

the past two decades. The second regime of 1990-1991 may be regarded as a transition period

from the first regime to the second regime, which is more environment-friendly. We also report

in Table 4 the case of zero break (̂ = 0), where coefficients are assumed to be constant. Here

the EKC hypothesis is also confirmed, with a threshold at 13,900 USD. Interestingly, the panel

data model with constant regression coefficients paints the most optimistic EKC. If we estimate

the regression coefficients in the panel data model with two structural breaks detected by the

PPC method, however, we see a more cautious picture for the EKC.

6 Conclusions

In this paper, we study the estimation of the panel data models with interactive fixed effects

and multiple structural breaks, which substantially generalizes the existing work which either

considers the panel models with interactive fixed effects but no structural break (e.g., Bai, 2009),

or the panel models with multiple structural breaks but under cross-sectional independence (e.g.,

Qian and Su, 2015b). We develop a novel PPC estimation procedure with the AGF-LASSO

penalty function to consistently estimate both the regression coefficients and the factor loadings.

19



Under some regularity conditions, we show that both the unknown number of structural breaks

and the unobservable break dates can be consistently estimated. In order to further improve

the convergence rates, we also estimate the regression coefficients (in different regimes) through

the post-LASSO method and then establish the asymptotic distribution theory of the resulting

estimators. In particular, the developed shrinkage estimation methodology and the asymptotic

theory are also applicable to the case of dynamic panel data. We introduce two data-driven

methods to determine the number of factors and choose the tuning parameter involved in the

PPC estimation procedure, respectively. The simulation studies show that the proposed PPC

method has a high probability of correctly estimating the number of breaks when the structural

breaks exist in the simulation design, and a low probability of false detection when there is no

structural break. We apply our method to study the EKC for 74 countries over 40 years and

find two breaks in the panel data.

Appendix

We first give in Appendix A some regularity conditions that are used to derive the asymptotic

results. Then we provide some technical lemmas and prove the main theoretical results in

Appendix B. The proofs of the technical lemmas are given in Appendix C of the supplemental

document.

A Assumptions

We start with the introduction of some notation. Denote

 = min(
√

√
 )  = min(

p


√
 )

∆ = min
1≤≤0

°°0+1 − 0
°° ∆∗ = max

1≤≤0

°°0+1 − 0
°°

Let  =
P

=1  for 1 ≤   ≤  , and ∗ =
P

=1  for 1 ≤   ≤  . Define

Ω = Φ −Φ∗  Φ = diag
¡
Φ1 Φ0+1

¢
 Φ∗ =

¡
Φ∗

¢
1≤≤0+1



where

Φ =
1

 ( )

 0 −1X
= 0−1

 0
MΛ0 Φ

∗
 =

1

 ( )

0 −1X
=0−1

 0

−1X

= 0
−1


0
MΛ0
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 ( ) =  0 −  0−1 and  = 00
¡
1

F 00F 0

¢+
0 . In order to prove the asymptotic results stated

in Sections 3 and 4, we make the following assumptions.

Assumption 1 (i) There exist two positive definite matrices Σ and ΣΛ such that
1

F 00F 0 →

Σ and
1

Λ00Λ0 → ΣΛ Furthermore, both the common factors 

0
 and the factor loadings 

0


have finite 8-th moments.

(ii) The regressor  satisfies max1≤≤ kk = 

¡
1212

¢
, and

 ≤ inf
Λ
min
1≤≤

min
¡
−1 0

MΛ

¢ ≤ max
1≤≤

max
¡
−1 0



¢ ≤ ∗

w.p.a.1, where 0    ∗ ∞, and infΛ is taken with respect to Λ such that 1

Λ0Λ = I0 .

(iii) Let ε = (1   ) The idiosyncratic error term  satisfies E[] = 0 and E[
8
]   for

each  and  and kεksp =max(
√

√
 ) where  is a bounded positive constant. Furthermore,

max
1≤≤

E
£k 0

k2
¤
= () max

1≤≤
E
£kΛ00k2¤ = () E

£kΛ00εF 0k2¤ = ( )

max
1≤≤

E
h°° X

=1

X
=1


0


°°2i = ( 2) and max
1≤≤

E
h°° X

=1

X
=1


0

°°2i = (2 2 +  4)

where  can be either 1 or 
0
 .

(iv) max1≤≤ Var() = max1≤≤ Var(
P

=1 ) = ( ) and there exists   0 such

that
¯̄
E()

¯̄
≤  and

P
=1

P
=1 

2
 = (). Furthermore,

max
1≤≤

E
h X
=1

(∗)
2
i
= 

¡
2 +

¢
 and E

h°° X
=1

X
=1

00 
∗


0


°°2i = 
¡
2 2

¢


Assumption 2 (i) The tuning parameter  satisfies that  =  (1) and 0∆−  = (1) as (

 )→∞ where  is the user-specified positive constant defined in (2.3).

(ii) ∆ →∞ ∆∗ = (12) and −12 + 12−12 = (1) as ( )→∞

(iii) +1 →∞ as ( )→∞

Assumption 3 (i) There exists a positive definite matrix Ω0 such that
°°Ω −Ω0

°°

=  (1)

(ii) There exist 0   ≤ ∗ ∞ such that



0
≤ min
1≤≤0+1

 ( ) ≤ max
1≤≤0+1

 ( ) ≤ ∗
0



(iii) Letting  =
P

=1Λ
000, max1≤≤ E(2 ) = (2( +  ))

(iv) Letting  = 1
( )

P0 −1
= 0−1

 0
MΛ0( − ∗ ) for  = 1 0 + 1 and W =

( 0
1   

0
0+1

)0 there exist B (3) and Ω1 such that

S∗D [W −B (3)]
−→ N

¡
0 S∗Ω1S0∗

¢
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where D is defined in Section 3.2, S∗ is an arbitrary 0×(0+1) matrix with full row rank,

and 0 is a fixed positive integer.

(v) ( )123 = (1) and  = (1) as ( )→∞.
Assumption 4 As ( )→∞ 1 → 0 and 21 →∞

Assumption 5 (i) For any 0 ≤   0, there exists a positive constant  such that

min
T

min


0

∆2

+1X
=1

−1X
=−1

°°0 − 
°°2 ≥ 

where α and T are defined in Section 3.2.

(ii) As ( )→∞ 0

∆2


(−12 + 12−12) =  (1) 

(iii) As ( )→∞ 02 → 0 and 22 →∞

Remark A.1. Assumption 1 imposes some standard moment conditions on , 
0
 , 

0
 and

, which are analogous to those in the existing literature such as Bai and Ng (2002), Bai

(2009), Bai and Li (2014), Lu and Su (2015), and Moon and Weidner (2015). As we allow ,

the dimension of the regression coefficients, to be divergent, some of our moment conditions

might be slightly stronger than those in the literature. Assumptions 1(iii) and (iv) allow weak

form of cross-sectional dependence and serial dependence among , 
0
 , 

0
 and  In partic-

ular, unlike Pesaran (2006) and Bai (2009), we do not assume independence between  and

( 
0
  

0
 ) for all     and our theories are thus applicable to the dynamic autoregressive

panel data models with interactive fixed effects. Assumption 2 imposes some mild restrictions

on the tuning parameter  and the jump sizes of the regression coefficients, which can be easily

justified. For example, assuming that the jump sizes are bounded away from zero and infinity

and  ∼  , Assumption 2 can be simplified to  = (1), 0()12 = (1),  = (12)

and ()(+1)2 → ∞. Assumption 3 imposes some additional conditions for the proof of
the asymptotic distribution theory of the post-LASSO estimation, which can be verified under

some primitive conditions. For example, if we assume that { 0 } are independent across 
and for each , {} is a martingale difference sequence with respect to the -field generated by
(−1     1 0−1     

0
1  

0
 ) and {} satisfy some strongly mixing conditions, then the

moment condition in Assumption 3(iii) holds. Assumption 4 indicates that 1 has to shrink to

zero at an appropriate rate to avoid both over-selection and under-selection of the number of

factors. Assumptions 5(i)(ii) impose conditions to avoid the selection of model with fewer breaks

than the true number by using an information criterion proposed in Section 4.2. Assumption

5(iii) parallels Assumption 4.
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B Proofs of the main asymptotic results

In this appendix, we give the detailed proofs of the asymptotic results in Sections 3 and 4. We

start with two technical lemmas whose proofs are provided in Appendix C of the supplemental

document.

Lemma B.1 Suppose that Assumption 1 in Appendix A holds and −12+ 12−12 = (1).

Let β̇ = ˙(01  ̇
0
 )
0 be the preliminary estimates of the regression coefficients which mini-

mize, ̂ (βΛ), the first term of the objective function defined in (2.4). Then
°°̇ − 0

°° =


¡
12−12 + −12

¢
=  (

−1
 ) for any  = 1 2   , where  is defined as in Ap-

pendix A.

Lemma B.2 Suppose that Assumption 1 Appendix A holds and let  =
1


P
=1 k̂ − 0 k2.

Then we have

(i) 1


P
=1(̂ − 0 )

0 0
M Λ̂ =  (

−1


12
 ),

(ii)
P

=1 
00
 Λ

00M Λ̂ =  (
−2
 + −1

12
 ), and

(iii) 1


P
=1 

0


¡
P Λ̂ −PΛ0

¢
 = 

¡
−2

¢
.

We next give the proof of Theorem 3.1 by using the above two lemmas.

Proof of Theorem 3.1. (i) Recall that the penalized estimate of β0 is denoted by β̂ =¡
̂
0
1  ̂

0


¢0
and the estimated factor loading matrix is denoted by Λ̂. Note that

 −̂ = (
0
 − ̂) +Λ

00 +  (B.1)

Then, by (B.1) and using the fact thatMΛ0Λ
0 = 0, we have

̂

¡
β̂ Λ̂

¢− ̂

¡
β0Λ0

¢
=

1



X
=1

h
̂∗(Λ) + ̂¦(Λ)

i
+




X
∈T 0

0

̇

h°°̂ − ̂−1
°°− °°0 − 0−1

°°i
+




X
∈T 

̇

h°°̂ − ̂−1
°°− °°0 − 0−1

°°i (B.2)

where

̂∗(Λ) =
1



h¡
̂ − 0

¢0
 0
M Λ̂

¡
̂ − 0

¢− 2¡̂ − 0
¢0
 0
M Λ̂Λ

00 + 00 Λ
00M Λ̂Λ

00

i


̂¦(Λ) =
1



h
− 2¡̂ − 0

¢0
 0
M Λ̂ + 2

00
 Λ

00M Λ̂ − 0P Λ̂ + 0PΛ0
i
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As 0 − 0−1 = 0 for  ∈ T , the last term on the right hand side of (B.2) satisfies that





X
∈T 

̇

h°°̂ − ̂−1
°°− °°0 − 0−1

°°i = 



X
∈T 

̇

°°̂ − ̂−1
°° ≥ 0 (B.3)

By the triangle inequality, the Cauchy-Schwarz inequality, Lemma B.1 and Assumption 2(ii) in

Appendix A, we can prove thatX
∈T 0

0

̇

h°°̂ − ̂−1
°°− °°0 − 0−1

°°i ≤  (∆
−
 )

X
∈T 0

0

°°̂ − 0
°°

≤  (∆
−
 )(

0)12

⎛⎜⎝ X
∈T 0

0

°°̂ − 0
°°2
⎞⎟⎠
12

≤  (∆
−
 )(

0 )12

Ã
1



X
=1

°°̂ − 0
°°2!12 

Note that Assumption 2(i) implies that (0)12−12∆− = (−1 ) where  = min(
p
√

 ). This, together with the above argument, indicates that





X
∈T 0

0

̇

h°°̂ − ̂−1
°°− °°0 − 0−1

°°i =  (
−1


12
 ) (B.4)

By Lemma B.2, we can readily show that

1



X
=1

̂¦(Λ) = 

³
−2 + −1

12


´
 (B.5)

Combining (B.4) and (B.5), we have

̂

¡
β̂ Λ̂

¢− ̂

¡
β0Λ0

¢ ≥ 1



X
=1

̂∗(Λ) +

³
−2 + −1

12


´
 (B.6)

Define the vectors:

d̂ = β̂ − β0 and d̂Λ = 1

12
vec(M Λ̂Λ

0)

where vec(·) denotes the vectorization of a matrix; and define the matrices:

Â =
1


diag

¡
 0
1M Λ̂1 

0
M Λ̂

¢
 B̂ = (F 00F 0)⊗ I  and

Ĉ =
1

12

£
01 ⊗M Λ̂1  

0
 ⊗M Λ̂

¤
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where ⊗ denotes the Kronecker product. It is easy to verify that

1



X
=1

¡
̂ − 0

¢0
 0
M Λ̂

¡
̂ − 0

¢
=
1


d̂
0
Âd̂

1



X
=1

¡
̂ − 0

¢0
 0
M Λ̂Λ

00 =
1



X
=1

Tr
n
M Λ̂Λ

00
¡
̂ − 0

¢0
 0
M Λ̂

o
=
1


d̂
0
ΛĈd̂

1



X
=1

00 Λ
00M Λ̂Λ

00 =
1



X
=1

Tr
³
M Λ̂Λ

00 
00
 Λ

00M Λ̂

´
=
1


d̂
0
ΛB̂d̂Λ

where we have used the following facts on matrix calculation: Tr
¡
A1A2A3

¢
= vec0

¡
A1
¢¡
A2 ⊗

I
¢
vec
¡
A3
¢
and Tr

¡
A1A2A3A4

¢
= vec0

¡
A1
¢¡
A2 ⊗ A04

¢
vec
¡
A03
¢
with  being the size of the

column vectors in A3. Using the above notations, we may show that

1



X
=1

̂∗(Λ) =
1



¡
d̂
0
Âd̂ − 2d̂

0
ΛĈd̂ + d̂

0
ΛB̂d̂Λ

¢
=
1



¡
d̂
0
D̂d̂ + d̂

0
∗B̂d̂∗

¢
 (B.7)

where D̂ = Â−Ĉ0
B̂
+
Ĉ and d̂∗ = d̂Λ−B̂+

Ĉd̂. By Assumption 1(i), we may show that the min-

imum eigenvalue of 1

B̂ is bounded away from zero w.p.a.1, i.e., there exists a positive constant

1 such that min
¡
B̂

¢
 1 for sufficiently large  . We next show that max

¡
Ĉ
0
Ĉ

¢
=  (1).

Letting  = 00 0 , it is easy to verify that

Ĉ
0
Ĉ =

1



⎛⎜⎜⎜⎜⎜⎝
11

0
1M Λ̂1 12

0
1M Λ̂2  1

0
1M Λ̂

21
0
2M Λ̂1 22

0
2M Λ̂2  2

0
2M Λ̂

...
...

. . .
...

1
0
M Λ̂1 2

0
M Λ̂2  

0
M Λ̂

⎞⎟⎟⎟⎟⎟⎠ 

Letting

Ĉ1 =
1



⎛⎜⎜⎜⎜⎜⎝
11

0
1M Λ̂1 12

0
1M Λ̂2  1

0
1M Λ̂

0 22
0
2M Λ̂2  2

0
2M Λ̂

...
...

. . .
...

0 0  
0
M Λ̂

⎞⎟⎟⎟⎟⎟⎠
and Ĉ =

1

diag

¡
11

0
1M Λ̂1  

0
M Λ̂

¢
, we have

Ĉ
0
Ĉ = Ĉ1 + Ĉ

0
1 − Ĉ (B.8)

By the fact that the eigenvalues of a block upper/lower triangular matrix are the combined

eigenvalues of its diagonal block matrices, Weyl’s inequality, and Assumptions 1(i) and (ii), we
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have

−1max(Ĉ
0
Ĉ) ≤ −1{2max(Ĉ1)− min(Ĉ)}

≤ 2−1 max
1≤≤

°°0 °°2 max ¡−1 0
M Λ̂

¢
=  (

−1) (
14) (1) =  (

−34)

where we use the fact that max1≤≤ k0 k2 = 

¡
 14

¢
by Assumption 1(i) and the Markov

inequality. On the other hand, we note that the minimum eigenvalue of Â is positive and

bounded away from zero w.p.a.1. Hence, the matrix D̂ is asymptotically positive definite as its

minimum eigenvalue is positive and bounded away from zero w.p.a.1 by using the above facts.

Then, by (B.7) and (B.8), we can readily show that there exist two positive constants 2 and 3

such that

2


kd̂k2 + 3kd̂∗k2 ≤ 1



X
=1

̂∗(Λ) (B.9)

which indicates that

2


kd̂k2 + 3kd̂∗k2 +

¡
−2 + −1

12


¢ ≤ ̂

¡
β̂ Λ̂

¢− ̂

¡
β0Λ0

¢
 (B.10)

Multiplying both sides of (B.10) by 2 and noting that
1

kd̂k2 =  and ̂

¡
β̂ Λ̂

¢ −
̂

¡
β0Λ0

¢ ≤ 0, we readily show that
2

2
 + (1) + (1) ·

£
2

¤12 ≤ 0 (B.11)

When 2  is sufficiently large, the first term on the left hand side of (B.11) would dominate

the other two terms, which would lead to a contradiction. Hence, we must have that 2

is stochastically bounded, implying that  = 

¡
−1 + −1

¢
 This completes the proof of

Theorem 3.1(i).

(ii) The proof for the point-wise convergence result is similar to the proof of Theorem 3.2(ii)

in Qian and Su (2015b), where the condition 0∆−  = (1) in Assumption 2(i) is used

to handle the penalty term. We omit the details to save space.

We have thus completed the proof of Theorem 3.1. ¥

Proof of Theorem 3.2. To prove the sparsity, it is equivalent to showing

P
¡°°̂°° 6= 0 for some  ∈ T 

¢→ 0 (B.12)

as ( )→∞. We consider two cases: (i) 2 ≤  ≤  − 1 and  ∈ T ; and (ii)  =  and  ∈ T .

Recall that  = min(
−1212  12)
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For case (i), there would be two possible circumstances: (i.1)  + 1 =  0 ∈ T 00 for some

 = 1 0; and (i.2)  + 1 ∈ T . We invoke subdifferential calculus (e.g., Bersekas, 1995,

Appendix B.5) to obtain the following Karush-Kuhn-Tucker condition with respect to  to the

objective function in (2.4):



"
−2


 0
M Λ̂

¡
 −̂

¢
+ ̇

̂ − ̂−1°°̂ − ̂−1
°° − ̇+1

̂+1 − ̂°°̂+1 − ̂
°°
#
= 0 (B.13)

where for any  × 1 vector  with kk = 0, kk is defined as an arbitrary  × 1 vector
with Frobenius norm smaller than or equal to 1. Let 1 =

1

 0
M Λ̂

¡
 − ̂

¢
, 2 =

̇
̂−̂−1°°̂−̂−1°° and 3 = ̇+1

̂+1−̂°°̂+1−̂°° . Following the proof of Theorem 3.1 and using

Lemma B.2, we may show that

k1k =  (1) (B.14)

If circumstance (i.1) holds, by Lemma B.1 and Assumption 2(ii), we have

̇+1 = k̇+1 − ̇k− ≤
h
min

1≤≤0

°°0+1 − 0
°°+

¡
−1

¢i−
=  (∆

−
 ) (B.15)

which together with Assumption 2(i), indicates that

k3k =  (∆
−
 ) =  (1) (B.16)

However, for case (i) with 2 ≤  ≤  − 1 and  ∈ T , by Lemma B.1, we may show that w.p.a.1

̇ = k̇ − ̇−1k− ≥   (B.17)

for some positive constant . Hence, it is not difficult to see that when ̂ 6= 0,

k2k ≥ +1 →∞ (B.18)

by using Assumption 2(iii). By (B.14), (B.16) and (B.18), the equation (B.13) cannot hold

as ( ) → ∞. Hence, ̂ can only take the value of 0 at which ||̂|| is not differentiable.
Furthermore, as an implication of the above result, if  =  0 − 1 ∈ T  for some  = 1 0,

then we have

̇

̂ − ̂−1°°̂ − ̂−1
°° = ̇ 0 −1

̂ 0 −1 − ̂0 −2°°̂ 0 −1 − ̂0 −2
°° =  (1) (B.19)

We next prove (B.12) for circumstance (i.2 ). Following the above argument, we can show

that when  =  0 − 2 and ̂ 0 −2 6= 0,




 0
M Λ̂

¡
 −̂

¢
=  (1) ̇

̂ − ̂−1°°̂ − ̂−1
°° →∞ (B.20)
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which, together with (B.19), implies that (B.13) cannot hold as ( )→∞. Hence, ̂ 0 −2 can
only be 0. Deducting in this way until we reach  =  0−1 + 1 ∈ T , we can complete the proof

of sparsity for case (i).

For case (ii), note that the consequence of the Karush-Kuhn-Tucker condition with respect

to  leads to



"
1


 0
M Λ̂

¡
 − ̂

¢
+ ̇

̂ − ̂−1°°̂ − ̂−1
°°
#
= 0 (B.21)

As there is only one penalty term in (B.21), the proof is much simpler than that for case (i).

Hence, we omit the details here.

We have completed the proof of Theorem 3.2. ¥

Proof of Corollary 3.3. By Theorem 3.2, as ( )→∞, no time point in T  can be identified

as the break time, which implies that ̂ ≤ 0. On the other hand, by Theorem 3.1, for any

 ∈ T 0
0 , °°°̂°°° = °°°̂ − ̂−1

°°° = °°0 − 0−1
°°+ (

−1
 ) =

°°0°°+ (
−1
 )

which indicates that k0 k =  (
−1
 ) if ̂ = 0 (i.e.,  ∈ T 00 is not identified as a break point).

However, the conclusion k0 k = 

¡
−1

¢
would violate the condition ∆ →∞ which

is assumed in Assumption 2(ii). Hence, each time point in T 0
0 must be identified as the break

time, which implies that ̂ = 0 w.p.a.1 and thus both the results (i) and (ii) are proved. ¥

To prove the asymptotic distribution theory for the post-LASSO estimator in Theorem 3.4,

we need to use the following lemma whose proof is given in Appendix C of the supplemental

document. Let Λ̃0 ≡ Λ̃(T 0
0) be the infeasible estimator of the factor loadings in the post-

LASSO estimation procedure, H̃ =
¡
1

F 00F 0

¢¡
1

Λ00 Λ̃0

¢
Ṽ
+
 , and α̃0 ≡ α̃0(T 0

0), where

Ṽ  will be defined later in (B.25).

Lemma B.3 Suppose that the conditions in Theorem 3.4 hold. Then,

(i) for each  = 1 0 + 1, we have

°°° 1

 ( )

 0 −1X
= 0−1

 0


¡
M Λ̃

0
−MΛ0

¢
+(2 1)

°°° = 

³
−1 (

0)−12kα̃0 −α0k+ −3

´


where  ( ) and (2 1) are defined as in Theorem 3.4;
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(ii) for each  = 1 0 + 1, we have

°°° 1

 ( )

 0 −1X
= 0−1

 0
M Λ̃

0

¡
Λ0 − Λ̃0H̃

+¢
0 +

1

 ( )

 0 −1X
= 0−1

 0
MΛ0

∗
 +(1)

−(2 2) +
¡
Φ∗1 Φ

∗
0+1

¢
(α̃0 −α0)

°°° = 

³
−1 (

0)−12kα̃0 −α0k+ −3

´


where ∗ =
1


P
=1  Φ

∗
, 1 ≤   ≤ 0 + 1, are defined at the beginning of Appendix A,

and (1) and (2 2)  = 1 
0 + 1, are defined as in Theorem 3.4.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let GT =
©
̂ =  0 for  = 1 

0
ª
. By Corollary 3.3, we readily

have

P
n
SD

¡
α̃̂ −α0) ∈ C

¯̄
̂ = 0

o
= P

n
SD

¡
α̃̂ −α0) ∈ CGT

¯̄
̂ = 0

o
+ P

n
SD

¡
α̃̂ −α0) ∈ CGT

¯̄
̂ = 0

o
= P

n
SD

¡
α̃0 −α0) ∈ C

o
+ (1) (B.22)

where C ⊂ R0 , GT is the complement of GT and α̃0 = α̃0(T0) is the infeasible estimate

of α0. Hence, throughout the proof, we can replace ̂ and ̂ ( = 1  ̂) by 0 and  0 ,

respectively, which would not affect the asymptotic distribution of the post-LASSO estimator.

Letting  = 0 and  =  0 in the objective function (3.1), we have



¡
α0 ΛF ; T 00

¢
=

1



0+1X
=1

 0 −1X
= 0−1

¡
 − −Λ

¢0¡
 − −Λ

¢


and

min




¡
α0 ΛF ; T 00

¢
=

1



0+1X
=1

 0 −1X
= 0−1

¡
 −

¢0
MΛ

¡
 −

¢
 (B.23)

Recall that Λ̃0 = Λ̃(T 0
0) which is defined as in Lemma B.3. Let

Φ̃ (Λ̃0) = diag
n
Φ̃1(Λ̃0)  Φ̃0+1(Λ̃0)

o
and

Ξ̃ (Λ̃0) =
h
Ξ̃1(Λ̃0)0  Ξ̃0+1(Λ̃0)0

i0
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where Φ̃(Λ̃0) = 1
( )

P0 −1
= 0−1

 0
M Λ̃

0
, and Ξ̃(Λ̃0) = 1

( )

P0 −1
= 0−1

 0
M Λ̃

0
 for

 = 1 0 + 1. Then, the solution
¡
α̃0  Λ̃0

¢
to the minimization of the objective function

in (B.23) satisfies

α̃0 = Φ̃
+
 (Λ̃0)Ξ̃ (Λ̃0) with ̃0 = Φ̃

+
 (Λ̃0)Ξ̃(Λ̃0) (B.24)

and ⎡⎣ 1



0+1X
=1

−1X
=−1

¡
 −̃0

¢¡
 −̃0

¢0⎤⎦ Λ̃0 = Λ̃0Ṽ   (B.25)

where ̃0 is the -th -dimensional element of α̃0 and Ṽ  is a diagonal matrix consisting

of the 0 largest eigenvalues of the above matrix in the square brackets in (B.25) arranged in

descending order.

To simplify the notation, we further let Λ̃ ≡ Λ̃0 in the remaining proof when no confusion

can arise. For  = 1 0 + 1, using the expression that  = 
0
 + Λ

00 +  for  ∈
[ 0−1 

0
 − 1] and the fact thatM Λ̃Λ̃ = 0, we have

Ξ̃(Λ̃) =
1

 ( )

0 −1X
=0−1

 0
M Λ̃

¡


0
 +Λ

00 + 
¢

=
h 1

 ( )

 0 −1X
= 0−1

 0
M Λ̃

i
0 +

1

 ( )

 0 −1X
= 0−1

 0
M Λ̃

¡
Λ0 − Λ̃H̃+¢

0

+
1

 ( )

 0 −1X
= 0−1

 0
M Λ̃

Plugging the above expression into the formula of ̃0 in (B.24) yields

Φ̃(Λ̃)
¡
̃0 − 0

¢
=

1

 ( )

 0 −1X
= 0−1

 0
M Λ̃

¡
Λ0 − Λ̃H̃+¢

0 +
1

 ( )

0 −1X
=0−1

 0
M Λ̃ (B.26)

We first consider the second term on the right hand side of (B.26). By Lemma B.3(i),

°°° 1

 ( )

 0 −1X
= 0−1

 0
M Λ̃ −

1

 ( )

 0 −1X
= 0−1

 0
MΛ0 +(2 1)

°°°
= 

³
−1 (

0)−12kα̃0 −α0k+ −3

´
(B.27)
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for each  = 1 0+1. On the other hand, for the first term on the right hand side of (B.26),

by Lemma B.3(ii), we have

°°° 1

 ( )

 0 −1X
=0−1

 0
M Λ̃0

¡
Λ0 − Λ̃0H̃

+¢
0 +

1

 ( )

0 −1X
=0−1

 0
MΛ0

∗
 +(1)−(2 2)

+
¡
Φ∗1 Φ

∗
0+1

¢
(α̃0 −α0)

°°° = 

³
−1 (

0)−12kα̃0 −α0k+ −3

´
 (B.28)

Recall that Ω = Φ −Φ∗ with Φ and Φ
∗
 defined at the beginning of Appendix

A. Then, using the definitions of B (1) and B (2) in Section 3.2, the definition of W

in Assumption 3(iv), the condition ( )12 = (3 ) in Assumption 3(v) as well as (B.26)—

(B.28), we have°°SD

£
Ω (α̃0 −α0) +B (1) +B (2)−W

¤°° =  (1) (B.29)

Furthermore, by Assumptions 3(i)(iv) and noting that Ω0 is positive definite, we have

SD

£
α̃0 −α0 +B

¤ −→ N
¡
0 SΩ+0 Ω1Ω

+
0 S

0¢
where B = Ω+

£
B (1) + B (2) − B (3)

¤
. We have thus completed the proof of

Theorem 3.4. ¥

To prove Theorem 4.1 in Section 4.1, we need the following lemma whose proof is given in

Appendix C of the supplemental document.

Lemma B.4 Suppose that the conditions in Theorem 4.1 hold. Then

(i) there exists a   0 such that plim inf( )→∞[ ( β̇)− (0 β̇0
)] ≥  for each 

with 1 ≤   0

(ii)  ( β̇)−  (0 β̇0
) =  (

−2
 ) for each  with  ≥ 0

Proof of Theorem 4.1. The proof is analogous to that of Corollary 1 in Bai and Ng (2002).

For notational simplicity, let  () =  ( β̇) for all  Note that

BIC ()− BIC (0) = ln [ ()  (0)] + (−0) 1

We discuss the following two cases: (a)   0, and (b) 0   ≤ max.

For case (a), by Lemma B.4(i),  ()  (0)  1+0 and thus ln [ ()  (0)] ≥ 02 for

some 0  0 w.p.a.1. This, in conjunction with the fact that (−0) 1 → 0 under Assumption

4, implies that BIC ()− BIC (0) ≥ 04 w.p.a.1. It follows that

P (BIC ()− BIC (0)  0)→ 1
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as ( )→∞ for any   0.

For case (b), we apply Lemma B.4(ii) and Assumption 4 to obtain

P (BIC ()− BIC (0)  0) = P (ln [ ()  (0)] + (−0) 1  0)

= P
¡
 (1) + (−0) 1

2
  0

¢→ 1

as ( ) → ∞ for any 0   ≤ max. Consequently, the minimizer of BIC () can only be

achieved at  = 0 w.p.a.1. That is, P(̂ = 0)→ 1 for any  ∈ [1 max] as ( )→∞ ¥

Let T consist of T = {1  } such that 2 ≤ 1     ≤  0 = 1 and +1 =

 + 1; and let T̄ consist of T = {1  } such that T0 ⊂ T, 2 ≤ 1     ≤  for

0   ≤ max. To prove Theorem 4.2, we need the following two useful lemmas.

Lemma B.5 Suppose that the conditions in Theorem 4.2 hold. Then there exists a positive

constant  such that

min
0≤0

inf
T∈T

0

∆2

£
̃2(T)− ̃2(T 00)

¤ ≥  +  (1) 

Lemma B.6 Suppose that the conditions in Theorem 4.2 hold. Then we have

max
0≤max

sup
T∈T̄

2

¯̄
̃2(T)− ̃2(T 00)

¯̄
=  (1) 

Proof of Theorem 4.2. Denote Γ = [0 max], a bounded interval in R
+, which is divided into

three subsets Γ0 Γ− and Γ+ as follows

Γ0 =
©
 ∈ Γ : ̂ = 0

ª
 Γ− =

©
 ∈ Γ : ̂  0

ª
 and Γ+ =

©
 ∈ Γ : ̂  0

ª


Clearly, Γ0 Γ− and Γ+ denote the three subsets of Γ in which the correct-, under- and over-

number of breaks are selected by the AGF-LASSO procedure, respectively. Recall that α̃̂
=

(̃1(T̂̂
)0  ̃̂+1(T̂̂

)0)0 and Λ̃(T̂̂
) denote the post-LASSO estimators of the regression

coefficients and factor loadings based on the break dates in T̂̂
= T̂̂

() = (̂1 ()   ̂̂
())

where we make the dependence of various estimates on  explicit. Recall that ̃2(T̂̂
) =

 (̃̂
 Λ̃(T̂̂

); T̂̂
) Let 0 ≡ 0 denote an element in Γ0 that also satisfies the conditions

on  in Assumptions 2(i) and (iii), and let ̂(
0) be the AGF-LASSO estimate of the true break

date  0 using the tuning parameter 
0. For any 0 ∈ Γ0 we have ̂0 = 0 w.p.a.1, and by

Corollary 3.3,

lim
( )→∞

P
³
̂(

0) =  0   = 1 0
´
= 1
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It follows that w.p.a.1 ̃2(T̂̂
0
) = ̃2(T 0

0). By the proof of Lemma B.5 in Appendix C of the

supplemental document,

̃2(T 00) =
1



0+1X
=1

 0 −1X
= 0−1+1

[ −̃(T0)]0M Λ̃ [ −̃(T0)]

=
1



X
=1

0 + (
−2
 )

→ 20

where 20 ≡ lim( )→∞ 1


P
=1 E [

0
]  Thus ̃

2(T 0
0)

→ 20 and IC
¡
0
¢
= ln(̃2(T 0

0)) +

2(
0 +1)

→ ln(20) as 2
¡
0 + 1

¢
=  (1) by Assumption 5(iii). We next consider the cases

of under- and over-fitted models separately.

Case 1 (Under-fitted model with ̂  0): By Lemma B.5 and Assumption 5(iii),

P

µ
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∈Γ−

IC ()  IC
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0
¢¶
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h
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³
̃2(T̃̂

)̃2(T 00)
´
+ 2

¡
̂ −0
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 0

¶
≥ P (2 +  (1)  0)→ 1

where  is a positive constant.

Case 2 (Over-fitted model with ̂  0): For given T = {1  } ∈ T we let T̄∗+0 =©
̄1 ̄2  ̄∗+0

ª
denote the union of T and T 0

0 with elements ordered in non-descending

order: 2 ≤ ̄1  ̄2  · · ·  ̄∗+0 ≤  for some ∗ ∈ {0 1 } Let³
α̃(T) Λ̃ (T)

´
= arg min

(Λ)
 (αΛ; T)

subject to Λ0Λ=I0  Let ̃2(T) ≡  (α̃(T) Λ̃ (T) ; T) and let ̃2(T̄∗+0) be anal-

ogously defined. In view of the fact that ̃2(T̄∗+0) ≤ ̃2(T) for all T ∈ T

2

£
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¤
=  (1)

uniformly in T ∈ T by Lemma B.6, and 22 →∞ by Assumption 5(iii), we have
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We have completed the proof of Theorem 4.2. ¥
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Supplementary Material for

“Panel Data Models with Interactive Fixed Effects

and Multiple Structural Breaks”

This supplemental document provides the proofs of all the technical lemmas in Appendix B

of the main document.

C Proofs of the technical lemmas

In this appendix we give the detailed proofs of the technical lemmas used in Appendix B. Before

proving Lemma B.1 on the convergence rates of ̇, we give some preliminary results. Let

b = (01 
0
2  

0
 )
0 where  is a -dimensional column vector and let  be a positive constant

whose value may change from line to line. Recall that  = min(
√

√
 )

Lemma C.1 Suppose that Assumption 1 in Appendix A holds. Then we have

(i) sup supΛ

¯̄̄
1



P
=1 
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0
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¯̄̄
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−12 + 12−12),
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00MΛ

¯̄̄
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 ),
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P
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0
PΛ

¯̄̄
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−2
 ),

(iv) 1


P
=1 

0
PΛ0 =  (

−1),

where sup is taken with respect to b such that kbk ≤ ( )12 and supΛ is taken with respect

to Λ such that 1

Λ0Λ = I0 .

Proof of Lemma C.1. (i)Note that 1


P
=1 

0


0
MΛ =

1


P
=1 

0


0
− 1

2

P
=1 

0


0
ΛΛ

0
if 1


Λ0Λ = I0 . By Assumption 1(iii) and the Cauchy-Schwarz inequality, we have
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(C.1)

for kbk2 =P
=1 kk2 ≤  . On the other hand, by some elementary calculations, we have

¯̄ X
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0
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X
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By the restriction on Λ and Assumption 1(ii), we have

max
1≤≤

°° 0
Λ
°°2 = max

1≤≤
tr
¡
Λ0

0
Λ
¢ ≤ max

1≤≤
max

¡
 0


¢ kΛk2 =  (
2) (C.2)

On the other hand, using 1

Λ0Λ = I0 and Assumption 1(iii), we have

X
=1

||Λ0||2 =
X
=1

Tr(Λ00Λ) = Tr(Λ
0εε0Λ)

≤  kεk2sp Tr(Λ0Λ) = 0 kεk2sp =  (( +  ))  (C.3)

It follows that ¯̄ X
=1

0
0
ΛΛ

0
¯̄
= 

¡
12(2 12 +32 )

¢
 (C.4)

as kbk ≤ ( )12. Then, by (C.1) and (C.4), we can complete the proof of (i).

(ii) By the definition ofMΛ and noting that
1

Λ0Λ = I0 , we have

1



X
=1

00 Λ
00MΛ =

1



X
=1

00 Λ
00 − 1

2

X
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00 Λ
00ΛΛ0

By Assumptions 1(i) and (iii), we readily have
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On the other hand, as in the proof of (C.4) above we can show

¯̄ X
=1

00 Λ
00ΛΛ0

¯̄
=  (

2 12 +32 ) (C.6)

We then complete the proof of (ii) by using (C.5) and (C.6).

(iii) As 1

Λ0Λ = I0 , we have

1


P
=1 

0
PΛ =

1
2

P
=1 

0
ΛΛ

0 which together with

(C.3), completes the proof of (iii).

(iv) Using Assumption 1(iii) and the fact 1

Λ00Λ0 −→ ΣΛ under Assumption 1(i), we have¯̄̄ 1



X
=1

0PΛ0

¯̄̄
≤ 1



°°°³ 1

Λ00Λ0
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X
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which completes the proof of (iv).

We has thus completed the proof of Lemma C.1. ¥
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Lemma C.2 Suppose that Assumption 1 in Appendix A holds and −12+ 12−12 = (1)

Let β̇ = (̇
0
1  ̇

0
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0 and Λ̇ =
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0
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be the preliminary estimates of β0 and Λ0 which

minimize ̂ (βΛ), the first term of the objective function defined in (2.4). Then
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³
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Proof of Lemma C.2. The proof of this lemma is similar to that of Theorem 3.1 in Appendix

B of the main document. Notice that
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and
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Then, by (C.8) and (C.9) and using the fact thatMΛ0Λ
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By Lemma C.1 above, we can prove that
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Let ḋ = β̇ − β0 and ḋΛ =
1

12 vec(M Λ̇Λ
0) where vec(·) denotes the vectorization of a

matrix. Define
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where ⊗ denotes the Kronecker product. It is easy to verify that
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ḋ
0
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where Ḋ = Ȧ − Ċ0
Ḃ
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Ċ and ḋ∗ = ḋΛ − Ḃ+

Ċḋ. By Assumption 1(i), we may show that
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constant 4 such that min
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 4 w.p.a.1. Using a decomposition similar to (B.8) in
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also show that the minimum eigenvalue of Ȧ is bounded away from zero w.p.a.1, i.e., there exists

a positive constant  (defined in Assumption 1(ii)) such that min
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  w.p.a.1. Hence, we

have proved that the matrix Ḋ is asymptotically positive definite as its minimum eigenvalue is

positive and bounded away from zero w.p.a.1.

Note that

1



¡
ḋ
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ḋ
0
∗Ḃḋ∗ is asymptotically nonnegative, and ḋ

0
Ḋḋ ≥ 5kḋk2 where 5 is a positive constant. It

follows that 1

kḋk2 = 1
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−12 + 12−12) =  (1), completing the

proof of Lemma C.2. ¥

Lemma C.3 Suppose that Assumption 1 in Appendix A holds and −12+ 12−12 = (1).
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Proof of Lemma C.3. (i) By (2.7) and (C.9) and letting  = ̇ − 0 , we have
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Noting that Tr () ≤ Tr ()Tr () for conformable positive semidefinite matrices  and

 kΛ̇k =  (
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Noting that Tr () ≤ Tr (0)12 Tr (0)12 for conformable matrices  and  we have
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Noting that
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and analogously
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The analysis of the remaining three terms is similar to the proof of Theorem 1 in Bai and

Ng (2002) by switching the roles of  and . For ̇5, using the fact that Λ
00Λ0 =  (),
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2
⎞⎠12

⎞⎟⎠ =  ( ) (C.19)

and

k̇7k2 =
1

2 2

X
=1

X
=1

Tr
³


00
 Λ

00Λ̇Λ̇
0
Λ00 

0


´
=

1

2 2

X
=1

X
=1

Tr
³
Λ00Λ̇Λ̇

0
Λ00 

0


00


´
= 

Ã
1

 2

°°°°°
X
=1

X
=1

0 
0


00


°°°°°
!
=  ( ) (C.20)

By the assumption that max1≤≤ E
h°°P

=1

P
=1 

0

°°2i = (2 2 +  2) in Assump-

tion 1(iii), we can similarly prove

k̇8k2 =  ( ) (C.21)

By (C.13)—(C.21), we can prove that

1



°°Λ̇V̇  −Λ0ḢV̇ 

°°2 =  (
−2
 + ̇ ) (C.22)

Premultiplying (C.13) by Λ̇
0
, and using the identification restriction on Λ̇: 1


Λ̇
0
Λ̇ = I0 ,

(C.22) and Lemma C.2, we may show that

V̇  −
µ
1


Λ̇
0
Λ0
¶µ

1


F 00F 0

¶µ
1


Λ00Λ̇

¶
=  (1) (C.23)

Furthermore, applying (C.12) in the proof of Lemma C.2 and noting that the matrix Ḃ is

positive definite, we can show that

1


Λ00M Λ̇Λ

0 =
1


Λ00Λ0 −

µ
1


Λ00Λ̇

¶µ
1


Λ̇
0
Λ0
¶
=  (1)
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which together with Assumption 1(i), implies that 1

Λ̇
0
Λ0 is asymptotically invertible and thus

V̇  is also asymptotically invertible. We can then complete the proof of (i) by using this fact

and (C.22).

(ii) Observe that by (C.13)

1



¡
Λ̇−Λ0Ḣ¢0Λ0Ḣ =

1



8X
=1

V̇
+
 ̇

0
Λ

0Ḣ ≡ 1



8X
=1

̇∗  (C.24)

By Assumption 1(i) and (C.14), we can readily prove

1


k̇∗1k ≤

µ
1

12
k̇1k

¶
· kV̇ +

k ·
µ

1

12
kΛ0Ḣk

¶
=  (̇ )  (C.25)

Analogously, by (C.15) and (C.16), we can prove that

1


k̇∗2k = 

³
̇
12


´
and

1


k̇∗4k = 

³
̇
12


´
 (C.26)

For ̇∗3, by the definition of ̇3, we have

−̇∗3 = −V̇ +
 ̇

0
3Λ

0Ḣ =
1


V̇
+


X
=1

Λ̇
0


0


0
Λ

0Ḣ

=
1


V̇
+


X
=1

Ḣ
0
Λ000

0
Λ

0Ḣ +
1


V̇
+


X
=1

¡
Λ̇−Λ0Ḣ¢00 0

Λ
0Ḣ

≡ ̇∗3 + ̇∗3 (C.27)

By the Cauchy-Schwarz inequality and Assumptions 1(ii) and (iii), we have

k̇∗3k ≤




X
=1

kΛ000k ≤ 

Ã
1



X
=1

kΛ00k2
!12Ã

1



X
=1

kk2
!12

= 

³
(̇ )

12
´


(C.28)

Similarly, with the help of Lemma C.3(i), we can also prove that

k̇∗3k = 

³
̇ +−1 ̇

12


´
 (C.29)

By (C.27)—(C.29), we have

1


k̇∗3k = 

³
̇ + −1 ̇

12


´
 (C.30)

Similarly, we can also show that

1


k̇∗6k = 

³
̇ + −1 ̇

12


´
 (C.31)
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For ̇∗5, by the definition of ̇5, we have

̇∗5 =
1


V̇
+


X
=1

Ḣ
0
Λ0000 Λ

00Λ0Ḣ +
1


V̇
+


X
=1

¡
Λ̇−Λ0Ḣ¢000 Λ00Λ0Ḣ

≡ ̇∗5 + ̇∗5 (C.32)

By Assumptions 1(i) and (iii), we have

k̇∗5k ≤ 
1



°° X
=1

Λ0000
°° = 

³ 1


°°Λ00εF 0°°´ = 

³
12−12

´
 (C.33)

Using Lemma C.3(i), we can also prove that

k̇∗5k = 

¡
̇ +−2

¢
 (C.34)

By (C.32)—(C.34), we have
1


k̇∗5k = 

¡
̇ + −2

¢
 (C.35)

Noting that Λ̇
0
Λ0 =  () and using the assumption E

£°°Λ00εF 0°°2¤ = ( ) in Assumption

1(iii), we can also show that

1


k̇∗7k = 

¡
̇ + −2

¢
and

1


k̇∗8k = 

¡
̇ + −2

¢
 (C.36)

By (C.24)—(C.26), (C.30), (C.31), (C.35) and (C.36), we can complete the proof of (ii).

(iii) and (iv) The proofs of (iii) and (iv) can be completed by using the results in Lemmas

C.3(i) and (ii).

(v) Note that

P Λ̇ −PΛ0̇ = Λ̇
¡
Λ̇
0
Λ̇
¢+
Λ̇
0 −Λ0Ḣ¡Ḣ 0

Λ00Λ0Ḣ
¢+
Ḣ
0
Λ00 ≡

7X
=1

̇  (C.37)

where

̇1 =
¡
Λ̇−Λ0Ḣ¢¡Ḣ 0

Λ00Λ0Ḣ
¢+¡
Λ̇−Λ0Ḣ¢0

̇2 =
¡
Λ̇−Λ0Ḣ¢¡Ḣ 0

Λ00Λ0Ḣ
¢+
Ḣ
0
Λ00

̇3 =
¡
Λ̇−Λ0Ḣ¢£¡Λ̇0Λ̇¢+ − ¡Ḣ 0

Λ00Λ0Ḣ
¢+¤¡
Λ̇−Λ0Ḣ¢0

̇4 =
¡
Λ̇−Λ0Ḣ¢£¡Λ̇0Λ̇¢+ − ¡Ḣ 0

Λ00Λ0Ḣ
¢+¤

Ḣ
0
Λ00

̇5 = Λ0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+¡
Λ̇−Λ0Ḣ¢0

̇6 = Λ0Ḣ
£¡
Λ̇
0
Λ̇
¢+ − ¡Ḣ 0

Λ00Λ0Ḣ
¢+¤¡
Λ̇−Λ0Ḣ¢0

̇7 = Λ0Ḣ
£¡
Λ̇
0
Λ̇
¢+ − ¡Ḣ 0

Λ00Λ0Ḣ
¢+¤

Ḣ
0
Λ00
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Using the results in Lemmas C.3(i) and (iv), we can prove (v).

(vi) The proof is analogous to that of part (ii) and thus omitted.

(vii) By Assumption 1(iii) and part (i),

1



X
=1

||(Λ̇−Λ0Ḣ)0||2 =
1


Tr
³
(Λ̇−Λ0Ḣ)0εε0(Λ̇−Λ0Ḣ)

´
≤ 1


kεk2sp ·

1


Tr
¡
(Λ̇−Λ0Ḣ)0(Λ̇−Λ0Ḣ)¢

=  ((1 +−1)(−2 + ̇ ))

We have thus completed the proof of Lemma C.3. ¥

With the above three lemmas, we are ready to give the proof of Lemma B.1.

Proof of Lemma B.1. Let ̂(Λ) be defined as in (C.8), β̇ and Λ̇ be defined in Lemma

C.2, and Ḣ be defined in Lemma C.3. Note that

 −̇ = (
0
 − ̇) + Λ̇Ḣ

+
0 +

¡
Λ0 − Λ̇Ḣ+¢

0 +  (C.38)

The preliminary estimate ̇ which minimizes ̂(Λ) (with respect to ) satisfies that³ 1

 0
M Λ̇

´
(̇ − 0 ) =

1


 0
M Λ̇ +

1


 0
M Λ̇

¡
Λ0 − Λ̇Ḣ+¢

0  (C.39)

asM Λ̇Λ̇ = 0, where 0 is a null matrix or vector whose size may change from line to line.

We first consider the term 1

 0
M Λ̇. Notice that

1


 0
M Λ̇ =

1


 0
MΛ0 +

1


 0


¡
M Λ̇ −MΛ0

¢
 (C.40)

By the definition ofMΛ0 , we have

1


 0
MΛ0 =

1


 0
 −

1


 0
Λ

0(Λ00Λ0)+Λ00 (C.41)

By Assumption 1(iii), we can show that for each 1 ≤  ≤ 

1


k 0

k = 

³
12−12

´
 (C.42)

By Assumptions 1(i)—(iii), we can show that for each 1 ≤  ≤ 

k 0
Λ

0k =  () kΛ00k =  (
12) and

µ
1


Λ00Λ0

¶+
−→ Σ+Λ 

which imply that
1


k 0

Λ
0(Λ00Λ0)+Λ00k = 

³
−12

´
 (C.43)
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Thus, by (C.41)—(C.43), we have

1


k 0

MΛ0k = 

³
12−12

´
 (C.44)

To derive the order of  0


¡
M Λ̇−MΛ0

¢
, we need to investigate the termM Λ̇−MΛ0 . By

(C.37), we have

−(M Λ̇ −MΛ0) = Λ̇
¡
Λ̇
0
Λ̇
¢+
Λ̇
0 −Λ0Ḣ¡Ḣ 0

Λ00Λ0Ḣ
¢+
Ḣ
0
Λ00 =

7X
=1

̇  (C.45)

We next show that

1



°° 0


¡ 7X
=1

̇

¢

°° = 

¡
−1

¢
 (C.46)

To save the space, we only consider the case of  = 5. Other cases can be studied similarly. For

 0
̇5, note that

̇5 = Λ0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+¡
Λ̇−Λ0Ḣ¢0

= Λ0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+


¡
Λ̇V̇  −Λ0ḢV̇ 

¢0


= Λ0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+


¡ 8X
=1

̇

¢0
 (C.47)

where ̇ ,  = 1  8, are defined in the proof of Lemma C.3(i) above. By the fact that both

Ḣ and V̇  are asymptotically invertible and similar to the proof of Lemma C.3(i), we readily

prove that

1



°°°°°° 0
Λ

0Ḣ
³
Ḣ
0
Λ00Λ0Ḣ

´+
V̇
+


⎛⎝ 5X
=1

̇ + ̇8

⎞⎠0 
°°°°°° = 

³
−2 + −1 ̇

12


´
 (C.48)

Meanwhile, by Assumptions 1(i)(ii) and noting that

max
1≤≤

E
£ X
=1

¯̄
0

¯̄2 ¤
= max
1≤≤

E
£ X
=1

(∗)
2
¤
= (2 + )

by Assumption 1(iv), we can prove that

1



°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+
 ̇

0
6

°°°
=

1



°°°°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+


Ã
1



X
=1


0


0
Λ̇

!0


°°°°°°
= 

Ã
1

2

°°°°°
X
=1

Λ̇
0


0


°°°°°
!

11



and

1

2

°°°°°
X
=1

Λ̇
0


0


°°°°° ≤ −12
Ã

1

2

X
=1

°°°Λ̇0

°°°2!12 ·Ã 1



X
=1

°°0°°2
!12

= 

⎛⎝−1

Ã
1



X
=1

kk2
!12⎞⎠ 

which together with Lemma C.2, indicate that

1



°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+
 ̇

0
6

°°° = 

³
−1 ̇

12


´
 (C.49)

Similarly, we can also show that

1



°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+
 ̇

0
7

°°°
=

1



°°°°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+


Ã
1



X
=1


00
 Λ

00Λ̇

!0


°°°°°° =  (1)
1



°°°°°
X
=1

0 
0


°°°°°
=  (

−12)

Ã
1



X
=1

°°0 °°2
!12

·
Ã
1



X
=1

°°0°°2
!12

= 

¡
−1

¢
 (C.50)

Then, by (C.48)—(C.50) and using the fact that ̇ =  (1) in Lemma C.2, we can readily

prove that
1



°° 0
̇5

°° = 

¡
−1

¢
 (C.51)

Then we complete the proof of (C.46), which implies that

1



°° 0


¡
M Λ̇ −MΛ0

¢

°° = 

¡
−1

¢
 (C.52)

We next consider the term 1

 0
M Λ̇

¡
Λ0 − Λ̇Ḣ+¢

0 . Note that

1


 0
M Λ̇

¡
Λ0−Λ̇Ḣ+¢

0 =
1


 0
MΛ0̇

¡
Λ0−Λ̇Ḣ+¢

0 +
1


 0


¡
M Λ̇−MΛ0̇

¢¡
Λ0−Λ̇Ḣ+¢

0 

(C.53)

Applying Lemmas C.3(i) and (v), we can find that 1

 0
MΛ0̇

¡
Λ0 − Λ̇Ḣ+¢

0 is the leading

term, which will be the major focus in the following proof. Note that

Λ0 − Λ̇Ḣ+
=
¡
Λ0ḢV̇  − Λ̇V̇ 

¢
V̇
+
 Ḣ

+


We can apply the decomposition (C.13) for Λ0ḢV̇ −Λ̇V̇   use the fact thatMΛ0̇Λ
0Ḣ =

0 and both Ḣ and V̇  are asymptotically invertible, and then obtain

1


 0
MΛ0̇

¡
Λ0 − Λ̇H+¢

0 = −
1


 0
MΛ0̇

⎛⎝ 3X
=1

̇ +
8X

=6

̇

⎞⎠ V̇ +
 Ḣ

+
0  (C.54)
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Similar to the proof of Lemma C.3(i) and using the decomposition Λ̇ = (Λ̇−Λ0Ḣ)+Λ0Ḣ, we
may prove that

1



°°°°°° 0
MΛ0̇

⎛⎝̇1 + ̇3 +
8X

=6

̇

⎞⎠ V̇ +
 Ḣ

+
0

°°°°°° = 

¡
−1 + ̇

¢
 (C.55)

Meanwhile, letting  = 00
¡
1

F 00F 0

¢+
0 , we may also obtain

− 1

 0
MΛ0̇ ̇2V̇

+
 Ḣ

+
0 =

1

2

X
=1

 0
MΛ0̇

00
 Λ

00Λ̇V̇
+
 Ḣ

+
0

=
1



X
=1

 0
MΛ0̇ (C.56)

Note that
1


 0
M Λ̇(̇ − 0 )

∼ 1


 0
MΛ0̇ (C.57)

where 
∼  denotes  = (1 +  (1)). By (C.39), (C.44), and (C.52)—(C.57), we have°°°°° 1 0
MΛ0̇ − 1



X
=1

 0
MΛ0̇

°°°°° = 

³
12−12 + −12 + ̇

´
 (C.58)

Let L = diag
©
1

 0
1MΛ0̇1 

1

 0
MΛ0̇

ª
and L∗ be the  ×  block matrix

with the ( ) block being 1


 0
MΛ0̇. By (C.58), we may show that¡
L −L∗

¢
ḋ = R  (C.59)

where ḋ is defined in the proof of Lemma C.2, R = (
0
1     

0
 )
0 with

kk = 

³
12−12 + −12 + ̇

´
and

1



X
=1

||k2 = 

¡
−1 + −1 + ̇2

¢


Using the arguments as used in the proofs of Theorem 3.1 and Lemma C.2, we can prove that

L −L∗ is asymptotically positive definite with the smallest eigenvalue bounded away from

zero. Hence, (C.59) indicates that

1


kḋk2 = 1



X
=1

k̇ − 0 k2 = 

¡
−1 + −1 + ̇2

¢
 (C.60)

which, in conjunction with the definition of ̇ in the statement of Lemma C.3, implies that

1

kḋk2 = 

¡
−1 + −1

¢
, and strengthens the consistency result in Lemma C.2. By the fact
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that the matrix 1

 0
MΛ0̇ is positive definite as well as (C.58) and (C.60), we can prove

that °°°̇ − 0

°°° = 

³
12−12 + −12

´
= 

³
−1

´
for each , completing the proof of Lemma B.1 in Appendix B. ¥

Proof of Lemma B.2. (i) Using the argument in the proof of Lemma C.2 (with some mod-

ifications), we may prove that  =  (1). Then, following the proofs of (C.44) and (C.52)

above, we can readily show that

1

2

X
=1

°° 0
M Λ̂

°°2 = 

¡
−1 + −1

¢
 (C.61)

Furthermore, by the Cauchy-Schwarz inequality, we have

1



X
=1

(̂−0 )0 0
M Λ̂ = 

¡
12−1

¢·Ã 1


X
=1

°°°̂ − 0

°°°2!12 = 

³
−1

12


´
 (C.62)

(ii) As Λ00MΛ0 = 0, we have
P

=1 
00
 Λ

00M Λ̂ =
P

=1 
00
 Λ

00¡M Λ̂ −MΛ0
¢
 Similar to

the decomposition in (C.37), we have

P Λ̂ −PΛ0 = Λ̂
¡
Λ̂
0
Λ̂
¢+
Λ̂
0 −Λ0H¡H 0Λ00Λ0H

¢+
H 0Λ00 ≡

7X
=1

  (C.63)

where H ≡ H =
¡
1

F 00F 0

¢¡
1

Λ00Λ̂

¢
V +

  V  is defined in (2.7), and    = 1  7

are analogously defined as ̇ in the proof of Lemma C.3(v) with Λ̇ and Ḣ replaced by Λ̂

and H, respectively. We only need to show that¯̄̄̄
¯
X
=1

00 Λ
00¡M Λ̂ −MΛ0

¢


¯̄̄̄
¯ =

¯̄̄̄
¯̄ X
=1

00 Λ
00¡ 7X

=1



¢


¯̄̄̄
¯̄ = 

³
−2 + −1

12


´
 (C.64)

When (Λ̇ Ḣ) is replaced by (Λ̂H), it is easy to verify that the convergence results in

Lemma C.3 still hold with ̇ replaced by  . By Assumption 1(iii),°°°°°
X
=1

Λ000

°°°°° =  (
√
 ) (C.65)

which together with Lemma C.3 (with some modifications to allow the replacement of ̇  Λ̇

and Ḣ by  , Λ̂ and H, respectively) indicates that

1



°°°°°
X
=1

00 Λ
00 (2 + 4 + 7) 

°°°°° = 

¡
( )−12(−2 + 

12
 )

¢
 (C.66)

14



On the other hand, note that°°°°°
X
=1

¡
Λ̂V  −Λ0HV 

¢0


0


°°°°° =
°°°°°°

X
=1

⎛⎝ 8X
=1



⎞⎠0 0
°°°°°°  (C.67)

where  ,  = 1  8, are defined similarly to ̇ in the proof of Lemma C.3 (i) with ̇

and Λ̇ replaced by ̂ and Λ̂, respectively. Let ̂ = ̂ − 0 Then, by the definition of 

and using Assumptions 1(i)—(iii), we can prove that°°°°°
X
=1

01
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0
̂̂

0


0


0


°°°°°
= 

¡
−1

¢ · X
=1

k0 k
X
=1

k̂k2k 0
k

= 

³
1212

´
 (C.68)

and °°°°°
X
=1

02
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0
Λ00 ̂

0


0


0


°°°°°
=  (

−1)
X
=1

k0 k
X
=1

k̂kk0 kk 0
k

= 

¡
12 ( )

12
¢
 (C.69)

By analogous arguments, we can also show that°°°°°
X
=1

04
0


°°°°° = 

¡
12

12


¢
 (C.70)

On the other hand, using Lemma C.3 we can show that°°°°°
X
=1

03
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0
̂

0


0


0


°°°°°
≤ 1



°°°°°
X
=1

X
=1

H 0Λ00̂
0


0


0


°°°°°+ 1



°°°°°
X
=1

X
=1

¡
Λ̂−Λ0H

¢0
̂

0


0


0


°°°°°
≤ kHk

Ã
1



X
=1

||Λ00||2
!12⎛⎝ 1



X
=1

°°°°°̂0
X
=1

 0


0


°°°°°
2
⎞⎠12

+

Ã
1



X
=1

||(Λ̂−Λ0H)0||2
!12⎛⎝ 1



X
=1

°°°°°̂0
X
=1

 0


0


°°°°°
2
⎞⎠12
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= 

³
 ( )

12
´
+

³
(1 +12−12)(−1 + 

12
 ) ( )

12
´

= 

³
(1 +12−12−1 +12−1212 ) ( )

12
´
 (C.71)

and analogously°°°°°
X
=1

05
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0


00
 Λ

000

°°°°°
≤ 1



°°°°°
X
=1

X
=1

H 0Λ00
00
 Λ

000

°°°°°+ 1



°°°°°
X
=1

X
=1

¡
Λ̂−Λ0H

¢0


00
 Λ

000

°°°°°
≤ kHk 1


kΛ00εF 0k2 + 1



°°°°°
X
=1

¡
Λ̂−Λ0H

¢0


00


°°°°°°°Λ00εF 0°°
=  (1) +

³
12 12(−2 + 

12
 )

´
 (C.72)

Using the fact that under Assumptions 1(i) and (iv)

X
=1

°°°°°
X
=1

0
0
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 (C.73)

we have°°°°°
X
=1
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°°°°° =
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0
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Notice that°°°°°
X
=1
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0


°°°°° =
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°°°°°
X
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X
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Λ̂
0


0


0
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X
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X
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X
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¡
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0


0


°°°°° 
For the first term on the right hand side, by the Cauchy-Schwarz inequality and Assumption

1(iii) and (C.73) we may show that
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X
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X
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¢
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For the second term on the right hand side, by Lemma C.3(vii) (with ̇  Λ̇ and Ḣ replaced

by   Λ̂ and H, respectively), we have
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X
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³
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 (C.75)

Finally, noting that
¯̄P

=1

P
=1 

00
 

0


0


¯̄
=  ( ) by Assumption 1(iv), we can also show

that °°°°°
X
=1

07
0


°°°°° =  () (C.76)

By (C.67)—(C.76), we have
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¡
Λ̂V  −Λ0HV 

¢0
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³
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 (C.77)

With this, we readily prove that

1



°°°°°
X
=1

00 Λ
00(1 + 3 + 5 + 6)

°°°°° = 

³
−2 + −1

12


´
 (C.78)

which together with (C.66), leads to (C.64). Hence, we complete the proof of (ii).

(iii) This follows from Lemmas C.1(iii) and (iv). ¥

Before proving Lemma B.3 in Appendix B, we need to introduce two technical lemmas.

The first lemma is similar to Lemma C.3 with the preliminary estimates replaced by the post-

LASSO estimates. Let Λ̃0 = Λ̃(T 0
0) be the infeasible estimate of the factor loadings in the

post-LASSO estimation procedure, H̃ =
¡
1

F 00F 0

¢¡
1

Λ00 Λ̃0

¢
Ṽ
+
 with Ṽ  defined in the

proof of Theorem 3.4 in Appendix B, and ̃ =
1
0

P0+1
=1 k̃0 −0k2, where ̃0 is the

-th -dimensional element of the infeasible estimate α̃0 = α̃0(T 0
0).

Lemma C.4 Suppose that the conditions in Theorem 3.4 hold. Then we have

(i) 1


°°Λ̃0 −Λ0H̃
°°2 = 

¡
−2 + ̃

¢
,
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(ii) 1


¡
Λ̃0 −Λ0H̃¢0Λ0H̃ = 

¡
−2 + ̃

12


¢
,

(iii) 1


¡
Λ̃0 −Λ0H̃¢0Λ̃0 = 

¡
−2 + ̃
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¢
,

(iv) 1


¡
Λ̃
0
0Λ̃0 − H̃ 0

Λ00Λ0H̃
¢
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−2 + ̃

12


¢
,

(v)
°°P Λ̃

0
−PΛ0̃

°° = 

¡
−1 + ̃

12


¢
,

(vi) 1


P
=1(Λ̃0 −Λ0H̃)00 = 

¡
−2 + ̃

12


¢
with  = 1 or 

0
  and

(vii) 1


P
=1 ||(Λ̃0 −Λ0H̃)0||2 = 

¡
(1 +−1)(−2 + ̃ )

¢


Proof of Lemma C.4. The proof is analogous to that of Lemma C.3. Hence, we only sketch

it. For notational simplicity, we let Ṽ ≡ Ṽ  , and ̃ = ̃0 −0 ,  = 1 
0+1. By (B.25)

in the proof of Theorem 3.4, we have

Λ̃0Ṽ −Λ0H̃Ṽ

=

⎡⎢⎣ 1
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= 0−1
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0
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− 1
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 0 −1X
= 0−1

Λ00 ̃
0


0
Λ̃0 +

1



X
=1

Λ00 
0
Λ̃0 − 1



0+1X
=1

0 −1X
=0−1

̃
0


0
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+
1



X
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00
 Λ

00Λ̃0 +
1



X
=1


0
Λ̃0

≡
8X

=1

̃  (C.79)

Then following the proof of Lemma C.3 with Λ̇ and  replaced by Λ̃0 and ̃ , respectively,

and using Assumption 3(ii), we can readily prove Lemma C.4(i). Note that

1



¡
Λ̃0 −Λ0H̃¢0Λ0H̃ =

1



8X
=1

Ṽ
+
̃0Λ

0H̃ ≡ 1



8X
=1

̃∗  (C.80)

Then following the proof of Lemma C.3(ii) and using Lemma C.4(i), we readily prove Lemma

C.4(ii). The results in (iii) and (iv) can be proved by combining Lemmas C.4(i) and (ii). Similar
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to (C.37), we have the following decomposition:

P Λ̃
0
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where
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By (C.81) and Lemmas C.4(i) and (iv), we can prove (v). The proofs of (vi) and (vii) parallel

to those of Lemmas C.3(vi) and (vii). We have thus completed the proof of Lemma C.4. ¥

Lemma C.5 Suppose that the conditions in Theorem 3.4 hold. Then we have

(i) ̃ =
1
0

P0+1
=1 k̃0 − 0k2 = 

¡
−2

¢
,

(ii) 1
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+
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Λ
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³
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´
.

Proof of Lemma C.5. As the proof of the convergence rates for α̃0 in (i) is similar to the

proof of Lemma B.1, we omit the details. Furthermore, the results in (iii) and (iv) can be easily

proved by using (ii). Hence we only focus on the proof of the result in (ii).

Note that for any  = 1   ,

1
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Λ̃0 −Λ0H̃¢0 = 1


Ṽ
+¡
Λ̃0Ṽ −Λ0H̃Ṽ ¢0 = 1


Ṽ
+¡ 8X

=1

̃

¢0
 (C.82)
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by using (C.79) in the proof of Lemma C.4. By Lemma C.5(i), Assumptions 1(ii), (iii) and 3(ii),

and the Jensen inequality, we have
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By Lemmas C.4(i) and C.5(i) and Assumptions 1(iii), (iv) and 3(ii), we can show that
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By Assumptions 1(i), (iii) and 3(ii), and Lemma C.5(i), we have
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Analogously, we can show that
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 (C.86)
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By Assumptions 1(iii) and (iv), we can prove that

1


Ṽ
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Ṽ
+

Ã
X
=1

H̃
0
Λ0000 Λ

00

!

=
1

2
Ṽ
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By Assumptions 1(ii), (iv) and Lemma C.5(i), we have
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By the definition of H̃ and noting that Ṽ
+
 is diagonal, we have
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Ṽ
+
̃07 =

µ
1


Ṽ
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By the definition of ̃8 and Assumption 3(iii),
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Combining the results in (C.82)—(C.90) yields
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By Assumptions 1(i) and (iv), the first term on the right hand side of (C.91) is  (
−2
 ); by As-

sumptions 1(iii) and Lemmas C.4(vi) and C.5(i) we can show the second term is  (
−1
 

−1
 );

by Assumptions 1(iii) and (iv) and Lemma C.4(vii) and , we can show the third and fourth

terms are  (
−1
 

−1
 ) It follows that

1



³
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´0
 = 

³
−1 

−1


´
 (C.92)

By (C.92) and following the above arguments, we can further show that the second and third

terms on the right hand side of (C.91) are  (
−3
 ) This completes the proof of Lemma C.5(ii).

¥

Proof of Lemma B.3. For notional simplicity, we let Λ̃ = Λ̃0 throughout this proof.

(i) Noting that

−(M Λ̃ −MΛ0) = Λ̃
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7X
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̃ (C.93)

and by using the decomposition (C.81), we have
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 (C.94)

By (C.94), Lemmas C.4(i), (iv) and C.5(iii), we can prove that for any  = 1 0 + 1,°°°°°°°
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which completes the proof of Lemma B.3(i).

(ii) Noting that for any  = 1 0 + 1,
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and Ṽ
+
H̃
+
=
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 by the decomposition (C.79), we have
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We next analyze each term on the right hand side of the equation (C.96).

For  = 1, by the definition of ̃1, Assumptions 1(i)(ii), and Lemma C.5(i), we have
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For  = 2, by the definition of ̃2, we have
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where Φ∗ =
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For  = 3, by the definition of ̃3, Assumptions 1 and 3(ii), as well as (C.92), we have
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To study the next two terms, we can apply the arguments used in the proof of Lemma C.3(ii)

and show that 1
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and similarly for  = 1 · · · 0 + 1,
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For  = 4, by the definition of ̃4 (C.103), and Lemma C.5(i) and noting thatM Λ̃Λ̃ = 0,
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For  = 5, by the definition of ̃5, Assumptions 1(i)(iii), (C.103), and Lemma C.5(iv), we

have

1

 ( )

°°°°°°°
 0 −1X
= 0−1

 0
M Λ̃̃5

µ
1


Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

°°°°°°°
=

1

 ( )

°°°°°°°
 0 −1X
= 0−1

 0
M Λ̃

Ã
1



X
=1

Λ00 
0
Λ̃

!µ
1


Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

°°°°°°°
≤ 1

2 ( )

°°°°°°°
0 −1X
=0−1

 0
M Λ̃

¡
Λ0 − Λ̃H̃+¢Ã X

=1

0 
0
Λ

0

!
H̃

µ
1


Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

°°°°°°°
+

1

2 ( )

°°°°°°°
 0 −1X
= 0−1

 0
M Λ̃

¡
Λ0 − Λ̃H̃+¢ " X

=1

0 
0


¡
Λ̃−Λ0H̃¢#µ 1


Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

°°°°°°°
= 

⎛⎜⎝ 1

2 ( )

 0 −1X
= 0−1

°° 0
M Λ̃

¡
Λ0 − Λ̃H̃+¢°°°° X

=1

0 
0
Λ

0
°°°°0 °°

⎞⎟⎠
+

⎛⎜⎝ 1

2 ( )

0 −1X
=0−1

X
=1

°° 0
M Λ̃

¡
Λ0 − Λ̃H̃+¢°°°°0¡Λ̃−Λ0H̃¢0 °°°°0 °°

⎞⎟⎠
= 

³
−3 + −2 (

0)−12kα̃0 −α0k
´
 (C.105)

25



For  = 6, by the definition of ̃6 and Assumptions 1(i)-(iii), 2(ii) and 3(ii), we have
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For  = 7, by the definitions of ̃7 and , we have
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where ∗ =
1


P
=1 . On the other hand, following the proof of Lemma B.3(i) and (C.95) in

particular, we may show that
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For  = 8, by the definition of ̃8, we have
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By (C.96), (C.97), (C.100), (C.101), (C.104)—(C.106), (C.108) and (C.109), we can complete the

proof of Lemma B.3(ii).

We have thus completed the proof of Lemma B.3. ¥

Let Λ̇ = (̇1  ̇)
0 and Λ̆ =

1


P
=1(−̇)(−̇)

0Λ̇ = (̆1  ̆)
0

In order to prove Lemma B.4 in Appendix B, we first need to prove the following technical lemma.
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+
(1) and Ḣ
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Following the proof of Lemma C.3(i), we can readily show that 1
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Then we readily have 1
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. With this, we can apply the argu-
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the convergence result (ii) follows from the triangle and Cauchy-Schwarz inequalities, Lemma

C.6(i), and the fact that ||Λ0Ḣ||2 =  () 

(iii) Let V̇  and V̇  (1) denote the probability limits of V̇  and V̇  (1)  respectively,
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PCA method, we have the identity
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Then
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Observe that 1
2
Λ̇0Λ
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 (2)

°°° ≤
°°°Ḣ (2)
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We have thus completed the proof of Lemma C.6. ¥

Proof of Lemma B.4. (i) The proof is similar to that of Lemma C.2. Notice that
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By Lemma C.1(i) (with 0 and Λ being replaced by  and Λ), we can prove that
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0
Ċ )

=  (1). By Assumption 1(ii), min(Ȧ)   w.p.a.1. and ||ḋΛ|| =  (1)  It follows that

1


kḋk2 = 1



X
=1

k̇ − 0 k2 =  (1)

Note that  ( β̇) = minΛ
̂ (βΛ) subject to Λ

0
Λ = I Let  (β) =

[
P

=1 ( −) ( −)
0  ]. For any   0 we make the following decomposition:

 (β) =
1



X
=0+1

(β) +
1



0X
=+1

(β) ≡ 1 (β) + 2 (β) 

Noting that 1(β̇) ≥ 1(β̇0
) =  (0 β̇0

) we have

 ( β̇)−  (0 β̇0
) =

h
1(β̇)− 1(β̇0

)
i
+ 2(β̇) ≥ 2(β̇)
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Let 0 = 

³
1


P
=1

£
Λ00 

00
 Λ

00 + 
0
 +(

0
 − ̇)(

0
 − ̇)

0 0


¤´
 Notice that

1



¯̄̄
(β̇)− 0

¯̄̄
≤ 1



°°° X
=1

n
(Λ00 

0
 + 

00
 Λ

00) + [Λ00 (
0
 − ̇)

0 0
 +(

0
 − ̇)

00
 Λ

00]

+[(
0
 − ̇)

0 0
 +(

0
 − ̇)

0
]
o°°°

sp

≤ 2



°°°°°
X
=1

Λ00 
0


°°°°°
sp

+
2



°°°°°
X
=1

Λ00 (
0
 − ̇)

0 0


°°°°°
sp

+
2



°°°°°
X
=1

(
0
 − ̇)

0 0


°°°°°
sp



Under Assumptions 1-2 and using the fact that 1

kḋk2 =  (1) we can readily show that

the second and third terms in the last expression are  (1) The first term is  (( )−12) by

Assumption 1(iii). It follows that

2(β̇) ≥
1



0X
=+1

0 +  (1)

≥ 1



0X
=+1


¡
Λ0F00F0Λ00

¢
+  (1)

≥ (0 −)min(F
00F0 )min(Λ

00Λ0) +  (1)

= (0 −)min(Σ )min(ΣΛ) +  (1) 

where the second inequality follows from Weyl’s inequality. In sum, we have

plim inf
( )→∞

 ( β̇)−  (0 β̇0
) ≥   = (0 −)min(Σ )min(ΣΛ)2

completing the proof of Lemma B.4(i).

(ii) Recall that  ( β̇) = minΛ
̂ (βΛ) subject to Λ

0
Λ = I. Noting that

 ( β̇) = ̂ (β̇ Λ̇) by the triangle inequality, we have¯̄̄
 ( β̇)−  (0 β̇0

)
¯̄̄

≤
¯̄̄
̂ (β̇ Λ̇−)− ̂ (β

0Λ0)
¯̄̄
+
¯̄̄
̂ (β̇0

 Λ̇0)− ̂ (β
0Λ0)

¯̄̄
≤ 2 max

0≤≤max

¯̄̄
̂ (β̇ Λ̇)− ̂ (β

0Λ0)
¯̄̄


It suffices to show that ̂ (β̇ Λ̇) − ̂ (β0Λ0) = 

³
−2

´
for each  ∈ [0 max]

Let Ḣ
+
 denote the Moore-Penrose generalized inverse of Ḣ such that ḢḢ

+
 = I0 ; see, for
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example, the proof of Lemma C.6(iv). Noting that −
0
 = Λ

00 +  andMΛ0Λ
0 = 0 we

may show that

̂ (β
0Λ0) =

1



X
=1

( −
0
 )
0MΛ0( −

0
 ) =

1



X
=1

0MΛ0

Let ̆ =  − (Λ̆ −Λ0Ḣ)Ḣ
+


0
  Noting that

 −̇ = (
0
 +Λ

00 + )−̇

= (
0
 − ̇) + Λ̆Ḣ

+


0
 +  + (Λ

0Ḣ − Λ̆)Ḣ
+


0


= (
0
 − ̇) + Λ̆Ḣ

+


0
 + ̆

andM Λ̇
Λ̆ =M Λ̇

³
Λ̇V̇ 

´
= 0 we have

̂ (β̇ Λ̇) =
1



X
=1

( −̇)
0M Λ̇

( −̇)

=
1



X
=1

h
(

0
 − ̇) + ̆

i0
M Λ̇

h
(

0
 − ̇) + ̆

i
=

1



X
=1

̆0M Λ̇
̆ +

1



X
=1

(̇ − 0 )
0 0

M Λ̇
(̇ − 0 )

− 2



X
=1

̆0M Λ̇
(̇ − 0 )

≡ 1 + 2 − 23
We next prove Lemma B.4(ii) by only showing that 1 − ̂ (β

0Λ0) =  (
−2
 ) 2 =

 (
−2
 ) and 3 =  (

−2
 )

First, using ̆ =  − (Λ̆ −Λ0Ḣ)Ḣ
+


0
  we make the following decomposition:

1 =
1



X
=1

[ − (Λ̆ −Λ0Ḣ)Ḣ
+


0
 ]
0M Λ̇

[ − (Λ̆ −Λ0Ḣ)Ḣ
+


0
 ]

=
1



X
=1

0M Λ̇
 − 2



X
=1

00 Ḣ
+0
 (Λ̆ −Λ0Ḣ)

0M Λ̇


+
1



X
=1

00 Ḣ
+0
 (Λ̆ −Λ0Ḣ)

0M Λ̇
(Λ̆ −Λ0Ḣ)Ḣ

+


0


≡ 11 − 212 + 13

Using the arguments as in the proof of Lemmas C.1(iii)(iv), we can show that

11 − ̂ (β
0Λ0) =

1



X
=1

0(PΛ0 −P Λ̇
) = 

¡
−2

¢
= 

³
−2

´
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For 12 we have

12 =
1



X
=1

00 Ḣ
+0


³
Λ̆ −Λ0Ḣ

´0
 − 1



X
=1

00 Ḣ
+0
 (Λ̆ −Λ0Ḣ)

0P Λ̇


≡ 12 − 12

Using the decomposition in (C.110) and Lemma C.6(i), we can readily show that 112 =



³
−2

´
. By the Cauchy-Schwarz inequality, the fact that P Λ̇

is a projection matrix, and

Lemma C.1(iii),

|12| ≤
"
1



X
=1

°°°(Λ̆ −Λ0Ḣ)Ḣ
+


0


°°°2#12 " 1



X
=1

0P Λ̇


#12
= 

³
−1

´
·

¡
−1

¢
= 

³
−2

´


where the following result which can be proved by Lemma C.6 has also been used:

1



X
=1

°°°(Λ̆ −Λ0Ḣ)Ḣ
+


0


°°°2 ≤ 1



°°°Λ̆ −Λ0Ḣ

°°°2 °°°Ḣ+


°°°2 1


X
=1

°°0 °°2
= 

³
−2

´
 (C.112)

Thus we have 12 = 

³
−2

´
 Similarly, using the fact that M Λ̇

is a projection matrix

and by (C.112), 13 ≤ 1


P
=1

°°°(Λ̆ −Λ0Ḣ)Ḣ
+


0


°°°2 = 

³
−2

´
 As a consequence, we

may complete the proof of 1 − ̂ (β
0Λ0) =  (

−2
 ) for each  ∈ [0 max].

Next, by Assumption 1(ii) and the fact that M Λ̇
is a projection matrix and that ̇ =

1


P
=1 ||̇ −0 ||2 = 

³
−2

´
 we have

2 ≤ 1



X
=1

°°°(̇ − 0 )
0 0

M Λ̇
(̇ − 0 )

°°° ≤ max
1≤≤

max
¡
 0


¢
̇ = 

³
−2

´


To study 3 we apply ̆ =  − (Λ̆ −Λ0Ḣ)Ḣ
+


0
 andM Λ̇

= I −P Λ̇
and make the

following decomposition:

3 =
1



X
=1

̆0M Λ̇
(̇ − 0 )

=
1



X
=1

0(̇ − 0 )−
1



X
=1

0P Λ̇
(̇ − 0 )

− 1



X
=1

00 Ḣ
+0
 (Λ̆ −Λ0Ḣ)

0M Λ̇
(̇ − 0 )

≡ 31 − 32 − 33
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By the Cauchy-Schwarz inequality, Assumptions 1(ii)-(iii), the fact that

̇ =
1



X
=1

°°°̇ − 0

°°°2 = 

³
−2

´


1



X
=1

0P Λ̇
 = 

¡
−2

¢
 max(M Λ̇

) = 1

and Lemma C.6(i), we have

|31| ≤
"
1

2

X
=1

0
0


#12
̇
12
 =  (

12−12) (
−1
 ) = 

³
−2

´


|32| ≤
"
1



X
=1

0P Λ̇


#12 "
1



X
=1

(̇ − 0 )
0 0

(̇ − 0 )

#12
≤ 

¡
−1

¢
max

¡
 0


¢12
̇
12
 = 

³
−2

´


and

|33| ≤
"
1



X
=1

00 Ḣ
+0
 (Λ̆ −Λ0Ḣ)

0M Λ̇
(Λ̆ −Λ0Ḣ)Ḣ

+


0


#12

×
"
1



X
=1

(̇ − 0 )
0 0

(̇ − 0 )

#12

≤ 1

12

°°°Λ̆ −Λ0Ḣ

°°°°°°Ḣ+


°°°" 1


X
=1

°°0 °°2
#12

12max
¡
 0


¢
̇
12


=  (
−1
 ) (1) (

−1
 ) = 

³
−2

´


Hence 3 = 

³
−2

´
 In sum, we have shown that ̂ (β̇ Λ̇)−̂ (β0Λ0) = 

³
−2

´
for each  ∈ [0 max] completing the proof of Lemma B.4(ii). ¥

Proof of Lemma B.5. Let

 (αΛ;T) = 1



+1X
=1

−1X
=−1

£
( −)

0MΛ ( −)− 0
¤

and ̄2 =
1



P
=1 

0
. Note that³
α̃(T) Λ̃(T)

´
= arg min

(Λ)
 (αΛ; T) 

and

̃2(T)− ̃2(T 00) =
£
̃2(T)− ̄2

¤− £̃2(T 00)− ̄2

¤
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with ̃2(T)− ̄2 =  (α̃(T) Λ̃(T); T). We prove the lemma by showing that (i)

0

∆2

£
̃2(T 00)− ̄2

¤
=  (1) ; (C.113)

and (ii)

0

∆2

(̃2(T)− ̄2 ) ≥ +  (1) wpa1 for some   0 (C.114)

We first show (C.113) in (i). We make the following decomposition:

̃2T 0
0

=
1



0+1X
=1

 0 −1X
= 0−1

[ −̃ ]
0M Λ̃ [ −̃ ]

=
1



0+1X
=1

 0 −1X
= 0−1

£
(

0
 − ̃) +Λ

00 + 
¤0
M Λ̃

£
(

0
 − ̃) +Λ

00 + 
¤

=
1



0+1X
=1

 0 −1X
= 0−1

£
0M Λ̃ + 00 Λ

00M Λ̃Λ
00 + (

0
 − ̃)

0 0
M Λ̃(

0
 − ̃)

+ 20M Λ̃(
0
 − ̃) + 2

0
M Λ̃Λ

00 + 2
00
 Λ

00M Λ̃(
0
 − ̃)

¤
≡ 1 + 2 + 3 + 24 + 25 + 26 

where we suppress the dependence of ̃ = ̃(T 00) and Λ̃ = Λ̃(T 0
0) on T 00 for notational

simplicity. By Lemma C.1(iii),

1 =
1



X
=1

0M Λ̃ =
1



X
=1

0 +

¡
−2

¢
= ̄2 +

¡
−2

¢


Using the preliminary results in Lemmas C.4 and C.5(i) and Theorem 3.4, we may show that

 =  (
−2
 ) for  = 3 4 6 UsingMΛ0Λ

0 = 0 and (C.79), and decomposingM Λ̃−MΛ0 =

−(P Λ̃ −PΛ0) as in (C.81), we can readily show that

2 =
1



X
=1

00 Λ
00 ¡M Λ̃ −MΛ0

¢
Λ00 = 

³
−2

´
 and

5 =
1



X
=1

0
¡
M Λ̃ −MΛ0

¢
Λ00 = 

³
−2

´


It follows that

̃2(T 00)− ̄2 = 

³
−2

´
 (C.115)

which, together with Assumption 2(ii), leads to (C.113).
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We now show (C.114) in (ii). We consider three cases: (a) 0 = 1 (b) 0 = 2 and (c)

3  0 ≤ max For case (a) of 
0 = 1, if   0, we have  = 0 and T = T0 = ∅ The true

model contains one structural break:

 =

(


0
1 +Λ

00 +  if 1 ≤  ≤  01 − 1


0
2 +Λ

00 +  if  01 ≤  ≤  ;

while the working model that ignores the structural break in the regression coefficient is

 = +Λ
00 +  1 ≤  ≤ 

where  is the error term. Note that ̃
2(T0) = 1



P
=1 ( −̃)

0M Λ̃ ( −̃)  where

(̃ Λ̃) = argmin
Λ

1



X
=1

( −)
0MΛ ( −)

subject to Λ0Λ = I0 , and we suppress the dependence of ̃ and Λ̃ on T0 Using − =

(
0
 − ) +Λ00 +  and Lemmas C.1(i)(ii), we can readily show that

1



X
=1

( −)
0MΛ ( −)

=
1



X
=1

£
(

0
 − ) +Λ00 + 

¤0
MΛ

£
(

0
 − ) +Λ00 + 

¤
=

1



X
=1

£
(

0
 − ) +Λ00

¤0
MΛ

£
(

0
 − ) +Λ00

¤
+

1



X
=1

0 + (
12−1 )

uniformly in  and Λ such that Λ0Λ = I0 and kk ≤ 12 It follows that

̃2(T0) =
1



X
=1

̃ 0M Λ̃̃ + ̄2 + (
12−1 )

≥ min
Λ: Λ0Λ=0

1



X
=1

̃ 0MΛ̃ + ̄2 + (
12−1 )

=
1



X
=0+1



"
X
=1

̃̃
0


#
+ ̄2 + (

12−1 )

≥ 1



X
=0+1



"
X
=1

(
0
 − ̃)(0 − ̃)0 0



#
+ ̄2 + (

12−1 )

=
1


min

Λ: Λ0Λ=0

"
X
=1

(0 − ̃)0 0
MΛ(

0
 − ̃)

#
+ ̄2 + (

12−1 )

≥  · 1


X
=1

°°0 − ̃
°°2 + ̄2 + (

12−1 )
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where ̃ = (
0
 − ̃) +Λ00  the second and third inequalities follow from Weyl’s inequality

and Assumption 1(ii), respectively. Consequently, we have by Assumptions 5(i)-(ii)

0

∆2

£
̃2(T0)− ̄2

¤ ≥  +  (1) 

where  is defined in Assumption 5(i). We have completed the proof of (C.114) for case (a).

In cases (b)-(c), it suffices to consider the case where  = 0 − 1 (If   0 − 1 one can
always augment the set T by 0 − 1− true break points which are not inside T to make

 (α̃(T) Λ̃ (T) ; T) smaller). For the case (b) with  = 1 we consider three subcases:

(b.1) 2 ≤ 1 ≤  01  (b.2) 
0
1  1 ≤  02  and (b.3) 

0
2  1 ≤  In the subcase (b.1), [1 1 − 1]

does not contain a break point while [1  ] contains two true break points 
0
1 and  02  Observe

that

 (α̃1(T1) Λ̃(T1); T1) =
1



1−1X
=1

n
[ −̃1(T1)]0M Λ̃(T1)[ −̃1(T1)]− 0

o
+
1



X
=1

n
[ −̃2(T1)]0M Λ̃(T1)[ −̃2(T1)]− 0

o
≡ 1 +2

Noting that the interval [1 1 − 1] does not contain a break point, using the arguments as used
in the study of case (a), we can readily show that

1 ≥ 



1−1X
=1

°°01 − ̃1(T1)
°°2 + (

12−1 )

Similarly, we can show that

2 ≥ 



X
=1

°°0 − ̃2(T1)
°°2 + (

12−1 )

Then by Assumptions 5(i)(ii)

0

∆2

 (α̃1(T1) Λ̃(T1); T1)

≥ 0

∆2

⎧⎨⎩



1−1X
=1

°°01 − ̃1(T1)
°°2 + 



X
=1

°°0 − ̃2(T1)
°°2 + (

12−1 )

⎫⎬⎭
≥  min

12

0

∆2

2X
=1

−1X
=−1

°°0 − 
°°2 +  (1)

≥  +  (1) .
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In the subcase (b.2), both [2 1 − 1] and [1  ] contain a break. As in subcase (b.1), we
can show that

0

∆2

 (α̃1(T1) Λ̃(T1); T1)

≥ 0

∆2

⎧⎨⎩



1−1X
=1

°°0 − ̃1(T1)
°°2 + 



X
=1

°°0 − ̃2(T1)
°°2 + (

−12 + 12−12)

⎫⎬⎭
≥  min

12

0

∆2

2X
=1

−1X
=−1

°°0 − 
°°2 ≥  +  (1) 

The proof for the subcase (b.3) is analogous to that for the subcase (b.1). Hence, the conclusion

(C.114) follows in the subcase (b). Case (c) can be studied analogously. This completes the

proof of the lemma. ¥

Proof of Lemma B.6. For T ∈ T̄ with 0   ≤ max, we recall that

̃2(T) =  (α̃(T) Λ̃ (T) ; T)

= min
Λ

1



+1X
=1

−1X
=−1

( −)
0MΛ ( −)

= min


1



+1X
=1

−1X
=−1

( −)
0M Λ̃(T) ( −) 

and ̄2 =
1



P
=1 

0
 In view of the fact that

̃2(T 00) ≥ ̃2(T) and ̃2(T 00) = ̄2 + (
−2
 )

by (C.115), we have

0 ≤ ̃2(T 00)− ̃2(T) = ̄2 − ̃2(T) + (
−2
 ) =

+1X
=1

 + (
−2
 ) (C.116)

where  ≡ − inf  ()   () = 1


P−1
=−1

h
( −)

0M Λ̃(T) ( −)− 0
i
and

[−1  − 1] does not contain any break point for  = 1  + 1 Let 0 = 0−1 and

̃ = ̃(T) = argmin  () =
³P−1

=−1 
0
M Λ̃(T)

´−1P−1
=−1 

0
 M Λ̃(T) for  =

1  + 1 As in the proofs of Lemma C.4(i) and Theorems 3.1 and 3.4, we can show that

1

||Λ̃ (T) − Λ0||2 =  (

−2
 ) and ||̃ − 0|| =  (

−1
 ) Then using  − ̃ =
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 +Λ
00 +(

0
 − ̃) we have

 (̃) =
1



−1X
=−1

h
( −̃)

0M Λ̃(T) ( −̃)− 0
i

=
1



−1X
=−1

n£
 +Λ

00 +(
0
 − ̃)

¤0
M Λ̃(T)

£
 +Λ

00 +(
0
 − ̃)

¤− 0
o

=
−1


−1X
=−1

0P Λ̃(T) +
1



−1X
=−1

00 Λ
00M Λ̃(T)Λ

00

+
1



−1X
=−1

¡
0 − ̃

¢0
 0
M Λ̃(T)

¡
0 − ̃

¢
+

2



−1X
=−1

0M Λ̃(T)Λ
00

+
2



−1X
=−1

0M Λ̃(T)

¡
0 − ̃

¢
+

2



−1X
=−1

00 Λ
00M Λ̃(T)

¡
0 − ̃

¢
≡ 1 + 2 + 3 + 24 + 25 + 26

By Lemma C.1(iii),
+1X
=1

1 =
−1


X
=1

0P Λ̃(T) = 

¡
−2

¢


In addition, we can show that

+1X
=1

2 =
1



X
=1

00 Λ
00(M Λ̃(T) −MΛ0)Λ

00 = 

³
−2

´


+1X
=1

3 ≤ 1



+1X
=1

°°0 − ̃
°°2 −1X

=−1

max
¡
 0


¢
= 

³
−2

´


and similarly
P+1

=1  = 

³
−2

´
for  = 4 5 6 Then by (C.116), ̃2(T) − ̄2 =



³
−2

´
for all  ∈ ©0 + 1 max

ª
and T = {1  } which completes the proof

of Lemma B.6. ¥
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