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Shrinkage Estimation of Common Breaks in Panel Data Models

via Adaptive Group Fused Lasso∗

Junhui Qian and Liangjun Su
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 School of Economics, Singapore Management University

September 24, 2015

Abstract

In this paper we consider estimation and inference of common breaks in panel data models via

adaptive group fused lasso. We consider two approaches — penalized least squares (PLS) for first-

differenced models without endogenous regressors, and penalized GMM (PGMM) for first-differenced

models with endogeneity. We show that with probability tending to one both methods can correctly

determine the unknown number of breaks and estimate the common break dates consistently. We

establish the asymptotic distributions of the Lasso estimators of the regression coefficients and their

post Lasso versions. We also propose and validate a data-driven method to determine the tuning

parameter used in the Lasso procedure. Monte Carlo simulations demonstrate that both the PLS

and PGMM estimation methods work well in finite samples. We apply our PGMM method to study

the effect of foreign direct investment (FDI) on economic growth using a panel of 88 countries and

regions from 1973 to 2012 and find multiple breaks in the model.
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1 Introduction

Recently there has been a growing literature on the estimation and tests of common breaks in panel

data models in which there are  individual units and  time series observations for each individual.

Depending on whether  is allowed to pass to infinity, the model is called “short” for fixed  and “large”

(or of large dimension) if  passes to infinity. Implicitly, one usually allows  to pass to infinity in panel

data models.1 Most of the literature falls into two categories depending on whether the parameters of

interest are allowed to be heterogenous across individuals or not. The first category focuses on homogenous

panel data models and includes De Watcher and Tzavalis (2005), Baltagi et al. (2015), and De Watcher

and Tzavalis (2012). De Watcher and Tzavalis (2005) compare the relative performance of two model

and moment selection methods in detecting breaks in short panels; Baltagi et al. (2015) consider the

estimation and identification of change points in large dimensional panel models with either stationary or

nonstationary regressors and error terms; De Watcher and Tzavalis (2012) develop a testing procedure for

common breaks in short linear dynamic panel data models. The second category considers estimation and

inference of common breaks in heterogenous panel data models; see Bai (2010), Kim (2011, 2014), Hsu and

Lin (2012), Baltagi et al. (2014), among others. Bai (2010) establishes the asymptotic properties of the

estimated break point in a location-scale heterogenous panel data model with either fixed or large  ; Kim

(2011) extends Bai’s (2010) method and develops an estimation procedure for a common deterministic

time trend break in large heterogenous panels with a multi-factor error structure; Kim (2014) continues

the study by estimating the common break date and common factors jointly; Hsu and Lin (2012) extends

Bai’s (2010) theory to nonstationary panel data models where the error terms follow an I(1) process;

Baltagi et al. (2014) study the estimation of large dimensional static heterogenous panels with a common

break by extending Pesaran’s (2006) common correlated effects (CCE) estimation procedure. In addition,

Chan et al. (2008) extend the testing procedure of Andrews (2003) from time series to heterogenous panels

where the breaks may occur at different time points across individuals; Liao and Wang (2012) study the

estimation of individual-specific structural breaks that exhibit a common distribution in a location-scale

panel data model; Yamazaki and Kurozumi (2014) develop an LM-type test for slope homogeneity along

the time dimension in fixed-effects panel data models with fixed  and large 2

A common feature of all of the above works is that a one-time break, common or not, is assumed in the

estimation procedure. Although the assumption of a single break greatly facilitates the estimation and

inference procedure, inferences based on it could be misleading if the underlying model has an unknown

number of multiple breaks. For this reason, a large literature on the estimation and inference of models

with multiple structural changes has been developed in the single or multiple time series framework; see,

e.g., Bai (1997a, 1997b), Bai and Perron (1998), Qu and Perron (2007), Su and White (2010), Kurozumi

1Bai (1997a), Bai et al. (1998) and Qu and Perron (2007) extend the estimation of single-time series models to multiple-

ones with simultaneous structural breaks where the number of equations is fixed.
2Pesaran and Yamagata (2008) and Su and Chen (2013) propose LM-type tests for slope homogeneity along the cross

section dimension in large dimensional linear panel data models with additive fixed effects and interactive fixed effects,

respectively.
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(2015), and Qian and Su (2014, 2015). In view of the fact that the conventional avg- and exp-type test

statistics for multiple structural changes requires all permissible partitions of the sample which could be

prohibitively large, Qian and Su (2015) propose shrinkage estimation of regression models with multiple

structural changes by extending the fused Lasso of Tibshirani et al. (2005) to the time series regression

framework.

In this paper we propose a shrinkage-based methodology for estimating panel data models with an

unknown number of structural changes. The new methodology is most suitable for the vision that the

regression coefficients in a panel data model may be time-varying but at the same time exhibit certain

sparseness in abrupt changes or breaks. This vision seems pertinent in many applied studies using

panel data that have a long time span measured in decades. During such a long time span, shocks to

technologies, preferences, policies, and so on, may result in the change of a statistical relation applied

economists seek to discover; but the shocks tend to be small over a relatively short time interval so that

it does not alter the statistical relationship in short time. In this case, one has to allow the parameters

in the model to change over time in an unknown way and recognize that parameters do not always alter

from one time period to another one. Multiple structural breaks may occur during the whole time span

but the number of breaks is generally small in comparison with the total number of time periods in the

data, resulting in the sparseness of the breaks.

In terms of econometrics methodology, this paper extends the Lasso-type shrinkage approach in Qian

and Su (2015) to panel data settings. To the best of our knowledge, this is the first in the literature to

deal with panel data models with possibly multiple structural changes explicitly.3 To stay focused, we

consider homogenous linear panel data models with an unknown number of common breaks and we do

not allow cross section dependence. The extension to heterogenous panel data models and to panel data

models with cross section dependence will be discussed at the end of Section 7. For the advantage of the

use of panel data to study common breaks, we refer the readers directly to Bai (2010) and De Watcher

and Tzavalis (2012). Despite the fact that the Lasso-type shrinkage estimation has a long history and

wide applications in statistics (see, e.g., Tibshirani 1996; Knight and Fu 2000; Fan and Li 2001), the

application of Lasso-type shrinkage techniques in econometrics has a relatively short history. But the

number of applications in econometrics has been increasing very fast in the last few years. For example,

Caner (2009) and Fan and Liao (2014) consider covariate selection in GMM estimation; Belloni et al.

(2012) and García (2011) consider selection of instruments in the GMM framework; Liao (2013) provides

a shrinkage GMM method for moment selection and Cheng and Liao (2015) consider the selection of valid

and relevant moments via penalized GMM; Liao and Phillips (2015) apply adaptive shrinkage techniques

to cointegrated systems; Kock (2013) considers Bridge estimators of static linear panel data models with

random or fixed effects; Caner and Knight (2013) apply Bridge estimators to differentiate a unit root from

3Bai (2010, Section 6) discusses the case of multiple breaks. As he remarks, if the number of breaks is given, the one-

at-a-time approach of Bai (1997b) can be used to estimate the break dates, and if the number of breaks is unknown, a test

for existence of break point can be applied to each subsample before estimating a break point. Alternatively, one can use

information criteria to determine the number of breaks in the latter case, but further investigation is called for.
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a stationary alternative; Caner and Han (2014) proposes a Bridge estimator for pure factor models and

shows the selection consistency; Lu and Su (2015b) apply adaptive group Lasso to choose both regressors

and the number of factors in panel data models with factor structures; Cheng et al. (2015) provide an

adaptive group Lasso estimator for pure factor structures with a one-time structural break. This paper

adds to the literature by applying the shrinkage idea to panel data models with an unknown number of

breaks.

We propose two approaches, penalized least squares (PLS) and penalized general method of moments

(PGMM), for the estimation of the panel data model with an unknown number of breaks. We apply

first differencing to remove the fixed effects in the equation and focus on the first-differenced equation.

When there is no endogeneity issue in the first-differenced equation, we propose to apply PLS to estimate

the unknown number of break points and the regime-specific regression coefficients jointly where the

penalty term is imposed through the adaptive group fused Lasso (AGFL) component. In the presence

of endogeneity in the first-differenced equation, which may arise from endogenous regressors or lagged

dependent variables in the original fixed-effects equation, we propose to apply PGMM to estimate the

unknown number of break points and the regime-specific regression coefficients jointly where, again,

the penalty term is imposed through the AGFL component. Unlike Qian and Su (2015) who can only

establish the claim that the group fused Lasso can not under-estimate the number of breaks in a time

series regression and that all the break fractions (but not the break dates) can be consistently estimated

as in Bai and Perron (1998), we show that with probability approaching one (w.p.a.1) both of our PLS

and PGMM methods can correctly determine the unknown number of breaks and estimate the common

break dates consistently. We obtain estimates of the regression coefficients via both the Lasso and post

Lasso procedures and establish their asymptotic distributions. We also propose and validate a data-driven

method to determine the tuning parameter used in the Lasso procedure.

Both PLS and PGMM can be numerically solved using the fast block-coordinate descent algorithm.

Monte Carlo simulations show that our methods perform well in finite samples. First, the probability of

correctly estimating the number of breaks converges to one quickly as  increases. Second, conditional

on the correct estimation of the number of breaks, our methods accurately estimate the break dates in

finite samples. Third, our method continues to perform well even if the number of breaks is allowed to

increase with the time dimension.

As an empirical illustration, we employ our PGMM method to evaluate the effect of foreign direct

investment (FDI) inflow on economic growth. We estimate a dynamic panel data model with possibly

multiple breaks using the PGMM approach. We find that, with a tuning parameter selected via minimiz-

ing a BIC-type information criterion, there are three breaks (four regimes) in the span of seven five-year

periods. In each regime, the post-Lasso estimation finds significant positive effect of FDI inflow on GDP

growth. In contrast, if we estimate a usual dynamic panel data model with time-invariant parameters,

we would find this effect to be statistically insignificant. This empirical example illustrates the perils

of employing panel data models with restrictions on the number of breaks. Our contribution makes the

restriction unnecessary.
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It is worth mentioning that Ke et al. (2015) and Su et al. (2014) investigate similar problems to ours.

Ke et al. (2015) proposes a new method called clustering algorithm in regression via data-driven segmen-

tation (CARDS) to explore homogeneity of coefficients in high dimensional regression. Su et al. (2014)

propose a procedure called classifier Lasso to estimate a latent panel structure where individuals belong

to a number of homogenous groups within a broadly heterogenous population, regression parameters are

the same within each group but differ across groups, and the individual’s group membership is unknown.

But neither paper requires the temporal ordering information.

The rest of the paper is organized as follows. Section 2 introduces our fixed-effect panel data model

and PLS and PGMM estimation of the model depending on whether endogeneity is present in the first-

differenced equation. Sections 3 and 4 analyze the asymptotic properties of PLS and PGMM estimators,

respectively. Section 5 reports the Monte Carlo simulation results. Section 6 provides an empirical

application and Section 7 concludes.

NOTATION. Throughout the paper we adopt the following notation. For an  ×  real matrix 

we denote its transpose as 0 its Frobenius norm as kk  and its spectral norm as kksp . When  is

symmetric, we use max () and min () to denote its largest and smallest eigenvalues, respectively. I

denotes a ×  identity matrix and 0× an ×  matrix of zeros. We use “p.d.” and “p.s.d.” abbreviate

“positive definite” and “positive semi-definite”, respectively. The operator
→ denotes convergence in

probability,
→ convergence in distribution, and plim probability limit. Let∆ and∆2 denote the difference

operators of order 1 and 2, respectively. In addition, we use TriD(· ·) to denote a symmetric block

tridiagonal matrix (SBTM):

TriD() ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −02
−2 2 −03

−3 3 −04
. . .

. . .
. . .

−−1 −1 −0
− 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.1)

where ’s are symmetric, ’s are square matrices, and empty blocks denote the matrices of zeros. By

Molinari (2008), the determinant of TriD() is given by det (TriD() ) =
Y
=1

det (Λ)  where

Λ1 = 1 and Λ =  − Λ
−1
−1

0
 for  = 2   By Meurant (1992) and Ran and Huang (2006), one

can also calculate the inverse of TriD() recursively.

2 Shrinkage estimation of linear panel data models with multi-

ple breaks

In this section we consider a linear panel data model with an unknown number of breaks, which we

estimate via the adaptive group fused Lasso.
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2.1 The model

Consider the following linear panel data model

 =  + 0 +   = 1    = 1      ≥ 2 (2.1)

where  is a  × 1 vector of regressors,  is the error term with zero mean,  is a  × 1 vector of
unknown coefficients, and  is the individual fixed effects that may be correlated with  We assume

that  passes to infinity and  can either be fixed or pass to infinity. But for clarity, we will focus on the

case where  → ∞ when we derive and report the theoretical results. It is evident from the derivation

that all results hold under the fixed  case. When  →∞, we will write ( )→∞ to signify that 

and  pass to infinity jointly.

Like Qian and Su (2015), we assume that {1   } exhibit certain sparsity such that the total
number of distinct vectors in the set is given by  + 1 which is unknown but typically much smaller

than  More specifically, we assume that

 =  for  = −1   − 1 and  = 1 + 1

where we adopt the convention that 0 = 1 and +1 =  + 1 The indices 1   indicate the

unobserved  break points/dates and the number  + 1 denotes the total number of regimes. We are

interested in estimating the unknown number  of unknown break dates and the regression coefficients.

Let α = (
0
1  

0
+1)

0 and T = {1  } 
Throughout, we denote the true value of a parameter with a superscript 0. In particular, we use

0 α00 =
¡
001   

00
0+1

¢0
and T 00 = { 01    00} to denote the true number of breaks, the vector of

true regression coefficients, and the set of true break dates, respectively. We assume  01 ≥ 2 and allow
 00 =  When  00 =  the last break occurs at the end of the sample (c.f., Andrews 2003) and the

(0 + 1)th regime has only one observation for each individual time series. As for the true number of

breaks, we allow 0 → ∞ as  → ∞ Of course, in the case of fixed  0 is regarded as a fixed finite

integer. As for the break sizes, we allow the minimum break size (min1≤≤0

°°0+1 − 0
°°) to shrink

to zero as  → ∞ or ( ) → ∞. In either case, one may write  =  for 1 ≤  ≤  and

1 ≤  ≤  (and similarly for ) to emphasize the multi-array nature of the process {}  But for
notational simplicity, we keep writing  and  instead.

To eliminate the effect of  in the estimation procedure, we consider the first-differenced equation

∆ = 0 − 0−1−1 +∆

= 0∆ +
¡
 − −1

¢0
−1 +∆

where, e.g., ∆ =  − −1 for  = 1   and  = 2   We consider two cases:

(a)  [∆] = 0 and  [∆−1] = 0;

(b)  [∆] 6= 0 or  [∆−1] 6= 0
Case (a) occurs when  is strictly exogenous in the sense that  (|) = 0 a.s. where  =

(1   )
0 But strict exogeneity is not necessary for case (a) and a sufficient condition for (a) to
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hold is  (∆| −1) = 0 Case (b) occurs when  contains either lagged dependent variables (e.g.,
−1) or endogenous regressors that are correlated with  We assume the existence of a  × 1 vector
of instruments  in case (b) where  ≥ 

Note that neither  nor the break dates are known and  is typically much smaller than  This fact

motivates us to consider the estimation of ’s and T via a variant of fused Lasso a la Tibshirani et al.

(2005). We propose two approaches — PLS estimation for case (a) and PGMM estimation for case (b).

2.2 Penalized least squares (PLS) estimation

In case (a), we propose to estimate β =
¡
01  

0


¢0
by minimizing the following PLS objective function

11 (β) =
1



X
=1

X
=2

¡
∆ − 0 + 0−1−1

¢2
+ 1

X
=2

̇

°° − −1
°° (2.2)

where 1 = 1 ( ) ≥ 0 is a tuning parameter, and ̇ is a data-driven weight defined by

̇ =
°°°̇ − ̇−1

°°°−1   = 2   (2.3)

{̇} are preliminary estimates of {} and 1 is an user-specified positive constant that usually takes

value 2 in the literature. Noting that the objective function in (2.2) is convex in β it is easy to obtain

the solution β̃ = (̃
0
1  ̃

0
 )
0 where we suppress the dependence of ̃ = ̃ (1) on 1 as long as no

confusion arises. We will propose a data-driven method to choose 1 in Section 3.4.

For a given solution {̃}, the set of estimated break dates are given by T̃̃ = {̃1  ̃̃} where
1  ̃1    ̃̃ ≤  such that

°°°̃ − ̃−1
°°° 6= 0 at  = ̃ for some  ∈ {1  ̃} and T̃̃ divides

the time interval [1  ] into ̃ + 1 regimes such that the parameter estimates remain constant within

each regime. Let ̃0 = 1 and ̃̃+1 =  + 1 Define ̃ = ̃(T̃̃) = ̃̃−1 as the estimate of  for

 = 1  ̃ + 1 Frequently we suppress the dependence of ̃ on T̃̃ (and 1) unless necessary. Let

α̃̃ = α̃̃(T̃̃) = (̃1(T̃̃)0  ̃̃+1(T̃̃)0)0
Apparently, the objective function in (2.2) is closely related to the literature on adaptive Lasso (Zou

2006), group Lasso (Yuan and Lin 2006), fused Lasso (Tibshirani et al. 2005 and Rinaldo 2009), and

group fused Lasso (Qian and Su 2015). Zou (2006) first shows that the Lasso could be inconsistent

for model selection unless the predictor matrix satisfies a rather strong condition, and then proposes the

adaptive Lasso that assigns different weights to penalize different coefficients in the 1-penalty. Observing

that the Lasso is designed for selecting individual regressors, Yuan and Lin (2006) extend the Lasso to

group Lasso that selects “grouped variables”. A combination of the adaptive Lasso and group Lasso

yields the adaptive group Lasso that can achieve selection consistency for “grouped variables”; see, e.g.,

Wang and Leng (2008). In sum, such regular adaptive Lasso or adaptive group Lasso are designed to

distinguish the nonzero coefficients from the zero coefficients asymptotically. They are not applicable

here because our aim is not to select variables in  but to determine the unknown number of breaks in

{} 
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Tibshirani et al. (2005) propose the fused Lasso that is designed for problems with features that can

be ordered in a meaningful way and penalizes the 1-norm of both the coefficients and their successive

differences. For a standard linear model:  =
P

=1  +   = 1   the fused Lasso estimator of

 =
¡
1  

¢0
is defined by

̂ = argmin


X
=1

⎛⎝ −
X

=1



⎞⎠2

+ (1)

X
=1

¯̄

¯̄
+ (2)

X
=2

¯̄
−−1

¯̄
 (2.4)

where (1) and (2) are two nonnegative tuning parameters,  ’s are scalar regression coefficients, and  ’s

are regressors. Apparently, fused Lasso encourages sparsity of both the coefficients and their successive

differences. Here, we can adopt the idea of fused Lasso because of the coefficient vectors {} in our
model (2.1) have temporal order. The main difference of our PLS objective function in (2.2) from the

standard Lasso objective function in (2.4) lies in three aspects: (1) we consider the vector difference

 − −1 by using the Frobenius norm k·k instead of the usual 1-norm, (2) we assign different weights
{̇} to penalize different coefficient differences, and (3) we do not impose the 1-penalty on the individual
elements of   = 1   Like Qian and Su (2015), the use of the Frobenius norm k·k for the vector
difference  − −1 generalizes the fused Lasso to the group fused Lasso. Unlike Qian and Su (2015)

who do not assign different weights to the vector differences in their time series regression, our panel

regression allows us to apply the adaptive weights {̇}, yielding the adaptive Lasso procedure. For this
reason, we can call our estimation procedure as adaptive group fused Lasso (AGFL).

To obtain {̇} we propose to obtain the preliminary estimate β̇ = (̇
0
1  ̇

0
 )
0 by minimizing the

first term in the definition of 11 (β) in (2.2). We can readily demonstrate that

β̇ = ̇−1 ̇

  (2.5)

where ̇ and ̇

 are defined in (A.1) and (A.2) in Appendix A.1, respectively.

2.2.1 Post-Lasso least squares estimation

For any α =
¡
01  

0
+1

¢0
and T = {1  } with 1  1  · · ·   ≤  we define4

1 (α; T) = 1



+1X
=1

−1X
=−1+1

X
=1

¡
∆ − 0∆

¢2
+
1



X
=1

X
=1

¡
∆ − 0+1 + 0−1

¢2


(2.6)

where
P−1

=−1+1
P

=1

¡
∆ − 0∆

¢2
corresponds to “the sum of squared errors” for observations in

the th artificial regime with time series observations indexed by integers in the interval [−1 −1], andP
=1

¡
∆ − 0+1 + 0−1

¢2
corresponds to the “the sum of squared errors” for observations

when one moves from the th regime to the ( + 1)th regime. The second term in (2.6) is important

and helps to improve the asymptotic efficiency when  or the minimum length of the  + 1 regimes is

fixed. It can be omitted if min0≤≤ |+1 −  | → ∞ as  → ∞ and only the asymptotic efficiency is

4By default, the summation


= in this paper is zero if   
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concerned, but we still keep it to improve the finite sample performance of the post-Lasso estimate in

this case. One can choose α to minimize the objective function in (2.6). We denote the solution as

α̃
 (T) =

¡
̃

1 (T)0   ̃+1 (T)0

¢0
 By setting T as T̃̃ the set of estimated break dates via the

AGFL procedure, we obtain the post-Lasso least squares estimator

α̃
̃ = α̃

̃

³
T̃̃
´
= Φ

³
T̃̃
´−1

Ψ

³
T̃̃
´
 (2.7)

where Φ (·) and Ψ (·) are defined in (A.3) and (A.4) in Appendix A.1, respectively. We shall study
the limiting distribution of α̃

̃ in Section 3.3.

2.3 Penalized GMM (PGMM) estimation

In case (b), we propose to estimate β by minimizing the following PGMM objective function

22 (β) =
X
=2

(
1



X
=1


¡
 −1

¢)0


(
1



X
=1


¡
 −1

¢)
+ 2

X
=2

̈

°° − −1
°°  (2.8)

where 
¡
 −1

¢
= (∆ − 0 + 0−1−1) 2 = 2 ( ) ≥ 0 is a tuning parameter,  =

 is a  ×  symmetric p.d. weight matrix for  = 2   and ̈ is a data-driven weight defined by

̈ =
°°°̈ − ̈−1

°°°−2   = 2   (2.9)

{̈} are preliminary estimates of {} and 2 is an user-specified positive constant that usually takes

value 2 in the literature. Clearly, the first term in the definition of 22 (β) in (2.8) is different from

the usual GMM objective function in the panel setting with time-invariant parameters where only one

weight matrix ( , say) is needed and the double summation
P

=2

P
=1 occurs twice, one before the

single weight matrix and the other after the single weight matrix. It is also different from the GMM-type

objective function in Andrews (1993) who considers the test of a single structural change in a time series

regression. Noting that the objective function in (2.8) is convex in β it is easy to obtain the solution

β̂ = (̂
0
1  ̂

0
 )
0 where we frequently suppress the dependence of ̂ = ̂ (2) on 2. We will propose a

data-driven method to choose 2 in Section 4.4.

For a given solution {̂}, we can find the set of estimated break dates T̂̂ = {̂1  ̂̂} as in
Section 2.2. Like before, T̂̂ divides [1  ] into ̂+ 1 regimes such that the parameter estimates remain

constant within each regime and
°°°̂ − ̂−1

°°° 6= 0 whenever  = ̂ for some  = 1  ̂ Let ̂0 = 1

and ̂̂+1 =  + 1 Define ̂ = ̂(T̂̂) = ̂̂−1 as the estimate of  for  = 1  ̂ + 1 Let α̂̂ =

α̂̂(T̂̂) = (̂1(T̂̂)0  ̂̂+1(T̂̂)0)0
To obtain the adaptive weights {̈} we propose to obtain the preliminary estimate β̈ = (̈01  ̈

0
 )
0

by minimizing the first term in the definition of 22 (β) in (2.8). It is easy to show that

β̈ = ̈−1 ̈

  (2.10)

where ̈ and ̈

 are defined in (A.6) and (A.7) in Appendix A.2, respectively.
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Remark. To proceed, it is worth mentioning that one might consider an alternative PGMM objective

function

̄22 (β) =

(
1



X
=2

X
=1


¡
 −1

¢)0


(
1



X
=2

X
=1


¡
 −1

¢)
+ 2

X
=2

̈

°° − −1
°° 
(2.11)

where  is a  ×  symmetric matrix that is asymptotically nonsingular, and both
P

=2 and
P

=1

enter the first term in (2.11) twice and symmetrically. Nevertheless, this reformulation only makes sense

for the over-identification case (  )  If the dimension of  is the same as that of  i.e.,  =  the

resulting PGMM estimators of {} based on the minimization of (2.11) are given by

̂ =

Ã
X
=1

X
=2

∆
0


!−1
X
=1

X
=2

∆ for each  = 1  

That is, the objective function in (2.11) always take the value zero, regardless of the choices of  and

2 and the PGMM estimators of {} remain as a constant no matter whether there is a beak in the
data or not. So we cannot apply the above PGMM method to estimate the number of breaks at all. This

motivates us to consider the PGMM objective function of the form given in (2.8).

2.3.1 Post-Lasso GMM estimation

For any α =
¡
01  

0
+1

¢0
and T = {1  } with 1  1  · · ·   ≤  we define

2 (α; T) =
+1X
=1

⎡⎣ 1


−1X
=−1+1

X
=1

 ()

⎤⎦0 


⎡⎣ 1


−1X
=−1+1

X
=1

 ()

⎤⎦
+

X
=1

"
1



X
=1

1 (+1 )

#0


"
1



X
=1

1 (+1 )

#
 (2.12)

where  () = 
¡
∆ − 0∆

¢
 1 (+1 ) =  (∆ −0+1 +

0
−1) and 


 is a

regime-specific × symmetric weight matrix that is p.d. in large samples. As in the case of PLS estima-

tion, the second term in (2.12) is important when  or the minimum regime length is fixed and can be omit-

ted in the case where min0≤≤ |+1 −  |→∞ as  →∞. Let α̂
 (T) =

¡
̂

1 (T)0   ̂+1 (T)0

¢0
denote the minimizer of 2 defined in (2.12). By setting T as T̂̂ the set of estimated break dates,
we obtain the post-Lasso GMM estimator

α̂
̂ = α̂

̂

³
T̂̂
´
= Υ (T̂̂)−1Ξ

³
T̂̂
´


where Υ (·) and Ξ (·) are defined in (A.8) and (A.9) in Appendix A.2, respectively. We shall study
the limiting distribution of α̂

̂ in Section 4.3.

To obtain the PGMM estimate and the associated post-Lasso estimate, one needs to choose the weight

matrices  ( = 2   ) and 

 ( = 1  ̂+ 1) In the simulation and application below, we adopt

a two-step strategy for determining both sets of weights. For , we first obtain the estimate ̈ by

10



choosing the  ×  identity matrix I as the weight matrix. In the second step, we specify  as the

inverse of the estimated covariance matrix of (̈ ̈−1) and achieve an updated estimate of . A

similar procedure is adopted for determining the weights in post-Lasso estimation.

3 Asymptotic properties of the PLS estimators

In this section we address the asymptotic properties of the PLS estimators.

3.1 Basic assumptions

Let 0 =  0 −  0−1 for  = 1 
0 + 1 Define

min = min
1≤≤0+1

0  min = min
1≤≤0

°°0+1 − 0
°°  and max = max

1≤≤0

°°0+1 − 0
°° 

Apparently, min denotes the minimum interval length among the 0 + 1 regimes, and min and max

denote the minimum and maximum jump sizes, respectively. In the case of fixed  min does not pass to

infinity as  →∞ When  →∞, min can either pass to infinity or stay fixed unless otherwise stated.
We will maintain the assumption that max is always a fixed constant but min can be either fixed or

shrinking to zero as either  →∞ or ( )→∞. Define the  ¡0 + 1
¢× 

¡
0 + 1

¢
matrix Φ and


¡
0 + 1

¢× 1 vector Φ and Ψ

 , respectively:

Φ = Φ

¡T 00

¢
and Ψ = Ψ




¡T 00

¢
for  =  or  (3.1)

where Φ (·) and Ψ (·) are defined in (A.3) and (A.4) in Appendix A.1, respectively.
To study the asymptotic properties of the PLS estimators, we make the following assumptions.

Assumption A.1. (i) Let  = (1   )
0 { } are independently distributed over 

(ii)  (∆) = 0 and  (−1∆) = 0 for  = 1   and  = 2   max1≤≤ max1≤≤

 kk20   ∞ for  =  and  and some 0 ≥ 2
(iii) Let  =

1


P
=1 

0
 There exist two constants  and ̄ such that 0  ≤ min1≤≤

min
¡

¡


¢¢ ≤ max1≤≤ max
¡

¡


¢¢ ≤ ̄ ∞

(iv) Let  denote the error term in the least squares projection of  on −1 There exists a

constant   0 such that min(
−1P

=1 ( 
0
 )) ≥ 

Assumption A.2. (i) max =  (1) and 12min →  ∈ (0∞] as ( )→∞.
(ii) plim( )→∞0121

−1
min =  ∈ [0∞)

(iii) plim( )→∞ (1+1)21 =∞

(iv) For some 0  1 
1−0 (ln )00 → 0 as ( )→∞

Assumption A.3. Let D0+1 =diag(
p
01  

q
0
0+1) ⊗ I Let  denote an arbitrary  × (0 + 1)

selection matrix such that kk is finite, where  ∈ [1 (0 + 1)] is a fixed integer.

(i) There exists Φ0  0 such that
°°°D−10+1ΦD

−1
0+1 −Φ0

°°°
sp
=  (1) 
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(ii)
√
Φ−10 D

−1
0+1Ψ




→ 
¡
0 Φ−10 Ω0Φ

−1
0 0

¢


Assumption A.1(i) requires that { } be independently distributed. It may be relaxed to al-

low for weak forms of cross section dependence at very lengthy arguments. A.1(ii) specifies moment

conditions on { }. If  (|+1 ) = 0 a.s. for each  and , then the first part of A.1(ii)

is satisfied. In conjunction with A.1(i), A.1(ii) implies that each block element of
√
̇

 is  (1)

and −1
°°°̇



°°°2 =  (1) by Chebyshev inequality. A1(iii)-(iv) impose conditions on 
¡


¢
and

−1
P

=1 ( 
0
 )  They are used to ensure that the × matrix ̇ is well behaved (see Lemma

3.1 below). Assumption A.2 mainly specifies conditions on 0 min 1 and  We use the probability

limit instead of the usual limit in A.2(ii)-(iii) because we allow 1 to be data-driven and thus random. We

allow the minimum break size min to shrink to zero as  →∞ but it cannot shrink to zero faster than

−12. In addition, we allow the number of breaks 0 to diverge to infinity at a slow rate. Assumption

A.3 specifies conditions to ensure the asymptotic normality for any linear combinations of the Lasso or

post Lasso estimators. If 0 remains fixed as ( ) → ∞, we can simply replace the selection matrix
 by an identity matrix. From the definition of the SBTM Φ (·) in (A.3), we can easily see that the
off-diagonal block matrices Φ†

¡T 00

¢
  = 2 0 + 1 are not involved with any summation over the

time index. This implies that after normalization, the probability limit of D−1
0+1ΦD

−1
0+1 is given by

a block diagonal matrix provided min →∞ as  →∞.5 That is, Φ0 is now block diagonal and one can
readily check its non-singularity.

In the special case where min is bounded away from zero and 0 remains fixed as ( )→∞, A.2
is simplified to

Assumption A.2∗ plim( )→∞121 =  ∈ [0∞) and plim( )→∞ (1+1)21 =∞

The following lemma studies the eigenvalue behavior of ̇ 

Lemma 3.1 Suppose Assumptions A.1 and A.2(iv) hold. Let ̇0 = (̇ ) Then

(i) There exist two constants ̇0
and ̄̇0

such that 0 ̇0
≤ min(̇0) ≤ max(̇0) ≤ ̄̇0

∞

(ii)
°°°̇ − ̇0

°°°
sp
=  (1) 

(iii) 1
2̇0

≤ min(̇ ) ≤ max(̇ ) ≤ 2̄̇0
w.p.a.1.

Lemma 3.1 indicates that despite the divergent dimensions of the × matrix ̇ as  →∞ its

eigenvalues are well behaved asymptotically. With the help of this lemma, we show in Lemma B.1 that√

³
̇ − 0

´
=  (1) for each  = 1   Lemma 3.1 is also used in the proof of Theorem 3.2 below.

3.2 Consistency

The following theorem establishes the consistency of {̃}
5 Intuitively, this means that the second term in (2.6) does not contribute to the limiting distribution of the post-Lasso

estimator when min →∞ as  →∞
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Theorem 3.2 Suppose that Assumptions A.1 and A.2(iv) hold. Then (i) −1
°°°β̃ − β0°°°2 = 

¡
−1

¢


and (ii) ̃ − 0 = 

¡
−12

¢
for each  = 1  

Theorems 3.2(i) and (ii) establish the mean square and pointwise convergence rates of {̃} respec-
tively. The two results are equivalent in the case of fixed  We allow ( )→∞ and then the proof of

Theorem 3.2(ii) demands some extra effort. In particular, we need a close examination of the factorization

and inversion properties of a SBTM.

Let T 00 = {2  } \T 00 . Let 01 = 01 and 0 = 0 − 0−1 for  = 2   Let ̃1 = ̃1 and

̃ = ̃ − ̃−1 for  = 2   The following theorem establishes the selection consistency.

Theorem 3.3 Suppose that Assumptions A.1-A.2 hold. Then 
³°°°̃°°° = 0 for all  ∈ T 00

´
→ 1 as  →

∞

Theorem 3.2 says that w.p.a.1 all the zero vectors in {0  2 ≤  ≤ } must be estimated as exactly
zero by the PLS method so that the number of estimated breaks ̃ cannot be larger than 0 when 

is sufficiently large. On the other hand, by Theorem 3.2(ii), we know that the estimates of the nonzero

vectors in {0  2 ≤  ≤ } must be consistent by noting that ̃− ̃−1 consistently estimates 0 for  ≥ 2
Put together, Theorems 3.2 and 3.3 imply that the AGFL has the ability to identify the true regression

model with the correct number of breaks consistently when the minimum break size min does not shrink

to zero too fast.

Corollary 3.4 Suppose that Assumptions A.1-A.2 hold with  = ∞ in Assumption A.2(i). Then (i)

lim→∞ 
¡
̃ = 0

¢
= 1 and (ii) lim→∞  (̃1 =  01   ̃0 =  00 | ̃ = 0) = 1

The above corollary implies that, as long as min remains fixed or shrinks to zero at a rate slower

than −12 as  → ∞, we can estimate the number of structural changes and all the break dates
consistently. In contrast, Qian and Su (2015, Theorem 3.3) only establish the claim that the group fused

Lasso procedure can not under-estimate the number of breaks in a time series regression and that all

the break fractions (but not the break dates) can be consistently estimated as in Bai and Perron (1998).

More precisely, letting D () ≡ sup∈ inf∈ |− | for any two sets  and  Qian and Su (2015,

Theorem 3.2) establish the claim that lim→∞ 
³
D
³
T̃̃ T 00

´
≤ 

´
= 1 for some sequence {} such

that  → 0 and  →∞ as  →∞ In our panel setting, the availability of  cross sectional units for

each time period permits us to obtain the set of consistent preliminary estimates {̇} used to construct
the adaptive weights {̇} The adaptive nature of our procedure helps to identify the exact set of break
dates and yield stronger results than those in Qian and Su (2015).

3.3 Limiting distributions of the Lasso and post-Lasso estimators

In this subsection we study the asymptotic distributions of the Lasso and post-Lasso estimators.
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Let A = {̃ =  0 for  = 1 
0} and A

 its complement. By Corollary 3.4, we have


n√

D0+1(α̃

̃(T̃̃)−α0) ∈ C | ̃ = 0

o
= 

n√
D0+1(α̃


̃(T̃̃)−α0) ∈ C A | ̃ = 0

o
+

n√
D0+1(α̃


̃(T̃̃)−α0) ∈ C A

 | ̃ = 0
o

= 
n√

D0+1(α̃


0(T 00)−α0) ∈ C
o
+  (1) 

where C ⊂ R and α̃

0(T 00) is the infeasible estimator of α0 which is obtained if one knows the exact

set T 00 of true break dates:

α̃

0(T 00) = Φ−1Ψ

  (3.2)

where Φ and Ψ

 are defined in (3.1).

The following theorem reports the limiting distributions of the Lasso estimator α̃̃(T̃̃) and the
post-Lasso estimator α̃

̃(T̃̃) conditional on the large probability event
©
̃ = 0

ª
.

Theorem 3.5 Suppose that Assumptions A.1-A.3 hold with  = ∞ in Assumption A.2(i). Then

conditional on ̃ = 0 we have (i)
√
D0+1(α̃̃(T̃̃) − α0)

→ 
¡
0 Φ−10 Ω0Φ

−1
0 0

¢
, and (ii)√

D0+1(α̃

̃(T̃̃)−α0)

→ 
¡
0 Φ−10 Ω0Φ

−1
0 0

¢
.

Noting that the dimensions of α̃̃(T̃̃) and α̃
̃(T̃̃) diverge to infinity when 0 → ∞ we cannot

derive their asymptotic normality directly. For this reason, we follow the literature on inferences with a

diverging number of parameters (e.g., Fan and Peng (2004), Lam and Fan (2008), Lu and Su (2015a)) and

prove the asymptotic normality for any arbitrary linear combinations of elements of α̃̃(T̃̃) or α̃
̃(T̃̃)

Since we allow 0 to be either fixed or diverge to infinity as  → ∞ ̃(T̃̃) and ̃

 (T̃̃)’s may have

different convergence rates to their true values. In the special case where 0 is proportional to  both

achieve the usual
√
 -rate of consistency.

Theorem 3.5 indicate that both the Lasso estimator α̃̃(T̃̃) and the post-Lasso version α̃
̃(T̃̃) are

asymptotically equivalent to the infeasible estimator α̃

0(T 00) conditional on the large probability event

̃ = 0 The latter can be obtained only if one knows all break dates. In this sense, our Lasso and

post-Lasso estimators have the oracle efficiency. Despite the asymptotic equivalence between the Lasso

and post-Lasso estimators, it is well known that the post-Lasso estimator typically outperforms the Lasso

estimator and is thus recommended for practical use.

3.4 Choosing the tuning parameter 1

Let α̃̃1
≡ α̃̃1

(T̃̃1
) = (̃1(T̃̃1

)0  ̂̃1
+1(T̃̃1

)0)0 denote the set of post-Lasso estimates of the

regression coefficients based on the break dates in T̃̃1
= T̃̃1

(1)  where we make the dependence

of various estimates on 1 explicit. Let ̃
2
T̃̃1

≡ 1
−11 (α̃̃1

; T̃̃1
) Following Wang et al. (2007),

Zhang et al. (2010) and Su and Qian (2014), we propose to select the tuning parameter 1 by minimizing
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the following information criterion (IC):

1 (1) = ̃2T̃̃1

+ 1 (̃1 + 1)  (3.3)

where 1 is a tuning parameter which plays a similar role to that of
2


and
ln( )


in Akaike and

Bayesian information criteria, respectively.

Denote Ω = [0 max]  a bounded interval in R
+. We divide Ω into three random subsets Ω0 Ω− and

Ω+ as follows

Ω0 =
©
1 ∈ Ω : ̃1 = 0

ª
 Ω− =

©
1 ∈ Ω : ̃1  0

ª
 and Ω+ =

©
1 ∈ Ω : ̃1  0

ª


Clearly, Ω0 Ω− and Ω+ denote the three subsets of Ω in which the correct-, under- and over-number of

breaks are selected by our AGFL procedure, respectively. We suppress their dependence on the sample

sizes  and  for notational simplicity. They are random because ̃1 has to be determined based on

the random sample. Let 01 denote an element in Ω0 that satisfies the conditions on 1 in Assumptions

A.2(ii)-(iii).

Let ̄2 ≡ 1
(−1)

P
=1

P
=2 (∆)

2
and 20 ≡plim̄2  To state the next result, we add the

following assumptions.

Assumption A.4. (i) plim→∞min1≤≤0 min∈R 1
2min

P
=1[(

0
+1−)0 0 − (0 −)00 −1]2 ≥

  0

(ii) 1√
(−1)

P
=2

P
=1∆∆ =  (1) 

(iii) As ( )→∞ 
(minmin)

2
→ 0

Assumption A.5. As ( )→∞
³
0 + 

min
2
min

´
1 → 0 and 1 →∞

A.4(i) imposes conditions on the parameters and the observations that are either at the break dates

or immediately preceding the break dates. The scalar 2min reflects the fact that we allow the minimum

break size min to shrink to zero. In the latter case, pulling observations in two adjacent regimes with the

break size of order  (min) together to estimate the regression coefficients within these two regimes is

still consistent with −1min-rate of consistency. Under A.2(i)-(ii), A.4(ii) can be verified under various weak

dependence conditions, say, strong mixing or martingale difference sequence-type of conditions. A.4(iii)

imposes restriction on min min and the sample sizes. It is trivially satisfied if min ∝  and min remains

fixed as  →∞ or ( )→∞, and reduces to the condition that  =∞ in Assumption A.2(i) in the

case where  is fixed. A.5 reflects the usual conditions for the consistency of model selection, that is, the

penalty coefficient 1 cannot shrink to zero either too fast or too slowly. If min ∝  and −1min =  (1) 

the first part of A.5 requires that 1 → 0 which is standard for a typical IC function. The second

condition in A.5 is different from the typical IC requirement that 1 →∞ in the model selection

literature because it is possible for a regime in a over-parametrized model to have only one time series

observation, and −1 indicates the probability order of the distance between the first term in our IC

function for an over-parametrized model and that for the true model.
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Theorem 3.6 Suppose that Assumptions A.1, A.2(i) and A.3-A.5 hold with  = ∞ in Assumption

A.2(i). Then 
¡
inf1∈Ω−∪Ω+ 1 (1)  1

¡
01

¢¢→ 1 as  →∞

Theorem 3.6 implies that the 1’s that yield the over-estimated or under-estimated number of breaks

fail to minimize the information criterion w.p.a.1. Consequently, the minimizer of 1 (1) can only be

the one that produces the correct number of estimated breaks in large samples. Note that we prove the

above theorem without requiring 1 to satisfy Assumptions A.2(ii)-(iii). It indicates that if the number

of corrected breaks is of our major concern, we can simply choose 1 to minimize 1 (1) 

4 Asymptotic properties of the PGMM estimators

In this section we address the statistical properties of the PGMM estimators.

4.1 Assumptions

Define the 
¡
0 + 1

¢× 
¡
0 + 1

¢
matrix Υ and 

¡
0 + 1

¢× 1 vector Ξ , respectively:

Υ = Υ

¡T 00

¢
and Ξ = Ξ




¡T 00

¢
for  =  or  (4.1)

where Υ (·) and Ξ (·) are defined in (A.8) and (A.9) in Appendix A.2, respectively. To study the
asymptotic properties of the PGMM estimators, we make the following assumptions.

Assumption B.1. (i) Let  = (2   )
0 {  } are independently distributed over 

(ii)  (∆) = 0 for  = 1   and  = 2   max1≤≤ max1≤≤  kk20    ∞ for

 =   and  and some 0  2

(iii) Let  =
1


P
=1 

0
  = 

¡
0

¢

¡


¢
 and  =  There exist two con-

stants  and ̄ such that 0  ≤ min1≤≤ min () ≤ max1≤≤ max () ≤ ̄  ∞ There

exist two constants  and ̄ such that 0  ≤ min2≤≤ min (−1) ≤ max2≤≤ max (−1) ≤
̄ ∞ and 0  ≤ min1≤≤ min () ≤ max1≤≤ max () ≤ ̄ ∞

(iv) Let ̂ denote the the residual from the auxiliary GMM estimation of  = −1 + 

with  as the IV for −1 and  as the weight function. Let ̂ =
1


P
=1 ̂

0
 There exists a

constant   0 such that plim( )→∞min(
0
̂̂ ) ≥ 

Assumption B.2. (i) max =  (1) and 12min →  ∈ (0∞] as ( )→∞.
(ii) plim( )→∞0122

−2
min =  ∈ [0∞).

(iii) plim( )→∞ (2+1)22 =∞

(iv) For some 0  1 
1−0 (ln )00 → 0 as ( )→∞

Assumption B.3. (i)
°°°D−30+1ΥD

−1
0+1 −Υ0

°°°
sp
=  (1) 

(ii)
√
Υ−10 D

−3
0+1Ξ




→ 
¡
0 Υ−10 Σ0Υ

−1
0 0

¢
where  is as defined in Assumption A.3

Assumptions B.1-B.3 parallel Assumptions A.1-A.3. B.1(ii) specifies moment conditions on { 
}. In conjunction with B.1(i), B.1(ii) implies that each block element of

√
̈

 is  (1) and
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−1
°°°̇



°°°2 =  (1) by Chebyshev inequality. B.1(iii) requires that  
¡
0−1

¢

¡
−1

¢


and 
¡
0

¢

¡


¢
be nonsingular uniformly in  B.1(v) requires that 0̂̂ be asymptot-

ically nonsingular. In conjunction with Assumption B.2(iv), B.1 implies that both 0−1−1
and 0 have eigenvalues that are bounded away from zero and infinity w.p.a.1. Assumption

B.2 mainly specifies conditions on 0 min 2 and  Assumption B.3 specifies conditions to ensure

the asymptotic normality of the post Lasso estimator. Note that the normalizations in B.3 is different

from those in A.3 because the dominant terms in the definitions of Υ and Ξ are now involved

with two summations over the time index instead of one. From the definition of the SBTM Υ (·) in
(A.8), we can easily see that the off-diagonal block matrices Υ†

¡T 00

¢
  = 2 0+1 are not involved

with any summation over the time index. This implies that after normalization, the probability limit of

D−3
0+1ΥD

−1
0+1 is given by a block diagonal matrix provided min → ∞ as  → ∞.6 That is, Υ0 is

now block diagonal and one can readily check its non-singularity.

In the special case where min is bounded away from zero and 0 remains fixed as  → ∞, B.2
reduces to

Assumption B.2∗ plim( )→∞122 =  ∈ [0∞) and plim( )→∞ (2+1)22 =∞

The following lemma studies the eigenvalue behavior of ̈ 

Lemma 4.1 Suppose Assumptions B.1 and B.2(iv) hold. Then w.p.a.1 the eigenvalues of ̈ are

bounded away from zero and infinity, i.e., there exist two constants ̈ and ̄̈ such that 0 ̈ ≤
min(̈ ) ≤ max(̈ ) ≤ ̄̈ ∞

Lemma 4.1 indicates that despite the divergent dimensions of the × matrix ̈ as  →∞ its

eigenvalues are well behaved. This lemma is used to prove
√

³
̈ − 0

´
=  (1) for each  = 1  

and Theorem 4.2 below.

4.2 Consistency

The following theorem establishes the consistency of {̂}

Theorem 4.2 Suppose that Assumptions B.1 and B.2(iv) hold. Then (i) −1
°°°β̂ − β0°°°2 = 

¡
−1

¢


and (ii) ̂ − 0 = 

¡
−12

¢
for each  = 1  

Theorems 4.2(i) and (ii) establish the mean square and pointwise convergence rates of {̂} respec-
tively. The two results are equivalent in the case of fixed  and are not in the case of large  If

( ) → ∞ the proof of Theorem 4.2(ii) requires the use of the factorization and inversion properties

of a SBTM as in the proof of Theorem 3.2(ii).

Let ̂1 = ̂1 and ̂ = ̂ − ̂−1 for  = 2   The following theorem establishes the selection

consistency.

6 Intuitively, this means that the second term in (2.12) does not contribute to the limiting distribution of the post-Lasso

GMM estimator when min →∞ as  →∞
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Theorem 4.3 Suppose that Assumptions B.1-B.2 hold. Then 
³°°°̂°°° = 0 for all  ∈ T 00

´
→ 1 as  →

∞

Theorem 4.3 says that w.p.a.1 all the zero vectors in {0  2 ≤  ≤ } must be estimated as exactly
zero by the PGMM method. On the other hand, by Theorem 4.2(ii), we know that the estimates of the

nonzero vectors in {0  2 ≤  ≤ } must be consistent by noting that ̂− ̂−1 consistently estimates 
0


for  ≥ 2 Put together, Theorems 4.2 and 4.3 imply that the AGFL has the ability to identify the true
regression model with the correct number of breaks consistently when the minimum break size min does

not shrink to zero too fast.

Corollary 4.4 Suppose that Assumptions B.1-B.2 hold with  = ∞ in Assumption B.2(i). Then (i)

lim→∞ 
¡
̂ = 0

¢
= 1 and (ii) lim→∞  (̂1 =  01   ̂0 =  00 | ̂ = 0) = 1

The above corollary implies that the PGMM method helps us to estimate the number of structural

changes and all the break dates consistently.

4.3 Limiting distribution of the post-Lasso estimator

In this subsection we study the limiting distribution of the post-Lasso estimator α̂
̂(T̂̂). The study

of the asymptotic distribution of the Lasso estimator α̂̂(T̂̂) needs the introduction of a different set
of notations and conditions. Because of the special feature of the first term in (2.8), the PGMM-based

Lasso estimator is generally not as asymptotically efficient as the post-Lasso estimator.7 To save space,

we relegate the study of its limiting distribution to the supplementary Appendix E.

Using arguments as used in Section 3.3, we can argue that the post-Lasso GMM estimator α̂
̂(T̂̂) is

asymptotically equivalent to the infeasible estimator α̂

0(T 00) which is obtained if one knows the exact

set T 00 of true break dates:

α̂0(T 00) = Υ−1Ξ

 

where Υ and Ξ

 are defined in (4.1). The following theorem reports the limiting distribution of

α̂
̂(T̂̂) conditional on the large probability event

©
̂ = 0

ª


Theorem 4.5 Suppose that Assumptions B.1-B.3 hold. Then conditional on ̂ = 0 we have
√
D0+1

(α̂
̂(T̂̂)−α0)

→ 
¡
0 Υ−10 Σ0Υ

−1
0 0

¢


Since we allow 0 to be either fixed or diverge to infinity in the case of large  ̂

 (T̂̂)’s may have

different convergence rates to their true values. In the special case where 0 is proportional to  ̂

 (T̂̂)

achieves the usual
√
 -rate of consistency.

7Notice that the derivative of (2.8) with respect to (wrt)  does not involve with any summation over  at all. To derive

the limiting distribution of the Lasso estimator ̂̂(T̂̂) we need to sum both sides of the first order conditions (FOCs)

wrt  over  for each of the ̂ + 1 estimated regimes and apply the fact that ̂ = ̂ if  belongs to the th estimated

regime. But this device cannot generate the type of FOCs that are used to obtain the post-Lasso GMM estimator in view

of the fact that
̂−1

=̂−1+1
 like


=1 appears in the first term of the post-Lasso GMM objective function in (2.12) twice.
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4.4 Choosing the tuning parameter 2

Let α̂̂2
= α̂̂2

(T̂̂2
) = (̂1(T̂̂2

)0  ̂̂2
+1(T̂̂2

)0)0 denote the set of post-Lasso estimates of the

regression coefficients based on the break dates in T̂̂2
= T̂̂2

(2)  where we make the dependence of

various estimates on 2 explicit. Let ̂
2
T̂̂2

≡ 1
−12 (α̂̂2

 T̂̂2
) We propose to select the tuning

parameter 2 by minimizing the following information criterion:

2 (2) = ̂2T̂̂2

+ 2 (̂2 + 1)  (4.2)

where 2 is a tuning parameter. Denote Ω2 = [0 2max]  a bounded interval in R
+. We divide Ω2 into

three subsets Ω20 Ω2− and Ω2+ as follows

Ω20 =
©
2 ∈ Ω2 : ̂2 = 0

ª
 Ω2− =

©
2 ∈ Ω2 : ̂2  0

ª
 and Ω2+ =

©
2 ∈ Ω2 : ̂2  0

ª


Let 02 denote an element in Ω20 that also satisfies the conditions on 2 in Assumptions B.2(ii)-(iii).

To state the next result, we add the following assumptions.

Assumption B.4. (i) plim→∞min1≤≤0 min∈R 1
2min

 ()
0
0

 () ≥   0 where  () =
1


P
=1[(

0
+1 − )0 0 − (0 − )00 −1] 0 

(ii) 1√
(0−1)

P0 −1
=0−1+1

P
=1 ∆ =  (1) for each  = 1 0 + 1

(iii) As ( )→∞ min →∞ and 
(minmin)

2
→ 0

Assumption B.5. As ( )→∞
³
1 + 

min
2
min

´
2 → 0 and 2 →∞

Assumptions B.4-B.5 parallel A.4-A.5. Note that we now require min →∞ as  →∞ The following

theorem implies that the minimizer of 2 (2) can only be the one that produces the correct number of

estimated breaks in large samples.

Theorem 4.6 Suppose that Assumptions B.1, B.2(i) and B.3-B.5 hold with  = ∞ in Assumption

B.2(i). Then 
¡
inf2∈Ω2−∪Ω2+ 2 (2)  2

¡
02

¢¢→ 1 as  →∞

4.5 The case of fixed 

So far we have derived the results for both the PLS and PGMM estimation under the condition ( )→
∞ From the proofs of the above results, we can easily tell that all results continue to hold in the fixed

 framework. Noticeable differences mainly lie in two aspects. First, when  is fixed, both min and 0

are fixed integers too and all the conditions that are involved with either one can be simplified. Second,

some of the proofs (e.g., those of Lemmas 3.1, B.1-B.3, 4.1, and C.1 and Theorems 3.2 and 4.2) can

be greatly simplified in this case. In particular, now we can allow consecutive breaks for both PLS and

PGMM estimation.
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5 Monte Carlo simulations

In this section we conduct a set of Monte Carlo experiments to evaluate the finite sample performance

of our AGFL method. The first set of experiments are concerned with the PLS or PGMM estimation

of static panel data models. We first evaluate the probability of falsely detecting breaks when there are

none. Then we experiment on the data generating processes (DGPs) with one or two breaks. In this

case, we evaluate both the probability of correctly detecting the number of breaks and the accuracy of

estimating the break dates. The second set of experiments deal with the PGMM estimation of dynamic

panel data models. We focus on DGPs with a lagged dependent variable and an exogenous variable.

Finally we consider the case where number of breaks increases with the time dimension.

For fast computation, we use the block-coordinate descent algorithm (see, e.g., Angelosante and

Giannakis (2012)) implemented in MATLAB Excutable (MEX) to solve the minimization problem in

(2.2) for the PLS case and (2.8) for the PGMM case. We select the tuning parameters 1 and 2

that minimize the information criterion in (3.3) and (4.2) for the cases of PLS and PGMM estimation,

respectively. Specifically, we choose a tuning parameter max that would yield zero break in every DGP

and a min that would yield many breaks. In practice, we can easily find such max and min by trial and

error. We then search for the optimal tuning parameter on the 50 evenly-distributed logarithmic grids

in the interval [min max]. We choose 1 = 2 =  ln ( ) 
√
 in (3.3) or (4.2) with  = 005.

Simulations (not reported here) show that the performance of our method is not sensitive to the choice

of , especially when  or  is large.

Following the literature on the adaptive Lasso, we set 1 = 2 = 2 in the construction of the adaptive

weights {̇} and {̈} that are used for the PLS and PGMM estimation, respectively. In addition, we

choose all weight matrices {  = 2  } and { 
   = 1  ̂+1} as detailed in the last paragraph

of Section 2.3. The number of repetitions in all subsequent Monte Carlo experiments is 1000.

5.1 The case of static panel

We consider the following DGPs:

 =  +  +   = 1       = 1      (5.1)

where  = −1
P

=1  and

• DGP 1:  ∼  (0 1),  ∼  (0 1).

• DGP 2: Same as DGP 1 except  ∼ AR(1) for each  :  = 05−1+ ,  ∼  (0 075).

• DGP 3: Same as DGP 1 except  ∼ GARCH(1 1) for each  :  =
√
,  = 005 +

0052−1 + 09−1,  ∼  (0 1).

• DGP 4:  = +03,  and  are  (0 1) and mutually independent,  = +03,

 ∼  (0 1) and independent of .
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• DGP 5: Same as DGP 4 except  ∼ AR(1) for each  :  = 05−1+ ,  ∼  (0 075).

• DGP 6: Same as DGP 4 except  ∼ GARCH(1 1) for each  :  =
√
,  = 005 +

0052−1 + 09−1,  ∼  (0 1).

We consider  = 6, 12, 50 or 100, and  = 50 100, and 200. For each DGP, we set  = 1 for

all  when no break exists,  = 1 {1 ≤  ≤ 2} when there is one break, and  = 1 {1 ≤  ≤ 2} +
1 {2   ≤ b23c} when there are two breaks, where 1 {·} denotes the usual indicator function and
b·c takes the integer part. If  = 6, the last case allows consecutive breaks at  = 4 and 5.
Note that the individual effects are generated from within-average and thus regarded as “fixed effects”.

In the first three DGPs, no endogeneity issue exists and we use PLS to estimate the models. DGP 1 serves

as the benchmark case where both the regressor and the idiosyncratic error processes are strong white

noise. DGP 2 allows serial correlation in the idiosyncratic error process and DGP 3 allows conditional

heteroskedasticity. DGPs 4-6 contain an endogenous variable  and a variable  that generates a valid

IV. We apply PGMM to estimate the models, using ( −1)0 as the instrument. DGP 4 serves as the

benchmark case where both the regressor and the error terms are i.i.d. across  and .  and  are

obviously correlated and  is correlated with  due to the presence of  in both. DGP 5 allows serial

correlation in  and , and DGP 6 allows conditional heteroskedasticity in .

To evaluate the performance of the PLS or PGMM estimation under different noise levels, we select

the scale parameter  to be 05 and 1. In DGP 1 without break, these values for  correspond

to signal-to-noise ratios of 4 and 1 (or in terms of the goodness of fit 2 of the model, 0.8 and 0.5),

respectively.

Tables 1 and 2 report simulation results from the above DGPs. The first panel of Table 1 reports the

percentages of falsely detecting breaks when there are none (0 = 0). The second and the third panels

report the percentages of correctly estimating the number of breaks when the true numbers of breaks

are 1 and 2, respectively. In the following we summarize some important findings from Table 1. First,

the simulations confirm that when there are no breaks, probabilities of falsely detecting breaks decline

to zero as either  or  increases. This is true for both the PLS estimation in DGPs 1-3 in the case of

no endogenous regressor and the PGMM estimation in DGPs 4-6 in the case of an endogenous regressor.

When  = 50 and  = 6 or 12, PLS and PGMM tend to over-estimate the number of breaks, especially

when noise level is high. Second, when there is one or two breaks, the probabilities of correctly detecting

one break converge to 100% as  or  increases. In the one-break case, when both  and  are small

and the noise level is high ( = 1), PLS gives poor performance in DGPs 1 and 3. However, with  = 50

and  = 50, PLS already correctly detects one break in 87% of all repetitions for DGP-1. The case for

DGP 3 is similar. For DGP 2, where the error is serially correlated, PLS performs much better at small

 and  . Results from the two-break case are similar. Third, holding  fixed, an increase in  always

leads to higher probability of correct detection. But holding  fixed, an increase in  does not always

bring a better performance for the PGMM estimation. For example, when  = 50 and  increases from

50 to 100, the probability of correct detection may decline slightly for the PGMM estimation. The reason
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Table 1: The determination of the number of breaks for DGPs 1-6 (static panels)

DGP   = 50  = 100  = 200
 : 6 12 50 100 6 12 50 100 6 12 50 100

0 = 0, % of falsely detecting breaks when there are none

1 0.5 4.4 0.8 0 0 1 0.1 0 0 0.1 0 0 0
1 61.3 57.7 7.1 1.2 37.7 28 1.5 0.1 15.3 5.6 0.1 0

2 0.5 0 0 0 0 0 0 0 0 0 0 0 0
1 21.7 8.4 0.1 0 6.4 1.6 0 0 0.7 0.1 0 0

3 0.5 4.3 0.4 0 0 0.9 0 0 0 0 0 0 0
1 60.3 55.6 8.4 1.1 37.8 24.9 1.4 0.2 16.4 7.4 0.1 0

4 0.5 27.2 11.8 0.3 0 7.9 2 0.1 0 1.8 0.2 0 0
1 29.5 11.4 0.5 0 10.9 2 0 0 1.9 0.4 0 0

5 0.5 32 18.7 0.2 0 10.9 4.2 0 0 1.6 0.6 0 0
1 31.3 19.1 0.7 0 11.1 3.4 0 0 2.1 0.2 0 0

6 0.5 27.6 13.7 0.5 0 11.1 3.3 0 0 0.8 0.2 0 0
1 27.7 13 0.2 0 10.6 3.3 0 0 2.2 0.2 0 0

0 = 1, % of correctly detecting one break

1 0.5 96.1 98.7 100 100 99.4 99.9 100 100 99.9 100 100 100
1 43.8 40.3 87 94.3 61.2 71.3 97.3 99.9 83.9 92.4 100 100

2 0.5 100 100 100 100 100 100 100 100 100 100 100 100
1 80.6 88.5 99.9 99.9 92 97.6 100 100 98.9 100 100 100

3 0.5 95.6 99.1 100 100 99.4 99.9 100 100 99.9 100 100 100
1 46.1 41.8 86.2 94.5 63.7 71.4 97.9 99.6 85 90.9 99.8 100

4 0.5 75.1 84.1 97.4 96.7 92.6 96.5 100 100 98.9 99.5 100 100
1 72.1 80.2 84.7 82.6 89.5 95.5 91.9 87.8 98.1 99.4 99.6 99.4

5 0.5 70.3 82.9 99 99.5 89.6 95 100 100 99 99.6 100 100
1 65.7 77.8 93.7 89.5 88.4 95.5 98.8 97.5 97.8 99.8 99.9 99.9

6 0.5 74.8 83.1 99.1 98.7 92.1 95.2 100 100 98.6 99.6 100 100
1 74.4 82.1 86.9 84.9 90.3 96 97.3 93.9 98.1 99.3 100 99.6

0 = 2, % of correctly detecting two breaks

1 0.5 96.9 99 100 100 99.6 100 100 100 100 100 100 100
1 50.5 40.5 81.3 91 71.1 69.8 96.7 99.7 86 90.5 99.8 100

2 0.5 99.9 100 100 100 100 100 100 100 100 100 100 100
1 84.1 89.8 99.7 100 93.3 98.8 100 100 99.1 99.9 100 100

3 0.5 95.5 98.2 100 100 99.1 99.9 100 100 100 100 100 100
1 49.9 40.9 82.7 92.3 68.7 72.6 97.2 99.8 86.3 91.6 99.8 100

4 0.5 81.6 84.5 97.2 96.2 92.8 95.7 99.9 99.9 99.4 99.5 100 100
1 66.2 75.6 77.1 71.8 86.4 91.7 90.8 83.9 97.4 99.2 99 98.9

5 0.5 74.9 81.1 98.4 99.7 92.9 95 99.9 100 99.3 99.8 100 100
1 54.5 69 87.5 85.1 79.7 89.8 98.6 97.8 96.7 99.7 99.9 100

6 0.5 77.7 80.6 98.7 98.2 92.2 96 100 99.9 98.2 99.8 100 100
1 67.4 79.4 83.3 75.4 88.8 94 95 92.6 98.1 99.3 99.9 99.6

22



Table 2: The accuracy of estimating the break dates for DGPs 1-6 (static panels)

DGP   = 50  = 100  = 200
 : 6 12 50 100 6 12 50 100 6 12 50 100

0 = 1

1 0.5 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0.02 0.00 0.01 0 0 0 0.00 0 0 0 0

2 0.5 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

3 0.5 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0.02 0.01 0.01 0 0 0 0 0 0 0 0

4 0.5 0.09 0.08 0.05 0.02 0 0 0.00 0 0 0 0 0

1 2.10 1.28 0.89 1.03 0.43 0.33 0.20 0.19 0 0.03 0.03 0.02

5 0.5 0.09 0.01 0.02 0.01 0 0 0 0 0 0 0 0

1 0.89 1.09 0.76 0.87 0.25 0.20 0.11 0.09 0 0 0 0

6 0.5 0.02 0.05 0.03 0.02 0.02 0 0 0 0 0 0 0

1 1.64 0.98 0.64 0.69 0.24 0.16 0.09 0.10 0 0.01 0.01 0.01

0 = 2

1 0.5 0 0 0 0 0 0 0 0 0 0 0 0

1 0.17 0.04 0.03 0.01 0 0 0 0 0 0 0 0

2 0.5 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

3 0.5 0 0 0.00 0 0 0 0 0 0 0 0 0

1 0 0 0.02 0.02 0 0 0 0 0 0 0 0

4 0.5 0.20 0.17 0.07 0.05 0.02 0.01 0 0.00 0 0 0 0

1 2.52 2.07 1.62 1.49 0.50 0.35 0.37 0.31 0.03 0.07 0.03 0.03

5 0.5 0.09 0.08 0.01 0.02 0 0.02 0 0 0 0 0 0

1 1.65 1.36 1.20 1.17 0.19 0.22 0.13 0.08 0 0.01 0 0

6 0.5 0.21 0.12 0.04 0.01 0 0.01 0 0 0 0 0 0

1 2.32 2.03 0.89 1.10 0.73 0.26 0.20 0.10 0.02 0 0.01 0.01

Note: The table reports the ratio of the average Hausdoff distance between the estimated and true sets of break dates to

 , i.e., 100· HD(T̃ 0̃T 0
0) in DGPs 1-3 and 100· HD (T̂ 0

̂
T 0

0) in DGPs 4-6.
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is that we do not restrict the number of breaks when  increases and there is a slight chance for false

detection of breaks when  increases. When  and  increase together, as in the case from  =  = 50

to  =  = 100, the performance substantially improves. Fourth, the simulations confirm that our

procedure works for the case where there are two consecutive breaks. This can be observed in columns

corresponding to  = 6 in the third panel (0 = 2).

To measure the accuracy of break-date estimation, we define the Hausdorff error of an estimated

break date by its Hausdoff distance (HD) to the true sets of break date, HD(T̃ 0̃ T 00) in the case of PLS

estimation and HD(T̂ 0̂ T 00) in the case of PGMM estimation, conditional on correction estimation of the

number of breaks.8 Note that in the case of one break, the Hausdorff error reduces to the absolute error

of the estimated break. Table 2 reports the mean Hausdoff error (MHE) in percentages of  (i.e., 100·
HD(T̃ 0̃ T 00) in the case of PLS estimation and 100· HD(T̂ 0̂ T 00) in the case of PGMM estimation,

averaged across the 1000 replications). Conditional on the correct estimation of the number of breaks,

both PLS and PGMM estimate the break dates very accurately. Even with  = 50 and  = 6, the

MHE’s are close to zero for PLS at both noise levels. For DGPs with endogeneity, the PGMM estimation

of break-dates is less accurate, especially at high noise level, but the performance quickly improves as 

or  increases.

5.2 The case of dynamic panel

We consider the following DGP’s with an AR(1) dynamics:

 = 1−1 + 22 +  + 

where  ∼  Uniform[−01 01] and

• DGP 1d: 2 ∼  (0 1),  ∼  (0 1).

• DGP 2d: Same as DGP 1d except 2 ∼ AR(1) for each  : 2 = 052−1 + ,  ∼
 (0 075).

• DGP 3d: Same as DGP 1d except  ∼ GARCH(1 1) for each  :  =
√
,  = 005 +

0052−1 + 09−1,  ∼  (0 1).

As in the static case, we take  = 6, 12, 50 or 100, and  = 50, 100, or 200. For each DGP,

we set either 1 = 2 = 05 or more persistently, 1 = 2 = 08 for all  when no break exists,

1 = 2 = 03 · 1 {1 ≤  ≤ 2} + 07 · 1 {2   ≤ } when there is one break, and 1 = 2 =

03 · 1 {1 ≤  ≤ 2}+ 07 · 1 {2 + 1 ≤   b23c}+ 03 · 1 {b23c+ 1 ≤  ≤ } when there are two
breaks. Note that when  = 6, there are consecutive breaks at  = 4 and 5.

DGP 1d is the benchmark case with i.i.d.  and  across both  and . DGP 2d allows serial

correlation in  and DGP 3d allows conditional heteroskedasticity in . We choose the scale parameter

8Let D () ≡ sup∈ inf∈ |− | for any two sets  and  The Hausdorff distance between  and  is defined as

HD() ≡ max{D ()  D ()}
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 to be 0.2, 0.4, and 0.6. The relatively lower noise levels are justified by the usually high goodness-of-fit

of many dynamic panels in applications. To obtain the PGMM estimate, we use  = (−2 2 2−1)
0

as the instrument.

Tables 3 and 4 report the performance of estimating the number of breaks and break dates, respec-

tively, for these three DGPs. The first two panels of Table 3 report the percentages of falsely detecting

breaks when there are none (0 = 0). The AR coefficient is 0.5 in the first panel and 0.8 in the second

panel. The third and the fourth panels report the percentages of correctly estimating the number of

breaks when the true numbers of breaks are 1 and 2, respectively. As in Table 2, Table 4 gives the mean

Hausdorff error (MHE) for the break date estimation. We summarize the results in Tables 3 and 4 as

follows. First, the simulations confirm that when there are no breaks, the probabilities of falsely detecting

breaks decline to zero when  or  increases. When the AR coefficient increases from 0.5 to 0.8 and the

dynamic panel becomes more persistent, the probabilities of false detection decrease in general, thanks

to the fact that the signal-to-noise ratio is higher at higher persistence level. Second, when there is one

break, the probabilities of correctly detecting one break converge to one at all noise levels. This is true

even if we fix  = 6, in which case there would be two consecutive breaks at  = 4 and 5. Third, as in the

static panel case, fixing  and increasing  always results in better performance, but not the other way

around. When  = 50, for example, the percentages of correctly estimating the number of breaks are

highest at  = 12 in some cases. Fourth, as in the static panel case, conditional on the correct estimation

of the number of breaks, our procedure estimates the break dates very accurately. Even with  = 50

and  = 6, the MHE’s are close to zero at all noise levels. When  = 200, the break dates are exactly

estimated in most cases, conditional on correct the estimation of the number of breaks.

5.3 The case of increasing number of breaks

Finally we consider the case where the true number of breaks increases with the time dimension. We let

0 = b 13c and consider the static panel equation in (5.1) with  = 1{2 + 1 ≤   (2 + 1) + 1},
 = 0 1   , where  = b ¡0 + 1

¢c. Furthermore, ( ) are generated from the following two

DGPs,

• DGP 1i:  ∼ AR(1) for each  :  = 05−1 + ,  ∼  (0 075).  ∼ GARCH(1 1)
for each  :  =

√
,  = 005 + 005

2
−1 + 09−1,  ∼  (0 1).

• DGP 2i:  =  + 03,  ∼ AR(1) for each  :  = 05−1 + ,  ∼  (0 075).

 =  + 03,  ∼  (0 1) independent of .  is the same as in DGP 1i.

Note that  and  are correlated in DGP 2i and hence  is generated to form a valid IV for

. We use PLS in the case of DGP 1i and PGMM in the case of DGP 2i. We consider  = 50 100,

200, and  = 100, 200. Simulation results from 1000 repetitions are summarized in Table 5. For DGP

1i, PLS accurately estimates the number of breaks and the break dates in all cases we consider. For

DGP 2i, PGMM seems to require a bigger  for satisfactory performance, especially under higher noise
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Table 3: The determination of the number of breaks for DGPs 1d-3d (dynamic panels)

DGP   = 50  = 100  = 200
 : 6 12 50 100 6 12 50 100 6 12 50 100

0 = 0,  = 05, % of falsely detecting breaks when there are none.

0.2 8.5 1.1 0 0 1.8 0 0 0 0 0 0 0

1d 0.4 8.8 1.2 0 0 0.9 0 0 0 0 0 0 0

0.6 11 1.6 0 0 1 0.1 0 0 0.1 0 0 0

0.2 9.7 0.3 0 0 1.3 0 0 0 0 0.1 0 0

2d 0.4 8.8 0.6 0 0 1.1 0 0 0 0 0 0 0

0.6 10.2 0.6 0 0 1.4 0 0 0 0 0 0 0

0.2 9.1 0.8 0 0 1 0.1 0 0 0 0 0 0

3d 0.4 8.1 0.9 0 0 1.1 0 0 0 0 0.1 0 0

0.6 10 1.1 0 0 0.9 0.1 0 0 0.1 0 0 0

0 = 0,  = 08, % of falsely detecting breaks when there are none.

0.2 7.2 0.4 0 0 0.6 0 0 0 0 0 0 0

1d 0.4 7.8 1.2 0 0 1.1 0 0 0 0.1 0 0 0

0.6 8.1 1.3 0 0 0.8 0 0 0 0 0 0 0

0.2 7.9 1.3 0 0 0.8 0 0 0 0 0 0 0

2d 0.4 8.8 0.4 0 0 1 0.1 0 0 0.1 0 0 0

0.6 8.1 0.7 0 0 1.2 0 0 0 0.1 0 0 0

0.2 8.3 0.6 0 0 1.1 0 0 0 0 0 0 0

3d 0.4 7.5 0.7 0 0 1.2 0.1 0 0 0 0 0 0

0.6 9.5 0.9 0 0 1.4 0 0 0 0.1 0 0 0

0 = 1, % of correctly detecting one break

0.2 90.5 98.5 99.3 98.6 98 99.7 100 100 99.8 100 100 100

1d 0.4 90.6 96 89.9 85.6 98 99.6 99 98.5 100 100 100 100

0.6 85.7 93.1 89.5 83.1 98.6 99.3 98.3 96.2 99.9 100 100 100

0.2 91.5 98.8 99.6 99.7 98.8 100 100 100 100 100 100 100

2d 0.4 89.5 97.6 93.3 86.7 98.7 99.9 99.7 98.7 100 100 100 100

0.6 86 92.4 91.1 84.3 98.8 99.3 97.9 96.8 100 100 100 100

0.2 91.2 98.7 99.5 98.2 98.7 99.8 100 100 99.9 100 100 100

3d 0.4 90.5 94.2 91.4 84.3 99.5 99.4 98.9 98.2 100 100 100 100

0.6 87.1 92.6 87.3 82.5 97.8 98.8 96.4 95.3 100 100 99.8 99.8

0 = 2, % of correctly detecting two breaks

0.2 94.6 98.4 98.6 98.3 99.4 99.7 100 100 100 100 100 100

1d 0.4 88 87.7 81.6 72.5 99.1 99.7 99.3 97.4 100 100 99.9 100

0.6 61.3 46.4 35.5 44.2 90.2 86.6 94.3 92.1 99.9 99.9 99.9 99.9

0.2 94.1 98.5 99.8 98.8 99.4 99.9 100 100 100 100 100 100

2d 0.4 92.2 91.7 89.1 79.5 99.2 100 99.7 98.7 99.9 100 100 100

0.6 75.7 57.4 22.8 35.5 96.6 93.2 93.9 94.8 100 100 100 100

0.2 93 97.6 99.2 97.6 99.2 99.9 100 100 100 100 100 100

3d 0.4 89 88.8 78.3 70.7 99.4 99.4 99.1 97.5 99.9 100 100 100

0.6 63.3 43.2 33.8 37.8 89 85 92.3 89.5 99.6 99.9 99.7 99.5
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Table 4: The accuracy of estimating the break dates for DGPs 1d-3d (dynamic panels)

DGP   = 50  = 100  = 200
 : 6 12 50 100 6 12 50 100 6 12 50 100

0 = 1
0.2 0 0 0.01 0.01 0 0 0 0 0 0 0 0

1d 0.4 0.06 0.06 0.25 0.30 0 0 0.00 0.01 0 0 0 0
0.6 0.89 0.70 0.88 1.46 0.02 0.08 0.06 0.11 0 0 0 0.00

0.2 0 0 0 0.00 0 0 0 0 0 0 0 0
2d 0.4 0.02 0.03 0.23 0.33 0 0 0.02 0.01 0 0 0 0

0.6 0.19 0.37 0.98 1.51 0.03 0.06 0.06 0.07 0 0 0.00 0

0.2 0 0 0.01 0.00 0 0 0 0 0 0 0 0
3d 0.4 0.09 0.08 0.29 0.25 0 0 0.02 0.02 0 0 0 0

0.6 0.69 0.74 1.19 1.49 0.05 0.13 0.07 0.11 0 0 0 0

0 = 2
0.2 0 0 0.01 0.00 0 0 0 0 0 0 0 0

1d 0.4 0.15 0.06 0.07 0.27 0 0 0.01 0.01 0 0 0 0
0.6 0.60 0.57 0.17 0.23 0.04 0.03 0.04 0.05 0 0 0.00 0

0.2 0 0 0 0 0 0 0 0 0 0 0 0
2d 0.4 0.02 0.01 0.03 0.11 0 0 0.00 0.01 0 0 0 0

0.6 0.40 0.13 0.01 0.04 0.07 0 0.00 0.03 0 0 0 0

0.2 0 0 0.00 0.01 0 0 0 0 0 0 0 0
3d 0.4 0.13 0.05 0.10 0.21 0 0 0.00 0.01 0 0 0 0

0.6 0.66 0.37 0.15 0.29 0.11 0.06 0.04 0.10 0.02 0 0.00 0

Note: The table reports the ratio of the average Hausdoff distance between the estimated and true sets of break dates to

 , i.e., 100· HD(T̂ 0
̂
T 0

0)

level. Note that fixing  , increasing  results in slightly lower percentage of correct estimation of the

number of breaks in DGP 2i. Conditional on the correct estimation of the number of breaks, PGMM also

performs well in the estimation of break dates. Overall, we may conclude that both PLS and PGMM can

satisfactorily deal with the case of increasing number of breaks.

6 An empirical application

In this section we offer an illustration of the use of our method. We seek to evaluate the effect of FDI

inflow on economic growth by using a dynamic panel data model with an unknown number of breaks.

Table 5: Monte Carlo simulations for the case of increasing number of breaks

DGP   = 100  = 200  = 100  = 200
 : 50 100 200 50 100 200 50 100 200 50 100 200

1i 0.5 100 100 100 100 100 100 0 0 0 0 0 0
1 96.9 99.9 99.9 100 100 100 0 0.00 0.00 0 0 0

2i 0.5 99.8 99.9 100 100 100 100 0 0.00 0.00 0 0 0
1 94.2 94.3 90.5 100 99.8 99.8 0.15 0.17 0.10 0.00 0.01 0.01

Note: The true number of breaks is 0 = b 13c. The left panel reports the percentages of correctly estimating the number
of breaks. The right panel reports the ratio of the average Hausdoff distance (HD) between the estimated and the true sets

of breaks to  (100·HD(T̃ 0̃T 0
0) )
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The possible existence of breaks may be justified theoretically. In the endogenous growth model of

Romer (1986), for example, economic growth may behave differently in different policy environments.

Furthermore, in the growth model of Jones (2002), the regime shifts may be common across countries

in “a world of ideas”, assuming that ideas propagate fast enough. Empirically, there is ample evidence

of the existence of breaks in growth path (e.g., Ben-David and Papell 1995). However, most of existing

studies rely on time series structural break tests for individual economies, the United States in particular.

In this empirical exercise, we use a panel data of 88 countries or regions from 1972 to 2012. We obtain

the natural logarithm of per capita GDP ( ), net FDI inflow ( ), and GDP ( ),  = 1     41,

from the UNCTAD (United Nations Conference on Trade and Development) database.9 Following the

literature on growth empirics (e.g., Islam 1995), we work on five-year averages of the data. For  = 0     7

define  = (5(+1)+1 − 5+1)5, which is the th five-year average growth in GDP per capita, and

 0
 =

P5
=1 5+5, which is the th five-year average of log per capita GDP with one-year-lag behind

. Furthermore, we construct the ratio of the net FDI inflow to GDP ( ), obtain similar

five-year averages, and denote them by . The averaging gives us eight five-year time periods for

each economy. Due to the fact that there is one lagged dependent variable in the model, the effective

number of data points for each economy is seven. We apply the PGMM method to estimate the following

dynamic panel data model with an unknown number of breaks,

 =  + 1−1 + 2 + 3
0
 +   = 1     7

where  is the country-specific effect, 1 is the AR(1) coefficient, 2 is the parameter of interest that

measures the effect of FDI on growth, and 3
0
 controls the “initial” income level. A negative 3 would

imply “convergence” in economic growth. As in the simulations, we set 2 = 2 in the construction of the

adaptive weights, choose the weight matrices (

 ) as detailed in the last paragraph of Section 2.3,

and adopt  =
¡
−2  −1  0

 
0
−1

¢0
as the instrument.

We choose max = 10, which results in zero break, and min = 0002, which results in six breaks.

We then search on the interval [min max] with fifty evenly-distributed logarithmic grids. As in the

simulations, we set 2 = 005 ln( )
√
 . The information criterion 2 selects a model that

contains three breaks at  = 5 6 and 7, corresponding to the 1998-2002, 2003-2007, and 2008-2012

periods. Figure 1 shows how 2(2) (left axis) and the estimated number of breaks (right axis) change

with the tuning parameter 2. We can see that the 2 declines until the estimated number of breaks

reaches three and rises as 2 gets bigger. It is notable that there are five 2’s that result in three

breaks, ranging from 0.195 to 0.343, and the IC curve is flat over this segment (and similarly over several

other segments).10 This suggests that the penalized GMM estimation is not very sensitive to the tuning

parameter.

9The UNCTAD database covers 237 countries and regions. We delete those economies with missing values over 1972-2012.
10When 2 changes from 0.195 to 0.343, the number of breaks and the set of estimated break dates remain unchanged

so that neither the first term (corresponding to the post Lasso regression) nor the second term (the penalty term) in (4.2)

changes.
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Table 6: The effect of FDI on the economic growth (88 countries and regions, 1978-2012)

̂  1 (78-82) 2 (83-87) 3 (88-92 4 (93-97) 5 (98-02) 6 (03-07) 7 (08-12)

−1 -.118(.052)

0  .103(.053)

 0
 -1.518(.294)

−1 -.090(.054) .169(.327)

1  .115(.053) .084(.080)

 0
 -.633(.299) -.876(.320)

−1 -.027(.053) -.148(.102) .141(.335)

2  .548(.086) .154(.045) .110(.076)

 0
 -.162(.337) -.186(.320) -.449(.347)

−1 -.014(.052) -.180(.126) .284(.179) .206(.288)

3  .556(.091) .148(.051) .261(.075)


.150(.068)

 0
 -1.085(.373) -1.067(.357) -1.063(.357) -1.203(.360)



−1 -.034(.117) .046(.061) -.154(.132) .303(.182) .248(.291)

4  .899 (.239) .544 (.093) .153(.052) .264(.077) .149(.070)

 0
 -1.467(.365) -1.367(.367) 1.341(.358) -1.327(.357) -1.462(.359)

−1 -.061(.121) .070(.104) .100(.076) -.123(.135) .332(.197) .343(.305)

5  .354(.240) -.070(.227) .516(.099) 0.155(.054) .265(.077) .143(.074)

 0
 -2.120(.573) -2.018(.575) -2.004(.543) -1.967(.536) -1.936(.525) -2.064(.524)

−1 -.093(.120) .076(.095) .018(.082) .149(.097) -.063(.149) .388(.218) .521(.337)

6  .417(.261) .001(.231) .606(.187) .526(.101) .158(.055) .267(.079) .133(.083)

 0
 -3.491(.640) -3.377(.640) -3.304(.639) -3.182(.600) -3.122(.605) -3.062(.597) -3.177(.596)

Note: Standard errors are in parentheses. The superscripts , , and  indicate statistical significance at 10%, 5%, and

1% levels, respectively.

It is well known that information criteria may not be able to select the right model in finite samples.

It is thus prudent to examine the cases with the number of breaks other than three. Table 6 shows regime

segmentation, parameter estimates, and standard errors (in parentheses) from the post-Lasso estimation

for the cases where ̂ = 0 1     6. Note that in the last case (̂ = 6), there is a structural break at

every time point.

As shown in Table 6, the set of break dates is an increasing sequence as the tuning parameter decreases.

It starts from an empty set when ̂ = 0. When ̂ = 1, we have one break at  = 7, which corresponds to

the five-year period of 2008-2012. As the tuning parameter decreases, another break (in addition to the

one at  = 7) is detected at  = 5, which corresponds to the period 1998-2002. As the tuning parameter

decreases further, we arrive at the case of ̂ = 3 that achieves the minimum 2 and the set of breaks

is now {5 6 7}. When ̂ = 4, the set of breaks becomes {2 5 6 7}, and when ̂ = 5, it is enlarged to

{2 3 5 6 7}. Finally, ̂ = 6 corresponds to the case where breaks occur at every period.

Table 6 demonstrate that the determination of structural change in the model is crucial for the

quantitative evaluation of the effect of FDI on the economic growth. In the model chosen by 2 (̂ = 3)

the coefficients of FDI are significantly positive at 5% level in all regimes, and the FDI effect on growth

has declined substantially since the turn of the new millennium. If we assume that no break exists and

estimate a textbook dynamic panel data model, the time-varying character of the FDI effect would be lost.

30



Furthermore, as shown in the top panel of Table 6, the magnitude of the estimated FDI effect is smaller

than any regime in the model with three breaks. Indeed, it fails to pass the significance test at 5% level.

In the model with three breaks, the coefficients of initial per capita GDP are significantly negative in all

regimes, confirming the convergence story. The magnitudes of the convergence effects are, however, lower

than that in the model with time-invariant coefficients. This empirical exercise suggests that the time-

invariant parameter in the textbook dynamic panel data model is an unnecessarily restrictive assumption

and may lead to erroneous conclusions. Our shrinkage-based method, by allowing multiple breaks in

panel data model, provides applied economists with a natural approach to relaxing this assumption.

7 Conclusion

We propose two shrinkage procedures for the determination of the number of structural changes in linear

panel data models via adaptive group fused Lasso: PLS estimation for first-differenced models without

endogeneity and PGMM estimation for first-differenced models with endogeneity. We show that with

probability tending to one our methods can correctly determine the true number of breaks and estimate

the break dates consistently. Simulation results suggest that our methods perform well in finite samples.

There are several interesting topics for further research. First, we do not allow cross section dependence

in our models. Given the large literature on cross section dependence, it is interesting to extend our

methodology to panel data models with cross section dependence. Second, if we model the cross section

dependence through a factor structure, the factor loadings may also exhibit structural changes over time

(see, e.g., Breitung and Eickmeier 2011, Cheng et al. 2015, and Su and Wang 2015) and this further

complicates the analysis. Third, we consider the common shocks for homogenous panel data models. It is

also interesting to consider heterogeneous panel data models and to allow the break dates to be different

across individuals. We leave these topics for future research.
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APPENDIX

A Definitions of several matrices

In this appendix, we define several matrices used in the main text.

A.1 Penalized least squares estimation

Let  =
1


P
=1 

0
 and  =  for   = 1   and   =  ∆ ∆ ∆2 ∆ or ∆2

For example, ∆2+1 =
1


P
=1 ∆

2+1 for  = 2   − 1 Let TriD(· ·) be as defined in (1.1).
Define

̇ = TriD(
† )  (A.1)

̇
 = (−0∆2−0∆223−0∆234−0∆2−1  

0
∆ )

0  =  or  (A.2)

where  =  for  = 1 and   = 2 for 2 ≤  ≤  − 1 and 
†
 = −1 for  = 2   (2.5)

indicates that β̇ = ̇−1 ̇

 

Recall that T = {1  } where 0 = 1 and +1 =  Let Φ (T) = 1


P−1
=−1+1

P
=1 

0


for  = 1  + 1 and   = ∆  or ∆ Define the  (+ 1) ×  (+ 1) matrix Φ (T) and
 (+ 1)× 1 vector Ψ (T), respectively:

Φ (T) = TriD
¡
Φ† (T) Φ (T)

¢
+1

 (A.3)

Ψ (T) =
¡
Φ0∆∆1 − 0∆1−11 Φ

0
∆∆2 − 0∆2−12 + 0∆1  

Φ0∆∆ − 0∆−1 + 0∆−1  Φ
0
∆∆+1 + 0∆

´0
  =  or  (A.4)

where TriD(· ·)+1 is defined analogously to TriD(· ·) in (1.1), Φ1 (T) = Φ∆∆1+1−1 Φ (T) =
Φ∆∆ + −1 + −1 for  = 2  Φ+1 (T) = Φ∆∆+1 +   and Φ

†
+1 (T) =

−1 for  = 1  Then the post Lasso least squares estimator of α0 and its infeasible version

are respectively given by

α̃
̃(T̃̃) = Φ

³
T̃̃
´−1

Ψ

³
T̃̃
´
and α̃

0(T 00) = Φ

¡T 00

¢−1
Ψ

¡T 00

¢
 (A.5)

A.2 Penalized GMM estimation

Let ̈ = 0 and ̈ = ̈ for   = 1 2   Let ̇−1 = 0−1 for

 = 2   Define

̈ = TriD
³
̇ ̈

´

 (A.6)

̈
 =

³
− ¡022∆2

¢0

¡
022∆2 − 0323∆3

¢0
 ¡

0−1−1∆−1 − 0−1∆
¢0

¡
0∆

¢0´0
  =  or  (A.7)
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where ̈1 = ̈12 ̈ = ̈ + ̈+1 for  = 2   − 1 ̈ = ̈  and ̇ = ̇−1 for

 = 2   Note that β̈ = ̈−1 ̈

 by (2.10).

Define the  (+ 1)×  (+ 1) matrix Υ (T) and  (+ 1)× 1 vector Ξ (T), respectively:

Υ (T) = TriD
¡
Υ† (T) Υ (T)

¢
+1

 (A.8)

Ξ (T) =
¡
Ξ1 (T)0  Ξ2 (T)0   Ξ+1 (T)0

¢0
  =  or  (A.9)

where TriD(· ·)+1 is defined analogously to TriD(· ·) in (1.1),

Υ1 (T) = Φ∆1 (T)0 
1Φ∆1 (T) + 011−1111−1

Υ (T) = Φ∆ (T)0 
 Φ∆ (T) + 0−1−1 + 0−1−1−1 for =2 

Υ+1 (T) = Φ∆+1 (T)0 
+1Φ∆+1 (T) + 0 ;

Υ† (T) = 0−1−1−1−1−1 for =2 + 1;

Ξ1 (T) = Φ∆1 (T)0 
1Φ∆1 (T)− 011−11∆1 

Ξ (T) = Φ∆ (T)0 
 Φ∆ (T)− 0−1∆ + 0−1−1∆−1 for =2 

Ξ+1 (T) = Φ∆+1 (T)0 
+1Φ∆+1 (T) + 0∆ 

Then the post Lasso GMM estimator of α0 and its infeasible version are respectively given by

α̂
̂(T̂̂) = Υ

³
T̂̂
´−1

Ξ

³
T̂̂
´
and α̂

0(T 00) = Υ

¡T 00

¢−1
Ξ

¡T 00

¢
 (A.10)

B Proof of the results in Section 3

Proof of Lemma 3.1 (i) Recall that ̇ =TriD(
†) by (A.1). So ̇0 is also a SBTM. Define

Λ1 = 
¡
1

¢


Λ = 2
¡


¢−
¡
−1

¢
Λ−1−1

¡
−1

¢
for  = 2   − 1

Λ = 
¡


¢−
¡
−1

¢
Λ−1−1

¡
−1

¢


We first argue that the above notations are well defined under Assumptions A.1(iii)-(iv) and that

0  min( ) ≤ min
1≤≤

min (Λ) ≤ max
1≤≤

max (Λ) ≤ 2̄ ∞ (B.1)

By Assumption A.1(iii), Λ1 is p.d. To study the behavior of Λ for  = 2   we consider the auxiliary

least squares projection of  on −1 :

 = ∗−1 +   = 1 

where the pseudo true parameter ∗ is chosen such that 
−1P

=1
¡


0
−1

¢
= 0 It is easy to verify

that ∗ = 
¡
−1

¢ £

¡
−1

¢¤−1
and that


¡


¢
= −1

X
=1

 (
0
) = −1

X
=1


£
(∗−1 + ) (

∗
−1 + )

0¤
= 

¡
−1

¢ £

¡
−1

¢¤−1

¡
−1

¢
+

¡


¢
 (B.2)
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where  = −1
P

=1 
0
 It follows that


¡


¢ ≥ 
¡
−1

¢ £

¡
−1

¢¤−1

¡
−1

¢
for  = 2  

which further implies that

Λ2 = 2
¡
2

¢−
¡
21

¢ £

¡
1

¢¤−1

¡
12

¢ ≥ 
¡
2

¢
 (B.3)

and by induction that

Λ ≥ 2
¡


¢−
¡
−1

¢ £

¡
−1

¢¤−1

¡
−1

¢ ≥ 
¡


¢
for  = 2   − 1 (B.4)

In addition, by (B.4) and (B.2)

Λ ≥ 
¡


¢−
¡
−1

¢ £

¡
−1

¢¤−1

¡
−1

¢
= 

¡


¢
 (B.5)

Consequently,min1≤≤ min (Λ) ≥ min
¡
min1≤≤−1 min

©

¡


¢ª
 min

©

¡


¢ª¢ ≥ min( )
In view of the fact that 

¡
−1

¢
Λ−1−1

¡
−1

¢
is p.s.d. for  = 2   , we have Λ ≤ 2

¡


¢
for

 = 2  −1 and Λ ≤ 
¡


¢
 It follows thatmax1≤≤ max (Λ) ≤ 2max1≤≤ max

¡

¡


¢¢ ≤
2̄ ∞ That is, (B.1) follows.

Let Λ denote a block diagonal matrix whose diagonal blocks are denoted by Λ for  = 1   Let 

denote the block lower part of ̇0 By (B.1), the inverse Λ
−1 of Λ exists and we can consider the block

LU factorization of the SBTM ̇0 : ̇0 = (Λ+ )Λ−1 (Λ+ 0) ; see, e.g., Meurant (1992). By Lemma

21.2.1 in Harville (1997), the eigenvalues of the lower block triangular matrix Λ+ and the upper block

triangular matrix Λ+ 0 are given by the collection of the eigenvalues of their diagonal blocks. This, in

conjunction with (B.1), implies that

max (Λ+ ) = max (Λ+ 0) = max (Λ) = max
1≤≤

max (Λ) ≤ 2̄ ∞ (B.6)

and

min (Λ+ ) = min (Λ+ 0) = min (Λ) = min
1≤≤

min (Λ) ≥ min( )  0 (B.7)

Then by the fact that max () ≤ max ()max () and that min () ≥ min ()min () for two

conformable p.s.d. matrices  and  (see, e.g., Fact 8.14.20 in Bernstein 2005, p.329),

max

³
̇0

´
= max

©
(Λ+ )Λ−1 (Λ+ 0)

ª ≤ [max (Λ+ )]
2
max

¡
Λ−1

¢ ≤ (2̄)2 £min( )¤−1 
and

min

³
̇0

´
= min

©
(Λ+ )Λ−1 (Λ+ 0)

ª ≥ [min (Λ+ )]
2
min

¡
Λ−1

¢ ≥ ¡min( )¢2 [2̄]−1 
So part (i) of the lemma holds with ̇0

= [min( )]
2[2̄]

−1 and ̄̇0
= (2̄)

2 [min( )]
−1

(ii) For notational simplicity, we assume that  = 1 in this proof. For any  ×  matrix  = () 

define kk1 = max1≤≤
P

=1 | | and kk∞ = max1≤≤
P

=1 | |  Note that kk2sp ≤ kk1 kk∞ 
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Let ̄ =  −
¡


¢
and ̄ = ̄ for   = 1   Then

̇ − ̇0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

̄1 −̄021
−̄21 2̄2 −̄032

−̄32 2̄3 −̄043
. . .

. . .
. . .

−̄−1−2 2̄−1 −̄0−1
−̄−1 ̄

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


Let [] denote the ( )th element of a matrix . By the symmetry of ̇ − ̇0 we have

°°°̇ − ̇0

°°°
∞

=
°°°̇ − ̇0

°°°
1
= max
1≤≤

X
=1

¯̄̄h
̇ − ̇0

i


¯̄̄
= max

©¯̄
̄1

¯̄
+
¯̄
̄21

¯̄

¯̄
̄21

¯̄
+ 2

¯̄
̄2

¯̄
+
¯̄
̄32

¯̄

¯̄
̄32

¯̄
+ 2

¯̄
̄3

¯̄
+
¯̄
̄43

¯̄



¯̄
̄−1−2

¯̄
+ 2

¯̄
̄−1

¯̄
+
¯̄
̄−1

¯̄

¯̄
̄−1

¯̄
+
¯̄
̄

¯̄ª
≤ 2

½
max
1≤≤

¯̄
̄

¯̄
+ max
2≤≤

¯̄
̄−1

¯̄¾


The upper bound is  (1) provided that max1≤≤
¯̄
̄

¯̄
=  (1) and max2≤≤

¯̄
̄−1

¯̄
=  (1) 

We only show the former one as the proof of the second claim is similar. Let  =  (ln )−0 for

some 0  1 Define 
(1)
 = 21 − 

¡
21

¢
and 

(2)
 = 21̄ − 

¡
21̄

¢
where 1 = 1

©
2 ≤ 

ª
and 1̄ = 1 − 1 Then ̄ =

1


P
=1 

(1)
 +

1


P
=1 

(2)
  For any   0 by Bernstein inequality for

independent random variables (e.g., Serfling 1980, p.95)



Ã
max
1≤≤

¯̄̄̄
¯ 1

X
=1


(1)


¯̄̄̄
¯ ≥ 

!
=

X
=1



Ã¯̄̄̄
¯
X
=1


(1)


¯̄̄̄
¯ ≥ 

!

≤ 2 max
1≤≤

exp

⎛⎝− 22

2
P

=1Var
³

(1)


´
+ 2

3

⎞⎠ =  (1)

where we use the fact that
P

=1Var
³

(1)


´
≤ max1≤≤

P
=1

¡
4


¢
=  () by Assumption A.1(ii).

By Markov inequality, Lebesgue dominated convergence theorem, and Assumptions A.1(ii) and A2(iv)



Ã
max
1≤≤

¯̄̄̄
¯ 1

X
=1


(2)


¯̄̄̄
¯ ≥ 

!
≤ 

µ
max
1≤≤

max
1≤≤

2  

¶

≤ 1

0

X
=1

X
=1


£
20 1

©
2  

ª¤
=  (1) 

where we use the fact that 0 = 1−0 (ln )00 =  (1) under Assumption A.2(iv). Consequently


¡
max1≤≤

¯̄
̄

¯̄
≥ 2¢ =  (1) for any   0 and max1≤≤

¯̄
̄

¯̄
=  (1)  Analogously, we can

show that max2≤≤
¯̄
̄−1

¯̄
=  (1)  It follows that

°°°̇ − ̇0

°°°
1
=
°°°̇ − ̇0

°°°
∞
=  (1) and°°°̇ − ̇0

°°°
sp
=  (1) 
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(iii) By (i)-(ii), we have w.p.a.1

min

³
̇

´
= min
kκk=1

n
κ0̇0κ + κ0

³
̇ − ̇0

´
κ
o
≥ min

³
̇0

´
−
°°°̇ − ̇0

°°°
sp
≥ ̇0

2

and

max

³
̇

´
= max

kκk=1

n
κ0̇0κ + κ0

³
̇ − ̇0

´
κ
o
≤ max

³
̇0

´
+
°°°̇ − ̇0

°°°
sp
≥ 2̄̇0

 ¥

Below, we use
P

∈T 0
0
and

P
∈T 0

0
to denote

P
=2∈T 0

0
and

P
=2∈T 0

0
 respectively. The following

lemmas are used in the proofs of our main results and their proofs are given in the online supplemental

appendix.

Lemma B.1 Suppose Assumptions A.1 and A.2(iv) hold. Then ̇ − 0 = 

¡
−12

¢
for each  =

1 2  

Lemma B.2 Suppose that the conditions in Theorem 3.6 hold. Let T = {T = {1  } : 2 ≤ 1 

   ≤  0 = 1 and +1 =  +1} Then min0≤0 infT∈T
(−1)

min
2
min
(̃2T − ̃2T 0

0
) ≥ +  (1)

for some   0.

Lemma B.3 Suppose that the conditions in Theorem 3.6 hold. Let T̄ = {T = {1  } : T0 ⊂ T
2 ≤ 1     ≤ } where 0   ≤ max Then max0≤max

supT∈T̄ −1
¯̄̄
̃2T − ̃2T0

¯̄̄
=

 (1) 

Proof of Theorem 3.2. (i) Let  = 0 + −12 for  = 1   and b ≡ (01  0 )0  Note that
β = β0+−12b Let ̃ = 12(̃−0 ) and b̃ = 12(β̃ − β0) Noting that ∆−0+ 0−1−1 =

∆ −−12(0 − 0−1−1) we have


£
11 (β)− 11

¡
β0
¢¤

=
1



X
=1

X
=2

¡
0 − 0−1−1

¢2 − 2

12

X
=1

X
=2

∆
¡
0 − 0−1−1

¢
+1

X
=2

̇

h°°°0 − 0−1 +−12( − −1)
°°°− °°0 − 0−1

°°i
= b0̇b− 2b0

√
̇

 +1
X

∈T 0
0

̇

h°°°0 − 0−1 +−12( − −1)
°°°− °°0 − 0−1

°°i
+1

X
∈T 0

0

̇

°°°−12( − −1)
°°°

≡ 1 (b)− 22 (b) +3 (b) +4 (b)  say,

where ̇ and ̇

 are defined in (A.1) and (A.2), respectively. By Lemma B.1 and Assumption A.2(i),

max∈T 0
0

̇ = max∈T 0
0

°°°̇ − ̇−1
°°°−1 = max∈T 0

0

°°0 − 0−1 +

¡
−12

¢°°−1 = 

¡
−1min

¢
 By
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the Jensen, triangle and Cauchy-Schwarz inequalities, and Assumption A.2(ii),

¯̄
−13 (b)

¯̄
≤ 0−1121 max

∈T 0
0

̇

⎧⎨⎩ 1

0

X
∈T 0

0

k − −1k
⎫⎬⎭

≤ 0−1121 max
∈T 0

0

̇

⎧⎨⎩ 1

0

X
∈T 0

0

k − −1k2
⎫⎬⎭
12

≤ 2 ¡0
¢12

−12121 max
∈T 0

0

̇
−12 kbk

= 

³¡
0

¢12
1

−12−1min

´
−12 kbk =  (1)

−12 kbk  (B.8)

In conjunction with the analyses of 1 (b) and 2 (b) in the proof of Lemma B.1, this implies that w.p.a.1

−1 [1 (b)− 22 (b) +3 (b)] ≥ min

³
̇

´
−1 kbk2 − (1)

−12 kbk  0

if −12 kbk =  is sufficiently large. That is, 1 (b) dominates −22 (b)+3 (b) for large  In addition,
4 (b) ≥ 0 Consequently, 

£
11 (β)− 11

¡
β0
¢¤

 0 w.p.a.1 for large  and 11 (β) cannot

be minimized in this case. This further implies that −12
°°°b̃°°° has to be stochastically bounded and

Theorem 3.2 (i) holds.

(ii) Let ̇ Λ̇ b† ̇†  and {}=1 be as defined in the proof of Lemma B.1. Let † = −−1
Then  − −1 =

P
= 

†
 −

P
=−1 −1

†
 =

P
=−1 

†


†
 as  = 0 for  =  − 1 So we can

rewrite 
£
11 (β)− 11

¡
β0
¢¤
in terms of b† :


£
11 (β)− 11

¡
β0
¢¤

=
X
=1

h

†0
 Λ̇
−1
 

†
 − 2†0 ̇†

i
+1

X
∈T 0

0

̇

"°°°°°0 − 0−1 +−12
X

=−1

†


†


°°°°°− °°0 − 0−1
°°#

+121
X

∈T 0
0

̇

°°°°°
X

=−1

†


†


°°°°° ≡ 
†
11

¡
b†
¢
 say.

Let b̃† = (Λ̇+̇0)b̃ = (̃†01   ̃
†0
 )
0 Noting that0

121max∈T 0
0

̇ = 

¡
0

121
−1
min

¢
=  (1) P

∈T 0
0

°°°†°°° = 

¡
0
¢
and

°°°̇†

°°° =  (1) for each , we have by the triangle inequality

0 ≥ 
†
11

(b̃†) ≥
X
=1

h
̃
†0
 Λ̇
−1
 ̃

†
 − 2̃†0 ̇†

i
−121 max

∈T 0
0

̇

X
∈T 0

0

°°°°°
X

=−1

†
̃

†


°°°°°
≥

X
=1

⎡⎣̃†0 Λ̇−1 ̃
†
 −

⎛⎝2°°°̇†

°°°+121 max
∈T 0

0

̇

X
∈T 0

0

°°°†°°°
⎞⎠°°°̃†°°°

⎤⎦
=

X
=1

h
̃
†0
 Λ̇
−1
 ̃

†
 − (1)

°°°̃†°°°i 
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It follows that ̃
†
 =  (1) for each  by arguments as used in the proof of Lemma B.1. Otherwise, {̃†}

cannot minimize 
†
11

¡
b†
¢
. This implies that ̃ = 12(̃−0 ) =  (1) by the same arguments as

used in the proof of Lemma B.1. ¥

Proof of Theorem 3.3. We want to demonstrate that


³°°°̃°°° = 0 for all  ∈ T 00

´
→ 1 as  →∞ (B.9)

Suppose that to the contrary, ̃ = ̃ − ̃−1 6= 0 for some  ∈ T 00 for sufficiently large  Then there

exists  ∈ {1  } such that
¯̄̄
̃

¯̄̄
= max

n¯̄̄
̃

¯̄̄
  = 1  

o
, where for any ×1 vector   denotes

its th element. Without loss of generality (wlog) assume that  = , implying that
¯̄̄
̃

¯̄̄

°°°̃°°° ≥ 1√

To consider the first order condition (FOC) with respect to (wrt)   ≥ 2 based on subdifferential

calculus (e.g., Bersekas 1995, Appendix B.5), we distinguish two cases: (a) 2 ≤  ≤  − 1 and (b)
 =  and  ∈ T 00 

In case (a), we consider two subcases: (a1) +1 =  0 ∈ T 00 for some  = 1 0 and (a2) +1 ∈ T 00 

In either case, we can apply the FOC wrt  and the equality ∆ = 00  − 00−1−1 + ∆ to

obtain

0 =
−2√


X
=1

³
∆ − ̃

0
 + ̃

0
−1−1

´
 +

2√


X
=1

³
∆+1 − ̃

0
+1+1 + ̃

0


´


+
√
1̇

̃°°°̃°°° −
√
1̇+1+1 (B.10)

= − 2√


X
=1

∙³
̃+1 − 0+1

´0
+1 − 2

³
̃ − 0

´0
 +

³
̃−1 − 0−1

´0
−1

¸


+
2√


X
=1

∆2+1 +
√
1̇

̃°°°̃°°° −
√
1̇+1+1

≡ 1 +2 +3 −4 say,

where +1 = ̃+1
°°°̃+1°°° if °°°̃+1°°° 6= 0 and k+1k ≤ 1 otherwise, +1 is the th element in +1

By Assumptions A.1(i)-(ii) and Theorem 3.2, 1 =  (1) and 2 =  (1). In view of the fact that

̇−1 =  (
−12) for  ∈ T 00  |3| ≥

√
1̇

√
 which is explosive in probability under Assumption

A.2(iii) (i.e.,  (1+1)21 →∞).
To bound the probability order of 4 we distinguish two subcases. In subcase (a1), noting that

̇+1 − ̇
→ 0+1 6= 0 by Theorem 3.2, we have ̇+1 =

°°0+1 + (
−12)

°°−1 = 

¡
−1min

¢
and

4 =
√
1̇+1+1 =  (

√
1

−1
min ) =  (1)  Consequently, |3| À |1 +2 −4| so that

(B.10) cannot be true for sufficiently large  or ( ). Then we conclude that w.p.a.1, ̃ must be

in a position where
°°°̃°°° is not differentiable in subcase (a1). In addition, a direct implication of this

result is that if  =  0 − 1 ∈ T 00 for some  = 1 0 then 
³°°°̃0 −1°°° = 0´ → 1 as  → ∞ and√

1̇0 −10 −1 =  (1) in order for the FOC to hold for  =  0 − 1
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In subcase (a2), difficulty arises as ̇+1 =  (
12) and

√
1̇+1 =  (

(1+1)21) But we

can apply the implication from the result in subcase (a1) recursively. When  =  0 − 2 ∈ T 00 for

some  = 1 0 4 =
√
1̇0 −10 −1 =  (1) and |3| À |1 +2 −4|  Thus (B.10)

cannot hold for  =  0 − 2 ∈ T 00 either and we must have 
³°°°̃0 −2°°° = 0´ → 1 as  → ∞ and√

1̇0 −20 −2 =  (1) in order for the FOC to hold for  =  0 − 2 Deducting in this way until we
reach  =  0−1 + 1 ∈ T 00  Consequently, ̃ must be in a position that

°°°̃°°° is not differentiable for all
 ∈ T 00 and  6= 

In case (b), noting that only one term in the penalty term (1
P

=2 ̇

°° − −1
°°) is involved with

  it is easy to show that ̃ = ̃ − ̃−1 must be in a position where
°°°̃°°° is not differentiable if

 ∈ T 00  Consequently (B.9) follows. ¥

Proof of Corollary 3.4. We consider two cases: (a)  ∈ T 00  and (b)  ∈ T 00  In case (a), Theorem

3.3 implies that asymptotically no time point in T 00 can be identified as an estimated break date so that

̃ ≤ 0 In case (b), we want to show that all break points in T 00 must be identified as an estimated

break point. Suppose not. Then there exists  ∈ T 00 such that
°°°̃°°° = 0 By the

√
 -consistency of

̃ and the fact ̃ = ̃ − ̃−1 = 0 − 0−1 +  (
−12) = 0 +  (

−12) by Theorem 3.2, we have°°0°° = (−12) which contradicts the assumption that 12min →∞ as  →∞ as
°°0°° ≥ min for

any  ∈ T 00  ¥

Proof of Theorem 3.5. (i) The FOCs wrt   = 1   for the PLS problem are given by

0×1 =
−2


X
=1

³
∆ − ̃

0
 + ̃

0
−1−1

´
1 {  1}

+
2



X
=1

³
∆+1 − ̃

0
+1+1 + ̃

0


´
1 {  }

+ 1 [̇1 {  1}− ̇+1+11 {  }]  (B.11)

where  = ̃
°°°̃°°° if °°°̃°°° 6= 0 and kk ≤ 1 otherwise. Summing both sides of the above equation over 

for each of the ̃+1 estimated regimes and using the fact that ̃ = ̃ if  belongs to the th estimated

regime yield

0×1 =
−2


̃1−1X
=2

X
=1

¡
∆ − ̃01∆

¢
∆ +

2



X
=1

³
∆̃1 − ̃02̃1 + ̃01̃1−1

´
̃1−1 +R1

0×1 =
−2


̃−1X
=̃−1+1

X
=1

¡
∆ − ̃0∆

¢
∆ +

2



X
=1

³
∆̃ − ̃0+1̃ + ̃0̃−1

´
̃−1

− 2



X
=1

³
∆̃−1 − ̃0̃−1 + ̃0−1̃−1−1

´
̃−1 +R for  = 2  ̃

0×1 =
−2


X
=̃̃+1

X
=1

¡
∆ − ̃0̃+1∆

¢
∆ − 2



X
=1

³
∆̃̃ − ̃0̃+1̃̃ + ̃0̃̃̃−1

´
̃̃ +R̃+1
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where R1 = R1(T̃̃) = −1̇̃1
̃1  R = R(T̃̃) = 1(̇̃−1̃−1 − ̇̃

̃ ) for  =

2  ̃ R̃+1 = R̃+1(T̃̃) = 1̇̃̃
̃̃  and we have suppressed the dependence of ̃ on T̃̃

Let R (T̃̃) =
³
R01(T̃̃) R0̃+1(T̃̃)

´0
 One can readily solve for α̃̃ = α̃̃(T̃̃) to obtain

α̃̃

³
T̃̃
´
= Φ

³
T̃̃
´−1 ∙

Ψ

³
T̃̃
´
− 1
2
R

³
T̃̃
´¸



where Φ (·) and Ψ (·) are defined in (A.3) and (A.4) in Appendix A.1, respectively.
By Corollary 3.4, α̃̃(T̃̃) = α̃0

¡T 00

¢
w.p.a.1. Therefore we can study the asymptotic distribution

of α̃̃(T̃̃) by studying that of α̃0

¡T 00

¢
 Note that α̃0

¡T 00

¢
= Φ−1 [Ψ


 − 1

2R (T 00)] where

Φ = Φ

¡T 00

¢
and Ψ = Ψ


 (T 00) (see (3.1)). It is easy to verify that

√
D0+1

¡
α̃0 (T0)−α0¢ =

√
D0+1

¡
α̃

0

¡T 00

¢−α0¢
−1
2

³
D−1
0+1ΦD

−1
0+1

´−1√
D−1

0+1R

¡T 00

¢


By the proof of (ii) below,
√
D0+1

¡
α̃

0

¡T 00

¢−α0¢ → 
¡
0 Φ−10 Ω0Φ

−1
0 0

¢
. By the fact that

k−k2 ≤ 2{kk2 + kk2} kk ≤ 1 and max∈T 0
0

̇ = 

¡
−1min

¢
under Assumption A.2(i), we

have


°°°D−10+1R

¡T 00

¢°°°2
= 21

⎧⎨⎩¡01¢−1 °°°̇01
 01

°°°2 + 0X
=2

¡
0
¢−1 °°°̇0−1

 0−1 − ̇ 0
0

°°°2 + ¡00+1

¢−1 °°°̇ 0
0

 0
0

°°°2
⎫⎬⎭

≤ 4
¡
0 + 1

¢
21

−1
min max

∈T 0
0

k̇k2 = 

¡
021

−1
min

−21
min

¢
=  (1) under Assumption A.2(ii).

With this, we can show that
°°°(D−10+1ΦD

−1
0+1)

−1√D−1
0+1R

¡T 00

¢°°°2 ≤ hmin(D−10+1ΦD
−1
0+1)

i−2
×kk2

°°°D−10+1R

¡T 00

¢°°°2 =  (1) (1)  (1) =  (1)  Consequently,
√
D0+1

¡
α̃0 (T0)−α0¢

→ 
¡
0 Φ−10 Ω0Φ

−1
0 0

¢
.

(ii) Note that α̃
̃(T̃̃) = (̃1(T̃̃)0  ̃̃+1(T̃̃)0)0 = argmiñ 1

³
α̃; T̃̃

´
 The FOCs for this

minimization problem are

0×1 =
−2


̃1−1X
=2

X
=1

¡
∆ − ̃

0
1 ∆

¢
∆ +

2



X
=1

³
∆̃1 − ̃

0
2 ̃1 + ̃

0
1 ̃1−1

´
̃1−1

0×1 =
−2


̃−1X
=̃−1+1

X
=1

¡
∆ − ̃

0
 ∆

¢
∆ +

2



X
=1

³
∆̃ − ̃

0
+1̃ + ̃

0
 ̃−1

´
̃−1

− 2


X
=1

³
∆̃−1 − ̃

0
 ̃−1 + ̃

0
−1̃−1−1

´
̃−1 for  = 2  ̃ and

0×1 =
−2


X
=̃̃+1

X
=1

¡
∆ − ̃

0
̃+1∆

¢
∆ − 2



X
=1

³
∆̃̃ − ̃

0
̃+1̃̃ + ̃

0
̃̃̃−1

´
̃̃ ,
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where we suppress the dependence of ̃

 ’s on T̃̃ One can readily solve for α̃

̃ = α̃
̃(T̃̃) to obtain

α̃
̃(T̃̃) = Φ

³
T̃̃
´−1

Ψ

³
T̃̃
´
.

By Corollary 3.4, α̃
̃(T̃̃) = α̃

0

¡T 00

¢
w.p.a.1. Therefore we can study the asymptotic distribution

of α̃̃(T̃̃) by studying that of α̃0

¡T 00

¢
 Using α̃

0

¡T 00

¢
= Φ−1Ψ


  it is easy to verify that

√
D0+1

¡
α̃

0

¡T 00

¢−α0¢ = 
³
D−1
0+1ΦD

−1
0+1

´−1√
D−1

0+1Ψ



= Φ−10  + 
¡
Φ̄−1 −Φ−10

¢
 

where Ψ is defined in (3.1),  =
√
D−1

0+1Ψ

  and Φ̄ = D

−1
0+1ΦD

−1
0+1 By Assumption

A.3(ii), Φ−10 
→ 

¡
0 Φ−10 Ω0Φ

−1
0 0

¢
 implying that

°°Φ−10 

°° =  (1)  Assumption A.3(i)

implies that 0  1
2min (Φ0) ≤ min

¡
Φ̄

¢ ≤ max
¡
Φ̄

¢ ≤ 2max (Φ0) ∞ w.p.a.1. Then by the fact

that min ()tr() ≤tr() ≤ max ()tr() for any symmetric matrix  and conformable p.s.d. matrix

 (see, e.g., Proposition 8.4.13 in Bernstein 2005, p.275) and that max(|min ()|  max ()) = kksp for
any symmetric matrix  (see, e.g., Fact 5.10.3 in Bernstein 2005, p.194), we have°° ¡Φ̄−1 −Φ−10

¢


°°2 =
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and similarly
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£
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°°Φ−10 

°°2
=  (1) (1) (1) (1) =  (1) 

Hence
°° ¡Φ̄−1 −Φ−10

¢


°° =  (1) and
√
D0+1

¡
α̃

0 (T0)−α0¢ → 
¡
0 Φ−10 Ω0Φ

−1
0 0

¢
. ¥

Proof of Theorem 3.6. Recall α̃
̃1

(T̃̃1
) = (̃1(T̃̃1

)0  ̃̃+1
(T̃̃1

)0)0 denotes the set of post-

Lasso OLS estimates of the regression coefficients based on the break dates in T̃̃1
= {̃1 (1)   ̃̃1

(1)}
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where we make the dependence of various estimates on 1 explicit. Let ̃
2
T̃̃1

≡ 1
−11 (α̃


̃1

(T̃̃1
);

T̃̃1
) For any 01 ∈ Ω0 we have lim→∞ (̃01

= 0) = 1 and lim→∞ (̃
¡
01

¢
=  0 

 = 1 0) = 1 by Corollary 3.4 as 01 also satisfies Assumptions A.2(ii)-(iii). It follows that w.p.a.1

̃2T̃̃1

= ̃2T0
 Using the

q
0 -consistency of ̃


 (T0) and the expression ∆ = 00 ∆ + ∆ if

 ∈ [ 0−1 + 1  0 − 1] and ∆ = 00+1 − 00 −1 +∆ if  =  0 , we can readily show that

̃2T0
=

1

 ( − 1)
0+1X
=1

0 −1X
=0−1+1

X
=1

³
∆ − ̃0T0

∆

´2

+
1

 ( − 1)
0X
=1

X
=1

³
∆0 − ̃0+1T0

0 + ̃0T0
0 −1

´2
= ̄2 + [(min)

−1]

where ̄2 ≡ 1
(−1)

P
=2

P
=1∆

2


→ 20 ≡ lim( )→∞ 1
(−1)

P
=2

P
=1

¡
∆2

¢
under Assump-

tions A.1(i)-(ii). Then by Assumption A.5 and Slutsky lemma, 1
¡
01

¢
= ̃2T0

+ 1
¡
0 + 1

¢ →
20. We consider the case of under- and over-fitted models separately.

Case 1: Under-fitted model: ̃1  0 By Lemma B.2, inf1∈Ω− ̃
2
T̃̃1

− ̃2T 0
0
≥ 0 where 0 =

min
2
min

−1 [+  (1)] for some   0 Then by Assumption A5,



µ
inf

1∈Ω−
1 (1)  1

¡
01

¢¶
= 

µ
inf

1∈Ω−

∙µ
̃2T̃̃1

− ̃2T0

¶
+ 1 

¡
̃1 −0

¢¸
 0

¶
≥ 

µ
min

2
min

1 ( − 1)
[+  (1)] + (1)  0

¶
→ 1

Case 2: Over-fitted model: ̃1  0. Let T ≡ {T = {1  } : 2 ≤ 1     ≤ }
Given T = {1  } ∈ T let T̄∗+0 = {̄1 ̄2  ̄∗+0} denote the union of T and T 00 with

elements ordered in non-descending order: 2 ≤ ̄1  ̄2  · · ·  ̄∗+0 ≤  for some ∗ ∈ {0 1 }
Let α̃

(T) ≡
¡
̃

1(T)0  ̃+1(T)0

¢0
= argmin 1 (α;T) and ̃2T ≡ 1 (α̃


(T); T).

̃2T̄∗+0
is analogously defined. In view of the fact that ̃2T̄∗+0

≤ ̃2T for all T ∈ T (̃2T̄∗+0
−

̄2 ) =  (1) uniformly in T ∈ T by Lemma B.3, and 1 →∞ by Assumption A.5, we have



µ
inf

1∈Ω+
1 (1)  1

¡
01

¢¶
≥ 

µ
min

0≤max

inf
T∈T

h

³
̃2T − ̃2T0

´
+1 

¡
−0

¢i
 0

¶
≥ 

µ
min

0≤max

inf
T∈T

h

³
̃2T̄∗+0

− ̃2T0

´
+1 

¡
−0

¢i
 0

¶
→ 1 as  →∞ ¥
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C Proof of the results in Section 4

Proof of Lemma 4.1. Recall that ̈ =TriD(̇ ̈) by (A.6), ̈ = 0 ̈ =

̈ for   = 1 2   and ̇−1 = 0−1 for  = 2   Define

Λ̄1 = ̈21

Λ̄ =
³
̈ + ̈+1

´
− ̇−1Λ̄−1−1̇

0
−1 for  = 2   − 1

Λ̄ = ̈ − ̇−1Λ̄−1−1̇
0
−1 (C.1)

We first argue that the above notations are well defined under Assumptions B.1(iii)-(iv) and B.2(iv) and

that

0 
1

2
min( ) ≤ min

1≤≤
min

¡
Λ̄
¢ ≤ max

1≤≤
max

¡
Λ̄
¢ ≤ 4̄̄ ∞ (C.2)

By Assumption B.1(iii) and B.2(iv), we can readily show that Λ̄1 is p.d. w.p.a.1. To study the behavior

of Λ̄ for  = 2   we consider the auxiliary GMM estimation of the model

 = −1 +   = 1  (C.3)

by using  as the IV for −1 and  as the weighting function. The GMM estimator of  is given by

̂ =
¡
0−1

¢ ¡
0−1−1

¢−1
= ̇−1̈−1−1 (C.4)

Let ̂ =  − ̂−1 ̂ = (̂1  ̂)
0
  = (1  )

0
and  = (1  )

0
 The first order

conditions for the above GMM estimation imply that

0̂−1 =
1


̂0

1


0−1 = 0 (C.5)

where ̂ =
1


P
=1 ̂

0
 Using (C.5), (C.4), and the equality  = −1̂

0
+ ̂ we can readily show

that

̈ =
1

2
0

0
 =

1

2

¡
̂

0
−1 + ̂0

¢


0


¡
−1̂

0
 + ̂

¢
=

1

2

¡
̂

0
−1

0
−1̂

0
 + ̂0

0
̂ + 2̂

0


0
−1̂

0


¢
= ̇−1̈−1−1̇

0
−1 + 0̂

0
̂ (C.6)

It follows that

̈ ≥ ̇−1̈−1−1̇
0
−1 for  = 2  

which further implies that

Λ̄2 =
³
̈2 + ̈32

´
− ̇21Λ̄

−1
1 ̇0−1 ≥ ̈32  0 (C.7)

and by induction that

Λ̄ ≥
³
̈ + ̈+1

´
− ̇−1̈−1−1̇

0
−1 ≥ ̈+1  0 for  = 2   − 1 (C.8)
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In addition, by (C.6) and (C.1)

Λ̄ ≥ ̈ − ̇−1̈−1−1̇
0
−1 = 0̂

0
̂  0 (C.9)

Consequently, min1≤≤ min
¡
Λ̄
¢ ≥ min{min1≤≤−1 min(̈+1) min

¡
0̂

0
̂

¢} In view
of the fact that ̇−1Λ̄−1−1̇

0
−1 is p.s.d. for  = 2   , we have Λ̄ ≤ ̈ + ̈+1 for

 = 1   − 1 and Λ̄ ≤ ̈  It follows that max1≤≤ max
¡
Λ̄
¢ ≤ max1≤≤−1 max(̈+1) +

max1≤≤ max(̈)

By Assumptions B.1 and B.2(iv) and using arguments as used in the proofs of Lemma 3.1(ii)-(iii),

we can readily show that 12 ≤ min1≤≤−1 min(̈+1) ≤ max1≤≤−1 max(̈+1) ≤ 2̄̄
and 1

2 ≤ min1≤≤−1 min(̈) ≤ max1≤≤−1 max(̈) ≤ 2̄̄ w.p.a.1. Then (C.2) follows.
Let Λ̄ denote a block diagonal matrix whose diagonal blocks are denoted by Λ̄ for  = 1   Let

̄ denote the block lower part of ̈  By (B.1), the inverse Λ̄
−1 of Λ̄ exists asymptotically and we can

consider the block LU factorization of the SBTM ̈ : ̈ =
¡
Λ̄+ ̄

¢
Λ̄−1

¡
Λ̄+ ̄0

¢
. Following the

proof of Lemma 3.1(i), we can readily show that w.p.a.1,

max

³
̈

´
≤ £max ¡Λ̄+ ̄

¢¤2
max

¡
Λ̄−1

¢ ≤ (4̄̄)2 ∙1
2
min( )

¸−1


and

min

³
̈

´
≥ £min ¡Λ̄+ ̄

¢¤2
min

¡
Λ̄−1

¢ ≥ ∙1
2
min( )

¸2
(4̄̄)

−1


The lemma holds with ̈ = [
1
2 min( )]

2 (4̄̄)
−1
and ̄̈ = (4̄̄)

2
[12 min( )]

−1 ¥

Next, we state a technical lemma whose proof is given in the supplemental appendix.

Lemma C.1 Suppose Assumption B.1 holds. Then ̈ − 0 = 

¡
−12

¢
for each  = 1 2  

Proof of Theorem 4.2. (i) The proof parallels that of Theorem 3.2 and we only sketch it. Let

̂ = 12(̂ − 0 ) and b̂ =
12(β̂ − β0) Noting that ∆ − 0 + 0−1−1 = ∆ − −12

where  = 0 − 0−1−1 we have


£
22 (β)− 22

¡
β0
¢¤

= b0̈b− 2b0
√
̈

 +2
X

∈T 0
0

̈

h°°°0 − 0−1 +−12( − −1)
°°°− °°0 − 0−1

°°i
+2

X
∈T 0

0

̈

°°°−12( − −1)
°°°

≡ 1 (b)− 22 (b) +3 (b) +4 (b)  say.

As in the proof of Theorem 3.2, we can show that
¯̄
−13 (b)

¯̄
= 

¡
(0)122

−12−2min

¢
−12 kbk =

 (1)
−12 kbk and w.p.a.1

[1 (b)− 22 (b) +3 (b)]  ≥ min

³
̈

´
−1 kbk2 − (1)

−12 kbk  0
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if −12 kbk =  is sufficiently large. Consequently, 
£
22 (β)− 22

¡
β0
¢¤

 0 w.p.a.1 for large

 and 22 (β) cannot be minimized in this case. This further implies that 
−12

°°°b̂°°° has to be
stochastically bounded.

(ii) The proof is analogous to that of the second part of Theorem 3.2 by utilizing the fact that ̈

is an asymptotically nonsingular symmetric block tridiagonal matrix. ¥

Proof of Theorem 4.3. We want to demonstrate that


³°°°̂°°° = 0 for all  ∈ T 00

´
→ 1 as  →∞ (C.10)

Suppose that to the contrary, ̂ = ̂− ̂−1 6= 0 for some  ∈ T 00 for sufficiently large  To consider the

optimization conditions wrt   ≥ 2 based on subdifferential calculus (e.g., Bersekas 1995, Appendix
B.5), we distinguish two cases: (a) 2 ≤  ≤  − 1 and (b)  =  and  ∈ T 00 

In case (a), we consider two subcases: (a1) +1 =  0 ∈ T 00 for some  = 1 0 and (a2) +1 ∈ T 00 

In either case, we can apply the FOC wrt  and the equality ∆ = 00 −00−1−1+∆ to obtain

0×1 = − 2


X
=1


0


1√


X
=1



h
∆ − ̂

0
 + ̂

0
−1−1

i
(C.11)

+
2



X
=1

0+1+1
1√


X
=1

+1

h
∆+1 − ̂

0
+1+1 + ̂

0


i
+
√
2̈

̂°°°̂°°° −
√
2̈+1+1

= −20

1√


X
=1



∙
∆ −

³
̂ − 0

´0
 +

³
̂−1 − 0−1

´0
−1

¸

+ 20+1+1
1√


X
=1

+1

∙
∆+1 −

³
̂+1 − 0+1

´0
+1 +

³
̂ − 0

´0


¸

+
√
2̈

̂°°°̂°°° −
√
2̈+1+1

= −2
√

h
0+1+1+1

³
̂+1 − 0+1

´
− 0+1

³
̂ − 0

´
−0+1+1+1

³
̂ − 0

´
+ 0−1

³
̂−1 − 0−1

´0¸
+ 2
√

¡
0+1+1∆+1 − ∆

¢
+
√
2̈

̂°°°̂°°° −
√
2̈+1+1

≡ 1 +2 +3 −4 say,

where ̂+1 = ̂+1
°°°̂+1°°° if °°°̂+1°°° 6= 0 and k̂+1k ≤ 1 otherwise.

Since ̂ 6= 0 there exists  ∈ {1  } such that
¯̄̄
̂

¯̄̄
= max

n¯̄̄
̂

¯̄̄
  = 1  

o
, where for any

× 1 vector   denotes its th element. Wlog assume that  = , implying that
¯̄̄
̂

¯̄̄

°°°̂°°° ≥ 1√

By Assumptions B.1(i)-(ii) and Theorem 4.2, 1 =  (1) and 2 =  (1). In view of the fact
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that ̈−1 =  (
−22) for  ∈ T 00  |3| ≥

√
2̈

√
 which is explosive in probability un-

der Assumption B.2(iii) ( (2+1)22 → ∞). To bound the probability order of 4 we distinguish
two subcases. In subcase (a1), noting that ̇+1 − ̇

→ 0+1 6= 0 by Theorem 4.2, we have ̈+1 =°°0+1 + (
−12)

°°−2 = 

¡
−2min

¢
and 4 =

√
2̈+1̂+1 =  (

√
2

−2
min ) =  (1)  Conse-

quently, |3| À |1 +2 +4| so that (C.11) cannot be true for sufficiently large  or ( ).

Then we conclude that w.p.a.1, ̂ must be in a position where
°°°̂°°° is not differentiable in subcase

(a1). In addition, a direct application of this result is that if  0 − 1 ∈ T 00 for some  = 1 0 then


³°°°̂ 0 −1°°° = 0´ → 1 as  → ∞ and

√
2̈0 −10 −1 =  (1) in order for the FOC to hold for

 =  0 − 1
In subcase (a2), we apply deductive arguments as used in the proof of Theorem 3.3 and the result

in subcase (a1) so show that ̂ must be in a position that
°°°̂°°° is not differentiable for all  ∈ T 00 and

 6= 

In case (b), noting that only one term in the penalty term (2
P

=2 ̈

°° − −1
°°) is involved with

  it is easy to show that ̂ = ̂ − ̂−1 must be in a position where
°°°̂°°° is not differentiable if

 ∈ T 00  Consequently (C.10) follows. ¥

Proof of Corollary 4.4. The proof is analogous to that of Corollary 3.4 by using Theorems 4.2-4.3

instead. ¥

Proof of Theorem 4.5. Note that α̂
̂(T̂̂) = (̂1(T̂̂)0  ̂̂+1(T̂̂)0)0 = argmin 2

³
α; T̂̂

´


The first order conditions for this minimization problem are

0×1 =
−2


̂1−1X
=2

X
=1

∆
0



1

1



̂1−1X
=2

X
=1
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0
1 ∆
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0
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0
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0
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0
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̂
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0
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0
−1̂−1−1

´
for =2  ̂

0×1 =
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X
=̂̂+1

X
=1

∆
0



̂+1

1



X
=̂̂+1

X
=1


¡
∆ − ̂

0
̂+1∆

¢
− 2


X
=1

̂̂
0
̂̂
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X
=1

̂̂

³
∆̂̂ − ̂

0
̂+1̂̂ + ̂

0
̂̂̂−1

´
,

where we suppress the dependence of ̂

 ’s on T̂̂ We can readily verify that α̂

̂ = α̂
̂

³
T̂̂
´
=

Υ

³
T̂̂
´−1

Ξ

³
T̂̂
´
 where Υ (·) and Ξ are defined in (A.8) and (A.9) in Appendix A.2,
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respectively.

By Corollary 4.4, α̂
̂(T̂̂) = α̂

0 (T0) w.p.a.1. Therefore we can study the asymptotic distribution

of α̂
̂(T̂̂) by studying that of α̂0

¡T 00

¢
 Note that α̂0

¡T 00

¢
= Υ−1Ξ  where Υ and Ξ are

defined in (4.1). It is easy to verify that

√
D0+1

¡
α̂

0

¡T 00

¢−α0¢ = 
³
D−3
0+1ΥD

−1
0+1

´−1√
D−3

0+1Ξ



= Υ−10 ̆ + (Ῠ−1 −Υ−10 )̆ 

where Ξ = Ξ



¡T 00

¢
and Ξ (·) is defined in (A.9), ̆ =

√
D−3

0+1Ξ

  and Ῠ = D

−3
0+1ΥD

−1
0+1

By Assumption B.3(ii), Υ−10 ̆
→ 

¡
0 Υ−10 Σ0Υ

−1
0 0

¢
 Using arguments as used in the proof of

Theorem 3.5, we can show that
°°°(Ῠ−1 −Υ−10 )̆

°°° =  (1)  Then the result follows by the Slutsky

lemma. ¥

Proof of Theorem 4.6. The proof is analogous to that of Theorem 3.6 and thus omitted. ¥
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