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Abstract

In this paper, we consider sieve instrumental variable quantile regression (IVQR) estimation of

functional coefficient models where the coefficients of endogenous regressors are unknown functions

of some exogenous covariates. We approximate the unknown functional coefficients by some basis

functions and estimate them by the IVQR technique. We establish the uniform consistency and

asymptotic normality of the estimators of the functional coefficients. Based on the sieve estimates,

we propose a nonparametric specification test for the constancy of the functional coefficients, study

its asymptotic properties under the null hypothesis, a sequence of local alternatives and global alter-

natives, and propose a wild-bootstrap procedure to obtain the bootstrap p-values. A set of Monte

Carlo simulations are conducted to evaluate the finite sample behavior of both the estimator and test

statistic. As an empirical illustration of our theoretical results, we present the estimation of quantile

Engel curves.

JEL Classifications: C12, C13, C14, C21, C23, C26

Key Words: Endogeneity; Functional coefficient; Heterogeneity; Instrumental variable; Panel data;

Sieve estimation; Specification test; Structural quantile function

1 Introduction

This paper focuses on sieve estimation of functional coefficient quantile regression (FCQR) models with

endogeneity. As an effective way to model random coefficients and to allow the marginal effect of a

regressor in a regression to be varying along with some other covariates, functional coefficient models
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have been studied extensively in the last two decades; see Chen and Tsay (1993), Hastie and Tibshirani

(1993), Fan and Zhang (1999), Cai et al. (2000), Fan and Huang (2005), and Su et al. (2009), among

others. The coefficients in these models are modeled as unknown functions of the observed variables

which can be estimated nonparametrically. But most of these works focus on conditional mean regression

models with exogenous regressors. Recently, Cai et al. (2006), Cai and Li (2008), Tran and Tsionas

(2010), Cai and Xiong (2012), and Su et al. (2014) focus on functional coefficient conditional mean

regression models with endogenous regressors. On the other hand, the quantile regression model, which

was pioneered by Koenker and Bassett (1978), has been widely used in various disciplines, including

economics, finance, biology, and medicine. Despite the popularity of linear quantile regression models

in the early literature (see, e.g., Koenker (2005) for an overview), the last two decades also witnessed

a rapid growth of nonparametric and semiparametric quantile regression models. More recently, Honda

(2004) and Kim (2007) study FCQR models for independent and identically distributed (IID) data

using local polynomials and splines, respectively; and Cai and Xu (2008) and Cai and Xiao (2012)

study local polynomial estimation of FCQR models and partially linear FCQR models for time series

data, respectively; Wang et al. (2009) consider sieve estimation of partially linear FCQR models with

longitudinal data. Compared with fully nonparametric quantile regression models, FCQR models serve

as an intermediate class of models that are robust to model misspecification of functional coefficients and

alleviate the notorious “curse of dimensionality” problem in the nonparametric literature. Unfortunately,

none of these FCQR models allow for endogeneity.

In a series of papers, Chernozhukov and Hansen (2005, 2006, 2008) and Chernozhukov et al. (2009)

address the important endogeneity issue in linear quantile regression models. They introduce an instru-

mental variable quantile regression (IVQR) estimator for heterogeneous treatment effect models to evalu-

ate the impact of endogenous variables or treatments on the entire distribution of outcomes. Since then,

their estimation strategy has been widely applied in the literature on quantile regression models with en-

dogenous regressors. For example, Kaplan and Sun (2012) consider smoothed-estimating-equations IVQR

estimator that improve over the original IVQR estimator in terms of computational speed and asymptotic

efficiency; Chernozhukov et al. (2015) develop a new censored quantile IV estimator by extending the

algorithm for censored quantile regression developed by Chernozhukov and Hong (2002). Extension to

panel and spatial data models have also been done; see, e.g., Galvao and Montes-Rojas (2010), Galvao

(2011) and Harding and Lamarche (2009, 2012, 2014), and Su and Yang (2012), respectively.

The purpose of this paper is to extend Chernozhukov and Hansen’s IVQR estimator further to the

literature on functional coefficient models. There are several advantages associated with this extension.

First, by adopting a functional coefficient quantile regression modeling strategy, we can model heteroge-

nous effects, account for both observed and unobserved heterogeneity, and put our model in the general

framework of random coefficient models. We allow the heterogeneous effect of a regressor of interest

on the outcome variable to vary across both the quantile indices and some observed covariates; see the

examples in Section 2.1. Secondly, like Chernozhukov and Hansen (2006) the endogeneity issue in our

model can be handled through a quantile analog of the two stage least squares. In particular, we can

approximate the functional coefficients by basis functions and then obtain the sieve IVQR estimator as

in the parametric case. So the computation for our estimator is as easy as that for the usual paramet-

ric IVQR estimation. Third, in the estimation context, the advantage of using the traditional constant

coefficient IVQR models rest on their validity. Nevertheless, to the best of our knowledge, there is no
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specification test available for this class of models. Using our sieve estimates of the functional coefficients,

we provide a consistent nonparametric specification test for the constancy of the functional coefficients. If

we fail to reject the null of constancy, then we can continue to rely on the traditional constant coefficient

IVQR models. Otherwise we may have to consider the functional coefficients with unknown form.

Specifically, we develop nonparametric sieve estimation for a class of functional coefficient IVQR

models where some or all the regressors are endogenous and their coefficients are varying with respect to

some exogenous variables. In comparison with the widely used kernel estimation, the greatest advantage

of sieve estimation lies in its computational simplicity, which can be a valid concern when bootstrap-

based specification tests are considered and no closed solutions are available for the estimates. More

importantly, it is well known that the kernel estimates (either the local polynomial, local constant, or

nearest-neighborhood estimates) of nonparametric quantile functions tend to be rough, particularly for

small or large values of quantile indices because only a small number of data points are essentially used

in those regions. In this regard, sieve estimation might work better as it employs all observations in its

global estimation procedure despite the fact that it may not be rich enough to characterize some local

properties of the functional coefficients (c.f., Cai and Xu (2008)). After we study the asymptotic properties

of the sieve IVQR estimates, we develop a new Wald-type test statistic for testing the hypothesis that

a subvector of the functional coefficients is constant. The consistency, asymptotic null distribution, and

asymptotic local power of the proposed test are established. In view of the well observed phenomenon that

nonparametric tests based on the critical values from their asymptotic normal distributions may perform

poorly in finite samples, we also provide a wild-bootstrap procedure to approximate the asymptotic null

distribution of our test statistic and justify its asymptotic validity. To assess the finite sample properties

of the proposed sieve IVQR estimator and the test statistic, we conduct a set of Monte Carlo simulations.

The results show that our estimator performs well in finite samples and our test has approximately correct

size and good power properties as the sample size increases, for various data generating processes under

investigation. As an empirical illustration, we consider the estimation of quantile Engel curves for food

using the U.K. Family Expenditure Survey data. We find that the effects of total expenditure on the food

share vary over both the proportion of food expenditure and the age of household child, and they are

significantly heterogeneous with respect to the age of household child, at the middle and higher quantiles.

The paper is organized as follows. In Section 2 we introduce our functional coefficient IVQR model

and propose a sieve estimator for the functional coefficients. The asymptotic properties of the proposed

estimator and its extensions to partially linear FCQR models and panel data models are studied in Section

3. We propose a nonparametric specification test for the widely used linear IVQR model and study its

asymptotic properties in Section 4. We conduct a set of Monte Carlo studies to evaluate the finite sample

performance of the proposed estimator and test in Section 5. Section 6 provides empirical data analysis

and Section 7 concludes. All technical details are relegated to the appendix.

Notation. For natural numbers 1 and 2 we use 1 to denote an 1×1 identity matrix, and 01×2
an 1×2 matrix of zeros. We use 1 {·} to denote the usual indicator function which takes value 1 if the
condition inside the curly bracket holds and 0 otherwise, and  to signify a generic constant whose exact

value may vary from case to case. For a matrix  kk denotes its Frobenius norm: kk = {tr(0)}12
where tr(·) is the trace operator and prime denotes transpose. When  is a symmetric matrix, we use

max() and min() to denote its largest and smallest eigenvalues, respectively. We use
→ and

→ to

denote convergence in distribution and probability, respectively. For any two conformable matrices or

3



vectors ̃ and  we write ̃ = +o (1) to denote
°°°̃−

°°° =  (1)  Of course, when the dimensions

of ̃ and  are fixed as we increase the sample size, we can interchange the use of o (1) and  (1) 

2 The model and estimator

In this section we introduce the functional coefficient quantile regression (FCQR) model with endogeneity

and propose a sieve IVQR estimator for the vector of functional coefficients.

2.1 Functional coefficient quantile regression model with endogeneity

We consider the following structural quantile regression model

 =  ()
0 +  ()

0 +   ∈ (0 1) (2.1)

where  is a scalar outcome variable,  = (1 1)
0 is a 1 × 1 vector of endogenous variables,

 = (1 2)
0 is a 2× 1 vector of exogenous variables,  (·) and  (·) are 1× 1 and 2× 1 vectors

of functional coefficients that vary with  , respectively,  is a  × 1 vector of exogenous continuous
variables, and  ≡  is the quantile error term such that

 ( ≤ 0|) =  almost surely (a.s.) (2.2)

for a 3 × 1 vector of instrumental variables  = (1  3)
01 We assume that  is correlated with

 but is independent of  and 3 ≥ 1 The model defined in (2.1) and (2.2) can be considered as a

quantile counterpart to the models studied by Das (2005), Cai et al. (2006), Cai et al. (2010), Cai and

Xiong (2012), and Su et al. (2014). The latter authors consider IV estimation of functional coefficient

models under conditional mean restrictions. As Powell (2013) remarks, many empirical applications

suggest that quantile regressions are useful as they provide richer empirical evidence than conditional

mean regressions by allowing for heterogenous effects and estimating the distributional impacts of the

explanatory variables.

To proceed, we provide two motivating examples for the model defined in (2.1) and (2.2) used in

economics. See the empirical application in Section 6 for a third example.

Example 1. (Heterogeneous returns to education) Labor economists are interested in estimat-

ing the Mincer equation which describes the relationship between log-wage and schooling. Traditionally,

they include schooling, experience, experience squared, and possibly some other control variables on the

right hand side of the Mincer equation, regard schooling as an endogenous variable due to the unobserved

heterogeneity in ability, and apply linear IV regression model. Nevertheless, Card (2001) finds that the

returns to education tend to be underestimated by using the 2SLS method when one ignores the nonlin-

earity and the interaction between schooling and working experience, and Schultz (2003) argues that the

marginal returns to education may vary with different levels of working experience and schooling. This

motivates Su et al. (2014) to consider the following functional coefficient IV model

ln () = () ·  + () + 

1We can consider a slightly more general model than that in (2.1) where  (·) and  (·) are functions of the 1 × 1 and
2 × 1 random vectors 1 and 2 respectively. It is easy to see that our sieve estimation method works for this case with

a little modification.
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where  is a vector of control variables that includes working experience and some discrete demographic

variables, and  denotes the error term. Similarly, Cai et al. (2010) consider the following partially linear

functional coefficient model

ln () = () ·  + 0 + 

where  denotes working experience, and  denotes a vector of exogenous control variables that include

marital status, union status, etc. Apparently, both models allow the impact of education on the log-wage

to vary with working experience. Both groups of authors consider the IV estimation of their models under

the usual conditional mean restrictions. Here we consider the IVQR analogue of the above models which

allows us to estimate the heterogenous distributional impacts of schooling on earnings through quantile

regressions. Of course, we can also allow  in the second model to vary over 

Example 2. (Heterogeneous effects of FDI on economic growth) Macro and international

economists are typically interested in exploring the role of foreign direct investment (FDI) in economic

growth. They usually regard the FDI inflows as an endogenous variable. Kottaridi and Stengos (2010)

find that a beneficial effect of FDI on economic growth exists only for countries at higher levels of initial

income. That is, the effect of FDI on economic growth varies across initial income levels. This motivates

Cai et al. (2010) to consider the following partially linear functional coefficient model

 = () · + 0 + 

where  denotes the growth rate of income per capita,  is the ratio of FDI to the gross domestic

product (GDP),  is the income level at some initial period, and  is a vector of exogenous control

variables that include the logarithm of investment rate and population growth rate. Again, we can allow

 in the above model to vary over  and the IVQR analogue of the resulting model allows us to study

the heterogeneous distributional impacts of FDI on economic growth.

As Chernozhukov and Hansen (2006) argue, solving (2.1)-(2.2) as an IV quantile regression problem

is to find a function (  ) 7→  ()
0 +  ()

0 such that 0 is a solution to the ordinary quantile
regression of  −  ()

0 −  ()
0 on (), i.e.,

0 ∈ arg min
∈G

[ ( −  ()
0 −  ()

0 −  ())] (2.3)

where  () = ( − 1{ ≤ 0}) and G is a class of measurable functions of (). In this paper,

we restrict our attention to the class of functions G = { :  () =  ()
0 for some measurable

function  (·)}. The resulting function  (  ) ≡  ()
0+ ()0 defines a structural quantile function

(SQF) such that

 ( ≤  () |) =  a.s. (2.4)

2.2 Sieve IVQR estimation

The main idea for our sieve IVQR estimation is simple. At the population level, for a given  ∈ A ⊂ R1
define

( ( )  ( )) ≡ arg min
()∈B×Γ

[ ( − 0 − 0 − 0)| = ] (2.5)
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where B × Γ ⊂ R2+3 .  () can be defined as 
∗ ∈ A ⊂ R1 such that || (∗ )|| = 0 under

certain identification restriction. Then we have ( ()  ()) = ( (
∗ )  (∗ )). In practice, one

has to replace the above conditional expectation operator by its sample analogue. In principle, one

can apply either kernel estimation or sieve estimation. Even though, as a referee kindly points out,

kernel estimation has the advantage of its capability of capturing the local properties of the coefficient

functionals and its asymptotic properties are also well documented in the literature, it is computationally

demanding especially if one also considers bootstrap-based specification tests for the above structural

quantile regression model. For this reason, we propose to estimate the functional coefficients by the

method of sieve estimation in this paper. For an excellent review on sieve methods, see Chen (2007) or

the book by Li and Racine (2007).

For expositional simplicity, we focus on the case where  takes value in a compact set U ⊂ R. Let
() and () denote the ’th component of  () and  () respectively, for  = 1  1 or 2 For

each  ∈ U , we approximate the functional coefficients () and () by ()0 and 
()0

respectively, for  = 1  1 or 2, where 
() = [1()  ()]

0 is a  × 1 vector of known basis
functions, and  and  are  × 1 vectors of unknown parameters to be estimated. Define

() = [1
()0 1

()0]0 and () = [1
()0 2

()0]0

Then we can rewrite (2.1) as

 = ()0 + ()0 +  +   ∈ (0 1) (2.6)

where  ≡ (01  01)0,  ≡ (0
1  

0
2

)0, and  is the approximation error term defined by  ≡
 = ( ()

0− ()0 ) + ( ()
0 − ()0 ). Similarly, for  = 1  3 we approximate

() the ’th component of  () by ()0 Let () = [1
()0  3

()0]0 and
 = (

0
1  

0
3

)0.
Combining (2.3) and (2.6), (     ) can be characterized as follows. For a given 1 × 1 vector

, let

Θ () ≡ ( ()
0  ()

0)0 = arg min
()∈B×C


 () (2.7)

where


 () ≡ [ ( − ()0− ()0 − ()

0)]

and B and C are compact parameter spaces in R2 and R3 , respectively. By the continuity and
convexity of the function  (·)  we know that Θ () is continuous and uniquely defined for any  ∈ A 

Then we have

 = arg min
∈A

k ()k2
 (2.8)

where A ⊂ R1 is a compact parameter set, kk2
= 0 for a 3 × 3 symmetric positive

definite weight matrix  (e.g.,  = 3). Then (   ) can be represented by Θ ≡ (0
  

0
 )
0 ≡

( ( )
0  ( )

0)0.
Let {(  )}=1 be a random sample drawn from the distribution of ()  For

a sample analogue to the above procedure, we define our IVQR estimator of  () ≡ ( ()0  ()0)0 for
any  ∈ U as follows:
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1. For a given 1 × 1 parameter vector , run a quantile regression to obtain

Θ̂ () ≡ (̂ ()
0 ̂ ()

0)0 = arg min
()∈B×C


 () (2.9)

where 
 () ≡ −1

P
=1  ( − ( )

0− ( )
0 − ( )

0)

2. Minimize the weighted norm of ̂ () over A to obtain an estimator of  = (01  01)
0,

i.e.,

̂ ≡ (̂01 ̂01)0 ≡ arg min∈A

°°°̂ ()
°°°2


 (2.10)

3. Obtain the estimator of Θ ≡ (0
  

0
 )
0 as Θ̂ ≡ Θ̂ (̂ ) ≡ (̂ (̂ )

0 ̂ (̂ )
0)0. In particular,

̂ ≡ ̂ (̂ ) ≡ (̂0
1  ̂

0
2

)0 is an estimator of  = (
0
1  

0
2

)0

4. For any  ∈ U , the estimators of  () and  () are given by ̂ () = [()0̂1  
()0̂1 ]

0

and ̂ () = [
()0̂1  

()0̂2 ]
0, respectively.

Remark 1. As mentioned above, a convenient choice of  in Step 2 is given by 3  As in the IV

literature, if 3 = 1 so that the IVQR model is just identified, we can demonstrate that the choice of

 does not affect the asymptotic distributions of ̂ () ≡ (̂ ()0 ̂ ()0)0 and our test statistic; see
Remarks 4 and 9 below. If 3  1 one can apply  = 3 to obtain preliminary estimators of those

unknown parameters, based on which one obtains a consistent estimate for the variance-covariance of

̂ () and use its inverse as  to obtain an asymptotically more efficient estimator of ̂  Since the

asymptotics for the case of known is already quite involved, we will not consider the case of estimated

 in the following study.

3 Asymptotic properties of the sieve IVQR estimator

In this section we first provide assumptions for the identification and estimation, and then study the

asymptotic properties of the sieve IVQR estimator proposed in the last section. Extensions to partially

linear functional coefficient models and panel data models are also discussed later in this section.

3.1 Basic assumptions for identification and estimation

A real-valued function  on U is said to satisfy a Hölder condition with exponent  if there is  such
that |()− (̃)| ≤  k− ̃k for all  ̃ ∈ U . Given a -tuple nonnegative integers,  = (1  ), set
[] = 1 + · · ·+  and let ∇ denote the differential operator defined by ∇ = []


1
1 




 A real-valued

function  on U is said to be -smooth,  =  +, if it is -times continuously differentiable on U and
∇ satisfies a Hölder condition with exponent  for all  with [] = . The -smooth class of functions

are popular in econometrics because a -smooth function can be approximated well by various linear

sieves; see, e.g., Chen (2007).

Let  = ( 0  0)0   () ≡ [()0 ()0]0 and  () ≡  − 1{ ≤ 0} Define

Π () ≡ [ ( − ()0− ()0) ()] and

Π |() ≡ [ ( − ()0− ()0 − ()
0) ()]
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Let = (
0
 

0
)
0
andW = X ×Z be the support of . We make the following set of basic assumptions.

Assumption A1. (i) ( )  = 1   are IID random variables that are defined on a

probability space (ΩF   ) share the same distribution as ( ) and take values in Y × U ×D×
W ⊂ R1++1+(2+3), where U and W are compact and 3 ≥ 1.

(ii)  ( ≤  ()
0 +  ()

0| ) =  a.s.

(iii) The cumulative distribution function (CDF) of  conditional on ( ) = (  ), (·|
 ), exhibits a probability density function (PDF) (·|  ) that is bounded from above by ̄ for

all (  ) ∈ U × D ×W; (·| ) is continuously differentiable in the neighborhood of 0 with first
derivative bounded from above by ̄ for all ( ) ∈ U ×D ×W;  {sup∈R 1 {|− | ≤  ()} |} ≤
2̄ () for any measurable function  (·) where  ≡ ( ).

(iv) The distribution of  is absolutely continuous on U with respect to the Lebesgue measure.
Assumption A2.(i) For  = 1  1 2 or 3 (·), (·) and (·) belong to the class of -smooth
functions with   0.

(ii) For any -smooth function  defined on U , there exists a function Π∞ (·) ≡ 0
(·) in the

sieve space G ≡ { (·) = 0(·) for some  ∈ R} such that sup∈U k ()−Π∞ ()k = (−)
In particular, there exist   and  such that sup∈U |()− ()0| = (−) for  =
1  1, sup∈U |()−()0| = (−) for  = 1  2, and sup∈U |()0| = (−)
for  = 1  3.

(iii) Let  ≡ (01  01)0  ≡ (0
1  

0
2

)0 and  ≡ ( 01  03)0 (     ) lies in

the interior of A ×B × C , where A ⊂ R1 , B ⊂ R2 and C ⊂ R3 are compact and convex

for all , and C contains 0 for all .

Assumption A3. (i) For all , the Jacobian matrices 
(00)Π () and


(00)Π |() exist,

are continuous and have full rank uniformly over A × B × C .
(ii) The image Π (A B) is simply connected for all .

Assumption A4. Let N ≡ { ∈ A , || −  ||  } be an -open subset of A containing 

and N 
 its complement. Let Q () ≡ k ()k2

 Assume that lim inf→∞[min∈A∩N 

Q()−

Q ( )]  0 for all   0

Assumption A1(i) imposes IID sampling and compactness on the support of the exogenous inde-

pendent variables. As Chernozhukov and Hansen (2006) remark, compactness is not restrictive in mi-

croeconometric applications but can be relaxed at lengthy arguments. A1(ii) specifies the conditional

quantile restriction which is used to construct our sieve IVQR estimator. A1(iii) imposes conditions on

the quantile error term  that are standard in the quantile regression literature. A1(iv) requires that

the variables in  be continuously valued, which is standard in the literature on functional coefficient

models. The extension to allow for both continuous and discrete variables in  is possible but will not

be pursued in this paper.

Assumption A2(i) imposes smoothness conditions on the relevant functions and A2(ii) quantifies the

approximation error of -smooth functions. These conditions are satisfied, for example, for polynomials,

splines, and wavelets. A2(iii) imposes compactness on the parameter space. Such an assumption is needed

at least for the parameter space A because the objective function in (2.8) is not convex in  A3 parallels

Assumption 2.R3 in Chernozhukov and Hansen (2006) which is needed for the global identification. A4
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specifies the identifiable uniqueness condition as defined in White (1994, p.28) or Gallant and White

(1988, p.19). Note that they allow both the pseudo-true parameter ( here) and the nonstochastic

objective function (Q(·) here) to depend on the sample size but restrict their attention to the case
where the dimension of the parameter is fixed. Clearly A4 imposes some restrictions on the choice of

basis functions that determine the solution  () for any fixed  ∈ A 

The following theorem describes the identification of the functional coefficients in the IVQR model.

Theorem 3.1 Suppose that Assumptions A1-A4 hold. Then  (),  () and  () can be identified

for all  ∈ U as  →∞.

3.2 Asymptotic properties of the sieve IVQR estimators

To study the asymptotic properties of the sieve IVQR estimators, let (Θ) = ( )
0+

()
0Θ−

 ()
0 −  ()

0 and  (Θ) = 
() ( −  (Θ))  Define

Ψ = [ ()


()

0]

() = −
h
 ( (Θ ()) |)


 ()( )

0
i


Φ () = 
h
 ( (Θ ()) |)



()



()

0i


Φ () =
1



X
=1

 ( (Θ ()) |)


()



()

0


Further, write [Φ̄()
0 Φ̄()

0]0 as a conformable partition of [Φ()]−1, where Φ̄() and

Φ̄() are 2 × (2 + 3) and 3 × (2 + 3) matrices, respectively. Let Φ̄ ≡ Φ̄( )

Φ̄ ≡ Φ̄( ) and  ≡  ( )  Finally, let Ω ≡
¡
Ω0 Ω

0


¢0
 where

Ω ≡ − ¡ 0Φ̄
0
Φ̄

¢−1
 0Φ̄

0
Φ̄

Ω ≡ Φ̄ [(2+3) + Ω ]

We add the following assumptions.

Assumption A5. (i) 0   ≤ min () ≤ max () ≤ ̄ ∞ uniformly in ;

(ii) 0  Ψ ≤ min (Ψ) ≤ max (Ψ) ≤ ̄Ψ ∞ uniformly in ;

(iii) 0  Φ ≤ inf∈A min (Φ ()) ≤ sup∈A
max (Φ ()) ≤ ̄Φ ∞ uniformly in ;

(iv) 0   ≤ min
¡


0


¢ ≤ max
¡


0


¢ ≤ ̄ ∞ uniformly in 

Assumption A6. (i) Let  ≡ sup∈U ||()||. As →∞, 23 (ln)2 → 0 and −(1+2) ln
→ 0 ∈ [0∞).
Assumption A5(i) imposes conditions on the weight matrix  and is trivially satisfied for 3

with  = ̄ = 1 The condition in A5(ii) in standard in the literature on sieve estimation (e.g.,

Newey (1997)). For fixed , A5(iii) reduces to the typical requirement for sieve estimation of conditional

quantiles without endogeneity (e.g., Lee and Horowitz (2005)). The uniform requirement on  ∈ A

pertains to our sieve IVQR estimation and can be satisfied under A5(iii) if  (·|) is uniformly

bounded away from 0 and infinity a.s. A5(iv) requires that  ≡  ( ) has full rank for all  in

large samples. In Lemma A.1 in the appendix, we show that Assumptions A5(i)-A5(iv) imply that ΩΩ
0
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has eigenvalues that are bounded away from infinity and zero uniformly in  in large samples. This is

important as Ω appears in the asymptotic variance-covariance matrix for our sieve IVQR estimator; see

Theorem 3.5 below.

Assumption A6(i) imposes conditions on   and  For some basis functions, the order  is well

known. For example,  = () for power series and  = (12) for splines (see Newey (1997)). The

first condition in A6(i) requires that  should not diverge to infinity too fast while the second requires

that  should not diverge too slowly and it is sufficient to ensure that the asymptotic bias term of our

first stage sieve estimator Θ̂ () is at most as large as its variance term uniformly in  ∈ A . The

larger value  takes (i.e., the smoother the class of functional coefficients), the less stringent condition

needed for  in order for both conditions in A6(i) to be satisfied.

The next theorem studies the uniform convergence and the uniform Bahadur representation of the

first stage estimator Θ̂ ().

Theorem 3.2 Suppose that Assumptions A1-A4, A5(i)-(iii), and A6(i) hold. Then

(i) sup∈A
||Θ̂ ()−Θ ()|| =  [( ln)12]

(ii) Θ̂ ()−Θ () = Φ()−1−1
P

=1 (Θ ()) + o
¡
−12

¢
+  uniformly in  ∈ A ,

where |||| =  (
12
 54−34 ln).

Remark 2. The first condition in Assumption A6(i) ensures kk =  (()12) This condition

ensures that  is of smaller order term than the dominant term in the Bahadur representation for Θ̂ ()

If one requires kk =  (
−12) to simplify the expression in Theorem 3.2, one needs to strengthen that

condition to 2
5 (ln)

4
→ 0 In the case of spline estimation,  = (12) the latter condition is

simplified to 6(ln)4→ 0, which means that  cannot increase at a rate faster than 16.

We study the consistency of the (̂  ̂  ̂ ) and derive the influence functions for ̂ and ̂ in the

following theorem.

Theorem 3.3 Suppose that Assumptions A1-A4, A5(i)-(iii), and A6(i) hold. Then

(i) ||̂ − || =  (1)  ||̂ − || =  (1)  and ||̂ −  || =  (1) ;

(ii) ̂ − = Ω
−1P

=1 


() ( − ( Θ )) + o (

−12);
(iii) ̂ − = Ω

−1P
=1 



() ( − ( Θ )) + o (

−12)

The next theorem gives the uniform rate of convergence of our sieve IVQR estimator.

Theorem 3.4 Suppose that Assumptions A1-A4, A.5(i)-(iii), and A6(i) hold. Then

(i) sup∈U k̂ ()−  ()k = 

£
(()12 +−)

¤
;

(ii) sup∈U
°°°̂ ()−  ()

°°° = 

£
(()12 +−)

¤


Remark 3. Despite the complication of our estimation strategy, Theorem 3.4 indicates that we can obtain

the same uniform convergence rate as obtained in the sieve estimation of conditional mean function; see

Theorem 1 in Newey (1997). For the selection of  Newey (1997) mainly requires that 2→ 0,

which is much weaker than our first requirement that 2
3 (ln)

2
→ 0 This is as expected because

our estimator is essentially a two-stage estimator and we have to apply some uniform convergence results

to demonstrate our first-stage estimator Θ̂ () is uniformly consistent in Frobenius norm and exhibits

10



certain uniform Bahadur representation. Following the proof of Theorem 3.4, one can also obtain the

mean square convergence rate:Z
||̂ ()−  () ||2 () =  (+−2) andZ
||̂ ()−  ()||2 () =  (+−2)

where  (·) denotes the CDF of  . We skip the details to conserve space.
To study the asymptotic distribution of our estimator, we introduce some additional notation. Let

Π() and Π() be 1 × 1 and 2 × 2 block diagonal matrices, respectively, whose diagonal block

is ()0; e.g., Π() =

⎡⎢⎢⎣
()0 · · · 01×
...

. . .
...

01× · · · ()0

⎤⎥⎥⎦  Define the (1 + 2)× (1 + 2) matrix

Π () ≡
Ã
Π () 01×2
02×1 Π ()

!
 (3.1)

We add the following assumption.

Assumption A6. (ii) As →∞, −2
−2 → 0 where  ≡ kΠ ()k  0

Note that Assumption A6(ii) is similar to the second requirement in A6(i) and it ensures that the

asymptotic bias term for our sieve IVQR estimator is of smaller order than the asymptotic variance term.

In general, one expects that kΠ ()k = 
¡
12

¢
 and thus A6(ii) reduces to the typical requirement that

−(1+2) → 0; see, e.g., Huang (2003).

The following theorem studies the asymptotic normality of our sieve IVQR estimator.

Theorem 3.5 Suppose that Assumptions A1-A6 hold. Then©
 (1− )Π ()ΩΨΩ

0
Π ()

0ª−12√


Ã
̂ ()−  ()

̂ ()−  ()

!
→ (0 1+2)

Remark 4. In the above study we restrict our attention to the case where the weight matrix  used

in (2.10) is nonrandom. In the case of just-identification (i.e., 3 = 1), Ω ≡ −
¡
Φ̄

¢−1
Φ̄ 

and Ω ≡ Φ̄[(2+3) −

¡
Φ̄

¢−1
Φ̄ ] Therefore the choice of has no effect on the

asymptotic distribution of our sieve IVQR estimator, and one can always set  = 3 . In the case

of over-identification, however, the choice of  generally matters. It affects the asymptotic efficiency

of ̂ and ̂ () and that of ̂ and ̂ () Here we focus on the estimation of the structural functional

coefficient  ()  For the general choice of   the asymptotic variance-covariance (AVC) matrix of√
(̂ ()−  ()) is given by

Ω () ≡  (1− )Π()ΩΨΩ
0

Π()

0

=  (1− )Π()
¡
 0Φ̄

0
Φ̄

¢−1
 0Φ̄

0
Φ̄ΨΦ̄

0
Φ̄

× ¡ 0Φ̄
0
Φ̄

¢−1
Π()

0

By (A.10) and the proof of Theorem 3.5 in the appendix, the AVC matrix of
√
(̂ −  ) is given by

Σ ≡  (1− ) Φ̄ΨΦ̄
0
  Then, if we choose  = Σ

−1

 the above AVC matrix reduces to

Ω
¡
Σ−1

¢ ≡  (1− )Π()
h
 0Φ̄

0


¡
Φ̄ΨΦ̄

0


¢−1
Φ̄

i−1
Π()

0

11



Standard arguments show that Ω () ≥ Ω
¡
Σ−1

¢
 It follows that by setting  = Σ−1 we can

obtain the most efficient sieve IVQR estimator of the structural functional coefficient  () 

Remark 5. In practice, Σ is not feasible and one may estimate it based on some preliminary consistent

estimators. For example, one can first choose = 3 to obtain a preliminary estimate ̂ () of  ()

at all data points and the resulting quantile regression residuals ̂ Let Σ̂ =  (1− ) b̄ΦΨ̂
b̄Φ0 

where Ψ̂ and Φ̂ are defined below and b̄Φ is the lower 3 × (2 + 3) submatrix of Φ̂−1  Then

a feasible version of the optimal choice of  is given by ̂ = Σ̂
−1

. Under some regularity conditions,

we can show that ||Σ̂−1 −Σ−1 || =  [
12(()

12
+−)] and the estimation error does not affect

the distributional theory of our estimator.

For statistical inference, it is necessary to obtain consistent estimators of Φ ,  and Ψ . A natural

estimator for Ψ is Ψ̂ ≡ 1


P
=1 



()



()

0
 Following Powell (1991), we can estimate Φ and

 respectively by

Φ̂ ≡ 1

2

X
=1

1 {|̂| ≤ }
()



()

0 and ̂ ≡ −1
2

X
=1

1 {|̂| ≤ }
() ( )

0


where  ≡  is a bandwidth parameter such that as  → ∞  → 0 and 2() → 0 To compute

Φ̂ and ̂ we need to choose the smoothing parameter  Following Koenker (2005, pp. 80-81), we

can set  = ̂
£
Φ−1( + −13)−Φ−1( − −13)

¤
 where Φ−1 is the inverse of the standard normal

CDF, ̂ is a robust estimate of scale/standard deviation, e.g., ̂ = median|̂−median(̂)|06745 (Hogg
and Craig, 1995, p. 390), and  is a proportional constant. In the simulation and application below we

set  = 052 Following the consistency of these estimators (as demonstrated in the proof of Theorem 4.3

below), we can readily obtain a consistent estimator for the asymptotic variance-covariance matrix in the

above theorem.

3.3 Extension to partially linear functional coefficient models

Now we consider extending the model in (2.1) to the partially linear functional coefficient model:

 =  ()
0 + 1 ()

0X1 + 02X2 +   ∈ (0 1) (3.2)

where    and  (·) are defined as above, X1 = (1 21)
0 and X2 = (21+1 21+22)

0 are
21 × 1 and 22 × 1 vectors of exogenous variables, respectively, 1 (·) is a 21 × 1 vector of functional
coefficients that vary with  , 2 is 22 × 1 vector of coefficients that do not vary with  , and  ≡  is

the quantile error term such that

 ( ≤ 0|X1X2 ) =  a.s. (3.3)

for a 3×1 vector of instrumental variables  In the absence of the endogenous component  ()0, the
model in (3.2) was recently studied by Wang et al. (2009) for longitudinal data and Cai and Xiao (2012)

for time series data. Because of the presence of the endogenous component, the methodology developed

in neither paper applies to our framework.

2Alternatively, one could follow Pakes and Pollard (1989) and Honoré and Hu (2004) and estimate Φ and  using

numerical derivatives.
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We remark that the results developed in previous sections extend straightforwardly to the model

specified in (3.2) and (3.3). To conserve space, we only consider the asymptotic normality of the estimator

of the finite dimensional parameter 2 as the results for the other functional parameters, namely,  (·)
and 1 (·) are almost the same as before. We follow closely the notation defined above and only suggest
necessary changes as follows:

 (X1 ) ≡ [1
()0 21

()0]0

 ≡ [X0
1X

0
2 

0]0

 () ≡ £
 (X1 )

0
X0

2  ()
0¤0



 ≡ (0
1  

0
2 )

0

where 1 ≡ (0
11  

0
121

)0, and 1  = 1  21, are defined as in Section 2.2. Clearly  () is

a [(21 + 3) + 22]× 1 vector, and  is (21 + 22)× 1 vector. Let ̂ and ̂ ≡ (̂0
1  ̂

0
2 )

0 be the
sieve IVQR estimator of  and   respectively, by following the exact procedure specified in Section

2.2. Let Ψ  () Φ ()  and Ω be defined as in Section 3.2 with the newly defined  ()

in place of the original one. Now we need that Assumptions A.5(ii)-(iv) hold for these newly defined

objects. Then the results in Theorems 3.2 and 3.3 continue to hold. Consequently, we have

̂ − = Ω
−1

X
=1


() ( − ( Θ )) + o (

−12)

= Ω
−1

X
=1


() () + o (

−12)

provide that the approximation error ( Θ ) is asymptotically negligible (which holds if 
−2 →

0). Let S2 be a 2 × (21 + 22) selection matrix such that S2 selects only the last 2 elements in the

(21 + 22)× 1 vector  Then we can easily demonstrate that

√

³
̂2 − 2

´
=
√
S2

³
̂ −

´
= S2Ω−12

X
=1


() () + o (1)

→ 
³
0  (1− ) lim

→∞
S2ΩΨΩ0S

0
2

´


Consequently, one can conduct statistical inference on 2 as usual by estimating the AVC matrix given

above. Alternatively, one can apply the bootstrap method to obtain standard errors and make inference.

3.4 Extension to panel data models with individual fixed effects

Now, we consider the extension of the model in (2.1) to a panel data model with individual fixed effects:

 =  ()
0 + 1 ()

0X1 + 2 +   ∈ (0 1) (3.4)

where  = 1    = 1   X1 = (1 2)
0, 2’s are individual fixed effects that will

be treated as parameters to be estimated, and the definitions of other objects are the same as before.

Note that we follow Kato et al. (2012) and allow the individual effects to vary across the quantile index
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 3 Since quantile regression with individual effects is subject to the incidental parameter problem and

so far there is no general transformation that can suitably eliminate the individual effects in quantile

regressions, here we follow the literature, assume that both  and  go to infinity, and focus on the

estimation of the functional coefficients  (·) ≡ ( (·)0  1 (·)0)0.
Let X2 denote the th column of  for each . Then we can rewrite the model in (3.4) as

 =  ()
0 + 1 ()

0X1 + 02X2 +   ∈ (0 1)
where 2 = (21  2 )

0. If we assume that  =  satisfies

 ( ≤ 0|X1 2 ) =  a.s.

for a 3 × 1 vector of instrumental variables , we can estimate the model using the same estimation
procedure as in the partially linear FCQR model presented above. Let

 (X1 ) ≡ [1
()

0 2
()

0]0


†
 (X ) ≡

£
 (X1 )

0
X0

2

¤0


 ≡ (0
1  

0
2 )

0

where 1 ≡ (0
11  

0
12

)0, and 1  = 1  2, are defined as in Section 2.2. Here,  is

(2 +)×1 vector. The sieve IVQR estimators can be defined analogously to those in section 2.2 with
the objective function in (2.9) replaced by


 () ≡ ( )−1

X
=1

X
=1

 ( − ( )
0− 

†
 (X )

0
 − ( )

0) (3.5)

Let Θ = (0 0)0 ∈ R2+ × R3  Let Θ () ≡ ( ()
0  ()

0)0 and  are as defined in (2.7) and

(2.8), respectively. Let ̂  ̂ ≡ (̂0
1  ̂

0
2 )

0 and ̂ be the sieve IVQR estimator of     and ̂  re-

spectively. The sieve IVQR estimators of  () and 1 () are given by ̂ () = [
()0̂1  

()0̂1 ]
0

and ̂1 () = [
()0̂11  ()0̂12 ]0, respectively.

Let ≡ (X0
1X

0
2 

0
)
0 

() ≡ [ † (X )
0
  ( )

0
]0 and  (Θ) = ( )

0+


()
0
Θ− ()0−1 ()0X1−02X2. Let  = (

0


0


0
)
0
  = diag(2  −12 

3) and 1 = diag
¡
2  

12  3
¢
 Define

Ψ = ( )−1
X
=1

X
=1


h
1




(1)



()
0
1

i


 () = −( )−1
X
=1

X
=1


h
 ( (Θ ()) |)1




()( )
0
i


Φ () = ( )−1
X
=1

X
=1


h
 ( (Θ ()) |)1




()



()
0
1

i


3Galvao (2011) applies the IVQR method to estimate dynamic panel data models by using lagged regressors or lagged

differences of regressors as instruments for the lagged variable −1 which plays the role of  here. Galvao and Montes-

Rojas (2010) consider penalized IVQR of dynamic panel data models by imposing 1-penalty on the fixed effects, following

the lead of Koenker (2004). Both papers provide proofs based on the heuristic arguments used in Koenker (2004). In

particular, they claim that their
√
 -consistency and asymptotic normality results hold as long as  → 0 for some

  0 under some regularity conditions, which is apparently not the case. Indeed, Kato et al. (2012) establish the
√
 -

consistency and asymptotic normality results for the conventional panel quantile regression estimators under the conditions

2(ln)3 → 0 as ( )→∞
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where  (·|) denotes the PDF of  given  As in Section 3.2, we write [Φ̄ ()
0 Φ̄ ()

0]0 as a
conformable partition of [1

−1Φ ()−11 ]−1, where Φ̄() and Φ̄() are now (2 +)×
[(2 + 3) + ] and 3 × [(2 + 3) + ] matrices, respectively. Let Φ̄ ≡ Φ̄( ) Φ̄ ≡
Φ̄( ) and  ≡  ( )  Further, let Ω ≡

¡
Ω0 Ω

0
1

¢0
 where

Ω ≡ − ¡ 0
−11Φ̄

0
Φ̄1

−1

¢−1
 0

−11Φ̄
0
Φ̄ 

Ω1
≡ Φ̄1

[(2+3)+ +1
−1Ω ]

where Φ̄1 denotes the upper 2 × [(2 + 3) +  ] submatrix of [1
−1Φ( )

−1
1 ]−1 (or

equivalently that of Φ̄).

We only state two theorems that parallel Theorems 3.2 and 3.5 under Assumptions D1-D6 stated in

Supplementary Appendix D. The counterparts of other theorems in Section 3.2 continue to hold under

these assumptions.

Theorem 3.6 Suppose that Assumptions D1-D4, D5(i)-(iii), and D6(i) and (iii) in Appendix D hold.

Then

(i) sup∈A
||−1[Θ̂ ()−Θ ()]|| = 

¡
[ ln( ) ( )]12

¢


(ii) −1[Θ̂ ()−Θ ()] = ( )−1
£
1

−1Φ()−11 
¤−1

̄1

P
=1

P
=1 (Θ ())+o (( )−12)

+ uniformly in  ∈ A ,

where ̄1 = 1
−11, and || || =  (

12
 54 ( )−34 ln ( )).

Theorem 3.7 Suppose that Assumptions D1-D6 in Appendix D hold. Then as ( )→∞

©
 (1− )Π ()ΩΨΩ

0
Π ()

0ª−12√


Ã
̂ ()−  ()

̂1 ()− 1 ()

!
→ (0 1+2)

where Π () is a (1 + 2)× (1 + 2) matrix defined in (3.1).

For the proofs of the above theorems, see Appendix D. As demonstrated in Appendix D, the proofs

of the above results are quite involved. The complications arise for several reasons. First, the fixed

effects parameter 2 is of dimension  , which generally diverges to infinity at a much faster rate than

 Second, the estimator of ̂2 has a convergence rate (in Frobenius norm) that is different from that

of ̂1 and ̂  which explains the need for the normalization matrix  defined above. Third, without

using the second normalization matrix 1 in the definitions of  () and Φ ()  the latter matrices

would be degenerate asymptotically. See, e.g., the proof of Lemma D.1 for the case of Φ () 

4 A specification test

In this section, we consider testing the hypothesis that some of the functional coefficients are constant.

The test can be applied to any nonempty subset of the full set of functional coefficients.

4.1 Hypotheses and test statistic

Let S be an  × (1 + 2) matrix that selects  elements from  () = ( ()
0  ()0)0 where 1 ≤  ≤

1+2 For example, if S =(1  01×2)  then S () =  (); if S =(02×1  2)  then S () =  ();
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and if S =1+2  then S () =  ()  We are interested in testing the null hypothesis

H0 : 1 () ≡ S () = 1 a.s. for some parameter 1 ∈ R (4.1)

The alternative hypothesis H1 is the negation of H0. That is, under H0,  of the (1 + 2) functional

coefficients are constant, whereas under H1, at least one of the functional coefficients in 1 (·) is not
constant.

In principle one can consider various ways to test the null hypothesis in (4.1). For example, one can

estimate the restricted semiparametric functional coefficient IVQR model under the null, and construct

a Lagrangian multiplier (LM) type of test based on the estimation of the restricted model only. Alterna-

tively, one can adopt the likelihood ratio (LR) principle to estimate both the unrestricted and restricted

models and construct various test statistics, say, by comparing the estimates of either 1 (·) or  (·) in
both models through certain distance measure, or by extending the generalized likelihood ratio (GLR)

test of Fan et al. (2001) to our IV quantile regression framework. Both the LM and LR types of tests

require estimation under the null and one needs to estimate the restricted model multiple times in order

to test for multiple null hypotheses for different subsets of functional coefficients.

In this paper, we propose a Wald-type statistic that requires only consistent estimation of the un-

restricted model. Let ̂1 () = Ŝ () and ̂1 =
1


P
=1 ̂1 ()  We propose the following test

statistic

 =
X
=1

°°°̂1 ()− ̂1

°°°2  ()  (4.2)

where  (·) is a uniformly bounded nonnegative weight function defined on the support U of  Our

theory allows one to take  () = 1 for all  ∈ U  in which case one obtains an unweighted version of the
test. By specifying a weight function that is positive only in a subset of U , one may focus the test on a
specific region of U in applications. In the next subsection, we show that after being suitably normalized,
 is asymptotically distributed as  (0 1) under H0 and diverges to infinity under H1.

4.2 Asymptotic distribution of the test statistic

To proceed, we first consider the consistent estimation of 1 under H0 We estimate it by

̂1 =
1



X
=1

̂1 ()  (4.3)

Let Π̄ ≡ [Π (1)] and Σ

1
≡  (1− )SΠ̄ΩΨΩ0 Π̄0S0We make the following additional assumptions.

Assumption A6∗. As →∞, 23 (ln)
2
→ 0 and −2 → 0.

Assumption A7. (i) 0  Π̄ ≤ min
¡
Π̄Π̄0

¢ ≤ max
¡
Π̄Π̄0

¢ ≤ ̄Π̄ ∞ for each 

(ii) 0  Π ≤ min
¡
[Π ()

0Π ()  ()]
¢ ≤ max

¡
[Π ()

0Π ()  ()]
¢ ≤ ̄Π ∞ for each .

Assumption A6∗ strengthens Assumption A6(i). The second requirement in A6∗ ensures that the
asymptotic bias term of ̂1 under H0 is (−12) so that it has an asymptotically negligible effect on the
asymptotic distribution of ̂1  A7 requires that Π̄ and [Π ()

0Π ()  ()] be full rank. In conjunction
with Assumptions A5(ii) and (iv), it also ensures that the minimum and maximum eigenvalues of Σ1
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are bounded and bounded away from 0 with probability approaching 1 (w.p.a.1.) in the case  () = 1

a.s..

The following theorem establishes the
√
-consistency and asymptotic normality of ̂1 under H0

Theorem 4.1 Suppose Assumptions A1-A5, A6∗ and A7(i) hold. Suppose that Σ1 ≡ lim→∞Σ1
exists. Then under H0

√
(̂1 − 1 )

→  (0×1Σ1 ) 

Remark 6. Clearly Theorem 4.1 says that under H0 ̂1 can consistently estimate 1 at the para-
metric rate. The second requirement in A6∗ indicates that one needs to select a larger number of sieve
approximation terms than usual in order to achieve this rate. On the other hand, if  = 1 + 2, i.e.,

all functional coefficients take constant values under H0, and the sieve basis includes the constant term,
then the bias term from the sieve approximation vanishes automatically and the second requirement in

Assumption A6∗ becomes redundant. In this case, a small value of  can be selected.

Let Υ ≡ Π ()0 S0SΠ ()  () and Ω̄ ≡ Ω0(Υ1)Ω  Define

B ≡  (1− ) tr
³
Ω0(Υ1)Ω Ψ̂

´
and 2 ≡ 22 (1− )

2
tr
¡
Ω̄ΨΩ̄Ψ

¢
 (4.4)

To state the next result, we modify Assumption A6∗ as follows.
Assumption A6∗∗. As →∞, 23 (ln)2 → 0 and −(12+2) → 0.

Intuitively, one does not need the constrained estimator ̂1 to be
√
-consistent to derive the asymp-

totic distribution for our test statistic. Assumption A6∗∗ is sufficient to ensure that the bias term from

the sieve approximation plays an asymptotically negligible role in the asymptotic distribution.

The next theorem studies the asymptotic distribution of  under H0

Theorem 4.2 Suppose Assumptions A1-A5, A6∗∗, and A7 hold. Then under H0 −1 ( − B) →
(0 1).

Remark 7. The above theorem also holds if one replaces Ψ̂ in the definition of B by its population
analogue Ψ  We use Ψ̂ because B appears as a term in the decomposition of 

To implement the test, we need consistent estimates of both B and 2 Let ̂ ≡ ̂ ≡ −
̂ ()

0
 − ̂ ()

0
 Υ̂ =

1


P
=1Π ()

0 S0SΠ ()  ()  Ω̂ = (Ω̂0  Ω̂
0

)0 where

Ω̂ ≡ −
µ
̂ 0

b̄Φ0
b̄Φ ̂

¶−1
̂

b̄Φ0
b̄Φ 

Ω̂ ≡ b̄Φ

h
(2+3) + Ω̂

i


and
h b̄Φ0

b̄Φ0

i0
is a conformable partition of Φ̂−1 with b̄Φ and

b̄Φ being 2 × (2 + 3)

and 3 × (2 + 3) matrices, respectively. We propose to estimate B and 2 respectively by

B̂ ≡  (1− ) tr
³
Ω̂0 Υ̂Ω̂ Ψ̂

´
and ̂2 ≡ 22 (1− )

2
tr
³
Ω̂0 Υ̂Ω̂ Ψ̂Ω̂

0
 Υ̂Ω̂ Ψ̂

´


In the proof of Theorem 4.3 below, we show that −1 (B̂ − B) =  (1) and −1 (̂ − ) =

 (1) under the following additional assumption.

Assumption A8. As →∞, → 0 and 2()→ 0.
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Then we have

̂ ≡ ̂−1
³
 − B̂

´
→  (0 1) under H0 (4.5)

When  is sufficiently large, we can compare the feasible test statistic ̂ to the one-sided critical value

 the upper  percentile from the standard normal distribution, and reject the null at asymptotic level

 if ̂  

To examine the asymptotic local power, we consider the following sequence of Pitman local alternatives

H1
³
12 −12

´
: 1 () = 1 + 12 −12∆ () a.s.

where∆’s are a sequence of real continuous vector-valued functions such that 0 ≡ lim→∞[||∆ ()−
 [∆ ()] ||2 ()] ∞ The following theorem establishes the asymptotic local power of the ̂ test.

Theorem 4.3 Suppose Assumptions A1-A5, A6∗∗, and A7-A8 hold. Then under H1(12 −12) ̂
→

 (0 1) 

Remark 8. Theorem 4.3 shows that the ̂ test has nontrivial power against Pitman local alternatives

that converge to zero at rate −1214 because  ∝ 12 as demonstrated in the proof of the above

theorem. The asymptotic local power function is given by lim→∞  (̂ ≥  | H1(12 −12)) = 1 −
Φ ( − 0)  where Φ is the standard normal CDF.

The next theorem establishes the consistency of the test.

Theorem 4.4 Suppose Assumptions A1-A5, A6∗∗, and A7-A8 hold. Then under H1 −1̂ =

 +  (1) where  ≡ [k1 ()− [1 ()]k2  ()] so that  (̂  ) → 1 under H1 for
any nonstochastic sequence  = ()

Remark 9. In the above study we restrict our attention to the case where the weight matrix  used

in (2.10) is nonrandom. If efficiency is also of concern, we can consider efficient choice of  As we have

seen from Remark 4, an optimal choice of  for the efficient estimation of the structural functional

coefficient  () is given by Σ
−1

 But this choice of  may not be optimal for the testing problem

on hand. Despite the importance of optimal test, a formal study is highly complicated and beyond the

scope of the current paper. Therefore we leave it for future research.

Remark 10. If we fail to reject H0 in (4.1), one may consider more efficient estimation of the null-
restricted model. The simplest approach is to impose the null restriction and estimate both the finite

dimensional coefficient parameter (1 ) and the functional coefficients (if any) in a single step. One can

readily establish the convergence rates and asymptotic normality for the estimates of both the parametric

and nonparametric components and show the resulting estimates of the functional coefficients are more

efficient than those obtained under the alternative. Alternatively, one can follow the above procedure

to first estimate the unrestricted model and then to obtain the estimate of 1 by ̂1  If there are

remaining functional coefficients to be estimated, one can estimate them by substituting 1 by ̂1 in

the original SQF under H0 and treating it as if it were known. In the special case where we fail to
reject H0 :  () =  a.s. for some parameter  ∈ R1  after obtaining ̂ ≡ −1

P
=1 ̂ ()  in

the second step we can estimate the functional coefficient  () by considering the ordinary functional

coefficient quantile regression (FCQR) of  − ̂
0
 on . Similar approach is also taken by Cai and

Xiao (2012) in their kernel estimation of partially linear FCQR models without endogeneity. To conserve

space, we do not report the asymptotic properties of these estimates.
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4.3 A bootstrap version of our test

It is well known that a nonparametric test based on its asymptotic normal null distribution may perform

poorly in finite samples. So we suggest using a bootstrap method to obtain the bootstrap approximation

to the finite-sample distribution of our test statistic under the null. Härdle and Mammen (1993) show

that a two-point wild bootstrap is valid in the context of nonparametric specification tests for conditional

mean models. A similar procedure has been extended to the time series framework (e.g., Hansen (2000)

and Su and White (2010)) or functional coefficient IV regression (e.g., Su et al. (2014)). As emphasized

in the literature, the great advantage of this method lies in the fact that there is no need to mimic some

important features (such as dependence or endogeneity structure) in the data generating process in order

to justify its asymptotic validity.

Nevertheless, as Sun (2006) observes, the commonly used wild bootstrap fails in the quantile regres-

sion (QR) framework where the quantile error terms do not satisfy the zero mean assumption. This

motivates her to propose a modified version of the wild bootstrap procedure for the QR framework with-

out endogeneity. More recently, Feng et al. (2011) propose a modification of the wild bootstrap that

admits a broader class of weight distributions for quantile regressions. Here we follow the latter paper

and propose to generate the bootstrap version of ̂ as follows:

1. Obtain the sieve IVQR estimates ̂ () and ̂ (), and calculate the unrestricted residuals

̂ =  − ̂ ()
0
 − ̂ ()

0


2. For  = 1   generate the wild bootstrap residuals ∗ = |̂| , where ’s are independent of
D ≡ {   }=1 and are IID taking values 2 (1− ) and −2 with probabilities 1−  and

  respectively.

3. For  = 1   generate  ∗ = ̂0 + ̂
0
 + ∗ where ̂ ≡ −1

P
=1 ̂ () and ̂ ≡

−1
P

=1 ̂ () are the restricted IVQR estimates under the null hypothesis H0 :  () = 

a.s. for some parameter  ∈ R1+2 

4. Redo the sieve IVQR estimation and compute the bootstrap test statistic ̂ ∗ in the same way as
̂ by using { ∗  }=1 

5. Repeat Steps 1-4  times to obtain  bootstrap test statistic {̂ ∗}

=1 Calculate the bootstrap

-values ∗ ≡ −1
P

=1 1{̂ ∗ ≥ ̂} and reject the null hypothesis H0 : 1 () = 1 a.s. if 
∗ is

smaller than the prescribed nominal level of significance.

We make several remarks regarding the above bootstrap procedure. First, in sharp contrast with the

original wild bootstrap method that uses the residuals ̂ we use the absolute residuals in Step 2. By

construction, the th quantile of  is zero, which ensures that th conditional quantile of 
∗
 is zero given

the data D. One can replace the two-point distribution of  by some other distribution that has the

th conditional quantile given by 0. Second, note that in Step 3 we impose the null hypothesis H0 :
 () =  a.s., which is stronger than H0 : 1 () = 1 a.s. unless S = 1+2 (i.e.,  = 1 + 2).

It turns out that this will greatly facilitate the justification of the asymptotic validity of the above

bootstrap procedure. In addition, it saves in computation when we try to test many subvectors of  (·)
are constant or not because we can generate the same bootstrap dependent variable once for all and the
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computation burden is almost identical to the case of testing the constancy of a single subvector of  (·).
Our simulations indicate that this procedure does not result in the loss of power in comparison with the

alternative approach by generating  ∗ through the imposition of the original null hypothesis H0. But the
justification for the validity of this latter approach would be much more involved as one cannot ensure

that the estimated functional coefficients satisfy the required smoothness conditions.

To show that the bootstrap statistic ̂ ∗ can be used to approximate the asymptotic null distribution
of ̂ we follow Li et al. (2003) and Su et al. (2014) and rely on the notion of convergence in distribution

in probability defined in Giné and Zinn (1990). The following theorem establishes the asymptotic validity

of the above bootstrap procedure.

Theorem 4.5 Suppose Assumptions A1-A5, A6∗∗ and A7-A8 hold. Let ∗ be the -level bootstrap

critical value based on  → ∞ bootstrap resamples. Then (i) ̂ ∗ converges to (0 1) in distribution in

probability, (ii) lim→∞  (̂ ≥ ∗) =  under H0 (iii) lim→∞  (̂ ≥ ∗) → 1 − Φ( − ) under

H1(12 −12) and (iv) lim→∞  (̂ ≥ ∗) = 1 under H1 where  denotes the 100(1− )th percentile

of the standard normal distribution.

Remark 11. Theorem 4.5 shows that the QR wild bootstrap provides an asymptotic valid approxima-

tion to the limit null distribution of ̂ because the null hypothesis is always satisfied in the bootstrap

resamples. If the null hypothesis does not hold in the original sample D, then ̂ explodes at the rate

 but ̂
∗
 is still well behaved. This intuitively explains the consistency of the bootstrap-based test

̂ ∗ 
Remark 12. As a referee kindly points out, we can improve the speed of the wild bootstrap by considering

the score-based approach to wild bootstrap as advocated by Kline and Santos (2012, KS hereafter).

KS proposes a generalization of the wild bootstrap based upon perturbing the scores of M-estimators

and avoids recomputing the M-estimator in each bootstrap iteration, which saves in computation time

greatly. They study test statistics  that are quadratic forms in a vector-valued underlying statistic

 :  = 0. Under the null hypothesis,  is required to be asymptotically pivotal and exhibit a
linear expansion. But this is not the case for our test statistic ̂. Despite this, we can follow the spirit

of KS and the idea of weighted bootstrap in the statistics literature and propose a bootstrap procedure

that does not require parameter estimation in each bootstrap iteration. In fact, under H0 we show in the
proof of Theorem 4.3 that

−1 ( − B) = −1
2



X
1≤≤


¡
  

¢
+  (1) 

where 
¡
  

¢
=  ()



()

0Ω̄
() () and  = (

0
 

0
  )

0 That is, the dominant term
in  after bias correction is a second order degenerate  -statistic with kernel given by  (· ·)  We can
perturb a feasible version of the dominant term when constructing an alternative bootstrap statistic. Let

̂ = (
0
 

0
  ̂)

0 We consider the following bootstrap statistic:

̂ ∗∗ = ∗∗−1

2



X
1≤≤

̂(̂  ̂)

where ̂(̂  ̂) =  (̂)


()

0Ω̂0 Υ̂Ω̂


() (̂) 

∗∗2
 = 22 (1− )2tr(Ω̂0 Υ̂Ω̂ Ψ̂∗∗ Ω̂

0
 Υ̂Ω̂ Ψ̂

∗∗
 )

Ψ̂∗∗ ≡ 1
(1−)

P
=1 



()



()

02 (̂) and {  = 1  } is an IID sequence that is indepen-

dent of the data and has mean zero, variance one, and finite fourth moment 4. We show in Appendix E
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that ̂ ∗∗ converges to (0 1) in distribution in probability and thus can be used to obtain the bootstrap

-value.

5 Monte Carlo simulations

5.1 Evaluation of the sieve IVQR estimates

In this subsection, we examine the finite sample performance of the sieve IVQR estimator. We consider

four different data generating processes (DGPs) for Monte Carlo experiments.

DGP 1 corresponds to a location-scale model where the regression coefficients are independent of

quantiles:

DGP 1:

(
 = () +() + ()Φ−1 ( )
 =

£
 + Φ−1 ( )

¤

p
1 + 2

where  () ≡ () = 1+ sin(15)  () ≡ () = 2Φ(),  ∼ (−1 1),  ∼ (2 1),  ∼
(0 1),  ∼ (0 1), () = (1 + 052) exp(−2)    and  are mutually independent,

and  is a parameter that controls the degree of endogeneity. Apparently, a larger value of || indicates a
stronger degree of endogeneity. For this DGP, the SQF is written as (  ) = ()Φ−1 () + () +

().

DGP 2 is the same as DGP 1 except that  = [02 + Φ−1 ( )]
p
1 + 2. In comparison with

DGP 1, the instrument in DGP 2 is quite weak. Thus, we can check how our estimation performs in

the presence of weak instrument. Alternatively, one can also consider situations where the correlation

between the instrument and endogenous regressor decreases to zero as the sample size increases.

DGP 3 considers a random coefficient structural model where the regression coefficients vary with not

only the exogenous variable  but also an unobserved uniform random variable  :

DGP 3:

(
 = (  ) +(  )

 =
£
 + Φ−1 ( )

¤

p
1 + 2

where  () ≡ (  )|= = 1 + sin(15) + ln(2 + )Φ−1 ()   () ≡ ( )|= = 2Φ() +

exp(−2)Φ−1 ()  ∼ (2 1) and the remaining components are the same as those in DGP 1. It is

possible to see this model as a location-scale model which is more general than DGP 1, in a sense that

the scale function (·) takes a functional coefficient form () =  ln(2+)+ exp(−2), which
depends not only on  but also on (). The SQF of this DGP is simply (  ) =  ()+ ().

Finally, DGP 4 considers a location-scale model which is similar to DGP 1, but it differs in that (·)
is a function of 1 and (·) is a function of 2,  = (1 2), where 1 2 ∼ (−1 1) and are
mutually independent, and () = 02+05(cos(1)+exp(23)). The remaining components including

the shapes of the functions (·) and (·) are the same as those in DGP 1. The SQF of this DGP can be
written as (  ) = ()Φ−1 ()+(1)+(2). To simplify the computation, we only consider the

case where researchers know that the scale function () is additively separable with respect to 1 and

2 (c.f., Horowitz and Lee (2005)). It should be stressed that, when one uses a kernel-based estimator,

it is often computationally tedious to estimate functional coefficient models with different smoothing

variables. On the other hand, our sieve estimator can be easily applied to the estimation of such models.

For each DGP, we consider three sample sizes:  = 200 400 and 800. As for the choice of the sieve

space, we use the cubic B-spline basis functions (see, e.g., Schumaker (2007)). Let the number of internal
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knots be b15c, where bc denotes the integer part of , and  is a positive number. Then the number of
sieve approximation terms is given by  = 4+ b15c. To evaluate how our IVQR estimator is sensitive
to the choice of , we consider three different values of , namely,  ∈ {1 15 2}. The simulations
are coded in R. The first stage quantile regression is implemented by the function rq in the package

quantreg. For the degree of endogeneity, we consider three values for , namely,  ∈ {02 05 08}.
For  , we try two quantile values, 0.5 (median) and 0.9. Thus we have 216 simulation set-ups in total

(four DGPs, three sample sizes, three choices of , three ’s, and two  ’s). The number of Monte Carlo

repetitions for each scenario is set to be 1000. The estimated functional coefficients are evaluated by the

mean absolute deviation (MAD) statistic:

MAD(̂() (·)) = 1



X
=1

¯̄̄
̂()

³

()


´
− 

³

()


´¯̄̄


and the mean squared error (MSE) statistic:

MSE(̂() (·)) = 1



X
=1

h
̂()

³

()


´
− 

³

()


´i2


where 
()
 means the th draw of  in the th replicated data set and ̂() (·) is the IVQR estimate for

 (·) obtained from the th replicated data set. MAD(̂
()

 (·)) and MSE(̂() (·)) are computed in the
same manner as above. In DGPs 1, 2 and 4, we need to estimate not only  (·) and  (·) but also the
functional intercept term (·)Φ−1 (), but its estimation results are omitted to save space.
Tables 1 and 2 report the average MAD values and the average MSE values over 1000 replications for

 = 05 and  = 09, respectively. We summarize some important findings from Tables 1-2. First, in terms

of the choice of , we observe that estimates with  = 1 always outperform those with  = 15 and  = 2.

Recall that the estimation bias becomes smaller and the variance becomes larger as  or equivalently 

increases. Therefore, for the DGPs under investigation it seems that bias is of not a big concern and

a small value of sieve approximating terms could do a good job in terms of bias reduction. Second, as

expected, the estimation becomes more accurate so that MAD and MSE decrease quickly as the sample

size increases. This is true for all DGPs and all choices of   and   Third, it becomes hard to estimate

the functional coefficient  (·) of the endogenous regressor as the degree of endogeneity increases. This
phenomenon becomes even more transparent when the sample size is small and the instrument is weak

as in DGP 2. These results support the common knowledge that the availability of a large data set and

strong instruments is crucial for obtaining accurate estimates.4 On the other hand, the estimation of

the functional coefficient  (·) of the exogenous regressor appears more or less independent of the degree
of endogeneity. Fourth, the results for DGP 4 show that our sieve IVQR estimator works well for the

cases where the functional coefficients have different smoothing variables. Finally, comparing the results

for DGP 1, 2 and 4 in Table 1 with those in Table 2 suggests that the parameters in the conditional

median regression can be estimated more precisely than those in the high-quantile ( = 09) regression.

Note that we can make such a comparison here because in these DGPs the functional coefficients do not

vary over the quantile index   which is not the case for DGP 3. This result is reasonable because the

4Chernozhukov and Hansen (2008) propose an inference procedure for an instrumental variable quantile regression which

is robust to weak and partial identification. It seems possible to extend their approach to FCQR models, which is a topic

for future research.

22



conditional density of the error term at  = 09 is lower than that at the median in our simulation set-ups

so estimates at high quantiles are expected to have larger variance than those for the median regression.

5.2 Tests for the constancy of functional coefficients

We next examine the finite sample performance of the proposed test. Two DGPs for Monte Carlo

experiments are considered, which are, respectively, modifications of DGPs 1 and 3 from the previous

subsection:

DGP 10:

(
 = () +() + ()Φ−1 ( )
 =

£
 + Φ−1 ( )

¤

p
1 + 2

where () = 1 + sin(15∆0) and () = 2Φ(∆0)

DGP 30:

(
 = (  ) +(  )

 =
£
 + Φ−1 ( )

¤

p
1 + 2

where  () = 1 + sin(15∆0) + ln(2 +∆0)Φ
−1 ()  and  () = 2Φ(∆0) + exp(−∆02)Φ−1 () 

In both DGPs    and  are generated as before. We consider the following three null hypotheses:

H0 :  () is constant with respect to 

H0 :  () is constant with respect to 

H0 :  () and  () are both constant with respect to 

When ∆0 = 1 DGPs 1
0 and 30 reduce to DGPs 1 and 3, respectively, so that neither functional coefficient

is constant and we shall examine the power behavior of our test. When∆0 = 0 both functional coefficients

become a constant and we shall examine the size behavior of our test.

For each DGP, we consider three sample sizes:  = 200 400 and 800. For the choice of sieve space,

we use the cubic B-spline basis functions with the number of internal knots being b15c. We consider
three values for  (02, 05 and 08) and two values of ∆0 (0 and 1), and fix  to be 05. The number of

Monte Carlo repetitions and bootstrap resamples for each set-up are set to be 500 and 200, respectively.

Table 3 report the results for our ̂ ∗-based bootstrap test. We summarize some important findings
from Table 3. First, when the sample size is 800, the size of our test is well controlled in both DGP

10 and DGP 30 despite some small variation, for all values of  and all three null hypotheses under
investigation. The degree of endogeneity has some effect on the size behavior. Second, our test tends

to be oversized for small sample sizes (but the size distortion is quickly corrected as the sample size

increases, as described just above). Third, in terms of power, out test has good power property in

both DGPs. In particular, as the sample size increases, the empirical power also increases, as expected.

Another noteworthy phenomenon is that the increase in the degree of endogeneity tends to decrease the

power of the test in DGP 30 for H0. We also implement the ̂ ∗∗ -based bootstrap test and find it is
severely undersized for both DGPs under consideration but has power comparable to that of the ̂ ∗-based
bootstrap test. See Tables A.1 and A.2 in Supplementary Appendix F for details.
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Table 1: Finite sample performance of our IVQR estimator ( = 05)

MAD MSE

DGP    = 1  = 15  = 2  = 1  = 15  = 2

 (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)
1 200 0.2 0.147 0.144 0.175 0.173 0.189 0.183 0.036 0.034 0.052 0.051 0.063 0.058

0.5 0.166 0.148 0.200 0.175 0.218 0.189 0.049 0.037 0.077 0.054 0.100 0.064

0.8 0.198 0.148 0.245 0.184 0.273 0.198 0.087 0.040 0.168 0.075 0.269 0.097

400 0.2 0.111 0.108 0.119 0.118 0.135 0.134 0.020 0.019 0.023 0.023 0.030 0.029

0.5 0.121 0.107 0.133 0.117 0.151 0.134 0.025 0.019 0.030 0.023 0.041 0.030

0.8 0.144 0.108 0.156 0.117 0.179 0.135 0.039 0.020 0.048 0.023 0.069 0.033

800 0.2 0.075 0.073 0.086 0.084 0.097 0.094 0.009 0.009 0.012 0.011 0.015 0.014

0.5 0.083 0.074 0.095 0.085 0.106 0.095 0.011 0.009 0.015 0.012 0.019 0.015

0.8 0.096 0.074 0.111 0.085 0.125 0.096 0.016 0.009 0.021 0.012 0.028 0.015

2 200 0.2 0.809 0.151 1.005 0.187 1.094 0.199 1.498 0.041 2.785 0.073 3.089 0.083

0.5 1.031 0.167 1.194 0.191 1.245 0.205 2.546 0.066 3.268 0.096 3.330 0.117

0.8 1.211 0.160 1.332 0.187 1.472 0.208 3.922 0.080 4.519 0.132 5.938 0.191

400 0.2 0.586 0.111 0.637 0.121 0.735 0.140 0.651 0.021 0.795 0.025 1.117 0.034

0.5 0.761 0.122 0.835 0.133 0.953 0.151 1.387 0.031 1.697 0.038 2.118 0.051

0.8 0.924 0.117 0.984 0.127 1.070 0.144 1.960 0.036 2.151 0.043 2.510 0.062

800 0.2 0.387 0.074 0.447 0.086 0.508 0.096 0.267 0.009 0.367 0.012 0.482 0.016

0.5 0.479 0.079 0.574 0.094 0.654 0.105 0.520 0.011 0.822 0.017 1.037 0.022

0.8 0.612 0.084 0.712 0.096 0.789 0.107 0.870 0.015 1.165 0.021 1.416 0.027

3 200 0.2 0.304 0.308 0.362 0.368 0.391 0.398 0.174 0.170 0.250 0.247 0.298 0.293

0.5 0.317 0.300 0.382 0.357 0.415 0.385 0.199 0.162 0.307 0.246 0.360 0.286

0.8 0.339 0.290 0.413 0.351 0.451 0.379 0.237 0.161 0.399 0.259 0.497 0.326

400 0.2 0.227 0.230 0.246 0.251 0.282 0.288 0.095 0.092 0.111 0.110 0.148 0.146

0.5 0.229 0.218 0.251 0.238 0.286 0.273 0.100 0.085 0.119 0.102 0.157 0.136

0.8 0.247 0.210 0.269 0.229 0.311 0.261 0.124 0.081 0.146 0.097 0.200 0.130

800 0.2 0.151 0.151 0.176 0.178 0.199 0.200 0.042 0.040 0.058 0.055 0.074 0.070

0.5 0.156 0.149 0.181 0.172 0.202 0.192 0.045 0.038 0.061 0.052 0.076 0.065

0.8 0.164 0.139 0.189 0.161 0.215 0.182 0.051 0.034 0.068 0.046 0.089 0.059

4 200 0.2 0.203 0.202 0.243 0.241 0.261 0.262 0.071 0.073 0.103 0.106 0.120 0.125

0.5 0.226 0.207 0.275 0.242 0.295 0.260 0.095 0.076 0.152 0.107 0.186 0.127

0.8 0.272 0.206 0.339 0.246 0.364 0.263 0.157 0.075 0.291 0.110 0.340 0.130

400 0.2 0.149 0.148 0.161 0.160 0.184 0.181 0.038 0.039 0.044 0.046 0.057 0.058

0.5 0.167 0.150 0.179 0.163 0.206 0.185 0.049 0.040 0.057 0.047 0.077 0.061

0.8 0.195 0.150 0.213 0.162 0.244 0.183 0.074 0.040 0.092 0.047 0.124 0.060

800 0.2 0.104 0.103 0.118 0.119 0.133 0.131 0.018 0.018 0.023 0.024 0.029 0.030

0.5 0.114 0.103 0.130 0.118 0.147 0.132 0.022 0.019 0.029 0.024 0.037 0.030

0.8 0.133 0.105 0.152 0.120 0.172 0.133 0.031 0.019 0.041 0.025 0.054 0.030
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Table 2: Finite sample performance of our IVQR estimator ( = 09)

MAD MSE

DGP    = 1  = 15  = 2  = 1  = 15  = 2

 (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)  (·)
1 200 0.2 0.201 0.200 0.242 0.236 0.262 0.254 0.070 0.068 0.105 0.098 0.125 0.114

0.5 0.235 0.204 0.290 0.249 0.314 0.268 0.113 0.074 0.201 0.120 0.340 0.146

0.8 0.291 0.210 0.371 0.262 0.407 0.287 0.231 0.092 0.434 0.166 0.579 0.199

400 0.2 0.152 0.149 0.164 0.161 0.187 0.183 0.038 0.036 0.045 0.043 0.058 0.056

0.5 0.168 0.149 0.184 0.164 0.208 0.184 0.050 0.037 0.063 0.045 0.081 0.058

0.8 0.204 0.151 0.225 0.166 0.258 0.190 0.088 0.041 0.115 0.051 0.151 0.068

800 0.2 0.103 0.102 0.119 0.117 0.134 0.131 0.017 0.017 0.023 0.022 0.029 0.028

0.5 0.114 0.102 0.133 0.117 0.149 0.131 0.022 0.017 0.030 0.023 0.038 0.028

0.8 0.133 0.104 0.156 0.121 0.178 0.136 0.031 0.018 0.046 0.024 0.062 0.031

2 200 0.2 1.174 0.218 1.485 0.266 1.598 0.288 3.510 0.091 5.943 0.154 6.988 0.188

0.5 1.400 0.222 1.588 0.262 1.625 0.273 4.593 0.156 5.298 0.233 5.555 0.250

0.8 1.567 0.255 1.791 0.312 1.848 0.341 6.441 0.276 8.666 0.485 10.803 0.859

400 0.2 0.856 0.157 0.925 0.172 1.079 0.198 1.830 0.045 2.004 0.054 2.738 0.075

0.5 1.110 0.172 1.176 0.182 1.268 0.201 2.797 0.071 3.016 0.076 3.378 0.100

0.8 1.277 0.174 1.356 0.190 1.478 0.219 3.326 0.097 3.959 0.121 4.798 0.181

800 0.2 0.544 0.105 0.638 0.121 0.727 0.137 0.554 0.019 0.822 0.025 1.080 0.032

0.5 0.735 0.115 0.860 0.132 0.964 0.147 1.281 0.027 1.745 0.036 2.079 0.046

0.8 0.896 0.117 1.024 0.135 1.133 0.150 1.697 0.034 2.131 0.048 2.599 0.061

3 200 0.2 0.409 0.460 0.490 0.545 0.527 0.588 0.325 0.392 0.476 0.557 0.556 0.654

0.5 0.431 0.501 0.523 0.602 0.564 0.648 0.371 0.487 0.580 0.752 0.689 0.876

0.8 0.476 0.529 0.576 0.638 0.625 0.682 0.481 0.553 0.831 0.950 0.953 1.095

400 0.2 0.306 0.342 0.330 0.370 0.382 0.425 0.179 0.211 0.208 0.250 0.281 0.332

0.5 0.320 0.374 0.345 0.404 0.392 0.455 0.205 0.268 0.243 0.316 0.311 0.398

0.8 0.346 0.387 0.381 0.420 0.428 0.475 0.239 0.273 0.294 0.328 0.383 0.430

800 0.2 0.208 0.229 0.242 0.268 0.272 0.302 0.082 0.093 0.111 0.127 0.140 0.162

0.5 0.214 0.250 0.246 0.289 0.277 0.324 0.087 0.110 0.114 0.147 0.145 0.187

0.8 0.231 0.263 0.268 0.303 0.303 0.341 0.104 0.122 0.140 0.161 0.179 0.207

4 200 0.2 0.280 0.284 0.334 0.335 0.362 0.365 0.140 0.145 0.202 0.214 0.242 0.256

0.5 0.320 0.282 0.388 0.337 0.424 0.373 0.209 0.145 0.333 0.216 0.429 0.263

0.8 0.404 0.290 0.500 0.343 0.554 0.374 0.398 0.155 0.681 0.223 1.027 0.270

400 0.2 0.209 0.210 0.226 0.227 0.256 0.258 0.075 0.078 0.089 0.091 0.117 0.117

0.5 0.236 0.212 0.254 0.229 0.292 0.259 0.103 0.079 0.122 0.093 0.185 0.120

0.8 0.282 0.208 0.306 0.226 0.360 0.259 0.187 0.077 0.215 0.091 0.314 0.121

800 0.2 0.144 0.145 0.165 0.166 0.186 0.186 0.034 0.037 0.046 0.048 0.058 0.060

0.5 0.158 0.142 0.184 0.162 0.207 0.182 0.043 0.035 0.058 0.046 0.076 0.057

0.8 0.185 0.141 0.218 0.162 0.247 0.183 0.063 0.035 0.091 0.046 0.123 0.058
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Table 3: Finite sample rejection frequency of ̂ ∗ -based bootstrap test

DGP ∆0   H0 H0 H0
1% 5% 10% 1% 5% 10% 1% 5% 10%

10 0 0.2 200 0.020 0.072 0.138 0.030 0.064 0.116 0.028 0.066 0.122

400 0.018 0.068 0.136 0.016 0.084 0.144 0.024 0.078 0.152

800 0.010 0.056 0.102 0.014 0.050 0.118 0.014 0.068 0.118

0.5 200 0.020 0.084 0.150 0.042 0.104 0.172 0.038 0.106 0.190

400 0.008 0.060 0.106 0.010 0.064 0.128 0.006 0.064 0.130

800 0.010 0.048 0.118 0.028 0.064 0.132 0.020 0.062 0.134

0.8 200 0.014 0.080 0.136 0.040 0.086 0.164 0.032 0.086 0.152

400 0.014 0.050 0.108 0.006 0.072 0.144 0.002 0.070 0.150

800 0.014 0.048 0.108 0.012 0.048 0.110 0.018 0.060 0.104

1 0.2 200 0.998 0.998 0.998 0.776 0.898 0.948 0.980 0.992 0.996

400 1.000 1.000 1.000 0.974 0.986 0.992 1.000 1.000 1.000

800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 200 1.000 1.000 1.000 0.810 0.936 0.970 0.984 0.998 1.000

400 1.000 1.000 1.000 0.972 0.992 1.000 1.000 1.000 1.000

800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.8 200 0.998 0.998 0.998 0.786 0.918 0.956 0.980 0.990 0.994

400 1.000 1.000 1.000 0.976 0.994 0.996 1.000 1.000 1.000

800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

30 0 0.2 200 0.020 0.082 0.150 0.022 0.088 0.154 0.024 0.100 0.146

400 0.010 0.046 0.108 0.024 0.084 0.134 0.026 0.060 0.114

800 0.006 0.056 0.112 0.014 0.062 0.116 0.006 0.062 0.110

0.5 200 0.026 0.078 0.142 0.022 0.066 0.132 0.024 0.068 0.118

400 0.020 0.066 0.116 0.012 0.064 0.124 0.020 0.060 0.120

800 0.012 0.054 0.112 0.010 0.060 0.112 0.014 0.060 0.114

0.8 200 0.016 0.072 0.128 0.018 0.086 0.146 0.014 0.074 0.136

400 0.008 0.064 0.120 0.018 0.060 0.132 0.006 0.072 0.132

800 0.004 0.044 0.098 0.016 0.054 0.096 0.010 0.046 0.106

1 0.2 200 0.460 0.676 0.770 0.266 0.332 0.488 0.370 0.624 0.746

400 0.726 0.888 0.926 0.324 0.594 0.748 0.674 0.866 0.934

800 0.968 0.986 0.992 0.820 0.942 0.968 0.968 0.990 0.992

0.5 200 0.424 0.616 0.738 0.286 0.420 0.552 0.374 0.646 0.780

400 0.704 0.852 0.904 0.408 0.658 0.786 0.694 0.864 0.910

800 0.940 0.986 0.992 0.826 0.952 0.978 0.952 0.990 0.998

0.8 200 0.358 0.556 0.664 0.262 0.406 0.552 0.312 0.578 0.710

400 0.688 0.834 0.886 0.422 0.728 0.832 0.686 0.856 0.928

800 0.940 0.976 0.990 0.904 0.976 0.988 0.954 0.988 0.994
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6 An empirical application

In this section, we present an empirical application of estimating quantile Engel curves for food. The

analysis is performed on a pooled U.K. Family Expenditure Survey (FES) data from 1994 to 1996. There

are a number of studies that estimate Engel curves using the FES data; see Banks et al. (1997), Blundell

et al. (1998), Blundell et al. (2003), Blundell et al. (2007), and Chen and Pouzo (2009, 2012), among

others. Although most of these studies have used a (parametric or non/semi-parametric) mean regression

approach, by applying a quantile regression approach to the estimation of Engel curves, we can account

for unobserved taste heterogeneity in households’ consumption as in Chen and Pouzo (2009, 2012). It is

also important in empirical Engel curve analysis to account for observable household demographics in a

way consistent with consumer optimization theory; see, e.g., Blundell et al. (1998), Blundell et al. (2003)

and Blundell et al. (2007) for details. For categorical demographics, a straightforward approach is to split

the data into subsamples according to the categories, and estimate Engel curves within each subsample.

Similarly, we may use a “localization” approach in the case of continuous demographic variables such

as the age of household children.5 Then, in order to preserve a degree of demographic homogeneity, we

select from the FES data during 1994 to 1996 a subsample of coupled households with one child who

own a car. As in Blundell et al. (2003), the selection of households with cars has a role to include

motoring expenditures and petrol as commodity consumption. In addition, in order to lower the risk

of misreporting bias, we exclude observations with the share of food expenditure being zero, and with

the household income being less than 100 GBP. Then, after excluding these observations, the analysis is

performed on a sample of 1672 households. Using this dataset, we estimate the following model by the

proposed IVQR estimator:

Food Share =  (Child’s Age) ln(Total Expenditure) +  (Child’s Age) + 

Following the literature, we treat ln(Total Expenditure) as an endogenous variable and employ ln(Household

Income) as an instrument for it.6 The descriptive statistics for each variable are summarized in Table 4.

Table 4: Descriptive statistics for the FES dataset ( = 1672)

Variable Mean Median Std. Dev. Min Max

Food Share 0.266 0.263 0.088 0.015 0.710

Child’s Age 7.583 6.500 6.253 0 18

Total Expenditure (GBP) 293.969 255.126 174.236 57.211 2380.785

Household Income (GBP) 435.096 389.629 261.561 101.070 5875.380

5When the dimension of demographic variables is not small, using the extended partially linear model introduced by

Blundell et al. (1998) can be more attractive than the localization approach, in the sense of alleviating the notorious “curse

of dimensionality” associated with a pure nonparametric model.
6 It should be noted that, as pointed out by the aforementioned authors, the assumption of linear Engel curves with

respect to log-expenditure is very restrictive in general. However, at least for the Engel curve for food, it is empirically

known that it is well approximated by a function linear in log-expenditure (see, e.g., Banks et al. (1997) and Blundell et al.

(1998)). Thus, for illustrative purposes, we employ this simple linear specification. When estimating Engel curves for the

other categories of goods, it is desirable to include additional higher order total expenditure variables in the estimation. Of

course, the IVQR estimator is available for estimating such models. Another important aspect of this analysis is that, since

we use a pooled data over 1994-96, the effects from changes in relative prices between different time periods are averaged

over the three years.
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For the model estimation, we use the cubic B-spline basis functions with the number of internal knots

being 4 (
¥
167215

¦
= 4). The sieve IVQR estimates of  (·) at  = 01, 03, 05, 07 and 09 are reported

in Figure 1. The 95% confidence intervals are calculated by using the wild bootstrap with 500 resamples

based on Feng et al. (2011). For comparison, the parametric IVQR estimate of  is also reported in

the figure, based on the assumption that neither  (·) nor  (·) varies with child’s age but ln(Total
Expenditure) is endogenous. The parametric IVQR estimations are implemented by using the method

of Chernozhukov and Hansen (2006), and their results for  and  are also summarized in Table 5.

From Figure 1, we can confirm that the effects of total expenditure amount on the food share vary over

both the proportion of food expenditure and the age of household child. As expected, the sign of the

total expenditure term is negative for the all quantiles and the whole domain of child’s age (except for

a very small region where  = 09 and Child’s Age = 0). Note, however, that the estimates may not be

statistically significantly different from zero for some part of the domain. In particular, the estimate of

 (·) at  = 01 has relatively wide confidence interval compared to the other quantiles. On average, we
observe that the magnitude of  (·) becomes larger as  increases. Therefore, we can conclude that on
the whole the amount of total expenditure becomes important on the food share for those households

who allocate a large proportion of their budget to foods. As shown in Table 5, the parametric IVQR

estimates also show the same decreasing tendency of  in  . Based on these estimation results, we can

estimate the quantile Engel curve for food at each  . However, note that the monotonicity of conditional

quantile function with respect to  is not automatically satisfied with the IVQR estimation procedure.

Thus, we have used the rearrangement method proposed by Chernozhukov et al. (2010) at each (Child’s

Age ln(Total Expenditure)) based on 499 quantile indices: {0002 0004  0998}. Figure 2 presents the
estimated quantile Engel curve at  = 01, 03, 05, 07 and 09. As a consequence of the rearrangement,

the estimated Engel curves are not necessary continuous. From Figure 2, we can confirm that when

the age of household child is one, the share of total expenditure spent on food is relatively low to the

other stages of age for the all quantiles. When the age of household child becomes five and ten, the two

estimated Engel curves take similar form.

Table 5: Parametric instrumental variable quantile regression estimates

 = 01  = 03  = 05  = 07  = 09

Estimate of  -0.0428 -0.0534 -0.0540 -0.0670 -0.0819

(-statistic) (-5.5214) (-5.7578) (-6.3160) (-10.3387) (-7.8687)

Estimate of  0.4058 0.5186 0.5645 0.6777 0.8184

(-statistic) (9.2330) (9.8398) (11.7411) (18.8748) (14.3012)

Now we consider the test of constancy of the functional coefficients. We consider the following three

null hypotheses:

H0 :  (·) is constant with respect to Child’s Age
H0 :  (·) is constant with respect to Child’s Age
H0 :  (·) and  (·) are both constant with respect to Child’s Age.
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Figure 1: Plots of estimated  (Child’s Age) : (a) estimated  (Child’s Age) at  = 01 03 05 07 and

09; (b)  = 01; (c)  = 03; (d)  = 05; (e)  = 07; (f)  = 09.
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Figure 2: Estimated Engel curves: (a)  = 01; (b)  = 03; (c)  = 05; (d)  = 07; (e)  = 09.
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We implement the test by following the same test procedure used in the simulations. In particular, we set

the weighting function (Child’s Age) = 1 uniformly in Child’s Age. Table 6 reports the bootstrap -values

for the above three null hypotheses where the number of bootstrap resamples is 500. We summarize some

interesting findings from Table 6. First, the results clearly indicate that the effects of total expenditure

on the food share are significantly heterogeneous with respect to Child’s Age at the middle and higher

quantiles. When  = 07 and 09, all of the three null hypotheses are rejected at 5% significance level.

When  = 05 we can reject H0 at 5% significance level but not H0 and H0 . Second, we fail

to reject the constancy of  (·) (and similarly  (·)) at  = 01 and 03 for any reasonable level of

significance. These results indicate that, for those (probably rich) households who only need to spend a

small proportion of their budget on foods, the growth of their child does not much affect the share of food

expenditure. For  = 01, the high p-value could be partially due to the large variance of the estimate as

suggested in Figure 1.

Table 6: -values for our nonparametric tests

Null hypotheses  = 01  = 03  = 05  = 07  = 09

H0:  (·) is constant 0.468 0.114 0.024 0.024 0.004

H0 :  (·) is constant 0.434 0.196 0.484 0.020 0.002

H0 :  (·) and  (·) are both constant 0.428 0.194 0.462 0.020 0.002

7 Conclusion

In this paper we consider sieve IVQR estimation of functional coefficient models with endogeneity. We

establish the uniform consistency and asymptotic normality of the estimators, based on which we also

propose a nonparametric specification test for the constancy of the functional coefficients and establish

its asymptotic properties. Monte Carlo simulations indicate that our estimator and test perform well in

finite samples. An application to the estimation of quantile Engel curves indicates the usefulness of our

model, estimator, and test.

Several extensions are possible. First, as an alternative, one may consider kernel estimation of func-

tional coefficient models with endogeneity. Even though kernel method is based on local approximation

of unknown functions and is computationally expensive, it is interesting to study the asymptotic prop-

erties of kernel estimates for our model. Second, one may propose a different test for the constancy of

functional coefficients. For example, one may consider an LM type of test by estimating the model under

the null hypothesis and basing a test statistic on the estimated score function. This approach surely

has its advantage for nonparametric sieve estimation, but it may result in much greater computational

burden if one uses kernel estimation unless one wants to test the constancy of all functional coefficients.

Third, endogeneity may be present in other types of nonparametric or semiparametric quantile regres-

sion models. It is also interesting to broaden the research scope of the current paper to a more general

structural model. We leave these as future research topics.
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Appendix

A Proof of the results in section 3

Proof of Theorem 3.1. By Assumptions A1(ii) and A2(i)-(ii), lim→∞  ( ≤ ()0 +

()0 |) =  a.s. Then by Theorem 3 of Chernozhukov and Hansen (2006), (     ) is

identified for →∞ under our Assumptions A1-A4, which leads to the identification of ( ()  ()  ())

by Assumption A2(ii). ¥

To prove Theorem 3.2, we first state some technical lemmas whose proofs are provided in the supple-

mentary appendix.

Lemma A.1 Suppose the conditions of Theorem 3.2 hold. Then

(i) sup∈A
||Φ()−Φ()|| =  (

12(ln)12) =  (1) 

(ii) Φ2 ≤ inf∈A min (Φ()) ≤ sup∈A
max (Φ()) ≤ 2̄Φ w.p.a.1.

(iii) ||Ψ̂ −Ψ || =  (
1212) =  (1) 

(iv) Ψ2 ≤ min(Ψ̂) ≤ max(Ψ̂) ≤ 2̄Ψ w.p.a.1.

Lemma A.2 Suppose the conditions of Theorem 3.2 hold. Then sup∈A

°°°−1P
=1 ( Θ̂ ())

°°° =

¡
−12

¢
.

Lemma A.3 Suppose the conditions of Theorem 3.2 hold. Then sup∈A

°°−1P
=1 (Θ ())

°° =
 [( ln)12]

Lemma A.4 Suppose the conditions of Theorem 3.2 hold. Then for any constant   0

sup
kck=1

sup
∈A

sup
||Θ−Θ ()||≤( ln)12

¯̄̄̄
¯−1c0

X
=1

[(Θ)− (Θ ())] + c
0Φ()[Θ−Θ ()]

¯̄̄̄
¯ =  (

−12)

Lemma A.5 Let (;Θ1Θ2) ≡ (Θ1)− (Θ2)− [(Θ1)]+ [(Θ2)]  Suppose the con-

ditions of Theorem 3.2 hold. Then

(i) [sup∈A
sup||Θ1−Θ2||≤∆ k(;Θ1Θ2)k2] ≤ 12∆ for sufficiently large ;

(ii) for any constant   0 and c ∈ R(2+3) with kck = 1 [sup∈A
sup||Θ−Θ ()||≤( ln)12P

=1 |c0(;ΘΘ ())|2] = ( ()) where  () = ( ln)12

Lemma A.6 Suppose the conditions of Theorem 3.2 hold. Then for any c ∈ R(2+3) with kck ≤ 1
and   0 we have

sup
k(Θ1)k≤k(Θ2)k≤

P
=1 kc0(;Θ1Θ2)k

1 (;Θ1Θ2) + 2 (;Θ1Θ2) + −2
= 

³
( ln)12

´


where 1 (;Θ1Θ2) =
nP

=1 kc0(;Θ1Θ2)k2
o12

and 2 (;Θ1Θ2) =
nP

=1 kc0(;Θ1Θ2)k2
o12



Proof of Theorem 3.2. To prove (i), we extend the proof of Theorem 2.1 in He and Shao (2000)

from a pointwise result to a uniform one. By the convexity of the objective function it suffices to show

that for any   0 there exists a large constant  ≡  () which does not depend on  ∈ A such that


¡
infkck=1−

P
=1 c

0 (Θc ())  0 for all  ∈ A

¢
 1− for sufficiently large  whereΘc () =
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Θ ()+ ( ln)
12
c7 By Lemma A.6,

P
=1 c

0 (;Θc () Θ ()) =  [( ln)
12
]{1 ()+

2 () + −2} uniformly in  ∈ A  where 1 () = {P
=1|c0(;Θc () Θ ())|2}12 and

2 () = {
P

=1 |c0(;Θc () Θ ())|2}12 By Lemma A.5(ii), we have that uniformly in  ∈ A 

1 () = ( ()
12
) and 2 () =  ( ()

12
) by Jensen and Markov inequalities, respec-

tively. In addition,  () ln =  ln[ 32(ln)12] = ( ln) under Assumption A6(i).

These results, in conjunction with Lemma A.4 implies that uniformly in  ∈ A

X
=1

c0(Θc ()) =
X
=1

c0 (Θ ()) +
X
=1

c0 [ (Θc ())− (Θ ())]

+
£
1 () + 2 () + −2

¤
 [( ln)12]

=
X
=1

c0(Θ ())−  ( ln)
12
c0Φ()c+ (( ln)

12
)

Consequently, for sufficiently large  we have



Ã
inf
kck=1

−
X
=1

c0 (Θc ())  0 for all  ∈ A

!

≥ 

Ã
( ln)−12 inf

kck=1
−

X
=1

c0(Θ ())  −
2
c0Φ()c for all  ∈ A

!

≥ 

Ã
( ln)

−12
inf
kck=1

−
X
=1

c0(Θ ())  −
2
Φ for all  ∈ A

!

= 

Ã
( ln)−12 sup

∈A

sup
kck=1

X
=1

c0(Θ ()) 


2
Φ

!
→ 1 as  →∞

where the last line follows by Lemma A.3.

For part (ii), we apply Lemma A.6 with (Θ1Θ2) = (Θ̂ () Θ ()) to obtain
P

=1 c
0(; Θ̂ () Θ ()) =¡

̂ () + −2
¢
 [( ln)

12
] where ̂ () =  ( ()

12
) by (i) and Lemma A.5(ii). Then by Lem-

mas A.2 and A.4, we have

c0Φ()[Θ̂ ()−Θ ()] = −1c0
X
=1

(Θ ()) +

³
−1[ () ln]12

´
+ 

³
−12

´
uniformly in ∈ A and c with kck = 1 It follows that Θ̂ ()−Θ () = −1Φ()−1

P
=1 (Θ ())

+o (
−12) +  where kk = 

¡
−1[ () ln]12

¢
=  (

12
 54−34 ln) ¥

Proof of Theorem 3.3. We first prove part (i). Recall Q () =  ()
0 () Let Q̂ () ≡

̂ ()
0̂ () By the triangle inequality,

sup
∈A

¯̄̄
̂ ()

0̂ ()−  ()
0 ()

¯̄̄
≤ sup

∈A

¯̄̄
[̂ ()−  ()]

0 [̂ ()−  ()]
¯̄̄
+ 2 sup

∈A

¯̄̄
 ()

0 [̂ ()−  ()]
¯̄̄

≡ 1 +2 say.

7Note that −
=1  (Θc ()) corresponds to


=1  ( ·) in He and Shao (2000) which is the directional derivative

of the objective function in the direction c defined in Koenker (2005, p.33).
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1 ≤ max () sup∈A
||̂ () −  ()||2 =  ( ln) =  (1) by Theorem 3.2(i) and As-

sumptions A5(i) and A6. By the matrix Cauchy-Schwarz inequality and the same assumptions,

2 ≤ sup
∈A

{ ()
0 ()}12 {1}12 ≤ {max ()}12 sup

∈A

k ()k {1}12

= 

³
12

´


³
( ln)12

´
= 

³
(ln)12

´
=  (1) 

It follows that

sup
∈A

¯̄̄
Q̂ ()−Q ()

¯̄̄
=  (1)  (A.1)

In view of the fact that the dimension of  is increasing with , we cannot conclude that ||̂− || =
 (1) directly from (A.1) by referring to the usual consistency theorem that works for the estimation

of finite dimensional parameter. Instead, we extend the consistency proof of White (1994, Theorem

3.4; see also Gallant and White (1988, Theorem 3.3)) to allow for diverging number of parameters.

Because  is identifiably unique on A by Assumption A4, for any   0 there exists 0 ()  ∞
such that inf≥0()

h
min∈A∩N 


Q()−Q ( )

i
≡  ()  0 Clearly,  () is nondecreasing in 

and it cannot increase when  decreases. By the definition of ̂  we have Q̂(̂ ) ≤ Q̂( ) +  () 3

[Note that we allow for approximate minimization.] By (A.1), we have Q(̂ ) ≤ Q̂(̂ )+  () 3 and

Q̂ ( )  Q( )+ () 3 w.a.p.1. It follows thatQ(̂ ) ≤ Q̂(̂ )+ () 3  Q̂( )+2 () 3 ≤
Q( ) +  () w.p.a.1. That is, Q(̂ )−Q( )   () w.p.a.1. It follows that ̂ ∈ N. Since 

is arbitrary, we conclude that ||̂ − || =  (1) 

Since Θ () is continuous in  by the maximum theorem, we have°°°Θ̂ −Θ°°° =
°°°Θ̂ (̂ )−Θ (̂ ) +Θ (̂ )−Θ ( )

°°°
≤

°°°Θ̂ (̂ )−Θ (̂ )
°°°+ °°°Θ (̂ )−Θ ( )

°°° =  (( ln)12) +  (1) =  (1)

by Theorem 3.2(i) and Slutsky theorem. This completes the proof of part (i).

Now, we prove part (ii). Let ̃ (Θ) ≡ (Θ)− ( Θ )− [(Θ)] + [( Θ )]  Using

the arguments similar to those used in the proof of (A.6) in Lu and Su (2015) or Lemma A.6, we can

prove that

sup
k(Θ)−( Θ )k≤

√
 ln

¯̄̄̄
¯−1

X
=1

c0̃ (Θ)

¯̄̄̄
¯ = 

³
−12

´
(A.2)

for any   0 and c ∈ R(2+3) with kck = 1 The problem is that we have only established the

convergence of (̂  Θ̂ ) in Frobenius norm but not its convergence rate. Let 1 = ( ln)12 In the

following we first demonstrate that ||̂ − || =  (1) and ||Θ̂ −Θ || =  (1) based on the fact

that

sup
k(Θ)−( Θ )k≤

√
 ln

¯̄̄̄
¯−1

X
=1

c0̃ (Θ)

¯̄̄̄
¯ =  (1)  (A.3)

Then we apply (A.2) to refine the Bahadur representations for ̂ − and Θ̂ −Θ 
By Lemma A.2, (A.3) and Theorem 3.2(i),

o

³
−12

´
= −1

X
=1

( Θ̂ ())
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X
=1

( Θ ) +
n
[( Θ̂ ())]− [( Θ )]

o
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X
=1

̃( Θ̂ ())
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X
=1

( Θ ) +
n
[( Θ̂ ())]− [( Θ )]

o
+O (1)  (A.4)
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where [( Θ̂ ())] denotes  [(Θ)]|Θ=Θ̂( ) by the convention in empirical process theory, and
hereafter O (·) or o (·) denotes the probability order of the Frobenius norm of the corresponding term.
By Taylor expansion and Assumption A1(iii), for any k−k =  (2) with 2 =  (1) we have

[( Θ̂ ())]− [(Θ )] = [ +O (2)] (− )+[Θ +O (2)]
h
Θ̂ ()−Θ

i
 (A.5)

where

 ≡  [(Θ)]

0

¯̄̄̄
(Θ)=( Θ )

= −
n
 ( ( Θ ) |)

() ( )
0o
and

Θ ≡  [(Θ)]

Θ0
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(Θ)=( Θ )
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n
 ( ( Θ ) |)
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()

0o
= −Φ ( ) 

Combining (A.4) and (A.5) yields

Θ̂ ()−Θ = [1 +O (2)]Φ ( )
−1
"
−1

X
=1

( Θ ) +  (− )

#
+O (1)  (A.6)

The last 3 × 1 elements of Θ̂ ()−Θ are given by

̂ ()− 0 = [1 +O (2)] Φ̄

"
−1

X
=1

( Θ ) +  (− )

#
+O (1)  (A.7)

where recall Φ ( )
−1 = [ Φ̄0 Φ̄0

]0

The second stage minimization problem implies that w.p.a.1, ̂ = argmin∈N

°°°̂ ()
°°°




where  =  (1) and

°°°̂ ()
°°°


=

°°°°°Φ̄
−1

X
=1

( Θ ) + Φ̄ (− )

°°°°°


[1 + (2)] +O (1) 

Noting that Φ̄ has full rank under Assumptions A5(ii)-(iv), the solution ̂ satisfies

̂ − = − ¡ 0Φ̄
0
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 0Φ̄

0
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( Θ ) [1 + (2)]

+O (1) 
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X
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( Θ ) [1 + (2)] +O (1)  (A.8)

Next, in view of the fact that ||Ω−1
P

=1 ( Θ )|| =  (()12 +−) by moment calcula-
tions and Chebyshev inequality, we can obtain a rough probability bound: ||̂ − || =  [()12+

− + 1] =  (1) by Assumption A6(i). With this and (A.6), we can obtain a rough probability

bound for Θ̂ −Θ too: ||Θ̂ −Θ || =  (1) 

Now, given these convergence rates for ̂ and Θ̂  we can apply (A.2) and refine the results in the

above procedure by replacing the term O (1) by o
¡
−12

¢
in (A.4) and (A.6)-(A.8). With this

replacement, we obtain an improved convergence rate for ̂ : ||̂ −  || =  (2) where 2 =

()12 +− With this choice of 2 we obtain

̂ − = Ω
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X
=1

( Θ ) + o

³
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´
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as +−2 = 
¡
−12

¢
 This proves (ii). Combining (A.6) and (A.8) with O (1) replaced by

o
¡
−12

¢
and choosing 2 = ()12 +− we have
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where ΩΘ = Φ ( )
−1 £

(2+3) +Ω
¤
 Thus (iii) follows. ¥

To prove Theorems 3.4 and 3.5, we first state a lemma whose proof is given in Supplementary Appendix

C.

Lemma A.7 Suppose Assumptions A5(i)-(iv) hold. Then there exist Ω and ̄Ω such that 0  Ω ≤
min (ΩΩ

0
 ) ≤ max (ΩΩ

0
 ) ≤ ̄Ω ∞ uniformly in 

Proof of Theorem 3.4. We only show (i) as the proof of (ii) is analogous. Using the notation

defined above (3.1), Minkowski inequality and Assumption A2, we have sup∈U k̂ ()−  ()k ≤
sup∈U

°°°Π()(̂ − )
°°° + sup∈U kΠ() −  ()k =  ()
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−2) (A.11)

To see this, let F1 = ( (1 − 1 ( Θ )) −  (1)    ( −  ( Θ )) −  ())
0 and F2 =

(1
(1)  



())

0 By Assumptions A1(i) and (iii) and A2(i)-(ii), Taylor expansion, and Markov
inequality, we can readily show that kF1k2 =  (

−2). Noting that F02F2 = Ψ̂ and that

F2(F
0
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−1F02 is a projection matrix with maximum eigenvalue 1, we have by Lemmas A.1(iv) and

A.7,
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−1 kF1k2 =  (

−2)

where the first and second inequalities follow from the fact that tr() ≤ max ()tr() for any symmet-

ric matrix  and p.s.d. matrix  (see, e.g., Bernstein (2005, Proposition 8.4.13)), and the third equality

follows from the fact that max
¡
Ω0Ω

¢
= max

¡
ΩΩ

0


¢ ≤ max (ΩΩ
0
 ) ≤ ̄Ω by Lemma A.7. It

follows that ||̂ −  || =  (()12 + −) and sup∈U k̂ ()−  ()k =  [(()12

+−)] ¥
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Proof of Theorem 3.5. Let
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Ã
̂ −

̂ −

!
and B () =

Ã
 ()−Π ()

 ()−Π ()

!
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≡ 1 +2 +3 +4 say,

where kk = 
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 We prove the theorem by showing that (i) 1

→  (0 1+2) and (ii)

 =  (1) for  = 2 3 4

First, we prove (i). Let  ∈ R1+2 such that kk = 1 Let  = −120Λ
() () Then
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where we use the fact that max (
0) ≤tr(0) = 1 and that

max (Λ
00Λ) ≤ max (Λ

0Λ) ≤ [ (1− )]
−1
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³
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It follows that 01
→  (0 1) by the Liapounov central limit theorem for triangular array independent

sequences (see, e.g., Davidson (1994, Theorem 23.11)). Thus (i) follows.

Now we prove (ii). By straightforward moment calculations and Assumption A6(ii), we can show that

k (2)k = 
³
−1

12−
´
=  (1) and kVar (2)k = 

³
−2

1−2
´
=  (1) 
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Then 2 =  (1) by Chebyshev inequality. For 3 we have
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where we use the fact that min (Σ ()) ≥  (1− )min (ΩΨΩ
0
 ) kΠ ()k2 ≥  (1− ) ΨΩ kΠ ()k2

by Assumption A5(ii) and Lemma A.7. Similarly, we can show that k4k2 ≤ [min (Σ ())]−1  kB ()k2
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¡
−2 −2

¢
=  (1) by Assumption A6(ii). This completes the proof. ¥

B Proof of the results in section 4

Proof of Theorem 4.1. Using the notation defined in the proof of Theorem 3.5, we have ̂1 () −
1 () = S

h
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= SΠ ()V − SB ()  It follows that
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Observe that 3 = 0 under H0 and k2k ≤ 12 kSk sup kB ()k ≤ 
¡
12−

¢
=  (1) by

Assumptions A2 and A6∗. It suffices to prove the theorem by showing that 1
→  (0Σ1 ) 

By Theorem 3.3, V = Ω
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() ( − ( Θ )) +  with kk = 
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decompose 1 as follows:
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following the same arguments as used in the proof of Theorem

3.5. It follows that 11
→  (0Σ1 ) by the Liapounov central limit theorem for triangular array

independent sequences.

Since  k12k2 =  ()  12 = 

¡
()12
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=  (1) by Chebyshev inequality. By the

same inequality, one can readily show that ||P
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 Using the argu-

ments as used in the proof of Lemma A.1(ii), one can show that max(
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= max
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+ (12) =  (1)  In conjunction with Lemma A.7, these imply that
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where the first inequality follows from the fact that tr() ≤tr()tr() for any two conformable p.s.d.
matrices  and  and the second inequality follows from the fact that tr() ≤ max ()tr() for real

symmetric matrix  and p.s.d. matrix . Similarly,
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It follows that 1
→  (0Σ1 )  This completes the proof. ¥

Proof of Theorems 4.2 and 4.3. We only prove Theorem 4.3, as the proof of Theorem 4.2 is a special

case. Let  ≡  () and ̄ ≡ −1
P

=1  Decompose  as follows

 =
X
=1

h
̂1 ()− ̄1 + ̄1 − ̂1

i0 h
̂1 ()− ̄1 + ̄1 − ̂1

i
 = 1 + 2 − 23 (B.1)
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≡ 11 + 12 + 213 say. (B.2)

We complete the proof of the theorem by showing that H1(12 −12) (i) −1 (11 − B) →  (0 1) 

(ii) −1 12 = 0 +  (1)  (iii) 
−1
 13 =  (1)  (iv) 

−1
 2 =  (1)  (v) 

−1
 3 =  (1)  (vi)

−1 (B̂ −B) =  (1)  and (vii) (̂ − )  =  (1)  These are respectively proven in Propositions

B.1-B.7 below.
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Proposition B.1 Suppose that the conditions in Theorem 4.3 hold. Then −1 (11 − B) →  (0 1) 
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is a second order

degenerate  -statistic with kernel function, we prove (i) by verifying all the conditions of Theorem 1 in
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Using the fact that | (2)| ≤ 1 and that 0 ≤ max () 
0 for conformable vector  and symmetric

matrix  tr() ≤ max ()tr() for any symmetric matrix  and p.s.d. matrix  we have
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A7(i), the first inequality follows from the fact that | (2)| ≤ 1 the second inequality from the fact
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0 for any conformable vector  and symmetric matrix  and the third inequality
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by Assumption A6**. Consequently, all conditions in Theorem 1 of Hall (1984) are satisfied and we can
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conclude −1 111
→  (0 1)  Next, write
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 It follows that −1 111 = 
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¢
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Chebyshev’s inequality. Consequently, we have proved that −1 (111 − B) →  (0 1) 

We now prove (ii). Using arguments as used in the proof of (A.11), we can readily show that
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Schwarz inequality,
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By Cauchy-Schwarz inequality, −1 116 ≤
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one also assumes that −2 = (1) one can use the same inequality to demonstrate that −1 11
= (1) for  = 4 5 because −1 111 = −1 (111 − B) + −1 B =  (1) +

¡
12
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noting that B =  () and −1 = 
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(see (B.3)). But we only assume that −(12+2) =

(1) and needs to prove −1 11 = (1) for  = 4 5 via another method. Fortunately, we can prove

these claims by straightforward moment calculations and Chebyshev inequality under Assumption A6∗∗.
This completes the proof of (ii).

Proposition B.2 Suppose that the conditions in Theorem 4.3 hold. Then −1 12 = 0 +  (1) 

Proof. Under H1(12 −12) ̄1 = −1
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Proposition B.3 Suppose that the conditions in Theorem 4.3 hold. Then −1 13 =  (1) 
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Noting that  [131]
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 we have 131 =  (1) by Chebyshev inequality.

Using similar arguments to those used in the proof of (A.11), we can readily show that 132 =  (1)

and 133 =  (1)  Consequently we have 
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as −1 = (−12) by (B.3) and −(2+12) =  (1) by Assumption A6∗∗

Proposition B.6 Suppose that the conditions in Theorem 4.3 hold. Then −1 (B̂ − B) =  (1) 

Proof. Observe that B̂−B =  (1− )tr{[Ω̂0 Υ̂Ω̂−Ω0(Υ1)Ω ]Ψ̂} Following and strengthening
the proof of Theorem 3 in Powell (1991), we can show that both ||Φ̂ − Φ || and ||̂ − || are
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Proof of Theorem 4.5. Let  ∗ denote the probability measure induced by the wild bootstrap con-
ditional on the original sample D Let ∗ (·) and ∗ (·) denote the probability order under  ∗; e.g.,
 = ∗ (1) if for any   0 

∗ (kk  ) =  (1)  Let ̂
∗
1 (·)  ̂

∗
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self-evident. For example,
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proof follows closely from that of Theorem 4.3.

Note that ̂1 = −1
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=1 ̂1 () in the bootstrap world plays the role of 1 (·) in the real data
world. Let ∗ ≡  (∗ ) and ̄∗ ≡ −1
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 )−̂1 ]∗ We prove the first part of the theorem by showing that (i) ( ∗1 − B∗) ∗ →

 (0 1) in distribution in probability, (ii)  ∗2∗ = ∗ (1)  (iii) 
∗
2

∗
 = ∗ (1)  (iv) (B̂∗−B∗)∗ =

∗ (1)  and (v) (̂
∗
 − ∗) ∗ = ∗ (1). The proofs of (ii)-(v) parallel those of Propositions B.4-B.7,

respectively, and thus omitted. We only sketch the proof of (i).

In view of the fact that  ∗ = ̂0 + ̂
0
 + ∗ and the first element of the vector of basis func-

tions ( (·)) is 1, the bootstrap analogues of B () and ( Θ ) = ( )
0 + 

()
0Θ −

 ()
0 −  ()

0 are both 0. This implies that that the bootstrap analogue of 2 defined in the

proof of Lemma B.1 is 0 and that of 3 can be simplified. Following the proof of Lemmas B.1 and B.3,

we can show that  ∗1 = 
∗
1 + ∗ (

∗
)  where 

∗
1 =
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P
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¡
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¢
 As 

∗
1

∗
 is a second

order degenerate  -statistic with independent but non-identically distributed (inid), we can apply the

CLT for second order degenerate  -statistic for inid observations (e.g., de Jong, 1987) and conclude that


∗
1

∗
 →  (0 1) in distribution in probability. Then (i) follows. This completes the first part of the

theorem.

Parts (ii)-(iv) of Theorem 4.5 follow from the first part and Theorems 4.2-4.4, respectively. ¥
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This supplementary material provides proofs for the technical lemmas in the above paper. We also present

the asymptotic analysis for the panel data models in Section 3.4 and the alternative bootstrap test in

Remark 12. More simulation results are reported in Appendix F.

C Proofs of the technical lemmas

Proof of Lemma A.1. (i) For fixed  ∈ A  we can readily follow Newey (1997) and show that

||Φ() − Φ()|| =  (
1212) by Chebyshev inequality. To obtain the uniform result, one

can cover the compact set A by a finite number of cubes and apply Boole’s and Bernstein’s inequalities

to show the claim.

(ii) Using the arguments as used in the proof of Lemma A.1 in Su and Jin (2012), we have by (i) and

Assumption A5(iii),

inf
∈A

min (Φ()) = inf
∈A

min
kκk=1

{κ0Φ()κ + κ0 (Φ()−Φ())κ}
≥ inf

∈A

min (Φ())− sup
∈A

kΦ()−Φ()k

≥ Φ − (
12(ln)12) ≥ Φ2 w.p.a.1.

and

sup
∈A

max (Φ()) = sup
∈A

max
kκk=1

{κ0Φ()κ + κ0 (Φ()−Φ())κ}

≤ sup
∈A

max (Φ()) + sup
∈A

kΦ()−Φ()k

≤ ̄Φ + (
12(ln)12) ≤ 2̄Φ w.p.a.1.

Analogously, we can prove (iii) and (iv). ¥

Proof of Lemma A.2. Let N = {1 2  } and H23 denote the collection of all (2 + 3)-

element subsets of N . Also, let p (h) denote a (2 + 3) × (2 + 3) matrix whose rows are the

vectors 
()

0 such that  ∈ h ∈ H23 , and let Y(h ) denote a (2 + 3) × 1 vector whose
elements are  − ( )

0 such that  ∈ h. By Theorem 3.3 of Koenker and Bassett (1978)

(see also Lemma A.2 of Horowitz and Lee (2005)), there uniquely exists h∗ () ∈ H23 such that

Θ̂ () = p (h
∗ ())−1Y(h∗ ()  ) for each  ∈ A , and H( Θ̂ ()) ∈ ( −1 )(2+3) (i.e., each

1



element of H( Θ̂ ()) lies strictly between  − 1 and ) where H( Θ̂ ()) =
P

∈(h∗())  [ −
( Θ̂ ())]



()

0p (h∗ ())−1 and (h∗ ())

= N\h∗ () 

Write −1
P

=1 ( Θ̂ ()) = 1( Θ̂ ())+2( Θ̂ ()), where1( Θ̂ ()) = −1
P

∈h∗()


() [−( Θ̂ ())] and 2( Θ̂ ()) = −1
P

∈(h∗()) 


() [−( Θ̂ ())] Under

Assumptions A1(i) and A6(i), we have

sup
∈A

°°°1( Θ̂ ())°°° ≤ −1(2 + 3) sup
∈W

sup
∈U

°°° ()°°° =  () =  (
−12)

and

sup
∈A

°°°2( Θ̂ ())°°° = −1 sup
∈A

°°°H( Θ̂ ())p (h
∗ ())

°°°
≤ −1 sup

∈A

°°°H( Θ̂ ())
°°° sup
∈A

kp (h∗ ())k

≤ −1 ((2 + 3))
12 ·

³


12
´
=  () = 

³
−12

´


where the second inequality follows from the fact that

sup
∈A

kp (h∗ ())k2 = sup
∈A

tr [p (h
∗ ())p (h∗ ())0] = sup

∈A

X
∈h∗()

°°°
()

°°°2
≤ (2 + 3) sup

∈W
sup
∈U

°°° ()°°°2 = 

¡
2

¢


It follows that sup∈A

°°°−1P
=1 ( Θ̂ ())

°°° = 
¡
−12

¢
by triangle inequality. ¥

Proof of Lemma A.3. Let  () ≡ −1
P

=1 (Θ ()) Noting that  [(Θ ())] = 0 by the

first order condition for the minimization problem in (2.7), we have [ ()] = 0 and Var( ()) =

 ()  It follows that () =  [()12] for each  ∈ A  The uniform result then follows from

a standard application of Boole’s and Bernstein’s inequalities. ¥

Proof of Lemma A.4. Let  = ( 0 
0


0
 )
0 and  = ( ln)12 By the law of iterated

expectations, second order Taylor expansions, the fact that  (Θ) −  (Θ ()) = 
()

0 [Θ −
Θ ()] and Assumptions A1(i) and (iii), A5(iii), and A6(i),

sup
kck=1

sup
∈A

sup
||Θ−Θ ()||≤

|c0[(Θ)− (Θ ())] + c
0Φ()[Θ−Θ ()]|

≤ sup
∈A

sup
||Θ−Θ ()||≤

°°° h1 { ≤  (Θ)}− 1 { ≤  (Θ ())}
()

i
−Φ()[Θ−Θ ()]

°°°
= sup

∈A

sup
||Θ−Θ ()||≤

°°° n[ ( (Θ) |)−  ( (Θ ()) |)]
()

o
−Φ()[Θ−Θ ()]

°°°
≤ 1

2
̄ sup

∈A

sup
||Θ−Θ ()||≤



°°°°½n
()

0 [Θ−Θ ()]
o2


()

¾°°°°
≤ 1

2
̄ sup

∈W
sup
∈U

°°° ()°°° sup
∈A

sup
||Θ−Θ ()||≤

[Θ−Θ ()]0
h


()


()

0i
[Θ−Θ ()]

≤ 1

2
̄Φ̄ sup

∈W
sup
∈U

°°° ()°°° 2 =  ( ln) = 

³
−12

´


The result then follows from the IID assumption in Assumption A.1(i). ¥

2



Proof of Lemma A.5. We only prove (i) as the proof of (ii) is similar. Noting that sup||Θ1−Θ2||≤∆
| (Θ1)−  (Θ2)| ≤

°°°
()

°°°∆ we have


"
sup

∈A

sup
||Θ1−Θ2||≤∆

k(;Θ1Θ2)k2
#

= 

(°°°
()

°°°2 sup
∈A

sup
||Θ1−Θ2||≤∆

|1 { ≤  (Θ1)}− 1 { ≤  (Θ2)}

− ( (Θ1) |) +  ( (Θ2) |) |2
o

≤ 2

½°°°
()

°°°2 sup
∈A

sup
Θ2

¯̄̄
1
n
 ≤

°°°
()

°°°∆+  (Θ2)
o
− 1

n
 ≤ −

°°°
()

°°°∆+  (Θ2)
o

− 

³
−
°°°

()
°°°∆+  (Θ2) |

´
+ 

³°°°
()

°°°∆+  (Θ2) |
´¯̄̄o

≤ 2

¯̄̄̄°°°
()

°°°2 sup
∈A

sup
Θ
1
n
k −  (Θ)k ≤

°°°
()

°°°∆o¯̄̄̄+ 

∙°°°
()

°°°2¸∆
≤ 2

°°°
()

°°°2∆ ≤ 22∆ ≤ 12∆ for sufficiently large 

where the first inequality follows from the monotonicity of the indicator function 1 { ≤ ·} and the condi-
tional CDF  (·| ) and the fact that |1 { ≤ ·}− (·|) | ≤ 1 the second inequality follows from
Minkowski inequality, Taylor expansion and Assumption A1(iii), and the third equality from the fact that

by Assumption A1(iii): 
n
sup∈A

supΘ 1
n
k −  (Θ)k ≤

°°°
()

°°°∆o¯̄̄o ≤ 2̄ °°°
()

°°°∆
Here  is a generic large constant. ¥

Proof of Lemma A.6. Let ̃ (Θ) = c
0{(Θ) −  [(Θ)]}. ̃ (Θ1) and ̃ (Θ2) play the

respective roles of  () and  () in Lemma 3.2 in He and Shao (2000). By Lemma A.5(i), condition

(3.2) in that lemma is satisfied for 1 =
1
2 and 2 = 1 and thus the conclusion follows. ¥

Proof of Lemma A.7. Write

ΩΩ
0
 =

"
1

0
Φ̄

0
Φ̄Φ̄

0
Φ̄1 −1 0Φ̄

0
Φ̄

0
2Φ̄

0


−Φ̄2Φ̄
0
Φ̄1 Φ̄2

0
2Φ̄

0


#

where 1 = ( 0Φ̄
0
Φ̄)

−1 and 2 = (2+3) − 1
0
Φ̄

0
Φ̄  By

the fact that max

Ã"
 

0 

#!
≤ max () + max () for any p.s.d. matrix

"
 

0 

#
and that

max (0) ≤ max ()max (0) for any symmetric p.s.d. matrix  and using Assumptions A5(i)-

(v) we have

max (ΩΩ
0
 ) ≤ max

¡
1

0
Φ̄

0
Φ̄Φ̄

0
Φ̄1

¢
+ max

¡
Φ̄2

0
2Φ̄

0


¢
≤ max

³


12
 Φ̄Φ̄

0


12


´
max

¡
1

0
Φ̄

0
Φ̄1

¢
+max (2

0
2)max

¡
Φ̄Φ̄

0


¢
≤ ̄max

¡
Φ̄Φ̄

0


¢
max (1) + max

¡
Φ̄Φ̄

0


¢
≤ ̄−2Φ + −2Φ ≡ ̄Ω ∞

3



where we have also used the fact that 1) max (2
0
2) ≤ max (2)

2 = 1 as 2 is idempotent, and 2)

max
¡
Φ̄Φ̄

0


¢ ≤ max

³
[Φ ( )]

−1
[Φ ( )]

−1´ ≤ −2Φ and similarly max
¡
Φ̄Φ̄

0


¢ ≤ −2Φ (see,

e.g., Lemma 8.4.4 in Bernstein (2005)).

By the fact that "
 

0 

#
=

"
−−10 

0 

#"
 0

−10 

#
for any square matrices  and  and conformable matrix  such that  is nonsingular (e.g., Fact 2.15.3

in Bernstein (2005)), and the fact that min () ≥ min ()min () for any two p.s.d. matrices  and

 (see, e.g., Fact 8.14.20 in Bernstein (2005)), we have

min (ΩΩ
0
 ) ≥ min(min

¡
−−10¢  min ())

where  = 1
0
Φ̄

0
Φ̄Φ̄

0
Φ̄1   = −1 0Φ̄

0
Φ̄

0
2Φ̄

0
 and

 = Φ̄2
0
2Φ̄

0
 Observe that

−−10 = 1
0
Φ̄

0
Φ̄Φ̄2 Φ̄

0
Φ̄1

where Φ̄2 = (2+3) − 02Φ̄
0
(Φ̄2

0
2Φ̄

0
)

−1Φ̄2  Noting that Φ̄2 is a

projection matrix and tr(Φ̄2 ) = 3 by the spectral theorem for symmetric matrices we can

write Φ̄2 = 0 where  =diag(1  1 0  0) with 3 ones and 2 zeros on the main

diagonal, and 0 = −1 is a (2 + 3)× (2 + 3) unitary matrix (i.e., 0 = (2+3)) Decompose

 = [1 2] where 1 and 2 are (2 + 3) × 3 and (2 + 3) × 2 matrices, respectively. Then

Φ̄2 = 0 = 1
0
1 and

min
¡
−−10¢ = min

¡
1

0
Φ̄

0
Φ̄1

0
1Φ̄

0
Φ̄1

¢
≥ min

¡
Φ̄1

0
1Φ̄

0


¢
min

¡
1

0
Φ̄

0
Φ̄1

¢


Noting that 
0
and 

0
 have the same positive eigenvalues with the same algebraic multiplicities, we

have min
¡
Φ̄1

0
1Φ̄

0


¢
= min

¡
01Φ̄

0
Φ̄1

¢ ≥ min (
0
11)min

¡
Φ̄0Φ̄

¢ ≥ min (
0) ̄−2Φ =

̄−2Φ  where the last inequality follows from the fact that min
¡
Φ̄0Φ̄

¢ ≥ min

³
[Φ ( )]

−1 [Φ ( )]
−1´

≥ ̄−2Φ and that min (
0
11) ≥ min (

0) = 1 (see, e.g., Theorem 8.4.5. in Bernstein (2005)). In addition,

min
¡
1

0
Φ̄

0
Φ̄1

¢ ≥ min
¡
1

0
Φ̄

0
Φ̄1

¢
= min (1)

≥ 
£
̄−2Φ ̄

¤−1
 It follows that min

¡
−−10¢ ≥ ̄−2Φ 

£
̄−2Φ ̄

¤−1
 0 uniformly in 

Analogously, using the fact that 2 is idempotent with rank (2 + 3 − 1) we can show that

min () is bounded from below by a positive constant, , say, under Assumptions A5(i)-(iv). As a

result min (ΩΩ
0
 ) ≥ Ω  0 by taking Ω = min(min (

0
11) ̄

−2
Φ 

£
̄−2Φ ̄

¤−1
 ) This completes the

proof of the lemma.¥

D Extension to the panel data models with individual fixed ef-

fects

Recall that  = (
0


0


0
)
0
and  (Θ) = ( )

0+
()

0
Θ− ()0−1 ()0X1−

02X2  = diag
¡
2  −12  3

¢
 and 1 = diag

¡
2  

12  3
¢
 Let  (Θ) =

4




() ( −  (Θ)) and ̄1 = 1

−11 = diag
¡
2 

12  3
¢
 Define

Φ () = ( )−1
X
=1

X
=1

 ( (Θ ()) |)1



()



()
0
1

Ψ̂ ≡ ( )−1
X
=1

X
=1

1



()



()
0
1

Let Φ () =  [Φ ()] and Ψ = [Ψ̂ ] Further, define

ΩΘ ≡ [1
−1Φ()−11 ]−1[(2+3)+ +1

−1Ω ]

Ω ≡ Φ̄[(2+3)+ +1
−1Ω ]

To take into account the non-identical distributions of ( X1 ) over either  or  we

re-define Π () and Π |() as follows

Π () ≡ ( )−1
X
=1

X
=1

[

³
 − ( )

0− 
†
(X )

0
´


()] and

Π |() ≡ ( )−1
X
=1

X
=1

[

³
 − ( )

0− 
†
(X )

0 − ( )
0
´


()]

where we suppress the potential dependence of Π () and Π |() on ( ) in the case of non-

identical distributions. Let (·) and (·) be as defined in Section 2.2. Let 1(·) denote the th
element of 1 (·) Let  ≡ (01  01)

0 1 ≡ (0
11  

0
12

)0  = (0
1  

0
2 )

0 and  ≡
(01  

0
3

)0 Let A B  and C denote the supports of     and  , respectively. We use

( )→∞ to denote that  and  pass to infinity jointly.

We make the following set of assumptions.

Assumption D1. (i) ( X1 ) are independently distributed over  For each  = 1  

{( X1 ) :  = 1 2 } is strong mixing with mixing coefficients { (·)} such that  (·) ≡
 (·) ≡ max1≤≤  (·) satisfies  () =  () for some  ∈ (0 1)  The supports of the exogenous
variables  X1 and  are compact. 3 ≥ 1.

(ii)  ( ≤  ()
0 + 1 ()

0X1 + 2|X1 2 ) =  a.s.

(iii) The CDF of  conditional on , (·|), exhibits a PDF (·|) that is bounded from
above by ̄ a.s.; (·|) is continuously differentiable in the neighborhood of 0 a.s. with first deriv-
ative bounded from above by ̄ ;  {sup∈R 1 {| − | ≤  ()} |} ≤ 2̄ () for any measurable
function  (·).
(iv) The distribution of  is absolutely continuous with respect to the Lebesgue measure.

Assumption D2. (i) For  = 1  1 2 or 3 (·), 1(·) and (·) belong to the class of
-smooth functions with   0.

(ii) Assumption A2(ii) holds.

(iii) (     ) lies in the interior of A × B × C , where A ⊂ R1 , B ⊂ R2+ and

C ⊂ R3 are compact and convex for all  and  , and C contains 0 for all .

5



Assumption D3. Assumption A3 holds.

Assumption D4. Assumption A4 holds.

Assumption D5. Assumption A5 holds.

Assumption D6. (i) Let  ≡ sup∈U ||()||. As ( ) → ∞, 23[ln( )]2( )→ 0 and

−(1+2) ln ( ) → 0 ∈ [0∞)
(ii) As ( )→∞, −2

−2 → 0 where  ≡ kΠ ()k  0
(iii) As ( )→∞ 2 ln ( )  → 0

Assumptions D1-D6(i)-(ii) parallel Assumptions A1-A6(i)-(ii). Note that we do not require identical

distributions of ( X1 ) over either  or  in D1(i) and D1(iii). D1(ii) is the quantile

identification condition. Assumption D6(iii) is new. It is used in the proof of Lemmas D.2 and D.3

below and signifies the incidental parameter problem caused by the  × 1 fixed effects parameter 2 
For B-splines,  = 

¡
12

¢
and D6(iii) becomes

 ln( ) → 0

which is much weaker than the requirement 2 (ln)3  → 0 as ( )→∞ used in Kato et al. (2012)

because of the difference in the proof strategies. [Please note that  = 1 in Kato et al. (2012) and they

implicitly require that  diverge to infinity at a rate that is a polynomial function of ]

To prove Theorem 3.6, we first prove some technical lemmas that parallel Lemmas A.1-A.6 under the

conditions stated in Theorem 3.6.

Lemma D.1 (i) sup∈A
||Φ()−Φ()|| =  ( [ ln ( ) ( )]

12
+[(+) ln( ) ]12)

=  (1) 

(ii) Φ2 ≤ inf∈A min (Φ()) ≤ sup∈A
max (Φ()) ≤ 2̄Φ w.p.a.1.

(iii) ||Ψ̂ −Ψ || =  ( [( )]12 + [( +) ]12) =  (1) 

(iv) Ψ2 ≤ min(Ψ̂) ≤ max(Ψ̂) ≤ 2̄Ψ w.p.a.1.

Proof. Let  =  ( (Θ ()) |) We partition the symmetric matrix Φ () as follows

Φ () =

⎛⎜⎝ Φ (; 1 1) Φ (; 1 2) Φ (; 1 3)

Φ (; 2 1) Φ (; 2 2) Φ (; 2 3)

Φ (; 3 1) Φ (; 3 2) Φ (; 3 3)

⎞⎟⎠
where

Φ (; 1 1) = ( )−1
X
=1

X
=1

 (X1 ) (X1 )
0


Φ (; 1 2) = ( )−112
X
=1

X
=1

 (X1 )X
0
2

Φ (; 1 3) = ( )−1
X
=1

X
=1

 (X1 ) ( )
0


Φ (; 2 2) = ( )−1
X
=1

X
=1

X2X
0
2

6



Φ (; 2 3) = ( )−112
X
=1

X
=1

X2 ( )
0


Φ (; 3 3) = ( )−1
X
=1

X
=1

 ( ) ( )
0


Partition Φ () analogously. Following the proof of Lemma A.1 (see also Newey (1997)), we can readily

show that

sup
∈A

kΦ (;  )−Φ (;  )k =  ( [ ln ( ) ( )]12) for  = 1 3 and

sup
∈A

kΦ (; 1 3)−Φ (; 1 3)k =  ( [ ln ( ) ( )]12)

Let ̄ = −1
P

=1  Recall that X2 denotes the th column of  for each  This implies that

X21X
0
21 is an× matrix with 1 as its ( )th element and zeros everywhere else and Φ (; 2 2) =P

=1 ̄X21X
0
21 is a diagonal matrix with its ( )th diagonal element given by ̄ With this ob-

servation, we can readily show that

kΦ (; 2 2)−Φ (; 2 2)k2 =
X
=1

£
̄ −

¡
̄

¢¤2
=

1

 2

X
=1

"
X
=1

[ − ()]

#2
= 

¡
−1

¢


and sup∈A
kΦ (; 2 2)− Φ (; 2 2)k =  ([ ln( ) ]12) Let  = (X1 )

and ̄ = −1
P

=1  Then Φ (; 1 2) = −12
P

=1 ̄X
0
21 denotes a 2 ×  matrix

whose th column is given by −12̄ Then we can readily show that

kΦ (; 1 2)−Φ (; 1 2)k2 =
1



X
=1

£
̄ −

¡
̄

¢¤0 £
̄ −

¡
̄

¢¤
=

1

 2

X
=1

X
=1

X
=1

£
 −

¡


¢¤0 £
 −

¡


¢¤
=  ( ) 

and sup∈A
kΦ (; 1 2)−Φ (; 1 2)k =  ([ ln( ) ]12) By the same token, sup∈A

kΦ (; 2 3)−Φ (; 2 3)k =  ([ ln( ) ]12) In sum, we have

sup
∈A

kΦ ()−Φ ()k =  ( [ ln ( ) ( )]
12
+ [( +) ln( ) ]12) =  (1) 

Similarly, we can show that
°°°Ψ̂ −Ψ°°° =  ( [( )]12+[(+) ]12) =  (1)  This proves

(i) and (iii). The proofs of (ii) and (iv) are analogous to that of Lemma A.1(ii) and thus omitted.

Lemma D.2 sup∈A

°°°( )
−1P

=1

P
=1 ̄1( Θ̂ ())

°°° =  ( [( ) + 1 ]) =  (( )−12).

Proof. The proof follows from that of Lemma A.2. Alternatively, we can apply Lemma A.2 in

Ruppert and Carroll (1980) (see also Lemma A.5 in Koenker and Zhao (1995)) to obtain

sup
∈A

°°°°°( )−1
X
=1

X
=1

̄1( Θ̂ ())

°°°°° ≤ ( )−1 [(2 + 3) + ]max


°°°̄1



()
°°°

= ( )
−1
[(2 + 3) + ]

³
 +12

´
=  ( [( ) + 1 ]) =  (( )−12)
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Lemma D.3 sup∈A

°°°( )−1
P

=1

P
=1 ̄1(Θ ())

°°° = 

¡
[ ln( )( )]12

¢


Proof. As in the proof of Lemma D.1(i), we can readily show that°°°°°( )−1
X
=1

X
=1

̄1(Θ ())

°°°°°
2

=

°°°°°( )−1
X
=1

X
=1

 (X1 ) ( −  (Θ ()))

°°°°°
2

+

°°°°°( )−112
X
=1

X
=1

X2 ( −  (Θ ()))

°°°°°
2

+

°°°°°( )−1
X
=1

X
=1

 ( ) ( −  (Θ ()))

°°°°°
2

=  ( ( )) + ( ( )) + ( ( )) =  ( ( ))

and sup∈A

°°°( )−1
P

=1

P
=1 (Θ ())

°°° = 

¡
[ ln( )( )]12

¢


Lemma D.4 Let  ≡ [ ln ( )  ( )]12 and S () ≡
©
Θ : ||−1(Θ−Θ ())|| ≤ 

ª
 Then

sup
kck=1

sup
∈A

sup
Θ∈S()

¯̄̄̄
¯( )−1 c0̄1

X
=1

X
=1

[(Θ)− (Θ ())] + c
0Θ̄

¯̄̄̄
¯ =  (( )−12)

for any constant   0 where Θ̄ = ̄1
−1
1 Φ()

−1
1 [Θ−Θ ()] = 1

−1Φ()−11 [Θ−Θ ()]

Proof. Following the proof of Lemma A.4 and using the weight matrices  1 and ̄1, we have

sup
kck=1

sup
∈A

sup
Θ∈S()

¯̄̄̄
¯( )−1 c0̄1

X
=1

X
=1

[(Θ)− (Θ ())] + c
0Θ̄

¯̄̄̄
¯

≤ sup
∈A

sup
Θ∈S()

¯̄̄̄
¯( )

−1
c0̄1

X
=1

X
=1


n
[ ( (Θ) |)−  ( (Θ ()) |)]

()
o
− c0Θ̄

¯̄̄̄
¯

≤ 1

2
̄

³
 +12

´
sup

∈A

sup
Θ∈S()

[−11 −1 (Θ−Θ ())]0

×
(
( )

−1
X
=1

X
=1

1
h


()



()
0i
1

)
−11 −1[Θ−Θ ()]

= ̄Ψ̄
³
 +12

´
sup

∈A

sup
Θ∈S()

[−1 (Θ−Θ ())]0−11 −11 
£
−1(Θ−Θ ())

¤
= ̄Ψ̄

³
 +12

´
2−1 =  ( ln ( )  ) = 

³
( )

−12´


where the second inequality follows from a second order Taylor expansion and the fact thatmax supkck=1¯̄̄
c0̄1




()
¯̄̄2
= 

¡
2 +

¢
and the fourth inequality follows from the fact that max

¡
−11 −11 

¢
=



Lemma D.5 Let (;Θ1Θ2) ≡ (Θ1)− (Θ2)−  [(Θ1)] + [(Θ2)]  Then

(i) max[sup∈A
sup||−1(Θ1−Θ2)||≤∆

°°̄1(;Θ1Θ2)
°°2] ≤ ( )12∆ for sufficiently large 

and  ;

(ii) for any constant   0 and c ∈ R(2+3)+ with kck = 1 [sup∈A
supS()

P
=1

P
=1¯̄

c0̄1(;ΘΘ ())
¯̄2
] = ( ()) where  () = [ ln( )( )]12

8



Proof. As in the proof of Lemma A.5, we have for sufficiently large  and 

max




"
sup

∈A

sup
||−1(Θ1−Θ2)||≤∆

°°̄1(;Θ1Θ2)
°°2# ≤ 2 ( + 1)max



°°°̄1



()

°°°2∆
≤ 22 ( + 1)∆ ≤ ( )12∆

where  is a generic large constant and we use the fact that


°°°̄1



()

°°°2 = trn h̄1


()



()

0̄1

io
=  () 

So (i) follows. Analogously, we can show (ii).

Lemma D.6 For any c ∈ R(2+3)+ with kck ≤ 1 and   0 we have

sup
k(Θ1)k≤( )k(Θ2)k≤( )

P
=1

P
=1

°°c0̄1(;Θ1Θ2)
°°

1 (;Θ1Θ2) + 2 (;Θ1Θ2) + ( )−2
= 

³
[ ln( )]12

´


where 1 (;Θ1Θ2) = {
P

=1

P
=1

°°c0̄1(;Θ1Θ2)
°°2}12 and 2 (;Θ1Θ2) = {

P
=1

P
=1°°c0̄1(;Θ1Θ2)

°°2}12
Proof. If ( X1 ) is independent over both  and  the above result follows from

Lemma 3.2 in He and Shao (2000) directly. Since we only assume that ( X1 ) is inde-

pendent over  and strong mixing over , we need to modify the proof of Lemma 3.2 in He and Shao

(2000) by using Bernstein inequality for strong mixing processes over the time dimension. The details

are omitted.

Proof of Theorem 3.6. (i) LetΘc () = Θ ()+[ ln ( ) ( )]12c 1 () = {
P

=1

P
=1

|c0(;Θc () Θ ())|2}12 and 2 () = {
P

=1

P
=1 |c0(;Θc () Θ ())|2}12 By Lem-

mas D.4-D.6, we have that uniformly in  ∈ A

X
=1

X
=1

c0̄1(Θc ())

=
X
=1

X
=1

c0̄1 (Θ ()) +
X
=1

X
=1

c0̄1 [ (Θc ())− (Θ ())]

+
h
1 () + 2 () + ( )−2

i
 ([ ln ( )]12)

=
X
=1

X
=1

c0̄1(Θ ())− [ ln( )]12c0̄1
−1
1 Φ()

−1
1 c+ ([ ln( )]12)

=
X
=1

X
=1

c0̄1(Θ ())− [ ln( )]12c01
−1Φ()−11 c+ ([ ln( )]12)

9



Consequently,



Ã
inf
kck=1

−
X
=1

X
=1

c0̄1 (Θc ())  0 for all  ∈ A

!

≥ 

Ã
[ ln( )]−12 inf

kck=1
−

X
=1

X
=1

c0̄1(Θ ())  −
2
c01

−1Φ()−11 c for all  ∈ A

!

≥ 

Ã
[ ln( )]−12 inf

kck=1
−

X
=1

X
=1

c0̄1(Θ ())  −
2
Φ for all  ∈ A

!

= 

Ã
[ ln( )]−12 sup

∈A

sup
kck=1

−
X
=1

X
=1

c0̄1(Θ ()) 


2
Φ

!
→ 1 as   →∞

where we use the fact that min
¡
1

−1Φ()−11 
¢ ≥ Φ and the last line follows by Lemma D.3. It

follows that
°°°−1[Θ̂ ()−Θ ()]°°° =  ([ ln ( ) ( )]12)

For part (ii), we apply Lemma D.6 with (Θ1Θ2) = (Θ̂ () Θ ()) to obtain
P

=1

P
=1 c

0̄1(;

Θ̂ () Θ ()) = [̂ () + ( )−2] ([ ln ( )]12) where ̂ () =  ( ()12) by (i)

and Lemma D.5(ii). Then by Lemmas D.2 and D.4, we have

c01
−1Φ()−11  −1[Θ̂ ()−Θ ()]

= ( )
−1
c0̄1

X
=1

(Θ ()) +

³
( )

−1
[ () ln ( ) ]12

´
+  (( )

−12
)

uniformly in  ∈ A and c with kck = 1 It follows that

−1
h
Θ̂ ()−Θ ()

i
= ( )−1

£
1

−1Φ()−11 
¤−1

̄1

X
=1

X
=1

(Θ ())+o (( )−12)+ 

where kk = 

³
( )−1 [ () ln ( ) ]12

´
=  (

12
 54 ( )−34 ln ( )) ¥

Proof of Theorem 3.7. Following the proof of Theorem 3.3 closely, we can show that

̂ − = Ω ( )
−1

X
=1

X
=1

̄1( Θ ) + o

³
( )

−12´


−1
³
Θ̂ −Θ

´
= ΩΘ ( )−1

X
=1

X
=1

̄1( Θ ) + o

³
( )−12

´


−1
³
̂1 −1

´
= Ω1 ( )

−1
X
=1

X
=1

̄1( Θ ) + o

³
( )

−12´


Using arguments as used in the proof of Theorem 3.4, we can show that sup∈U k̂ ()−  ()k =
 [(()−12 +−)] and sup∈U

°°°̂1 ()− 1 ()
°°° =  [(()−12 +−)]

As in the proof of Theorem 3.4, noting that ̂ () =

Ã
̂ ()

̂1 ()

!
=

Ã
Π () ̂

Π1 () ̂1

!
= Π ()

Ã
̂

̂1

!


we have

̂ ()−  () = Π ()

Ã
̂ −

̂1 −1

!
−
Ã

 ()−Π ()

1 ()−Π1 ()1

!
= Π ()V −B () 

10



whereV =

Ã
̂ −

̂ −

!
andB () =

Ã
 ()−Π ()

1 ()−Π1 ()1

!
 Let Σ () ≡  (1− )Π ()ΩΨ

×Ω0Π ()0 and Λ () = Σ ()−12Π ()Ω  Then

Σ ()
−12√


h
̂ ()−  ()

i
= Λ () ( )−12

X
=1

X
=1

̄1



() ()

+Λ () ( )−12
X
=1


() [ ( −  ( Θ ))−  ()]

+
√
Σ ()

−12Π ()  −
√
Σ ()

−12B ()

≡ 1 +2 +3 +4  say,

where k k =  (( )−12) Using analogous arguments to those used in the proof of Theorem 3.5,

we can show that (i) 1
→  (0 1+2) and (ii)  =  (1) for  = 2 3 4 It follows that

Σ ()
−12√


h
̂ ()−  ()

i
→  (0 1+2)  ¥

E Justification for the asymptotic validity of ̂ ∗∗ defined in Re-

mark 12

In this appendix, we prove the asymptotic validity of ̂ ∗∗ defined in Remark 12.

Let
P

 =
P−1

=1

P
=+1 and

P
 =

P
=1

P
=1  Define

P
 and

P
 similarly. Letb̄Ω = Ω̂0 Υ̂Ω̂  We assume that the probability limits of min(Ψ̂∗∗ ) and min(

b̄Ω ) are bounded away from
zero and the those of max(Ψ̂) and max(

b̄Ω ) are bounded away from infinity, both of which can be

verified under either the null hypothesis or the local alternative. To justify the asymptotic validity of the

above bootstrap method, it suffices to show that conditional on the original sample D, ̂
∗∗
 converges

to  (0 1) in distribution no matter whether H0 holds in the original data or not. Let ∗∗ (  ) =

̂(̂  ̂) Let

 ∗∗ =
2



X


∗∗ ( ) 

Note that ̂ ∗∗ = ∗∗−1  ∗∗ and  ∗∗ plays the role of the score function (or influence function) in Kline and

Santos (2012). Let ∗ denote the conditional expectation under the probability law introduced by the

bootstrap conditional on the data. Apparently, ∗∗ (  ) = ∗∗ ( ) and ∗[∗∗ (  ) |] = 0

for any  6= . So  ∗∗ is a degenerate second order U-statistic with asymptotic variance (conditional on

D) given by

∗∗2 =
2

2

X


∗
∗


h
∗∗ (  )

2
i
=
2

2

X


h
 (̂)



()

0Ω̂0 Υ̂Ω̂


() (̂)

i2
= 22 (1− )

2
tr
nb̄Ω Ψ̂∗∗ b̄Ω Ψ̂∗∗o ≥ 22 (1− )

2
2min(

b̄Ω )2min(Ψ̂∗∗ )tr ¡(2+3)¢
= 22 (1− )

2
2min(

b̄Ω )2min(Ψ̂∗∗ )
where ∗ denotes that expectation with respect to  conditional on D. We prove 

∗∗−1
  ∗∗

→  (0 1)

conditional on D by verifying all the conditions of Proposition 3.2 in de Jong (1987) are satisfied. Let
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∗ = −1∗∗ (  )  Define

 =
X


∗
¡
∗4

¢


 =
X



£
∗
¡
∗2 

∗2


¢
+∗

¡
∗2

∗2


¢
+∗

¡
∗2

∗2


¢¤


 =
X



£
∗
¡
∗

∗

∗

∗


¢
+∗

¡
∗

∗

∗

∗


¢
+∗

¡
∗

∗

∗

∗


¢¤


By Proposition 3.2 in de Jong (1987), it suffices to show that     and  are of smaller probability

order than ∗∗4 

(i) Observe that

∗∗−4  =
24

4∗∗4

X


̂(̂  ̂)
4

=
24

4∗∗4

X


h
 (̂)



()

0 b̄Ω
() (̂)

i4
≤ 24

4∗∗4

X



()

0 b̄Ω
()



()

0 b̄Ω
() 



()

0 b̄Ω
()



()

0 b̄Ω
()

≤ 24
2


2
max(

b̄Ω )
4∗∗4

X


tr
h


()
0 b̄Ω

()


()

0
()



()

0 b̄Ω
()

i

≤ 24
2


2
max(

b̄Ω )
3∗∗4

tr

"b̄Ω X
=1


()



()

0
()



()

0 b̄Ω Ψ̂#

≤ 24
2


2
max(

b̄Ω )max(Ψ̂)
3∗∗4

tr

"b̄Ω X
=1


()



()

0
()



()

0 b̄Ω#

≤ 24
4


2
max(

b̄Ω )max(Ψ̂)
2∗∗4

tr
³b̄Ω Ψ̂ b̄Ω´ ≤ 24

4


2
max(

b̄Ω )2max(Ψ̂)tr ¡(2+3)¢
2∗4

= 

µ
4

2∗∗4

¶
= 

µ
4
2

¶
=  (1) 

where  = sup()

°°° ()°°° =  () and recall that Ψ̂ =
1


P
=1 



()



()

0


(ii) Write  =
P



h
∗(∗2 

∗2
 ) + ∗(∗2 

∗2
) +∗(∗2

∗2
)
i
= 

(1)
 + 

(2)
 + 

(3)
  say. By
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moment calculations,

∗∗−4 
(1)
 =

1

∗∗4

X


∗
¡
∗2 

∗2


¢
=

4
4∗4

X
1≤≤

̂(̂ ̂)
2̂(̂ ̂)

2

=
4

4∗∗4

X


h
 (̂)



()

0 b̄Ω
() (̂)

i2 h
 (̂)



()

0 b̄Ω
() (̂)

i2
≤ 4

4∗∗4

X



()

0 b̄Ω
()



()

0 b̄Ω
() 



()

0 b̄Ω
()



()

0 b̄Ω
()

≤ 4
2∗∗4

X
=1


()

0 b̄Ω Ψ̂ b̄Ω
()



()

0 b̄Ω Ψ̂ b̄Ω
()

≤ 24

∗∗4

tr
³b̄Ω Ψ̂ b̄Ω Ψ̂ b̄Ω Ψ̂ b̄Ω´ ≤ 24

4
max(

b̄Ω )3max(Ψ̂)tr ¡(2+3)¢
∗∗4

= 

µ
2


¶
=  (1) 

By the same token, ∗∗−4 
()
 =  (1) for  = 2 3

(iii) Write  =
P



h
∗(∗

∗

∗

∗
) +∗(∗

∗

∗

∗
) + ∗(∗

∗

∗

∗
)
i
= 

(1)
 +


(2)
 +

(3)
  say. Then

∗∗−4 
(1)
 =

1

∗∗4

X


∗
¡
∗

∗

∗

∗


¢
=

1

4∗∗4

X


̂(̂ ̂)̂(̂ ̂)̂(̂ ̂)̂(̂ ̂)

≤ 1

4∗∗4

X



()

0 b̄Ω
()



()

0 b̄Ω
() 



()

0 b̄Ω
()



()

0 b̄Ω
()

≤ 1

∗∗4

tr
³b̄Ω Ψ̂ b̄Ω Ψ̂ b̄Ω Ψ̂ b̄Ω Ψ̂´ ≤ 4max(

b̄Ω )4max(Ψ̂)tr ¡(2+3)¢
∗∗4

= 

µ
1



¶
=  (1) 

By the same token, ∗∗−4 
()
 =  (1) for  = 2 3

That is, the conditions in Proposition 3.2 in de Jong (1987) are all satisfied and we can conclude

̂ ∗∗
→  (0 1) conditional on the data.

F Some additional simulation results

In this appendix, we report some additional simulation results for the bootstrap test based on ̂ ∗∗ defined

in Remark 12 in the text. Tables A.1 and A.2 report the finite sample rejection frequency for our ̂ ∗∗ -

based bootstrap test when the weights {} are generated as independent Rademacher and standard
normal random variables, respectively. From both tables, we can see the tests are severely undersized for

both DGPs under consideration. Despite this, the power performance is comparable with our ̂ ∗-based

bootstrap test.
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Table A.1: Finite sample rejection frequency of ̂ ∗∗ -based bootstrap test: Rademacher weights

DGP ∆0   H0 H0 H0
1% 5% 10% 1% 5% 10% 1% 5% 10%

10 0 0.2 200 0.004 0.022 0.034 0.004 0.022 0.040 0.002 0.018 0.032

400 0.004 0.038 0.064 0.004 0.020 0.044 0.008 0.026 0.036

800 0.002 0.028 0.042 0.008 0.022 0.048 0.010 0.020 0.040

0.5 200 0.004 0.020 0.056 0.004 0.034 0.062 0.002 0.022 0.054

400 0.002 0.012 0.038 0.002 0.014 0.028 0.004 0.012 0.022

800 0.006 0.026 0.050 0.008 0.040 0.062 0.004 0.032 0.050

0.8 200 0.000 0.028 0.048 0.008 0.032 0.046 0.006 0.030 0.044

400 0.006 0.026 0.044 0.000 0.016 0.036 0.000 0.010 0.032

800 0.002 0.022 0.046 0.004 0.026 0.044 0.002 0.016 0.034

1 0.2 200 0.998 1.000 1.000 0.618 0.844 0.894 0.970 0.988 0.990

400 1.000 1.000 1.000 0.932 0.984 0.986 1.000 1.000 1.000

800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 200 1.000 1.000 1.000 0.698 0.866 0.932 0.984 0.994 1.000

400 1.000 1.000 1.000 0.940 0.990 0.994 0.998 1.000 1.000

800 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000

0.8 200 0.994 0.998 0.998 0.646 0.826 0.892 0.960 0.984 0.990

400 1.000 1.000 1.000 0.952 0.988 0.992 0.998 1.000 1.000

800 1.000 1.000 1.000 0.996 0.998 1.000 1.000 1.000 1.000

30 0 0.2 200 0.014 0.048 0.086 0.008 0.028 0.066 0.014 0.030 0.070

400 0.006 0.014 0.048 0.002 0.016 0.034 0.002 0.018 0.032

800 0.008 0.028 0.046 0.004 0.014 0.030 0.004 0.014 0.038

0.5 200 0.012 0.046 0.072 0.008 0.036 0.060 0.004 0.024 0.050

400 0.010 0.046 0.076 0.008 0.044 0.076 0.012 0.038 0.068

800 0.008 0.018 0.060 0.000 0.016 0.038 0.000 0.018 0.042

0.8 200 0.016 0.044 0.074 0.012 0.048 0.080 0.010 0.042 0.074

400 0.004 0.028 0.068 0.012 0.054 0.084 0.008 0.048 0.076

800 0.012 0.056 0.082 0.020 0.046 0.068 0.018 0.050 0.070

1 0.2 200 0.890 0.950 0.968 0.212 0.388 0.506 0.632 0.770 0.848

400 0.942 0.964 0.980 0.432 0.614 0.724 0.812 0.902 0.934

800 0.992 0.998 0.998 0.872 0.952 0.980 0.984 0.992 0.996

0.5 200 0.870 0.934 0.954 0.224 0.368 0.492 0.594 0.740 0.814

400 0.942 0.968 0.982 0.484 0.714 0.792 0.858 0.926 0.962

800 0.996 0.996 0.998 0.890 0.952 0.968 0.982 0.990 0.994

0.8 200 0.848 0.932 0.954 0.256 0.416 0.548 0.662 0.802 0.870

400 0.936 0.960 0.968 0.520 0.706 0.798 0.870 0.926 0.952

800 0.988 0.994 1.000 0.890 0.956 0.976 0.976 0.992 0.998
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Table A.2: Finite sample rejection frequency of ̂ ∗∗ -based bootstrap test: standard normal weights

DGP ∆0   H0 H0 H0
1% 5% 10% 1% 5% 10% 1% 5% 10%

10 0 0.2 200 0.006 0.016 0.038 0.008 0.022 0.044 0.004 0.018 0.040

400 0.008 0.032 0.060 0.012 0.024 0.050 0.008 0.024 0.034

800 0.004 0.018 0.052 0.006 0.026 0.046 0.008 0.020 0.048

0.5 200 0.004 0.032 0.056 0.008 0.022 0.044 0.006 0.022 0.034

400 0.004 0.016 0.040 0.008 0.032 0.056 0.004 0.024 0.044

800 0.008 0.022 0.042 0.006 0.018 0.038 0.004 0.016 0.038

0.8 200 0.008 0.026 0.042 0.014 0.024 0.056 0.012 0.026 0.040

400 0.000 0.018 0.042 0.004 0.022 0.054 0.002 0.010 0.038

800 0.004 0.014 0.044 0.006 0.016 0.040 0.006 0.010 0.032

1 0.2 200 0.998 1.000 1.000 0.676 0.856 0.896 0.980 0.988 0.990

400 1.000 1.000 1.000 0.954 0.984 0.988 1.000 1.000 1.000

800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 200 0.994 1.000 1.000 0.672 0.854 0.896 0.966 0.982 0.990

400 0.998 1.000 1.000 0.934 0.986 0.994 0.996 0.998 0.998

800 1.000 1.000 1.000 0.998 0.998 0.998 1.000 1.000 1.000

0.8 200 0.998 1.000 1.000 0.624 0.808 0.882 0.972 0.992 0.996

400 0.998 1.000 1.000 0.936 0.982 0.986 0.996 0.998 0.998

800 1.000 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000

30 0 0.2 200 0.018 0.056 0.082 0.012 0.038 0.070 0.014 0.044 0.068

400 0.004 0.016 0.048 0.004 0.018 0.038 0.002 0.014 0.040

800 0.008 0.034 0.050 0.006 0.018 0.026 0.008 0.020 0.040

0.5 200 0.008 0.044 0.098 0.018 0.036 0.058 0.022 0.040 0.068

400 0.006 0.020 0.052 0.004 0.026 0.046 0.004 0.026 0.038

800 0.006 0.040 0.078 0.010 0.024 0.066 0.006 0.030 0.060

0.8 200 0.008 0.040 0.062 0.006 0.030 0.062 0.002 0.032 0.056

400 0.010 0.026 0.044 0.010 0.042 0.064 0.010 0.030 0.056

800 0.004 0.044 0.072 0.010 0.028 0.048 0.010 0.032 0.050

1 0.2 200 0.904 0.960 0.968 0.234 0.398 0.510 0.666 0.790 0.850

400 0.934 0.966 0.982 0.444 0.622 0.732 0.828 0.898 0.936

800 0.992 0.998 0.998 0.896 0.962 0.978 0.978 0.992 0.996

0.5 200 0.868 0.914 0.934 0.240 0.370 0.488 0.668 0.756 0.814

400 0.954 0.976 0.986 0.504 0.706 0.796 0.858 0.942 0.956

800 0.988 0.994 0.998 0.888 0.950 0.976 0.978 0.988 0.998

0.8 200 0.866 0.916 0.944 0.278 0.472 0.586 0.706 0.826 0.870

400 0.932 0.952 0.964 0.542 0.724 0.826 0.878 0.914 0.942

800 0.992 0.998 1.000 0.916 0.958 0.986 0.990 0.994 0.996
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