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Abstract

Conventional factor models assume that factor loadings are fixed over a long horizon of time, which
appears overly restrictive and unrealistic in applications. In this paper, we introduce a time-varying
factor model where factor loadings are allowed to change smoothly over time. We propose a local
version of the principal component method to estimate the latent factors and time-varying factor
loadings simultaneously. We establish the limiting distributions of the estimated factors and factor
loadings in the standard large N and large T framework. We also propose a BIC-type information
criterion to determine the number of factors, which can be used in models with either time-varying
or time-invariant factor models. Based on the comparison between the estimates of the common
components under the null hypothesis of no structural changes and those under the alternative, we
propose a consistent test for structural changes in factor loadings. We establish the null distribution,
the asymptotic local power property, and the consistency of our test. Simulations are conducted to
evaluate both our nonparametric estimates and test statistic. We also apply our test to investigate
Stock and Watson’s (2009) U.S. macroeconomic data set and find strong evidence of structural changes

in the factor loadings.
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1 Introduction

Factor models provide a flexible way to summarize information from large data sets and have received
extensive attention recently. In a factor model, a few latent common factors drive the comovement of a
large dimensional vector of time series variables. Although economists realize that the relationships between
economic and financial variables may suffer from structural changes over time, the factor loadings, which
capture the relationships between random variables and the latent common factors, are usually assumed to
be fixed over a long period of time in the conventional factor models (e.g., Stock and Watson 2002, Bai and
Ng 2002, Bai 2003). Stock and Watson (2002, 2009) argue that when the factor loadings undergo small
instabilities, the estimated factors obtained via the conventional principal component analysis (PCA) are
still consistent. However, since macroeconomic datasets typically span a long time period, it is restrictive
to assume that the factor loadings are time-invariant or undergo negligible changes during the whole
sampling period. In fact, there exist various driving forces such as institutional switching, economic
transition, preference changes and technological progress that may influence the relationship between
random variables significantly. By ignoring potentially significant structural changes in factor loadings,
the estimated common factors might not converge to the desired object and forecasting and inference based
on them can be misleading or unreliable. In addition, even if one concerns only the common component,
which is equal to the product of factor loadings and the common factors, one may get misleading results.

In recent years, more and more research has focused on structural changes in factor loadings. Stock
and Watson (2008) examine the forecasting reliability when there exists a structural break in the factor
loadings. Breitung and Eickmeier (2011) propose three statistics to test for structural breaks in factor
loadings based on the idea of Andrews (1993). Chen et al. (2014) propose a two-stage procedure to detect
big breaks in factor loadings by testing the parameter stability in a regression of one of the estimated
factors on the remaining estimated factors. Corradi and Swanson (2014) propose a test to check structural
stability of both factor loadings and factor-augmented forecasting regression coefficients. Han and Inoue
(2014) propose a joint test for structural breaks in factor loadings based on the second moments of the
estimated factors. Cheng et al. (2014) consider the case where both the factor loadings and the number of
factors may change simultaneously at a time point. These studies provide appropriate econometric tools
to examine the problem of structural breaks in factor loadings. However, all these papers focus on the case
of one-time abrupt structural changes. The analyses may be inappropriate if, for example, such driving
forces of structural changes as preference changes, technological progress and policy changes, play a role
gradually over a long period of time, or some abrupt policy changes also take a period of time to take effect.
Indeed, as Hansen (2001) points out, “it may seem unlikely that a structural break could be immediate and
might seem more reasonable to allow a structural change to take a period of time to take effect”. Hence, it
seems more realistic to assume smooth changes rather than abrupt changes. To the best of our knowledge,
Bates et al. (2013) is the only paper that allows for smooth changes in factor loading. By controlling the
magnitude of instabilities to be “small”, they show that the principal component estimators of factors are

still consistent. In fact, changes in comovement induced by technological progress and other forces are



gradual but fundamental. As a result, we can neither assume the structural changes to be negligible nor
check the instabilities of factor loadings under the framework of abrupt structural changes.

In this paper, we shall model and test smooth structural changes in factor loadings under the local
smoothing framework. Specifically, we assume that economic structures undergo gradual but fundamental
changes over a long horizon of time, i.e., although the factor loadings change smoothly, the cumulative
changes over the entire time period are too large to be ignored. We think that such a situation is realistic
in economic and financial analysis as the driving forces such as globalization, preference changes, and
technological progress, may all induce evolutionary changes and their accumulative effects cannot be simply
ignored. In this case, Stock and Watson’s (2002, 2009) conclusion about small instabilities of factor loadings
will fail and the conventional PCA will yield inconsistent estimates of common factors and factor loadings.
To conquer the problem, we propose a local version of PCA to estimate the latent factors and the time-
varying factor loadings simultaneously. We establish the limiting distributions of the estimated factors
and factor loadings under the standard large N and large T framework. We also propose a BIC-type
information criterion to determine the number of common factors. Our information criterion extends that
of Bai and Ng (2002) and can be applied even when we have a fixed number of breaks in the factor models.
So it is robust to the presence of structural breaks in factor models.

More importantly, we propose an Lo-distance-based test statistic to check the stability of factor loadings.
The basic idea is to estimate the time-varying factor loadings and the latent common factors by the local
version of PCA, and compare the fitted values of the common components with those estimated by the
conventional PCA method based on the whole sample. By construction, our test is able to capture both
smooth and abrupt structural changes in factor loadings, where the number of abrupt changes is usually
assumed to be one in the literature but can be any unknown countable number in our setup. Unlike the
existing tests, such as Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Inoue (2014), which
check the stability of the moments of factor loadings or common factors, our test compares the estimates
of the common components because it is well known that the latent factors and the factor loadings are not
separately identifiable. Moreover, unlike the existing tests for unknown break date, namely the supremum-
type tests of Breitung and Eickmeier (2011), Chen et al. (2014), and Han and Inoue (2014), no trimming
of the boundary regions near the starting or ending of period is required for our test. In other words, we
allow the breaks to occur near the beginning and the ending of the sample under the alternative.

The rest of this paper is organized as follows. In Section 2, we introduce our factor models with time-
varying factor loadings. In Section 3, we propose the local PCA procedure and develop the asymptotic
normality for the estimated common factors and factor loadings. In Section 4, we construct our test
statistic for time-varying factor loadings, derive the asymptotic distribution of our test and investigate the
asymptotic power properties. In Section 5, we study the finite sample performance of our estimation and
test via simulation. Section 6 provides an empirical study. Section 7 concludes. All proofs are relegated
to the appendix. Further technical details are contained on the online supplementary appendix.

NOTATION. For an m X n real matrix A, we denote its transpose as A’, its Frobenius norm as || A||



(= [tr(AA")]Y/2), its spectral norm as || 4], (= Vi1 (A7A)) and its Moore-Penrose generalized inverse
as AT, where = means “is defined as” and pu, () denotes the sth largest eigenvalue of a real symmetric
matrix by counting eigenvalues of multiplicity multiple times. Note that the two norms are equal when
A is a vector. We will frequently use the submultiplicative property of these norms and the fact that

[Alls, < [lA[F < [1A]

sp —

Sprank(A)l/ . We also use 1, (B) and i, (B) to denote the largest and smallest
eigenvalues of a symmetric matrix B, respectively. We use B > 0 to denote that B is positive definite.
Let P4 = A (A’A)+ A" and M4 = 1,, — P4, where I,,, denotes an m x m identity matrix. The operator
£ denotes convergence in probability, 4, convergence in distribution, and plim probability limit. We use

(N, T) — oo to denote that N and T pass to infinity jointly.

2 Factor Model with Time-varying Factor Loadings

Let {X;,i=1,2,...,N;t=1,2,...,T} be an N-dimensional time series with T observations. The index
1 represents the ith cross sectional unit in panel data set or the ith random variable in multiple time
series data set. We assume that X;; admits the following time-varying factor model with R latent common
factors Fy = (Fity..., Fre)':

Xit = Ny Fy + ey, (2.1)

where the idiosyncratic error {e;; } is assumed to be weakly dependent over both cross sectional unit 4 and
time period ¢. Furthermore, F} satisfies E[F;F]] = X for some positive definite covariance matrix Xp.

Our model given by (2.1) generalizes Stock and Watson’s (2002) and Bai’s (2003) dynamic factor
models by allowing for structural changes in factor loadings.! Specifically, we consider smooth structural
changes. This is in contrast to the factor models with structural breaks that have recently been studied
in the literature; see, e.g., Breitung and Eickmeier (2011), Chen et al. (2014), and Han and Inoue (2014).
Because the driving forces of structural changes including preference changes, technological progress, policy
changes usually accrue gradually over a long period of time, it seems more realistic to assume smooth
structural changes rather than abrupt changes in reality. More importantly, the factor model with abrupt
changes could be regarded as the time-invariant factor model with more latent factors. By using more
factors, one can approximate the true model well and yield reasonable economic analysis and forecasting
(see Breitung and Eickmeier 2011, Chen et al. 2014). However, this is not the case for factor models with
smooth structural changes. In our model with time-varying factor loading, the conventional PCA will
result in inconsistent estimators and forecasts even if we use more factors.

To avoid model misspecification and to allow our model to capture various kinds of time-varying factor

loadings, we use a nonparametric local smoothing method to estimate A;. Specifically, we follow the

IStock and Watson (2002) also consider a time-varying factor model with a stochastic drift in the factor loadings: Ay =
Ai,t—1+9iTC;¢- They assume that g;r is a scalar and small with g;7 = Op (T—1) and (it is an R x 1 random vector such that
Ait — Xio = Op (T*1/2)7 and demonstrate that such small instability does not affect the consistency of the estimated factors.
Del Negro and Otrok (2009) propose a dynamic factor model with time-varying factor loadings and stochastic volatility in

both the latent factors and idiosyncratic components, and estimate the model via a Gibbs sampling procedure.



nonparametric literature on time-varying models (see, e.g., Cai 2007, Robinson 2012, Chen and Hong
2012, Chen et al. 2012, Su et al. 2015) and model \;; as a nonrandom function of ¢/T"

>\it = >\i (t/T)a

where \;(+) is an unknown piece-wise smooth function of ¢/T on (0, 1] for each i. The specification that
Ai(t/T) is a function of ratio ¢t/T € (0, 1] rather than time index ¢ is a commonly used scaling scheme in
the literature. An intuitive explanation to this requirement is that the increasingly intensive sampling of
data points ensures consistent estimation of \;(¢/T') for each ¢ at some fixed point t/T by increasing the
amount of data on which it depends. For more discussion, see Robinson (1989, 1991).

As in the conventional factor models, A\;; and F; are not separately identifiable. At each time point ¢, we
have \,,F; = (Ht_l)\it)/ (H/F;) for any R x R nonsingular matrix H; and we need to impose R? restrictions
in order to identify A;; and F;. Let Ay = (A, ...,)\Q\,t)/ and F = (FY,..., F})". One set of identification
conditions would be F'F/T = Iy and AjA:/N =diagonal matrix (c.f. Bai and Ng (2002) and Bai (2003)).

3 Estimation

In this section, we introduce the local version of PCA to estimate the time-varying factor loadings \;; and
the factors F;. We also establish the asymptotic distributions of these estimators and propose a BIC-type

information criterion to determine the number of factors.

3.1 Local principal component analysis

For the moment, fix r € {1,2,....,7}. Under the assumption that A; : [0,1] — R is a smooth function, we

have

it = A; G) ~ )\ (%) — ), when % ~

It follows that
t r
X~ M\, F it when — ~ —. 1
¢ Zrt—i—e,gwenT T (3.1)
To estimate {\;}Y, and {F;}]_;, we can consider the following local weighted least squares (WLS)

problem:

min (NT) !

(X — N, F)* K, <t _ T) (3.2)
{Air}ﬁ\;l7{Ft}z:1 i=1t

N T
=1 T
subject to certain identification restrictions to be specified later on. Here, K (z) = h™'K(z/h), K : R —
RT is a kernel function, and h = h(T, N) is a bandwidth parameter. As we now argue, the solution to the

above minimization problem can be obtained via PCA.
To see this, multiplying both sides of (3.1) by kp ¢ = h "' K ((t — r)/(Th)) yields the transformed model
ko Xie ~ ke N By + k) e, (3.3)

h,tr tir



Define the T x N matrices X (") = (XY), e ,X](\;)) and e = (€} (T) e ,e%)), where Xi(r) = (k,ll{eril, ce,
1/2 (r) _ (.1/2 /2 s (r) — (1.1/2 1/2 / (r) _ /

kh,TerT) and e; (k;h 1€l s kh’TTe,T) .Let F(") = (k . kh,TrFT) and A" = (Ayp, .o Any)s

which are 7" x R and N x R matrices, respectively. In rnatrlx notation, the transformed model (3.3) can

be written as
X o POIAM 4 o),

Then the minimization problem in (3.2) becomes

_min o {(X(T) - F<T>A(T>’) (X(T) - FWA(T)’H . (3.4)

We will consider the following identification restrictions:

FO'F) )T =T and AT A" =diagonal matrix. (3.5)

’

By concentrating out A" = X' () (F)

the objective function becomes

F)=1 = X' F() /T under the restriction F(™' F) /T =I5,

tr [X(T)’X(’")} T [F(T)'X(T)X(T)’F(T)} .

Then we can consider maximizing tr[F(") X)X (@) F()] subject to F('F() /T = Ip. This is the
conventional PCA problem. The estimated factor matrix, denoted by F(”) = (Fl(r), ...,ﬁ’q(f))', is VT
times eigenvectors corresponding to the R largest eigenvalues of the T' x T matrix X ()X ("' and /AX’T =
(ﬁ’(r)ﬁ’(’")l)_lﬁ(r)'X(’") = F(T)lX(T)/T, r=1,2,...,T, are the estimators of the corresponding time-varying
factor loadings. We use j\ir to denote the 7th column of A'T

It is well known that a local constant estimator may suffer from boundary problem. When the kernel
function K (-) has compact support [—1,1], the boundary regions for our local WLS problem are given by
[0,h] U [1 — h,1]. Even though the length of these regions is shrinking to zero as h — 0, there are still a
significant amount of data falling into these regions in finite samples. To avoid the boundary problem, we

apply the following boundary kernel (see, Hong and Li 2005, Li and Racine 2006, p.31):
. h~ 1K(t T)/f T/Th) (u)du, if r € [0,|Th])
ki =h" 'K < Th ) =< hlK (t T) if r € [|Th|,T—|Th]]
h K () /[T K (u)du, it e (T — | Th), T)

where |a] denote the integer part of a. Note that kh . coincides with £y, 4 in the interior region but not
in the boundary regions. By using this boundary kernel to replace kj i = Kj (5£) in (3.2)-(3.4), we
obtain the estimators to be analyzed below. But for notational simplicity, we will use kj, ¢ to denote kL, 4
hereafter. In addition, we remark that the use of a boundary kernel is not necessary for the study of the
asymptotic properties of our estimators and test statistics in latter sections, but it helps to improve their
finite sample performance.

The estimator ﬁ’t(r) is only consistent for a rotational version of the weighted factor Ft( M = kfl/tszt.
To obtain a consistent estimator of F} after suitable rotation, we consider a two-stage estimation proce-

dure. Based on the consistent estimators of A;;’s obtained in the first stage, we can obtain the consistent



estimators of Fy, t =1,2,...,T, in the second stage, by considering the following least squares problem:
N

N 2
min {Xit—)\;tFt}, t=1,2,....T
FteRRi:

N A~ A -1 N
The solution to the above problem is: F; = (Zf;l )\Z-t)\;t) (Zivzl )\itXit) fort=1,2,...,T.

3.2 Limiting distributions of the estimated factors and factor loadings

In this subsection, we establish the asymptotic distributions of the estimated common factors and time-
varying factor loadings.

Let vy (s,t) = N'E(eher) s v p (5,1) = NT'E (Faeler) , Y pp (5,1) = N7E (Feele FY) , and (=
N~1lele; — E (€le)]. Define

hl/?
wyra (1) = \/WF(T’) eMA, = szhtrFtele
i=1 t=1
B1/2 h1/2 T N

[0V e e, — B(F0eMe,)]

wnr,2 (7,t)

Z Z kh S’I‘ F €is€it — E (Fseiseit)]-

VNT

Let C' < oo denote a positive constant that may vary from case to case. We make the following assumptions.

Assumption A.1. (i) E(e;) = 0 and max; , E( ) < 0.

(ii) max; B Fi||® < oo and E (FyF}) = Xp > 0 for some R x R matrix Yp.

(iii) A;z are nonrandom such that max;; | Ait|| < & < co and N71A’A,. =3y, + O (N*1/2) for some
R x R positive definite matrix ¥, and for all r.

(iv) maxy ZS 11Cov (Fy p Fy oy Fs i Fs )| < C form, n=1,..., R, where F; ,,, denotes the mth element
of F.
(v) max; S0y [[7(s, 8)]| < C and max, 3>/, [[7(s, 8)|| < C for v =y, Yy, and Yy, -
(vi) maxj<s <7 E }N1/2(st’4 < C and max,; F HNﬁl/QAQ,etH4 <C.
(vii) w1 (r) = Op (1) and max; E ||[wnrs (1, 8)]|> < C for each r.
(

viii) For all r, the eigenvalues of the R x R matrix X 1/ 22 FZ/l\/T * are distinct.

Assumption A.2. (i) N~V/2\ ¢, 4N (0,T,) for each 7,t, where I',y = limy oo N1 Ziil Zjvzl )\iT)\;-T
xFE (eitejt) .
(if) % ST knaFaeis 5 N (0,9;,), where

2h
Q= lim Zkh B (FFLe2) + Z Z kn,srkn,tr E (FsFleisei) | - (3.6)
s=1 t=s+1
Assumption A.3 (i) The kernel function K : R — RT is a symmetric continuous PDF function with
compact support [—1,1].
(ii) As (N,T) — oo, h — 0, Th?> — 0o, Nh? — oo, Th/N — 0, and Th/N'/? — .



A.1 mainly imposes moment conditions on the error terms, factors, factor loadings, and their inter-
actions. They are widely used in the literature; see, e.g., Bai and Ng (2002) and Bai (2003). Note
that we follow Stock and Watson (2002), Bai (2003), and Breitung and Eickmeier (2011) to assume
that E[FF/] is homogeneous over t in A.1(ii), which facilitates the derivation of the asymptotic results
significantly. With more complicated and lengthy arguments, we can allow for time-varying covariance
for the factor loadings. Similarly, following Bai (2003) and Breitung and Eickmeier (2011), we assume
that the factor loadings are nonrandom in A.1(iii) because they are treated as functions of time. A.2
is used to establish the asymptotic normality of our local PCA estimators and can be verified under
some primitive conditions. For example, by the central limit theorem (CLT hereafter) for strong mixing
processes (e.g., White 2001, Theorem 5.20), one can readily verify A.2(ii). Using Davydov inequality,
we can argue that the limit €;, in (3.6) exists. Without further assumptions, we cannot simplify it. If
E (F.Fle3,) = € for each s and {e;} is a martingale difference sequence (m.d.s. hereafter) with re-
spect to Fi;, the sigma-field generated from {e;;_1,€;¢—9, ..., F}, Fi_1, ...}, then we can readily show that
Qi = @ limp_oo == ST K (STT,:)Q =P, fil K (u)?du if r € [[Th], T — |Th]]. A.3 imposes regularity
conditions on the kernel function and bandwidth.

Under these regularity conditions, we now establish the asymptotic distributions for latent factors and
time-varying factor loadings estimated via our local PCA method. As is well known, latent common factors
and factor loadings are not separately identifiable. However, they can be identified up to an invertible
R x R matrix transformation. Since our local PCA method can be regarded as a conventional PCA method
in any small interval around the fixed time ratio /T for r = 1,2,...,T, we can show that there exists an
invertible matrix H (") such that F‘t(r) is a consistent estimator of H (’“),Ft(r) and 5\” is a consistent estimator
of HM=1),,..

The following theorem reports the asymptotic distribution of Ft(r).

Theorem 3.1 Suppose that Assumptions A.1, A.2(i) and A.3 hold. Then, for each t = 1,2,...,T and
r=1,2,...,T such that |r — t| < Th, we have:

B —-1/2 R ,
K (rTht) N, [Ft(” _H® Ft(r)} KA N (0,V1Q QLYY

where H™ = (N_lAﬁ,AT)(T_IF(T)/F(T))VIS,Z)fl, VJS,T% denotes the R x R diagonal matriz of the first
R largest eigenvalues of (NT)f1 X(T)X(T)/, V. is the diagonal matriz consisting of the eigenvalues of
E}\/TZEFZ}\? in descending order with Y, being the corresponding (normalized) eigenvector matriz (Y, Y, =
Ip). and Q, = V;'/*1, ', "/2.

Theorem 3.1 establishes the asymptotic normality of Ft(r). We note that Ft(r) is a consistent estimator
for the transformed latent factor Ft(T) = k:}ll/ tzTFt pre-multiplied by a transformation matrix H). Since
we allow cross sectional dependence in the error terms, the limiting distribution depends on the cross-
section correlation structure among {e;;}. In the case where e;; is uncorrelated over i, we have ', =
limpy oo N7t Zfil NirNip0%, with 02, = Ele?]. In addition, if 02, = o7 for each 4, then we have I';y =

2
YA,0%.



The asymptotic distribution of S\it is reported in the next theorem.

Theorem 3.2 Suppose that Assumptions A.1, A.2(ii) and A.8 hold. Then, for each i =1,2,...,N and
r=1,2,...,T, we have:

VTR [Ny = HO- ] 4 N (0,@0) 7 2401

Theorem 3.2 establishes the asymptotic normality of j\ir. When {e;t, Fir} is an m.d.s., the asymptotic

variance can be simplified, leading to

\/ﬁ()\,T—H(” 1)\W < / K (u)’ du (Q7Y) Q5 >

when r € [|[Th|,T — |Th]].

As mentioned above, Theorem 3.1 only establishes asymptotic distribution for the transformed common
factor Ft(T) . Since economists are usually interested in the estimation of the latent factor F; itself, which are
particularly useful in economic modeling and forecasting, it is desirable to establish asymptotic distribution

for the estimator of F; after suitable rotation.

Theorem 3.3 Suppose that Assumptions A.1, A.2(i) and A.3 hold. Then, for each t = 1,2,...,T we
have
~ / d IR IR
\/N |:Ft — H(t) Ft:| — N (O, (EASQt 1)/Ftt2At1Qt 1) .

Remark. Interestingly, although the convergence rates of Ft(r) and \;; depend on the bandwidth &, the
estimated factor F} could achieve the usual parametric v/ N-rate of convergence. In addition, even though
we apply the nonparametric local smoothing method, we do not have the usual asymptotic bias-variance
tradeoff for the estimators of either the factors or the factor loadings because neither estimators possess the
usual asymptotic bias terms. As a result, we can not derive the conventional optimal bandwidth in terms
of minimizing the asymptotic mean square error of the nonparametric estimates. In practice, we suggest
using some data-driven methods to choose the bandwidth. For example, one can use the cross-validation

method to choose the bandwidth & by solving the following minimization problem:

HllIlCV T ZZ |:er - Er F;giT) i 39

i=1r=1

where ;\E; g and Fr(fr) are the analogue of Nir and E, by leaving the rth time series observation out in the
local PCA procedure. But a rigorous study of the asymptotic behavior of h would demand higher order

asymptotic theory, which goes beyond the scope of the current paper.

3.3 Determination of the number of factors

In the above analysis, we assume that the number of factors, R, is known. In practice, one has to determine
R from the data. Here we assume that the true value of R, denoted as Ry, is bounded from above by a

finite integer Ryax. We propose a BIC-type information criterion to determine Ry.



Let Fy (R) and Ay (R) denote the local PCA estimators of the factors and factor loadings by assuming

R factors in the model and using the following normalization rule
N_lA'TAT =1Igr and TIF F) g g diagonal matrix,
where we make the dependence of the R x 1 vectors F} (R) and it (R) on R explicit. Let A —

(A1r (R) ..., Anw (R)) and AR = (NT)™ LX) XOA® for p =1, T. Let Air (R) denote the transpose
of the ith row of ]\@. Define

5 | NT o )
1% (R, {AgR)}) _ ﬁ:(ﬁfii.?,ﬁ;)’ ST [Xit — F/ X (R)} .
Motivated by Bai and Ng (2002), we propose the following BIC-type information criterion to determine
Ry :

IC(R)=InV (R, {MR>}) + pyrR, (3.7)
where pyr plays the role of In(NT)/(NT) in the case of BIC and 2/(NT) in the case of AIC. Let
R = argming IC (R).

We add the following two assumptions.
Assumption A.4. (i) [ell,, = Op (N2 411/2).
% 50X leness = B (eacis)]| = Op(N712 (nT)'1?),
= Op((Th)~Y/2 (In (NT))"/?) and max,

(ii) maxy ¢

T
T Lot knarlll B = B[ F]]

(iii) max; , H T Zt 1 knir Frei
= Op(T~V2 (InT)"?).
(iv) max,; E ||N*1/2A'e F'H4 < C and max, ¢ E HN*I/2 [Fsele F] — E'(Fse'setFt')]H2 <C.

/ 2
( ) max, & H (1\?;;/2 Z@ 1 Zt 1 kp Jtr [Fteztesz - F (FteztewF )] <C.

Assumption A.5. As (N,T) — oo, pyr — 0 and pyC¥p — 0o where Cyr = min(v/Th, V/N).

The conditions in A.4 can be verified under some primitive conditions that are used in the factor
literature. For example, Moon and Weidner (2015) demonstrate that A.4(i) can be satisfied for various
processes; Su et al. (2015) verify similar conditions to those in A.4(ii)-(v) under some mixing conditions.
The conditions on pyp in A.5 are typical conditions in order to estimate the number of factors consistently.
The penalty coefficient pyp has to shrink to zero at an appropriate rate to avoid both overfitting and

underfitting.
Theorem 3.4 Suppose that Assumptions A.1 and A.3-A.5 hold. Then
P (R:RO) —1as (N,T)—

Theorem 3.4 indicates the class of information criteria defined by IC (R) in (3.7) can consistently
estimate Rp. To implement the information criterion, one needs to choose the penalty coefficient py . Fol-
lowing the lead of Bai and Ng (2002), we suggest setting pyr = NTq;lh In (]\J[VJFTT}Lh) or pn7 = AJ’V"'Tq;lh In C%1

with Cnyr = min{vTh,vN} and evaluate the performance of these two information criteria in our simu-

lation studies.
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4 Testing for the Constancy of Factor Loadings over Time

In this section, we propose a formal test for the constancy of factor loadings over time and study its

asymptotic properties under a sequence of Pitman local alternatives.

4.1 The hypotheses

The null hypothesis of time-invariant factor loadings could be written as

Ho: N\ig = Mo fori =1,2,...,Nand t = 1,2,...,T, (4.1)
and the alternative hypothesis is

H; : At # Ao for some non-negligible values of (i,t), (4.2)

where \;p is an unknown vector of factor loadings. We allow \;; = A;(¢t/T) to be a piece-wise smooth
function on (0, 1] for each ¢ with a finite number of discontinuities under Hj .

Obviously, under the null hypothesis, \;; is time-invariant and the model (2.1) degenerates to the
conventional factor model as studied by Stock and Watson (2002), Bai and Ng (2002) and Bai (2003),
among others. Nevertheless, it is well known that factor models may exhibit structural changes over time.
For this reason, much recent research has focused on testing for structural changes in factor models; see
Breitung and Eickmeier (2011), Chen et al. (2014), Cheng et al. (2014), and Han and Inoue (2014).
These authors aim at testing the existence of a single structural change in the factor loadings by using
some supremum-type test statistics. However, usually no prior information about the structural change
alternative is available in practice. It is extremely restrictive to assume only a single sudden structural
break in the factor loadings. In contrast, we do not impose any essential restriction on the alternative. The
alternative (4.2) allows for a finite number of abrupt structural breaks. More importantly, by assuming \;;
to be a piece-wise smooth function under the alternative, we also allow for smooth structural changes in
the factor loadings. This type of alternative seems more reasonable and realistic than the single structural
break alternative given the fact that the driving forces of structural changes such as preference changes,

technological progress and policy modifications accrue gradually in a long period of time.

4.2 Test statistic

Under Hj, we can follow Bai and Ng (2002) and Bai (2003) to apply the conventional PCA method
to estimate the common factors and time-invariant factor loadings. Under Hj, we can apply the local
PCA method to estimate the common factors and time-varying factor loadings. Then, we can construct
a quadratic test statistic to check Hy by measuring the squared distance between the estimates of the
common components under Hy and those under Hj.

Let eIt = ey + (N\it — )\io)/Ft. Let X; = (Xu¢,--- ,XNt)/, er = (e1t,.- .,eNt)/, eI
F=(F,...,Fr), and Ag = (10, ., Anvo) - Let X = (X},..,X7%)", e

Il
—~
)
_—
Q)
~
~—

= (e),....ep), el
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Then we can rewrite (2.1) in matrix form
X = FA) +e. (4.3)

The conventional PCA method solves the following minimization problem

T
. / /
%{m(x FAN) (X — FN) ;; —XF)?

under certain identification restrictions. In this paper, we follow Bai (2003) and consider the following
identification restrictions: T-'F'F = Iy and A’A is a diagonal matrix. Let F, and ;o be the principal
component estimators of Fy; and )\, respectively under the above identification restrictions. Let F =
(Fl, vy FT)’ and Ay = (5\1,0, - ;\NO)’. It is well known that F is v/T times eigenvectors corresponding to
the R largest eigenvalues of the T x T matrix XX’, and A}, = (F'F)"'F'X = T-'FX.

Given the estimates S\ZOF} of the common components A}, F; under Hy and those (S\Ztﬁ}) under H;, we
propose a quadratic form statistic to check the null hypothesis of time-invariant factor loadings based on

the comparison of the two sets of estimates:

;] NI 9
=Y ( OFt) . (4.4)
i=1 t=1
We will show that after being appropriately rescaled and centered, M follows the standard normal

distribution under the null hypothesis and has non-trivial power to detect a sequence of Pitman local

alternatives that converge to the null at a suitable rate.

4.3 Asymptotic null distribution

In this subsection, we study the asymptotic distribution of M under Hy. Let IAll, = {F | A" Y/ for
r > 1. We add the following assumptions.

Assumption A.6. (i) For each i = 1,2,..., N, the process {e;;,t = 1,2,...} is an m.d.s. such that
E (ei|Fnri—1) = 0 Vi, where Fyri—1 = {Ft, Fio1,...,€1-1,€t—2,...}.

(ii) For each ¢ = 1,2,..., N, the process {(e;, F}),t = 1,2, ...} is strong mixing with mixing coefficients
@; (+). a() = max; o; () satisfies > oo & (3)6/(2+6) < C < oo for some ¢ > 0. In addition, there exists an
integer Ty € [1,T) such that T—2 max (T, Tgh™1, T¢h™?) — 0 and N?Th%« (TO)‘;/(H‘;) —0as (N,T) —
00.

(iii) max; ¢ || Fireillg 45 < C and max;y [leillg 45 < C.

(iv) max;, ||N_1/2FteierF’ < C and E (e;sejs FLF,) = 7;j 5 satisfies = Zl 1 Zj 1 ZS Tigsl <
C.

I

Assumption A.7. (i) max,, |[|[N"'ALe|| = Op(N—1/2 (lnT)l/Q) and max, |[N~'ALeFy|| = Op(N~1/2
(InT)"?).
(i) max, |wyra ()] = Op((InT)?) and max,.; |@wyrs (r,t)]| = Op((InT)"?).
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(iii) max,

S A E

M L S ke Xireu FY|| = Op (NTh)™Y2(nT)/2)

‘ = max,

A .6(i) assumes that the process {e;;, ¢ = 1,2, ...} is an m.d.s. with respect to the filter {Fyz}. This as-
sumption is essential for the establishment of the asymptotic distribution of our test statistic under the null
hypothesis and a sequence of Pitman local alternatives. A.6(ii) requires the process {(e;, Fy),t =1,2,...}
to be strong mixing with some algebraic mixing rate. With more complicated notation, one can allow dif-
ferent individual time series to have different mixing rates and then relax the summability mixing condition
to limsupy % Zfil Yoo (5)6/(%6) < C < oo. If the processes are strong mixing with a geometric rate
(e.g., a(s) = p® for some p € [0, 1)), then the conditions on « (-) can be all met by specifying Ty = |CoInT'|
for some sufficiently large positive constant Cy. A.6(iii) assumes some moment conditions on Fie;; and
eit, which, in conjunction with A.6(ii), reflects the usual tradeoff between the dependence and moment
conditions: a smaller value of § requires faster decay in the mixing coeflicients but less stringent moment
conditions. Like A.1(vi), A.6(iv) controls the cross-sectional dependence among {Fie;, i = 1,2,...,N}.
Under A.6(iii), this condition becomes redundant if we would assume independence of e;. = (e;, ..., eiT)'
across ¢ conditional on the factors. A.7 imposes conditions on the uniform probability order of some
summation objects. Again, these conditions can be easily verified by using Bernstein-type exponential
inequality for independent or strong mixing processes.

In addition, we need to strength A.3(ii) to the following assumptions:

Assumption A.3. (ii*) As (N,T) — oo, h — 0, Th?> — co, Nh? — oo, Th/N — 0, Th/InT — oo, and
N3T2h~Y(InT)"? — oc.

Let Vyr denote the R x R diagonal matrices of the first R largest eigenvalues of (N T)f1 XX’ in
decreasing order and H = (N“'ALA)(T'F F)Vyi. Let ko = h ' Kf (55), ke = K (57%) with
K (u) = fil K (v) K (v — v) dv being the two-fold convolution kernel of K(-). For example, if we use the
Epanechnikov kernel K(u) = 0.75(1 — u?)1{|u| < 1} with 1{-} being the usual indicator function, then

K(u) = (2 = 3u?+ P — 5 1ul®) 1{|u < 2}. Let Ly = ky oy HOH® — HH'. Define

p2 N T T

Byr = Ni2T2 Z Z Z (FtILStFS)2 el

i=1 t=1 s=1
Vnr = 2T N~ 'h™! Z k3B [(F;HOEFH(I)FT)Q (elresﬂ ;
1<r#£s<T
where Sp = H)YpHo, Hy = Q' = (Vl/QT’EXUlm)’l denotes the probability limit of H under Hy, V is
an R x R diagonal matrix containing the R largest eigenvalues of E}\/O 5 FZX) % in decreasing order, T is
the corresponding eigenvector matrix such that Y'Y = I, and X, is the probability limits of N~1A’A,
under H.

The following theorem states the asymptotic null distribution of our test statistic.

Theorem 4.1 Suppose that Assumptions A.1, A.3(i) and (it*), and A.G-A.7 hold. Then the test statistic
JNT = V;/:lT/z (TNl/th/QM - BNT) i) N(O, 1) under Ho.
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We make some remarks. First, each of the four terms, namely, Nit, Fi, Mo, and Fy, in the definition
of M contributes to the asymptotic distribution of Jyr. We need to study the asymptotic expansion for
each of these four estimators. Second, after some tedious calculations, we can demonstrate that under Hy,
TNY2R\2N[ — Byr = Y1, Zn7.s + 0p (1), where

s—1 N

Znr,s =20 'N~V2p=1/2 Z Z ko FLHoSp HyFreiseir.

r=14i=1

Under the m.d.s. condition in Assumption A.6(i), one can verify that E (Zy7s|FnT,s—1) = 0 and resort
to a martingale central limit theorem (e.g., Pollard 1984, p.171) to derive the asymptotic distribution
of Jyr. Difficulty arrives when we try to verify the Lyapunov condition via the fourth order moment of
ZnT,s because we do not assume cross-sectional independence among e;. = (e;1, ..., eiT)' conditional on the
factors. The strong mixing condition in A.6(ii) and the moment conditions in A.6(iii)-(iv) greatly facilitate
the verification of the Lyapunov condition. Third, despite the assumed m.d.s. condition, the variance term
Vo still takes the form of a double U-statistic that involves two summations over each of the individual
and time dimensions.

To implement the test, we need to estimate both the asymptotic bias By and the asymptotic variance

V7. The consistent estimators for By and Vyr are respectively given by
K p2 N T T o 2
Byr =z D2 (knst FLFy = FLFL) €2, and
1=1 t=1 s=1
R _ N2
Vive = 20Nt Y R, (FS’ZFFT) (e.é)?,
1<s#r<T
where ;3 = X;s — 5\2st~ Then we consider the feasible test statistic:
vt = V7 (TNY2RY20 — Byr)
The following theorem establishes the consistency of B N7 and Vl ~nT and the asymptotic normality of
JInT.
Theorem 4.2 Suppose that Assumptions A.1, A.3(i) and (i7*), and A.6-A.7 hold. Then under Hy, Byr =
o 4 d
Byt + 0p (1) , Vint =Vinyr +0p (1) , and Jyr — N(O, 1).

Theorem 4.2 indicates that our test statistic Jyr is asymptotically pivotal under Hy. We can compare
the value of Jyr to the critical value Za, the upper a-percentile of the N (0, 1) distribution, as the test is

one-sided, and reject the null at « significance level when INT > 24

4.4 Asymptotic local power

To study the asymptotic local power property of our test, we consider the following sequence of local
alternatives:
t
H; (anTt) : Ait = Xio + anTgs (T) for each ¢ and ¢,
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where ayp — 0 as (N,T) — oo, it controls the speed at which the local alternative converges to the null
hypothesis, and g; (%) is a vector-valued piecewise smooth function with a finite number of discontinuity
points. Noting that Aio +anrgi (%) = (Ao + ci,n7) + anrlgi (%) — ci,nr/anT] for any ¢; 7 = O (anT),
below we will assume that )

/0 gi (u)du =0

for location normalization purpose. With this normalization, both \;o and g; (-) can be dependent on the
sample sizes N and T. But for notational simplicity, we continue to write them as \;o and g; (-) instead of
Xio,nr and g; N (+) -

Let giu = gi (), 9, = Flgi (), and g] = (9., gk,)’- Define

Moo= |l T 1Ztr[ Vo lHy! ( Aogt) (N’lg;”Ao) (Hy) V' Hy 'S, |
N T
I, = (N,lqigrlm (NT)_lzZtr Y rgitds) - (4.5)

i=1 t=1

To study the asymptotic power property of J ~NT, we impose the following assumption:

Assumption A.8. (i) For each ¢ = 1,2,..., N, g;(-) is piecewise continuous with a finite number of
discontinuous points on (0,1].

(i) max << || g S0 I e Focisgly | = O (NTh/In(NT))~72).
(iii) The limits II; and I defined in (4.5) exist and II; + IIs > 0.

Assumption A.8 allows the factor loadings to change smoothly over time or abruptly at a finite number
of unknown discontinuity points. In either case, we assume that the factor loadings are uniformly bounded
in A.1(iii) to facilitate the asymptotic analysis.

The following theorem studies the asymptotic local power property of Jx7.

Theorem 4.3 Suppose that Assumptions A.1, A.3(i) and (ii*), and A.6-A.8 hold. Then under Hy (anT)
with anyT = T71/2N71/4h71/4, BNT =By + 0p (1) s VNT =Vn7 +0p (1) s and jNT i N(Wo, 1), where
(Hl + Hz) /V1/2 and VO = 1im(N,T)~>oo VNT.

Theorem 4.3 implies that our test has nontrivial asymptotic power against the class of local alternatives
that deviate from the null hypothesis at the rate ayr = T-Y2N-1/4p=1/4 Note that we allow the existence
of a finite number of unknown discontinuity points in factor loadings. As a result, our test has power against

not only the smooth structural changes in factor loadings but also a finite number of abrupt changes.

4.5 Asymptotic global power

To study the asymptotic global power property of our test, we define

Fr= {F‘ : F"F'/T = ]IR} and Ay = {/U\ NA = diagonal matrix} ,
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where A = (A1, ..., Ax) and F = (FY, ..., Fp)'.

Assumption A.9. There exists cyp > 0 such that plim(N,T)_,ooinf(;\ F)eAn xFr <7 Zfil Zle(A;tFt

vl v

“AI)? > epp

Assumption A.9 is intuitively clear: in the spaces of factors and factor loadings such that the normal-
ization rules in F'r and Ay are satisfied, we cannot find any time-invariant factor loadings j\i’s and the
associated factors F}’s such that X:Ft converges to the true common component A;, Fy in the sense of mean
square error. If A.9 is violated, then we can approximate the time-varying factor model by a time-invariant

factor model so that the instability of the factor loadings has to be small and asymptotically negligible.

Theorem 4.4 Suppose that Assumptions A.1, A.8 and A.9 hold. Then under the global alternative Hy,
P(J > ent) — 1 as (N, T) — oo for any positive sequence eyt that is o (TN/2h1/?).

Theorem 4.4 implies that J is consistent and divergent to infinity at the rate TN'/2h1/2. Note that
A.6-A.8 are not required here as there is no need to derive the asymptotic distribution of J or to study

the consistency of the bias or variance estimator.

4.6 A bootstrap version of our test

It is well known that a kernel-based nonparametric test may not exhibit good size in finite samples because
its asymptotic null distribution may not approximate its finite sample distribution well when the null
hypothesis is satisfied in the real data. Therefore it is worthwhile to propose a bootstrap procedure to
improve the finite sample performance of our test.

There are various ways to conduct the bootstrap. One simple way is to adopt the standard wild
bootstrap method. To do so, let &Z-Q =71 Zle éft, where €;; = X;; — 5\;01:}, and Ft and 5\1‘0 are the
estimates of the factors and factor loadings under the null. Let e}, = &;¢;+ with ¢;; being IID N (0, 1)
over both ¢ and ¢. Then one can generate the bootstrap resamples via X}, = 5\20}7} + e, and obtain the
bootstrap test statistics and p-values as usual. One can justify the asymptotic validity of this method under
very weak conditions despite the fact that the bootstrap error terms {e},} fail to capture the potential
cross sectional dependence structure in the original error terms {e;; } . Preliminary simulations suggest this
method works fairly well if either {e;:} do not exhibit cross-sectional dependence or only exhibit fairly
weak cross-sectional dependence. In the presence of moderate or strong cross sectional dependence in the
error terms, tests based on this standard wild bootstrap method tend to be oversized.

For the above reason, we propose an alternative bootstrap procedure that tries to mimic the cross-
sectional dependence in {e;:}. Let & = (€14, ..., €n¢)" and 20 =71 23:1 éé}. Let 6% denote the (7, j)th

element of £°. Define the shrinkage version of 30 as & whose (i,7)th element is given by

Oij = 5% (1- G)U_i‘ fori,j=1,...,N,

where € is a small positive number (e.g., 0.01) to ensure the maximum absolute column/row sum norm of

¥ to be stochastically bounded provided max;_; ‘&?j} is. By construction, ¥ is also symmetric and positive
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semi-definite. The stochastic boundedness of max; ; ]&%‘ is sufficient but not necessary for the justification

of the asymptotic validity of our bootstrap procedure below:

1. Estimate the restricted model X;; = \;oF; + ezt by the PCA method and the unrestricted model
Xt = N, F; +e;; by the local PCA method to obtain the two sets of estimates {5\,'0, l*:’t} and {S\it, Ft}

Based on these estimates, construct the test statistic J ~NT as in Section 4.2.

2. Fori=1,2,...,Nandt=1,2,...,T, obtain the bootstrap error e; = $1/2¢,. where ¢; = (S1ty---,Snt)
with ¢;; being IID N (0,1) across ¢ and t. Generate X3, = 5\2013} + e,

3. Use {X}} to run the restricted and unrestricted models to obtain the bootstrap versions {5\:0, F*}
and {5\;, E¥} of {\io, Fy} and {\i, F}}, respectively. Calculate the bootstrap test statistic J%,, the

bootstrap version of JINT.

4. Repeat steps 2 and 3 for B times and index the bootstrap test statistics as {jXrT,l}F:r The bootstrap
p-value is calculated by p* = B~! Zf;l 1{j]’§,T7l > Jnr}.

The following theorem establishes the asymptotic validity of the above bootstrap method.

Theorem 4.5 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Suppose that (i)
(|8 -8
max;, ; |6?j| = Op (Cnr) with (yp = O(TI/Q) , (1) % ZtT:1 ’ Fy|| = Op(1) and (i) % 25\21 ‘ Aio ‘ =

Op (1). Then jj’{,T bl N (0,1) in probability, where DY denotes weak convergence under the bootstrap

probability measure conditional on the observed sample X .

Theorem 4.5 shows that the bootstrap provides an asymptotic valid approximation to the limit null
distribution of Jy7. This holds because we generate the bootstrap data by imposing the null hypothesis.
If the null hypothesis does not hold in the observed sample, then we expect JnT to explode at the rate
TY/2N'/4p1/4 which delivers the consistency of the bootstrap-based test J% 5. The extra conditions (i)-(iii)
in the above theorem can be easily verified if the original data satisfies either the null hypothesis or the
local alternative studied above. For example, in this case we can apply arguments as used in the proof of
Lemma B.7(i) to demonstrate that 4 23:1 HEHS =0p(1)+0p (T*(N~*+T7*)) = Op (1) and similarly
2N

-8
Aio ‘ = Op (1) provided T3N~—* + N3T-4 =0 (1).

5 Monte Carlo Study

In this section, we study the finite sample performance of our nonparametric estimates and the test statistic

through Monte Carlo simulations.

5.1 Data generating process

We generate data under the framework of large model with R = 2 common factors:

Xit = Ny Fy + e,
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where Fy, = (Fiy, Far)', Fiy = 0.6F14—1 + uig, u1¢ are IID N(0,1 — 0.62), Fy = 0.3F5—1 + uat, uzt
are IID N(0,1 — 0.3%) and independent of uj;. We consider the following setups for the factor loadings
Ait = (Nie1, Air,2)" and the error terms e;y:
DGP 1: (IID)
Ait = Ao ~ IID N(0,15), e;z ~ IID N(0,1).
DGP 2: (Heteroskedasticity)
Ait = Ao ~ 1ID N(0,15), e;+ = o054, where o; ~ I1ID U(0.5,1.5) and vz ~ IID N(0,1).
DGP 3: (Cross sectional dependence)
Ait = Ao ~ IID N(0,I,), e.x = (exr,...ent)’ ~ IID N(0,%.),t = 1,2,...,T, where X = (¢ij); j=1,...
with ¢;; = 0.5,
DGP 4: (Single structural break)
{ Xioks for t = 1,2,...,T/2
it | =
Xiog +0b, fort=T/2+41,...,T
eit = 0V, where o; ~ 11D U(0.5,1.5), v ~ IID N(0,1), and b = 1,2, 4.
DGP 5: (Multiple structural breaks)
Xio,1 +0.5b, for 0.67 <t <0.8T
Ait,1 =4 Xio1 —0.5b,  for 0.27 < ¢ < 04T , o1 ~ I1ID N(1,1), Air2 = Ajo,2 ~ I1ID N(0,1),
Aio,1, otherwise
eit ~ 1ID N(0,1), and b=1,2,4.
DGP 6: (Smooth structural changes I)
Xita = Ao ~ IID N(0,1), A2 = bG (10t/T;2,5i/N + 2) , where b= 1,2, 4;
eit ~ 1ID N(0,1).
DGP 7: (Smooth structural changes II)
Xitn = p; +bG(10t/T50.1,(2,4,6,8)"), p; ~ IID N(0,1), Ait.2 = Xig2 ~ IID N(0,1), where b = 1,2,4;
et ~ 11D N(0,1).
DGP 8: (Smooth structural changes I 4 cross sectional dependence)
Ait1 = Xio1 ~ IID N(0,1), A2 = bG (10t/T;2,5i/N + 2), where b = 1,2, 4;
et = (e1t,...ent) ~ IID N(0,%.),t = 1,2, ..., T, where X, = (¢;5)i j=1,.. N With ¢;; = 0.5,

. Aok ~I1ID N(1,1), k=1,2

P
Here, G(z;k,v) = {1 +exp[—r [[ (2 —7,)]} ! denotes the Logistic function with tuning parameter x and
=1

location parameter v = (v, ..., 'yp)/.

DGPs 1-3 satisfy the null hypothesis of time-invariant factor loadings, and are used to study the size
of our test and the performance of our information criteria to determine the number of factors under the
framework of time-invariant factor models. Note that we allow for cross sectional heteroskedasticity in
DGP 2 and cross sectional dependence in DGP 3. DGPs 4-8 describe various time-varying factor loadings.
DGPs 4 and 5 exhibit single and four sudden structural breaks, respectively. DGPs 6-7 exhibit smooth
structural changes: the factor loadings generated in DGP 6 are monotonic functions while those in DGP
7 are smooth transition functions with multiple regime shifts. DGP 8 considers the process with smooth

structural changes and cross sectional dependence.
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5.2 Determination of the number of factors

In this subsection, we evaluate the information criteria to determine the number of common factors. In

particular, we consider the following two information criteria:

1C(R) = WV (R{AP})+R (NN+T?) In (NNf;h) :
1C2(R) = v (R {AM}) + R (%) Iy, Cny = min{VTh,VN}.

For comparison purpose, we also consider Bai and Ng’s (2002) four information criteria (namely, PCp1,
PChps, ICy1, and IC)2), and Ahn and Horenstein’s (2013) two criterion functions (ER for eigenvalue ratio
and GR for growth ratio). In addition, we implement Onatski’s (2009) sequential testing procedure (Ona)
to determine the number of factors.

For each DGP, we simulate 1000 data sets with sample sizes N,T = 100, 200. Since the factor loadings
are assumed to be nonrandom, we generate them once and fix them across the 1000 replications. Our
local PCA involves nonparametric estimation. We use the Epanechnikov kernel and Silverman’s rule of
thumb (RoT) to set the bandwidth as h = (2.35/y/12)T~'/>N~1/102 We also try the Uniform kernel
and the Quartic kernel, and the RoT bandwidth with different tuning parameters. Our simulation studies
show that the choices of kernel function and the bandwidth have little impact on the performance of our
information criteria. Each series is demeaned and standardized to have unit variance.

We use two measures to evaluate the information criteria, i.e., the average number of common factors
and the empirical probability of correct selection over 1000 replications. Bai and Ng (2002) apply the
former measure. However, this measure can be misleading. For example, when the true number of factors
is R = 2 but the information criteria select R = 1 or 3 with equal chance, the average number of selected
factors can be still 2. Hence, we also report the empirical probability of correct selection to evaluate the
information criteria comprehensively.

Tables 1 and 2 report the average number of common factors and the empirical probability of correct
selection over 1000 replications of various information criteria in determining the number of common
factors. DGPs 1-3 satisfy the null hypothesis of time-invariant factor loadings and allow us to compare the
performance of these information criteria for the conventional factor models. DGPs 4-8 are the time-varying
factor models with abrupt or smooth structural changes, where the value of b indicates the magnitude of
structural changes. To check the sensitivity of the information criteria to the magnitude of structural
changes, we consider b = 1, 2,4 for DGPs 4-8.

As shown in the tables, our information criteria work fairly well for all the DGPs under investigation.
For the conventional factor models with IID, heteroskedastic, and cross sectionally dependent error terms
in DGPs 1-3, respectively, the information criteria proposed by Bai and Ng (2002), Onatski (2009) and
Ahn and Horenstein (2013) could select the true number of factors accurately. Our information criteria

are slightly less accurate than the others when the sample size is small, but it is as good as them when

2Note that {t/T}g;l behaves like a uniform random variable on [0, 1] and thus has variance 1/12.
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Table 1: Comparison of various information criteria in determining the number of factors: DGPs 1-5

Average number of factors

DGP (N7T) IC’hl IChQ PCpl PCp2 IC’pl ICpg Ona ER GR

Empirical probability of correct selection

IC’hl IChQ PCpl PCPQICpl,[CpQO’nCL ER GR

983 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
983 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
980 .992 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

988 999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
983 993 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

985 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 (100,100) 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(100,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(200,100) 2.02 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(200,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

2 (100,100) 2.01 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(100,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(200,100) 2.02 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(200,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

3 (100,100) 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(100,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(200,100) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(200,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

4

b=1 (100,100) 2.02 2.00 3.24 3.02 3.00 3.00 2.39 1.67 2.01
(100,200) 2.00 2.00 3.19 3.03 3.00 3.00 2.68 1.77 2.01
(200,100) 2.00 2.00 3.00 3.00 3.00 3.00 2.92 1.50 2.06
(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.97 1.59 2.14

b=2 (100,100) 2.21 2.08 3.10 3.00 3.00 3.00 2.49 1.01 2.32
(100,200) 2.00 2.00 3.19 3.03 3.00 3.00 2.68 1.77 2.01
(200,100) 2.13 2.08 3.00 3.00 3.00 3.00 2.98 1.01 2.63
(200,200) 2.02 2.01 3.00 3.00 3.00 3.00 3.00 1.01 3.00

b=4 (100,100) 2.66 2.48 3.00 3.00 3.00 3.00 2.87 1.00 2.08
(100,200) 2.53 2.32 3.00 3.00 3.00 3.00 2.99 1.00 2.84
(200,100) 2.59 2.48 3.00 3.00 3.00 3.00 3.00 1.00 2.64
(200,200) 2.39 2.30 3.00 3.00 3.00 3.00 3.00 1.00 3.00

981 998 .000 .000 .003 .003 .546 .666 .963
1.00 1.00 .000 .000 .000 .000 .324 .768 .988
998 .999 .000 .000 .000 .000 .075 .495 .890
1.00 1.00 .000 .000 .000 .000 .029 .585 .860
796 918 .000 .000 .000 .000 .024 .011 .241
1.00 1.00 .000 .000 .000 .000 .324 .768 .988
.881  .926 .000 .000 .000 .000 .000 .006 .106
981 .995 .000 .000 .000 .000 .000 .000 .007
.358 .524 .000 .000 .000 .000 .000 .000 .009
471 .680 .000 .000 .000 .000 .000 .000 .000
429 523 .000 .000 .000 .000 .000 .000 .003
.607 .702 .000 .000 .000 .000 .000 .000 .000

)
b=1 (100,100) 2.00 2.00 2.68 2.34 2.12 2.12 2.01 2.00 2.00

)
(100,200) 2.00 2.00 2.90 2.72 2.36 2.36 2.02 2.00 2.00
(200,100) 2.00 2.00 2.64 246 2.26 2.26 2.26 2.00 2.00
(200,200) 2.00 2.00 2.95 2.79 2.78 2.78 2.23 2.00 2.00
b=2 (100,100) 2.01 2.00 3.00 3.00 3.00 3.00 2.76 2.10 2.30
(100,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.96 2.30 2.53
(200,100) 2.00 2.00 3.00 3.00 3.00 3.00 3.00 2.45 2.65
(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 3.00 2.84 2.94
b=4 (100,100) 2.32 2.21 3.00 3.00 3.00 3.00 3.00 2.97 3.00
(100,200) 2.23 2.12 3.00 3.00 3.00 3.00 3.00 3.00 3.00
(200,100) 2.21 2.16 3.00 3.00 3.00 3.00 3.00 3.00 3.00
(200,200) 2.16 2.11 3.00 3.00 3.00 3.00 3.00 3.00 3.00

997 1.00 317 .664 .879 .879 .992 1.00 1.00
1.00 1.00 .099 .282 .638 .638 .980 1.00 1.00
999 1.00 .362 542 .739 .739 .736 1.00 1.00
1.00 1.00 .047 .214 .225 .225 .770 1.00 1.00
992 999 .000 .001 .005 .005 .243 .829 .701
1.00 1.00 .000 .000 .000 .000 .042 .701 .475
999 1.00 .000 .001 .001 .001 .001 .493 .350
1.00 1.00 .000 .000 .000 .000 .000 .161 .056
.693 .795 .000 .000 .000 .000 .000 .006 .000
771 .884  .000 .000 .000 .000 .000 .000 .000
.805 .842 .000 .000 .000 .000 .000 .000 .000
.837 .891 .000 .000 .000 .000 .000 .000 .000

Note: (i) ICph1 and IChs denote the information criteria proposed in this paper; (ii) PCp1, PCp2,ICp1 and ICp2 denote
Bai and Ng’s (2002) information criteria; (iii) Ona denotes the results of Onatski’s (2009) test; (iv) ER and GR denote Ahn
and Horenstein’s (2013) criteria. Numbers in the main entries are the results based on 1000 replications.
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Table 2: Comparison of various information criteria in determining the number of factors: DGPs 6-8

DGP (N,T) IC)1 IChy PCpy PChy

Average number of factors

I1C,1 IC,2 Ona ER GR

Empirical probability of correct selection

IC’hl Ichg PC’pl PCpglelprgOna ER GR

6

b=1 (100,100) 2.00 2.00 2.12 2.02 2.00 2.00 2.01 2.00 2.00|.998 1.00 .881 .985 .999 .999 .991 1.00 1.00
(100,200) 2.00 2.00 2.09 2.01 2.00 2.00 2.00 2.00 2.00| 1.00 1.00 .907 .994 1.00 1.00 1.00 1.00 1.00
(200,100) 2.00 2.00 2.15 2.05 2.01 2.01 2.21 2.00 2.00| .997 .999 .851 .948 .986 .986 .795 1.00 1.00
(200,200) 2.00 2.00 2.37 2.07 2.08 2.08 2.18 2.00 2.00| 1.00 1.00 .635 .934 .922 .922 .819 1.00 1.00

b=2 (100,100) 2.00 2.00 3.00 3.00 3.00 3.00 2.93 1.91 2.33| 1.00 1.00 .000 .000 .003 .003 .072 .700 .656
(100,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.96 2.12 2.46| 1.00 1.00 .000 .000 .000 .000 .035 .779 .543
(200,100) 2.00 2.00 3.00 3.00 3.00 3.00 3.09 2.11 2.35| 1.00 1.00 .000 .000 .000 .000 .041 .788 .651
(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 3.09 2.17 2.44| 1.00 1.00 .000 .000 .000 .000 .008 .830 .558

b=4 (100,100) 2.07 2.04 3.98 3.89 3.83 3.83 1.51 1.01 2.27|.935 .958 .000 .000 .000 .000 .000 .000 .000
(100,200) 2.01 2.00 4.00 4.00 4.00 4.00 1.45 1.00 2.55|.995 .998 .000 .000 .000 .000 .000 .000 .000
(200,100) 2.03 2.02 3.99 3.97 3.96 3.96 2.76 1.09 2.70| .971 .978 .000 .000 .000 .000 .000 .000 .000
(200,200) 2.00 2.00 4.00 4.00 4.00 4.00 2.35 1.04 2.94|.998 .999 .000 .000 .000 .000 .000 .000 .000

7

b=1 (100,100) 2.01 2.00 2.80 2.33 2.10 2.10 2.00 2.00 2.00| .995 1.00 .224 .671 .904 .904 1.00 1.00 1.00
(100,200) 2.00 2.00 2.92 2.71 2.27 2.27 2.01 2.00 2.00| 1.00 1.00 .088 .291 .726 .726 .994 1.00 1.00
(200,100) 2.00 2.00 2.59 2.38 2.18 2.18 2.18 2.00 2.00| 1.00 1.00 .409 .616 .825 .825 .821 .999 1.00
(200,200) 2.00 2.00 2.94 2.68 2.66 2.66 2.09 2.00 2.00| 1.00 1.00 .063 .318 .338 .338 .909 .999 1.00

b=2 (100,100) 2.01 2.00 3.18 3.00 2.97 297 2.17 1.69 2.00|.990 .998 .000 .002 .030 .030 .777 .687 .987
(100,200) 2.00 2.00 3.11 3.02 3.00 3.00 2.50 1.74 2.00| 1.00 1.00 .000 .000 .000 .000 .435 .735 .994
(200,100) 2.00 2.00 3.00 3.00 2.98 2.98 2.86 1.61 2.04| 1.00 1.00 .002 .004 .025 .025 .132 .613 .931
(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.89 1.62 2.09| 1.00 1.00 .000 .000 .000 .000 .110 .623 .914

b=4 (100,100) 2.05 2.02 3.04 3.00 3.00 3.00 1.90 1.03 1.80| .948 .978 .000 .001 .001 .001 .189 .025 .665
(100,200) 2.02 2.00 3.01 3.00 3.00 3.00 2.60 1.00 1.98| .985 .998 .000 .000 .000 .000 .024 .004 .656
(200,100) 2.01 2.01 3.00 3.00 3.00 3.00 2.97 1.01 2.12|.988 .995 .000 .001 .001 .001 .002 .012 .499
(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.99 1.00 2.71{.999 1.00 .000 .000 .000 .000 .002 .002 .261

8

b=1 (100,100) 2.01 2.00 2.12 2.01 2.00 2.00 2.01 2.00 2.00|.995 1.00 .882 .991 .999 .999 .995 1.00 1.00
(100,200) 2.00 2.00 2.11 2.11 2.00 2.00 2.00 2.00 2.00| 1.00 1.00 .895 .985 .999 .999 .999 1.00 1.00
(200,100) 2.00 2.00 2.11 2.03 2.01 2.01 2.18 2.00 2.00| .997 .999 .895 .970 .993 .993 .819 1.00 1.00
(200,200) 2.00 2.00 2.38 2.07 2.08 2.20 2.00 2.00 1.00| 1.00 .619 .931 .917 .917 .917 .801 1.00 1.00

b=2 (100,100) 2.00 2.00 3.00 3.00 3.00 3.00 2.93 1.90 2.31| 1.00 1.00 .000 .000 .005 .005 .067 .728 .678
(100,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.96 2.10 2.47| 1.00 1.00 .000 .000 .000 .000 .034 .753 .532
(200,100) 2.00 2.00 3.00 3.00 3.00 3.00 3.11 2.08 2.32| 1.00 1.00 .000 .000 .000 .000 .030 .816 .678
(200,200) 2 00 2.00 3.00 3.00 3.00 3.00 3.09 2.19 2.47| 1.00 1.00 .000 .000 .000 .000 .006 .803 .526

b=4 (100,100) 2.05 2.04 3.98 3.86 3.78 3.78 1.54 1.04 2.25| .946 .963 .000 .000 .000 .000 .000 .000 .000
(100,200) 2.01 2.01 4.00 4.00 3.99 3.99 1.50 1.01 2.49|.990 .995 .000 .000 .000 .000 .000 .000 .000
(200,100) 2.04 2.03 3.99 3.97 3.95 3.95 2.74 1.08 2.68| .965 .972 .000 .000 .000 .000 .000 .000 .000
(200,200) 2.01 2.00 4.00 4.00 4.00 4.00 2.34 1.04 2.94| .993 .995 .000 .000 .000 .000 .000 .000 .000

Note: See the note in Table 1.
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the sample sizes are large (e.g., (N, T) = (200, 200)). The less accuracy of our information criteria can be
attributed to the use of nonparametric estimation in our local PCA procedure. DGPs 4 and 5 are factor
models with single and four abrupt structural breaks, respectively. We can see that all of Bai and Ng’s
(2002) four information criteria have the tendency to choose 3 common factors, which is larger than the
true number of factors (2 here). Onatski’s (2009) testing procedure also tends to choose 3 common factors
except for the case of DGP 5 with b = 1, which is merely acceptable with larger than 70% correct selection
probability. Ahn and Horenstein’s (2013) ER and GR criterion functions perform well for the case of
DGP 5 with b = 1, but they still suffer from severe over- or under- selection for other cases. In contrast,
although our information criteria are proposed for smooth structural changes, they still work well for small
and moderate magnitude (b = 1,2) of abrupt structural breaks. Although they tend to choose factors
slightly more than necessary for b = 4, the results are still acceptable and much better than those of other
information criteria. DGPs 6-8 are factor models with smooth structural changes in factor loadings and/or
cross sectionally dependent errors. As shown in Table 2, our information criteria give precise estimates of
the number of common factors for all cases. However, the criteria proposed by Bai and Ng (2002), Onatski

(2009) and Ahn and Horenstein (2013) work poorly except for the case of small structural changes (b = 1).

5.3 Performance of the test

In this subsection, we study the finite sample performance of our test for time-varying factor loadings. We
also compare our test with the tests of Breitung and Eickmeier (2011), Chen et al. (2014), and Han and
Inoue (2014) for a single structural break with an unknown break date in factor loadings.

It is well known that a nonparametric test that relies on the asymptotic normal approximation may
perform poorly in finite samples. To conquer this problem we consider the wild bootstrap procedure
proposed in Section 4.6. Since the bootstrap procedure is rather time consuming, we generate 500 data
sets in this subsection and set the bootstrap replication number B to be 200. As in the previous subsection,
we use the Epanechnikov kernel and the RoT bandwidth h = (2.35/v/12)T~'/>N~1/10_ In addition to our
test, we also consider Breitung and Eickmeier’s (2011) sup-LM variable-specific test, Chen et al.’s (2014)
sup-LM and sup-Wald tests, and Han and Inoue’s (2014) sup-LM and sup-Wald tests. We follow these
papers to set the trimming parameter 7 = 0.15. The tests of Chen et al. (2014) and Han and Inoue (2014)
involve the long run variance estimation. We set the time-lag truncation parameter as m = LTI/ 5| and
choose the Bartlett kernel. The critical values presented in Andrews (1993) are applied for the tests of
Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Inoue (2014), while the bootstrap critical
values are applied to check the performance of our test.

Table 3 reports the empirical sizes of various tests at both 5% and 10% levels. As shown in the table,
our test has reasonable sizes using the bootstrap p-values. Han and Inoue’s (2014) sup-LM test delivers
reasonable size and their sup-Wald test tends to under-reject the null hypothesis. Chen et al.’s (2014)
sup-LM test also has reasonable size, but their sup-Wald test tends to over-reject the null hypothesis. In

addition, Breitung and Eickmeier’s (2011) variable-specific sup-LM test suffers from slight underrejection
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Table 3: Size of various tests for DGPs 1-3
DGP N T INT Hipa HIw CDGLy _ CDGw BELy

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

1 100 100 54 114 36 72 04 20 22 82 58 11.0 28 6.5

100 200 5.0 100 6.0 116 14 56 48 102 6.0 102 35 74

200 100 5.2 112 32 60 00 16 28 86 64 124 27 6.2

200 200 38 88 70 144 20 78 58 116 6.6 122 34 75

2 100 100 6.8 142 30 84 04 18 32 98 6.2 144 29 6.6

100 200 5.8 11.0 32 82 26 78 44 112 54 142 37 78

200 100 74 128 28 68 04 20 36 92 74 152 28 64

200 200 6.2 116 36 96 22 74 34 92 58 132 36 7.7

3 100 100 6.0 110 36 82 02 22 28 74 54 104 27 64

100 200 42 86 70 128 18 66 46 88 50 108 34 75

200 100 48 112 32 60 02 20 30 72 56 108 28 6.3

200 200 42 86 78 132 18 68 64 116 72 130 34 74
Note: (i) Jyr denote the results of our test based on the bootstrap p-values; (ii) HIpas and HIy denote Han and Inoue’s
(2014) sup-LM and sup-Wald tests; (iii) CDGra and CDGw denote Chen et al.’s (2014) sup-LM and sup-Wald tests; (iv)
BE \ denotes Breitung and Eickmeier’s (2011) variable-specific sup-LM test. The entries report the average percentage of

rejection.

for DGPs 1-3.

Table 4 reports the empirical powers of various tests for DGPs 4-8 at the 5% and 10% significance
levels. To save space, we only report the results for b = 1 and 2. We summarize some important findings.
First, our Jyr test is powerful in detecting all the forms of time-varying factor loadings given by DGPs
4-8 and the simulation results are consistent with our theoretical conclusion that our test is able to detect
both a finite number of sudden structural breaks and smooth structural changes. Second, the other tests
are all designed to test for a one-time abrupt structural change in DGP 4. As expected, they all have power
against DGP 4 despite the fact their power is not as great as that of our test. Third, for the other DGPs,
all of Han and Inoue’s (2014) sup-LM and sup-Wald tests, Chen et al.’s (2014) sup-LM and sup-Wald tests,
and Breitung and Eickmeier’s (2011) have lower power than our test too. In particular, these tests have
little or low power in detecting deviations from the null in DGPs 5 and 7 but reasonable power against
DGPs 6 and 8. It is easy to explain why some of these other tests have power against DGPs 6 and 8. Note
that in these two DGPs, the factor loadings are monotonic functions of the time ratio ¢/7T for each i. If
we apply the PCA method to estimate the factor model, the estimated factors would exhibit a trend with
increasing volatilities. Since Han and Inoue’s (2014) test checks the time invariance property of the second
order moments of the common factors, it is possible to capture such smooth structural changes in DGPs
6 and 8. Similarly, Chen et al.’s (2014) test is based on the regression of one of the estimated factors on
the remaining estimated factors, and their LM and Wald test statistics will not have the usual asymptotic

distribution when one estimated factor exhibits trending behavior.
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Table 4: Power of Tests Under DGPs 4-8

DGP N T JINT HIpy HIw CDGrm CDGw BEm

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

4,b=1 100 100 99.0 99.6 396 626 21.0 438 52 106 314 428 349 415
100 200 100 100 952 98.0 926 97.0 80 150 332 428 485 54.2

200 100 994 99.6 41.2 650 222 46.0 6.6 11.6 30.2 41.2 357 432

200 200 100 100 96.0 986 934 980 7.8 17.0 33.2 432 529 59.0

4,b=2 100 100 100 100 70.8 856 52.0 738 52 11.0 634 720 439 50.1
100 200 100 100 996 100 994 100 88 170 656 724 576 63.1

200 100 100 100 714 86.2 512 750 6.8 13.8 614 69.0 46.7 53.6

200 200 100 100 99.8 100 99.2 100 9.8 192 686 754 63.7 69.0

5 b=1 100 100 96.0 978 42 104 06 38 54 11.8 94 186 73 129
100 200 100 100 9.6 21.8 86 194 122 228 17.0 274 165 23.7

200 100 994 998 38 96 06 38 40 126 9.0 196 11 127

200 200 100 100 80 198 T4 174 9.2 186 138 232 163 238

5,b=2 100 100 100 100 6.0 162 1.4 72 104 204 258 376 152 227
100 200 100 100 294 48.6 26.8 42.0 326 49.2 50.6 64.2 321 39.7

200 100 100 100 54 144 1.2 74 94 18.0 242 348 168 24.7

200 200 100 100 28.8 46.0 258 412 266 404 454 580 354 435

6,b=1 100 100 100 100 85.2 94.8 67.0 886 284 41.8 902 934 531 62.6
100 200 100 100 100 100 100 100 56.0 63.0 974 978 T6.7 82.3

200 100 100 100 84.6 952 68.6 89.2 326 47.0 804 850 539 631

200 200 100 100 100 100 100 100 68.2 742 904 924 773 826

6,b=2 100 100 100 100 882 96.6 66.8 834 84 154 986 99.0 852 89.3
100 200 100 100 100 100 100 100 134 226 99.6 99.8 96.2 97.9

200 100 100 100 87.2 964 672 894 66 150 986 99.4 8.3 89.5

200 200 100 100 100 100 100 100 11.8 204 99.8 100 96.7 98.3

7,b=1 100 100 950 978 11.8 196 0.2 16 44 100 34 84 45 9.2
100 200 100 100 236 36.0 20 46 64 128 26 6.2 9.0 154

200 100 994 994 108 198 0.2 16 36 86 3.2 78 47 9.6

200 200 100 100 23.6 37.0 2.0 438 58 108 24 66 103 171

7,b=2 100 100 974 986 196 33.0 0.2 14 54 104 24 7.8 6.2 11.6
100 200 100 100 434 528 16 44 80 144 24 56 145 222

200 100 99.8 998 194 330 0.2 1.2 48 108 24 70 6.9 127

200 200 100 100 432 538 16 44 70 122 22 44 167 246

8§ b=1 100 100 92.2 96.0 82.0 948 66.2 880 392 548 708 794 148 241
100 200 100 100 99.8 100 100 100 61.2 69.6 774 820 347 45.6

200 100 942 96.8 780 936 69.2 870 384 532 600 70.0 154 250

200 200 100 100 100 100 99.4 99.8 53.8 65.0 620 69.8 372 483

8§, b=2 100 100 100 100 86.8 96.8 67.6 876 6.8 14.0 988 99.2 527 621
100 200 100 100 99.8 100 100 100 104 198 988 99.6 T6.4 819

200 100 100 100 82.6 944 688 872 98 174 976 98.6 529 62.3

200 200 100 100 100 100 994 998 9.6 152 998 99.8 T7.3 82.6

Note: See the note in Table 3.
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Table 5: Tests of structural changes in the U.S. economy

Number of selected factors 1 3 4 5
Criterion functions Ona, FR, GR ICH1,IC)s PCp2, IC)1, I1Cy PCp
Note: See the note in Table 1.

6 An Application to Stock and Watson’s (2009) U.S. Macroeco-
nomic Data Set

In this section, we apply our approach to check whether the U.S. economy suffers from structural changes.
The data set, constructed by Stock and Watson (2009), consists of 144 quarterly time series, spanning
1959:1-2006:1V.? By excluding the first two quarters, which is missing when computing the first and second
differences, we get a total of T'= 190 quarterly observations. Also, we follow the suggestion of Stock and
Watson (2009) to delete some high level aggregates related by identities to the lower level sub-aggregates
and end up with N = 109 time series. For some time series that are available monthly, we take averages
over the quarter to get the corresponding quarterly data. Following the literature, we transform the data by
taking the first or second order (log-)difference and removing outliers. All the data have been standardized
to have zero mean and unit variance. For the details of the data description and processing, one can refer
to Stock and Watson (2009).

We first determine the appropriate number of common factors. The maximum number of common
factors is set to be 8 in this empirical study. Other presettings such as the kernel and bandwidth are the
same as in the simulation section. We use Bai and Ng’s (2002) information criteria PCy1, PCp2, ICp1, and
IC}2, Onatski’s (2009) testing procedure, Ahn and Horenstein’s (2013) criterion functions ER and GR
and our information criterion proposed in Section 3.3 to determine the number of common factors. The
results are reported in Table 5. According to the table, we report the test results for the cases of one to
five common factors respectively in the following context .

Table 6 reports the results of the tests and the corresponding critical values at the 5% and 10%
significance levels. Our test rejects the null hypothesis of time-invariant factor loadings for all the cases of
1-5 common factors. In contrast, Han and Inoue’s (2014) sup-LM and sup-Wald tests cannot reject the
null for any case at the 5% significance level, while Chen et al.’s (2014) results are mixed, and they can
only reject the null for R = 5 at the 5% significance level when using the sup-Wald test. This is consistent
with the results of our simulation studies that suggest the tests of Han and Inoue (2014) and Chen et
al. (2014) have relatively low power. In addition, Breitung and Eickmeier’s (2011, BE) variable specific

sup-LM test reject the null of time-invariant factor loadings for about half of the variables.

Our empirical result suggests the existence of possible smooth or sudden structural changes in U.S.
economy. We now estimate the common factors and the time-varying factor loadings by using our local

principal component approach proposed in Section 2 by assuming 3 common factors. Figure 1 plots the

3The dataset is publicly available on Professor Mark W. Watson’s website http://www.princeton.edu/ mwatson/publi.html.
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Table 6: Tests of structural changes in the U.S. economy

Our test: bootstrap Han and Inoue (2014) Chen et al. (2014) BE (2011)

Int 5%  10% [sup-LM sup-Wald 5% 10% [sup-LM sup-Wald 5% 10% | 5% 10%
R=1|5.40 282 2.12 7.03 7.51 8.85 T7.17 - - - — |.2844 .3945
R=2|23.90 10.94 9.84 | 13.04 13.61  14.15 12.27| 2.75 3.46 8.85 T7.17|.4037 .4587
R=3|31.48 16.35 15.30 | 17.05 17.85 20.26 18.12| 7.03 11.54  11.79 11.01|.4771 .5872
R =4|30.44 23.14 22.43 | 24.31 24.22  27.03 24.62| 9.96 11.44  14.15 12.27|.4862 .5872
R =5|35.50 26.20 25.65 | 31.79 31.12  35.06 32.51| 12.60 54.92 16.45 14.31|.4679 .5596
Note: (i) Under Jy7 and sup-LM and sup-Wald are the values of the corresponding test statistics; (ii) Under 5% and 10%

are the corresponding bootstrap critical values (our test, 500 bootstrap resamples) or asymptotic critical values (Han and
Inoue’s and Chen et al.’s tests) except for the Breitung and Eickmeier’s (2011) test; (iii) Under 5% and 10% of BE (2011) are
the empirical reject ratios of Breitung and Eickmeier’s (2011) variable specific sup-LM test by using 5% and 10% asymptotic

critical values respectively. Bold elements denote significance at the 5% nominal level.
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Figure 1: Plots of estimated time invariant factor loadings (dashed line), time varying factor loadings
(solid line) and their 90% confidence bands for real personal consumption expenditures (left panel) and
industrial production index of durable goods (right panel) corresponding to the three common factors
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estimated time-varying factor loadings and their 90% confidence bands for real personal consumption
expenditures (left panel) and industrial production index of durable goods (right panel) corresponding
to the three common factors selected by our information criteria. From this figure, we can see that the
estimated factor loadings show significant time-varying features. The finding of time-varying factor loadings
has some important implications. For example, most of the existing studies estimate the common factors
under the framework of time-invariant factor loadings and then forecast some key variables based on the
estimated common factors. We may provide more reliable forecasts by accommodating the documented

time-varying features of factor loadings by using a local version of the principal component method.

7 Conclusion

Conventional factor models assume that factor loadings are fixed over a long horizon of time, which appears
restrictive and unrealistic in empirical applications. In this paper, we introduce a time-varying factor model
where factor loadings are allowed to change smoothly over time and propose a local version of the PCA
method to estimate the latent factors and time-varying factor loadings simultaneously. We establish the
limiting distributions of the estimated factors and factor loadings in the standard large N and large T'
framework. We also propose a BIC-type information criterion to determine the number of common factors
for time-varying factor models. Our information criterion works no matter whether the factor loadings are
time-invariant or time-varying and it is extremely useful when structural changes are suspected.

More importantly, we propose an Lo-distance-based test statistic to check the stability of factor loadings.
By construction, our test can capture both smooth and abrupt structural changes in factor loadings and one
does not need to know the number of breaks in the data. Monte Carlo studies demonstrate the excellent
performance of the BIC-type information criterion in determining the number of common factors, and
the reasonable size and excellent power of our test in checking the time-invariance of factor loadings. In
an application to Stock and Watson’s (2009) U.S. macroeconomic data set, we find significant evidence

against the time-invariant factor loadings imposed by the conventional factor models.
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Mathematical Appendix

This appendix provides the proofs of theorems in Sections 3 and 4. We shall need some technical
lemmas whose proofs are available in the online supplementary material. Recall that VIS,TT) and V7 denote
the R x R diagonal matrices of the first R largest eigenvalues of (NT) ' XX (for r = 1,...,T)
and (NT)_1 XX’ in decreasing order, respectively. Let H(™ = (N='ALA)(T-1F(") F(r))VJS,T% and
H = (N"'NA)T'F F)Vy}. Let Cnr = min{v/Th,vVN} and Conr = min{v/T, vVN}.

A  Proofs of Theorems in Section 3

We first state two lemmas that are useful in proving the main results in this paper.

Lemma A.1 Suppose that Assumptions A.1 and A.3 hold. Then
(i) T-L R0 [(NT)‘1X0">X(7"> } FO =V =V, +0p (CxL),
(ii) TP F0) = Q.+ Op (Cyy) s
(iii) H = Q1 + Op (Cy7)
where V,. is the diagonal matrix consisting of the eigenvalues of 3 /22 DI 12 i descending order with T,

being the corresponding (normalized) eigenvector matriz, and Q, = V1/2T 12_1/2.

Lemma A.2 Suppose that Assumptions A.1 and A.3 hold. Then

, 2

(i) %[ FO - ForO| = L L | - BOFO| = 0p(ci3)
!

(ZZ) L H (F(r) _ F(T)H(T)) F(T)H(T) = OP(C;/%),

(iii) + ( —Fgr )> = Op(CxT)-

Proof of Theorem 3.1. Noting that (NT)~' X" X ") f() = F(T)V 7 and X(T) =\ F(r) +e) we

it

can decompose Ft(r) — H(T)/Ft(r) as follows:

T
A 1 ~ ’ ’
B0 g0 EO —y- ' SR X gy g
s=1
T

r)—1 1 F(r r ! T T / T
N Zpg ) [ATFS(’") +el >} [ATFt( ) 4 ¢ )] ~ HO'FD

T T
= V]S[rq)ﬂl{ Z T)E (T)/N Z (r) [ (r) (r)/N Bl (r)’ (T)/N)}

T T
Z EMFO N N + Z EOFE A el /N}
s=1 s:l
= Ay (t,r) + As(t,r) + As(t,r) + Ag(t,r), say. (A.1)

Note that Vﬁgf1 is well defined by Lemma A.1(i) and Assumptions A1(ii)-(iii). By Lemmas A.3(i)-(iii) be-
low VNRA;(t,7) = op (1), j = 1,2,4. Tt suffices to prove the theorem by showing that K (4=£) /% /N
x Ag(t,r) 5 N (0,V, QT QLV, ).
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Observe that vV NhAs(t,r) = V]E,T%A[% Z F(T)Fs ][hl/2 ZZ 1 Welt ] By Lemmas A.1(i)-(ii), VJS,T;}
£V, and = Z?fl F’,(T)Fs(r)l 2 Q.. By Assumption A.2(i), K, (5E) 12wl Zz 1 We(r) N—1/2 Zz L
Air€it 4, N(0,T,+). Then by Slutsky theorem, K* ( — ) 1/2 VINhAs(t,r) 4, N(O V1Q,. T QLV,71). This

completes the proof of Theorem 3.1. B

Lemma A.3 Suppose that Assumptions A.1 and A.3 hold. Then
(i) VNR[A1(t,r) + As(t, )] = op(1),
(ii) VNEA(t,r) = op(1).
Proof of Theorem 3.2. Noting that A, = T-1F")' X)) 710 P() = [ and X = FOIA 4 e,
we have
1 .

\. () () _ Ly ( (")), (r))
i = TF X; TF FUN + e
— P p) . L L ) o)
TF F )\”,—i—TF e;
(_1 1 Y ,/(r) 1 A (e I(T) 1 . ’ Al 1
H® AiT+TH‘” FO' ¢ + 7 (Fm —F(T)H(r)) e — TF(r) (FmH(r) _F(r)) Air
= H" "\, 4 Dy (i,r) + Da(i,r) — Ds(i,r),  say. (A.2)

By Lemmas A.4(i)-(ii) below, vThD;(i,r) = op (1) for [ = 2, 3. By Lemma A.1(iii), H") £ Q;!. By As-
sumption A.2(ii), % Zstl kp.srFseis 4N (0,9;,) . It follows that VT hD (i,r) = HY Zg 1 K (“ r)
xFe;s 4, N(0, (Qr_l)/ Qi7TQT_1). This completes the proof of Theorem 3.2. W

\/_

Lemma A.4 Suppose that Assumptions A.1 and A.3 hold. Then
(i) VThDs(i,7) = op(1),
(i) VThDs(i,7) = op(1).

To prove Theorem 3.3, we need another lemma.

Lemma A.5 Suppose that Assumptions A.1 and A.3 hold. Then
2
(i) £V % (ﬁ(t) _ F(t)H(t))’e(t)

4 i = £

=0 (T 2h 2+ N'T'h =t + N73/2) fort =1,2,..,T;

2
Zt_ (t)ilAit :OP(C]?[%) fO’f‘t: 1,2,...,T.

~ ~ I
Proof of Theorem 3.3. Noting that X;; = )\;tH(t)'Ft + e + {)\it — H(t)_l)\it} H®'F, we have

i=1 i=1
N N
_ g1l 3 Aae +S*1LZ(A — H®-1) )e
At 1t Cit At it it | €it
i=1 i=1



where gA,t = # Zf\i1 j\it;\;y By Lemmas A.6(i)-(iii) below VNA|(t) = op (1) for I = 2,3. Then by Lemmas
A.1(iii) and A.6(i), and Assumption A.2(i), v N [Ft - H(t)/Ft} = (Q2, Q)" Qtﬁ Zfll Aiteir +op (1)

4N (0, (QtEAtQQ)_l Q:T1Q; (QtEAtQQ)_l) =N (0, (EX}Q[I)/FttEXSQf) . This completes the proof
of Theorem 3.3. B

Lemma A.6 Suppose that Assumptions A.1 and A.83 hold. Then fort=1,2,...,T,
A~ ~ ~/
(Z) St = % Zf;l Ait Ay = QtEAth +op(1),
(ii) \/_1N ity [/\it - H(t)ﬂ)\it] et = op(1),
~ ~ li
(iii) <= S A [)\Z-t - H<t>*1Ait] HW'E, = op (1).

To prove Theorem 3.4, we need three lemmas. More precisely, Lemmas A.7 and A.8 are used in the

proof of Lemma A.9, which in turn is used to prove Theorem 3.4.

Lemma A.7 Suppose that Assumptions A.1 and A.3-A.J hold. Then for any R > 1, there exist Ry X R
matrices {H(T’R) =(NT)! F(T)'F(T)A/T/A\gR)} with rank(H™®) = min {R, Ry} such that

(i) NT) ™" S0, 1A — A, HOD|12 = Op (O3F)

(ii) maxi <, <7 N7VAL — A, HOB|12 = Op (CR2InT),

(iti) max, < <1 HN—HX&R)’MR) - N‘lH("R)’A’TATH(T’R)) = 0p(C5h (InT)"?).

Lemma A.8 Suppose that Assumptions A.1 and A.3-A.4 hold and R > Ry. Let HR) be as defined

HR)+ (1)
(r,R)+
R (2) ) where H (1)

and H-R)+ (2) are Ry X Rg and (R — Rg) x Ry matrices, respectively. Let VJE,T:’FR) denote an R x R
diagonal matriz consisting of the R largest eigenvalues of the N x N matriz (NT)_1 X0 X ) where the

in Lemma A.7 with Moore-Penrose generalized inverse H(H+ = (

eigenvalues are ordered in decreasing order along the main diagonal line. Write AL = [[\&R) (1) AL (2)]
and HT® = [HR) (1) HEB (2)], where A (1), A% (2), HTB (1), and HB) (2) are N x Ry, N x
(R— Ry), Ry x Ry, and Ry x (R — Ry) matrices, respectively. Write V]E,T:’FR) :diag(VJE,T:’FR) (1), V]S,T:’FR) (2)) )
where V]S,%R) (1) denotes the upper left Ry X Ry submatrix of VJS;}R). Then
(i) mass<rer N1 AP (1) - A HOP () VD (1) H2 — Op (C32InT) and mas< < | HED (2)|
= Op (T™'h~1InT + N~th~1),
(1) maxy << HH(“RH‘ (1)” = Op (1) and maxi<,<r ||H(T’R)+ (2)” = Op(T~Y2h=12(InT) /24 N=1/2p=1/2),
(iii) (NT)"' S FLHO (AL — A H )Y e, = Op (C7)
(iv) (NT) " S5 (A = A HOP)HODEE | = Op (CrF) -

Lemma A.9 Suppose that Assumptions A.1 and A.3-A.4 hold. Let H&R) be as defined in Lemma A.7.
Then

(i) V (R, {M’”}) —V (R, {AH"P}) = Op (Cj;lT (InT)" 2) for each R with 1 < R < Ry,

(i) there exists a cg > 0 such that plim infiy 1)—oo [V (R, {ATH(’“’R)}) —V (R, {A})] = cg for each
R with1 < R < Ry,

(iii) V (R7 {Mm}) —V (Ro, {MR“)}) = Op (CN2) for each R with R > R,
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Proof of Theorem 3.4. The proof is analogous to that of Corollary 1 in Bai and Ng (2002). For
notational simplicity, let V (R) = V(R, {MR)}) for all R. Note that IC (R)—IC (Ry) =In[V (R) /V (Ry)]+
(R — Ry) pyr- We discuss two cases: (1) R < Ry, and (2) R > Ry.

In case (1), by Lemmas A.9(i) and (ii), V (R) /V (Rp) > 1+ €y and hence In [V (R) /V (Ro)] > €o/2 for
some €y > 0 w.p.a.l. This, in conjunction with the fact that (R — Ry) pyg — 0 under our assumption,
implies that IC' (R) — IC (Ro) > €y/4 w.p.a.1. It follows that

P(IC(R)—IC(Rp)>0)—1for any R < Ry as (N,T) — o0
In case (2), we apply Lemma A.9(iii) and Assumption A.5 to obtain

P(IC(R)—IC(Ro) >0) = P(In[V(R)/V (Ro)]+ (R—Ro)pynr >0)
P (Op (1) + (R — Ry) pyyCir > 0) — 1 for any R > Ry as (N,T) — oc.

Consequently, the minimizer of IC' (R) can only be achieved at R = Ry w.p.a.1. That is, P(R = Ry) — 1
for any R € [1, Rmax] s (N,T) — co. B

B Proofs of Theorems in Section 4

To proceed, we need to introduce some notations and lemmas. Let e;ft = ey + anyTF/g;x and ez =
(eJ{t, . eNt) Then X = F) it + e = F/ o + elt and X; = AgF; + eI. As in (A.1) we can decompose
Fy— H'F, = Vyp~ts S0 B XIX, — H'F, as follows:

T
- 1 ’
F,—HF, =Vil— [AoF, +el]” |AoF; +e H'F,
Nt NT ; [ f}
1 ¢ t 1 ¢ t t
_yv—-1) = n i = n T/ T/
=Vl {T ;:1 FLE(ellel /N) + = ;:1 : [ 1IN — B(ef /N)}

Using X;; = F/ Ao + ezt and by Bai (2003, p.165 ), we have

T T
N 1 1 ~ 1~ 1=~
Nio— H ' Nig=H' = " Feel + 2> " |Fo— HF,| ef, — ZF' |FH™' = F| Ay
LY rdd [ - g [p ]
= DY(i) + DY (i) — DI(i), say. (B.2)

Let Vo, Hy, Qo, and X5, be the probability limits of VJS,TT), H®, L 23:1 Fé@r)FS(T)/, and N~1A! A, under
Hy, respectively. Note that they are also the limits under H; (anr), and Hy = le. Let Sx0 = QoXa,Qb-

To prove Theorems 4.1 and 4.3, we need three lemmas.
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Lemma B.1 Suppose that Assumptions A.1, A.8(i) and (it*), and A.6-A.7 hold. Then under Hy (anT)
with ayp = T~Y/2N~Y4p=1/4,

Vi = Vo = Or(Cit 1)),

(ii) max,. |[H") — Hy|| = Op(Cyr (InT)'/?),

(iii) max, % || (F0) = FOOHO) H2 =Op (T7'h' + N~'InT),

(i) max,

N /
(iv) max, || & (F0) ~ FOH)) FOHO| = Op (T 4+ N~ InT),

‘ 1 ( ) _ o) H(r))’egn

(v) max; ,

= Op (T7'h" '+ N"'InT),

(vi) max,

Sar = Sno| = Op(CE mT)'2),

(vii) max, + Zf\il ’
~ 2

& S e = HOZG N HO7 = 0 (CF3n(T))

(i0) + X1y & O = HO e

. 2
(2) + S0, B - HOR| = 0p (v,

Nir — H(r)ﬂxir‘f = Op (Cy2In(T)),

(viii) maxy

" Op (T2h2 + N-2InT),

Lemma B.2 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Then under H; (anT)
with ayp = T~Y2N~Y4p=1/4

i) 4|7 - Fr| = 0p (i),

(it) #(F — FH)'FH = Op (Cynr) + op (ant) ,

(iii) %(F — FH)'F = Op (Cypr) + op (ant),

(iv) L(F'F — H'F'FH) = Op (Cypy) + op (anT),

(v) Vr =Vo+ Op (Conr) »

(vi) H=Qqy" +Op (Conr) -

(vii) % 30, ) Mio—H Xip
(H(r)q)’ g;iH(”*l _ (H*I)

2
=Op (CO_]\QIT) ’
Vit (RF'F)|| = 0p(Cik nT)?).

(viii) max,

Lemma B.3 Let Rp(i,t) = Ds(i,t) — Ds(i,t), Rp(t) = Aa(t) + As(t), R}(:) = D3(i) — D§(i), and
R%.(t) = AY(¢) + AY(¢) + AY(¢). Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Then
under H (an7) with ayp = T~ /2N-1/4p=1/4,

(i) 37 Yo Y IR0 D)|* = Op (T 72072 + N72(InT)?)

(it) Rp Y1 it [Re(@)]* = Op(Cyp (nT)?),

(it) % iy HR%(Z')HQ = Op (Conr) +op (aXr)

(iv) + Zist 1R @) = Op (Cair) + 0p (ahir) -

In addition, we need the following lemma from Sun and Chiang (1997).

Lemma B.4 Let {V;,t > 1} be a strong mizing process with mizing coefficient o (-). Let Gy, 4, de-
note the distribution function of (Vi,,..., Vi, ). For any integer m > 1 and integers (t1,...,tn,) such
that 1 < t1 < ty < ... < t, let ¥ be a Borel measurable function such that maz{[ |9 (v1,... o)
dGy,...t; (1, 0) dGy 11, g, (Vig1s - Um) s [0 (01, ,vm)|1+ﬁ dGi, . .+, } < M for some 1 > 0.
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Then| [ (v1,. .., 0m) dGy,. .. 4, (V1 0m) =[O (V1. 0m) dGyy gy (V1,20 05) dGy g, (Vjg1s - oo V)]
< 4M1/(1+ﬁ)a (tj+1 _ t])ﬁ/(1+ﬁ) .

Proof of Theorem 4.1. For the convenience of proving Theorem 4.3 below, we prove that under H; (anT)

with anp = T-Y/2N-1V/4p—1/4,
Iyt = TNY2RY2N — By — 1% N (0, V),

where IT = II; + Il and Vo = lim(n,7)—.cc VN7. In the special case where Hy holds, we see that I = 0
and the result in Theorem 4.1 holds.

Noting that Ay Ey = (Ai — HO ) HO' F, + N, (HO-Y (B, — HO'E) + (i — HO-I\,) (B —
HO'F)+ X, Fy and Ao Fy = (Ao — H™ 2 Nio) H'Fy+ Ny (H™2)' (F, = H'F) + (\io — H ™ \io) (Fy — H'F) +

~/

NioFy, we have Ay By — Mg Fy = digt + doig + daie, where

diie = FIHO Ny — HO7INy) — FIH Mo — H  Nig) + Ny (HO Y (B, — HO'E) — Ny (H Y (F, — H'F)),
doit = (it — Aio)' Fy, and
dsir = (e — HO7N) (B, — HY'Fy) — (Ao — H ' X\io) (F, — H'Fy).

As we shall see, dy;; contributes to the asymptotic bias, variance, and local power of our test statistic,

dsi; only contributes to the asymptotic local power and is vanishing under Hy, and ds;; collects the second
~l A~ ~! ~

order term in the expansion of A\, F; — A,y F; and is asymptotically negligible. Then

TNY2p2 N = N=1/2p1/2 (duit + dait + dair)”

M-
M=

i=1 t=1
N T
= NPRMEN TN (AR, 4 d3yy + diyy + 2diedai + 2dvidsi + 2daiedsie)
=1 t=1
= My + Ms + M3 + 2My + 2Ms5 + 2Mg,  say. (B3)

We prove the theorem by showing that under Hj (ay7), (i) M7 — Byr — 111 4N (0,Vy), (i) My =
II; + op (1), and (iii) M; = op (1) for j = 3,4, 5,6. To save space, we only prove (i) here and relegate the
proofs of (ii) and (iii) to Lemma B.6 below.

To prove (i), let Ra(i,t), Rr(t), R} (i), and R%(¢) be defined as in the statement of Lemma B.3. Then
by (A.2), (A.3), (B.1), and (B.2), we have

T N
- 1 / . A 1
Nig — HO7L), = TH(t) Zkh,stheis + Ra(iyt), Fy— HY'F = S;}H(t)_lﬁ Z/\iteit + Rp(t),
s=1 =1
T
F—mF = vl (L1FF)Ael/N+ R d 3o — H Mo = ~H'S" Foel + B2 (i
t t = VYNT\T o¢t /N + Rp(t), and i =77 Z seis + Ry (),
s=1

where apparently Ra(i,t), Rr(t), RS (i), and R%(t) represent the smaller order (remainder) terms in each

of the above four asymptotic expansions. Using ezs = eis + aNTg;rs, it = Mo + anTgi+ and the above
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expressions, we further decompose dy;; as follows: dis¢ = die,1 — diir,2 + dii,3 + dise,4, Where

F) 0gt/Nl

’ﬂl*—‘

5 (42

N . | X
Zgiteit +anTgi (H(t)il) S,\_,iH(t)AN Z Ait€it,
i=1 i=1

Y RY.(t).

T
1 :
diy = Efglmﬂﬂwm”—ﬂﬁp@m
1 T
diit2 = anT F[HHITZFsngs‘F)\;o (H! ) V%(
s=1
[N
dies = o [(H““) Syt O™ =
> 1
anrA (HOT) STHHOT <
!
dia = FHORA(i,t) — FLHRY () + N (H(t)_1> Rp(t) = Xy (H™
It will be

clear that dy;,1 contributes to the asymptotic bias and variance of the test statistic, di 2

contributes to the asymptotic local power, and di;: 3 and di4+,4 are asymptotically negligible. With these

notations, we can decompose M as follows:

M,
i=1 t=1

i=1 t=1

N T
N~—Y2p1/2 Z Z (drit1 — dii2 + drits + dlit,4)2

N T
N—1/2p1/2 Z Z(dim + di-t)g + d%it,g + dim — 2dy4¢1d1it,2 + 2d1s,1d14e,3 + 2d1ie 2d 14,4

—2dyit 2d1it,3 — 2d1i,2d15,4 + 2d1ie 3d1iea)

Mg+ Mo+ Mg+ M g—2M 5+ 2My g+ 2M; 7 — 2M; g — 2M; 9 + 2M 10, say.

We prove (i) by showing that (i1) M7 1 — Byr 4, N (0,Vy), (i2) My o =1I; + op (1), (i3) My, = op (1)

for [ =3,4,...,10

First, we prove (i1) M;; — Byr 4, N (0,Vy).

Let Ly = kpogHOH® — HH and Ly, =

(kn,st — 1) HoHj. We further decompose M ; as follows:
N T T 2
]\4’171 — N*l/th/QZdeit’l — 1/2h1/QZZ{TZ theis}
i=1 t=1 i=1 t=1 =1
h1/2 N T T ) 2 5 h1/2 N T
= N1/272 ZZ Z (F Lt Fs ) €is + N1/2772 Z Z Z F Lo FFy rLriFieiseir
i=1 t=1 s=1 i=1 t=1 1<s£r<T
h1/2 N T T ) h1/2 N T
- Ni272 Z Z Z (FiLstFy) e N1/2T Z Z Z FLyF.Fy L Freiseir
i=1 t=1 s=1 i=1 t=1 1<s#r<T
2h1/2 ,
N1/2T2 Z Z Z F 5t - st) F F LTtFtel.SelT
i=1 t=1 1<s#r<T
h1/2 _
/
N1/2T2 Z Z Z F st - st) F F (Lrt - Lrt) Fteiseir
i=1 t=1 1<s#r<T
= MY+ M7+ M)+ MY, say.
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/ . =
Apparently, M{Y = e SV ST ST (F{ Ly Fy)? €2, = By Using Ly = (kps — 1) HoHp, we can

further decompose M1(21) as follows
() WS Lo -
My7 = N12T Z Z tr FsFTT Z LritFtFiLst | €iscir
i=1 1<r#s<T t=1

nt/z & 1 &
- WZ o FSF;HOH()TZkh,stkh,nFthHng CisCir
i=11<r#s<T t=1

2p1/2 I 1 &
*Wz Yoo EQF;HOHékah7stFthHOH() CisCir
i=1 1<r#£s<T t=1

p2 XN

T

1

+ 7T Yoy (FSFT’HOH(QT > FF/H, Hé) CisCir
i=1 1<r#s<T t=1

_ 2,1 2,2 2,3
= M3Y —2MmF + M.

)

We shall focus on the analysis of Ml(?l’l) as by analogous arguments we can readily show that Ml(i’l) =
Op (h1/2) for [ = 2,3. For Ml(?l’l), we make further decomposition:

N
S0 > @ (FFHyH S HoHp) ksreiseir

1=1 1<r<s<T

2n 12 & h .
a2 O | FFHHG (5 knstkn P F] — ko Sr | HoHg | eiseir
i=1 1<r<s<T t=1

2h71/2

(2,1)
Ml,l N1/2T

_ M1(?£1,a)+M(2,1,b) say

1,1 ’ ’

where ks, = K (552) and K (u) = ['| K (v) K (u — v) dv. Let Zyrs = 2T~ "N~V2h=1/2 551 &, F/H,
xSpHyFrele, with £p = H)XpHo. Then M5 = Y1, Zyr, and E (Zy7s|Fars—1) = 0. By the
martingale CLT (e.g., Pollard, 1984, p.171), it suffices to prove V;,lT/le(?l’La) 4, N(0,1) by showing that

T T

2= E(Zxr|Fnrsa) =op (1) and > Z{r, = Vr =op(1). (B.4)
s=2 s=2

First, we verify the first part of (B.4). Observing that Z >0, it suffices to show Z = op (1) by showing
that E (Z) = o(1) by Markov inequality. Letting ¢,, = F/HoXp H})F,¢ce,, we have

s—1 4

T
9 _
E(2)= ZE TNL/2p1/2 strd)m‘
s=2 T

=1

T s—1 s—1
16 _ - I
- W Z E Z k?r ¢§7 +2 Z kgrl k?rz Qﬁrl ¢§7’2 +4 Z Z k?t ksrl ksrz Qﬁt ¢sr1 ¢s7’2
5=2 r=1

1<ri<ro<s—1 t=11<r;<ro<s—1

+4 Z ETlsET'QSEtlsEtQSQSSTl ¢sr2 ¢st1 ¢)st2

1<ri<ro<s—1,1<t1 <to<s—1

=21+ 29+ 23+ Z4, say.
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Noting that max, < ||N’1/2¢STH2 < C < oo under Assumption A.6(iv), we can readily bound Z;, Z5, and

Z3 as follows:

T s— 1
—23—1 —-1/2 -1
4 T o
Z9 < Til max N71/2¢sr T3h2 Z Z k?mk??? :O(Til)’
r<s 4 s=21<r <rp<s—1
4 T s—1 o B
Zs < hmax||NTV0, T4h3 >0 2 Kk | =00,

s=2t=11<r;<ro<s—1

To study Zy4, let A = HyXpH} = {amn}. Then ¢, = F!HyXpH)F,c\e, = 25:1 25:1 U Fsm Fr neler

and Z4 = 21§m1,m2,m3,m4§R Zl§n1,n2,n3,n4§R (lelaml”l) ZaNT (’I’I’L1:4, n1:4) ) where

64
ZANT (m1:4,n1:4) = WW E E E ktltoktgtoktgtokmth[%mn (i1:4,t0:4)]
to=31<t1<t2<to—11<d1,i2,i3,ia <N
1<tz<ts<to—1

Hmn (il:4a t0:4) = ]:[;1:1 (Fto,ml Ftl,meiztoeiztz) .

Since R is fixed and a,,,’s are finite, Z, = o(1) provided that Zyn1 (Mm1.4,n14) = 0(1) Vmyy =
(mq,...,mq) and ny.4 = (ng, ..., nq). Let #A denote the cardinality of a set A and S; = {to, t1, t2,t3,t4} . We
consider three cases: (1) #S51 =5, (2) #S51 =4, and (3) #S1 = 3. We use Zzilzer to denote Z4n7 (M1.4,M1.4)
when the time indices in the summation are restricted to satisfy the condition in case (I) for [ = 1,2,3.
Note that E' |5y, (41:4, 15014)|1+6/2 < C < 0o by Assumption A.6(iii). Apparently, in case (3) we must have

t; = t3 and t, = t4 and it is easy to obtain

(3) _ 64 72 7.2
Z\NT = WZ S Bk

to=3 1<ty <t2<to—1

/ 201 2
xXE [FtoymlFt1,n1 Fto,m2Ft27n2Ft0,m3Ft1,n3Ft0,m4Ft2,n4 (etoetl) (eto€t2) }

4 T o
T4h2 Z Z kfltokfzto =0 (T_l) =0 (1) :

to=3 1<t1<ta<tp—1

—-1/2 !
N Ft07metoet1Ftla

<  max max
m,n t1<tg

Let Ty be as given in Assumption A.6(ii). In case (1), we consider two subcases: (1a) there exists at least

one time index ! € §; such that |l — s| > Tj for all s € S; with s # [, and (1b) all the remaining cases. We

use ZS\;}% to denote ZS\;T when the time indices in the summation are restricted to satisfy the condition in

subcase (1v) for v = a, b. In subcase (1a), we can readily apply Lemma B.4 and Assumptions A.6(i)-(iii) to
la 2 A 5/(2+6 5/(246
obtain ZAEN% = ’Iqi\f]ﬂ Zto,tl,tg,tg,t4 are all distinct ktlto ktzto ktStO kt4t004 (TO) / ) = O(NQThQ ( ) / ))

o(1). In case (1b), we have

(1b) —1/2 /
Z,yr < maxmax||N /thmetoetlFth

m,n to,tl

4 64 -
" 4 T4h2 Z ktltokt2tokt3tokt4to
1<ty <ta<to—1,1<t3<t4<to—1
to,t1,ta,ts,t4 satisfy condition in case (1b)

= O(T Ty +T*Tgh™ ' + TT5h™ %) = 0(1)
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as the total number of terms in the last summation is of order O (T'Ty) . So 2z = o0(1). Similarly, we
can show that Zg\;T =0(1). Thus 2, =0(1) and E(Z) =0(1), implying Z = op (1).

To verify the second part of (B.4), it suffices to show (I) ZEF:Q E(Z¥p,) = Vo +0(1), and (II)
Var (ZSTZQ ZJ2VT)8> = op (1) by Chebyshev inequality. These two claims can be easily proved if we also
assume independence of {e;. = (e;1,...,e;r)'} across i conditional on the factors. Here we prove them

without imposing such cross-sectional independence conditions. We first prove (I). Observe that

T T s—1 T
N E(Zr,) = ATN 'R N RLE(6,) AT AN TR Y ki ke B (g, 6sr,)
5=2 s=2r=1 s=21<r;#ro<s—1

= Vnr+o(1),

provided by = T72N~-1h~! ZI:Q D i< e <s—1 sy ksry B (¢, @sry) = 0(1). For notational simplicity,
we assume for the moment that R = 1 so that each term in the product F AF; becomes a scalar. [Otherwise,

we need to utilize FLAF, = Zﬁzl Zle CmnFs mFs n as in the analysis of Z4 above.] Then we have

T N N
by = A’T2N~'h71 Y ST N0 ki E(Fry Fry€ing€iny Fry Fro€in €jr,)-

r3=31<r1<ro<rz—11i=1 j=1

Let Sy = {r1,72,7r3}. We consider three cases: (1) |r3 —ro| > To, (2) |r3 —r2| < Tp and |ro — r1| > T,
and (3) |rg — ra| < Tp and |ry — ro| < Tp. We use bs\l,)T to denote byt when the time indices are restricted
to case (1) for I = 1,2,3. In case (1), we apply Lemma B.4 and the fact that E (F, F,, e ejr,) = 0 for

r1 < ro under Assumption A.6(i) to obtain

N N
‘b%‘ <CTANT'R 3T ST g kg (1) 0 :O(NTha(T0)5/(1+5)) =o(1).

ri<re<rs i=1 j=1

In case (2), we apply Lemma B.4 and the fact that E (F;, e;r,) = 0 to obtain

N N
By < 2N T ST NS e Fraraa (1) = O (NTha (10) ) = 0(1).

r1<re<rs i=1 j=1

In case (3), we have

W = TN Y Ran [B (Bl ereh,en P Fr)|

r3%¥ry
r1<ro<rs, case (3)

2 _ _
2T*‘Zh*l > Forgri krgry, = O (TTMTER) = 0(1),

r1<ro<rs, case (3)

IN

N71/2FTF'5€;"68

max max
mmn r<s

where we use the fact that the total number of terms in the summation over the three time indices for bs\?,’)T
are of order O (TT§) . In sum, we have shown that by = o (1) and ZEF:Q E(Z¥ps) =Vnr+o0(1).
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Now, we want to prove (II) by showing that E(3"~_, Z%.. )2 = V2. + o(1). Noting that
s=2“NT,s NT

s—1

2\ ? 16 A e 2
- T4N2h2E (Z Z Koy k”2¢sr1¢srz>

s=2ri=1ro=1

T 2 T
E(z) s
s=2 5=2

16 T s—1 2 2
_ 2 — _
T4N2h2 E <Z Z sr¢sr> + = T4N2h2 Z Z ksrl kS’I"g ¢s’r‘1 ¢s’r‘2
s=21<r;#ro<s—1

T s—1

32 — d -
T4N2h2 ozl <Z Z kST¢§T> Z Z k«‘”’l kSTQ ¢sr1 ¢sr2

s=2r=1 s=2 1<r;#ro<s—1

= binT + banT + b3nT, Say,

it suffices to show that (a) by y7 = Vi r+o0p (1) and (b) bayr = op (1) because then bgy7 < 2 {blNTngT}l/2
= op (1) by Cauchy-Schwarz (CS) inequality. Note that by n7 = zraers D 1< <51 <T1<ri<s:<T k2 . k2.,
xE (d’ilrld’im) , and V?VT = Wﬁ%z 215r1<slgT,lgr2<52§T kgm SaT9 (¢sm) (%wz) Let S3 = {r1, s1,
9, S2}. We consider two cases: (1) for each t € Ss, [t — | > Ty for all | € Ss with [ # ¢, and (2) all the other
remaining cases. Let S3; and S3 2 denote the subsets of S3 corresponding to these two cases, respectively.
For [ = 1,2, let byn7 (1) and V3,4 (1) to denote by nr and V%, when the time indices are restricted to lie

in Ss, respectively. Note that bynr = bint (1) + bint (2) and Vi, = Vi, (1) + Vi, (2). In case (2),

we have
16 _
blNT (2) S I£1<a£{ ||N ld) ||§ T4h2 Z kzﬂ"lk"gzm - O (TOT 1) = 0(1)’
1<r1<s1<T,1<r2<s2<T,
case (2)
2 16 _
Vir (@) < max[B(N'63)]" > R k2, = 0 (TT™h) = o (1),
1§7‘1<Slc§aze,1(§)7‘2<82§T

where we use the fact that there are at most 7Tp terms in the above displayed summations. In case (1),
we consider six subcases: (1a) 1 < s1 < 12 < 82, (1b) 19 < 59 < 71 < 81, (1) 1 < 19 < 81 < 839, (1d)
Ty <11 < 81 < 82, (le) rp <79 < 853 < 51, and (1f) 72 < 71 < 59 < s1. We use biy7 (1,v) and V3,4 (1,)
to denote by nr (1) and V%, (1), respectively, when the summation over the time indices are restricted to

satisfy the conditions in subcase (1v) for v = a, b, ¢, d, e, f. First, we study subcase (1a). By Lemma B.4,

16

_ 16 2 2 2
binr (1,a) = TAN2R2 § : k81r1 S22 (¢81T1¢82T2)
r1<51<12<52,53,1
16
— —_— . . . 2 . . . .
- T4N2h2 Z Z k517‘1 S27T2 ( 517’1611516217’1e]151e]lrlf52r2elzszelzrzejzszejzrz)
r1<s1<12<52,53,1 11,j1,%2,j2
16
2
< TAN2,2 Z Z k81r1 827’2 (fsmleilsleiﬂ“lej1816j17“1)

r1<s1<12<52,53,1 91,J1,%2,]2

§/(2+6
xE (f=;2r26z2826227"26325'26]27“2) + Ca (To) / )}
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16
N T4NZh? Z Z kslrl 5272 <¢s1r1) b (¢527‘2) + O( (TO)(;/(2+6))

r1<81<12<52,53,1 11,]1,12,j2

= V?\IT (1,a) +0(1),

— N N N N T
where fo. = FLAF,, 32, o o denotes Y50 370 D05y Do and 3o o o s indicates the
summation is done over the four time indices satisfying the condition in case (1). By the same token,

bint (1,0) = V& (1,b) + 0 (1) . Now, consider subcase (1c). As above, we also assume here that R =1 so

that each term in F!AF; is a scalar. By applying Lemma B.4 three times, we have

16
— 1.2
blNT (1’6) - T4N2h2 Z kslﬁ S2T2 (¢817’1¢"’27"2)
r1<re<s;<s2,531
- i k2 E(F2 F2 2 2 . . . ) . ) )
- T4N2h2 S17T1 527’2 ( s17 827 Ty rzellslellrlehslej1T1elzszelzrzeszzejzrz)
r1<re<s1<s2,53,1 91,j1,42,j2
16 A%
2
< T4 N2R2 Z Z kS1T‘1 827’2 (FmFrzehﬁejlﬁeigrzejzrz)
r1<re<s1<s2,53,1 11,J1,42,j2
2 § 2+5
xXE (F Fe2ez1slejls1ezzszensa) + Ca(Tp) / )}
16 A%
S T4N2h2 Z Z kslrl 827’2{E( 611T16J17’1)E(F 6227"26327"2)
r1<r2<51<52,53,1 11,J1,12,J2
6/(2+6
x E (F 611516]151) E (F 612526]252) + 20@( ) ) )}
1644
= TAN2R2 Z Z knn ST ( eilﬁejlﬁ) E (F elzrze]‘ﬂZ)
r1<r2<s51<52,53,1 11,J1,i2,J2
xE (F ezlslehsl) E (F 612526J252) +o(1).
Similarly,
Vir(Le) = zmomm S R kLnE(6,) E(6,)
NT L) = TANZR2 s171 V822 s171 s212
r1<re<s1<s2,531
16A*
_ 2 2
T PAN2)2 Z Z kslrl SaT2 (Frl Frz €iyr1€jir1 Ciary 6]'27«2)

r1<r2<s1<s2,83,1 11,J1,12,J2

2
XE(F F 61131631416128261282)

16 A%
W Z Z ksﬂ"l 827“2 ( 6117“16]17“1) E (F2 6127”26J27”2)

r1<r2<s1<s2,53,1 1,J1,%2,j2

XE (F 6118161181) E (F 6128261282) + COé( )6/(2+6)}

16A4%
= W Z Z k817”1 S2T2 ( 6i1r16j1T1)E(F 6127“26]27“2)

r1<r2<51<82,83,1 91,J1,12,J2

xE (F 611516J151) E (F 612526J252) + 0(1)

IN

It follows that by yr (1, ¢) = V%1 (1, ¢)+0 (1) . Analogously, we can show that by nr (1,v) = V%1 (1,v)+0(1)
for v = d, e, f. Consequently, we have by nr (1) = V. (1)+0(1) and by yr = V47 +0 (1) . Using arguments
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as used in the analysis of by and Lemma B.4, we can also show that

T T
16 _ _
b2NT — WQ}LQ E E E § k517’1 k51r2k52r3k52T4E (¢517‘1¢817’2¢82T3¢527‘4)

51=252=21<r1#r2<s1—11<rg#ry,<ss—1

- 0 (T—lh—2 + N2Th2a (Tp)™ @) 4 72T + 72130 + T‘2T02h‘2) —o(1).

2
It follows that E (Z;F:Q ZJZVT75) = V%, +0(1) and Var (ZZ:Q ZJ2VT78> = op (1). Then the second part of
(B.4) follows by Chebyshev inequality. In addition, by straightforward moment calculations, we can show

that M{5"" = op (1) It follows that M{% —Byr % N (0, Vo).

Now, using Ls; — Lst = kp st (H(t)H(t)/ — H0H6> — (HH' — HyH{)), we decompose Ml(

31) as follows

T
3 2h1/2 , _
MY = Y Y knl] (H(t)H(” —HOH{)) F,F'L Fiele,
t=1 1<s#r<T
W F/(HH' — HyH))FsF' L, Fye'e, = MY + MG?
+Wz Z ¢t ( — HoHy)FoF Ly Freger = My'7 7 + My, say.
t=1 1<s#r<T
2
By Lemma B.1(ii) and letting by = % Z;F:l H]\;ﬁl—//;T ZISS#ST kn,st (knre —1) FsElele|| , we have
(3,1) 2 ‘ h'/2 t t)’
‘MM’ ’ < 2 e X Anest (buee — 1) HoHGFF, (H<>H<> fHOH{)) F,Flele,
t=1 1<s#r<T
2 ) ()’ 1w 2 || /2 '
< 2| Hol| IntaXHH HY — HoHy| = Y IFP | oz Yo et (ki — 1) FuFlele,
t=1 1<s#r<T
T 1/2
< 2||Ho||2mtaxHH(t)H(t),—HOH(S {T;||Ft||4} {banr}'/?

Op ((Th/ln:r)—l/2) Op (1) Op (1) = op (1),

where we also use the fact that E (byn7) = O (1) by using Lemma B.4 and arguments as used in the above
study of by yr. Similarly, we can show that Ml(?l’Q) =op (1). Thus M.fgl) = op (1). By the same token, we
can show that M1(41) = op (1) . Consequently, we have shown that M; 1 — By a4 N (0,Vy).

Next, we show (i2) M; 2 =1II; + op (1) . We make the following decomposition

My = %Z

2

T
1 T 1 -
Ft/HHlf ZFsFégis |:/\;0 (H 1) VN% <fF/F) AégZ/N:|

=1 t=1 s=1
= M3+ M +2MY), say
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In view of the fact that = ZS \FoFlgis = Sp7 ZS 19is + T ZS L (FsF, —X¥F)gis = XF fo gi (u) du +

T~ +o0p (1) = op (1) uniformly in i, we can readily show that M1(12) = op (1). Noting that (H~ ) Var
(%F’F) = (H Y Vg MAF[FH 4 (F — FHY]} = (H) VgbH Y + 0p (1) = (Hy") Vg ' Hy ' +
p (1) by Lemmas B.2(i), (iii), (v) and (vi) and the fact that %F’F = I, we have

N T
ME = S Vo (H ) Vi Hg gl N+ or (1)
= =3t |(H) Ve (N Al ) (Nl Ao ) (HG ) Vi Hg (N M A A) | + o (1)

= %XT:“ {(HJl)'VJlHJl K A(]gt)( ! T'Ao)}( o )'VO*H(;lZAO} +op (1)

In addition, M{%) < {M{)M{»}*/*> = op (1) by CS inequality. It follows that My » = II; + op (1).

Now, we show (i3) M;; = op (1) for | = 3,4,...,10. Let dﬁzﬁ = )\;O[(H(t)’l)’g;%H(t)*l -
(H™ Y Ve (A F'F)Ape /N, d5) 5 = anr Xg(H <t>-1>'s—1H<t>-1%Zilguemanddﬁfz,g=aNTg;t<H<t>-1>'

N

Sy HO-1L SN N, Then dyirs = diy) 5 +d) 5 +di) 5 and

At
N T N T ) ) 9
Mys = N-'V2p!/2 sz%it,s <3NVl ZZ [(dﬁi 3) (dﬁfi 3) + (dﬁ)zd) ]

i=1 t=1 i=1 t=1
= (Ml(l) + M(Q) + M(S)) say.

For Ml(}g), we apply Lemma B.2(viii) to obtain

IN

MY N-V2Tp1/2 max
’ t

(HO=) S5O () Wik ( F’FO)

= NTVPTROp((Th) T + NI T)O0p (1) = 0p (1).

Z IAol® ZHAO ol®
TN

For Ml(zg, we have by Lemmas B.1(ii) and (vi)

2 N

52 Il 7 Zgﬁeﬁ = 0p ()0 (1) op (1) = 0p (1).

i=1

(H(t)—l)’ S};%H(t)—l

Similarly, we can show that Ml(?’d) =op(1). Thus My 35 = op (1). By CS inequality and Lemmas B.3(i)-
. _ _ a2 12
(i), Mg = NTVRRVESL, S0 g < ANTVERVESSE S (| FFHO RAG )| + | FTHRR ()]

HIX(HOTY ReO|? + ([N (H ) RE(O|P} = NVEThY20p (T72h72 + N72(InT)?) = op (1). By CS
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inequality,

N T
= |[N“Y2p1/2 Z Z dyit,2d1ie,3| < {M1,2M1,3}1/2 =op (1),
i=1 t=1

N T
= |N"Y2pl/2 Z Z driz,2d1it,a]| < {M172M1,4}1/2 =op (1),

i=1 t=1
N T
Myl = [NTV2RY2N "N dyy adiia| < {My3Mya}"? = 0p (1).
i=1 t=1
We are left to show that My; = op (1) for [ = 5,6,7. To conserve the space, we prove these claims in

Lemma B.5(i)-(iii), below. This completes the proof of the theorem. Wl

Lemma B.5 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Suppose that H; (anT)
holds true. Then

(i) My 5 =op (1),

(1) Mg = op (1),

(iv) Mi7z=o0p(1).
Lemma B.6 Suppose that Assumptions A.1, A.8(i) and (ii*) and A.6-A.7 hold. Suppose that Hy (anT)
holds true. Then

(i) My =TIy + op (1),

(ii) M3 = op (1),

(iii) My = op (1),

(i) M5 =op (1),

(U) M6 = Oop (1)

To prove Theorem 4.2, we need another lemma.

Lemma B.7 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Then under H; (anT),
!

(i) £ X0, B = 0r () fori=4,63,
(i1) 5 Xtmt Lo
(iit) 7 Tz Zt 1 Zs 1 — HO'F, H =op (N Y2 1/2)
(ZU)T?’ZS 1’ [Zt 1L§t] =O0p (h™?) forl1=0,2,
( ) Tgll\f/lz/2 Zz 1 Zt 1 Zs:l k%,st [F{H(t) (FS - H(S)/FS):| F;H(t)H(t)/Ftegs =op (1) s
(vi) it SN ST SR [FUCO(E,  HOE)| FLEOR Réd, = op (1),

il
|| Fs :Op( _1)f0rl:12

Proof of Theorem 4.2. Given Theorem 4.1, it suffices to prove the first two parts of the theorem. In fact,
we prove the first two parts of the theorem under H; (an7) so that they are still applicable for Theorem
4.3 below.
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Step 1. We prove (i) Byr—Byr = op(1) under H, (anrt). Let Ly = F/ Ly Fy = F.[kp o HOH®' —
HH'|F; and Ly = kh7stﬁéﬁ’t — F;Ft. Using é2, — €2, = (é;5 — 615)2 +2 (&5 — €;5) €55, we have

18

> M2 v 7252 72 2
Byr —Byr = TINI/2 Z Z Z (Lsteis - Lsteis)
i=1 t=1 s=1
h1/2 N T T . 9 . R _
= TIN12 Z Z Z [Lgt (s — €is)” + 212 (&is — €is) €is + (Lgt - th) ezzs:|

I
=
+

[\
S
+

w

@

©n

=

It suffices to show that (i1) By = op (1), (i2) Bz = op (1), and (i3) B3 = op (1). To show (il), we make
the following decomposition:

-1

€is — éis = Xiéﬁ; — )\;sFS = (;\% — H(S) /\is)/FS + )\;sH(S)/il(ﬁs — H(S)/FS) = deLis + degﬂ‘s, say. (B5)

By CS inequality, By < 7220 SN ST ST 12, (a2 4, + d2,,,) = 2B11 +2B1 2. By Lemmas B.1(vii)
and B.7(ii)

Bii = s oS LR E (A= HOTAL) (M - HO A B

i=1 t=1 s=1
1Y SEN [ i 2
1/211/2 3 s)” T2 n
i=1 t=1 s=1
= NY2pY20p (Cy3InT) Op (h7) = 0p (1).
Similarly, by Lemmas B.1(ii) and B.7(iii)
B2 o 32y ()~ [ £ (s)1 . )\ pr(s)
Bip = = S S 2aH (F —H Fs) (Fs —H F) HO A,

i=1 t=1 s=1

2 Nyi/2pt/2 I L.
22 L
t=1 s=1

Next, we show (i2). Using (B.5), we decompose Bs as follows

IN

_ N 2
& max HH(S) ' . H(S)’FSH —op(1).

T N T T
iy —hl/2 .
B2 = T2N1/2 Z Z Lft (eis - eis) €Cis = W Z Z Z th (del,is + deZ,is) Cis = _BZ,I - B2,2a say.

i=1 t=1 i=1 t=1 s=1

By (B.2), we further decompose By 1:

pre N LT R (o)1
Boi = oo O 2L D LAE ()\w H )\25) eis
i=1 t=1 s=1
2 LK., - (1) | p@) _ pG)
- SONCS LR EDu(i,s) + Dalivs) — Daliys)] eis = B + B — B, say.

T2N1/2
i=1 t=1 s=1
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For Béjll), we have by Lemma B.7(iv),

p/2 L

N T
1 _ 2 )/ () (S)
IR SRl (szﬂ 5

t=1s=1 =1 r=1

1z T 1/2 1 Z 1 T 2
1/2 ] 2 _— il e
< h ngx HH T3 2 (; Lst) NT ; T ; 7; knrsFreireis
— WY?0p(1)0p (K1) Op ((Th)-W + N1/2T-1h—1/2) = op (1),
2
where we use the fact that ﬁ 23:1 E H% Zf\il Zle kprsEreiveis|| = O ((Th)*l + NT*Qh’l) —
by moment calculations.
For Bé?, we have by Lemmas B.1(v) and B.7(ii),
(2) h1/2 N T T
_ 72 1 . )
B2,1 T T2N1/2 ;;;Lst SD2(Z7S)€ZS
priz I T N T o
_ T2 1 (s s)/ s s
- T2N1/2;Z;Lst SX;TZ;[F() H()Fﬁ)}ewe%‘
T “ | LT | X
1/231/2 () (8) 1n(s) s - 72 |l -
R ESSI LR {T2 DWAL } LS
NY2pV20p (TR~ + N~ In(T)) Op (b)) Op (1) = 0p (1).
For Bé?l), by Lemma B.1(iv)-(v) and B.7(ii),
(3) h1/2 N T T R .
Byl = o 20 D LaFiDs(is)eis
PN gaa
h1/2 = TA2 A/lA 1( T 1 ad
= i ZZLsthTF@) (FOHEO = FOYN "N
t=1 s=1 i=1
1 .
1/2p,-1/2 Z NG () gs)=1 _ p(s)
< N-'4°h max 7 HF (P H F )ngx Z/\ZseZS T2 ;;L
= Op (N1/2h71/2) (OP (C&%) +op (CLNT)) Op (N71/2 th) Op (hi ) =op (1) .
Thus By 1 = op (1) . In addition, by Lemma B.7(iii),
R S e N
— s)! s)! .
= o |2 2 2 Y (R - HY'R) e
i=1 t=1 s=1
W2 S~ ge | [So oy o (5 g
< TN1/2 Z fZLst ZAZ'SH (Fs*H Fs) €is
s=1 t=1 i=1
. . 9y 1/2 . 9y 1/2
1 1 N 1
< B2 — N2 — )T ( ~HO'F, ) s
=~ T po T ; st N ; g 18 €;

= h20p (K1) Op (Cy}) =op (1),
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=0Op (CIQ2T) by arguments as

1 2
where we use the fact that % Zstl HZfil N H ) ' (Fs — H(S)/FS) €is
used in the proof of Lemma B.1(viii). Thus By = op (1).

Now, we show (i3). For Bs, using Ly = F/LyF;, = Fl[ky HYH® — HH'|F, and Ly = ky o F/F; —

F S’Ft, we make the following decomposition:

pe NII
Bs = T2N1/2 Z ZZ (Lst - Lst> €is
i=1 t=1 s=1
pliz N TT A o
= TapNi/2 Zzzk%st [(Fs/Ft> - (F;H(t)H(t) Ft) } e2,
=1 t=1 s=1
2h1/2 N T T o
T2 pN1/2 ZzzkhaSt[ sl t F (FH()H(t) Ft)FHHFt}
=1 t=1 s=1
gz N T T oo
+T2N1/QZZZ{(F;F75) (FHHFt)} = B31+ B3 + B33, say.

Using a2 — b2 = (a —b)> +2(a—b)b and F'F, — HSVF,F/H® = (F, — HO'F,)(F, — HV'F,) + (F, —
H@'F)YHY' F, + F'HS) (F, — HY'Fy), we can bound |Bs ;| as follows

B1/2 N T T R . 9 . 9

Bsal < Zl ; ; K {3 (B = HO'E) (F, — HY'R)| +3[(F, — HW'F,) HO'F]

. 2 '
+3 [F;H(S>(Ft - H(t)’Ft)} +2 [( — HO'EY(Fy — HO'F, )] FIHOFO' R,

)
+2 [FHO(F, - HCVF, )} FHOHO'F, 42 [F — HO'F)| FLHOHO'F,} e,
5

S8 3588+ 358 2581+ 2585 258, sy

By Lemma A.2(i) and the fact that max; + ZZ €2, =0p (1), we have

h1/2 N T R R 2
Bg}l) - T2N1/2 Z Z Z ki,st [(Fs - H(S)/Fs)/(Ft - H(t)/Ft)} 6125
i=1 t=1 s=1
1 & 1| 2]’
(i Yo (35:2) (b

o
Il
m
5
Il
-
»
Il
-

S

N
. 2 2 1 1
— H( )/FSH }mtaxHH(t) max (N E e?s> max (T E ki o | Fl )
i=1 t=1

T
< NVY2p1/2 lE ‘
= T < S

— N'Y2RM20p (N1 Op (1) Op (1) Op (h™1) = 0p (1) .
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Similarly, we can show that Bg”l = op (1) for I = 3,4 by using Lemma B.1(x). By Lemmas B.7(v)-(vi),
(l)l =op (1) for I = 5,6. It follows that B3 = op (1). Similarly, we have Bs; = op (1) for [ = 2,3. Then

Bs = op (1) . This completes the proof of part (i).

Step 2. We show (ii) Vyr = Vyp4o0p(1) under H; (an7) . Let kg = K (%) . Let ©p = H{XpHy
and Vyr =272N~1p~! D i<sstr<T k2, (FS’HOE_]FH(’)FT)2 (¢.es)? . we make the following decomposition

N _ PR A\ 2

Vnr—Var = 20N S R (F;EFFT> [(é;,és)%(e;esﬂ
1<s#r<T

_ A A A \2 _

+2T N~ YT R, [( ;EFFT) —(F;HOEFHaFrf] (eres)’
1<s#r<T

+2T Nt Yy R [
1<s#r<T

2VinT + 2VonT + 2V3NT, say,

o= B (0)]

where recall ¢, = F!HoXpH)F,ee,. It suffices to show (iil) Viy7 = op (1), (iil) Voy7 = 0p (1), and
(ii3) Vsnr = op (1) . We prove (iil)-(ii2) in Lemma B.8 below. For V3y7, observe that E (Vsyr) = 0 and

T s-1 T s-1 2
Var (2Vsyr) = Var <4T NTRTY N TR ) T4N2h2 (ZZI{:¢ ) V3r

s=2r=1 s=2r=1
2
= blNT_VNT:O(l)

where by yr is defined in the proof of Theorem 4.1. Then Vizyr = op (1) by Chebyshev inequality. This
completes the proof of the theorem W

Lemma B.8 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Then under Hy (anT),
N2
(i) Vine = TN yer B (FSRE) [(é’ 6,) — (ehes)?] = op (1),
(ii) Vonr = T2N"R1 Y o B2, [(F ZFF> (F;HOEFH()FT)Q} (ees)? = op (1).
Proof of Theorem 4.3. By the proof of Theorem 4.1, Jyr = VX,IT/Z (TNl/th/QM — ]BNT> 4, N(mo, 1)

under H; (anr). By the proof of Theorem 4.2, By7 = B —|—0p( ) and Vyr = Var +op(1) under under
H; (ant). It follows that Jyr = V> (TN1/2h1/2M IB%NT) % N(mo,1) under Hy (ay7). B

Proof of Theorem 4.4. Under the global alternative Hy, we have by (4.4)

. 1 oo 7 SWALE
0= 3= ak) (k= o)
1 z;lt;l o , X N T
- WZZ()\”E—/\&B) +WZZ()‘;tFt 0Ft)

1t =1 t=1

P30S (V- 3 (i~ Ko )
t
P

2

&
)

=1 t=

1
Ml"’ y +2M37 say.
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Using Ay By — Ny Fy = (hig— HO— ) (Fy— HO' F) + (g — HO— 1\, ) HO'F, + (HO=12,) (B~ HO'F),
we can readily show that M; = op (1) by Lemmas B.1(viii) and (xi). By Assumption A.7, we have that
for sufficiently large N and T,

N 1
L NoFo = Npht) = nf
. ( et 07t (A, F)eAn xFr NT 4

N T N
1=

ol u\ 2
3 (A;tE5 - A;Ft) > epp/2 > 0.
1t=1

We can easily show that the left hand side object is Op (1) under H;y. Then by CS inequality, My <
{M1M2}1/2 = op (1). Consequently, we have P(M > ¢y /2) — 1.

In addition, we can show that RA’NT also converges to a positive number (say Vi) and I@NT =0p (Nl/zh_1/2)
=op (TN1/2h1/2) under H;. It follows that

InT G172 [ By ~1/2
iz = vt \ M= e | 2 Vo car/4

with probability approaching 1. Consequently P(jNT > cyr) — 1 as (N,T) — oo for any cyp =
o(TNY2p1/%) .

Proof of Theorem 4.5. Let P* denote the probability measure induced by the wild bootstrap conditional
on X. Let E* and Var* denote the expectation and variance under P* and Op- () and op- (-) the
probability order under P*. In view of the fact that (1) the null hypothesis is satisfied in the bootstrap
world, (2) e’s are independent over ¢ conditional on X, and (3) both Ajy and F} are fixed given X, the
proof is similar to but simpler than that of 4.1 and 4.2.

Let M*, Jip, Byr, Vieps Jor By, and Vi, denote the bootstrap analogue of M, Jyr, Byr, Vi,
Jnr, By, and Vi, respectively. Then J§, = (TNY/2hY/2 N1 —Bir)//Viyr and Jgp = (N“V2M* —

Bir) /v/ Vi Following the proof of Theorem 4.1, we can show that

T
TNl/th/QM*_ ?VT:ZZ;(VTJ_‘_OP* (1)
s=2

where Zyp, = 20 'N~V2h=V2 S0 by FIHS H' Freller, et = (e, - €iv,) s and S = T-1 S0 FLFL.
[ct. Znrs = oT-1N—1/2p~1/2 Zi;} ke F'HyXpH}F,€e.e, | Then we can prove the theorem by showing
that: (1) X7, Zivrs/ v/ Vv 2 N(0,1), (i) Big = Bip +op- (1), and (iii) Vi = Vg + 0p- (1)

We only outline the proof of (i) as those of other parts are analogous to the corresponding parts in the
proof of Theorem 4.2. Noting that {ZX,T’t, ]:]’(,T’t} is an m.d.s., we can continue to apply the martingale

CLT by showing that

T T

L * ES 4 % £

zr =) B |Zhr| =op- (1), and > Zitrs — Vir = op-(1). (B.6)
t=2 t=2
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As in the proof of Theorem 4.1,

E* (2%)

T s—1
16 * 7.4 x4 7.2 1.2
= T4N2h2 Z E Z kST¢ST + 2 Z ksrl ksrz (bsrl (bsrg
s=2 r=1

1<r1<ry<s—1

s—1
7.2 1. 7. *2 % * 7. 7. 7. 7. * * * *
+4 E E kstksﬁ kSTz ¢st ¢sr1 ¢sr2 +4 § leskT2Skt18kt2S¢sr1 ¢sr2 ¢st1 ¢st2
t=11<r;<ro<s—1 1<r1<re<s—1,1<t; <to<s—1

=Z{+ 25 + 23+ 2], say

where ¢%, = F 'H E H'F, e¥’er. Using the IID property of ¢;; and the conditions in Theorem 4.5, we
can readily verify that Z] = 0p( ) for I = 1,2,3,4. For example, noting that E [S;;sSi,sSizsSiss] = 3 if
i1 = ig = i3 = ig, = 1 if 43 = ig # i3 = 14, 11 = i3 F i9 = 14, O i1 = 14 # io = 14, and zero otherwise, we
have for any s # r,
YN * IS 4
E*(ej'e;) = E (Csz%) = E Ginjr OinjaTisjsTisia B [SivsSinsSigsSiss) B [SjirSjarSjsrSiar]
U1 yeeny4,J1500]4
= Z IREDIDI D DDA
i j1#je2 i1#£i2 J
+ E E (Gi1j1Girji TinjaCinja + Cirj1 FirjsOings Tinja + Giy j2 Fiy s Tinjo g
11742 J17£J2
10i1j10i2j1OirjaTinga T OirjiOingaOirgi Tinja T Tirji TingaOirjaTinga
+001510i2§1 002520 i1jz t 0i1j10injaOingi Oirge + Uiljlaizjzaizjz%jl]

= QZJZJ + 182 Z 01110112 + 3 Z Z 11]1 12]2 + 20—2131‘”1]2012]1012]2

i j1#j2 i17#12 j17£]J2
= OP (§NTN + N&r + N2§NT) =0Op (N2§NT) .

Then
T s—1

* 16 7.4 n S n * * * 4
2= o ok ( S/HEFH’FT) E* (eV'er)
s=2r=1
T s—1

~ - ~\4
Op (N?E47) TWWZZIC (FS’HEFH’FT) = Op (T2 1) = 0p (1),

8
where we use the fact that =7 ZS 9> 1 Tk = Op (1) under Assumption A.3 and the extra

conditions in the theorem. Similarly, noting that for any r1 < rs < s,

S

B [(erer) (ren)’] = B [(s480nh,B60) (sh8onash, B )| = B [s15 0606155,

= ) Gi1j10j1inOisjs 0 jaia B [SirsSinsSiasSias]
01,.005%4,01,72
— ~2 ~2 ~2 ~2 e . . e .. s . . ~ ..
= 3 E Uij1aij2 + § : [Ui1j1 Uizjz + 2011]10]112021]20j222]
1,J1,J2 11,12,71,J2

= Op (N&r) +O0p (N?Exr) = Op (N?Ex1)
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where we use the fact that 5;; = 5;; and {yp = o (T/2) = 0(N), we have

T
64 U U U
z; = WE > oy sy skt skitys FLHS p H'Fy F/HS nH'F,, F/HS. . H'F), F!
s=21<r1<r.<s—1,1<t1<t2<s—1

xHSpH'Fy B [(e3fer,) (el'er,) (e3'er,) (e3'er,)]

Se’f‘

T
= %421122 S kLR (FS’HENJFH'Fn)Q(FS’HENJFH'Fm)QE*[(e:'eil)2(62'6:2)2]

s=21<r1<re<s—1

T
64 —y - L. ~ N2/~ . - \2
MY R (SR, (FHS ) 0p (V)

s=21<r1<ro<s—1

= Op (&rT7Y) =0p(1).

Then Z* = op- (1) by the conditional Markov inequality. Now 3/, EX(Z¥r,) = AT 2N~ 1B
ko FIHY 5 H'E, e¥'ef]> = Vi Straightforward moment calculations yield that E*(Z;F:2 Zir)? =
V3% + op (1). Thus Var*(z:tT:2 Z3¢p,) = op (1) and 23:2 Z3¢ry — Viyp = op-(1). This completes the

proof of (i). B
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