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Abstract

Conventional factor models assume that factor loadings are fixed over a long horizon of time, which

appears overly restrictive and unrealistic in applications. In this paper, we introduce a time-varying

factor model where factor loadings are allowed to change smoothly over time. We propose a local

version of the principal component method to estimate the latent factors and time-varying factor

loadings simultaneously. We establish the limiting distributions of the estimated factors and factor

loadings in the standard large  and large  framework. We also propose a BIC-type information

criterion to determine the number of factors, which can be used in models with either time-varying

or time-invariant factor models. Based on the comparison between the estimates of the common

components under the null hypothesis of no structural changes and those under the alternative, we

propose a consistent test for structural changes in factor loadings. We establish the null distribution,

the asymptotic local power property, and the consistency of our test. Simulations are conducted to

evaluate both our nonparametric estimates and test statistic. We also apply our test to investigate

Stock and Watson’s (2009) U.S. macroeconomic data set and find strong evidence of structural changes

in the factor loadings.

JEL Classification: C12, C14, C33, C38.
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1 Introduction

Factor models provide a flexible way to summarize information from large data sets and have received

extensive attention recently. In a factor model, a few latent common factors drive the comovement of a

large dimensional vector of time series variables. Although economists realize that the relationships between

economic and financial variables may suffer from structural changes over time, the factor loadings, which

capture the relationships between random variables and the latent common factors, are usually assumed to

be fixed over a long period of time in the conventional factor models (e.g., Stock and Watson 2002, Bai and

Ng 2002, Bai 2003). Stock and Watson (2002, 2009) argue that when the factor loadings undergo small

instabilities, the estimated factors obtained via the conventional principal component analysis (PCA) are

still consistent. However, since macroeconomic datasets typically span a long time period, it is restrictive

to assume that the factor loadings are time-invariant or undergo negligible changes during the whole

sampling period. In fact, there exist various driving forces such as institutional switching, economic

transition, preference changes and technological progress that may influence the relationship between

random variables significantly. By ignoring potentially significant structural changes in factor loadings,

the estimated common factors might not converge to the desired object and forecasting and inference based

on them can be misleading or unreliable. In addition, even if one concerns only the common component,

which is equal to the product of factor loadings and the common factors, one may get misleading results.

In recent years, more and more research has focused on structural changes in factor loadings. Stock

and Watson (2008) examine the forecasting reliability when there exists a structural break in the factor

loadings. Breitung and Eickmeier (2011) propose three statistics to test for structural breaks in factor

loadings based on the idea of Andrews (1993). Chen et al. (2014) propose a two-stage procedure to detect

big breaks in factor loadings by testing the parameter stability in a regression of one of the estimated

factors on the remaining estimated factors. Corradi and Swanson (2014) propose a test to check structural

stability of both factor loadings and factor-augmented forecasting regression coefficients. Han and Inoue

(2014) propose a joint test for structural breaks in factor loadings based on the second moments of the

estimated factors. Cheng et al. (2014) consider the case where both the factor loadings and the number of

factors may change simultaneously at a time point. These studies provide appropriate econometric tools

to examine the problem of structural breaks in factor loadings. However, all these papers focus on the case

of one-time abrupt structural changes. The analyses may be inappropriate if, for example, such driving

forces of structural changes as preference changes, technological progress and policy changes, play a role

gradually over a long period of time, or some abrupt policy changes also take a period of time to take effect.

Indeed, as Hansen (2001) points out, “it may seem unlikely that a structural break could be immediate and

might seem more reasonable to allow a structural change to take a period of time to take effect”. Hence, it

seems more realistic to assume smooth changes rather than abrupt changes. To the best of our knowledge,

Bates et al. (2013) is the only paper that allows for smooth changes in factor loading. By controlling the

magnitude of instabilities to be “small”, they show that the principal component estimators of factors are

still consistent. In fact, changes in comovement induced by technological progress and other forces are
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gradual but fundamental. As a result, we can neither assume the structural changes to be negligible nor

check the instabilities of factor loadings under the framework of abrupt structural changes.

In this paper, we shall model and test smooth structural changes in factor loadings under the local

smoothing framework. Specifically, we assume that economic structures undergo gradual but fundamental

changes over a long horizon of time, i.e., although the factor loadings change smoothly, the cumulative

changes over the entire time period are too large to be ignored. We think that such a situation is realistic

in economic and financial analysis as the driving forces such as globalization, preference changes, and

technological progress, may all induce evolutionary changes and their accumulative effects cannot be simply

ignored. In this case, Stock andWatson’s (2002, 2009) conclusion about small instabilities of factor loadings

will fail and the conventional PCA will yield inconsistent estimates of common factors and factor loadings.

To conquer the problem, we propose a local version of PCA to estimate the latent factors and the time-

varying factor loadings simultaneously. We establish the limiting distributions of the estimated factors

and factor loadings under the standard large  and large  framework. We also propose a BIC-type

information criterion to determine the number of common factors. Our information criterion extends that

of Bai and Ng (2002) and can be applied even when we have a fixed number of breaks in the factor models.

So it is robust to the presence of structural breaks in factor models.

More importantly, we propose an 2-distance-based test statistic to check the stability of factor loadings.

The basic idea is to estimate the time-varying factor loadings and the latent common factors by the local

version of PCA, and compare the fitted values of the common components with those estimated by the

conventional PCA method based on the whole sample. By construction, our test is able to capture both

smooth and abrupt structural changes in factor loadings, where the number of abrupt changes is usually

assumed to be one in the literature but can be any unknown countable number in our setup. Unlike the

existing tests, such as Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Inoue (2014), which

check the stability of the moments of factor loadings or common factors, our test compares the estimates

of the common components because it is well known that the latent factors and the factor loadings are not

separately identifiable. Moreover, unlike the existing tests for unknown break date, namely the supremum-

type tests of Breitung and Eickmeier (2011), Chen et al. (2014), and Han and Inoue (2014), no trimming

of the boundary regions near the starting or ending of period is required for our test. In other words, we

allow the breaks to occur near the beginning and the ending of the sample under the alternative.

The rest of this paper is organized as follows. In Section 2, we introduce our factor models with time-

varying factor loadings. In Section 3, we propose the local PCA procedure and develop the asymptotic

normality for the estimated common factors and factor loadings. In Section 4, we construct our test

statistic for time-varying factor loadings, derive the asymptotic distribution of our test and investigate the

asymptotic power properties. In Section 5, we study the finite sample performance of our estimation and

test via simulation. Section 6 provides an empirical study. Section 7 concludes. All proofs are relegated

to the appendix. Further technical details are contained on the online supplementary appendix.

NOTATION. For an  ×  real matrix  we denote its transpose as 0 its Frobenius norm as kk
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(≡ [tr(0)]12) its spectral norm as kksp (≡
p
1 (

0)) and its Moore-Penrose generalized inverse

as + where ≡ means “is defined as” and  (·) denotes the th largest eigenvalue of a real symmetric
matrix by counting eigenvalues of multiplicity multiple times. Note that the two norms are equal when

 is a vector. We will frequently use the submultiplicative property of these norms and the fact that

kksp ≤ kk ≤ kksprank()12  We also use max () and min () to denote the largest and smallest

eigenvalues of a symmetric matrix , respectively. We use   0 to denote that  is positive definite.

Let  ≡  (0)+0 and  ≡ I −  where I denotes an  × identity matrix. The operator
→ denotes convergence in probability,

→ convergence in distribution, and plim probability limit. We use

( )→∞ to denote that  and  pass to infinity jointly.

2 Factor Model with Time-varying Factor Loadings

Let {  = 1 2      ;  = 1 2     } be an  -dimensional time series with  observations. The index

 represents the th cross sectional unit in panel data set or the th random variable in multiple time

series data set. We assume that  admits the following time-varying factor model with  latent common

factors  = (1     )
0:

 = 0 +  (2.1)

where the idiosyncratic error {} is assumed to be weakly dependent over both cross sectional unit  and
time period . Furthermore,  satisfies [

0
 ] = Σ for some positive definite covariance matrix Σ .

Our model given by (2.1) generalizes Stock and Watson’s (2002) and Bai’s (2003) dynamic factor

models by allowing for structural changes in factor loadings.1 Specifically, we consider smooth structural

changes. This is in contrast to the factor models with structural breaks that have recently been studied

in the literature; see, e.g., Breitung and Eickmeier (2011), Chen et al. (2014), and Han and Inoue (2014).

Because the driving forces of structural changes including preference changes, technological progress, policy

changes usually accrue gradually over a long period of time, it seems more realistic to assume smooth

structural changes rather than abrupt changes in reality. More importantly, the factor model with abrupt

changes could be regarded as the time-invariant factor model with more latent factors. By using more

factors, one can approximate the true model well and yield reasonable economic analysis and forecasting

(see Breitung and Eickmeier 2011, Chen et al. 2014). However, this is not the case for factor models with

smooth structural changes. In our model with time-varying factor loading, the conventional PCA will

result in inconsistent estimators and forecasts even if we use more factors.

To avoid model misspecification and to allow our model to capture various kinds of time-varying factor

loadings, we use a nonparametric local smoothing method to estimate . Specifically, we follow the

1Stock and Watson (2002) also consider a time-varying factor model with a stochastic drift in the factor loadings:  =

−1+  They assume that  is a scalar and small with  =  (
−1) and  is an ×1 random vector such that

 −0 =  (
−12) and demonstrate that such small instability does not affect the consistency of the estimated factors.

Del Negro and Otrok (2009) propose a dynamic factor model with time-varying factor loadings and stochastic volatility in

both the latent factors and idiosyncratic components, and estimate the model via a Gibbs sampling procedure.
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nonparametric literature on time-varying models (see, e.g., Cai 2007, Robinson 2012, Chen and Hong

2012, Chen et al. 2012, Su et al. 2015) and model  as a nonrandom function of  :

 = ( )

where (·) is an unknown piece-wise smooth function of  on (0 1] for each . The specification that

( ) is a function of ratio  ∈ (0 1] rather than time index  is a commonly used scaling scheme in

the literature. An intuitive explanation to this requirement is that the increasingly intensive sampling of

data points ensures consistent estimation of ( ) for each  at some fixed point  by increasing the

amount of data on which it depends. For more discussion, see Robinson (1989, 1991).

As in the conventional factor models,  and  are not separately identifiable. At each time point  we

have 0 =
¡
−1 

¢0
( 0

) for any × nonsingular matrix  and we need to impose 
2 restrictions

in order to identify  and  Let Λ =
¡
01  

0


¢0
and  = ( 01  

0
 )
0
 One set of identification

conditions would be  0 = I and Λ0Λ =diagonal matrix (c.f. Bai and Ng (2002) and Bai (2003)).

3 Estimation

In this section, we introduce the local version of PCA to estimate the time-varying factor loadings  and

the factors . We also establish the asymptotic distributions of these estimators and propose a BIC-type

information criterion to determine the number of factors.

3.1 Local principal component analysis

For the moment, fix  ∈ {1 2  }  Under the assumption that  : [0 1]→ R is a smooth function, we

have

 = 

µ




¶
≈ 

³ 


´
=  when




≈ 




It follows that

 ≈ 0 +  when



≈ 


 (3.1)

To estimate {}=1 and {}=1, we can consider the following local weighted least squares (WLS)
problem:

min
{}=1{}=1

( )−1
X
=1

X
=1

£
 − 0

¤2


µ
− 



¶
(3.2)

subject to certain identification restrictions to be specified later on. Here, () = −1() : R→
R+ is a kernel function, and  = () is a bandwidth parameter. As we now argue, the solution to the

above minimization problem can be obtained via PCA.

To see this, multiplying both sides of (3.1) by  = −1((− )()) yields the transformed model


12

 ≈ 
12


0
 + 

12

 (3.3)
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Define the  × matrices () = (
()
1     

()

 ) and () = (
()
1      

()

 ) where 
()
 = (

12

11    


12

 )
0 and () = (

12

11     
12

 )
0 Let  () = (1211     

12

 )
0 and Λ() = (1     )

0,

which are  ×  and  ×  matrices, respectively. In matrix notation, the transformed model (33) can

be written as

() ≈  ()Λ()
0
+ ()

Then the minimization problem in (32) becomes

min
 ()Λ()

tr

∙³
() −  ()Λ()

0´³
() −  ()Λ()

0´0¸
 (3.4)

We will consider the following identification restrictions:

 ()
0
 () = I and Λ()

0
Λ()=diagonal matrix. (3.5)

By concentrating out Λ() = ()0 ()( ()
0
 ())−1 = ()0 () under the restriction  ()

0
 () = I,

the objective function becomes

tr
h
()0()

i
− −1tr

h
 ()

0
()()0 ()

i


Then we can consider maximizing tr[ ()
0
()()0 ()] subject to  ()

0
 () = I. This is the

conventional PCA problem. The estimated factor matrix, denoted by ̂ () = (̂
()
1   ̂

()

 )0, is
√


times eigenvectors corresponding to the  largest eigenvalues of the  ×  matrix ()()0 , and Λ̂0 =

(̂ ()̂ ()
0
)−1̂ ()

0
() = ̂ ()

0
()  = 1 2      are the estimators of the corresponding time-varying

factor loadings. We use ̂ to denote the th column of Λ̂
0


It is well known that a local constant estimator may suffer from boundary problem. When the kernel

function  (·) has compact support [−1 1]  the boundary regions for our local WLS problem are given by

[0 ] ∪ [1 −  1] Even though the length of these regions is shrinking to zero as  → 0, there are still a

significant amount of data falling into these regions in finite samples. To avoid the boundary problem, we

apply the following boundary kernel (see, Hong and Li 2005, Li and Racine 2006, p.31):

∗ = −1∗

µ
− 



¶
=

⎧⎪⎪⎨⎪⎪⎩
−1

¡
−


¢

R 1
−()() if  ∈ [0 bc)

−1
¡
−


¢
 if  ∈ [bc  − bc]

−1
¡
−


¢

R (1− )
−1 () if  ∈ ( − bc  ]



where bc denote the integer part of . Note that ∗ coincides with  in the interior region but not

in the boundary regions. By using this boundary kernel to replace  = 

¡
−


¢
in (32)-(34), we

obtain the estimators to be analyzed below. But for notational simplicity, we will use  to denote 
∗


hereafter. In addition, we remark that the use of a boundary kernel is not necessary for the study of the

asymptotic properties of our estimators and test statistics in latter sections, but it helps to improve their

finite sample performance.

The estimator ̂
()
 is only consistent for a rotational version of the weighted factor 

()
 ≡ 

12

.

To obtain a consistent estimator of  after suitable rotation, we consider a two-stage estimation proce-

dure. Based on the consistent estimators of ’s obtained in the first stage, we can obtain the consistent
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estimators of   = 1 2      in the second stage, by considering the following least squares problem:

min
∈R

X
=1

h
 − ̂

0


i2
  = 1 2     

The solution to the above problem is: ̂ =
³P

=1 ̂̂
0


´−1 ³P
=1 ̂

´
for  = 1 2     

3.2 Limiting distributions of the estimated factors and factor loadings

In this subsection, we establish the asymptotic distributions of the estimated common factors and time-

varying factor loadings.

Let  ( ) = −1 (0)   ( ) = −1 (0)   ( ) = −1 (0
0
)  and  =

−1[0 − (0)] Define

1 () =
12√


 ()
0
()Λ =

12√


X
=1

X
=1


0


2 ( ) =
12√


[ ()0() −( ()0())] =
12√


X
=1

X
=1

[ − ()]

Let  ∞ denote a positive constant that may vary from case to case. We make the following assumptions.

Assumption A.1. (i) () = 0 and max
¡
8
¢
∞.

(ii) maxkk8 ∞ and  (
0
) = Σ  0 for some × matrix Σ .

(iii)  are nonrandom such that max kk ≤ ̄  ∞ and −1Λ0Λ = ΣΛ +
¡
−12

¢
for some

× positive definite matrix ΣΛ and for all 

(iv) max
P

=1 |Cov ( )| ≤  for   = 1   where  denotes the th element

of 

(v) max
P

=1 k( )k ≤  and max
P

=1 k( )k ≤  for  =     and  

(vi) max1≤≤ 
¯̄
12

¯̄4 ≤  and max
°°−12Λ0°°4 ≤ 

(vii) 1 () =  (1) and max k2 ( )k2 ≤  for each 

(viii) For all  the eigenvalues of the × matrix Σ
12

Λ
ΣΣ

12

Λ
are distinct.

Assumption A.2. (i) −12Λ0
→  (0Γ) for each   where Γ = lim→∞−1

P
=1

P
=1 

0


× () 
(ii)

√
√


P
=1 

→  (0Ω)  where

Ω = lim
→∞

"




X
=1

2
¡


0

2


¢
+
2



−1X
=1

X
=+1

 (
0
)

#
 (3.6)

Assumption A.3 (i) The kernel function  : R → R+ is a symmetric continuous PDF function with

compact support [−1 1].
(ii) As ( )→∞ → 0 2 →∞ 2 →∞  → 0 and 12 →∞.
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A.1 mainly imposes moment conditions on the error terms, factors, factor loadings, and their inter-

actions. They are widely used in the literature; see, e.g., Bai and Ng (2002) and Bai (2003). Note

that we follow Stock and Watson (2002), Bai (2003), and Breitung and Eickmeier (2011) to assume

that [
0
 ] is homogeneous over  in A.1(ii), which facilitates the derivation of the asymptotic results

significantly. With more complicated and lengthy arguments, we can allow for time-varying covariance

for the factor loadings. Similarly, following Bai (2003) and Breitung and Eickmeier (2011), we assume

that the factor loadings are nonrandom in A.1(iii) because they are treated as functions of time. A.2

is used to establish the asymptotic normality of our local PCA estimators and can be verified under

some primitive conditions. For example, by the central limit theorem (CLT hereafter) for strong mixing

processes (e.g., White 2001, Theorem 5.20), one can readily verify A.2(ii). Using Davydov inequality,

we can argue that the limit Ω in (3.6) exists. Without further assumptions, we cannot simplify it. If


¡


0

2


¢
= Ω for each  and {} is a martingale difference sequence (m.d.s. hereafter) with re-

spect to F, the sigma-field generated from {−1 −2   −1 }, then we can readily show that
Ω = Φ lim→∞ 1



P
=1

∗


¡
−


¢2
= Φ

R 1
−1 ()

2
 if  ∈ [bc  − bc]  A.3 imposes regularity

conditions on the kernel function and bandwidth.

Under these regularity conditions, we now establish the asymptotic distributions for latent factors and

time-varying factor loadings estimated via our local PCA method. As is well known, latent common factors

and factor loadings are not separately identifiable. However, they can be identified up to an invertible

× matrix transformation. Since our local PCA method can be regarded as a conventional PCA method
in any small interval around the fixed time ratio  for  = 1 2      , we can show that there exists an

invertible matrix () such that ̂
()
 is a consistent estimator of ()0

()
 and ̂ is a consistent estimator

of ()−1.

The following theorem reports the asymptotic distribution of ̂
()
 

Theorem 3.1 Suppose that Assumptions A.1, A.2(i) and A.3 hold. Then, for each  = 1 2      and

 = 1 2      such that | − | ≤ , we have:

∗

µ
 − 



¶−12√


h
̂
()
 −()0

()


i
→ 

¡
0  −1 Γ

0

−1


¢


where () = (−1Λ0Λ)(
−1 ()

0
̂ ())

()−1
  

()

 denotes the  ×  diagonal matrix of the first

 largest eigenvalues of ( )
−1

()()0 ,  is the diagonal matrix consisting of the eigenvalues of

Σ
12

Λ
ΣΣ

12

Λ
in descending order with Υ being the corresponding (normalized) eigenvector matrix (Υ

0
Υ =

I), and  = 
12
 Υ−1 Σ

−12
Λ

.

Theorem 3.1 establishes the asymptotic normality of ̂
()
 . We note that ̂

()
 is a consistent estimator

for the transformed latent factor 
()
 = 

12

 pre-multiplied by a transformation matrix ()0. Since

we allow cross sectional dependence in the error terms, the limiting distribution depends on the cross-

section correlation structure among {}. In the case where  is uncorrelated over , we have Γ =

lim→∞−1
P

=1 
0


2
 with 2 = [2]. In addition, if 

2
 = 2 for each , then we have Γ =

ΣΛ
2
 .
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The asymptotic distribution of ̂ is reported in the next theorem.

Theorem 3.2 Suppose that Assumptions A.1, A.2(ii) and A.3 hold. Then, for each  = 1 2      and

 = 1 2      , we have:

√

h
̂ −()−1

i
→ 

³
0 (0)

−1
Ω

−1


´


Theorem 3.2 establishes the asymptotic normality of ̂. When {F} is an m.d.s., the asymptotic
variance can be simplified, leading to

√

³
̂ −()−1

´
→ 

µ
0

Z 1

−1
 ()

2

¡
−1

¢0
Ω

−1


¶
when  ∈ [bc  − bc] 
As mentioned above, Theorem 3.1 only establishes asymptotic distribution for the transformed common

factor 
()
 . Since economists are usually interested in the estimation of the latent factor  itself, which are

particularly useful in economic modeling and forecasting, it is desirable to establish asymptotic distribution

for the estimator of  after suitable rotation.

Theorem 3.3 Suppose that Assumptions A.1, A.2(i) and A.3 hold. Then, for each  = 1 2      we

have √

h
̂ −()0

i
→ 

³
0
¡
Σ−1Λ 

−1


¢0
ΓΣ

−1
Λ
−1

´


Remark. Interestingly, although the convergence rates of ̂
()
 and ̂ depend on the bandwidth , the

estimated factor ̂ could achieve the usual parametric
√
 -rate of convergence. In addition, even though

we apply the nonparametric local smoothing method, we do not have the usual asymptotic bias-variance

tradeoff for the estimators of either the factors or the factor loadings because neither estimators possess the

usual asymptotic bias terms. As a result, we can not derive the conventional optimal bandwidth in terms

of minimizing the asymptotic mean square error of the nonparametric estimates. In practice, we suggest

using some data-driven methods to choose the bandwidth. For example, one can use the cross-validation

method to choose the bandwidth ̂ by solving the following minimization problem:

min


 () =
1



X
=1

X
=1

h
 − ̂

(−)0
 ̂ (−)

i2
 

where ̂
(−)
 and ̂

(−)
 are the analogue of ̂ and ̂ by leaving the th time series observation out in the

local PCA procedure. But a rigorous study of the asymptotic behavior of ̂ would demand higher order

asymptotic theory, which goes beyond the scope of the current paper.

3.3 Determination of the number of factors

In the above analysis, we assume that the number of factors,  is known. In practice, one has to determine

 from the data. Here we assume that the true value of , denoted as 0, is bounded from above by a

finite integer max. We propose a BIC-type information criterion to determine 0

9



Let ̂ () and ̂ () denote the local PCA estimators of the factors and factor loadings by assuming

 factors in the model and using the following normalization rule

−1Λ0Λ = I and −1 ()0 () is a diagonal matrix,

where we make the dependence of the  × 1 vectors ̂ () and ̂ () on  explicit. Let Λ̂
()
 =

(̂1 ()
0
  ̂ ()

0
)0 and Λ̆() = ( )

−1
()0()Λ̂

()
 for  = 1   Let ̆ () denote the transpose

of the th row of Λ̆
()
  Define


³

n
Λ̆()

o´
= min

̆=(̆ 0
1̆

0
 )

0

1



X
=1

X
=1

h
 − ̆ 0 ̆ ()

i2


Motivated by Bai and Ng (2002), we propose the following BIC-type information criterion to determine

0 :

 () = ln
³

n
Λ̆()

o´
+  (3.7)

where  plays the role of ln( )( ) in the case of BIC and 2( ) in the case of AIC. Let

̂ = argmin  () 

We add the following two assumptions.

Assumption A.4. (i) kksp = 

¡
12 +  12

¢


(ii) max

¯̄̄
1


P
=1 [ − ()]

¯̄̄
=  (

−12 (ln )12)

(iii)max

°°° 1 P
=1 

°°° =  (()
−12 (ln ( ))

12
) andmax

¯̄̄
1


P
=1 [kk2 − kk2]

¯̄̄
=  (

−12 (ln )12)

(iv) max
°°−12Λ0 0°°4 ≤  and max

°°−12 [0 0 − (
0


0
)]
°°2 ≤ 

(v) max 
°°° 12

( )12

P
=1

P
=1  [

0
 − (

0
)]
°°°2 ≤ 

Assumption A.5. As ( )→∞  → 0 and 
2
 →∞ where  = min(

√

√
)

The conditions in A.4 can be verified under some primitive conditions that are used in the factor

literature. For example, Moon and Weidner (2015) demonstrate that A.4(i) can be satisfied for various

processes; Su et al. (2015) verify similar conditions to those in A.4(ii)-(v) under some mixing conditions.

The conditions on  in A.5 are typical conditions in order to estimate the number of factors consistently.

The penalty coefficient  has to shrink to zero at an appropriate rate to avoid both overfitting and

underfitting.

Theorem 3.4 Suppose that Assumptions A.1 and A.3-A.5 hold. Then


³
̂ = 0

´
→ 1 as ( )→∞

Theorem 3.4 indicates the class of information criteria defined by  () in (3.7) can consistently

estimate 0 To implement the information criterion, one needs to choose the penalty coefficient  . Fol-

lowing the lead of Bai and Ng (2002), we suggest setting  =
+


ln
³


+

´
or  =

+


ln2

with  = min{
√

√
} and evaluate the performance of these two information criteria in our simu-

lation studies.

10



4 Testing for the Constancy of Factor Loadings over Time

In this section, we propose a formal test for the constancy of factor loadings over time and study its

asymptotic properties under a sequence of Pitman local alternatives.

4.1 The hypotheses

The null hypothesis of time-invariant factor loadings could be written as

H0 :  = 0 for  = 1 2      and  = 1 2      (4.1)

and the alternative hypothesis is

H1 :  6= 0 for some non-negligible values of ( ) (4.2)

where 0 is an unknown vector of factor loadings. We allow  = ( ) to be a piece-wise smooth

function on (0 1] for each  with a finite number of discontinuities under H1.

Obviously, under the null hypothesis,  is time-invariant and the model (21) degenerates to the

conventional factor model as studied by Stock and Watson (2002), Bai and Ng (2002) and Bai (2003),

among others. Nevertheless, it is well known that factor models may exhibit structural changes over time.

For this reason, much recent research has focused on testing for structural changes in factor models; see

Breitung and Eickmeier (2011), Chen et al. (2014), Cheng et al. (2014), and Han and Inoue (2014).

These authors aim at testing the existence of a single structural change in the factor loadings by using

some supremum-type test statistics. However, usually no prior information about the structural change

alternative is available in practice. It is extremely restrictive to assume only a single sudden structural

break in the factor loadings. In contrast, we do not impose any essential restriction on the alternative. The

alternative (42) allows for a finite number of abrupt structural breaks. More importantly, by assuming 

to be a piece-wise smooth function under the alternative, we also allow for smooth structural changes in

the factor loadings. This type of alternative seems more reasonable and realistic than the single structural

break alternative given the fact that the driving forces of structural changes such as preference changes,

technological progress and policy modifications accrue gradually in a long period of time.

4.2 Test statistic

Under H0, we can follow Bai and Ng (2002) and Bai (2003) to apply the conventional PCA method

to estimate the common factors and time-invariant factor loadings. Under H1 we can apply the local

PCA method to estimate the common factors and time-varying factor loadings. Then, we can construct

a quadratic test statistic to check H0 by measuring the squared distance between the estimates of the

common components under H0 and those under H1.

Let 
†
 =  + ( − 0)

0
 Let  ≡ (1    )

0
  ≡ (1     )

0
 

†
 ≡ (

†
1  

†
)

0

 ≡ (1      )0  and Λ0 ≡ (10  0)0  Let  = ( 0
1 

0
 )
0
  ≡ (01     0 )0  † ≡ (†1  † )0

11



Then we can rewrite (2.1) in matrix form

 = Λ00 + † (4.3)

The conventional PCA method solves the following minimization problem

min
Λ

tr ( − Λ0) ( − Λ0)0 =
X
=1

X
=1

¡
 − 0

¢2
under certain identification restrictions. In this paper, we follow Bai (2003) and consider the following

identification restrictions: −1 0 = I and Λ0Λ is a diagonal matrix. Let ̃ and ̃0 be the principal

component estimators of  and 0 respectively under the above identification restrictions. Let ̃ =

(̃1  ̃ )
0 and Λ̃0 = (̃10  ̃0)0 It is well known that ̃ is

√
 times eigenvectors corresponding to

the  largest eigenvalues of the  ×  matrix  0, and Λ̃00 = (̃
0̃ )−1̃ 0 = −1̃.

Given the estimates ̃
0
0̃ of the common components 

0
 under H0 and those (̂

0
̂) under H1 we

propose a quadratic form statistic to check the null hypothesis of time-invariant factor loadings based on

the comparison of the two sets of estimates:

̂ =
1



X
=1

X
=1

³
̂
0
̂ − ̃

0
0̃

´2
 (4.4)

We will show that after being appropriately rescaled and centered, ̂ follows the standard normal

distribution under the null hypothesis and has non-trivial power to detect a sequence of Pitman local

alternatives that converge to the null at a suitable rate.

4.3 Asymptotic null distribution

In this subsection, we study the asymptotic distribution of ̂ under H0. Let kk = { kk}1 for
 ≥ 1 We add the following assumptions.

Assumption A.6. (i) For each  = 1 2      , the process {  = 1 2   } is an m.d.s. such that
 (|F−1) = 0 ∀ where F−1 = { −1     −1 −2   }.
(ii) For each  = 1 2      , the process {( )   = 1 2 } is strong mixing with mixing coefficients

 (·)   (·) ≡ max  (·) satisfies
P∞

=1  ()
(2+) ≤  ∞ for some   0 In addition, there exists an

integer 0 ∈ [1  ) such that −2max( 40   30 −1  20 −2) → 0 and 22 (0)
(1+) → 0 as ( ) →

∞

(iii) max kk8+4 ≤  and max kk8+4 ≤ 

(iv) max6=
°°−120 0°°4 ≤  and  (

0
) =   satisfies

1


P
=1

P
=1

P
=1 | | ≤



Assumption A.7. (i) max
°°−1Λ0°° =  (

−12 (ln )12) and max
°°−1Λ0°° =  (

−12

(ln )
12
)

(ii) max k1 ()k =  ((ln )
12
) and max k2 ( )k =  ((ln )

12
)

12



(iii)max

°°° 1


P
=1 Λ

0

()
 

()0


°°° = max °°° 1


P
=1

P
=1 

0


°°° = 

¡
()−12(ln )12

¢


A.6(i) assumes that the process {  = 1 2 } is an m.d.s. with respect to the filter {F} This as-
sumption is essential for the establishment of the asymptotic distribution of our test statistic under the null

hypothesis and a sequence of Pitman local alternatives. A.6(ii) requires the process {( )   = 1 2 }
to be strong mixing with some algebraic mixing rate. With more complicated notation, one can allow dif-

ferent individual time series to have different mixing rates and then relax the summability mixing condition

to lim sup
1


P
=1

P∞
=1  ()

(2+) ≤  ∞ If the processes are strong mixing with a geometric rate

(e.g.,  () =  for some  ∈ [0 1)), then the conditions on  (·) can be all met by specifying 0 = b0 ln c
for some sufficiently large positive constant 0. A.6(iii) assumes some moment conditions on  and

 which, in conjunction with A.6(ii), reflects the usual tradeoff between the dependence and moment

conditions: a smaller value of  requires faster decay in the mixing coefficients but less stringent moment

conditions. Like A.1(vi), A.6(iv) controls the cross-sectional dependence among {  = 1 2  }
Under A.6(iii), this condition becomes redundant if we would assume independence of · = (1   )

0

across  conditional on the factors. A.7 imposes conditions on the uniform probability order of some

summation objects. Again, these conditions can be easily verified by using Bernstein-type exponential

inequality for independent or strong mixing processes.

In addition, we need to strength A.3(ii) to the following assumptions:

Assumption A.3. (ii∗) As ( )→∞, → 0, 2 →∞, 2 →∞  → 0,  ln →∞, and
3−2−1(ln )−2 →∞.

Let  denote the  ×  diagonal matrices of the first  largest eigenvalues of ( )
−1

 0 in

decreasing order and  = (−1Λ0Λ)(
−1

0
̃ ) −1  Let  = −1∗

¡
−


¢
 ̄ = ̄

¡
−


¢
with

̄ () =
R 1
−1 () (− )  being the two-fold convolution kernel of (·). For example, if we use the

Epanechnikov kernel () = 075(1 − 2)1{|| ≤ 1} with 1 {·} being the usual indicator function, then
̄() =

¡
3
5
− 3

4
2 + 3

8
||3 − 3

160
||5¢1{|| ≤ 2}. Let  = 

()()0 − 0 Define

B =
12

12 2

X
=1

X
=1

X
=1

( 0)
2
2

V = 2−2−1−1
X

1≤ 6=≤
̄2

h¡
 00Σ̄

0
0

¢2
(0)

2
i


where Σ̄ =  0
0Σ0 0 = −1 ≡ ( 12Υ0Σ−12Λ0

)−1 denotes the probability limit of  under H0,  is

an  ×  diagonal matrix containing the  largest eigenvalues of Σ
12

Λ0
ΣΣ

12

Λ0
in decreasing order, Υ is

the corresponding eigenvector matrix such that Υ0Υ = I, and ΣΛ0 is the probability limits of 
−1Λ0Λ

under H0

The following theorem states the asymptotic null distribution of our test statistic.

Theorem 4.1 Suppose that Assumptions A.1, A.3(i) and (ii∗), and A.6-A.7 hold. Then the test statistic

 ≡ V−12

³
1212̂ − B

´
→ (0 1) under H0.
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We make some remarks. First, each of the four terms, namely, ̂ ̂ ̃0 and ̃ in the definition

of ̂ contributes to the asymptotic distribution of   We need to study the asymptotic expansion for

each of these four estimators. Second, after some tedious calculations, we can demonstrate that under H0

1212̂ − B =
P

=2  +  (1)  where

 = 2
−1−12−12

−1X
=1

X
=1

̄
0
0Σ̄

0
0

Under the m.d.s. condition in Assumption A.6(i), one can verify that  (|F−1) = 0 and resort

to a martingale central limit theorem (e.g., Pollard 1984, p.171) to derive the asymptotic distribution

of   Difficulty arrives when we try to verify the Lyapunov condition via the fourth order moment of

 because we do not assume cross-sectional independence among · = (1   )
0
conditional on the

factors. The strong mixing condition in A.6(ii) and the moment conditions in A.6(iii)-(iv) greatly facilitate

the verification of the Lyapunov condition. Third, despite the assumed m.d.s. condition, the variance term

V still takes the form of a double U-statistic that involves two summations over each of the individual

and time dimensions.

To implement the test, we need to estimate both the asymptotic bias B and the asymptotic variance

V  The consistent estimators for B and V are respectively given by

B̂ =
12

 212

X
=1

X
=1

X
=1

³
̂

0
̂ − ̃ 0̃

´2
̂2 and

V̂1 = 2−2−1−1
X

1≤6=≤
̄2

³
̂ 0Σ̂ ̂

´2
(̂0̂)

2


where ̂ =  − ̂
0
̂ Then we consider the feasible test statistic:

̂ = V̂
−12
1

³
1212̂ − B̂

´


The following theorem establishes the consistency of B̂ and V̂1 and the asymptotic normality of

̂ 

Theorem 4.2 Suppose that Assumptions A.1, A.3(i) and (ii∗), and A.6-A.7 hold. Then under H0, B̂ =

B +  (1)  V̂1 = V1 +  (1)  and ̂
→ (0 1)

Theorem 4.2 indicates that our test statistic ̂ is asymptotically pivotal under H0 We can compare

the value of ̂ to the critical value  the upper -percentile of the  (0 1) distribution, as the test is

one-sided, and reject the null at  significance level when ̂  

4.4 Asymptotic local power

To study the asymptotic local power property of our test, we consider the following sequence of local

alternatives:

H1 ( ) :  = 0 +  

µ




¶
for each  and 
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where  → 0 as ( )→∞, it controls the speed at which the local alternative converges to the null
hypothesis, and 

¡



¢
is a vector-valued piecewise smooth function with a finite number of discontinuity

points. Noting that 0+ 
¡



¢
= (0 +  )+ [

¡



¢−   ] for any  =  ( ) 

below we will assume that Z 1

0

 ()  = 0

for location normalization purpose. With this normalization, both 0 and  (·) can be dependent on the
sample sizes  and  But for notational simplicity, we continue to write them as 0 and  (·) instead of
0 and  (·) 
Let  = 

¡



¢
 

†
 =  0

¡



¢
 and 

†
 = (

†
1  

†
)

0 Define

Π1 = lim
( )→∞

−1
X
=1

tr
h¡
−10

¢0
 −10 −10

³
−1Λ00

†


´³
−1†0 Λ0

´ ¡
−10

¢0
 −10 −10 ΣΛ0

i


Π2 = lim
( )→∞

( )
−1

X
=1

X
=1

tr (Σ 
0
)  (4.5)

To study the asymptotic power property of ̂ , we impose the following assumption:

Assumption A.8. (i) For each  = 1 2      , (·) is piecewise continuous with a finite number of
discontinuous points on (0,1].

(ii) max1≤≤
°°° 1


P
=1

P
=1 

0


°°° =  (( ln( ))
−12

)

(iii) The limits Π1 and Π2 defined in (4.5) exist and Π1 +Π2  0

Assumption A.8 allows the factor loadings to change smoothly over time or abruptly at a finite number

of unknown discontinuity points. In either case, we assume that the factor loadings are uniformly bounded

in A.1(iii) to facilitate the asymptotic analysis.

The following theorem studies the asymptotic local power property of ̂ 

Theorem 4.3 Suppose that Assumptions A.1, A.3(i) and (ii∗), and A.6-A.8 hold. Then under H1 ( )

with  = −12−14−14, B̂ = B +  (1)  V̂ = V +  (1)  and ̂
→ (0 1) where

0 = (Π1 +Π2) V
12
0 and V0 = lim( )→∞V 

Theorem 4.3 implies that our test has nontrivial asymptotic power against the class of local alternatives

that deviate from the null hypothesis at the rate  = −12−14−14 Note that we allow the existence

of a finite number of unknown discontinuity points in factor loadings. As a result, our test has power against

not only the smooth structural changes in factor loadings but also a finite number of abrupt changes.

4.5 Asymptotic global power

To study the asymptotic global power property of our test, we define

F  =
n
̆ : ̆ 0̆  = I

o
and Λ =

n
Λ̆ : Λ̆0Λ̆ = diagonal matrix

o
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where Λ̆ = (̆1  ̆ )
0 and ̆ = (̆1  ̆ )

0

Assumption A.9. There exists Λ  0 such that plim( )→∞ inf(Λ̆̆)∈Λ×F
1


P
=1

P
=1(

0


−̆0̆)2 ≥ Λ 

Assumption A.9 is intuitively clear: in the spaces of factors and factor loadings such that the normal-

ization rules in F  and Λ are satisfied, we cannot find any time-invariant factor loadings ̆’s and the

associated factors ̆’s such that ̆
0
̆ converges to the true common component 

0
 in the sense of mean

square error. If A.9 is violated, then we can approximate the time-varying factor model by a time-invariant

factor model so that the instability of the factor loadings has to be small and asymptotically negligible.

Theorem 4.4 Suppose that Assumptions A.1, A.3 and A.9 hold. Then under the global alternative H1

 (̂ ≥  )→ 1 as ( )→∞ for any positive sequence  that is 
¡
1212

¢
.

Theorem 4.4 implies that ̂ is consistent and divergent to infinity at the rate 1212 Note that

A.6-A.8 are not required here as there is no need to derive the asymptotic distribution of ̂ or to study

the consistency of the bias or variance estimator.

4.6 A bootstrap version of our test

It is well known that a kernel-based nonparametric test may not exhibit good size in finite samples because

its asymptotic null distribution may not approximate its finite sample distribution well when the null

hypothesis is satisfied in the real data. Therefore it is worthwhile to propose a bootstrap procedure to

improve the finite sample performance of our test.

There are various ways to conduct the bootstrap. One simple way is to adopt the standard wild

bootstrap method. To do so, let ̃2 = −1
P

=1 ̃
2
 where ̃ =  − ̃

0
0̃ and ̃ and ̃0 are the

estimates of the factors and factor loadings under the null. Let  = ̃ with  being IID  (0 1)

over both  and  Then one can generate the bootstrap resamples via ∗ = ̃
0
0̃ +  and obtain the

bootstrap test statistics and -values as usual. One can justify the asymptotic validity of this method under

very weak conditions despite the fact that the bootstrap error terms {} fail to capture the potential
cross sectional dependence structure in the original error terms {}  Preliminary simulations suggest this
method works fairly well if either {} do not exhibit cross-sectional dependence or only exhibit fairly
weak cross-sectional dependence. In the presence of moderate or strong cross sectional dependence in the

error terms, tests based on this standard wild bootstrap method tend to be oversized.

For the above reason, we propose an alternative bootstrap procedure that tries to mimic the cross-

sectional dependence in {}  Let ̃ = (̃1  ̃)
0 and Σ̃0 = −1

P
=1 ̃̃

0
 Let ̃

0
 denote the ( )th

element of Σ̃0 Define the shrinkage version of Σ̃0 as Σ̃ whose ( )th element is given by

̃ = ̃0 (1− )
|−|

for   = 1  

where  is a small positive number (e.g., 0.01) to ensure the maximum absolute column/row sum norm of

Σ̃ to be stochastically bounded provided max
¯̄
̃0
¯̄
is. By construction, Σ̃ is also symmetric and positive
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semi-definite. The stochastic boundedness of max
¯̄
̃0
¯̄
is sufficient but not necessary for the justification

of the asymptotic validity of our bootstrap procedure below:

1. Estimate the restricted model  = 00 + 
†
 by the PCA method and the unrestricted model

 = 0+ by the local PCA method to obtain the two sets of estimates {̃0 ̃} and {̂ ̂}
Based on these estimates, construct the test statistic ̂ as in Section 4.2.

2. For  = 1 2   and  = 1 2      obtain the bootstrap error ∗ = Σ̃
12 where  = (1     )

0

with  being IID  (0 1) across  and . Generate ∗ = ̃
0
0̃ + ∗

3. Use {∗} to run the restricted and unrestricted models to obtain the bootstrap versions {̃
∗
0 ̃

∗
 }

and {̂∗ ̂ ∗ } of {̃0 ̃} and {̂ ̂} respectively. Calculate the bootstrap test statistic ̂∗  the

bootstrap version of ̂ .

4. Repeat steps 2 and 3 for  times and index the bootstrap test statistics as {̂∗}=1 The bootstrap
-value is calculated by ∗ ≡ −1

P
=1 1{̂∗  ̂}

The following theorem establishes the asymptotic validity of the above bootstrap method.

Theorem 4.5 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Suppose that (i)

max
¯̄
̃0
¯̄
=  ( ) with  = 

¡
 12

¢
 (ii) 1



P
=1

°°°̃°°°8 =  (1) and (iii)
1


P
=1

°°°̃0°°°8 =
 (1)  Then ̂∗

∗→  (0 1) in probability, where
∗→ denotes weak convergence under the bootstrap

probability measure conditional on the observed sample .

Theorem 4.5 shows that the bootstrap provides an asymptotic valid approximation to the limit null

distribution of ̂ . This holds because we generate the bootstrap data by imposing the null hypothesis.

If the null hypothesis does not hold in the observed sample, then we expect ̂ to explode at the rate

 121414 which delivers the consistency of the bootstrap-based test ̂∗  The extra conditions (i)-(iii)

in the above theorem can be easily verified if the original data satisfies either the null hypothesis or the

local alternative studied above. For example, in this case we can apply arguments as used in the proof of

Lemma B.7(i) to demonstrate that 1


P
=1

°°°̃°°°8 =  (1)+

¡
 3(−4 + −4)

¢
=  (1) and similarly

1


P
=1

°°°̃0°°°8 =  (1) provided  3−4 +3−4 =  (1) 

5 Monte Carlo Study

In this section, we study the finite sample performance of our nonparametric estimates and the test statistic

through Monte Carlo simulations.

5.1 Data generating process

We generate data under the framework of large model with  = 2 common factors:

 = 0 + 
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where  ≡ (1 2)
0, 1 = 061−1 + 1 1 are IID (0 1 − 062) 2 = 032−1 + 2 2

are IID (0 1 − 032) and independent of 1 We consider the following setups for the factor loadings
 ≡ (1 2)0 and the error terms :
DGP 1: (IID)

 = 0 ∼ IID (0 I2)  ∼ IID (0 1)

DGP 2: (Heteroskedasticity)

 = 0 ∼ IID (0 I2)  =  where  ∼ IID (05 15) and  ∼ IID (0 1)

DGP 3: (Cross sectional dependence)

 = 0 ∼ IID (0 I2) · = (1 )
0 ∼ IID (0Σ)  = 1 2   where Σ = ()=1

with  = 05
|−|

DGP 4: (Single structural break)

 =

(
0 for  = 1 2     2

0 +  for  = 2 + 1     
 0 ∼ IID (1 1)  = 1 2;

 =  where  ∼ IID (05 15)  ∼ IID (0 1) and  = 1 2 4

DGP 5: (Multiple structural breaks)

1 =

⎧⎪⎪⎨⎪⎪⎩
01 + 05 for 06   ≤ 08
01 − 05 for 02   ≤ 04
01 otherwise

 01 ∼ IID (1 1) 2 = 02 ∼ IID (0 1)

 ∼ IID (0 1) and  = 1 2 4

DGP 6: (Smooth structural changes I)

1 = 01 ∼ IID (0 1) 2 =  (10 ; 2 5 + 2)  where  = 1 2 4;

 ∼ IID (0 1)

DGP 7: (Smooth structural changes II)

1 =  + (10 ; 01 (2 4 6 8)0)  ∼ IID (0 1) 2 = 02 ∼ IID (0 1) where  = 1 2 4;

 ∼ IID (0 1)

DGP 8: (Smooth structural changes I + cross sectional dependence)

1 = 01 ∼ IID (0 1) 2 =  (10 ; 2 5 + 2)  where  = 1 2 4;

· = (1 )
0 ∼ IID (0Σ)  = 1 2   where Σ = ()=1 with  = 05

|−|

Here, (;γ) = {1 + exp[−
Q
=1

( − )]}−1 denotes the Logistic function with tuning parameter  and
location parameter γ = (1  )

0


DGPs 1-3 satisfy the null hypothesis of time-invariant factor loadings, and are used to study the size

of our test and the performance of our information criteria to determine the number of factors under the

framework of time-invariant factor models. Note that we allow for cross sectional heteroskedasticity in

DGP 2 and cross sectional dependence in DGP 3. DGPs 4-8 describe various time-varying factor loadings.

DGPs 4 and 5 exhibit single and four sudden structural breaks, respectively. DGPs 6-7 exhibit smooth

structural changes: the factor loadings generated in DGP 6 are monotonic functions while those in DGP

7 are smooth transition functions with multiple regime shifts. DGP 8 considers the process with smooth

structural changes and cross sectional dependence.
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5.2 Determination of the number of factors

In this subsection, we evaluate the information criteria to determine the number of common factors. In

particular, we consider the following two information criteria:

1() = ln
³

n
Λ̆()

o´
+

µ
 + 



¶
ln

µ


 + 

¶


2() = ln
³

n
Λ̆()

o´
+

µ
 + 



¶
ln2   = min

n√

√

o


For comparison purpose, we also consider Bai and Ng’s (2002) four information criteria (namely, 1

2 1 and 2), and Ahn and Horenstein’s (2013) two criterion functions ( for eigenvalue ratio

and  for growth ratio). In addition, we implement Onatski’s (2009) sequential testing procedure ()

to determine the number of factors.

For each DGP, we simulate 1000 data sets with sample sizes  = 100 200. Since the factor loadings

are assumed to be nonrandom, we generate them once and fix them across the 1000 replications. Our

local PCA involves nonparametric estimation. We use the Epanechnikov kernel and Silverman’s rule of

thumb (RoT) to set the bandwidth as  = (235
√
12)−15−110.2 We also try the Uniform kernel

and the Quartic kernel, and the RoT bandwidth with different tuning parameters. Our simulation studies

show that the choices of kernel function and the bandwidth have little impact on the performance of our

information criteria. Each series is demeaned and standardized to have unit variance.

We use two measures to evaluate the information criteria, i.e., the average number of common factors

and the empirical probability of correct selection over 1000 replications. Bai and Ng (2002) apply the

former measure. However, this measure can be misleading. For example, when the true number of factors

is  = 2 but the information criteria select ̂ = 1 or 3 with equal chance, the average number of selected

factors can be still 2. Hence, we also report the empirical probability of correct selection to evaluate the

information criteria comprehensively.

Tables 1 and 2 report the average number of common factors and the empirical probability of correct

selection over 1000 replications of various information criteria in determining the number of common

factors. DGPs 1-3 satisfy the null hypothesis of time-invariant factor loadings and allow us to compare the

performance of these information criteria for the conventional factor models. DGPs 4-8 are the time-varying

factor models with abrupt or smooth structural changes, where the value of  indicates the magnitude of

structural changes. To check the sensitivity of the information criteria to the magnitude of structural

changes, we consider  = 1 2 4 for DGPs 4-8.

As shown in the tables, our information criteria work fairly well for all the DGPs under investigation.

For the conventional factor models with IID, heteroskedastic, and cross sectionally dependent error terms

in DGPs 1-3, respectively, the information criteria proposed by Bai and Ng (2002), Onatski (2009) and

Ahn and Horenstein (2013) could select the true number of factors accurately. Our information criteria

are slightly less accurate than the others when the sample size is small, but it is as good as them when

2Note that {}=1 behaves like a uniform random variable on [0 1] and thus has variance 112
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Table 1: Comparison of various information criteria in determining the number of factors: DGPs 1-5

Average number of factors Empirical probability of correct selection

DGP ( ) 1 2 1 2 1 2    1 2 1 2 1 2  

1 (100,100) 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 .983 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(100,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 .983 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(200,100) 2.02 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 .980 .992 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(200,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 (100,100) 2.01 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 .988 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(100,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(200,100) 2.02 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 .983 .993 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(200,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 (100,100) 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 .985 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(100,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(200,100) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(200,200) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4

=1 (100,100) 2.02 2.00 3.24 3.02 3.00 3.00 2.39 1.67 2.01 .981 .998 .000 .000 .003 .003 .546 .666 .963

(100,200) 2.00 2.00 3.19 3.03 3.00 3.00 2.68 1.77 2.01 1.00 1.00 .000 .000 .000 .000 .324 .768 .988

(200,100) 2.00 2.00 3.00 3.00 3.00 3.00 2.92 1.50 2.06 .998 .999 .000 .000 .000 .000 .075 .495 .890

(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.97 1.59 2.14 1.00 1.00 .000 .000 .000 .000 .029 .585 .860

=2 (100,100) 2.21 2.08 3.10 3.00 3.00 3.00 2.49 1.01 2.32 .796 .918 .000 .000 .000 .000 .024 .011 .241

(100,200) 2.00 2.00 3.19 3.03 3.00 3.00 2.68 1.77 2.01 1.00 1.00 .000 .000 .000 .000 .324 .768 .988

(200,100) 2.13 2.08 3.00 3.00 3.00 3.00 2.98 1.01 2.63 .881 .926 .000 .000 .000 .000 .000 .006 .106

(200,200) 2.02 2.01 3.00 3.00 3.00 3.00 3.00 1.01 3.00 .981 .995 .000 .000 .000 .000 .000 .000 .007

=4 (100,100) 2.66 2.48 3.00 3.00 3.00 3.00 2.87 1.00 2.08 .358 .524 .000 .000 .000 .000 .000 .000 .009

(100,200) 2.53 2.32 3.00 3.00 3.00 3.00 2.99 1.00 2.84 .471 .680 .000 .000 .000 .000 .000 .000 .000

(200,100) 2.59 2.48 3.00 3.00 3.00 3.00 3.00 1.00 2.64 .429 .523 .000 .000 .000 .000 .000 .000 .003

(200,200) 2.39 2.30 3.00 3.00 3.00 3.00 3.00 1.00 3.00 .607 .702 .000 .000 .000 .000 .000 .000 .000

5

=1 (100,100) 2.00 2.00 2.68 2.34 2.12 2.12 2.01 2.00 2.00 .997 1.00 .317 .664 .879 .879 .992 1.00 1.00

(100,200) 2.00 2.00 2.90 2.72 2.36 2.36 2.02 2.00 2.00 1.00 1.00 .099 .282 .638 .638 .980 1.00 1.00

(200,100) 2.00 2.00 2.64 2.46 2.26 2.26 2.26 2.00 2.00 .999 1.00 .362 .542 .739 .739 .736 1.00 1.00

(200,200) 2.00 2.00 2.95 2.79 2.78 2.78 2.23 2.00 2.00 1.00 1.00 .047 .214 .225 .225 .770 1.00 1.00

=2 (100,100) 2.01 2.00 3.00 3.00 3.00 3.00 2.76 2.10 2.30 .992 .999 .000 .001 .005 .005 .243 .829 .701

(100,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.96 2.30 2.53 1.00 1.00 .000 .000 .000 .000 .042 .701 .475

(200,100) 2.00 2.00 3.00 3.00 3.00 3.00 3.00 2.45 2.65 .999 1.00 .000 .001 .001 .001 .001 .493 .350

(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 3.00 2.84 2.94 1.00 1.00 .000 .000 .000 .000 .000 .161 .056

=4 (100,100) 2.32 2.21 3.00 3.00 3.00 3.00 3.00 2.97 3.00 .693 .795 .000 .000 .000 .000 .000 .006 .000

(100,200) 2.23 2.12 3.00 3.00 3.00 3.00 3.00 3.00 3.00 .771 .884 .000 .000 .000 .000 .000 .000 .000

(200,100) 2.21 2.16 3.00 3.00 3.00 3.00 3.00 3.00 3.00 .805 .842 .000 .000 .000 .000 .000 .000 .000

(200,200) 2.16 2.11 3.00 3.00 3.00 3.00 3.00 3.00 3.00 .837 .891 .000 .000 .000 .000 .000 .000 .000

Note: (i) 1 and 2 denote the information criteria proposed in this paper; (ii) 1 2 1 and 2 denote

Bai and Ng’s (2002) information criteria; (iii)  denotes the results of Onatski’s (2009) test; (iv)  and  denote Ahn

and Horenstein’s (2013) criteria. Numbers in the main entries are the results based on 1000 replications.
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Table 2: Comparison of various information criteria in determining the number of factors: DGPs 6-8

Average number of factors Empirical probability of correct selection

DGP ( ) 1 2 1 2 1 2    1 2 1 2 1 2  

6

=1 (100,100) 2.00 2.00 2.12 2.02 2.00 2.00 2.01 2.00 2.00 .998 1.00 .881 .985 .999 .999 .991 1.00 1.00

(100,200) 2.00 2.00 2.09 2.01 2.00 2.00 2.00 2.00 2.00 1.00 1.00 .907 .994 1.00 1.00 1.00 1.00 1.00

(200,100) 2.00 2.00 2.15 2.05 2.01 2.01 2.21 2.00 2.00 .997 .999 .851 .948 .986 .986 .795 1.00 1.00

(200,200) 2.00 2.00 2.37 2.07 2.08 2.08 2.18 2.00 2.00 1.00 1.00 .635 .934 .922 .922 .819 1.00 1.00

=2 (100,100) 2.00 2.00 3.00 3.00 3.00 3.00 2.93 1.91 2.33 1.00 1.00 .000 .000 .003 .003 .072 .700 .656

(100,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.96 2.12 2.46 1.00 1.00 .000 .000 .000 .000 .035 .779 .543

(200,100) 2.00 2.00 3.00 3.00 3.00 3.00 3.09 2.11 2.35 1.00 1.00 .000 .000 .000 .000 .041 .788 .651

(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 3.09 2.17 2.44 1.00 1.00 .000 .000 .000 .000 .008 .830 .558

=4 (100,100) 2.07 2.04 3.98 3.89 3.83 3.83 1.51 1.01 2.27 .935 .958 .000 .000 .000 .000 .000 .000 .000

(100,200) 2.01 2.00 4.00 4.00 4.00 4.00 1.45 1.00 2.55 .995 .998 .000 .000 .000 .000 .000 .000 .000

(200,100) 2.03 2.02 3.99 3.97 3.96 3.96 2.76 1.09 2.70 .971 .978 .000 .000 .000 .000 .000 .000 .000

(200,200) 2.00 2.00 4.00 4.00 4.00 4.00 2.35 1.04 2.94 .998 .999 .000 .000 .000 .000 .000 .000 .000

7

=1 (100,100) 2.01 2.00 2.80 2.33 2.10 2.10 2.00 2.00 2.00 .995 1.00 .224 .671 .904 .904 1.00 1.00 1.00

(100,200) 2.00 2.00 2.92 2.71 2.27 2.27 2.01 2.00 2.00 1.00 1.00 .088 .291 .726 .726 .994 1.00 1.00

(200,100) 2.00 2.00 2.59 2.38 2.18 2.18 2.18 2.00 2.00 1.00 1.00 .409 .616 .825 .825 .821 .999 1.00

(200,200) 2.00 2.00 2.94 2.68 2.66 2.66 2.09 2.00 2.00 1.00 1.00 .063 .318 .338 .338 .909 .999 1.00

=2 (100,100) 2.01 2.00 3.18 3.00 2.97 2.97 2.17 1.69 2.00 .990 .998 .000 .002 .030 .030 .777 .687 .987

(100,200) 2.00 2.00 3.11 3.02 3.00 3.00 2.50 1.74 2.00 1.00 1.00 .000 .000 .000 .000 .435 .735 .994

(200,100) 2.00 2.00 3.00 3.00 2.98 2.98 2.86 1.61 2.04 1.00 1.00 .002 .004 .025 .025 .132 .613 .931

(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.89 1.62 2.09 1.00 1.00 .000 .000 .000 .000 .110 .623 .914

=4 (100,100) 2.05 2.02 3.04 3.00 3.00 3.00 1.90 1.03 1.80 .948 .978 .000 .001 .001 .001 .189 .025 .665

(100,200) 2.02 2.00 3.01 3.00 3.00 3.00 2.60 1.00 1.98 .985 .998 .000 .000 .000 .000 .024 .004 .656

(200,100) 2.01 2.01 3.00 3.00 3.00 3.00 2.97 1.01 2.12 .988 .995 .000 .001 .001 .001 .002 .012 .499

(200,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.99 1.00 2.71 .999 1.00 .000 .000 .000 .000 .002 .002 .261

8

=1 (100,100) 2.01 2.00 2.12 2.01 2.00 2.00 2.01 2.00 2.00 .995 1.00 .882 .991 .999 .999 .995 1.00 1.00

(100,200) 2.00 2.00 2.11 2.11 2.00 2.00 2.00 2.00 2.00 1.00 1.00 .895 .985 .999 .999 .999 1.00 1.00

(200,100) 2.00 2.00 2.11 2.03 2.01 2.01 2.18 2.00 2.00 .997 .999 .895 .970 .993 .993 .819 1.00 1.00

(200,200) 2.00 2.00 2.38 2.07 2.08 2.20 2.00 2.00 1.00 1.00 .619 .931 .917 .917 .917 .801 1.00 1.00

=2 (100,100) 2.00 2.00 3.00 3.00 3.00 3.00 2.93 1.90 2.31 1.00 1.00 .000 .000 .005 .005 .067 .728 .678

(100,200) 2.00 2.00 3.00 3.00 3.00 3.00 2.96 2.10 2.47 1.00 1.00 .000 .000 .000 .000 .034 .753 .532

(200,100) 2.00 2.00 3.00 3.00 3.00 3.00 3.11 2.08 2.32 1.00 1.00 .000 .000 .000 .000 .030 .816 .678

(200,200) 2 00 2.00 3.00 3.00 3.00 3.00 3.09 2.19 2.47 1.00 1.00 .000 .000 .000 .000 .006 .803 .526

=4 (100,100) 2.05 2.04 3.98 3.86 3.78 3.78 1.54 1.04 2.25 .946 .963 .000 .000 .000 .000 .000 .000 .000

(100,200) 2.01 2.01 4.00 4.00 3.99 3.99 1.50 1.01 2.49 .990 .995 .000 .000 .000 .000 .000 .000 .000

(200,100) 2.04 2.03 3.99 3.97 3.95 3.95 2.74 1.08 2.68 .965 .972 .000 .000 .000 .000 .000 .000 .000

(200,200) 2.01 2.00 4.00 4.00 4.00 4.00 2.34 1.04 2.94 .993 .995 .000 .000 .000 .000 .000 .000 .000

Note: See the note in Table 1.
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the sample sizes are large (e.g., ( ) = (200 200)). The less accuracy of our information criteria can be

attributed to the use of nonparametric estimation in our local PCA procedure. DGPs 4 and 5 are factor

models with single and four abrupt structural breaks, respectively. We can see that all of Bai and Ng’s

(2002) four information criteria have the tendency to choose 3 common factors, which is larger than the

true number of factors (2 here). Onatski’s (2009) testing procedure also tends to choose 3 common factors

except for the case of DGP 5 with  = 1, which is merely acceptable with larger than 70% correct selection

probability. Ahn and Horenstein’s (2013)  and  criterion functions perform well for the case of

DGP 5 with  = 1, but they still suffer from severe over- or under- selection for other cases. In contrast,

although our information criteria are proposed for smooth structural changes, they still work well for small

and moderate magnitude ( = 1 2) of abrupt structural breaks. Although they tend to choose factors

slightly more than necessary for  = 4, the results are still acceptable and much better than those of other

information criteria. DGPs 6-8 are factor models with smooth structural changes in factor loadings and/or

cross sectionally dependent errors. As shown in Table 2, our information criteria give precise estimates of

the number of common factors for all cases. However, the criteria proposed by Bai and Ng (2002), Onatski

(2009) and Ahn and Horenstein (2013) work poorly except for the case of small structural changes ( = 1).

5.3 Performance of the test

In this subsection, we study the finite sample performance of our test for time-varying factor loadings. We

also compare our test with the tests of Breitung and Eickmeier (2011), Chen et al. (2014), and Han and

Inoue (2014) for a single structural break with an unknown break date in factor loadings.

It is well known that a nonparametric test that relies on the asymptotic normal approximation may

perform poorly in finite samples. To conquer this problem we consider the wild bootstrap procedure

proposed in Section 4.6. Since the bootstrap procedure is rather time consuming, we generate 500 data

sets in this subsection and set the bootstrap replication number  to be 200. As in the previous subsection,

we use the Epanechnikov kernel and the RoT bandwidth  = (235
√
12)−15−110. In addition to our

test, we also consider Breitung and Eickmeier’s (2011) sup-LM variable-specific test, Chen et al.’s (2014)

sup-LM and sup-Wald tests, and Han and Inoue’s (2014) sup-LM and sup-Wald tests. We follow these

papers to set the trimming parameter  = 015. The tests of Chen et al. (2014) and Han and Inoue (2014)

involve the long run variance estimation. We set the time-lag truncation parameter as  = b 15c and
choose the Bartlett kernel. The critical values presented in Andrews (1993) are applied for the tests of

Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Inoue (2014), while the bootstrap critical

values are applied to check the performance of our test.

Table 3 reports the empirical sizes of various tests at both 5% and 10% levels. As shown in the table,

our test has reasonable sizes using the bootstrap -values. Han and Inoue’s (2014) sup-LM test delivers

reasonable size and their sup-Wald test tends to under-reject the null hypothesis. Chen et al.’s (2014)

sup-LM test also has reasonable size, but their sup-Wald test tends to over-reject the null hypothesis. In

addition, Breitung and Eickmeier’s (2011) variable-specific sup-LM test suffers from slight underrejection
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Table 3: Size of various tests for DGPs 1-3

DGP        

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

1 100 100 5.4 11.4 3.6 7.2 0.4 2.0 2.2 8.2 5.8 11.0 2.8 6.5

100 200 5.0 10.0 6.0 11.6 1.4 5.6 4.8 10.2 6.0 10.2 3.5 7.4

200 100 5.2 11.2 3.2 6.0 0.0 1.6 2.8 8.6 6.4 12.4 2.7 6.2

200 200 3.8 8.8 7.0 14.4 2.0 7.8 5.8 11.6 6.6 12.2 3.4 7.5

2 100 100 6.8 14.2 3.0 8.4 0.4 1.8 3.2 9.8 6.2 14.4 2.9 6.6

100 200 5.8 11.0 3.2 8.2 2.6 7.8 4.4 11.2 5.4 14.2 3.7 7.8

200 100 7.4 12.8 2.8 6.8 0.4 2.0 3.6 9.2 7.4 15.2 2.8 6.4

200 200 6.2 11.6 3.6 9.6 2.2 7.4 3.4 9.2 5.8 13.2 3.6 7.7

3 100 100 6.0 11.0 3.6 8.2 0.2 2.2 2.8 7.4 5.4 10.4 2.7 6.4

100 200 4.2 8.6 7.0 12.8 1.8 6.6 4.6 8.8 5.0 10.8 3.4 7.5

200 100 4.8 11.2 3.2 6.0 0.2 2.0 3.0 7.2 5.6 10.8 2.8 6.3

200 200 4.2 8.6 7.8 13.2 1.8 6.8 6.4 11.6 7.2 13.0 3.4 7.4

Note: (i)  denote the results of our test based on the bootstrap p-values; (ii)  and  denote Han and Inoue’s

(2014) sup-LM and sup-Wald tests; (iii)  and  denote Chen et al.’s (2014) sup-LM and sup-Wald tests; (iv)

 denotes Breitung and Eickmeier’s (2011) variable-specific sup-LM test. The entries report the average percentage of

rejection.

for DGPs 1-3.

Table 4 reports the empirical powers of various tests for DGPs 4-8 at the 5% and 10% significance

levels. To save space, we only report the results for  = 1 and 2. We summarize some important findings.

First, our ̂ test is powerful in detecting all the forms of time-varying factor loadings given by DGPs

4-8 and the simulation results are consistent with our theoretical conclusion that our test is able to detect

both a finite number of sudden structural breaks and smooth structural changes. Second, the other tests

are all designed to test for a one-time abrupt structural change in DGP 4. As expected, they all have power

against DGP 4 despite the fact their power is not as great as that of our test. Third, for the other DGPs,

all of Han and Inoue’s (2014) sup-LM and sup-Wald tests, Chen et al.’s (2014) sup-LM and sup-Wald tests,

and Breitung and Eickmeier’s (2011) have lower power than our test too. In particular, these tests have

little or low power in detecting deviations from the null in DGPs 5 and 7 but reasonable power against

DGPs 6 and 8. It is easy to explain why some of these other tests have power against DGPs 6 and 8. Note

that in these two DGPs, the factor loadings are monotonic functions of the time ratio  for each . If

we apply the PCA method to estimate the factor model, the estimated factors would exhibit a trend with

increasing volatilities. Since Han and Inoue’s (2014) test checks the time invariance property of the second

order moments of the common factors, it is possible to capture such smooth structural changes in DGPs

6 and 8. Similarly, Chen et al.’s (2014) test is based on the regression of one of the estimated factors on

the remaining estimated factors, and their LM and Wald test statistics will not have the usual asymptotic

distribution when one estimated factor exhibits trending behavior.
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Table 4: Power of Tests Under DGPs 4-8

DGP        

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

4,  = 1 100 100 99.0 99.6 39.6 62.6 21.0 43.8 5.2 10.6 31.4 42.8 34.9 41.5

100 200 100 100 95.2 98.0 92.6 97.0 8.0 15.0 33.2 42.8 48.5 54.2

200 100 99.4 99.6 41.2 65.0 22.2 46.0 6.6 11.6 30.2 41.2 35.7 43.2

200 200 100 100 96.0 98.6 93.4 98.0 7.8 17.0 33.2 43.2 52.9 59.0

4,  = 2 100 100 100 100 70.8 85.6 52.0 73.8 5.2 11.0 63.4 72.0 43.9 50.1

100 200 100 100 99.6 100 99.4 100 8.8 17.0 65.6 72.4 57.6 63.1

200 100 100 100 71.4 86.2 51.2 75.0 6.8 13.8 61.4 69.0 46.7 53.6

200 200 100 100 99.8 100 99.2 100 9.8 19.2 68.6 75.4 63.7 69.0

5,  = 1 100 100 96.0 97.8 4.2 10.4 0.6 3.8 5.4 11.8 9.4 18.6 7.3 12.9

100 200 100 100 9.6 21.8 8.6 19.4 12.2 22.8 17.0 27.4 16.5 23.7

200 100 99.4 99.8 3.8 9.6 0.6 3.8 4.0 12.6 9.0 19.6 7.1 12.7

200 200 100 100 8.0 19.8 7.4 17.4 9.2 18.6 13.8 23.2 16.3 23.8

5,  = 2 100 100 100 100 6.0 16.2 1.4 7.2 10.4 20.4 25.8 37.6 15.2 22.7

100 200 100 100 29.4 48.6 26.8 42.0 32.6 49.2 50.6 64.2 32.1 39.7

200 100 100 100 5.4 14.4 1.2 7.4 9.4 18.0 24.2 34.8 16.8 24.7

200 200 100 100 28.8 46.0 25.8 41.2 26.6 40.4 45.4 58.0 35.4 43.5

6,  = 1 100 100 100 100 85.2 94.8 67.0 88.6 28.4 41.8 90.2 93.4 53.1 62.6

100 200 100 100 100 100 100 100 56.0 63.0 97.4 97.8 76.7 82.3

200 100 100 100 84.6 95.2 68.6 89.2 32.6 47.0 80.4 85.0 53.9 63.1

200 200 100 100 100 100 100 100 68.2 74.2 90.4 92.4 77.3 82.6

6,  = 2 100 100 100 100 88.2 96.6 66.8 88.4 8.4 15.4 98.6 99.0 85.2 89.3

100 200 100 100 100 100 100 100 13.4 22.6 99.6 99.8 96.2 97.9

200 100 100 100 87.2 96.4 67.2 89.4 6.6 15.0 98.6 99.4 85.3 89.5

200 200 100 100 100 100 100 100 11.8 20.4 99.8 100 96.7 98.3

7,  = 1 100 100 95.0 97.8 11.8 19.6 0.2 1.6 4.4 10.0 3.4 8.4 4.5 9.2

100 200 100 100 23.6 36.0 2.0 4.6 6.4 12.8 2.6 6.2 9.0 15.4

200 100 99.4 99.4 10.8 19.8 0.2 1.6 3.6 8.6 3.2 7.8 4.7 9.6

200 200 100 100 23.6 37.0 2.0 4.8 5.8 10.8 2.4 6.6 10.3 17.1

7,  = 2 100 100 97.4 98.6 19.6 33.0 0.2 1.4 5.4 10.4 2.4 7.8 6.2 11.6

100 200 100 100 43.4 52.8 1.6 4.4 8.0 14.4 2.4 5.6 14.5 22.2

200 100 99.8 99.8 19.4 33.0 0.2 1.2 4.8 10.8 2.4 7.0 6.9 12.7

200 200 100 100 43.2 53.8 1.6 4.4 7.0 12.2 2.2 4.4 16.7 24.6

8,  = 1 100 100 92.2 96.0 82.0 94.8 66.2 88.0 39.2 54.8 70.8 79.4 14.8 24.1

100 200 100 100 99.8 100 100 100 61.2 69.6 77.4 82.0 34.7 45.6

200 100 94.2 96.8 78.0 93.6 69.2 87.0 38.4 53.2 60.0 70.0 15.4 25.0

200 200 100 100 100 100 99.4 99.8 53.8 65.0 62.0 69.8 37.2 48.3

8,  = 2 100 100 100 100 86.8 96.8 67.6 87.6 6.8 14.0 98.8 99.2 52.7 62.1

100 200 100 100 99.8 100 100 100 10.4 19.8 98.8 99.6 76.4 81.9

200 100 100 100 82.6 94.4 68.8 87.2 9.8 17.4 97.6 98.6 52.9 62.3

200 200 100 100 100 100 99.4 99.8 9.6 15.2 99.8 99.8 77.3 82.6

Note: See the note in Table 3.
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Table 5: Tests of structural changes in the U.S. economy

Number of selected factors 1 3 4 5

Criterion functions    1 2 2 1 2 1

Note: See the note in Table 1.

6 An Application to Stock and Watson’s (2009) U.S. Macroeco-

nomic Data Set

In this section, we apply our approach to check whether the U.S. economy suffers from structural changes.

The data set, constructed by Stock and Watson (2009), consists of 144 quarterly time series, spanning

1959:I-2006:IV.3 By excluding the first two quarters, which is missing when computing the first and second

differences, we get a total of  = 190 quarterly observations. Also, we follow the suggestion of Stock and

Watson (2009) to delete some high level aggregates related by identities to the lower level sub-aggregates

and end up with  = 109 time series. For some time series that are available monthly, we take averages

over the quarter to get the corresponding quarterly data. Following the literature, we transform the data by

taking the first or second order (log-)difference and removing outliers. All the data have been standardized

to have zero mean and unit variance. For the details of the data description and processing, one can refer

to Stock and Watson (2009).

We first determine the appropriate number of common factors. The maximum number of common

factors is set to be 8 in this empirical study. Other presettings such as the kernel and bandwidth are the

same as in the simulation section. We use Bai and Ng’s (2002) information criteria 1 2 1 and

2, Onatski’s (2009) testing procedure, Ahn and Horenstein’s (2013) criterion functions  and 

and our information criterion proposed in Section 3.3 to determine the number of common factors. The

results are reported in Table 5 According to the table, we report the test results for the cases of one to

five common factors respectively in the following context .

Table 6 reports the results of the tests and the corresponding critical values at the 5% and 10%

significance levels. Our test rejects the null hypothesis of time-invariant factor loadings for all the cases of

1—5 common factors. In contrast, Han and Inoue’s (2014) sup-LM and sup-Wald tests cannot reject the

null for any case at the 5% significance level, while Chen et al.’s (2014) results are mixed, and they can

only reject the null for  = 5 at the 5% significance level when using the sup-Wald test. This is consistent

with the results of our simulation studies that suggest the tests of Han and Inoue (2014) and Chen et

al. (2014) have relatively low power. In addition, Breitung and Eickmeier’s (2011, BE) variable specific

sup-LM test reject the null of time-invariant factor loadings for about half of the variables.

Our empirical result suggests the existence of possible smooth or sudden structural changes in U.S.

economy. We now estimate the common factors and the time-varying factor loadings by using our local

principal component approach proposed in Section 2 by assuming 3 common factors. Figure 1 plots the

3The dataset is publicly available on Professor Mark W. Watson’s website http://www.princeton.edu/~mwatson/publi.html.
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Table 6: Tests of structural changes in the U.S. economy

Our test: bootstrap Han and Inoue (2014) Chen et al. (2014) BE (2011)

 5% 10% sup-LM sup-Wald 5% 10% sup-LM sup-Wald 5% 10% 5% 10%

 = 1 5.40 2.82 2.12 7.03 7.51 8.85 7.17 — — — — .2844 .3945

 = 2 23.90 10.94 9.84 13.04 13.61 14.15 12.27 2.75 3.46 8.85 7.17 .4037 .4587

 = 3 31.48 16.35 15.30 17.05 17.85 20.26 18.12 7.03 11.54 11.79 11.01 .4771 .5872

 = 4 30.44 23.14 22.43 24.31 24.22 27.03 24.62 9.96 11.44 14.15 12.27 .4862 .5872

 = 5 35.50 26.20 25.65 31.79 31.12 35.06 32.51 12.60 54.92 16.45 14.31 .4679 .5596

Note: (i) Under  and sup-LM and sup-Wald are the values of the corresponding test statistics; (ii) Under 5% and 10%

are the corresponding bootstrap critical values (our test, 500 bootstrap resamples) or asymptotic critical values (Han and

Inoue’s and Chen et al.’s tests) except for the Breitung and Eickmeier’s (2011) test; (iii) Under 5% and 10% of BE (2011) are

the empirical reject ratios of Breitung and Eickmeier’s (2011) variable specific sup-LM test by using 5% and 10% asymptotic

critical values respectively. Bold elements denote significance at the 5% nominal level.
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Figure 1: Plots of estimated time invariant factor loadings (dashed line), time varying factor loadings

(solid line) and their 90% confidence bands for real personal consumption expenditures (left panel) and

industrial production index of durable goods (right panel) corresponding to the three common factors
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estimated time-varying factor loadings and their 90% confidence bands for real personal consumption

expenditures (left panel) and industrial production index of durable goods (right panel) corresponding

to the three common factors selected by our information criteria. From this figure, we can see that the

estimated factor loadings show significant time-varying features. The finding of time-varying factor loadings

has some important implications. For example, most of the existing studies estimate the common factors

under the framework of time-invariant factor loadings and then forecast some key variables based on the

estimated common factors. We may provide more reliable forecasts by accommodating the documented

time-varying features of factor loadings by using a local version of the principal component method.

7 Conclusion

Conventional factor models assume that factor loadings are fixed over a long horizon of time, which appears

restrictive and unrealistic in empirical applications. In this paper, we introduce a time-varying factor model

where factor loadings are allowed to change smoothly over time and propose a local version of the PCA

method to estimate the latent factors and time-varying factor loadings simultaneously. We establish the

limiting distributions of the estimated factors and factor loadings in the standard large  and large 

framework. We also propose a BIC-type information criterion to determine the number of common factors

for time-varying factor models. Our information criterion works no matter whether the factor loadings are

time-invariant or time-varying and it is extremely useful when structural changes are suspected.

More importantly, we propose an 2-distance-based test statistic to check the stability of factor loadings.

By construction, our test can capture both smooth and abrupt structural changes in factor loadings and one

does not need to know the number of breaks in the data. Monte Carlo studies demonstrate the excellent

performance of the BIC-type information criterion in determining the number of common factors, and

the reasonable size and excellent power of our test in checking the time-invariance of factor loadings. In

an application to Stock and Watson’s (2009) U.S. macroeconomic data set, we find significant evidence

against the time-invariant factor loadings imposed by the conventional factor models.
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Mathematical Appendix
This appendix provides the proofs of theorems in Sections 3 and 4. We shall need some technical

lemmas whose proofs are available in the online supplementary material. Recall that 
()

 and  denote

the  ×  diagonal matrices of the first  largest eigenvalues of ( )
−1

()()0 (for  = 1   )

and ( )
−1

 0 in decreasing order, respectively. Let () = (−1Λ0Λ)(
−1 ()

0
̂ ())

()−1
 and

 = (−1Λ0Λ)(−1
0
̃ ) −1  Let  = min{

√

√
} and 0 = min{

√
 
√
}

A Proofs of Theorems in Section 3

We first state two lemmas that are useful in proving the main results in this paper.

Lemma A.1 Suppose that Assumptions A.1 and A.3 hold. Then

(i) −1̂ ()
0
h
( )

−1
()()0

i
̂ () = 

()

 =  +

¡
−1

¢


(ii) −1̂ ()
0
 () = + 

¡
−1

¢


(iii) () = −1 +

¡
−1

¢


where  is the diagonal matrix consisting of the eigenvalues of Σ
12

Λ
ΣΣ

12

Λ
in descending order with Υ

being the corresponding (normalized) eigenvector matrix, and  = 
12
 Υ−1 Σ

−12
Λ



Lemma A.2 Suppose that Assumptions A.1 and A.3 hold. Then

(i) 1


°°°̂ () −  ()()
°°°2 = 1



P
=1

°°°̂ () −()0
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°°°2 =  (
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Proof of Theorem 3.1. Noting that ( )−1()()0̂ () = ̂ ()
()

 and 
()
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()
 , we

can decompose ̂
()
 −()0
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 as follows:
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X
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 Λ0
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)
≡ 1( ) +2( ) +3( ) +4( ) say (A.1)

Note that 
()−1
 is well defined by Lemma A.1(i) and Assumptions A1(ii)-(iii). By Lemmas A.3(i)-(iii) be-

low
√
( ) =  (1)   = 1 2 4. It suffices to prove the theorem by showing that

∗


¡
−


¢−12√


×3( ) → 
¡
0  −1 Γ

0

−1


¢
.
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Observe that
√
3( ) = 

()−1
 [ 1



P
=1 ̂

()
 

()0
 ][

12√


P
=1 

()
 ] By Lemmas A.1(i)-(ii), 
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completes the proof of Theorem 3.1. ¥

Lemma A.3 Suppose that Assumptions A.1 and A.3 hold. Then

(i)
√
 [1( ) +2( )] =  (1)

(ii)
√
4( ) =  (1)

Proof of Theorem 3.2. Noting that Λ̂0 = −1̂ ()
0
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0
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By Lemmas A.4(i)-(ii) below,
√
( ) =  (1) for  = 2 3 By Lemma A.1(iii), 

() → −1  By As-
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Lemma A.4 Suppose that Assumptions A.1 and A.3 hold. Then

(i)
√
2( ) =  (1)

(ii)
√
3( ) =  (1)

To prove Theorem 3.3, we need another lemma.
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where ̂ =
1


P
=1 ̂̂

0
 By Lemmas A.6(i)-(iii) below
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Lemma A.6 Suppose that Assumptions A.1 and A.3 hold. Then for  = 1 2     

(i) ̂ =
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To prove Theorem 3.4, we need three lemmas. More precisely, Lemmas A.7 and A.8 are used in the

proof of Lemma A.9, which in turn is used to prove Theorem 3.4.

Lemma A.7 Suppose that Assumptions A.1 and A.3-A.4 hold. Then for any  ≥ 1 there exist 0 × 
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Lemma A.8 Suppose that Assumptions A.1 and A.3-A.4 hold and   0. Let 
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Proof of Theorem 3.4. The proof is analogous to that of Corollary 1 in Bai and Ng (2002). For

notational simplicity, let  () =  ( {Λ̆() }) for all  Note that  ()− (0) = ln [ ()  (0)]+
(−0)   We discuss two cases: (1)   0, and (2)   0

In case (1), by Lemmas A.9(i) and (ii),  ()  (0)  1+ 0 and hence ln [ ()  (0)] ≥ 02 for

some 0  0 w.p.a.1. This, in conjunction with the fact that (−0)  → 0 under our assumption,

implies that  ()−  (0) ≥ 04 w.p.a.1. It follows that

 ( ()−  (0)  0)→ 1 for any   0 as ( )→∞

In case (2), we apply Lemma A.9(iii) and Assumption A.5 to obtain

 ( ()−  (0)  0) =  (ln [ ()  (0)] + (−0)   0)
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¡
 (1) + (−0) 

2
  0

¢→ 1 for any   0 as ( )→∞

Consequently, the minimizer of  () can only be achieved at  = 0 w.p.a.1. That is,  (̂ = 0)→ 1

for any  ∈ [1 max] as ( )→∞ ¥

B Proofs of Theorems in Section 4

To proceed, we need to introduce some notations and lemmas. Let 
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Let 0 0 0 and ΣΛ0 be the probability limits of 
()

  
() 1



P
=1 ̂

()
 

()0
  and −1Λ0Λ under

H0 respectively. Note that they are also the limits under H1 ( )  and 0 = −10  Let 0 = 0ΣΛ0
0
0

To prove Theorems 4.1 and 4.3, we need three lemmas.
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Lemma B.1 Suppose that Assumptions A.1, A.3(i) and (ii*), and A.6-A.7 hold. Then under H1 ( )
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Lemma B.2 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Then under H1 ( )
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Lemma B.3 Let Λ( ) = 2( ) − 3( )  () = 2() + 3() 
0
Λ() = 0

2() − 0
3() and
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In addition, we need the following lemma from Sun and Chiang (1997).

Lemma B.4 Let {  ≥ 1} be a strong mixing process with mixing coefficient  (·)  Let 1 de-

note the distribution function of (1   )  For any integer   1 and integers (1  ) such

that 1 ≤ 1  2       let  be a Borel measurable function such that max{
R | (1     )|1+̃

1 (1     ) +1 (+1     ) 
R | (1     )|1+̃ 1} ≤  for some ̃  0.
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Then | R  (1     ) 1 (1     )−
R
 (1     ) 1 (1     ) +1(+1     )|

≤ 41(1+̃) (+1 − )
̃(1+̃)



Proof of Theorem 4.1. For the convenience of proving Theorem 4.3 below, we prove that under H1 ( )

with  = −12−14−14

 = 1212̂ − B −Π →  (0V0) 

where Π = Π1 + Π2 and V0 = lim( )→∞V  In the special case where H0 holds, we see that Π = 0

and the result in Theorem 4.1 holds.

Noting that ̂
0
̂ = (̂ − ()−1)0()0 + 0(

()−1)0(̂ − ()0) + (̂ − ()−1)0(̂ −
()0)+0 and ̃

0
0̃ = (̃0−−10)0 0+00

¡
−1

¢0
(̃− 0)+(̃0−−10)0(̃− 0)+

00 we have ̂
0
̂ − ̃

0
0̃ = 1 + 2 + 3 where

1 =  0
()(̂ −()−1)−  0(̃0 −−10) + 0(

()−1)0(̂ −()0)− 00(
−1)0(̃ − 0)

2 = ( − 0)
0
 and

3 = (̂ −()−1)0(̂ −()0)− (̃0 −−10)0(̃ − 0)

As we shall see, 1 contributes to the asymptotic bias, variance, and local power of our test statistic,

2 only contributes to the asymptotic local power and is vanishing under H0, and 3 collects the second

order term in the expansion of ̂
0
̂ − ̃

0
0̃ and is asymptotically negligible. Then

1212̂ = −1212
X
=1

X
=1

(1 + 2 + 3)
2

= −1212
X
=1

X
=1

¡
21 + 22 + 23 + 212 + 213 + 223

¢
≡1 +2 +3 + 24 + 25 + 26 say (B.3)

We prove the theorem by showing that under H1 ( )  (i) 1 − B − Π1 →  (0V0)  (ii) 2 =

Π2 +  (1)  and (iii)  =  (1) for  = 3 4 5 6 To save space, we only prove (i) here and relegate the

proofs of (ii) and (iii) to Lemma B.6 below.

To prove (i), let Λ( )  () 
0
Λ() and 

0
 () be defined as in the statement of Lemma B.3. Then

by (A.2), (A.3), (B.1), and (B.2), we have

̂ −()−1 =
1


()0

X
=1

 +Λ( ) ̂ −()0 = ̂−1
()−1 1



X
=1

 + ()

̃ − 0 =  −1

µ
1


̃ 0

¶
Λ00

†
 +0 () and ̃0 −−10 =

1


 0

X
=1


†
 +0Λ()

where apparently Λ( )  () 
0
Λ() and 0 () represent the smaller order (remainder) terms in each

of the above four asymptotic expansions. Using 
†
 =  +  

†
  = 0 +   and the above
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expressions, we further decompose 1 as follows: 1 = 11 − 12 + 13 + 14 where

11 =  0
1



X
=1

h


()()0 − 0
i


12 = 

"
 0 0 1



X
=1


†
 + 00

¡
−1

¢0
 −1

µ
1


̃ 0

¶
Λ00

†


#


13 = 00

∙³
()−1

´0
̂−1

()−1 − ¡−1¢0  −1

µ
1


̃ 0

¶¸
Λ00

+
0
0

³
()−1

´0
̂−1

()−1 1


X
=1

 +  
0


³
()−1

´0
̂−1

()−1 1


X
=1



14 =  0
()Λ( )−  00Λ() + 0

³
()−1

´0
 ()− 00

¡
−1

¢0
0 ()

It will be clear that 11 contributes to the asymptotic bias and variance of the test statistic, 12

contributes to the asymptotic local power, and 13 and 14 are asymptotically negligible. With these

notations, we can decompose 1 as follows:

1 = −1212
X
=1

X
=1

(11 − 12 + 13 + 14)
2

= −1212
X
=1

X
=1

(211 + 212 + 213 + 214 − 21112 + 21113 + 21214

−21213 − 21214 + 21314)
≡ 11 +12 +13 +14 − 215 + 216 + 217 − 218 − 219 + 2110 say.

We prove (i) by showing that (i1) 11 − B
→  (0V0)  (i2) 12 = Π1 +  (1)  (i3) 1 =  (1)

for  = 3 4  10

First, we prove (i1) 11 − B
→  (0V0). Let  = 

()()0 −  0 and ̄ =

( − 1)0
0
0 We further decompose 11 as follows:

11 = −1212
X
=1

X
=1

211 = −1212
X
=1

X
=1

(
1



X
=1

 0

)2

=
12

12 2

X
=1

X
=1

X
=1

( 0)
2
2 +

12

12 2

X
=1

X
=1

X
1≤6=≤

 0
0


=
12

12 2

X
=1

X
=1

X
=1

( 0)
2
2 +

12

12 2

X
=1

X
=1

X
1≤6=≤

 0 ̄
0
̄

+
212

12 2

X
=1

X
=1

X
1≤6=≤

 0
¡
 − ̄

¢


0
̄

+
12

12 2

X
=1

X
=1

X
1≤6=≤

 0
¡
 − ̄

¢


0


¡
 − ̄

¢


≡ 
(1)
11 +

(2)
11 +

(3)
11 +

(4)
11  say.
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Apparently,
(1)
11 =

12

122

P
=1

P
=1

P
=1 (

0
)

2
2 = B  Using ̄ = ( − 1)0

0
0 we can

further decompose 
(2)
11 as follows


(2)
11 =

12

12

X
=1

X
1≤ 6=≤

tr

Ã


0


1



X
=1

̄
0
 ̄

!


=
12

12

X
=1

X
1≤ 6=≤

tr

Ã


0
0

0
0

1



X
=1


0
0

0
0

!


− 2
12

12

X
=1

X
1≤ 6=≤

tr

Ã


0
0

0
0

1



X
=1


0
0

0
0

!


+
12

12

X
=1

X
1≤ 6=≤

tr

Ã


0
0

0
0

1



X
=1


0
0

0
0

!


≡ 
(21)
11 − 2 (22)

11 +
(23)
11 

We shall focus on the analysis of 
(21)
11 as by analogous arguments we can readily show that 

(2)
11 =



¡
12

¢
for  = 2 3 For 

(21)
11  we make further decomposition:


(21)
11 =

2−12

12

X
=1

X
1≤≤

tr (
0
0

0
0Σ0

0
0) ̄

+
2−12

12

X
=1

X
1≤≤

tr

Ã


0
0

0
0

Ã




X
=1


0
 − ̄Σ

!
0

0
0

!


≡ 
(21)
11 +

(21)
11  say,

where ̄ = ̄
¡
−


¢
and ̄ () =

R 1
−1 () (− )  Let  = 2−1−12−12

P−1
=1 ̄

0
0

×Σ̄ 0
0

0
 with Σ̄ =  0

0Σ0 Then 
(21)
11 =

P
=2  and  (|F−1) = 0 By the

martingale CLT (e.g., Pollard, 1984, p.171), it suffices to prove V−12 
(21)
11

→ (0 1) by showing that

Z ≡
X
=2


¡
4|F−1

¢
=  (1) and

X
=2

2 −V =  (1)  (B.4)

First, we verify the first part of (B.4). Observing that Z ≥0 it suffices to show Z =  (1) by showing

that  (Z) =  (1) by Markov inequality. Letting  =  00Σ̄
0
0

0
 we have

 (Z) =
X
=2



⎧⎨⎩
"

2

1212

−1X
=1

̄

#4⎫⎬⎭
=

16

 422

X
=2



⎡⎣−1X
=1

̄4
4
 + 2

X
1≤12≤−1

̄21 ̄
2
2

21
2
2
+ 4

−1X
=1

X
1≤12≤−1

̄2̄1 ̄2
2
12

+4
X

1≤12≤−11≤12≤−1
̄1̄2̄1̄21212

⎤⎦
≡ Z1 +Z2 +Z3 +Z4 say.
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Noting that max
°°−12°°44 ≤  ∞ under Assumption A.6(iv), we can readily bound Z1 Z2 and

Z3 as follows:

Z1 ≤ −2−1max


°°°−12°°°4
4

Ã
16

 2

X
=2

−1X
=1

̄4

!
= 

¡
−2−1

¢


Z2 ≤ −1max


°°°−12°°°4
4

⎛⎝ 32

 32

X
=2

X
1≤12≤−1

̄21 ̄
2
2

⎞⎠ = 
¡
−1

¢


Z3 ≤ max


°°°−12°°°4
4

⎛⎝ 32

 43

X
=2

−1X
=1

X
1≤12≤−1

̄2̄1 ̄2

⎞⎠ =  () 

To study Z4 let  = 0Σ̄
0
0 = {}  Then  =  00Σ̄

0
0

0
 =

P
=1

P
=1 

0


and Z4 =
P
1≤1234≤

P
1≤1234≤

¡
Π4=1

¢Z4 (1:4 1:4)  where

Z4 (1:4 1:4) =
64

 422

X
0=3

X
1≤12≤0−1
1≤34≤0−1

X
1≤1234≤

̄10 ̄20 ̄30 ̄40 [κ (1:4 0:4)]

κ (1:4 0:4) = Π4=1 (0
0) 

Since  is fixed and ’s are finite, Z4 =  (1) provided that Z4 (1:4 1:4) =  (1) ∀1:4 =

(1 4) and 1:4 = (1  4). Let #A denote the cardinality of a set A and S1 = {0 1 2 3 4} We
consider three cases: (1) #S1 = 5 (2) #S1 = 4 and (3) #S1 = 3We use Z()4 to denote Z4 (1:4 1:4)

when the time indices in the summation are restricted to satisfy the condition in case () for  = 1 2 3

Note that  |κ (1:4 0:4)|1+2 ≤  ∞ by Assumption A.6(iii). Apparently, in case (3) we must have

1 = 3 and 2 = 4 and it is easy to obtain

Z(3)4 =
64

 422

X
0=3

X
1≤12≤0−1

̄210 ̄
2
20

× £01
1102

2203
1304

24(
0
0
1)

2(002)
2
¤

≤ max


max
10

°°°−1200011°°°4
4

64

 42

X
0=3

X
1≤12≤0−1

̄210 ̄
2
20

= 
¡
−1

¢
=  (1) 

Let 0 be as given in Assumption A.6(ii). In case (1), we consider two subcases: (1a) there exists at least

one time index  ∈ S1 such that | − |  0 for all  ∈ S1 with  6=  and (1b) all the remaining cases. We

use Z(1)4 to denote Z(1)4 when the time indices in the summation are restricted to satisfy the condition in

subcase (1) for  =   In subcase (1a), we can readily apply Lemma B.4 and Assumptions A.6(i)-(iii) to

obtain Z(1)4 ≤ 2

42

P
01234 are all distinct

̄10 ̄20 ̄30 ̄40 (0)
(2+)

= (22 (0)
(2+)

) =

 (1)  In case (1b), we have

Z(1)4 ≤ max


max
01

°°°−1200011°°°4
4

64

 42

X
1≤12≤0−11≤34≤0−1

01234 satisfy condition in case (1b)

̄10 ̄20 ̄30 ̄40

= 
¡
−3 40 + −3 30 

−1 + −3 20 
−2¢ =  (1)
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as the total number of terms in the last summation is of order 
¡
 40

¢
 So Z(1)4 =  (1)  Similarly, we

can show that Z(2)4 =  (1)  Thus Z4 =  (1) and  (Z) =  (1)  implying Z =  (1).

To verify the second part of (B.4), it suffices to show (I)
P

=2
¡
2

¢
= V +  (1)  and (II)

Var
³P

=2 
2


´
=  (1) by Chebyshev inequality. These two claims can be easily proved if we also

assume independence of {· = (1   )
0} across  conditional on the factors. Here we prove them

without imposing such cross-sectional independence conditions. We first prove (I). Observe that

X
=2


¡
2

¢
= 4−2−1−1

X
=2

−1X
=1

̄2 ()
2
+ 4−2−1−1

X
=2

X
1≤1 6=2≤−1

̄1 ̄2
¡
12

¢
= V +  (1) 

provided  ≡ −2−1−1
P

=2

P
1≤1 6=2≤−1 ̄1 ̄2

¡
12

¢
=  (1). For notational simplicity,

we assume for the moment that = 1 so that each term in the product  0 becomes a scalar. [Otherwise,

we need to utilize  0 =
P

=1

P
=1  as in the analysis of Z4 above.] Then we have

 = 2−2−1−1
X

3=3

X
1≤12≤3−1

X
=1

X
=1

̄31 ̄32(3333 1212)

Let S2 = {1 2 3}  We consider three cases: (1) |3 − 2|  0 (2) |3 − 2| ≤ 0 and |2 − 1|  0

and (3) |3 − 2| ≤ 0 and |1 − 2| ≤ 0 We use 
()

 to denote  when the time indices are restricted

to case () for  = 1 2 3 In case (1), we apply Lemma B.4 and the fact that  (1212) = 0 for

1  2 under Assumption A.6(i) to obtain

¯̄̄

(1)



¯̄̄
≤ −2−1−1

X
123

X
=1

X
=1

̄31 ̄32 (0)
(1+)

= 
³
 (0)

(1+)
´
=  (1) 

In case (2), we apply Lemma B.4 and the fact that  (11) = 0 to obtain¯̄̄

(2)



¯̄̄
≤ −2−1−1

X
123

X
=1

X
=1

̄31 ̄32 (0)
(1+)

= 
³
 (0)

(1+)
´
=  (1) 

In case (3), we have¯̄̄

(3)



¯̄̄
= −2−1−1

X
123 case (3)

̄31 ̄32
¯̄

¡
33

0
1
3

0
2
312

¢¯̄
≤ max


max


°°°−120°°°2
2
−2−1

X
123 case (3)

̄31 ̄32 = 
¡
−1 20 

¢
=  (1) 

where we use the fact that the total number of terms in the summation over the three time indices for 
(3)



are of order 
¡
 20

¢
 In sum, we have shown that  =  (1) and

P
=2

¡
2

¢
= V +  (1) 
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Now, we want to prove (II) by showing that (
P

=2 
2
)

2 = V2 +  (1)  Noting that



Ã
X
=2

2

!2
= 

⎛⎝ X
=2

"
2

1212

−1X
=1

̄

#2⎞⎠2

=
16

 422


Ã
X
=2

−1X
1=1

−1X
2=1

̄1 ̄212

!2

=
16

 422


Ã
X
=2

−1X
=1

̄2
2


!2
+

16

 422


⎛⎝ X
=2

X
1≤1 6=2≤−1

̄1 ̄212

⎞⎠2

+
32

 422


⎡⎣Ã X
=2

−1X
=1

̄2
2


!
X
=2

X
1≤1 6=2≤−1

̄1 ̄212

⎤⎦
≡ 1 + 2 + 3  say,

it suffices to show that (a) 1 = V2+ (1) and (b) 2 =  (1) because then 3 ≤ 2 {1 2 }12

=  (1) by Cauchy-Schwarz (CS) inequality. Note that 1 =
16

 422

P
1≤11≤1≤11≤ ̄211 ̄

2
22

× ¡211222¢  and V2 =
16

422

P
1≤11≤1≤22≤ ̄211 ̄

2
22


¡
211

¢

¡
222

¢
 Let S3 = {1 1

2 2}We consider two cases: (1) for each  ∈ S3, |− |  0 for all  ∈ S3 with  6=  and (2) all the other

remaining cases. Let S31 and S32 denote the subsets of S3 corresponding to these two cases, respectively.
For  = 1 2 let 1 () and V2 () to denote 1 and V2 when the time indices are restricted to lie

in S3, respectively. Note that 1 = 1 (1) + 1 (2) and V2 = V
2
 (1) + V

2
 (2)  In case (2),

we have

1 (2) ≤ max


°°−12°°22 16

 42

X
1≤11≤1≤22≤

case (2)

̄211 ̄
2
22

= 
¡
0

−1¢ =  (1) 

V2 (2) ≤ max


£

¡
−12

¢¤2 16

 42

X
1≤11≤1≤22≤

case (2)

̄211 ̄
2
22

= 
¡
0

−1¢ =  (1) 

where we use the fact that there are at most  30 terms in the above displayed summations. In case (1),

we consider six subcases: (1a) 1  1  2  2 (1b) 2  2  1  1 (1c) 1  2  1  2 (1d)

2  1  1  2 (1e) 1  2  2  1 and (1f) 2  1  2  1 We use 1 (1 ) and V2 (1 )

to denote 1 (1) and V2 (1)  respectively, when the summation over the time indices are restricted to

satisfy the conditions in subcase (1) for  =       First, we study subcase (1a). By Lemma B.4,

1 (1 ) =
16

 422

X
1122S31

̄211 ̄
2
22


¡
211

2
22

¢
=

16

 422

X
1122S31

X
1122

̄211 ̄
2
22

(21111111111
2
22

22222222)

≤ 16

 422

X
1122S31

X
1122

̄211 ̄
2
22

{ ¡21111111111¢
× ¡22222222222¢+  (0)

(2+)}
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=
16

 422

X
1122S31

X
1122

̄211 ̄
2
22


¡
211

¢

¡
222

¢
+(2 (0)

(2+)
)

= V2 (1 ) +  (1) 

where  =  0
P

1122
denotes

P
1=1

P
1=1

P
2=1

P
2=1

 and
P

1122S31 indicates the

summation is done over the four time indices satisfying the condition in case (1). By the same token,

1 (1 ) = V2 (1 ) +  (1)  Now, consider subcase (1c). As above, we also assume here that  = 1 so

that each term in  0 is a scalar. By applying Lemma B.4 three times, we have

1 (1 ) =
16

 422

X
1212S31

̄211 ̄
2
22


¡
211

2
22

¢
=

16

 422

X
1212S31

X
1122

̄211 ̄
2
22


¡
 21

2
2
 21

2
2
1111111122222222

¢
≤ 164

 422

X
1212S31

X
1122

̄211 ̄
2
22

{ ¡ 21 2211112222¢
× ¡ 21 2211112222¢+  (0)

(2+)}

≤ 164

 422

X
1212S31

X
1122

̄211 ̄
2
22

{ ¡ 211111¢ ¡ 222222¢
× ¡ 211111¢ ¡ 222222¢+ 2 (0)(2+)}

=
164

 422

X
1212S31

X
1122

̄211 ̄
2
22


¡
 211111

¢

¡
 222222

¢
× ¡ 211111¢ ¡ 222222¢+  (1) 

Similarly,

V2 (1 ) =
16

 422

X
1212S31

̄211 ̄
2
22


¡
211

¢

¡
222

¢
=

164

 422

X
1212S31

X
1122

̄211 ̄
2
22


¡
 21

2
2
11112222

¢
× ¡ 21 2211112222¢

≤ 164

 422

X
1212S31

X
1122

̄211 ̄
2
22

{ ¡ 211111¢ ¡ 222222¢
× ¡ 211111¢ ¡ 222222¢+  (0)

(2+)}

=
164

 422

X
1212S31

X
1122

̄211 ̄
2
22


¡
 211111

¢

¡
 222222

¢
× ¡ 211111¢ ¡ 222222¢+  (1) 

It follows that 1 (1 ) = V2 (1 )+ (1) Analogously, we can show that 1 (1 ) = V2 (1 )+ (1)

for  =    Consequently, we have 1 (1) = V2 (1)+ (1) and 1 = V2 + (1)  Using arguments
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as used in the analysis of 1 and Lemma B.4, we can also show that

2 =
16

 422

X
1=2

X
2=2

X
1≤1 6=2≤1−1

X
1≤3 6=4≤2−1

̄11 ̄12 ̄23 ̄24
¡
11122324

¢
= 

³
−1−2 +22 (0)

(2+)
+ −2 40 + −2 30 

−1 + −2 20 
−2
´
=  (1) 

It follows that 
³P

=2 
2


´2
= V2 +  (1) and Var

³P
=2 

2


´
=  (1)  Then the second part of

(B.4) follows by Chebyshev inequality. In addition, by straightforward moment calculations, we can show

that 
(21)
11 =  (1)  It follows that 

(2)
11 − B

→  (0V0) 

Now, using  − ̄ = 

³
()()0 −0

0
0

´
− ( 0 −0

0
0) we decompose 

(3)
11 as follows


(3)
11 =

212

12 2

X
=1

X
1≤6=≤


0


³
()()0 −0

0
0

´


0
̄

0


+
212

12 2

X
=1

X
1≤6=≤

 0( 0 −0
0
0)

0
̄

0
 ≡

(31)
11 +

(32)
11  say.

By Lemma B.1(ii) and letting 4 ≡ 1


P
=1

°°° 12

12

P
1≤6=≤  ( − 1) 00

°°°2  we have
¯̄̄


(31)
11

¯̄̄
≤ 2



X
=1

°°°°°° 12

12

X
1≤6=≤

 ( − 1)0
0
0

0


³
()()0 −0

0
0

´


0

0


°°°°°°
≤ 2 k0k2max



°°°()()0 −0
0
0

°°° 1


X
=1

kk2
°°°°°° 12

12

X
1≤6=≤

 ( − 1) 00

°°°°°°
≤ 2 k0k2max



°°°()()0 −0
0
0

°°°( 1


X
=1

kk4
)12

{4}12

= 

³
( ln )

−12
´
 (1) (1) =  (1) 

where we also use the fact that  (4 ) =  (1) by using Lemma B.4 and arguments as used in the above

study of 1  Similarly, we can show that 
(32)
11 =  (1)  Thus 

(3)
11 =  (1)  By the same token, we

can show that 
(4)
11 =  (1)  Consequently, we have shown that 11 − B

→  (0V0) 

Next, we show (i2) 12 = Π1 +  (1)  We make the following decomposition

12 =
1



X
=1

X
=1

"
 0 0 1



X
=1


†
 + 00

¡
−1

¢0
 −1

µ
1


̃ 0

¶
Λ00

†


#2

=
1



X
=1

X
=1

"
 0 0 1



X
=1


0


#2
+

1



X
=1

X
=1

∙
00
¡
−1

¢0
 −1

µ
1


̃ 0

¶
Λ00

†
 

¸2

+2
1



X
=1

X
=1

"
 0 0 1



X
=1


0


# ∙
00
¡
−1

¢0
 −1

µ
1


̃ 0

¶
Λ00

†


¸
≡ 

(1)
12 +

(2)
12 + 2

(3)
12  say.
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In view of the fact that 1


P
=1 

0
 = Σ

1


P
=1  +

1


P
=1 (

0
 −Σ )  = Σ [

R 1
0
 () +

−1] +  (1) =  (1) uniformly in  we can readily show that 
(1)
12 =  (1)  Noting that

¡
−1

¢0
 −1³

1

̃ 0

´
=
¡
−1

¢0
 −1 { 1 ̃ 0[̃−1 + ( − ̃−1)]} = ¡

−1
¢0
 −1

−1 +  (1) =
¡
−10

¢0
 −10 −10 +

 (1) by Lemmas B.2(i), (iii), (v) and (vi) and the fact that
1

̃ 0̃ = I we have


(2)
12 =

1



X
=1

X
=1

h
00
¡
−10

¢0
 −10 −10 Λ

0
0
†


i2
+  (1)

=
1



X
=1

tr
h¡
−10

¢0
 −10 −10

³
−1Λ00

†


´³
−1†0 Λ0

´ ¡
−10

¢0
 −10 −10

¡
−1Λ00Λ0

¢i
+  (1)

=
1



X
=1

tr
h¡
−10

¢0
 −10 −10

h³
−1Λ00

†


´³
−1†0 Λ0

´i ¡
−10

¢0
 −10 −10 ΣΛ0

i
+  (1)

= Π1 +  (1) 

In addition, 
(3)
12 ≤ { (1)

12
(2)
12}12 =  (1) by CS inequality. It follows that 12 = Π1 +  (1) 

Now, we show (i3) 1 =  (1) for  = 3 4  10 Let 
(1)
13 = 00[(

()−1)0̂−1
()−1 −

(−1)0 −1 (
1

̃ 0 )]Λ00 

(2)
13 = 

0
0(

()−1)0̂−1
()−1 1



P
=1  and 

(3)
13 =  

0
(

()−1)0

̂−1
()−1 1



P
=1  Then 13 = 

(1)
13 + 

(2)
13 + 

(3)
13 and

13 = −1212
X
=1

X
=1

213 ≤ 3−1212
X
=1

X
=1

∙³

(1)
13

´2
+
³

(2)
13

´2
+
³

(3)
13

´2¸
≡ 3(

(1)
13 +

(2)
13 +

(3)
13 ), say.

For 
(1)
13  we apply Lemma B.2(viii) to obtain


(1)
13 ≤ −1212max



°°°°³()−1
´0
̂−1

()−1 − ¡−1¢0  −1

µ
1


̃ 0 0

¶°°°°2 1
X
=1

k0k2 1



X
=1

kΛ00k2

= −1212 ([()
−1
+−1] ln ) (1) =  (1) 

For 
(2)
13  we have by Lemmas B.1(ii) and (vi)


(2)
13 ≤ max



°°°°³()−1
´0
̂−1

()−1
°°°°2 1

X
=1

k0k2 1


X
=1

°°°°°° 1
X
=1



°°°°°°
2

=  (1) (1)  (1) =  (1) 

Similarly, we can show that 
(3)
13 =  (1)  Thus 13 =  (1)  By CS inequality and Lemmas B.3(i)-

(iv), 14 = −1212
P

=1

P
=1 

2
14 ≤ 4−1212

P
=1

P
=1{

°° 0()Λ( )
°°2 + °° 00Λ()

°°2
+||0(()−1)0 ()||2+ ||00(−1)00 ()||2} = 1212

¡
−2−2 +−2(ln )2

¢
=  (1). By CS
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inequality,

|18| =

¯̄̄̄
¯−1212

X
=1

X
=1

1213

¯̄̄̄
¯ ≤ {1213}12 =  (1) 

|19| =

¯̄̄̄
¯−1212

X
=1

X
=1

1214

¯̄̄̄
¯ ≤ {1214}12 =  (1) 

|110| =

¯̄̄̄
¯−1212

X
=1

X
=1

1314

¯̄̄̄
¯ ≤ {1314}12 =  (1) 

We are left to show that 1 =  (1) for  = 5 6 7 To conserve the space, we prove these claims in

Lemma B.5(i)-(iii), below. This completes the proof of the theorem. ¥

Lemma B.5 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Suppose that H1 ( )

holds true. Then

(i) 15 =  (1) 

(ii) 16 =  (1) 

(iv) 17 =  (1) 

Lemma B.6 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Suppose that H1 ( )

holds true. Then

(i) 2 = Π2 +  (1) 

(ii) 3 =  (1) 

(iii) 4 =  (1) 

(iv) 5 =  (1) 

(v) 6 =  (1) 

To prove Theorem 4.2, we need another lemma.

Lemma B.7 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Then under H1 ( ) 

(i) 1


P
=1

°°°̂°°° =  (1) for  = 4 6 8

(ii) 1
2

P
=1

P
=1 ̂

2


°°°̂°°° = 

¡
−1

¢
for  = 1 2

(iii) 1
2

P
=1

P
=1 ̂

2


°°°̂ −()0
°°°2 = 

¡
−12−12

¢


(iv) 1
 3

P
=1

°°°̂°°° hP
=1 ̂

2


i2
= 

¡
−2

¢
for  = 0 2

(v) 12

 212

P
=1

P
=1

P
=1 

2


h
 0

()(̂ −()0)
i
 0

()()0
2
 =  (1) 

(vi) 12

 212

P
=1

P
=1

P
=1 

2


h
 0

()(̂ −()0)
i
 0

()()0
2
 =  (1) 

Proof of Theorem 4.2. Given Theorem 4.1, it suffices to prove the first two parts of the theorem. In fact,

we prove the first two parts of the theorem under H1 ( ) so that they are still applicable for Theorem

4.3 below.
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Step 1. We prove (i) B̂−B =  (1) under H1 ( )  Let ̄ =  0 =  0[
()()0−

 0] and ̂ = ̂
0
̂ − ̃ 0̃ Using ̂

2
 − 2 = (̂ − )

2
+ 2 (̂ − )  we have

B̂ − B =
12

 212

X
=1

X
=1

X
=1

³
̂2̂

2
 − ̄2

2


´
=

12

 212

X
=1

X
=1

X
=1

h
̂2 (̂ − )

2
+ 2̂2 (̂ − )  +

³
̂2 − ̄2

´
2

i
≡ 1 + 22 +3 say.

It suffices to show that (i1) 1 =  (1)  (i2) 2 =  (1)  and (i3) 3 =  (1)  To show (i1), we make

the following decomposition:

 − ̂ = ̂
0
̂ − 0 = (̂ −()−1)

0̂ + 0
()0−1(̂ −()0) ≡ 1 + 2 say. (B.5)

By CS inequality, 1 ≤ 212

212

P
=1

P
=1

P
=1 ̂

2


¡
21 + 22

¢ ≡ 211+212. By Lemmas B.1(vii)
and B.7(ii)

11 =
12

 212

X
=1

X
=1

X
=1

̂2̂
0


³
̂ −()−1

´³
̂ −()−1

´0
̂

≤ 1212

(
max


1



X
=1

°°°̂ −()−1

°°°2) 1

 2

X
=1

X
=1

̂2

°°°̂°°°2
= 1212

¡
−2 ln

¢


¡
−1

¢
=  (1) 

Similarly, by Lemmas B.1(ii) and B.7(iii)

12 =
12

 212

X
=1

X
=1

X
=1

̂2
0


()0−1
³
̂ −()0

´³
̂ −()0

´0
()−1

≤ ̄2max


°°°()−1
°°°2 1212

 2

X
=1

X
=1

̂2

°°°̂ −()0
°°°2 =  (1) 

Next, we show (i2). Using (B.5), we decompose 2 as follows

2 =
12

 212

X
=1

X
=1

̂2 (̂ − )  =
−12
 212

X
=1

X
=1

X
=1

̂2 (1 + 2)  ≡ −21 −22 say.

By (B.2), we further decompose 21:

21 =
12

 212

X
=1

X
=1

X
=1

̂2̂
0


³
̂ −()−1

´


=
12

 212

X
=1

X
=1

X
=1

̂2̂
0
 [1( ) +2( )−3( )]  ≡ 

(1)
21 +

(2)
21 −

(3)
21  say.
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For 
(1)
21  we have by Lemma B.7(iv),


(1)
21 =

12

 2

X
=1

X
=1

̂2̂
0


()0
Ã

1

12

X
=1

X
=1

 () 
()
 

!

≤ 12max


°°°()
°°°
⎧⎨⎩ 1

 3

X
=1

°°°̂°°°2Ã X
=1

̂2

!2⎫⎬⎭
12⎧⎨⎩ 1



X
=1

°°°°° 1
X
=1

X
=1



°°°°°
2
⎫⎬⎭
12

= 12 (1)

¡
−1

¢


³
()−12 +12−1−12

´
=  (1) 

where we use the fact that 1


P
=1

°°° 1 P
=1

P
=1 

°°°2 = 
¡
()−1 +−2−1

¢
=  (1)

by moment calculations.

For 
(2)
21 we have by Lemmas B.1(v) and B.7(ii),


(2)
21 =

12

 212

X
=1

X
=1

X
=1

̂2̂
0
2( )

=
12

 212

X
=1

X
=1

̂2̂
0


X
=1

1



X
=1

h
̂ () −()0 ()

i

()
 

≤ 1212max


°°°°° 1
X
=1

h
̂ () −()0 ()

i

()


°°°°°
(
1

 2

X
=1

X
=1

̂2

°°°̂°°°) 1



X
=1

||

= 1212

¡
−1−1 +−1 ln( )

¢


¡
−1

¢
 (1) =  (1) 

For 
(3)
21 , by Lemma B.1(iv)-(v) and B.7(ii),


(3)
21 =

12

 212

X
=1

X
=1

X
=1

̂2̂
0
3( )

=
12

 212

X
=1

X
=1

̂2̂
0


1


̂ ()0(̂ ()()−1 −  ())

X
=1



≤ 12−12max


1



°°°̂ ()0(̂ ()()−1 −  ())
°°°max



°°°°° 1
X
=1



°°°°° 1

 2

X
=1

X
=1

̂2

°°°̂°°°
= 

³
12−12

´¡


¡
−2

¢
+  ( )

¢


³
−12 ln

´


¡
−1

¢
=  (1) 

Thus 21 =  (1)  In addition, by Lemma B.7(iii),

|22| =
12

 212

¯̄̄̄
¯
X
=1

X
=1

X
=1

̂2
0


()0−1
³
̂ −()0

´


¯̄̄̄
¯

≤ 12

12

¯̄̄̄
¯
X
=1

"
1



X
=1

̂2

#"
X
=1

0
()0−1

³
̂ −()0

´


#¯̄̄̄
¯

≤ 12

⎧⎨⎩ 1
X
=1

Ã
1



X
=1

̂2

!2⎫⎬⎭
12⎧⎨⎩ 1



X
=1

°°°°°
X
=1

0
()0−1

³
̂ −()0

´


°°°°°
2
⎫⎬⎭
12

= 12

¡
−1

¢


¡
−1

¢
=  (1) 
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where we use the fact that 1


P
=1

°°°P
=1 

0


()0−1
³
̂ −()0

´


°°°2 = 

¡
−2

¢
by arguments as

used in the proof of Lemma B.1(viii). Thus 2 =  (1) 

Now, we show (i3). For 3 using ̄ =  0 =  0[
()()0 − 0] and ̂ = ̂

0
̂ −

̃ 0̃ we make the following decomposition:

3 =
12

 212

X
=1

X
=1

X
=1

³
̂2 − ̄2

´
2

=
12

 212

X
=1

X
=1

X
=1

2

∙³
̂ 0̂

´2
−
³
 0

()()0

´2¸
2

− 212

 212

X
=1

X
=1

X
=1



h
̂ 0̂̃

0
̃ −

³
 0

()()0

´
 0 0

i
2

+
12

 212

X
=1

X
=1

X
=1

∙³
̃ 0̃

´2
− ( 0 0)

2

¸
2 ≡ 31 +32 +33 say.

Using 2 − 2 = (− )
2
+ 2 (− )  and ̂ 0̂ −()0 0

() = (̂ −()0)0(̂ −()0) + (̂ −
()0)0()0 +  0

()(̂ −()0) we can bound |31| as follows

|31| ≤ 12

 212

X
=1

X
=1

X
=1

2

½
3
h
(̂ −()0)0(̂ −()0)

i2
+ 3

h
(̂ −()0)0()0

i2
+3
h
 0

()(̂ −()0)
i2
+ 2

h
(̂ −()0)0(̂ −()0)

i
 0

()()0

+2
h
 0

()(̂ −()0)
i
 0

()()0 + 2
h
 0

()(̂ −()0)
i
 0

()()0

o
2

≡ 3
(1)
31 + 3

(2)
31 + 3

(3)
31 + 2

(4)
31 + 2

(5)
31 + 2

(6)
31  say.

By Lemma A.2(i) and the fact that max
1


P
=1 

2
 =  (1)  we have


(1)
31 =

12

 212

X
=1

X
=1

X
=1

2

h
(̂ −()0)0(̂ −()0)

i2
2

≤ 1212
µ
max


2

¶
max


Ã
1



X
=1

2

!(
1



X
=1

°°°̂ −()0
°°°2)2

= 1212
¡
−2

¢
 (1)

¡
−4

¢
=  (1) 

By Lemmas B.1(x), we can readily show that


(2)
31 =

12

 212

X
=1

X
=1

X
=1

2

h
(̂ −()0)0()0

i2
2

≤ 1212

(
1



X
=1

°°°̂ −()0
°°°2)max



°°°()
°°°2max



Ã
1



X
=1

2

!
max


Ã
1



X
=1

2 kk2
!

= 1212

¡
−1

¢
 (1) (1)

¡
−1

¢
=  (1) 
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Similarly, we can show that 
()
31 =  (1) for  = 3 4 by using Lemma B.1(x). By Lemmas B.7(v)-(vi),


()
31 =  (1) for  = 5 6 It follows that 31 =  (1)  Similarly, we have 3 =  (1) for  = 2 3 Then

3 =  (1)  This completes the proof of part (i).

Step 2. We show (ii) V̂ = V + (1) under H1 ( )  Let ̄ = ̄
¡
−


¢
 Let Σ̄ =  0

0Σ0

and V̄ = 2
−2−1−1

P
1≤6=≤ ̄2

¡
 00Σ̄

0
0

¢2
(0)

2
 we make the following decomposition

V̂ −V = 2−2−1−1
X

1≤6=≤
̄2

³
̂ 0Σ̂ ̂

´2 h
(̂0 ̂)

2 − (0)2
i

+2−2−1−1
X

1≤6=≤
̄2

∙³
̂ 0Σ̂ ̂

´2
− ¡ 00Σ̄

0
0

¢2¸
(0)

2

+2−2−1−1
X

1≤6=≤
̄2
£
2 −

¡
2
¢¤

≡ 2V1 + 2V2 + 2V3  say,

where recall  =  00Σ̄
0
0

0
 It suffices to show (ii1) V1 =  (1)  (ii1) V2 =  (1)  and

(ii3) V3 =  (1) We prove (ii1)-(ii2) in Lemma B.8 below. For V3  observe that  (V3 ) = 0 and

Var (2V3 ) = Var

Ã
4−2−1−1

X
=2

−1X
=1

̄2
2


!
=

16

 422


Ã
X
=2

−1X
=1

̄2
2


!2
−V2

= 1 −V2 =  (1)

where 1 is defined in the proof of Theorem 4.1. Then V3 =  (1) by Chebyshev inequality. This

completes the proof of the theorem ¥

Lemma B.8 Suppose that Assumptions A.1, A.3(i) and (ii*) and A.6-A.7 hold. Then under H1 ( ) 

(i) V1 = −2−1−1
P
1≤6=≤ ̄2

³
̂ 0Σ̂ ̂

´2 h
(̂0 ̂)

2 − (0)2
i
=  (1) 

(ii) V2 = −2−1−1
P
1≤6=≤ ̄2

∙³
̂ 0Σ̂ ̂

´2
− ¡ 00Σ̄

0
0

¢2¸
(0)

2
=  (1) 

Proof of Theorem 4.3. By the proof of Theorem 4.1,  ≡ V−12

³
1212̂ − B

´
→ (0 1)

under H1 ( ). By the proof of Theorem 4.2, B̂ = B + (1) and V̂ = V + (1) under under

H1 ( )  It follows that ̂ ≡ V̂−12

³
1212̂ − B̂

´
→ (0 1) under H1 ( )  ¥

Proof of Theorem 4.4. Under the global alternative H1, we have by (4.4)

̂ =
1



X
=1

X
=1

h³
̂
0
̂ − 0

´
+
³
0 − ̃

0
0̃

´i2
=

1



X
=1

X
=1

³
̂
0
̂ − 0

´2
+

1



X
=1

X
=1

³
0 − ̃

0
0̃

´2
+
2



X
=1

X
=1

³
̂
0
̂ − 0

´³
0 − ̃

0
0̃

´
≡ ̂1 + ̂2 + 2̂3 say.
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Using ̂
0
̂−0 = (̂−()−1)0(̂−()0)+(̂−()−1)0()0+

¡
()−1

¢0
(̂−()0)

we can readily show that ̂1 =  (1) by Lemmas B.1(viii) and (xi). By Assumption A.7, we have that

for sufficiently large  and 

1



X
=1

X
=1

³
0 − ̃

0
0̃

´2
≥ inf
(Λ̆̆)∈Λ×F

1



X
=1

X
=1

³
0 − ̆

0
̆

´2
≥ Λ 2  0

We can easily show that the left hand side object is  (1) under H1 Then by CS inequality, ̂3 ≤n
̂1̂2

o12
=  (1)  Consequently, we have  (̂ ≥ Λ 2)→ 1

In addition, we can show that V̂ also converges to a positive number (sayV0) and B̂ = 

¡
12−12

¢
= 

¡
1212

¢
under H1 It follows that

̂

1212
= V̂−12

Ã
̂ − B̂

1212

!
≥ V−120 Λ 4

with probability approaching 1. Consequently  (̂ ≥  ) → 1 as ( ) → ∞ for any  =


¡
1212

¢
 ¥

Proof of Theorem 4.5. Let  ∗ denote the probability measure induced by the wild bootstrap conditional

on . Let ∗ and Var∗ denote the expectation and variance under  ∗ and ∗ (·) and ∗ (·) the
probability order under  ∗ In view of the fact that (1) the null hypothesis is satisfied in the bootstrap

world, (2) ∗ ’s are independent over  conditional on  and (3) both ̃0 and ̃ are fixed given  the

proof is similar to but simpler than that of 4.1 and 4.2.

Let ̂∗ ∗  B
∗
  V

∗
  ̂

∗
  B̂

∗
  and V̂

∗
 denote the bootstrap analogue of ̂   B  V 

̂  B̂  and V̂  respectively. Then 
∗
 ≡ (1212̂∗−B∗ )

p
V∗ and ̂∗ ≡ (−12̂∗−

B̂∗ ) 

q
V̂∗  Following the proof of Theorem 4.1, we can show that

1212̂∗ − B∗ =

X
=2

∗ + ∗ (1)

where ∗ = 2
−1−12−12

P−1
=1 ̄̃

0
Σ̃̃

0̃∗0 
∗
  
∗
 = (

∗
1  

∗
)

0 and Σ̃̃ = −1
P

=1 ̃̃
0


[c.f.  = 2
−1−12−12

P−1
=1 ̄

0
0Σ

0
0

0
 ] Then we can prove the theorem by showing

that: (i)
P

=2 
∗


p
V∗

∗→ (0 1), (ii) B̂∗ = B
∗
 + ∗(1) and (iii) V̂∗ = V

∗
 + ∗(1)

We only outline the proof of (i) as those of other parts are analogous to the corresponding parts in the

proof of Theorem 4.2. Noting that {∗ F∗} is an m.d.s., we can continue to apply the martingale

CLT by showing that

Z∗ ≡
X
=2

∗F∗
−1

¯̄
∗

¯̄4
= ∗ (1)  and

X
=2

∗2 −V∗ = ∗(1) (B.6)
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As in the proof of Theorem 4.1,

∗ (Z∗)

=
16

 422

X
=2

∗

⎡⎣−1X
=1

̄4
∗4
 + 2

X
1≤12≤−1

̄21 ̄
2
2

∗21
∗2
2

+4

−1X
=1

X
1≤12≤−1

̄2̄1 ̄2
∗2

∗
1

∗2+4
X

1≤12≤−11≤12≤−1
̄1̄2̄1̄2

∗
1

∗2
∗
1

∗2

⎤⎦
≡ Z∗1 + Z∗2 +Z∗3 +Z∗4  say.

where ∗ = ̃ 0Σ̃̃
0̃∗0 

∗
  Using the IID property of  and the conditions in Theorem 4.5, we

can readily verify that Z∗ =  (1) for  = 1 2 3 4 For example, noting that  [1234] = 3 if

1 = 2 = 3 = 4 = 1 if 1 = 2 6= 3 = 4 1 = 3 6= 2 = 4 or 1 = 4 6= 2 = 4 and zero otherwise, we

have for any  6= 

∗ (∗0 
∗
)
4
= ∗

³
 0Σ̃

´4
=

X
1414

̃11 ̃22 ̃33 ̃44 [1234] [1234]

= 9
X
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where we use the fact that ̃ = ̃ and  = 
¡
 12

¢
=  ()  we have

Z∗4 =
64

 422

X
=2

X
1≤12≤−11≤12≤−1

̄1̄2̄1̄2̃
0
Σ̃̃

0̃1̃
0
Σ̃̃

0̃2̃
0
Σ̃̃

0̃1̃
0


×Σ̃̃ 0̃2
∗ £¡∗0 ∗1¢ ¡∗0 ∗2¢ ¡∗0 ∗1¢ ¡∗0 ∗2¢¤

=
64

 422

X
=2

X
1≤12≤−1

̄21̄
2
2

³
̃ 0Σ̃̃

0̃1
´2 ³

̃ 0Σ̃̃
0̃2

´2
∗[

¡
∗0 

∗
1

¢2 ¡
∗0 

∗
2

¢2
]

=
64

 422

X
=2

X
1≤12≤−1

̄21̄
2
2

³
̃ 0Σ̃̃

0̃1
´2 ³

̃ 0Σ̃̃
0̃2

´2


¡
22

¢
= 

¡
2

−1¢ =  (1) 

Then Z∗ = ∗ (1) by the conditional Markov inequality. Now
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