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Abstract

We consider the problem of determining the number of factors and selecting the proper regressors

in linear dynamic panel data models with interactive fixed effects. Based on the preliminary estimates

of the slope parameters and factors a la Bai and Ng (2009) and Moon and Weidner (2014a), we propose

a method for simultaneous selection of regressors and factors and estimation through the method of

adaptive group Lasso (least absolute shrinkage and selection operator). We show that with probability

approaching one, our method can correctly select all relevant regressors and factors and shrink the

coefficients of irrelevant regressors and redundant factors to zero. Further, we demonstrate that our

shrinkage estimators of the nonzero slope parameters exhibit some oracle property. We conduct Monte

Carlo simulations to demonstrate the superb finite-sample performance of the proposed method. We

apply our method to study the determinants of economic growth and find that in addition to three

common unobserved factors selected by our method, government consumption share has negative

effects, whereas investment share and lagged economic growth have positive effects on economic

growth.

JEL Classification: C13, C23, C51
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1 Introduction

We consider a panel data model with interactive fixed effects as proposed and studied in Pesaran (2006),

Bai (2009), Moon and Weidner (2014a, 2014b), Pesaran and Tosetti (2011), Greenaway-McGrevy et

al. (2012), Su and Jin (2012), Su et al. (2015), among others. This model has been widely applied

in empirical research, as it allows more flexible modeling of heterogeneity than traditional fixed effects

models and provides an effective way to model cross section dependence that is widely present in macro

and financial data. To use this model, we need to determine the number of factors in the multi-factor

error component and select the proper regressors to be included in the model. This paper provides a novel

automated estimation method that combines both estimation of parameters of interest and selection of

the number of factors and regressors.

Specifically, we consider the following interactive fixed-effects panel data model

 = 00 + 00 
0
 +   = 1    = 1      (1.1)

where  is a 0 × 1 vector of regressors, 0 is the corresponding vector of slope coefficients, 0 is an
0 × 1 vector of unknown factor loadings,  0 is an 0 × 1 vector of unknown common factors, and 

is the idiosyncratic error term. Here the factor structure 00  0 is referred to as interactive fixed effects

in Bai (2009) and Moon and Weidner (2014a, 2014b) as one allows both 0 and  0 to be correlated

with elements of  and 00  0 +  is called the multi-factor error structure in Pesaran (2006). We are

interested in estimating 0 0 and  0  It has been argued that the factor structure can capture more

flexible heterogeneity across individuals and over time than the traditional fixed-effects model. The latter

takes the form  = 00 + 0 + 0 +  and can be thought of as a special case of the interactive

fixed-effects panel data model by letting  0 = (1 
0
 )
0 and 0 = (

0
  1)

0 where 0 and 0 are individual-

specific and time-specific fixed effects, respectively. When  is absent in (1.1), the model becomes the

pure factor model studied in Bai and Ng (2002) and Bai (2003), among others.

Given the correct number 0 of factors and the proper regressors  several estimation methods have

been proposed in the literature. For example, Pesaran (2006) proposes common correlated effects (CCE)

estimators; Bai (2009) and Moon and Weidner (2014a, 2014b) provide estimators based on Gaussian

quasi-maximum likelihood estimation (QMLE) and the principal component analysis (PCA). To apply

the latter methods, we must first determine the number of factors and appropriate regressors to be

included in the model. Nevertheless, in practice, we do not have a priori knowledge about the true

number of factors in almost all cases. Also there may be a large number of potential regressors, some

of which may be irrelevant. Thus it is desirable to use a parsimonious model by choosing a subset of

regressors. The common procedure is to perform some model selection in the first step and then conduct

estimation based on the selected regressors and the chosen number of factors. To select regressors, a wide

range of methods can be adopted. For example, one can apply the Bayesian information criterion (BIC)

or some cross-validation methods. To determine the number of factors, one can apply the information

criteria proposed in Bai and Ng (2002) or the testing procedure introduced in Onatski (2009, 2010),

Kapetanios (2010), or Ahn and Horenstein (2013). Bai and Ng (2006, 2007) provide some empirical

examples of the determination of number of factors in economic applications. Hallin and Líska (2007)

study the determination of the number of factors in general dynamic factor models.
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In this paper, we explore a different approach. We use shrinkage techniques to combine the estimation

with the selection of the number of factors and regressors in a single step. Following Bai (2009) or Moon

and Weidner (2014a, 2014b), we can set a maximum number of factors ( say) and obtain the preliminary

estimates of the slope parameters and factors. Then we consider a penalized least squares (PLS) regression

of  on  and the estimated factors via the adaptive (group) Lasso. We include two penalty terms

in the PLS, one for the selection of regressors in  via adaptive Lasso and the other for the selection

of the exact number of factors via adaptive group Lasso. Despite the use of estimated factors that

have slow convergence rates, we show that our new method can consistently determine the number of

factors, consistently select all relevant regressors, and shrink the estimates of the coefficients of irrelevant

regressors and redundant factors to zero with probability approaching 1 (w.p.a.1). We also demonstrate

the oracle property of our method. That is, our estimator of the non-zero regression coefficients is

asymptotically equivalent to the least squares estimator based on the factor-augmented regression where

both the true number of factors and the set of relevant regressors are known. The bias-corrected version

of our shrinkage estimator of the non-zero regression coefficients is asymptotically equivalent to Moon

and Weidner’s (2014b) bias-corrected QML estimator in the case where all regressors are relevant (i.e.,

there is no selection of regressors). In the presence of irrelevant regressors, the variance-covariance matrix

for our shrinkage estimator of the non-zero coefficients is smaller than that of Moon and Weidner’s QML

estimator. In addition, we emphasize that even though Moon and Weidner (2014a) show that the limiting

distribution of the QML estimator is independent of the number of factors used in the estimation as long

as the number of factors does not fall below the true number of factors, we find that in finite samples the

inclusion of redundant factors can result in significant loss of efficiency (see Section 4.3 for detail). For

this reason, it is very important to include the correct number of factors in the model especially when

the cross section or time dimension is not very large. Our shrinkage method effectively selects all relevant

regressors and factor estimates and get rid of irrelevant regressors or redundant factor estimates.

There is a large statistics literature on the shrinkage type of estimation methods. See, for example,

Tibshirani (1996) for the origin of Lasso, Knight and Fu (2000) for the first systematic study of the

asymptotic properties of Lasso-type estimators, and Fan and Li (2001) for SCAD (smoothly clipped

absolute deviation) estimators. Zou (2006) establishes the oracle property of adaptive Lasso; Yuan and

Lin (2006) propose the method of group Lasso; Wang and Leng (2008) and Wei and Huang (2010) study

the properties of adaptive group Lasso; Huang et al. (2008) study Bridge estimators in sparse high

dimensional regression models. Recently there have been an increasing number of applications of the

shrinkage techniques in the econometrics literature. For example, Caner (2009) and Fan and Liao (2014)

consider covariate selection in GMM estimation. Belloni et al. (2013) and García (2011) consider selection

of instruments in the GMM framework. Liao (2013) provides a shrinkage GMM method for moment

selection and Cheng and Liao (2015) consider the selection of valid and relevant moments via penalized

GMM. Liao and Phillips (2015) apply adaptive shrinkage techniques to cointegrated systems. Kock (2013)

considers Bridge estimators of static linear panel data models with random or fixed effects. Caner and

Knight (2013) apply Bridge estimators to differentiate a unit root from a stationary alternative. Caner

and Han (2014) propose a Bridge estimator for pure factor models and shows the selection consistency.

Cheng et al. (2014) provide an adaptive group Lasso estimator for pure factor structures with possible

3



structural breaks. This paper adds to the literature by applying the shrinkage idea to panel data models

with factor structures and considering generated regressors.

The method proposed in this paper has a wide range of applications. For example, it can be used to

estimate a structural panel model that allows a more flexible form of heterogeneity. A specific example

is to study cross-country economic growth. Let  be the economic growth for country  in period 

and  be a large number of potential observable causes of economic growth, such as physical capital

investment, consumption, population growth, government consumption, and lagged economic growth,

among others. Economic growth may also be caused by many unobservable common factors  0 . It is

of great interest to know which observable causes are important to determine economic growth and the

number of common unobserved factors that affect all countries’ economic growth. Our new method is

directly applicable to this important economic question. Another example of application is to forecast

asset returns, as factor models are often used to model asset returns. Specifically, let  be the excess

returns on asset  in period  and  be observable factors such as Fama-French factors (small market

capitalization and book-to-market ratio), divided yields, dividend payout ratio and consumption gap,

among others. The asset returns may also be affected by an unknown number of common unobserved

factors. Our method automatically selects the important observable factors and unobservable common

factors. Thus it provides a powerful tool to predict future asset returns.

The paper is organized as follows. Section 2 introduces our adaptive group Lasso estimators. Section

3 analyzes their asymptotic properties. In Section 4, we report the Monte Carlo simulation results for

our method and compare it with the methods of Bai and Ng (2002), Onatski (2009, 2010), and Ahn and

Horenstein (2013). In Section 5, we apply our method to study the determinants of economic growth in

the framework of dynamic panel data models with interactive fixed effects, and find that in addition to

three common unobserved factors selected by our method, government consumption share has negative

effects, whereas investment share and lagged economic growth have positive effects on economic growth.

Final remarks are contained in Section 6. The proofs of all theorems are delegated to Appendix B.

Additional materials are provided in the online supplementary Appendices C-F.

NOTATION. For an ×  real matrix  we denote its transpose as 0 its Frobenius norm as kk
(≡ [tr(0)]12) its spectral norm as kksp (≡

p
1 (

0)) and its Moore-Penrose generalized inverse

as + where ≡ means “is defined as” and  (·) denotes the th largest eigenvalue of a real symmetric
matrix by counting eigenvalues of multiplicity multiple times. Note that the two norms are equal when

 is a vector. We will frequently use the submultiplicative property of these norms and the fact that

kksp ≤ kk ≤ kksprank()12  We also use max () and min () to denote the largest and smallest

eigenvalues of a symmetric matrix , respectively. We use   0 to denote that  is positive definite.

Let  ≡  (0)+0 and  ≡  −  where  denotes an × identity matrix. The operator
→ denotes convergence in probability,

→ convergence in distribution, and plim probability limit. We use

( )→∞ to denote that  and  pass to infinity jointly.
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2 Penalized Estimation of Panel Data Models with Interactive

Fixed Effects

In this section, we consider penalized least squares (PLS) estimation of panel data models with interactive

fixed effects where the number of unobservable factors is unknown and some observable regressors may

be irrelevant.

2.1 Panel Data Models with Interactive Fixed Effects

We assume that the true model (1.1) is unknown, in particular, 0 and 0 are unknown. With a little

bit abuse of notation, we consider their empirical model

 = 00 + 00 
0
 +   = 1    = 1      (2.1)

where  is a ×1 vector of regressors that may contain lagged dependent variables, 0 ≡
¡
01  

0


¢0
is a ×1 vector of unknown slope coefficients,  0 and 0 are ×1 vectors of factors and factor loadings,
respectively, and  is the idiosyncratic error term. Here

©
0
ª
and

©
 0
ª
may be correlated with {} 

We consider estimation and inference on 0 when the true number of factors 0 (≤ ) is unknown and

some variables in  may be irrelevant, i.e., 0 ≤  In the sequel, we allow both  and 0 to pass to

infinity as ( )→∞ but assume that  is fixed to facilitate the asymptotic analysis.

To proceed, let  denote the th element of  for  = 1  Define

 ≡ (1      )
0
  ≡ (1     )

0
  ≡ (1      )0 

 0 ≡ ¡
 01      

0


¢0
 0 ≡ ¡01  0¢0  · ≡ (1 )

0

Y ≡ (1   )
0
 X ≡ (1· ·)

0
 and ε ≡ (1   )0

Apparently Y X and ε are all  ×  matrices. Then we can write the model (2.1) in matrix form

Y =
X
=1

0X + 0 00 + ε (2.2)

Without loss of generality (Wlog), we assume that only the first 0 elements of  have nonzero slope

coefficients, and write  = (
0
(1)

0
(2))

0 where (1) and (2) are 0×1 and ( −0)×1 vectors,
respectively, and the true coefficients of (1) are nonzero while those of (2) are zero. Accordingly,

we decompose 0 as 0 = (00(1) 
00
(2))

0 = (00(1) 0
0)0

2.2 QMLE of
¡
0 0  0

¢
Given  and all regressors, following Bai (2009) and Moon and Weidner (2014a, 2014b), we consider the

Gaussian QMLE (̃ ̃ ̃ ) of
¡
0 0  0

¢
which is given by³

̃ ̃ ̃
´
= argmin

( )

L0 (   )  (2.3)
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where

L0 (   ) ≡
1


tr

⎡⎣ÃY − X
=1

X −  0
!0Ã

Y −
X
=1

X −  0
!⎤⎦  (2.4)

 ≡ (1  )0 is a × 1 vector,  ≡ (1   )0 is a  × matrix, and  ≡ (1   )0 is an  ×

matrix. One can first obtain the profile-likelihood estimate ̃ and then the estimate (̃ ̃ ) via the PCA

method under the identification restrictions:  0 =  and 0 is a diagonal matrix. Namely, (̃ ̃ )

solves "
1



X
=1

³
 −̃

´³
 −̃

´0#
̃ = ̃ and ̃ = −1

Ã
Y −

X
=1

̃X

!
̃  (2.5)

where  is a diagonal matrix consisting of the  largest eigenvalues of the above matrix in the square

bracket, arranged in descending order. Moon and Weidner (2014a) show that as long as  ≥ 0 the

limiting distribution of the QMLE for  is independent of , the number of unobserved factors used in

the estimation. Throughout the paper, we assume that  ≥ 0 and use ̃

= (̃



1  ̃


)
0 to denote the

bias-corrected version of ̃ based on the formula in Moon and Weidner (2014b) or our supplementary

Appendix F. After obtaining ̃

 we obtain the final estimate (̃ ̃ ) via (2.5) with ̃ replaced by ̃




2.3 Penalized Least Squares Estimation of
¡
0 ∗

¢
We first present our PLS estimators and then provide some motivations for them. Our PLS estimator

(̂ ̂) are obtained as follows.

• Estimate model (2.1) with  factors and all  regressors and obtain (̃ ̃ ) and ̃

as discussed in

Section 2.2.

• Let Ŷ = Y−P
=1 ̃



X ̂ = ( )−1 Ŷ0Ŷ̃  and Σ̂̂ = −1̂ 0̂  Compute the  eigenvalues of

Σ̂̂ arranged in descending order and denote them as 1  .

• Minimize the following PLS criterion function

 ( ) = L ( ) + 1

X
=1

1¯̄̄
̃




¯̄̄1 ||+ 2√


X
=1

1

2
k·k  (2.6)

where L ( ) = L0 (  ̂ ) · denotes the th column of   =  = (1  2 ) is

a vector of tuning parameters, and 1 2  0 are usually taken as either 1 or 2. Let (̂ ̂) =

(̂ ()  ̂ ()) denote the solution to the above minimization problem.

Note that (2.6) contains two penalty terms, 1 for the regression coefficients ’s and 2 for

the loading vectors ·’s. Noting that −12 k·k =  (1) under our Assumption A.1(iii) in Section

3.1 which apparently rules out the case of weak factors studied by Onatski (2012), we divide the second

penalty term 2 by
√
 . Note that the objective function in (2.6) is convex in ( ) so that the

global minimizer of  can be found easily for any given tuning parameter We frequently suppress the

dependence of (̂ ̂) on  as long as no confusion arises. Below we will propose a data-driven method to

choose  Also, note that we have used estimated factors ̂ in (2.6).
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As a referee points out, the idea to use group Lasso for selection of the number of factors has been

around for some time. For example, Hirose and Konishi (2012) derive a model selection criterion for

selecting factors in a pure factor model but they do not provide asymptotic analysis. In contrast, we

consider both variable and factor selections in dynamic panel data models and offer systematic asymptotic

analysis.

Our procedure is motivated by the literature on adaptive group Lasso (see, Yuan and Lin (2006),

Zou (2006), Huang et al. (2008)). Now we provide some details.  is usually different from 0 and

one cannot expect ̃ to be a consistent estimator of  0 or a rotational version of  0. Define  =

 =
¡
−1000

¢
(−1 00̃ )We can follow Bai and Ng (2002) and show that under certain regularity

conditions, 1


°°°̂ −  0
°°°2 = 

¡
−2

¢
and

°°°̂ − 0 0
°°°2 = 

¡
−2

¢
for each  where ̂ 0 denotes the

th row of ̂ and  = min(
√

√
 ) In addition, we show in Appendix A that  =  converges

in probability to a sparse matrix

0 = [0
(1) 00×(−0)]

where 0
(1) is an 0 × 0 full rank matrix and 0× denotes an  ×  matrix of zeros. As a result,

∗ = +0 also exhibits a sparse structure asymptotically, i.e., the last (−0) elements of ∗ converge
in probability to zero. Using the above definitions of  and ∗  we can rewrite (2.1) as

1

 = 00 + 00 
+0 0 0 +  = 00 + ∗0 

0 0 +  (2.7)

The sparse nature of ∗ (and 0) suggests that we can apply an adaptive group Lasso procedure as

introduced above. Further, we show in Appendix A that 1  0 converge in probability to some finite

positive numbers whereas 0+1   converge to zero at
√
 -rate. This means that Σ̂̂ provides the

information on the sparsity nature of ∗  This motivates us to use
1


2

as a weight in the second penalty

term in (2.6).

3 Asymptotic Properties

In this section we study the asymptotic properties of the proposed adaptive group Lasso estimator (̂ ̂)

3.1 Estimation Consistency

Let ̄ =
1


P
=1

0
 and =

1


P
=1 ̃

0
 0̃ where ̃ ≡ − 1



P
=1 

00


¡
−1000

¢−1
0 

Let  denote a generic finite positive constant that may vary across lines. We make the following

assumptions.

Assumption A.1 (i)
p


°°°̃ − 0
°°° =  (1) and

√


¯̄̄
̃


 − 0

¯̄̄
=  (1) for each  = 1 

(ii) 
°° 0 °°8 ≤  and −1 00 0 −→ Σ 0  0 for some 0 ×0 matrix Σ 0 as  →∞

(iii) 
°°0°°8 ≤  and −1000 −→ Σ0  0 for some 0 ×0 matrix Σ0 as  →∞

(iv) For  = 1  ( )−1 kXk2 ≤ 

1Noting that the 0 ×  matrix  is right invertible, by Proposition 6.1.5 in Bernstein (2005, p.225) we have + =

0 (0)−1  which further implies that + = 0 
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(v) kεksp =  (max(
√

√
 ))

(vi) For  = 1  ( )−1 [tr (Xε
0)]2 ≤ 

(vii) ( )−1
°°00ε 0°°2 ≤ 

(viii) There are two nonstochastic  × matrices ̄0 and 0 such that
°°̄ − ̄0

°°
sp
=  (1)

and k −0ksp =  (1)  where max
¡
̄0

¢
and min (0) are bounded away from infinity and zero,

respectively.

Assumption A.2 (i)  () = 0 and 
¡
8
¢ ≤ 

(ii) Let  =  ()  max1≤≤ −1
P

=1  ≤  −1
P

=1

P
=1max1≤≤ || ≤ 

−1
P

=1

P
=1max1≤≤ || ≤  and ( )−1

P
=1

P
=1

P
=1

P
=1 || ≤ 

(iii) For every ( )  
¯̄̄
−12

P
=1 [ − ()]

¯̄̄4
≤ 

Assumption A.3 (i) As ( )→∞ 2 → 0  2 → 0 and 2min( )→ 0

(ii) As ( )→∞ (0)
121 → 0 and  122 → 0

A.1(i) is a high-level assumption. Primitive conditions can be found in Moon and Weidner (2014a,

2014b) which ensure the
√
 -consistency of a bias-corrected preliminary estimate when  is fixed and

 = 0. In the supplementary Appendix F, we extend the analysis to allow diverging and   0 As a

referee points out, one can relax this assumption to allow for a non-bias-corrected estimator of , in which

case A1(i) would become
°°°̃ − 0

°°° = 

¡
12−2

¢
and

°°°̃ − 0

°°° = 

¡
−2

¢
for each  = 1 2 

and more bias terms need to be corrected for the shrinkage estimator ̂ than here. A.1(ii)-(iv) impose

standard moment conditions on  0  
0
  and ; see, e.g., Bai and Ng (2002) and Bai (2003, 2009).

Note that Bai and Ng (2002) assume only the fourth moment for  0 but require that 
0
 be uniformly

bounded. Moon and Weidner (2014a) demonstrate that A.1(v) can be satisfied for various error processes.

A.1(vi) requires weak exogeneity of the regressor X A.1(vii) can be satisfied under various primitive

conditions and it implies that
°°00ε 0°° =  (

12 12) by Chebyshev inequality, which further implies

that
°°00ε°° =  (

12 12) and
°°ε 0°° =  (

12 12) under Assumptions A.1(ii)-(iii) by standard

matrix operations. A.1(viii) requires that the large dimensional matrices ̄ and be well behaved

asymptotically.

A.2 is adopted from Bai and Ng (2002) and Bai (2009). It allows for weak forms of both cross

sectional dependence and serial dependence in the error processes. The first two parts of A.3(i) require

that  should not grow too fast in comparison with  and vice versa; the last part of A.3(i), namely,

2min( ) → 0 is needed to ensure that the estimation of the  × 1 vector  plays asymptotic
negligible role on the estimation of the factors and factor loadings. A.3(ii) is a condition that ensures a

preliminary
√
 -rate of consistency of our shrinkage estimator ̂ (see Theorem 3.1 below) and it essentially

says that the two penalty terms cannot be too large.

The following theorem establishes the consistency of the shrinkage estimator (̂ ̂).

Theorem 3.1 Suppose Assumptions A.1, A.2, and A.3(i)-(ii) hold. Then

°°°̂−0°°° = 

³
−12

´
 and −1

°°°̂ 0 − 0
°°°2 = 1



X
=1

°°°̂ − 0

°°°2 = 

¡
−1

¢
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Remark 1. Theorem 3.1 establishes the preliminary
√
 -rate of consistency for ̂ (in Euclidean norm)

and the usual  -rate of consistency for the cross sectional average of the squared deviations between

the estimated factor loadings (with rotation) and the true factor loadings. The former is a preliminary

rate and will be improved later on. The latter is the best rate of consistency one can obtain. It is

worth mentioning that the second part of the result in the above theorem in general does not imply

1


°°°̂− 0+0
°°°2 = 

¡
−1

¢
unless  = 0 To see why, notice that

1



°°°̂− 0+0
°°°2 =

1



°°°̂ ¡ − 0+0¢+ ³̂ 0 − 0
´
+0

°°°2
≥ 1



°°°̂ ¡ − 0+0¢°°°2 − 1



°°°³̂ 0 − 0
´
+0

°°°2 
Even though Theorem 3.1 implies that the second term is 

¡
−1

¢
 the first term does not vanish

asymptotically as  0+0 6=  for any   0 Nevertheless, by the triangle inequality, the fact that 

has full row rank asymptotically, and Assumption A.1(iii), we can readily show that −1||̂||2 =  (1) 

3.2 Selection Consistency

To study the selection consistency, we write ̂ = (̂
0
(1) ̂

0
(2))

0 and ̂ = (̂(1) ̂(2)) where ̂(1) and ̂(2) are

column vectors of dimensions0 and−0 respectively, and ̂(1) and ̂(2) are ×0 and ×(−0)

matrices, respectively.

To state the next result, we augment Assumption A.3 with one further condition.

Assumption A.3 (iii) As ( )→∞ ( )
12  121 →∞ and 22 122 →∞

Clearly, A.3(iii) requires that the two penalty terms should not be too small. The next theorem

establishes the selection consistency of our adaptive group Lasso procedure.

Theorem 3.2 Suppose Assumptions A.1, A.2, and A.3(i)-(iii) hold. Then


³°°°̂(2)°°° = 0 and °°°̂(2)°°° = 0´→ 1 as ( )→∞

Remark 2. Theorem 3.2 says that with w.p.a.1 all the zero elements in 0 and all the factor loadings of

the redundant factor estimates must be estimated to be exactly zero. On the other hand, by Theorem 3.1,

we know that the estimates of the nonzero elements in 0 and the factor loadings of the non-redundant

factor estimates must be consistent. This implies that w.p.a.1, all the relevant regressors and estimated

factors must be identified by nonzero coefficients and nonzero factor loadings, respectively. Put together,

Theorems 3.1 and 3.2 imply that the adaptive group Lasso has the ability to identify the true regression

model with the correct number of factors consistently.

3.3 Oracle Property

Decompose ̃ = (̃(1) ̃(2)) where ̃(1) and ̃(2) are  ×0 and  × (−0) submatrices, respectively.

Analogously, let ̂ = (̂(1) ̂(2)) and  = ((1) (2)) where ̂() = ( )
−1
Ŷ0Ŷ̃() and () =

() =
¡
−1000

¢
(−1 00̃()) for  = 1 2 Let  ∗(1) ≡  0(1) and ∗(1) ≡ 0+0

(1) Let 
∗0
(1) and ∗0(1)

denote the th and th rows of  ∗(1) and 
∗
(1) respectively. Define ̂(1) and ̂(1) analogously. Further, write

9



 = ((1) (2)) where (1) and (2) are  ×0 and  × ( −0) submatrices of  respectively.

Let ̂ 0 ≡ ( )−1
P

=1
0
(1) 0(1) and 0 ≡ ( )−2

P
=1

P
=1 

00
 

00̃(1)
∗
(1)

0
(1) 0 

Let D ≡ 
¡
 0 0

¢
 the sigma-field generated by

¡
 0 0

¢
 and D () ≡  (|D)  Define

B1 ≡ ( )
−52

X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1
̃ 0(1)

000εε00 00̃(1)
∗
(1)

B2 ≡ ( )−32
X
=1

 0
(1) 0ε0ε̃(1)

∗
(1)

B3 ≡ ( )
−32

X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1
̃ 0(1)

00ε0 and

B4 ≡ ( )−12
X
=1

£
(1) −D

¡
(1)

¢¤0
 0

To study the oracle property of ̂(1) and ̂(1) we add the following assumptions.

Assumption A.4 (i) There exists a 0 ×0 matrix  0  0 such that
°°°̂ 0 − 0

°°°
sp
=  (1) 

(ii) There exists a  ×0 matrix 0 such that k − 0ksp =  (1) 

(iii) max1≤≤ 
°° 00ε0Xε

00
°°2 = 

¡
2 2 ( +  )

¢


(iv) max1≤≤ 
°°00ε°°2 =  ( ( +  )) 

Assumption A.5 (i) Let ̄ ≡ (1)− 0D((1))− 0X̄1+
£
 −D ()− 0X̄2

¤
−10 0

where X̄1 =
1


P
=1 

00
 (

−1 00̃(1))
∗
(1)D((1)) and X̄2 =

1


P
=1 

00


¡
−1000

¢−1
0D () 

There exists Θ such that
1√

C0

P
=1 ̄

0


→ 
¡
0 lim( )→∞C0ΘC00

¢
for any ×0 non-

random matrix C0 such that C0C00
→ C where  ∈ [10] is a fixed finite integer and Θ has

eigenvalues that are bounded away from zero and infinity for sufficiently large ( ) 

(ii) There exists Θ∗
(1)

 0 such that 1√


P
=1 

∗
(1)

→ (0Θ∗
(1)
)

Assumption A.6 (i) As ( )→∞ 
12
0 ( 12−1 +12−1)→ 0

(ii) As ( )→∞ (0)
12

1 → 0 and ( )
12

2 → 0

Assumptions A.4(i)-(ii) are weak as one can readily show that both ̂ 0 and  are  (1) in the

case of fixed  The positive definiteness of  0 is ensured by Assumption A.1(viii) 0 is generally not

zero in A.4(ii), but it can be zero under fairly restrictive conditions on the data generating processes for©
  

0
  

0


ª
 See Greenaway-McGrevy et al. (2012, GHS hereafter) and the discussion in Remark

4 below. A.4(iii)-(iv) are high level assumptions. A.5 parallels Assumption E in Bai (2009) which is also

a high level assumption. Note that both cross sectional and serial dependence and heteroskedasticity

are allowed in the error terms. We verify these assumptions in the supplementary appendix by allowing

lagged dependent variables in . A.6 is needed to obtain the oracle property for our adaptive group

Lasso estimator.

The following theorem establishes the asymptotic distributions of both ̂(1) and ̂(1)

Theorem 3.3 Suppose Assumptions A.1-A.6 hold. Let V = −1
 0Θ

−1
 0 and C0 be as defined in

Assumption A.5(i). Then

10



(i) C0

h√


³
̂(1) − 0(1)

´
− B

i
→ 

¡
0 lim( )→∞C0

VC00

¢


(ii)
√

³
̂(1) −+

(1)
0


´
→ 

³
0Σ−1∗

(1)
Θ∗

(1)
Σ−1∗

(1)

´


where B = −1
̂(1)

(B1 − B2 − B3 − B4 )  Σ∗
(1)
= 00

(1)Σ 00
(1) and 0

(1) is the probability

limit of (1)

Remark 3. Note that we specify a selection matrix C0 in Theorem 3.3(i) (and Assumption A.5(i))

that is not needed if 0 is fixed. When the dimension of 
0
(1) namely, 0 is diverging to infinity, we

cannot derive the asymptotic normality of ̂(1) directly. Instead, we follow the literature on inferences

with a diverging number of parameters (see, e.g., Fan and Peng (2004), Lam and Fan (2008), Lu and Su

(2015)) and prove the asymptotic normality for any arbitrary linear combinations of elements of ̂(1) To

understand the results in Theorem 3.3, we consider an oracle who knows the exact number of factors and

exact regressors that should be included in the panel regression model. In this case, one can consider

the estimation of both the slope coefficients and the factors and factor loadings via the Gaussian QMLE

method of Bai (2009). This one-step oracle estimator is asymptotically efficient under Gaussian errors

and some other conditions. Ideally, one can consider a one-step SCAD or Bridge-type PLS regression

where the penalty terms on both  and  (or  ) are added to L0 (   ) defined in (2.4) instead

of L0 (  ̂ ) We conjecture that such a one-step PLS estimator is as efficient as the one-step oracle

estimator. Nevertheless, because we observe neither  nor  and some identification restrictions on 

and  are required, it is very challenging to study the asymptotic properties of such a one-step PLS

estimator.2 For this reason, we compare our estimator with an alternative two-step estimator that is

obtained by a second step augmented regression with estimated factors obtained using Bai’s (2009) PCA-

based QMLE method from a first-step estimation; see, e.g., Kapetanios and Pesaran (2007) and GHS.

This two-step augmented estimator is only as efficient as the one-step QMLE under some restrictive

assumptions and has more bias terms to be corrected otherwise. But after the bias correction, it is

asymptotically equivalent to the bias-corrected one-step QMLE estimator. See also Remark 7 below.

Specifically, let ̄(1) and ̄(1) denote the least squares (LS) estimates of 
0
(1) and ∗(1) = +

(1)
0
 in

the following augmented panel regression

 = 00(1)(1) + ∗0(1)̂(1) +  (3.1)

where  is the new error term that takes into account the estimation error from the first stage estimation.

Then we can readily show that

̄(1) = ̂−1
̂(1)

1



X
=1

 0
(1)̂(1)

(1) ̄(1) = Σ̂
−1
̂(1)

1



X
=1

̂(1)( − 0
(1)̄(1))

where ̂̂(1)
≡ ( )

−1P
=1

0
(1)̂(1)

(1) and Σ̂̂(1) ≡ 1


P
=1 ̂(1)̂

0
(1) As demonstrated in the

proof of Theorem 3.3, Assumption A.6 is essential to ensure that (̂(1) ̂(1)) is asymptotically equivalent

to (̄(1), ̄(1)) in the sense that they share the same first order asymptotic distribution. For this reason,

2Bai and Liao (2013) propose a one-step shrinkage estimator for a pure factor model where the error terms are het-

eroskedastic and cross-sectionally correlated but exhibit a conditionally sparse covariance matrix. Under the assumption

that the true number of factors is known, they establish the consistency of their estimator but state that deriving the

limiting distribution is technically difficult.
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we say that our estimator (̂(1) ̂(1)) is as oracle efficient as a two-step augmented estimator by knowing

the exact number of factors and regressors.

Remark 4. Despite the oracle property of ̂(1) it possesses four bias terms that have to be corrected

in practice in order to ensure its
√
 -consistency and zero-mean asymptotic normality. Interestingly,

under a different set of assumptions, GHS establish formal asymptotics for the factor-augmented panel

regressions in the case of fixed 0. They show that the replacement of the unobservable factor 
0
 by

the PCA estimate ̂(1) in (3.1) does not affect the limiting distribution of the LS estimates of 
0
(1) under

four key conditions: (i)  → 0 and  3 → 0 (ii) there is no dynamic lagged dependent variable

in the regression, (iii)  also possesses a factor structure:  =  +  and the estimated factors

associated with  are also included into the augmented regression, and (iv) the exact number of factors

and the exact regressors that should be included in the model are known.3 Note that we relax all the

four assumptions in this paper. We relax condition (iv) by considering the shrinkage estimation. Under

condition (i), both B1 and B3 are  (1)  Under condition (iii), 
 is a submatrix of  0 so that

0 0 = 0 and the factor component of (1) does not contribute to B2 ; under GHS’s conditions on

  
0
 and 0 (see their Assumptions A(v)-(viii)) the error component of (1) does not contribute

to B2 either. That is, B2 is asymptotically negligible under their conditions. To understand the

sources of asymptotic bias and variance of our estimator, we consider the following expansion used in the

proof of Theorem 3.3:

√
C0

³
̂(1) − 0(1)

´
= C0̂

−1
̂(1)

1√


X
=1

 0
(1) 0

+C0̂
−1
̂(1)

1√


X
=1

 0
(1)̂(1)

( ∗(1) − ̂(1))
∗
(1)

+C0̂
−1
̂(1)

1√


X
=1

 0
(1)

³
̂(1)

−∗
(1)

´
 +  (1)

≡ 1 + 2 + 3 +  (1)  say. (3.2)

1 is present even if one observes 
0
 (in which case ̂̂(1)

is replaced by ̂ 0). We show that 2

contributes to both the asymptotic bias and variance whereas 3 only contributes to the asymptotic

bias:

2 = C0̂
−1
̂(1)
(B1 − B2 −V1 +V2 ) +  (1)  and 3 = −C0̂

−1
̂(1)
B3 +  (1) 

where V1 ≡ ( )−12
P

=1 X 0
1 0 V2 ≡  0

√
 (̃

−0) and X 0
1 =

1


P
=1 

00
 [

−1 00

̃(1)]
∗
(1)

0
(1). In general, the parameter estimation error plays an important role. Nevertheless, under

GHS’s key condition (ii) in conjunction with some other regularity conditions specified in their Assump-

tion A, one can show that kV1 k =  (1) and k ksp =  (1) (and hence 0 = 0 in our Assumption

3Condition () is explicitly mentioned in GHS. Lagged dependent variables are ruled out by the second part of Assumption

B in their paper. The first part of () is explicitly assumed in their equation (3) and the second part is implicitly assumed

because the factors in their equation (6) include the maximal common factor set of the observable variables ()  ()

is also implicitly assumed in their paper.
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A.4(ii) and kV2 k =  (1) under our Assumption A.1(i)). In this case, only 1 contributes to

the asymptotic variance of their augmented estimator of 0(1) and both 2 and 3 are asymptoti-

cally negligible under GHS’s key conditions (i), (iii) and (iv) If their key condition (ii) is also satisfied,

one can show that 1 converges to a zero-mean normal distribution; otherwise, one has to consider

bias-correction as in Moon and Weidner (2014a).

Remark 5. The presence of B4 and the complicated structure of ̄ in Assumption A.5(i) are mainly

due to the allowance of lagged dependent variables because  can be correlated with  for   4 In

this case, 1 is not centered around zero asymptotically, whereas both V1 and V2 are centered

around 0 asymptotically.5 We have to decompose 1 into an asymptotic bias term (which is associated

with B4 ) and an asymptotic variance term (which enters ̄ via (1) −  0D((1))):

1√


X
=1

 0
(1) 0 =

1√


X
=1

h
 0
(1) −D( 0

(1)) 0

i
− B4 

We can find primitive conditions to ensure that the first term in the last expression converges to a zero

mean normal distribution, the conditional expectation B̄4 of the second term given D contributes to

the asymptotic bias which can be corrected, and B4 − B̄4 is asymptotically negligible. For further

details, see the proofs of Theorem 3.3 and Corollary 3.4 in the appendix and the supplementary appendix,

respectively.

Remark 6. Now we consider some special cases where the formulae for the asymptotic bias and variance

terms can be simplified.

1. If all regressors are strictly exogenous as in Pesaran (2006), Bai (2009), and GHS, then one can set

B4 = 0 and ̄ ≡ 0 [(1)−X1+(−X2 )
−1
0 0] in Assumption A.5(i), where X1 =

1


P
=1 

00
 [

−1 00̃(1)]
∗
(1)(1) and X2 =

1


P
=1 

00


¡
−1000

¢−1
0  In short, there is

no need to consider conditioning on the “exogenous” set of factors and factor loadings.

2. If in addition,  also follows a factor structure as in GHS, then there is no need to correct B2

and B4 under the conditions specified in GHS, and one can reset ̄ ≡ 0(1) in Assumption

A.5(i).

3. If in addition,  → 0 there is no need to correct any bias term.

Note that we present Theorem 3.3 under a set of fairly general and high level assumptions. To estimate

the asymptotic bias and variance, one generally needs to add more specific assumptions as in Bai (2009).

In the supplementary appendix, we specify a set of assumptions (Assumptions B.1-B.2) that ensure all

the high level conditions specified in Assumptions A.1(vi)-(vii), A.2(ii)-(iii), A.4(iii)-(iv) and A.5(i)-(ii)

to be satisfied. Note that Assumption B.1(i) relies on the key notion of conditional strong mixing that

4 In the absense of lagged dependent variables, one can simply combine 1 with 
−1
̂(1)

(−V1 +V2 ) to obtain the

asymptotic distribution without GHS’s key conditions (i), (iii) and (iv).
5V1 is centered around 0 asymptotically because X1 is defined as a weighted average of (1) which asymptotically

smooths out the endogenous component of ; V2 is also asymptotically centered around 0 because of the adoption of

a bias-corrected estimate ̃

in its definition.
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has recently been introduced by Prakasa Rao (2009) and Roussas (2008) and applied to the econometrics

literature by Su and Chen (2013) and Moon and Weidner (2014b). Assumptions B.1-B.2 are also used

to establish the consistency of the asymptotic bias and variance estimates.

In particular, under the martingale difference sequence (m.d.s.) condition in Assumption B.2, we have

Θ = ( )−1
X
=1

X
=1

2̄̄
0
 Θ∗(1) = lim

( )→∞
Θ∗

(1)
 Θ∗

(1)
≡ 1



X
=1


h
 ∗(1)

∗0
(1)

2


i


where ̄0 denotes the th row of ̄One can consistently estimateΘ∗(1) by Θ̂∗(1) =
1


P
=1 ̂(1)̂

0
(1)̂

2


where ̂ =  − 0
(1)̂(1) − ̂

0
(1)̂(1) Below we focus on inferential theory for 

0
(1)

Let Ψ̂ ≡diag(̂1   ̂ ) and Φ̂ ≡diag(̂1   ̂ ) where ̂ ≡ −1
P

=1 ̂
2
 and ̂ ≡

−1
P

=1 ̂
2
 Let ̂ ≡ (1) − ̂(1)(1) − ̂(1)

X̂1 + [ − ̂(1) − ̂(1)
X̂2 ]̂

−1
 ̂ 

where X̂1 ≡ 1


P
=1 ̂

0
(1)[

−1̂ 0(1)̃(1)]̂(1)(1) and X̂2 ≡ 1


P
=1 ̂

0
(1)[

−1̂
0
(1)̂(1)]

−1̂(1) 

̂ 0 ≡ ( )−2
P

=1

P
=1 ̂

0
(1)̂

0
(1)̃(1)̂(1)

0
(1)̂(1)

  ̂ ≡ 1


P
=1

b̃

0
̂(1)

b̃
 and

b̃
 ≡

 − X̂2  Note that we can write the th elements of B3 and B̄4 ≡ D (B4 ) respectively as

B3 ≡ ( )−32 tr
h
( ∗0(1)

∗
(1))
−1̃ 0(1)

000εε0X
∗
(1)

i
and B̄4 ≡ ( )−12 tr [ 0D (ε0X)] 

We propose to estimate the bias and variance terms as follows:

B̂1 ≡ −52−32
X
=1

 0
(1)̂(1)(̂

0
(1)̂(1))

−1̃ 0(1)̂(1)̂
0
(1)Ψ̂ ̂(1)̂

0
(1)̃(1)̂(1)

B̂2 ≡ −12−32
X
=1

 0
(1)̂(1)

Φ̂ ̃(1)̂(1)

B̂3 ≡ −32−12tr
h
(̂ 0(1)̂(1))

−1̃ 0(1)̂(1)̂
0
(1)Ψ̂X̂(1)

i
for  = 1 0

B̂4 ≡ 1√


tr
h
̂(1)

¡
ε̂0X

¢trunci
for  = 1 0

Θ̂ ≡ 1



X
=1

X
=1

̂2̂̂
0


where trunc ≡ P−
=1

P+
=+1

∗
 for any  ×  matrix  = () and ∗ is a  ×  matrix with

( )th element given by  and zeros elsewhere, and ̂0 denotes the th row of ̂ Let B̂3 ≡
(B̂31  B̂30)

0 and B̂4 ≡ (B̂41  B̂40)
0 We define the bias-corrected adaptive group

Lasso estimator of 0(1) as

̂


(1) = ̂(1) − ( )
−12

̂−1
̂(1)
(B̂1 − B̂2 − B̂3 − B̂4 )

The following corollary establishes the asymptotic distribution of ̂


(1)

Corollary 3.4 Suppose Assumptions A.1(i), (v), (viii), A.3, A.4(i)-(ii), A.6, and B.1-B.2 hold. Let

V̂ = ̂−1
̂(1)
Θ̂ ̂

−1
̂(1)

 Then C0

√
 (̂



(1)−0(1)) → 
¡
0 lim( )→∞C0VC00

¢
and C0(V̂ −

V )C00
=  (1)
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Remark 7. The proof of the above corollary is quite involved and we delegate it to the supplementary

appendix. If only strictly exogenous regressors are present in the model, following Remark 6, we can set

B̂4 = 0 and redefine ̂ ≡ ̂(1)
[(1) − X̂1 + ( − X̂2 )̂

−1
 ̂ ] to be used in the variance

estimation. When other conditions are also satisfied, both the bias and variance estimates can be further

simplified with obvious modifications according to Remark 6. It is worth mentioning that our bias-

corrected estimator is asymptotically equivalent to Moon and Weidner’s (2014b) bias-corrected estimator

in the case where all regressors are relevant (i.e., there is no selection of regressors) and 0 is fixed. In

the presence of irrelevant regressors, the variance-covariance matrix for our shrinkage estimator of the

non-zero coefficients is smaller than that of Moon and Weidner’s estimator.

Remark 8. Belloni and Chernozhukov (2013) study post-model selection estimators which apply ordi-

nary least squares to the model selected by first-step penalized estimators and show that the post Lasso

estimators perform at least as well as Lasso in terms of the rate of convergence and have the advantage of

having a smaller bias. After we apply our adaptive group Lasso procedure, we can re-estimate the panel

data model based on the selected regressors and number of factors and the QMLE method of Bai (2009)

or Moon and Weidner (2014a, 2014b). We will compare the performance of these post-Lasso estimators

with the Lasso estimators through simulations.

Remark 9. Note that our asymptotic results are “pointwise” in the sense that the unknown parameters

are treated as fixed. The implication is that in finite samples, the distributions of our estimators can be

quite different from the normal, as discussed in Leeb and Pöscher (2005, 2008, 2009) and Schneider and

Pöscher (2009). This is a well-known challenge in the literature of model selection no matter whether the

selection is based on a information criterion or Lasso-type technique. Despite its importance, developing

a thorough theory on uniform inference is beyond the scope of this paper.

Remark 10. As a referee kindly points out, our procedure does not take into account the possible

correlation in  and it may not work well in the case of strong serial correlation like Bai and Ng’s

(2002) information criterion. Suppose that the error term has an AR(1) structure:  = 0−1 + 

where {  ≥ 1} is a white noise for each . Then one can transform the original model in (2.1) via the

Cochrane and Orcutt’s (1949) procedure to obtain

 − 0−1 = 00
¡
 − 0−1

¢
+ 00 ̆

0
 +  (3.3)

where ̆ 0 =
¡
 0 − 0 0−1

¢
 We propose the following two-stage estimator:

Stage 1: Obtain the residuals ̂ using the largest model (i.e.,  =  and including all regressors)

and let ̂ be the OLS estimator of  by regressing ̂ on ̂−1

Stage 2: Apply our Lasso method to the following transformed model:

( − ̂−1) = 00 ( − ̂−1) + 00 ̆
0
 +  (3.4)

where  is a new error term that incorporates both the original error term  and the estimation error

due to the replacement of 0 by ̂ Simulations demonstrate such a method works fairly well in the case

of serially correlated errors.
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3.4 Choosing the Tuning Parameter 

Let S () and S () denote the index set of nonzero elements in ̂ () and nonzero columns in ̂ () 

respectively. Let S () = S ()× S ()  Let |S| denote the cardinality of the index set S We propose
to select the tuning parameter  = (1 2) by minimizing the following information criterion:

 () = ̂2 () + 1 |S ()|+ 2 |S ()|  (3.5)

where ̂2 () = L (̂ ()  ̂ ()) Similar information criteria are proposed by Wang et al. (2007) and

Liao (2013) for shrinkage estimation in different contexts.

Let S = {1 } and S = {1 0} denote the index sets for the full set of covariates and the
(true) set of relevant covariates in  respectively. Similarly, S = {1  } and S = {1  0}
denote the index sets for the full set of factors and the (true) set of relevant factors in , respectively.

Let S =(S S) be an arbitrary index set with S = {1  ∗} ⊂ S and S = {1  ∗} ⊂ S
where 0 ≤ ∗ ≤  and 0 ≤ ∗ ≤  Consider a candidate model with regressor index S and factor
index S. Then any candidate model with either S + S or S + S is referred to as an under-fitted
model in the sense that it misses at least one important covariate or factor. Similarly, any candidate

model with S ⊃ S S ⊃ S and either S 6= S or S 6= S (i.e., |S |+ |S|  |S|+ |S|) is
referred as an over-fitted model in the sense that it contains not only all relevant covariates and factors

but also at least one irrelevant covariate or factor.

Denote Ω1 = [0 1max] and Ω2 = [0 2max]  two bounded intervals in R+ where the potential tuning
parameters 1 and 2 take values, respectively. Here we suppress the dependence of Ω1 Ω2 1max

and 2max on ( )  We divide Ω = Ω1 ×Ω2 into three subsets Ω0 Ω− and Ω+ as follows

Ω0 = { ∈ Ω : S () = S and S () = S} 
Ω− = { ∈ Ω : S () + S or S () + S} 
Ω+ = { ∈ Ω : S () ⊃ S , S () ⊃ S and |S|+ |S|  |S |+ |S|} 

Clearly, Ω0 Ω− and Ω+ denote the three subsets of Ω in which the true, under- and over-fitted models

can be produced.

For any S = S × S with S = {1  |S |} ⊂ S and S = {1  |S|} ⊂ S we use
S = (1   |S|)

0 to denote an |S| × 1 subvector of  and S = (1   |S|) to denote an

 × |S| submatrix of . Similarly, S and ̂S denote the |S | × 1 subvector of  and |S| × 1
subvector of ̂ according to S Let ̂S and ̂S denote the ordinary least squares (OLS) estimators of

S and S , respectively, by regressing  on S and ̂S  Define

̂2S =
1



X
=1

X
=1

³
 − ̂

0
SS − ̂

0
S ̂S

´2
 (3.6)

where ̂
0
S denotes the th row of ̂S  Let S = S×S One can readily show that ̂2S

→ 2S ≡
lim( )→∞ 1



P
=1

P
=1

¡
2
¢
under Assumptions A.1-A.2.

To proceed, we add the following two assumptions.
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Assumption A.7 For any S = S × S with either S + S or S + S there exists 2S such that
̂2S

→ 2S  2S 

Assumption A.8 As ( )→∞ 10 → 0 2 → 0 1 
2
 →∞ and 22 →∞

Assumption A.7 is intuitively clear. It requires that all under-fitted models yield asymptotic mean

square errors that are larger than 2S , which is delivered by the true model. A.8 reflects the usual

conditions for the consistency of model selection. The penalty coefficients 1 and 2 cannot shrink

to zero either too fast or too slowly.

Let 0 =
¡
01  

0
2

¢0
where 01 and 

0
2 satisfy the conditions on 1 and 2 , respectively

in Assumptions A.3(ii)-(iii).

Theorem 3.5 Suppose that Assumptions A.1, A.2, A.3(i), A.6(i), A.7 and A.8 hold. Then



µ
inf

∈Ω−∪Ω+
 ()  

¡
0

¢¶→ 1 as ( )→∞

Remark 11. Note that we do not impose Assumptions A.3(ii)-(iii), A.4, A.5 and A.6(ii) in the above

theorem. Theorem 3.5 implies that the ’s that yield the over- or under-selected sets of regressors or

number of factors fail to minimize the information criterion w.p.a.1. Consequently, the minimizer of

 () can only be the one that meets Assumptions A.3(ii)-(iii) so that both estimation and selection

consistency can be achieved.

4 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performance of our

proposed adaptive group Lasso (agLasso) method.

4.1 Data Generating Processes

We consider the following data generating processes (DGPs):

DGP 1:  = 01
0
1 + 02

0
2 + 

DGP 2:  = 011 + 022 + 01
0
1 + 02

0
2 +  where

¡
01 

0
2

¢
= (1 1)

DGP 3:  = 011 + 02−1 + 01
0
1 + 02

0
2 +  where

¡
01 

0
2

¢
= (1 025)

DGP 4:  = 011 + 022 + 033 + 044 + 055 + 01
0
1 + 02

0
2 +  where¡

01 
0
2 

0
3 

0
4 

0
5

¢
= (1 1 0 0 0)

DGP 5:  = 011 + 02−1 + 032 + 043 + 05−2 + 01
0
1 + 02

0
2 +  where¡

01 
0
2 

0
3 

0
4 

0
5

¢
= (1 025 0 0 0)

DGP 6:  =
P

=1 
0
 + 01

0
1 + 02

0
2 +  where

¡
01 

0
2

¢
= (1 1),  = 0 for  = 3 

and  = b5( )15c
In all the six DGPs, 01 

0
2 and  are independent  (0 1) random variables. In DGPs 1, 2,

4 and 6,  01 and  02 are independently and standard normally distributed. In DGPs 3 and 5, we

consider an AR(1) structure for the factors:  01 = 05 0−11 + 1 and  02 = 05 0−12 + 2, where

(1 2) are independent  (0 1) random variables.  = 025(01
0
1 + 02

0
2) +  where 
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are IID  (0 1) across both  and  for  = 1  10 and the rest ’s are independent  (0 1) for

 = 11  (in DGP 6). We use  to control for the signal-to-noise (SN) ratio, which is defined as

Var
¡
00 + 00  0

¢
Var()  For each DGP, we choose ’s such that the SN ratio equals 1.

6

DGP 1 is a pure factor structure without any regressor  DGPs 2 and 3 are static and dynamic

panel structures with interactive fixed effects, respectively. DGP 4 is identical to DGP 2 except that in

DGP 4 we include three more irrelevant regressors: 3 4 and 5. Hence, in DGP 4, we consider

both the selection of the regressors and determination of the number of factors, while in DGP 2 we only

consider the latter. DGP 5 is identical to DGP 3, except that DGP 5 includes three irrelevant regressors:

2 3 and −2 Thus, we select both the regressors and number of factors in DGP 5. DGP 6 is

identical to DGPs 2 and 4 except that we consider a model with a growing number of regressors (),

where  = b5( )15c and b·c denotes the integer part of · Note that in this model,  can be quite

large, e.g.,  = 25 when  = 60 and  = 60

The true number of factors is 2 in all the above six DGPs. In our simulations, we assume that we

do not know the true number of factors. We consider different combinations of ( ) : (20 20) (40 40)

(20 60), (60 20) and (60 60)  The number of replications is 250.

4.2 Implementation

One of the important steps in our method is to choose the tuning parameters 1 and 2 . Following

our theoretical arguments above, we use the information criterion in (3.5). Let 2 denote the sample

variance of . For DGPs 1-3 where we only choose the number of factors, we set 1 = 0 and 2 =

2 ln ( ) ( min ( )) For DGPs 4-6, we set 1 = 0052 ln ( ) min ( ) and 2 =

2 ln ( ) ( min ( ))7 In DGPs 1-3, we only select factors, hence we let 1 = 0 and choose

2 from the set:
©


2
 

2
1 ( )−12(ln ( ))−1

ª
, where  are 50 constants that increase geometri-

cally from 001 to 25 i.e.,  = 001 0014  18045 and 25 For DGPs 4-5, we let the candidate set of

(1  2 ) be the Cartesian product: {
2
 ( )−12(ln ( ))−1} ×{

2
 

2
1 ( )−12(ln ( ))−1}

where  are 25 constants that increase geometrically from 001 to 258 We set 1 = 2 = 2 in all cases.

We also consider choices of (1  2 ) based on a “rule of thumb” for DGPs 2-6:

(1  2 ) =  ·
³
2 ( )−12(ln ( ))−1 2 

2
1 ( )−12(ln ( ))−1

´
where  is a constant and we use the fact that  and  pass to infinity at the same rate and 0 = 2 is

fixed in DGPs 2-6. Of course, we reset 1 = 0 for DGP 1. We consider three values for  : 05 1 and

2.

6The results for SN being 2 are reported in an early version of this paper and available upon request.

7A natural BIC-type choices of 1 and 1 that satisfy Assumption A.8 would be 1 =
2 ln( )

2


and 2 =

2 ln( )

2


 Neverthess, in practice ln ( ) 
−2


= ln

min(12 12)


max


−1 −1


is quite big in magnitude in

comparison with the usual BIC tuning coefficient ln ( )  ( ) as  denotes the total number of observations in our

panel data model. We find that through simulations that a downward adjustment of the above 1 by a scale of 1/10

would enhance the finite sample performance of the proposed IC. That is why we choose to use 1 = 005
2 ln( )

2


in

our simulations and applications.
8To control the scale effect of the eigenvalues, we include 

2
1 in the 2  Here we implicitly assume that there is at

lease one factor.
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We compare our agLasso method with the methods of determining the number of factors proposed

in Bai and Ng (2002), Onatski (2009, 2010), and Ahn and Horenstein (2013). Their methods only apply

to pure factor structures without regressors. Thus, we have to modify their methods to account for

the presence of regressors. Specifically, we apply their methods to the factor component: 00  0 + 

which can be consistently estimated by ̂ ≡  − ̃
0
 where ̃


is Moon and Weidner’s (2014b)

bias-corrected estimator of  using the largest number of factors . We briefly describe their methods

here. Bai and Ng (2002, p.201) consider the following information criteria to select the number of factors:

1 () =  () +  ·  () ·
µ
 + 



¶
· ln
µ



 + 

¶


2 () =  () +  ·  () ·
µ
 + 



¶
· ln (min ( )) 

1 () = ln ( ()) +  ·
µ
 + 



¶
· ln
µ



 + 

¶


2 () = ln ( ()) +  ·
µ
 + 



¶
· ln (min ( )) 

where  () = ( )
−1P

=1 ̂
0
()̂() and ̂() is the  × 1 residual vector when  factors are included

in the model.

Onatski (2009) develops a test to test the null hypothesis that the true number of factors 0 = 

against the alternative   0 ≤  The test can be used to determine the number of factors. Specifically,

we start by testing 0 : 0 = 0 versus 1 : 0  0 ≤  If 0 is not rejected, then we conclude 0 = 0.

Otherwise, we continue to test 0 : 0 = 1 versus 1 : 1  0 ≤ . We repeat the procedure until

0 : 0 =  is not rejected and conclude 0 =  The test is based on the largest eigenvalue of the

smoothed periodogram estimate of the spectral density matrix of data and the details are described in

Section 4 in Onatski (2009, p. 1455). Onatski (2010) develops an estimator for the number of factors

based on the fact that all the “systematic” eigenvalues diverge to infinity.

Ahn and Horenstein (2013) propose the ER (eigenvalue ratio) and GR (growth ratio) estimators for

determining the number of factors. The ER estimator maximizes the ratio of two adjacent eigenvalues,

while GR estimator maximizes the growth rates of residual variances.

4.3 Effects of the Number of Factors on the Estimation of ’s

Before we compare various methods, we first examine the effects of the number of factors included in the

model on the performance of the estimators of ’s. Table 1 presents the mean squared errors (MSEs) of

Moon and Weidner’s (2014b) bias-corrected estimators of 1 and 2 with different numbers of factors :

 = 0 1 2 4 6 and 8.9 It is easy to see that when  = 2 (the true number of factors), the MSEs are

the smallest. In general, the number of factors has substantial effects on the MSEs, especially when 

or  is small. For example, when  = 20 and  = 20 in DGP 3, the MSEs of the estimate of 1 with

 = 0 and  = 8 are 7 and 3 times as large as those with  = 2 respectively; the MSEs of the estimate of

2 with  = 0 and  = 8 are 3 and 33 times as large as those with  = 2 respectively. The simulations

9The results for  = 3 5 and 7 are available upon request. In DGPs 4, 5 and 6 all the regressors are included in the

models and the estimation results for the slope coefficients of other regressors are also available upon request.
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suggest that the finite sample performance of the estimates of ’s crucially depends on the number of

included unobservable factors, especially when  or  is small.

4.4 Illustration of the Main Ideas

The main innovation of this paper is to use agLasso to determine the number of factors. There are three

key ideas underlying our approach. First, the smallest −0 eigenvalues of Σ̂̂ (≡ ̂ 0̂  ) converge to

zero in probability, while the largest 0 eigenvalues converge to some positive numbers, which ensures

the adaptive nature of our approach. Second, the penalty term 2 controls the number of factors

selected. The larger the penalty term 2 is, the fewer factors are selected. Third, the information

criterion chooses an appropriate penalty term 2 . Below, we set  = 8 and use the simple DGP 1 to

illustrate these three main ideas. Note that in DGP 1, there is no regressor so that we only consider the

selection of the number of factors.

Plots (a) and (b) in Figure 1 show the medians of the eight eigenvalues of Σ̂̂ over the 250 replications

for ( ) = (20 20) and (40 40)  respectively. It is clear that the two largest eigenvalues are greater

than zero, while the six smallest eigenvalues are all close to zero. Plots (c) and (d) show the effects of the

penalty term 2 (= 
2
 

2
1

1√
 ln( )

) on the selected number of factors for ( ) = (20 20) and

(40 40)  respectively. To make the picture clearer, we choose a wide range of  values: 250 points that

increase geometrically from 0.001 to 25. We can see that when  (and thus 2 ) increases, i.e., the

penalty becomes larger, a smaller number of factors are selected. We also note that for this DGP, there

is quite a wide range of  values (and thus 2 ) that correctly select the number of factors, especially

for ( ) = (40 40) Plots (e) and (f) show how our information criterion (IC) changes with respect to

 for ( ) = (20 20) and (40 40)  respectively. In general, the minimizer of IC falls in the range of

 that correctly selects the number of factors.

4.5 Simulation Results

The simulation results are summarized in Tables 2-4. Table 2 reports the proportions of the replications

in which the number of factors is correctly determined out of total 250 replications. Our agLasso method

is among the best performers in general. For example, for DGP 2, when  = 20  = 20, our agLasso

method based on our IC selects the true number of factors with a correct rate of 54%, while Bai and Ng’s

(2002) PC1, PC2, IC1, IC2 with 0%, 0%, 14%, 8% respectively, Onatski (2009) with 1% Onatski (2010)

with 22% and ER and GR estimators of Ahn and Horenstein (2013) with 23% and 25% respectively.

Our “rule of thumb” method for the choice of tuning parameters also gives good results. It has a correct

rate of 37%, 49% and 47% for  = 05 1 and 2, respectively. When  and  increase, the performances

of all the methods improve. In general, among other methods, Bai and Ng’s (2002) IC1 and IC2, Onatski

(2010), and Ahn and Horenstein (2013) are preferred.

Table 3 shows the proportions of the replications in which the estimates of the ’s are shrunk to

zero out of total 250 replications for DGPs 4-6.10 Note that all other methods discussed above cannot

10To save space, we only report the results based on our IC. The results based on our “rule of thumb” are similar and

available upon request. Also for DGP 6, we only report the results for the coefficients of the first five regressors. The results
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select regressors. Thus we only report the results using our agLasso method. For DGPs 4 and 6, the

relevant regressors 1 and 2 are always selected, while a large proportion (e.g., 100% for  = 60

and  = 60) of the estimated coefficients of the irrelevant regressors (3 4 and 5) are shrunk to zero.

For DGP 5, when  is large, the relevant regressors are always selected, though a small proportion of

relevant regressors are not selected when  is small. For the irrelevant regressors, a large proportion of

estimated 3’s and 4’s are shrunk to zero. However, a large proportion of estimated 5’s are shrunk to

zero only when  is large.

Table 4 reports the MSEs of estimated 1’s and 2’s for DGPs 2-6 using different methods.
11 In

addition to our agLasso estimators, we also report the performances of the bias-corrected agLasso (BC-

agLasso) estimator introduced in Section 3.3 and the post-adaptive group Lasso (post-agLasso) estima-

tors, which is Moon and Weidner’s (2014b) bias-corrected estimators using the number of factors and

regressors selected by our agLasso method. For most of the cases, our agLasso, BC-agLasso, post-agLasso

estimators achieve smaller MSEs than other methods when  and  are small. For example, for 1 in

DGP 5 and ( ) = (20 20) the 100×MSEs for our agLasso, BC-agLasso and post-agLasso estimators
are 4.82, 4.70 and 4.70 respectively, while those for PC1 PC2 IC1 IC2 in Bai and Ng (2002), Onatski

(2009), Onatski (2010), ER and GR in Ahn and Horenstein (2013) are 18.05, 17.89, 17.90, 15.25, 15.51,

8.59, 6.60 and 7.13, respectively. When  and  are large, all the methods perform similarly well. In

general, the post-agLasso estimator performs best among the three agLasso-type of estimators, whereas

the agLasso and BC-agLasso estimators perform similarly.12

5 Empirical Application

In this section, we apply our method to study the determinants of economic growth. There is a large

literature on the empirical studies of economic growth. For example, Barro (1991) and Sala-i-Martin

et al. (2004) investigate this question using cross-sectional data. For panel data, Islam (1995) employs

country fixed effect models and Moral-Benito (2012) uses a Bayesian model averaging approach. Durlauf

et al. (2005, DJT) provide a comprehensive literature review. To the best of our knowledge, none of

the existing studies allows interactive fixed effects.13 However, it is plausible that the economic growth

is determined not only by observable regressors but also some common unobservable shocks or factors.

Thus the panel data model with interactive fixed effects provides much more flexibility in this context.

Nevertheless, in practice, we do not have a priori knowledge about the number of unobservable factors

that should be included in the model. In addition, there are a large number of potential observable

variables that may determine economic growth and economic theory does not provide much guidance

for the selection of them. For example, DJT survey 145 possible determinants of economic growth and

for the coefficients of the remaining ( − 5) irrelevant regressors are available upon request.
11For DGPs 4-6, our agLasso method selects the regressors and determines the number of factors, while other method are

capable of the latter only. So all the regressors are included for their methods. The estimation results for the coefficients of

other ( − 2) regressors are available upon request.
12For the BC-agLasso estimators, we ignore the fact that the exogenous regessors share the same factor structure as the

dependent variable in which case there is no need to correct some of the bias terms (B2 in particular). See Remark 6.
13The only exception is Su et al. (2015), who apply a specification test of panel models with fixed effects to economic

growth data. However, they do not provide estimation results.
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point out that “approximately as many growth determinants have been proposed as there are countries

for which data are available. It is hard to believe that all these determinants are central...”. Thus, it is

important to determine the number of factors and select the relevant regressors in this context.

5.1 Data and Implementation

Let  be the growth rate of real GDP per capita for country  in year   includes 9 variables as

listed in Table 5. The sample covers 108 countries for the period 1970-2005, i.e.,  = 108 and  = 36.

Here we need a balanced panel, and the selection of the 108 countries is completely determined by the

availability of data.14 The data sources are the Penn World Table (Penn Table) and World Bank World

Development Indicators (WDI).

We include maximum 8 factors in the model. As in the simulations, we choose (1  2 ) from the

set
n


2


1√
 ln( )

o
×
n


2
 

2
1

1√
 ln( )

o
 where  are 100 constants that increase geometrically

from 001 to 25 Both 1 and 2 are equal to 2. The information criterion is the same as that in the

simulations.

We also consider other methods, including IC1 and IC2 in Bai and Ng (2002) and the methods in

Onatski (2010) and Ahn and Horenstein (2013), as our simulations show that they are preferred methods.

In the case that different methods give conflicting conclusions, we can use a simple majority rule.

5.2 Estimation Results

5.2.1 Estimation without regressors

We first consider a pure factor structure without including any regressors. Our agLasso method chooses

3 factors. The eigenvalues (1  8) used in our agLasso are shown in Figure 2(a). Other methods also

choose 3 factors as shown in Table 6.

5.2.2 Linear estimation

We consider a linear specification that uses the 9 variables listed in Table 5 and the first 3 lags of 

as regressors. The first half of Table 6 shows the estimation results for the different numbers of factors,

 = 0 3 5 and 8.15 The estimates of the coefficients vary substantially with different numbers of factors.

For example, the coefficient of consumption is negative and significant when  is smaller than 4 and

becomes insignificant when  is greater than 4. However, the coefficients of government consumption

share, investment share, and the first lag of economic growth are significant for most of the numbers of

factors.

Our agLasso method chooses 3 factors, which is consistent with Bai and Ng’s (2002) IC1 and IC2

and Onatski’s (2010) method as shown in Table 6. Ahn and Horenstein (2013) choose 1 factor. The

eigenvalues used in our agLasso are shown in Figure 2(b). The estimation results are presented in Table

7. Our agLasso selects five regressors: population growth, government consumption share, investment

share, and the first and second lags of economic growth. Among them, government consumption share,

14The list of the 108 countries is available upon request.
15The results for the number of factors  = 1 2 4 6 and 7 are available upon request.
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investment share, and the first lag of economic growth are significant. The government consumption

share has a negative effect on economic growth, while the investment share and lagged economic growth

have positive effects.

5.2.3 Nonlinear estimation

In this subsection, we examine the nonlinear effects of the regressors. Our agLasso method selects five

regressors in the linear specification. Thus, we include the squared and interaction terms of those five

selected regressors in addition to the 12 regressors in the linear specification. The total number of

regressors included is 27. In this case, all methods except Ahn and Horenstein (2013) select 3 factors

again. The eigenvalues used in our agLasso are shown in Figure 2(c). Among the 27 regressors, our

agLasso method selects 9 regressors. Table 8 presents the estimation results for the 9 selected regressors.

Based on the post-agLasso method, we find that consumption share, investment share, and the interaction

term of government consumption share and investment share are significant at the 1% level, while the

first lag of economic growth is significant at the 10% level. The signs of those significant regressors are

in general consistent with those in the linear specification. The government consumption share has a

negative effect through its interaction term with investment share, while the lagged economic growth has

positive effects. The effect of investment share is 0.219 − 0.008×Gov, which is positive for most values
of government consumption share in the sample. However, population growth becomes insignificant, and

consumption share becomes significant with a negative sign.

To further examine the nonlinear effect, we consider a “high dimensional” model by including the

linear, squared, and interaction terms of all the original 12 regressor (i.e., the 9 variables listed in Table 5

and the first 3 lags of the economic growth). The total number of regressors is 90 in this case. All methods

select 3 factors again. Among the 90 regressors, our agLasso method selects 11 regressors as shown in

Table 9. The first half of Table 8 also reports the estimation results for the 11 regressors using the model

that includes all the 90 regressors with different numbers of factors.16 Note that almost all the regressors

are insignificant when all 90 regressors are included. This is not surprising, as the standard errors can

be easily inflated when a large number of regressors are included. Nevertheless, our agLasso is effective

in selecting the relevant regressors. Based on the post-agLasso estimation results, consumption share,

government consumption share, investment share, the first lag of economic growth and the interaction

term of fertility rates and the lagged economic growth are significant. Among them, consumption share

and government consumption share have negative effects, while investment share and lagged economic

growth have positive effects on economic growth.17

To summarize, we find that in general there are 3 unobservable factors that determine economic

growth. Among the observable regressors, considering both linear and nonlinear specifications, we find

that government consumption share has a negative effect, while investment share and lagged economic

growth have positive effects on economic growth. This finding is largely consistent with the existing

empirical literature on economic growth (see, e.g., DJT, Appendix 2).

16The estimation results for the other 79 regressors are available upon request.
17The effect of the first lag of economic growth is 0321− 0049×Fert, which is positive in general.
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6 Conclusion

We propose a novel adaptive group Lasso procedure for simultaneous selection of factors and relevant

regressors and estimation in dynamic panel models with interactive fixed effects. We show that our

method consistently determines the number of factors and selects relevant regressors. Our estimators of

the slope parameters in the models achieve an oracle property. Our simulations suggest that our new

method performs well in finite samples. We apply our method to study the determinants of economic

growth and find that government consumption share has negative effects, whereas investment share and

lagged economic growth have positive effects on economic growth.

There are several interesting topics for further research. First, we only allow the numbers of relevant

regressors (0) to grow with the sample size but assume that the true number of factors (0) is fixed in

this paper. The divergence of0 to infinity is particularly useful for the nonparametric sieve estimation of

dynamic panel models with interactive fixed effects (see, e.g., Su and Zhang (2014)). But it is also desirable

to extend our method to allow 0 to increase with both  and  . Second, we only consider strong factors

in our model. As a referee points out, it is interesting to focus on the pure factor model with weak or

semi-strong factors and compare our method with Bai and Ng’s (2002) method in the determination of

the number of factors. To fix the idea, we can assume that the factors are well normalized such that

−1 0 has a well-behaved probability limit but allow

− k·k →  ∈ (0∞) for  = 1  

where  ∈ [0 12] for  = 1   Apparently,  = 0 and 12 correspond to the weak factors studied in
Onatski (2012) and the commonly studied strong factors, respectively. Preliminary simulations indicate

the good performance of our approach in comparison with Bai and Ng’s (2002) when the factors are

semi-strong (e.g.,  = 14). We conjecture that by allowing for different degrees of strength for different

factors, our shrinkage method can also help identify strong or semi-strong factors and separate them from

those relatively weak or inessential factors, but we leave the rigorous theoretic analysis for future research.

Third, as an alternative to the adaptive group Lasso used in this paper, the SCAD method of Fan and

Li (2001) can also be employed and it will be interesting to compare our method with that based on the

SCAD method. Fourth, it is also possible to allow endogeneity in panel data models with interactive fixed

effects, in which case various important issues would arise, including how to extend the usual instrumental

variable (IV) estimation to the current framework, how to determine the set of instruments, and how to

select the number of factors and relevant regressors. Endogeneity naturally arises in dynamic panel data

models with measurement error (e.g., Lee et al., 2012) and in various macro and micro panel data models

(e.g., Moon et al., 2014). Fifth, instead of considering variable and factor selection in augmented panel

regression models, an alternative is to consider SCAD- or Bridge-based penalized PCA in one step. We

are exploring some of these topics in ongoing works.
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APPENDIX

A Some Technical Lemmas

Recall Ŷ = Y−P
=1 ̃



X ̂ = ( )−1 Ŷ0Ŷ̃   =  =
¡
−1000

¢
(−1 00̃ ) and −1̃ 0̃ =

Recall ̃ = (̃(1) ̃(2)), ̂ = (̂(1) ̂(2)) and = ((1) (2)) where, e.g., ̃(1) and ̃(2) are ×0 and
 × (−0) submatrices, respectively. Noting that 

−1||̃ ||2 =tr(−1̃ 0̃ ) =  ||̃ || = 

¡
 12

¢
.

Write  =diag(11 22) where 11 and 22 are 0 × 0 and ( − 0) × (−0)

submatrices of   respectively. Let 
∗
(1) =  0(1) and ∗(1) = 0+0

(1) For matrices  and ̃ we write

̃ =  +O ( ) if
°°°̃−

°°° =  ( ) and ̃ =  + o ( ) if
°°°̃−

°°° =  ( )  Note that

O and o are equivalent to  and  respectively when the associated matrices are of finite (fixed)

dimensions.

We first state some technical lemmas whose proofs are given in the supplementary Appendix C.

Lemma A.1 Suppose that Assumptions A.1 and A.3(i) hold. Then

(i) −1̃ 0 ( )−1 Ŷ0Ŷ̃ = 
→ 

(ii) (−1̃ 0 0)
¡
−1000

¢
(−1 00̃ ) → 

(iii) −1 00̃(1)
→ ∆1 and −1 00̃(2) → 0

(iv) (1)
→ 0

(1) = Σ0∆1 and (2)
→ 0

where  is an  ×  diagonal matrix consisting of the  largest eigenvalues of ( )
−1
Ŷ0Ŷ and

 =

"
11 0

0 0

#
with 11 being an 0 × 0 matrix consisting of the 0 eigenvalues of Σ0Σ 0  both

arranged in descending order; ∆1 is an 0 ×0 full rank matrix.

Lemma A.2 Suppose that Assumptions A.1, A.2 and A.3(i) hold. Let ̆1  ̆ denote the eigenvalues

of −1 0 00 0 in descending order. Then
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00 0(1)) =  (
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+()
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) and −1(̂ 0̂− 0 00 0) =  (
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(vi)
°°°̂(1) − ∗
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°°° =  (
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 )

(vii)   − ̆  =  (
−12) for  = 1 2  0 and   =  (

−12) for  = 0 + 1  0 where

1   denote the  eigenvalues of −1̂ 0̂ arranged in descending order.

Lemma A.3 Suppose that Assumptions A.1, A.2, A.3(i), and A.6(i) hold. Let ∗0(1) denote the th row
of ∗(1) Then
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where B1 = 1
5252

P
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0
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∗0
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000εε00 00̃(1)
0
(1) B3 =
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=1(
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−1 (−1̃ 0(1)

0)0 (
−10)

B Proofs of the Main Results

In this appendix, we prove the main results in the paper.

B.1 Proof of Theorem 3.1

The proof is done in the same spirit of Fan and Li (2001), Fan and Peng (2004), and Lam and Fan

(2008). In particular, the latter two papers consider estimation with a diverging number of parameters.

Recall that ∗ = +0 and ∗ = (∗1  
∗
 )

0 = 0+0 Let  = −12 Let  = 0 +   and

 = ∗ +  where =(1  )
0
and =(·1  ·) are matrices of dimensions  × 1 and  ×

respectively. Apparently, we use · to denote the th column of  for  = 1 2   Let 0 denote the

th row of  : =(1   )
0
 Our aim is to show that for any given   0 there exists a large constant

 such that for sufficiently large ( ) we have
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This implies that with probability approaching one (w.p.a.1) there is a local minimum (̂ ̂) such that ei-
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ª
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©
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or both. Then we have
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where ̆ =  − 00 − ∗0 ̂. We want to determine the probability order of  ’s. First,
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where  = 1


P
=1

P
=1

0
 = ̄  and · is an  ×  matrix with the th row given by

 0
 Second, 2 ( ) =  

0 1


P
=1

P
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By the submultiplicative property of the Frobenius norm, CS inequality, and Lemmas A.2(i) and (iii),
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Using the fact that ∗ = +0 =  0 ( 0)−1 0 and  = ((1), (2)) we have
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Following the proof of Lemma A.3(iii) in Bai (2009), we can show that 1
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we have 5 () ≥ − (2 ) kk  Similarly, 6 () ≥ − (2
−12) kk  It follows that
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where ̄ = − 0−1 ̄ = +−1 and the first equality follows from the fact that tr(12) =vec(0
2)
0

×vec(1)  tr(123) =vec(1)0 (2 ⊗ )vec(0
3)  and tr(1234) =vec(1)

0 (2 ⊗0
4)vec(

0
3) for

any conformable matrices 1 2 3 4 and an identity matrix  (see, e.g., Bernstein (2005, p.247 and

p.253)). Assumptions A.1(viii) and (ii) ensure the asymptotic positive definiteness of ̄ and  We can

verify that
°° 0−1°°2

sp
= max

¡
0−1−1

¢ ≤ max
¡
−1

¢
max

¡
0−1

¢ ≤ max
¡
−1

¢
max ()

=  (1) and kksp =  (1)  By allowing kk and k̄k to be sufficiently large, the linear terms
200−1vec() and −2̄0vec() are dominated by the quadratic terms 0̄ and ̄0̄ respectively.

It follows that for any   0 there exists a large constant ̄ such that
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0) and b̄ = ̂ + −1̂ this further implies that either ||̂|| or ||b̄|| or both must be
stochastically bounded. We consider two cases: (a) ||̂|| is stochastically bounded, and (b) ||b̄|| is sto-
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that tr
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B.2 Proof of Theorem 3.2

Let ̂· denotes the th column of ̂ for  = 1   We want to demonstrate that
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where we recall that ̄ =
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Noting that
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·
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³
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X
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h
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·

00 0
³
̂ −+0

´i2
≡ 4311 + 4312 + 4313 + 4314 say

By Lemma A.2(i) and the remark after Theorem 3.1, 311 ≤ {−1||̂·− 0·||2}{−1||̂− 0||2}
{−1||̂ − 0+0||2} = 

¡
−2

¢


¡
−2

¢
 (1) =  (1) under Assumption A.3(i). Similarly, by

Lemma A.2, Theorem 3.1 and the remark after it, we have
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³
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¡
−2

¢


¡
−1

¢


313 ≤ k·k2 −1
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¡
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¡
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°° 00 0°°2−1 X
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°°°̂ − 0
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¡
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¢
 ( )

¡
−1

¢


It follows that 31 =  (1)  In addition, by the triangle inequality and Lemma A.2(iv),

32 ≤ −1||̂ 0·(̂ −  0)||2−1
X
=1

°°0°°2 °°+
°°2 = 

¡
−4

¢
 (1) =  (1) 

It follows that −1
P

=1 
2
3 =  (1)  Consequently we have shown that

−1
X
=1

(1 + 2 + 3)
2
=  (1)  (B.4)

Now, we study−1
P

=1 
2
4 In view of the fact that  =  (

−12) by Lemma A.2(vii), −1
P

=1 
2
4

=
³√

2
||2

´2
is explosive in probability because 22 122 →∞ by Assumption A.3(iii). This, in

conjunction with (B.4), implies that −1
P

=1 
2
4 À 4−1

P
=1 (1 + 2 + 3)

2
so that (B.3) cannot

be true for all  for sufficiently large  and  . Then we conclude that w.p.a.1, ||̂·|| must be in a
position where k·k is not differentiable. Consequently  (||̂·|| = 0)→ 1 as ( )→∞ ¥
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B.3 Proof of Theorem 3.3

Define

(̃


(1); ̂(1)) ≡
⎛⎝ 1

2
¯̄̄
̃


1

¯̄̄1 ̂1¯̄̄
̂1

¯̄̄   1

2
¯̄̄
̃


0

¯̄̄1 ̂0¯̄̄
̂0

¯̄̄
⎞⎠0



(̃(1); ̂(1)) ≡
⎛⎝√2

221

̂1°°°̂·1°°°  
√
2

220

̂0°°°̂·0

°°°
⎞⎠0

for  = 1  

Let (̃


(1)) ≡ (̃


(1); ̃


(1)) and ̃(̃(1)) = (̃(1); ̂(1)) where, e.g., ̂(1) = (̂·1  ̂·0
) W.p.a.1,

̂|̂| = ̃


|̃


| for  = 1 0 by the consistency of ̂ and ̃


 and the fact that 
0
 6= 0 for

 = 1 0 So (̃


(1); ̂(1)) = (̃


(1)) w.p.a.1. It follows from Theorem 3.2 and the FOCs, w.p.a.1 we

have ⎧⎨⎩ 0 = 1


P
=1

P
=1(1)

h
 − 0

(1)̂(1) − ̂ 0(1)̂(1)
i
−(̃



(1))

0 = 1


P
=1 ̂(1)

h
 − 0

(1)̂(1) − ̂ 0(1)̂(1)
i
− ̃(̃(1)) for  = 1  

Solving for ̂(1) and ̂(1) yields⎧⎨⎩ ̂(1) = −1
̂(1)

h
1


P
=1

0
(1)̂(1)

 −(̃


(1)) +
1


P
=1

P
=1(1)̂

0
(1)Σ̂

−1
̂(1)

̃(̃(1))
i


̂(1) = Σ̂
−1
̂(1)

h
1


P
=1 ̂(1)( − 0

(1)̂


(1))− ̃(̃(1))
i
for  = 1 2 

where ̂̂(1)
= 1



P
=1

0
(1)̂(1)

(1) and Σ̂̂(1) =
1


P
=1 ̂(1)̂

0
(1) By Lemma A.2(vi) and Assump-

tion A.3(i), ||̂̂(1)
− ̂∗

(1)
||sp ≤ ||̂̂(1)

− ̂∗
(1)
|| = 1



P
=1 ||(1)||2||̂(1) − ∗

(1)
|| =  (0

−1
 ) =

 (1)  In view of the fact that∗
(1)
= 0  we have ||̂∗

(1)
− 0 ||sp = ||̂ 0− 0 ||sp+ (1) by As-

sumption A.4(i). Then ||̂̂(1)
− 0 ||sp =  (1) by the triangle inequality and ||−1

̂(1)
−−1

 0 ||sp =  (1) 

By Lemmas A.2(v) and A.1(iv) and Assumption A.1(ii)-(iii), Σ̂−1
̂(1)

=  (1)  By Assumption A.6(ii) and

the fact that ||̂·||−1 =  (
−12) for  = 1  0,

°°°(̃(1))°°° =  (
12
0 1 ) =  (( )

−12
) and°°°̃(̃(1))

°°° =  (2 ) =  (( )−12) With these results, we can readily show that⎧⎨⎩ ̂(1) = −1
̂(1)

1


P
=1

0
(1)̂(1)

 + o

³
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−12´


̂(1) = Σ̂
−1
̂(1)
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P
=1 ̂(1)

³
 − 0

(1)̂(1)

´
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³
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Below we study the asymptotic distributions of ̂(1) and ̂(1) in turn.

Asymptotic distribution of ̂(1) Noting that  = ̂(1)
∗
(1) +(1)

0
(1) +  + (

∗
(1) − ̂(1))

∗
(1)

we have

√
C

³
̂(1) − 0(1)

´
= C−1

̂(1)

1√


X
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 0
(1) 0 +C−1

̂(1)
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∗
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X
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³
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−∗
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´
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≡ 1 + 2 + 3 +  (1)  say.
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By Propositions B.1-B.2 below and the fact that ||−1
̂(1)
−−1

 0 ||sp =  (1)  we have 2 = C−1
̂(1)
(B1−

B2 −V1 +V2 )+  (1)  and 3 = −C−1
̂(1)
B3 +  (1)  where kB1k =  (

p
)

kB2k =  (
√
 +

p
 ) kB3 k =  (

p
) and kV k = 

³√

´
for  = 1 2 Conse-

quently,
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!
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Following Moon and Weidner (2014a, 2014b) and as demonstrated in the supplementary Appendix F ,

we have
√
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0
 0̃ ̃ =  − X2 

 =
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P
=1[−  0D ()− 0X2 ]

0 and X2 ≡ 1


P
=1 
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¡
−1000
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0 

18 It

follows that 1√


P
=1 

0
(1) 0 −V1 +V2 =  + o (1)  where
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X
=1

©
 0(1) − 0X1 + [ −  0D ()− 0X2 ]
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ª0


and X1 is defined in Remark 4. In the presence of lagged dependent variables,  does not center

around 0 asymptotically and it contributes to both the asymptotic bias and variance of ̂(1)We make the

following decomposition:  =
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P
=1 

0
−B4  where  ≡ (1)− 0D((1))− 0X1+
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=
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µ
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VC00
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where B = −1
̂(1)

(B1 − B2 − B3 − B4 ) and V = −1
 0Θ

−1
 0 

Asymptotic distribution of ̂(1) Noting that − 0
(1)̂(1) = ̂(1)

∗
(1)+−(1)(̂(1)−0(1))+

18Let 
(1)


= 1√



=1 ̃

0
0 Its th element corresponds to

1√


(1)

0 0 


defined in Moon and Weidner

(2014b, Section 4.1) which contributes to both the asymptotic bias and variance. We make the following decomposition:


(1)


=
1√



=1

( −0X2 )
0  − 1√




=1

0
0

=
1√



=1

[ − 0D ()−0X2 ]
0  − 1√




=1

[ −D ()]
0 0

where the first term is  and contributes to the asymptotic variance and the second term can be corrected as in Moon

and Weidner (2014b); see also the proof of Corollary 3.4 for the correction of B4 . In the absence of lagged dependent

variables, one can replace  by 
(1)


as in Bai (2009).
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( ∗(1) − ̂(1))
∗
(1) we have
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By the study of the asymptotic distribution of ̂(1)
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¡
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→ (0Σ−1∗
(1)
Θ∗
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(1)
) by Slutsky theorem. ¥

Proposition B.1 Suppose that the conditions of Theorem 3.3 hold. Then  ≡ 1√


P
=1

0
(1)̂(1)

( ∗(1) − ̂(1))
∗
(1) = B1 − B2 − V1 + V2 + o (1)  where B1  B2  V1  and V2 are

defined in Section 3.3.

Proof. Note that
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By Lemma A.3(i), 1 = B1 + o (1)  By (C.2) in the supplementary appendix and the fact that
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P
=1

0
(1) 0(1)

∗
(1) ≡ −
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terms that are easy to analyze first. First, 22 = 25 = 0 as  0 0 = 0 Next, we want to show

that 2 =  (1) for  = 4 7 and 8 Let 0
= (10

  00
)0 be an arbitrary 0 × 1 nonrandom

vector with k0k = 1 Using tr() ≤tr(0)12tr(0)12 for any two conformable matrices  and 
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by the triangle inequality and Assumptions A.1(i), (iii) and (iv),
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under Assumption A.3(i), implying that k24k =  (1)  For 27 we have
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Combining the above results yields the conclusion.
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Proposition B.2 Suppose that the conditions of Theorem 3.3 hold. Then 1√
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By Lemma A.3(ii), 2 = o (1)  By Lemma A.3(iii), 3 = B3 + o (1)  Lastly, by Lemma

A.2(v) and Assumptions A.1(ii), (iv) and (vii)
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Consequently, we have 1√


P
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0
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−∗
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) = −B3 + o (1) 

B.4 Proof of Theorem 3.5

By Theorem 3.2, we know that the shrinkage estimation based on 0 can correctly select all relevant

covariates and factors and shrink the coefficients of irrelevant covariates and factors to 0 w.p.a.1. This
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implies that 0 ∈ Ω0 and w.p.a.1
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where the second equality holds by Theorem 3.2 and Assumption A.8, and the last convergence holds by

Assumption A.7. We consider the cases of under- and over-fitted models separately.

Case 1: Under-fitted model. In this case, we have either S () + S or S () + S Noting that
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Case 2: Over-fitted model. Let S = {S × S : S ⊃ S S ⊃ S |S |+ |S|  |S |+ |S|} 
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where S = S × S S = (1S   S)0 S denotes the  × |S| submatrix of  with column

indices given by S and ̂S is analogously defined. By the definition of ̂
2
S in (3.6), we have ̂2S =

S(̂S  ̂S) In view of the facts that 
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By Assumption A.8, 2 1 →∞ and 22 →∞ In addition, for any S = S×S∈ S we have
max(|S |−0 |S|−0) ≥ 1 and min(|S |−0 |S|−0) ≥ 0 Then by Proposition B.3 below
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Proposition B.3 Suppose that the conditions in Theorem 3.5 hold. Suppose that S ∈ S ={S × S :
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Proof. Consider the minimization of the following objective function

̄S
³
S  

´
=

1



X
=1

°°° −SS −  0

°°°2  (B.6)

39



where we pretend that the factors are observed. Let ̄S and ̄ denote the OLS solution to the above

problem. Let ̄2S ≡ ̄S
³
̄S  ̄
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 Straightforward algebra shows that
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Now, fix S ∈ S̄. We consider the minimization of the least square objective function in (B.5).

Noting that −1̂ 0S ̂S is asymptotically singular when |S|  0 the OLS estimate ̂S() is not

necessarily unique whereas ̂S() is. Despite this, the minimum of S(S  S) is uniquely de-
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In addition, using Lemma A.3 we can readily show that°°°̂S − 0S
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Figure 1: Illustration of the main ideas
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(a) Eigenvalues: Estimation without regresors
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(b) Eigenvalues: Linear estimation
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(c) Eigenvalues: Nonlinear estimation I
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(d) Eigenvalues: Nonlinear estimation II

Figure 2: Eigenvalues used in estimation
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Table 1: MSEs of estimates of (1 2) for different numbers of factors included in the model

Number of factors included

DGP N T 0 1 2 4 6 8

2 20 20 1 19.37 6.47 3.77 4.43 6.49 9.96

2 20.56 6.61 3.84 3.71 5.73 9.67

40 40 1 18.25 4.68 0.57 0.62 0.75 0.92

2 17.80 4.21 0.42 0.48 0.66 0.85

20 60 1 17.13 3.99 0.73 0.80 1.08 1.57

2 18.67 4.69 0.80 0.91 1.23 1.71

60 20 1 18.62 4.25 0.72 0.82 1.11 1.52

2 19.46 4.86 0.88 0.92 1.19 1.67

60 60 1 16.75 3.81 0.23 0.25 0.29 0.31

2 16.71 3.89 0.19 0.21 0.24 0.26

3 20 20 1 30.40 8.74 4.24 4.87 6.52 11.32

2 1.45 0.63 0.44 1.46 5.47 14.70

40 40 1 26.59 5.82 0.59 0.74 0.86 0.97

2 1.35 0.45 0.06 0.11 0.23 0.67

20 60 1 28.09 6.30 0.87 1.11 1.25 1.75

2 1.40 0.48 0.09 0.17 0.26 0.44

60 20 1 27.10 6.06 0.86 1.07 1.80 6.18

2 1.31 0.36 0.12 0.79 4.88 15.48

60 60 1 27.06 6.13 0.23 0.28 0.33 0.39

2 1.34 0.40 0.03 0.04 0.06 0.10

4 20 20 1 11.71 6.17 4.15 5.19 7.61 10.57

2 11.83 6.24 4.02 3.98 6.32 11.05

40 40 1 10.13 3.58 0.58 0.73 0.85 0.96

2 10.26 3.67 0.54 0.65 0.73 0.89

20 60 1 10.05 3.74 0.98 1.02 1.32 1.78

2 10.11 3.70 0.88 0.97 1.23 1.68

60 20 1 11.00 4.00 0.95 1.08 1.35 1.77

2 10.63 3.81 0.70 0.90 1.04 1.39

60 60 1 9.71 2.97 0.19 0.21 0.25 0.27

2 9.80 2.99 0.20 0.22 0.25 0.29

5 20 20 1 19.24 8.22 4.67 4.94 7.68 18.05

2 0.97 0.60 0.53 2.20 9.58 33.48

40 40 1 16.51 4.81 0.60 0.73 0.86 1.10

2 0.80 0.34 0.06 0.11 0.27 1.23

20 60 1 17.57 5.32 0.91 1.12 1.26 1.75

2 0.85 0.39 0.11 0.19 0.28 0.46

60 20 1 16.97 5.08 0.93 1.11 4.74 17.77

2 0.80 0.28 0.13 1.56 12.15 37.73

60 60 1 16.90 4.91 0.24 0.28 0.33 0.39

2 0.78 0.29 0.03 0.04 0.06 0.12

6 20 20 1 6.77 5.88 4.62 4.80 6.98 9.72

2 6.97 5.53 4.33 4.68 7.05 11.18

40 40 1 5.29 2.86 0.46 0.56 0.64 0.89

2 5.64 3.05 0.57 0.65 0.75 0.89

20 60 1 5.54 3.26 0.87 0.90 1.22 1.55

2 5.42 3.12 0.68 0.82 1.11 1.38

60 20 1 5.95 3.40 0.82 1.15 1.44 1.84

2 5.61 3.03 0.80 0.94 1.21 1.62

60 60 1 5.00 2.21 0.18 0.21 0.23 0.26

2 5.01 2.20 0.21 0.24 0.29 0.32

Note: Numbers in the main entries are 100×MSEs of the estimates of 1 or 2.
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Table 2: Selection of the number of factors (SN ratio=1)

Comparison methods AgLasso

Bai and Ng- Ona- Ona- AH- IC Rule of thumb

DGP N T PC1 PC2 IC1 IC2 ReSt Eca ER GR c=0.5 c=1 c=2

1 20 20   2 0.00 0.00 0.02 0.14 0.08 0.71 0.33 0.23 0.00 0.17 0.28 0.42

r = 2 0.00 0.00 0.46 0.86 0.87 0.22 0.67 0.77 0.76 0.82 0.72 0.57

  2 1.00 1.00 0.52 0.00 0.05 0.07 0.00 0.00 0.24 0.01 0.00 0.00

40 40   2 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.01 0.00 0.02 0.03 0.07

r = 2 0.00 0.72 1.00 1.00 1.00 0.88 0.98 0.99 0.98 0.98 0.97 0.93

  2 1.00 0.28 0.00 0.00 0.00 0.06 0.00 0.00 0.02 0.00 0.00 0.00

20 60   2 0.00 0.00 0.01 0.01 0.00 0.20 0.10 0.06 0.00 0.04 0.09 0.20

r = 2 0.00 0.00 0.99 0.99 1.00 0.73 0.90 0.94 1.00 0.96 0.91 0.80

  2 1.00 1.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00

60 20   2 0.00 0.00 0.00 0.01 0.00 0.26 0.09 0.07 0.00 0.08 0.10 0.17

r = 2 0.00 0.00 1.00 0.99 0.98 0.69 0.91 0.93 1.00 0.92 0.90 0.83

  2 1.00 1.00 0.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0.00 0.00

60 60   2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

r = 2 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 1.00 1.00 0.99

  2 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00

2 20 20   2 0.00 0.00 0.29 0.92 0.74 0.92 0.56 0.55 0.16 0.04 0.13 0.30

r = 2 0.00 0.00 0.14 0.08 0.22 0.01 0.23 0.25 0.54 0.37 0.49 0.47

  2 1.00 1.00 0.57 0.00 0.04 0.07 0.21 0.20 0.31 0.59 0.38 0.23

40 40   2 0.00 0.00 0.31 0.70 0.10 0.80 0.30 0.24 0.00 0.01 0.05 0.11

r = 2 0.02 0.69 0.69 0.30 0.90 0.16 0.70 0.76 0.94 0.72 0.85 0.86

  2 0.98 0.31 0.00 0.00 0.01 0.04 0.00 0.00 0.06 0.27 0.10 0.03

20 60   2 0.00 0.00 0.52 0.70 0.32 0.85 0.43 0.39 0.34 0.03 0.06 0.14

r = 2 0.00 0.00 0.48 0.30 0.67 0.08 0.56 0.59 0.65 0.47 0.67 0.76

  2 1.00 1.00 0.00 0.00 0.01 0.07 0.01 0.02 0.00 0.50 0.27 0.10

60 20   2 0.00 0.00 0.51 0.69 0.30 0.90 0.51 0.46 0.33 0.03 0.09 0.18

r = 2 0.00 0.00 0.49 0.31 0.69 0.08 0.49 0.54 0.67 0.55 0.70 0.76

  2 1.00 1.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.42 0.20 0.06

60 60   2 0.00 0.01 0.06 0.28 0.00 0.44 0.08 0.04 0.00 0.00 0.00 0.04

r = 2 0.99 0.99 0.94 0.72 0.98 0.52 0.92 0.96 1.00 0.95 0.99 0.96

  2 0.01 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.05 0.00 0.00

3 20 20   2 0.00 0.00 0.06 0.50 0.52 0.88 0.56 0.53 0.08 0.17 0.24 0.36

r = 2 0.00 0.00 0.03 0.37 0.36 0.04 0.32 0.33 0.42 0.47 0.56 0.56

  2 1.00 1.00 0.91 0.14 0.11 0.08 0.12 0.14 0.49 0.36 0.20 0.08

40 40   2 0.00 0.00 0.16 0.45 0.07 0.69 0.30 0.24 0.00 0.01 0.06 0.13

r = 2 0.00 0.62 0.84 0.55 0.92 0.23 0.70 0.76 0.90 0.82 0.88 0.87

  2 1.00 0.38 0.00 0.00 0.01 0.08 0.00 0.00 0.10 0.17 0.06 0.00

20 60   2 0.00 0.00 0.34 0.52 0.15 0.78 0.38 0.34 0.16 0.03 0.08 0.18

r = 2 0.00 0.00 0.66 0.48 0.83 0.16 0.62 0.66 0.84 0.67 0.77 0.78

  2 1.00 1.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.30 0.15 0.04

60 20   2 0.00 0.00 0.04 0.12 0.19 0.86 0.50 0.41 0.19 0.08 0.16 0.28

r = 2 0.00 0.00 0.54 0.81 0.80 0.07 0.50 0.59 0.80 0.77 0.77 0.70

  2 1.00 1.00 0.42 0.08 0.02 0.06 0.00 0.00 0.01 0.15 0.06 0.02

60 60   2 0.00 0.00 0.03 0.15 0.00 0.29 0.09 0.06 0.00 0.01 0.03 0.05

r = 2 1.00 1.00 0.97 0.85 0.99 0.64 0.91 0.94 1.00 0.99 0.97 0.95

  2 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Numbers in the main entries are the proportions of the replications in which the selected number of factors is less than,

equal to, or greater than the true number of factors (i.e., 2) out of total 250 replications. Bai and Ng refers to Bai and Ng (2002),

Ona-ReSt refers to Onatski (2010), Ona-Eca refers to Onatski (2009) and AH refers to Ahn and Horenstein (2013).
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Table 2: Selection of the number of factors (SN ratio=1) (cont’d)

Comparison methods AgLasso

Bai and Ng- Ona- Ona- AH- IC Rule of thumb

DGP N T PC1 PC2 IC1 IC2 ReSt Eca ER GR c=0.5 c=1 c=2

4 20 20   2 0.00 0.00 0.19 0.93 0.75 0.94 0.48 0.50 0.24 0.06 0.12 0.25

r = 2 0.00 0.00 0.04 0.07 0.20 0.02 0.21 0.24 0.44 0.26 0.38 0.45

  2 1.00 1.00 0.77 0.00 0.05 0.04 0.30 0.26 0.32 0.68 0.50 0.30

40 40   2 0.00 0.00 0.33 0.72 0.10 0.82 0.27 0.23 0.00 0.01 0.04 0.12

r = 2 0.00 0.66 0.67 0.28 0.90 0.12 0.73 0.77 0.97 0.67 0.82 0.84

  2 1.00 0.34 0.00 0.00 0.00 0.06 0.00 0.00 0.02 0.32 0.15 0.04

20 60   2 0.00 0.00 0.54 0.76 0.32 0.83 0.46 0.42 0.36 0.02 0.04 0.12

r = 2 0.00 0.00 0.46 0.24 0.67 0.10 0.52 0.57 0.64 0.40 0.67 0.76

  2 1.00 1.00 0.00 0.00 0.01 0.07 0.02 0.02 0.00 0.58 0.29 0.12

60 20   2 0.00 0.00 0.49 0.68 0.32 0.88 0.44 0.39 0.34 0.02 0.06 0.14

r = 2 0.00 0.00 0.51 0.32 0.67 0.09 0.56 0.60 0.65 0.54 0.69 0.73

  2 1.00 1.00 0.00 0.00 0.01 0.03 0.01 0.01 0.01 0.45 0.24 0.13

60 60   2 0.00 0.00 0.05 0.32 0.00 0.38 0.07 0.04 0.00 0.00 0.01 0.03

r = 2 1.00 1.00 0.95 0.68 1.00 0.58 0.93 0.96 1.00 0.96 0.98 0.97

  2 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.01 0.00

5 20 20   2 0.00 0.00 0.01 0.20 0.48 0.88 0.52 0.46 0.13 0.14 0.23 0.34

r = 2 0.00 0.00 0.00 0.11 0.34 0.03 0.30 0.31 0.32 0.53 0.57 0.57

  2 1.00 1.00 0.99 0.70 0.18 0.09 0.18 0.23 0.55 0.34 0.20 0.09

40 40   2 0.00 0.00 0.16 0.42 0.07 0.73 0.31 0.24 0.00 0.02 0.05 0.13

r = 2 0.00 0.44 0.84 0.58 0.92 0.21 0.69 0.76 0.90 0.83 0.88 0.86

  2 1.00 0.56 0.00 0.00 0.01 0.06 0.00 0.00 0.10 0.15 0.06 0.01

20 60   2 0.00 0.00 0.35 0.51 0.18 0.79 0.41 0.36 0.23 0.04 0.08 0.15

r = 2 0.00 0.00 0.65 0.49 0.80 0.17 0.59 0.64 0.77 0.63 0.75 0.79

  2 1.00 1.00 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.34 0.17 0.06

60 20   2 0.00 0.00 0.00 0.00 0.30 0.89 0.52 0.42 0.34 0.08 0.18 0.29

r = 2 0.00 0.00 0.00 0.00 0.56 0.03 0.45 0.49 0.56 0.68 0.70 0.65

  2 1.00 1.00 1.00 1.00 0.13 0.08 0.04 0.08 0.10 0.24 0.12 0.06

60 60   2 0.00 0.00 0.04 0.15 0.00 0.30 0.08 0.06 0.00 0.01 0.03 0.06

r = 2 1.00 1.00 0.96 0.85 0.99 0.63 0.92 0.94 1.00 0.99 0.97 0.94

  2 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00

6 20 20   2 0.00 0.00 0.05 0.88 0.75 0.95 0.46 0.47 0.22 0.04 0.10 0.20

r = 2 0.00 0.00 0.01 0.11 0.17 0.02 0.17 0.20 0.51 0.28 0.41 0.50

  2 1.00 1.00 0.94 0.01 0.08 0.04 0.37 0.33 0.27 0.67 0.49 0.31

40 40   2 0.00 0.00 0.29 0.67 0.09 0.77 0.26 0.21 0.01 0.01 0.04 0.08

r = 2 0.01 0.52 0.71 0.33 0.89 0.18 0.73 0.78 0.94 0.66 0.82 0.86

  2 0.99 0.48 0.00 0.00 0.02 0.06 0.00 0.00 0.05 0.33 0.14 0.06

20 60   2 0.00 0.00 0.48 0.66 0.27 0.86 0.39 0.36 0.32 0.01 0.04 0.11

r = 2 0.00 0.00 0.52 0.34 0.71 0.11 0.60 0.62 0.68 0.46 0.64 0.76

  2 1.00 1.00 0.00 0.00 0.02 0.03 0.01 0.01 0.00 0.53 0.32 0.13

60 20   2 0.00 0.00 0.44 0.64 0.30 0.86 0.45 0.40 0.34 0.02 0.07 0.15

r = 2 0.00 0.00 0.56 0.36 0.69 0.08 0.54 0.60 0.65 0.48 0.70 0.73

  2 1.00 1.00 0.00 0.00 0.01 0.06 0.01 0.01 0.01 0.49 0.24 0.12

60 60   2 0.00 0.00 0.05 0.30 0.00 0.39 0.05 0.04 0.00 0.00 0.00 0.02

r = 2 1.00 1.00 0.95 0.70 0.99 0.54 0.95 0.96 1.00 0.95 0.99 0.97

  2 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.05 0.01 0.00
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Table 3: Selection of regressors (SN ratio=1)

DGP N T 1 2 3 4 5
4 20 20 0.00 0.00 0.80 0.74 0.72

40 40 0.00 0.00 0.98 0.98 0.98

20 60 0.00 0.00 0.94 0.97 0.93

60 20 0.00 0.00 0.94 0.95 0.92

60 60 0.00 0.00 1.00 1.00 1.00

5 20 20 0.00 0.22 0.70 0.67 0.10

40 40 0.00 0.00 0.94 0.92 0.70

20 60 0.00 0.00 0.92 0.94 0.90

60 20 0.00 0.11 0.76 0.78 0.04

60 60 0.00 0.00 1.00 1.00 0.98

6 20 20 0.00 0.00 0.84 0.87 0.87

40 40 0.00 0.00 0.99 1.00 0.98

20 60 0.00 0.00 0.99 0.98 0.99

60 20 0.00 0.00 0.98 0.98 0.98

60 60 0.00 0.00 1.00 1.00 1.00

Note: Numbers in the main entries are the proportions of the replications in which the estimates of ’s

are shrunk to zeros out of total 250 replications.
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Table 4: MSEs of the estimates of 1and 2 (SN ratio=1)

Comparison methods AgLasso

Bai and Ng- Ona- Ona- AH- BC- Post

DGP N T PC1 PC2 IC1 IC2 ReSt Eca ER GR AgLasso AgLasso AgLasso

2 20 20 1 9.98 9.40 7.94 11.18 7.94 17.53 5.07 4.72 4.08 4.11 3.83

2 9.69 9.02 7.70 11.33 7.84 19.15 5.48 5.46 4.02 4.08 3.79

40 40 1 0.63 0.58 1.43 4.33 0.90 13.96 1.21 1.04 0.63 0.65 0.57

2 0.49 0.42 1.31 4.20 0.80 13.41 1.13 0.96 0.45 0.47 0.40

20 60 1 1.24 1.01 2.30 3.56 1.70 13.68 1.47 1.33 1.35 1.45 1.31

2 1.47 1.18 2.66 4.56 1.91 14.89 1.80 1.65 1.71 1.83 1.65

60 20 1 1.21 1.03 1.95 3.53 1.45 15.77 1.81 1.65 1.39 1.42 1.33

2 1.22 1.12 2.41 4.05 1.68 16.36 2.02 1.89 1.66 1.70 1.60

60 60 1 0.23 0.23 0.34 1.14 0.23 6.76 0.40 0.31 0.23 0.23 0.23

2 0.19 0.19 0.28 1.11 0.19 6.56 0.33 0.26 0.19 0.19 0.19

3 20 20 1 11.33 10.73 10.53 7.48 7.03 23.10 5.83 5.65 3.87 3.97 4.30

2 14.67 13.41 13.96 1.73 0.78 1.42 0.92 0.99 5.00 3.11 0.95

40 40 1 0.75 0.61 1.09 2.99 0.84 17.86 1.55 1.30 0.62 0.64 0.62

2 0.13 0.07 0.07 0.18 0.07 0.89 0.11 0.08 0.25 0.16 0.07

20 60 1 1.35 1.21 2.32 3.88 1.71 21.03 2.13 1.94 1.45 1.53 1.39

2 0.28 0.24 0.17 0.26 0.13 1.04 0.16 0.15 0.17 0.16 0.12

60 20 1 5.77 4.65 2.49 1.12 1.54 21.82 2.45 2.05 1.62 1.95 1.31

2 14.65 12.05 4.02 0.17 0.14 1.28 0.13 0.15 2.18 1.09 0.12

60 60 1 0.23 0.23 0.30 0.63 0.23 6.75 0.46 0.33 0.24 0.24 0.23

2 0.03 0.03 0.03 0.05 0.03 0.36 0.04 0.03 0.06 0.04 0.03

4 20 20 1 10.57 10.61 10.07 7.73 6.28 10.53 6.67 6.08 5.06 5.07 4.37

2 11.05 10.73 9.67 7.82 6.39 10.72 6.27 5.78 4.46 4.46 3.97

40 40 1 0.72 0.63 1.31 3.51 0.84 8.05 1.06 0.96 0.62 0.64 0.58

2 0.66 0.57 1.44 3.51 0.82 7.88 1.05 0.99 0.58 0.59 0.55

20 60 1 1.39 1.26 2.41 3.65 2.03 8.43 1.91 1.77 1.82 1.92 1.82

2 1.39 1.27 2.28 3.34 1.84 8.38 1.77 1.60 1.78 1.89 1.82

60 20 1 1.46 1.28 1.96 3.13 1.70 9.24 1.71 1.57 1.60 1.64 1.61

2 1.13 0.96 1.83 2.86 1.35 8.85 1.40 1.25 1.26 1.29 1.27

60 60 1 0.19 0.19 0.26 0.83 0.19 3.54 0.29 0.24 0.19 0.19 0.18

2 0.20 0.20 0.27 0.86 0.20 3.34 0.31 0.24 0.20 0.20 0.20

5 20 20 1 18.05 17.89 17.90 15.25 8.59 15.51 6.60 7.13 4.82 4.70 4.70

2 33.48 33.35 33.44 26.14 4.63 1.12 3.21 4.79 8.65 5.68 3.00

40 40 1 0.78 0.65 1.04 2.47 0.82 11.42 1.45 1.19 0.65 0.68 0.61

2 0.17 0.09 0.07 0.15 0.07 0.58 0.09 0.08 0.49 0.33 0.09

20 60 1 1.42 1.27 2.12 3.31 1.78 13.42 2.18 1.96 1.74 1.85 1.65

2 0.30 0.25 0.17 0.23 0.15 0.66 0.17 0.16 0.21 0.18 0.14

60 20 1 17.77 17.75 17.68 17.22 3.21 13.81 2.69 2.72 3.58 4.31 2.05

2 37.73 37.69 37.54 36.58 3.78 1.12 0.90 1.58 2.92 1.70 1.05

60 60 1 0.24 0.25 0.31 0.57 0.24 4.54 0.41 0.34 0.24 0.25 0.23

2 0.03 0.03 0.03 0.04 0.03 0.22 0.03 0.03 0.07 0.05 0.03

6 20 20 1 9.72 9.84 9.55 5.73 5.36 6.67 6.42 6.14 4.38 4.44 4.52

2 11.18 11.20 10.92 5.53 5.36 6.93 6.58 5.78 5.00 5.01 4.81

40 40 1 0.55 0.49 1.06 2.24 0.61 4.11 0.87 0.73 0.49 0.49 0.45

2 0.67 0.56 1.13 2.39 0.69 4.26 0.88 0.79 0.59 0.59 0.54

20 60 1 1.33 1.19 1.73 2.27 1.19 4.75 1.41 1.34 1.36 1.42 1.39

2 1.16 1.09 1.54 2.40 1.11 4.52 1.25 1.19 1.22 1.29 1.25

60 20 1 1.64 1.47 1.62 2.17 1.26 4.98 1.36 1.30 1.44 1.47 1.42

2 1.41 1.24 1.53 2.06 1.29 4.76 1.48 1.35 1.48 1.50 1.46

60 60 1 0.18 0.18 0.23 0.68 0.18 1.96 0.24 0.22 0.19 0.19 0.19

2 0.21 0.21 0.26 0.70 0.21 1.99 0.25 0.25 0.21 0.21 0.21

Notes: Numbers in the main entries are 100×MSEs of the estimates of 1 or 2. Bai and Ng refers to Bai and Ng (2002),
Ona-ReSt refers to Onatski (2010), Ona-Eca refers to Onatski (2009) and AH refers to Ahn and Horenstein (2013).
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Table 5: Summary statistics

Variables Description Mean Median SD Min Max Data sources

Dependent variable:

Growth Annual growth rate of 1.57 1.84 6.12 -70.89 76.75 Penn Table

real GDP per capita

Independent variables:

Young Age dependency ratio, young 66.02 72.92 23.15 19.34 106.43 WDI

(% of working-age population)

Fert Fertility rate (births per woman) 4.27 4.25 1.98 0.90 8.29 WDI

Life Life expectancy at birth (years) 62.21 63.98 11.78 26.82 82.03 WDI

Popu Population growth 1.92 2.05 1.38 -17.28 17.91 Penn Table

Invpri Price level of investment 88.36 62.33 174.75 9.88 2612.60 Penn Table

Con Consumption share 71.77 71.08 17.89 8.64 193.96 Penn Table

Gov Government consumption share 10.54 8.40 7.63 0.73 58.64 Penn Table

Inv Investment share 22.42 21.24 10.43 -11.50 80.12 Penn Table

Open Openness 59.56 51.97 37.21 3.78 377.79 Penn Table

Table 6: The number of factors determined by various methods

Bai and Ng AH

IC1 IC2 Ona-ReSt ER GR AgLasso

Estimation without regressors 3 2 3 3 3 3

Linear estimation 3 3 3 1 1 3

Nonlinear estimation I 3 3 3 1 1 3

Nonlinear estimation II 3 3 3 3 3 3

Note: Bai and Ng refers to Bai and Ng (2002), Ona-ReSt refers to Onatski (2010), and AH refers

to Ahn and Horenstein (2013).

Table 7: Linear estimation

Young Fert Life Popu Invpri Con Gov Inv Open Lag1 Lag2 Lag3

Number of factors=0

estimate 0.018 -0.001 0.019 -0.446 0.001 -0.026 -0.053 0.085 0.002 0.143 0.041 0.031

t-stat 0.987 -0.003 1.754 -1.103 1.215 -2.907* -2.604* 5.598* 0.732 2.904* 1.521 1.160

Number of factors=3

estimate 0.026 -0.680 -0.011 -0.161 0.002 -0.083 -0.159 0.146 -0.011 0.060 0.017 0.035

t-stat 1.241 -2.382* -0.390 -1.081 1.717 -5.013* -4.153* 6.195* -1.842 2.094* 0.753 1.706

Number of factors=5

estimate 0.006 0.090 0.005 -0.441 0.000 -0.009 -0.157 0.264 -0.004 0.067 -0.064 -0.023

t-stat 0.127 0.159 0.148 -0.881 0.058 -0.319 -2.089* 5.002* -0.360 1.277 -1.428 -0.501

Number of factors=8

estimate -0.001 -0.040 -0.033 -0.234 0.003 0.003 -0.048 0.323 -0.006 0.092 -0.061 -0.046

t-stat -0.032 -0.094 -1.379 -1.209 1.461 0.153 -0.875 9.215* -0.894 2.652* -2.052* -1.507

AgLasso: Number of factors=3

estimate 0 0 0 -0.146 0 0 -0.075 0.226 0 0.044 -0.031 0

BC-est. 0 0 0 -0.174 0 0 -0.074 0.222 0 0.073 -0.003 0

t-stat 0 0 0 -1.437 0 0 -2.677 11.500* 0 2.618* -0.145 0

Post-agLasso: Number of factors=3

estimate 0 0 0 -0.065 0 0 -0.168 0.222 0 0.080 -0.009 0

t-stat 0 0 0 -0.554 0 0 -6.402* 12.117* 0 2.787* -0.446 0

Note: BC-est. denotes the bias-corrected estimate. * denotes significance at the 5% level. Lag1, Lag2, and Lag3 refer to the

first, second, and third lag of economic growth, respectively.
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Table 8: Nonlinear estimation I

Fert Popu Con Inv Lag1 Lag2 Lag3 Lag12 Gov × Inv

Number of factors=0

estimate -0.145 -0.350 -0.021 0.128 0.128 -0.004 0.031 0.009 -0.002

t-stat -0.741 -0.729 -2.223* 2.067* 1.476 -0.045 1.306 3.103* -0.998

Number of factors=3

estimate -0.101 0.052 -0.094 0.180 0.145 -0.047 0.014 0.006 -0.005

t-stat -0.352 0.122 -5.525* 2.431* 2.070* -0.769 0.663 3.009* -2.189*

Number of factors=5

estimate -0.223 0.037 -0.027 0.350 0.082 -0.136 0.015 0.006 -0.003

t-stat -0.572 0.069 -1.371 3.513* 0.937 -1.687 0.515 2.629* -1.304

Number of factors=8

estimate 0.187 -0.151 -0.029 0.362 0.057 -0.251 0.036 0.005 -0.006

t-stat 0.332 -0.211 -0.996 2.745* 0.520 -2.638* 0.983 1.292 -1.401

AgLasso: Number of factors=3

estimate 0.579 -0.318 -0.038 0.303 0.015 -0.087 -0.009 0.003 -0.006

BC-est. 0.512 -0.351 -0.035 0.300 0.045 -0.052 -0.016 0.003 -0.006

t-stat 3.314* -2.317* -3.861* 12.84* 1.690 -2.245* -0.793 1.702 -4.807*

Post-agLasso: Number of factors=3

estimate -0.151 -0.286 -0.104 0.219 0.052 -0.012 -0.003 0.003 -0.008

t-stat -0.709 -0.839 -5.434* 7.423* 1.703 -0.499 -0.115 1.224 -4.536*

Note: BC-est. denotes the bias-corrected estimate. * denotes significance at the 5% level. Lag1, Lag2, and Lag3 refer to the

first, second, and third lag of economic growth, respectively.

Table 9: Nonlinear estimation II

Fert Fert Fert Fert Fert

Life Con Gov Inv Lag1 Fert2 × Young × Life × Popu × Lag1 × Lag2

Number of factors=0

estimate -0.247 0.155 0.353 0.473 0.594 -0.489 0.065 0.017 0.564 0.005 0.004

t-stat -1.540 1.323 1.053 1.921 1.504 -1.871 1.778 0.852 2.273* 0.113 0.094

Number of factors=3

estimate 0.179 0.026 0.787 -0.020 0.391 -0.364 0.058 -0.020 0.143 0.010 -0.024

t-stat 0.629 0.137 1.155 -0.056 0.831 -0.974 1.147 -0.607 0.313 0.169 -0.480

Number of factors=5

estimate 0.216 -0.046 0.728 0.006 0.244 -0.426 0.057 -0.030 0.082 -0.011 -0.083

t-stat 0.919 -0.247 1.226 0.020 0.606 -1.143 1.139 -0.930 0.231 -0.192 -1.614

Number of factors=8

estimate 0.169 -0.107 0.445 0.043 0.065 -0.602 0.085 -0.028 0.231 -0.038 -0.052

t-stat 0.576 -0.504 0.669 0.122 0.150 -1.264 1.277 -0.729 0.571 -0.647 -0.931

AgLasso: Number of factors=3

estimate 0.018 -0.035 -0.059 0.084 0.145 0.003 0.003 -0.001 -0.045 -0.014 -0.001

BC-est. 0.009 -0.031 -0.054 0.081 0.178 0.001 0.003 -0.000 -0.049 -0.016 0.003

t-stat 0.566 -2.912* -1.772 4.472* 3.101* 0.021 0.598 -0.074 -1.694 -1.406 0.632

Post-agLasso: Number of factors=3

estimate -0.043 -0.082 -0.252 0.139 0.321 0.003 0.002 -0.006 -0.033 -0.049 0.004

t-stat -1.126 -4.875* -6.435* 6.169* 5.611* 0.066 0.378 -0.865 -1.341 -4.250* 0.936

Note: BC-est. denotes the bias-corrected estimate. * denotes significance at the 5% level. Lag1 and Lag2 refer to the first

and second lag of economic growth, respectively.
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This supplementary material provides proofs for the technical lemmas and Corollary 3.4 in the above

paper. We also present some primitive conditions to verify some high level conditions in Assumptions

A1, A2, A4, and A5 in the text.

C Proofs of the technical lemmas in Appendix A

Proof of Lemma A.1. (i) From the principal component analysis, we have the identity ( )−1 Ŷ0Ŷ̃ =

̃  Pre-multiplying both sides by 
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By Lemma A.3(ii) of Bai (2003), ∆01 Σ̂∆1
→ 11 which has full rank 0 under Assumptions

A.1(ii) and (iii). This ensures that (̃ 0 0 )
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(iii) From the above proof and the fact that Σ̂ is asymptotically nonsingular by Assumption A.1(iii),

we have ∆2
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It follows that −1||̂ −  0||2 ≤ 8−1P8
=1 kk2 by CS inequality. Similarly, we can write ̂(1) −

 0(1) =
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0
(1)

∗
(1)(

∗0
(1)

∗
(1))
−10

(1)(1)
∗
(1) ≡P8

=1

P8
=1 ̄3 ( )  say. Note that

̄3 (3 3) =
1

52 52

X
=1

 0
(1)

∗
(1)(

∗0
(1)

∗
(1))
−1̃ 0(1)

000εε00 00̃(1)
∗
(1) = B1 
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In addition, one can readily show that ̄3 ( ) = o (1) for   = 1  8 with  6=  or  =  6= 3 For
example,

°°̄3 (1 1)
°° =

1

52 52

°°°°°
X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1
̃ 0(1)ε

0εε0ε̃(1)
∗
(1)

°°°°°
≤ 0

52 52

°°°̃ 0(1)ε0°°°2 kεk2sp °°°° ∗(1) ³ ∗0(1) ∗(1)´−1°°°°
(

X
=1

°°(1)

°°°°°∗(1)°°°
)

= −52−52 ( ) ( +  )

³
−12

´
 (

12
0  12)

= 

³

12
0 (−12−12 +12−32)

´
=  (1) 

where we use the fact that
°°°̃ 0(1)ε0°°° ≤ °°° −111

0
(1)

0ε0
°°° + °°°³̃(1) −  0(1)

−1
11

´
ε0
°°° ≤ °°° −111

°°°
×°°(1)

°°°° 0ε0°°+0 °°°̃(1) −  0(1)
−1
11

°°° kεksp =  (
12 12+ 12−1

¡
12 +  12

¢
) =  (

12

 12) by Lemmas A.1(iii) and A.2(ii) and Assumptions A.1(v) and (vii). Similarly

°°̄3 (2 2)
°° =

1

52 52

°°°°°
X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1
̃ 0(1)ε

00 00 000ε̃(1)
∗
(1)

°°°°°
≤ 1

52 52

°°°̃ 0(1)ε00°°°2 °° 0°°2 °°°° ∗(1) ³ ∗0(1) ∗(1)´−1°°°°
(

X
=1

°°(1)

°°°°°∗(1)°°°
)

= −52−52

¡
 2−2

¢
 ( )

³
−12

´
 (

12
0  12)

= 

³

12
0 −12 12−2

´
=  (1) 

where we use the fact that
°°°̃ 0(1)ε00°°° ≤ °°° −111

0
(1)

0ε00
°°°+°°°(̃(1) −  0(1)

−1
11)ε

00
°°°≤ °°° −111

°°°×°°(1)

°°°° 0ε00°°+°°°̃(1) −  0(1)
−1
11

°°°°°ε00°° =  (
12 12+ 12−1

12 12) = 

¡
12−1

¢
by Lemmas A.1(iii) and A.2(ii) and Assumption A.1(vii). Consequently, 1√



P
=1

0
(1)(̂(1)−∗(1))(̂(1)

− ∗(1))∗(1) = B1 + o (1) 

(ii) Let Σ̂̂(1) = −1̂ 0(1)̂(1) Let 0 be an arbitrary 0 × 1 nonrandom vector with k0k = 1 Let
 = 00

1


P
=1

0
(1)(̂(1) −  ∗(1))Σ̂

−1
̂(1)

 ∗0(1) It suffices to show that  =  (
12
0  12−2 )

Note that

| | = ( )−1 tr

Ã
Σ̂−1
̂(1)

 0
(1)

X
=1

 0000
 0
(1)

³
̂(1) −  ∗(1)

´!
≤ 0 ( )−1

°°°Σ̂−1
̂(1)

°°°°°(1)

°° ̄

where ̄ = −1−1
°°°P

=1 
0000

 0
(1)

³
̂(1) −  ∗(1)

´°°°  Noting that °°(1)

°° =  (1)  and Σ̂̂(1) is

asymptotically nonsingular by Lemma A.2(v) and Assumption A.1(ii), it suffices to show that ̄ =

 (
12
0  12−2 ) By (C.2),

1


°°°P
=1 

0000
 0
(1)(̂(1) −  ∗(1))

°°° =P8
=1

1

||P

=1 
0000

 0
(1)(1)||

≡P8
=1  say. By Assumptions A.1(iv), (v) and (vii),

1 =
1

( )2

°°°°°
X
=1

 0000
 0
(1)ε

0ε̂(1)

°°°°° ≤ 0

( )2
1 kεk2sp

°°°̂(1)°°°
= ( )−2 ( ) ( +  )

³
 12

´
=  (

−1 12 + −12)
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where 1 =
°°°P

=1 
0000

 0
(1)

°°° and we use the fact that
21 =

X
=1

X
=1

00
 0
(1)(1)0

0


0 00

≤
⎛⎝ X

=1

X
=1

00
 0
(1)(1)0

00
 0
(1)(1)0

⎞⎠12⎛⎝ X
=1

X
=1

0
0 000

0 00

⎞⎠12

≤
⎛⎝ X

=1

X
=1

00
 0
(1)(1)

0
(1)(1)0

⎞⎠12
X
=1

°° 00°°2

≤
⎡⎣max

⎛⎝ X
=1

(1)
0
(1)

⎞⎠max

Ã
X
=1

 0
(1)(1)

!⎤⎦12 X
=1

°° 00°°2 =  ( ) ( ) 

Let  ≡ (1)
−1
11 which corresponds to the  matrix in Bai (2009). By the triangle inequality,

2 = ( )−2
°°°°°

X
=1

 0000
 0
(1)

000ε̃(1)

°°°°°
≤ ( )−2

°°°°°
X
=1

 0000
 0
(1)

000ε 0

°°°°°+ ( )−2
°°°°°

X
=1

 0000
 0
(1)

000ε
³
̃(1) −  0

´°°°°°
≡ 21 +22 say.

By Assumptions A.1(ii) and (vii) and the fact kk =  (1) 

21 ≤ ( )−2 k1 k
°° 0°°°°00ε 0°° kk

= ( )−2 ( )

³
 12

´


³
12 12

´
 (1) =  (

−12)

Similarly, by Lemma A.2(ii) and Assumptions A.1(ii), (iii) and (v)

22 ≤ ( )−2 k1 k
°° 000ε°°°°°̃(1) −  0

°°°
= ( )

−2
 ( )

³
12 12(12 +  12)

´


³
 12−1

´
=  (

12−2 )

It follows that 2 =  (
12−2 ) By Assumption A.4(iii),

3 = ( )
−2
°°°°°

X
=1

 0000
 0
(1)ε

00 00̃(1)

°°°°° ≤ ( )
−2
°°°°°

X
=1

 0000
 0
(1)ε

00
°°°°°°°° 00̃(1)°°°

= ( )−2

³

12
0 

³
12 +  12

´´
 ( ) = 

³

12
0  12−2

´


as



¯̄̄̄
¯
X
=1

00
 0000

 0
(1)ε

00
¯̄̄̄
¯
2

= 

¯̄̄̄
¯
0X
=1

0
0
0
 00ε0Xε

00
¯̄̄̄
¯
2

≤ 0

0X
=1

20

¡
00

 00ε0Xε
00
¢2
= 

¡
0

2 2 ( +  )
¢
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For the other terms, following the arguments as used in the analysis of Proposition B.1 and using the fact

that 1 =  ( ), we can readily apply Assumption A.1 to show that 4 =  (−1−12)

 =  (
12−1) for  = 5 6 and  =  (

12(−12−12 + −1)) for  = 7 8 Conse-

quently, 1

|| 00ε0X(̂(1) −  ∗(1))|| =  (

12
0  12−2 ) and (ii) follows.

(iii) Note that

1√


X
=1

 0
(1)

∗
(1)

³
̂ 0(1)̂(1)

´−1 ³
̂(1) −  ∗(1)

´0


=
1√


X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1 ³
̂(1) −  ∗(1)

´0


+
1√


X
=1

 0
(1)

∗
(1)

∙³
̂ 0(1)̂(1)

´−1
−
³
 ∗0(1)

∗
(1)

´−1¸³
̂(1) −  ∗(1)

´0


≡ 1 + 2 say.

By Lemmas A.2(i) and (iii), Assumptions A.1(iv)-(v), for any arbitrary 0×1 vector 0 with k0k = 1

¯̄
00

2
¯̄
=

1√


¯̄̄̄
¯tr
Ã
 ∗(1)

∙³
̂ 0(1)̂(1)

´−1
−
³
 ∗0(1)

∗
(1)

´−1¸³
̂(1) −  0(1)

´0 0X
=1

0
ε0X

!¯̄̄̄
¯

≤ 0 ( )
−12

½
1



°°° ∗(1)°°°°°°̂(1) −  ∗(1)
°°°¾°°°°³−1̂ 0(1)̂(1)´−1 − ³−1 ∗0(1) ∗(1)´−1°°°° kεksp

×
(

0X
=1

kXk2sp
)12

= ( )−12 (
−1
 ) (

−2
 + ()−12) (

12 +  12) ((0 )12)

= 

³
12

12
0 −2

´


Hence k2k =  (
12

12
0 −2 ) For 1 by (C.2) we have

1√


X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1 ³
̂(1) −  ∗(1)

´0


=
8X
=1

1

12 12

X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1
0(1) ≡

8X
=1

 ()  say.

One can readily show that  () =  (
12
0 −1 ) for  = 4 5  8 For  (1)  we apply Assumptions

A.1(iv)-(v) to obtain

¯̄
00

 (1)
¯̄
=

1

32 32

¯̄̄̄
¯tr
Ã
 ∗(1)

³
 ∗0(1)

∗
(1)

´−1
̃ 0(1)ε

0ε
0X
=1

0ε
0X

!¯̄̄̄
¯

≤ 0

32 32

°°°° ∗(1) ³ ∗0(1) ∗(1)´−1 ̃ 0(1)°°°°
sp

kεk3sp
(

0X
=1

kXk2sp
)12

= ( )
−32

 (1) (
32 +  32) ((0 )12) =  (

12
0 −1 )
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where we also use the fact that |tr ()| ≤rank() kksp  and the submultiplicative property of the spectral
norm, and the triangle inequality. Hence k (1)k =  (

12
0 −1 ) Next, we decompose  (2) as

follows:

 (2) =
1

32 32

X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1
 0


00ε000 00

+
1

32 32

X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1 ³
̃(1) −  0

´0
ε000 00

≡  (2 1) + (2 2)  say.

By Assumptions A.1(ii), (iv), (v) and (vii),

¯̄
00

 (2 1)
¯̄
=

¯̄̄̄
¯ 1

32 32

X
=1

00
 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1
 0


00ε000 00

¯̄̄̄
¯

=
1

32 32

¯̄̄̄
¯tr
Ã
 ∗(1)

³
 ∗0(1)

∗
(1)

´−1
 0


00ε000 00
0X
=1

0
ε0X

!¯̄̄̄
¯

≤ 0

32 32

°°°° ∗(1) ³ ∗0(1) ∗(1)´−1 0


°°°°°° 00ε000°°°° 0°° kεksp
(

0X
=1

kXk2
)12

= ( )−32

³
−12

´


³
12 12

´


³
 12

´


³
12 +  12

´


³
(0 )12

´
=  (

12
0 −1 )

Similarly,

¯̄
00

 (2 2)
¯̄
=

¯̄̄̄
¯ 1

32 32

X
=1

00
 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1 ³
̃(1) −  0

´0
ε000 00

¯̄̄̄
¯

=
1

32 32

¯̄̄̄
¯tr
Ã
 ∗(1)

³
 ∗0(1)

∗
(1)

´−1 ³
̃(1) −  0

´0
ε000 00

0X
=1

0ε
0X

!¯̄̄̄
¯

≤ 0

32 32

°°°° ∗(1) ³ ∗0(1) ∗(1)´−1°°°°°°°̃(1) −  0

°°°°°ε000°°°° 0°° kεksp
(

0X
=1

kXk2
)12

= ( )−32

³
−12

´


³
 12−1

´


³
12 12

´


³
 12

´


³
12 +  12

´
×

³
(0 )12

´
= 

³

12
0  12−2

´


It follows that  (2) =  (
12
0  12−2 ) For  (3)  we have

 (3) =
1

32 32

X
=1

 0
(1)

∗
(1)

³
 ∗0(1)

∗
(1)

´−1
̃ 0(1)

000ε = B3 

This completes the proof of (iii).

(iv) By (C.2), 1

(̂(1)− 0(1))

0 =
P8

=1
1

0
(1) =

P8
=1 ()  say. The proof is analogous to that

of Lemma A.2(iii) and we only show that  () = 

¡
−2

¢
for  = 1 2 3 as the analysis of the other
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terms is simpler. By the triangle inequality, the relationship between the spectral and Frobenius norms

and their submultiplicative property, and Assumptions A.1(ii), (v), and (vii), A.2(i), and A.4(iv),

k (1)k = −1−2
°°°̃ 0(1)ε0ε°°° ≤ 0

−1−2
°°°̃(1)°°° kεk2sp kk

= −1−2

³
 12

´
 ( +  )

³
 12

´
= 

¡
−2

¢


k (2)k = −1−2
°°°̃ 0(1)ε00 00°°° ≤ −1−2

°°°̃(1)°°°°°ε00°°°° 00°°
= −1−2

³
 12

´


³
12 12

´


³
 12

´
= 

³
−12−12

´


and

k (3)k = −1−2
°°°̃ 0(1) 000ε°°° ≤ −1−2

°°°̃ 0(1) 0°°°°°00ε°°
= −1−2 ( )

³
12 12 + 

´
= 

³
−1 +−12−12

´


This completes the proof of (iv). ¥

D Some primitive assumptions and technical lemmas

In this appendix we present two assumptions that replace some high level conditions in Assumptions

A1, A2, A4 and A5 in the text. They are also used to prove the technical lemmas in this appendix and

Corollary 3.4 in the next appendix.

Recall that D ≡ 
¡
 0 0

¢
and D () = (|D) Let kkD ≡ [D(kk )]1

Assumption B.1 (i)max1≤≤ || 0 ||8+4 ≤  for some   0 and  ∞ and −1 00 0 −→ Σ 0  0

as  →∞

(ii) max1≤≤ ||0 ||8+4 ≤  and −1000 −→ Σ0  0 as  →∞

(iii) max1≤≤1≤≤  ||8+4 and max1≤≤ max1≤≤1≤≤  kk8+4 ≤ 

(iv) max1≤≤ −1
P

=1D
¡
2
¢
=  (1) and max1≤≤ −1

P
=1D

¡
2
¢
=  (1)  max1≤≤0

max1≤≤ −1
P

=1D(
2
) =  (1) and max1≤≤0

max1≤≤ −1
P

=1D(
2
) =  (1) 

(v) max1≤≤ −1
P

=1 kk48+4D =  (1) and max1≤≤0 max1≤≤ −1
P

=1 kk48+4D =
 (1) 

Note that Assumptions B.1(i)-(iii) strengthen the moment conditions in Assumptions A.1(ii)-(iv)

and A.2(i) and require finite eighth plus moments for  0  
0
  , and  to derive the asymptotic

distribution of our adaptive group Lasso estimator and to estimate the asymptotic bias and variance

terms. Admittedly, our moment conditions are generally different and may sometimes be stronger than

those assumed in the literature (e.g., Bai, 2009). For example, Bai (2009) only requires finite fourth

moments for  0  
0
 and  and finite eighth moments for ; but he assumes independence between

 and ( 
0
  

0
) for all     and thus rules out dynamics in the model. Moon and Weidner

11



(2013) assume eighth moments for ; but they also assume that both the factors and factor loadings

are uniformly bounded. In addition, they assume that the error terms  are independent across both

 and  which may rule out conditional heteroskedasticity in dynamic panels. Assumptions B.1(iv)-(v)

are needed to show some uniform results below.

To state the next assumption, we first provide the definition of conditional strong mixing processes.

Definition D.1 Let (ΩA  ) be a probability space and B be a sub--algebra of A. Let B (·) ≡  (·|B) 
Let {  ≥ 1} be a sequence of random variables defined on (ΩA  )  The sequence {  ≥ 1} is said
to be conditionally strong mixing given B (or B-strong-mixing) if there exists a nonnegative B-measurable
random variable B () converging to 0 a.s. as →∞ such that

|B ( ∩)− B ()B ()| ≤ B () a.s. (D.1)

for all  ∈  (1  )   ∈ 
¡
+ ++1 

¢
and  ≥ 1  ≥ 1

The above definition is due to Prakasa Rao (2009); see also Roussas (2008). When one takes

B () as the supremum of the left hand side object in (D.1) over the set { ∈  (1  )   ∈

¡
+ ++1 

¢
  ≥ 1} we refer to it as the B-strong-mixing coefficient.

Assumption B.2 (i) For each  = 1   {( ) :  = 1 2 } is conditionally strong mixing given
D with mixing coefficients

©
D (·)

ª
. D (·) ≡ D (·) ≡ max1≤≤ D (·) satisfies D () =

 (
−) where  = (2 + )(1 + ) +  for some arbitrarily small   0 and  is as defined in

Assumption B.1(i). In addition, there exist integers 0 ∗ ∈ (1  ) such that D (0) =  (1) 

 ( +12)D (∗)
(1+)(2+) =  (1)  and 12−12∗ =  (1) 

(ii) ()   = 1   are mutually independent of each other conditional on D
(iii) For each  = 1    (|F−1) = 0 a.s., where F ≡ (D, {+1  −1

−1 }=1)
(iv) As ( ) → ∞ 

12
0 12−12(−1 +  ) → 0 and 0D ( + 1)

(3+2)(2+)
=

 (1)  where  is defined in Lemma D.2 below.

B.2(i) requires that each individual time series {( ) :  = 1 2 } be D-strong-mixing. To appre-
ciate the importance of conditioning, we take the simple panel AR(1) model considered by Su and Chen

(2013) as an example:

 = 0−1 + 0
0
 

0
 +   = 1    = 1      (D.2)

Even if {¡  0 ¢   ≥ 1} is a strong mixing process, {  ≥ 1} is generally not unless 0 is nonstochas-
tic. For this reason, Hahn and Kuersteiner (2011) assume that the individual fixed effects are nonrandom

and uniformly bounded in their study of nonlinear dynamic panel data models. In the case of random

fixed effects, they suggest adopting the concept of conditional strong mixing where the mixing coefficient

12



is defined by conditioning on the fixed effects. Our spirit is similar to theirs as we define the conditional

strong mixing processes by conditioning on both factors and factor loadings. The dependence of the

mixing rate on  defined in B.1 reflects the trade-off between the degree of dependence and the moment

bounds of the process {( )  ≥ 1}  As Su and Chen (2013) remark, Assumption B.2(ii) does not
rule out cross sectional dependence among ( ). When  = −1 and  exhibits conditional het-

eroskedasticity (e.g.,  = 0 (−1)  where  ∼IID(0 1) and 0 (·) is an unknown smooth function)
as in (D.2), ( ) are not independent across  because of the presence of common factors irrespective

of whether one allows 0 to be independent across  or not. Nevertheless, conditional on D, it is possible
that ( ) is independent across  such that A.2(ii) is still satisfied. Note that here the cross sectional

dependence is similar to the type of cross sectional dependence generated by common shocks studied by

Andrews (2005), but the latter author assumes IID observations conditional on the -field generated by

the common shocks in a cross-section framework. B.2(iii) requires that the error term  be a martingale

difference sequence (m.d.s.) with respect to the filter F which allows for lagged dependent variables

in  and conditional heteroskedasticity, skewness, or kurtosis of an unknown form in  In contrast,

both Bai (2009) and Pesaran (2006) assume that  is independent of    and  for all    and ;

Moon and Weidner (2013) allow dynamics but assume that ’s are independent across both  and  The

allowance of lagged dependent variables broadens the potential applicability of our shrinkage estimation

method. B.2(iv) requires that  should not grow too fast.

To proceed, we remark that with Assumptions B.1-B.2, the high level conditions in Assumptions

A.1(vi)-(vii), A.2(ii)-(iii), A.4(iii)-(iv) and A.5(i)-(ii) can be easily verified. Assumption A.1(vi) follows

from Assumptions B.1(iii) and B.2(ii)-(iii) and Chebyshev inequality. Assumptions A.1(vii) holds because


°° 00ε00°°2 = P

1≤≤
P
1≤≤ [D () 00  0 

00
 

0
 ] =

P
=1

P
=1

£
D

¡
2
¢ || 0 ||2||0 ||2¤

=  ( ) under Assumptions B.1(i)-(iii) and B.2(ii)-(iii). Assumption A.2(ii) is trivially satisfied under

Assumption B.1(iii) and B.2(ii)-(iii) and A.2(iii) can be verified under Assumptions B.1(iii) and B.2(ii)

by the law of iterated expectations. Assumptions A.4(iii)-(iv) follow because we can show that

D
°° 00ε0Xε

00
°°2 =

X
1≤≤

X
1≤≤

D []
00
  0 

00
 

0


= 

¡
2 2 ( +  )

¢
and

D
°°00ε°°2 =

X
=1

X
=1

X
=1

X
=1

D []00 
0
 =  ( ( +  ))

under Assumptions B.2(i)-(iii) by the use of Davydov inequality for conditional strong mixing processes;

see, e.g., the proof of Lemma D.3(vi) below. Finally, Assumptions A.5(i)-(ii) follow under B.1-B.2 by

straightforward verification of the moment conditions for the martingale central limit theorem (e.g.,

Pollard (1984, p.171)).

To prove Corollary 3.4, we need several lemmas.
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Lemma D.2 Suppose that the conditions in Corollary 3.4 hold. Then

(i) max1≤≤
¯̄̄
−1

P
=1

£
2 −D

¡
2
¢¤¯̄̄
=  ( ) ;

(ii)max1≤≤ −1 kk2 =  (1) ;

(iii) max1≤≤
°°−1 00°° =  ( ) ;

(iv) max1≤≤
°°°−1 0

(1)

°°° =  (
12
0  );

(v) max1≤≤ −1
°°(1)

°°2 =  (0) ;

(vi) max1≤≤
°°°∗(1)°°° = 

¡
1(8+4)

¢
;

(vii) max1≤≤ −1
°°°h 0

(1) −D( 0
(1))

i
 0
°°° =  (

12
0  );

where  = max{( )
1(4+2)

log ( )  (log ( )  )12}

Proof. (i) The proof is analogous to that of Lemma A.7(iii) in Su and Chen (2013) by using Bernstein

inequality for conditional strong mixing processes (see, e.g., Lemma A.4 in Su and Chen (2013)).

(ii)max1≤≤ −1 kk2 ≤ max1≤≤
¯̄̄
−1

P
=1

£
2 −D

¡
2
¢¤¯̄̄
+max1≤≤

¯̄̄
−1

P
=1D

¡
2
¢¯̄̄
=

 ( ) + (1) =  (1) by (i) and Assumption B.1(iv).

(iii) The proof is analogous to that of (i).

(iv) The proof is analogous to that of (i).

(v) Following the proof of (i), we can show that max1≤≤
¯̄̄
−1

P
=1

0
(1)(1) −D( 0

(1)(1))
¯̄̄

=  (0 )  Then the result follows from this, Assumption B.1(iv) and the triangle inequality.19

(vi) By Boole and Markov inequalities, for any   0 we have



µ
max
1≤≤

°°0°° ≥ 1(8+4)

¶
≤  max

1≤≤

³°°0°° ≥ 1(8+4)

´
≤ −(8+4) max

1≤≤

n°°0°°8+4 1n°°0°° ≥ 1(8+4)

oo
→ 0

where the last line follows from Assumption B.1(ii) and the dominated convergence theorem. It follows

that max1≤≤
°°0°° =  (

1(8+4)) The conclusion follows as one can write ∗(1) = −1(1)
0
 and (1)

is asymptotically nonsingular.

(vii) The proof is analogous to that of (i).

Let Ψ ≡diag(1    ) and  ≡ −1
P

=1D
£
2
¤
 Recall Ψ̂ =diag(̂1   ̂ ) and

̂ = −1̂0̂ = −1
P

=1 ̂
2
 where ̂ ≡ (̂1  ̂ )0

Lemma D.3 Suppose that the conditions in Corollary 3.4 hold. Then

(i) 00Ψ
0 =  () ;

(ii) 00
¡
−1εε0 −Ψ

¢
0 = 

¡
12 +−12

¢
;

(iii)
°°°Ψ̂ −Ψ

°°°
sp
= max1≤≤

¯̄̄
̂ − 

¯̄̄
= 

¡
−1

1(8+4)
¢
;

19Alternatively, under Assumption B.1(iii), the fourth moment of −1
(1)

2 = −1


=1
0
(1)

(1) is finite. Then

following the proof of (vi) below, we have max1≤≤ −1
(1)

2 =  (
12
0 14), a rough bound that also suffices for

our purpose, but stringent conditions are required on the relative rates at which 0  and  pass to infinity.

14



(iv) ( )−1
°°°̂(1)̂0Ψ̂ ̂̂

0
(1) −  000Ψ

0 00
°°° = 

¡
−1

1(8+4)
¢
;

(v) ( )−1 (̂
0
Ψ̂X̂(1) −+00ΨX

∗
(1)) = 

¡
−1

¢
for  = 1 0;

(vi) −3D
°°00 ¡−1εε0 −Ψ

¢
X

°°2 = 

¡
−1 + −1

¢
for  = 1 0

Proof. (i) By Assumption B.1(ii) and (iv) 00Ψ
0 ≤ max1≤≤ 

°°0°°2 =  (1) () =

 () 

(ii) Under Assumption B.1(iv), −1D
£
00εε00

¤
=
P

=1 
0

00
 
−1P

=1D
£
2
¤
= 00Ψ

0 Let

Ξ = 00

¡
−100εε00 − 00Ψ

0
¢
̄0

where ̄0
is similarly defined as 0

with k̄0
k = 1 Then

D (Ξ ) = 0. Noting that by Assumptions B.2(ii)-(iii)

−2
X
=1

X
=1

D [] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
 if  =  6=  = 

−2
P

=1D
£
2

2


¤
if  =  6=  =  or  =  6=  = 

−2
P

=1

P
=1D

£
2

2


¤
if  =  =  = 

0 otherwise

(D.3)

we have

VarD (Ξ ) = D
h¡
00

−100εε00̄0

¢2i− £00
00Ψ

0̄0

¤2
= −2Dtr

£
εε00̄0

0
0
00εε00̄0

0
0
00
¤− £00

00Ψ
0̄0

¤2
= −2

X
=1

X
=1

X
=1

X
=1

X
=1

X
=1

00
0

00
 ̄0

0
0
0

00
 ̄0D []−

"
X
=1

00
0

00
 ̄0

#2

= −2
X
=1

X
=1

X
=1

¡
00

0
00
 ̄0

¢2
D

£
2

2


¤
+−2

X
=1

X
=1

X
=1

00
0

00
 ̄0

£
00

0
00
 ̄0 + 00

0
00
 ̄0

¤
D

£
2

2


¤
= 

¡
 +2−1

¢


It follows that −100εε00 − 00Ψ
0 = 

¡
12 +−12

¢
by conditional Chebyshev inequality.

(iii) Noting that ̂ =̂(1)
(−(1)̂(1)) and −(1)̂(1) = ((1)

0
(1)+

∗
(1)

∗
(1)+)−(1)̂(1) =

̂(1)
∗
(1) +  where  =  +(1)(

0
(1) − ̂(1)) + (

∗
(1) − ̂(1))

∗
(1) we have

̂ −  =̂(1)
 −  = −̂(1) +̂(1)

h
(1)(

0
(1) − ̂(1)) + (

∗
(1) − ̂(1))

∗
(1)

i
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It follows that

̂ −  = −1
¡
̂0̂ − 0

¢
+ −1

X
=1

£
2 −D(2)

¤
= −1

³
0̂(1)

 − 0
´
+ −1

X
=1

£
2 −D(2)

¤
= −−10̂(1) + −1(0(1) − ̂(1))

0 0
(1)̂(1)

(1)(
0
(1) − ̂(1))

+−1∗0(1)(
∗
(1) − ̂(1))̂(1)

( ∗(1) − ̂(1))
∗
(1) + 2

−10̂(1)
(1)(

0
(1) − ̂(1))

+2−10̂(1)
( ∗(1) − ̂(1))

∗
(1) + 2(

0
(1) − ̂(1))

0−1 0
(1)̂(1)

( ∗(1) − ̂(1))
∗
(1)

+−1
X
=1

£
2 −D(2)

¤
≡ −1 +2 +3 + 24 +5 + 26 +7 say.

We bound each term in the last expression in order. First, by Lemmas A.2(vi) and D.2(iii),

max
1≤≤

¯̄
1

¯̄
= max

1≤≤

¯̄̄
−10

³
̂(1) − ∗

(1)

´
 + −10∗(1)

¯̄̄
≤

°°°̂(1) − ∗
(1)

°°° max
1≤≤

−1 kk2 + max
¡
−1 00 0

¢
max
1≤≤

−2
°° 00°°2

= 

¡
−1

¢
 (1) + (1)

¡
2

¢
= 

¡
−1

¢


By Theorem 3.3 and Lemma D.2(v),

max
1≤≤

¯̄
2

¯̄ ≤ °°°0(1) − ̂(1)

°°°2 max
1≤≤

−1
°°(1)

°°2 = 

¡
0

−4


¢
 (0) = 

¡
2
0
−4


¢


By Lemmas A.2(i) and D.2(vi),

max
1≤≤

¯̄
3

¯̄ ≤ −1
°°° ∗(1) − ̂(1)

°°°2 max
1≤≤

°°°∗(1)°°°2 = 

¡
−2

¢


³
1(4+2)

´
= 

³
−2

1(4+2)
´


Usinĝ(1)
=  − 0−(̂(1)− 0) and  0 = ∗

(1)
 we have that by Lemmas A.2(vi) and D.2(ii)-(v)

and Assumption B.1(i),

max
1≤≤

¯̄
4

¯̄ ≤ max
1≤≤

¯̄̄
−10(1)(

0
(1) − ̂(1))

¯̄̄
+ max
1≤≤

¯̄̄
−10 0(1)(

0
(1) − ̂(1))

¯̄̄
+ max
1≤≤

¯̄̄
−10(̂(1) − ∗

(1)
)(1)(

0
(1) − ̂(1))

¯̄̄
≤

°°°0(1) − ̂(1)

°°°½ max
1≤≤

¯̄
−10(1)

¯̄
+
£
min

¡
−1 00 0

¢¤−1
max
1≤≤

−1
°°0 0°°−12 °° 0°° max

1≤≤
−12

°°(1)

°°
+
°°°̂(1) − ∗

(1)

°°° max
1≤≤

−12 kk max
1≤≤

−12
°°(1)

°°¾
=  (

12
0 −2 )

×
n
 (

12
0  ) + (1) ( ) (1) (

12
0 ) +

¡
−1

¢
 (1) (

12
0 )

o
= 

¡
−1

¢
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Usinĝ(1)
= −̂(1) = − 0+( 0−̂(1)) the fact that  0 = ∗

(1)
 and  0 =  0

¡
 00 0

¢−1
 00

we have that by Lemmas A.2(i) and (vi) and D.2(ii)-(v) and Assumption B.1(i),

max
1≤≤

¯̄
5

¯̄ ≤ max
1≤≤

¯̄̄
−10(

∗
(1) − ̂(1))

∗
(1)

¯̄̄
+ max
1≤≤

−1
¯̄̄
0 0( ∗(1) − ̂(1))

∗
(1)

¯̄̄
+ max
1≤≤

−1
¯̄̄
0(̂(1) − ∗

(1)
)( ∗(1) − ̂(1))

∗
(1)

¯̄̄
≤ max

1≤≤
−12 kk−12

°°° ∗(1) − ̂(1)

°°°°°°∗(1)°°°
+
£
min

¡
−1 00 0

¢¤−1
max
1≤≤

−1
°°0 0°°−1 °°° 00( ∗(1) − ̂(1))

°°° max
1≤≤

°°°∗(1)°°°
+ max
1≤≤

−12 kk
°°°̂(1) − ∗

(1)

°°°−12 °°° ∗(1) − ̂(1)

°°° max
1≤≤

°°°∗(1)°°°
=  (1)

¡
−1

¢


³
1(8+4)

´
+ (1) ( ) (

−2
 + ()−12)

×
³
1(8+4)

´
+ (1)

¡
−1

¢


¡
−1

¢


³
1(8+4)

´
= 

³
−1

1(8+4)
´


By CS inequality,max1≤≤
¯̄
6

¯̄ ≤ ©max1≤≤ ¯̄2
¯̄
max1≤≤

¯̄
3

¯̄ª12
=  (0

−3


1(8+4))

Lastly, max1≤≤
¯̄
7

¯̄
=  ( ) by Lemma D.2(i). Consequently, (iii) follows.

(iv) Observe that

( )−1
³
̂(1)̂

0
(1)Ψ̂ ̂(1)̂

0
(1) −  000Ψ

0 00
´

= ( )
−1 ³

̂(1)̂
0
(1) −  000

´
Ψ

0 00 + ( )
−1

 000Ψ

³
̂(1)̂

0
(1) −  000

´
+( )

−1 ³
̂(1)̂

0
(1) −  000

´
Ψ

³
̂(1)̂

0
(1) −  000

´
+ ( )

−1
̂(1)̂

0
(1)

³
Ψ̂ −Ψ

´
̂(1)̂

0
(1)

≡  +  +  +  say.

By the facts that °°°̂(1)̂0(1) −  000
°°° ≤

°°°(̂(1) −  ∗(1))
∗0
(1)

°°°+ °°°̂(1)(̂(1) − ∗(1))
0
°°°

≤
°°°̂(1) −  ∗(1)

°°°°°°∗(1)°°°+ °°°̂(1)°°°°°°̂(1) − ∗(1)
°°°

= 

³
12 12−1

´
+

³
12 12−1

´
by Lemma A.2(i) and Theorem 3.1, kk ≤rank() kksp  and that kksp ≤ kk  we have

kk ≤ 0 ( )−1 max
1≤≤



°°°̂(1)̂0 −  000
°°°°°0 00°°

= ( )
−1

 (1)

³
12 12−1

´


³
12 12

´
= 

¡
−1

¢


Similarly, kk = kk = 

¡
−1

¢
and kk = 

¡
−2

¢
 In addition, k k ≤ 0 ( )−1 ||̂(1)̂

0||2
max1≤≤ |̂ −  | =  (

−1


1(8+4)) by (iii) Hence (vi) follows.

(v) Observe that ( )−1 (̂
0
Ψ̂X̂(1)−+00ΨX

∗
(1)) = ( )−1 (̂−0+0)0ΨX

∗
(1)+

( )
−1

̂
0
ΨX(̂(1) −  ∗(1)) + ( )

−1
̂
0
(Ψ̂ −Ψ )X̂(1) ≡ 1 + 2 + 3 say. By Theorem 3.1
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and Lemmas A.2(i) and D.3(iii), we can show that  =  (
−1
 ) for  = 12,3. For example,

k1k ≤ 0 ( )−1 max
1≤≤≤



°°°̂− 0+0
°°° kXk

°°° ∗(1)°°°
= ( )

−1
 (1) (

12−1 ) (
12 12) (

12) =  (
−1
 )

It follows that ( )−1 (̂
0
Ψ̂X̂(1) −+00ΨX

∗
(1)) =  (

−1
 )

(vi) Let  ≡ −3D
°°00 ¡−1εε0 −Ψ

¢
X

°°2  Note that
 = −3Dtr

©
00
¡
−1εε0 −Ψ

¢
XX

0


¡
−1εε0 −Ψ

¢
0
ª

= −3−2
X

1≤≤

X
1≤≤


00


0
 

where  ≡ D {[ −D ()] [ −D ()]} We consider four cases for
the individual indices {  } : () # {  } = 4 () # {  } = 3 () # {  } = 2 and ()
# {  } = 1 We use    and  to denote  when the individual indices in the

summation are restricted to cases ()  ()  ()  and ()  respectively. In case ()  we can readily verify

that  = 0 as  = D[]D[]D[]D[] = 0 by Assumption B.2(ii)-(iii)

when # {  } = 4 In case ()  wlog we consider three subcases: (1)  =  (2)  =  and (3)  = 

as the other cases can be analyzed analogously, and write the corresponding summations as 1 2

and 3 respectively. In subcase (1)   = D{[2 − D
¡
2
¢
]}D()D() = 0

by Assumption B.2(ii)-(iii) and thus 1 = 0 In subcase (2)  = D()D()

D() = 0 by Assumption B.2(ii)-(iii) and thus 2 = 0 In subcase (3)  we have  =

D()D()D() by Assumption B.2(ii). In view of the facts that D() = 0 if

 6=  D() = 0 if  ≥  and that D() = 0 if  ≥  by Assumption B.2(iii) we have

3 = −3−2
X

1≤6= 6=≤

X
1≤≤

D()D()D()
°°0°°2

= −3−2
X

1≤6= 6=≤

X
1≤≤

D(2)D()D()
°°0°°2 

By the fact that D() = 0 and Davydov inequality for conditional strong mixing processes (e.g., Su and

Chen (2013, Lemma A.3)), we have |D()| ≤ 8 kk8+4D kk8+4D D (− )(3+2)(4+2)

for any    and any  It follows that

|3| ≤ 64−1−2
X
=1

°°0°°2 X
1≤≤

D(2)

⎧⎨⎩−1
X
=1

kk8+4D kk8+4D

⎫⎬⎭
2

D (− )(3+2)(2+)

≤ 641

(
−1−2

X
=1

X
=1

D(2)
°°0°°2

) ∞X
=1

D ()
(3+2)(2+2)

=  (1)

¡
−1

¢
 (1) = 

¡
−1

¢
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where we use the facts that 1 ≡ max1≤≤ −1
P

=1 kk8+4D kk8+4D =  (1) by As-

sumption B.1(v) and Cauchy-Schwarz inequality and that
P∞

=1 D ()
(3+2)(2+2)

∞ by Assumption

B.2(i) It follows that  = 

¡
−1

¢


Now we consider case ()  We consider three subcases (1)  =  6=  =  (2)  =  6=  =  and

(3)  =  6=  =  and use 1 2 and 3 to denote  when the individual indices in its

summation are restricted to these three subcases respectively. By Davydov inequality,

|1| = −3−2

¯̄̄̄
¯̄ X
1≤6=≤

X
1≤≤

D
©
[2 −D(2)][

2
 −D(2)]

ª
00 

0


¯̄̄̄
¯̄

≤ −3−2
X

1≤6=≤

X
1≤6=6=≤

¯̄
D

©
[2 −D(2)]

ª¯̄ ¯̄
D

©
[2 −D(2)]

ª¯̄ °°0 °°°°0°°
+

¡
−1

¢
≤ 64−3−2

X
1≤6=≤

X
1≤ 6=6=≤

°°2°°4+2D kk4+2D
°°2°°4+2D kk4+2D

°°0 °°°°0°°
×D (|− |)(1+)(2+) D (|− |)(1+)(2+) +

¡
−1

¢
≤ 82 max



°°2°°4+2D−2−2
X
=1

X
=1

°°0°° kk4+2D
( ∞X
=1

D ()
(1+)(2+)

)2
+

¡
−1

¢
=  (1) 

³
( )1(4+2)

´


¡
−1−1

¢
+

¡
−1

¢
= 

³
( )−1+1(4+2)

´
+

¡
−1

¢


where we use the facts that 2 ≡ max1≤≤ −1
P

=1

°°2°°4+2D [kk4+2D
°°0 °°] =  (1)

by Assumption B.1(v) and Cauchy-Schwarz inequality, that max
°°2°°4+2D =  (( )1(4+2)) as

[
°°2°°4+2D]4+2 = ||8+4 ∞ by Assumption B.1(iii) and that

P∞
=1 D ()

(1+)(2+) =  (1)

by Assumption B.2(i) Next, noting that D () = 0 if  6=  and D () = 0 of  6=  and

max ( ) ≥  by Assumption B.2(iii), we apply Davydov inequality to obtain

|2| = −3−2

¯̄̄̄
¯̄ X
1≤6=≤

X
1≤≤

D ()D ()
00
 

0


¯̄̄̄
¯̄

≤ −3−2
X

1≤6=≤

X
1≤≤

|D ()| |D ()|
°°0°°°°0°°

≤ 2−3−2
X

1≤6=≤

X
1≤≤

|D ()| |D ()|
°°0°°°°0°°+

¡
−1

¢
≤ 128−3−2

X
1≤6=≤

X
1≤≤

kk4+2D kk8+4D kk8+4D kk4+2D

×°°0°°°°0°°D (− )(5+4)(8+4) D ( − )(5+4)(8+4) +

¡
−1

¢
≤ 1283 max


kk8+4Dmax


kk8+4D

(
−2−2

X
=1

X
=1

kk8+4D
°°0°°

)

×
( ∞X
=1

D ()
(5+4)(8+4)

)2
+

¡
−1

¢
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=  (1) 

³
( )1(8+4)

´


³
( )1(8+4)

´


¡
−1−1

¢
 (1) +

¡
−1

¢
= 

³
( )−1+1(4+2)

´
+

¡
−1

¢


where 3 = max
−1P

=1 kk8+4D kk4+2D
°°0°° =  (1) by Assumption B.1(v) and

CS inequality. In addition, noting that D () = D ()D( )

and the last expression is zero if either  6=  or max ( )   under Assumptions B.2(iii) we have

|3| = −3−2
P
1≤6=≤

P
1≤≤ D

¡
2
¢
D(2

2
)

°°0°°2 = 

¡
−1

¢
 In sum,  =



¡
−1 + −1

¢
+  (( )−1+1(4+2)) =  (

−1 + −1)

For case ()  we can also consider the application of Davydov inequality when the time indices (  )

are all distinct. Straightforward calculation shows that  = 
¡
−2(

¢1(4+2)
) = 

¡
−1

¢


(Note that one can obtain a rough bound for  by −3−2

¡
 3

¢
= 

¡
−2

¢
without the

need to apply Davydov inequality.) Consequently, we have shown that  = 

¡
−1 + −1

¢


Let Φ =diag(1    ) and  = −1
P

=1D
£
2
¤
 Recall Φ̂ =diag(̂1   ̂ ) and

̂ = −1
P

=1 ̂
2


Lemma D.4 Suppose the conditions in Corollary 3.4 hold. Then

(i)  00
¡
−1ε0ε−Φ

¢
 0 = 

¡
 12 + −12

¢
;

(ii)
°°°Φ̂ −Φ

°°°
sp
= max1≤≤ |̂ −  | = 

¡
−1

1(8+4)
¢
;

(iii) −3D
°°X

¡
−1ε0ε−Φ

¢
 0
°°2 = 

¡
−1

¢
+ 

¡
−(7+4)(8+4)

¢
for  = 1 0

Proof. (i) The proof is analogous to that of Lemma D.3(ii) and thus omitted.

(ii) The proof is analogous to that of Lemma D.3(iii) and thus omitted.

(iii) Note that

−3D
°°X

¡
−1ε0ε−Φ

¢
 0
°°2

= −3tr
£
X

¡
−1ε0ε−Φ

¢
 0 00

¡
−1ε0ε−Φ

¢
X0


¤
= −3−2

X
1≤6=≤

X
1≤≤

D {[ −D ()] [ −D ()]}D []
00
  0

+−3−2
X
=1

X
1≤≤

D {[ − D ()] [ −D ()]} 00  0

≡  +  say,

where the second equality follows because  ≡ D{[ −D ()] [ −D ()]

} = 0 under Assumption B.2(ii)-(iii) if # {  } = 3 or  =  6=  or  =  6=  To study 

we consider three cases for the time indices {   } inside the summation: () # {   } = 4 ()

# {   } = 3 and () all other cases. We use   and  to denote  when the time indices in the

summation are restricted to cases ()  ()  and ()  respectively. Apparently,  = 0 and  = 

¡
−1

¢
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under Assumptions B.2(ii)-(iii) and B.1(i) and (iii) In case () noting that under Assumption B.2(iii) we

always have

D {[ −D ()] [ −D ()]}
= D ()−D ()D () = D () 

wlog we can assume  =  and then consider two subcases (1) max( )   and (2)     .

Accordingly, we define  as  but with the time indices restricted to subcase () for  = 1 2 Noting

that D () = D
¡


2


¢
= 0 in subcase (1)  1 = 0 For subcase (2) we apply the

Davydov inequality for conditional strong mixing processes to obtain

¯̄
D

¡


2


¢¯̄ ≤ 8 kk4+2D °°2°°4+2D D ( − )
(1+)(2+)



Consequently, we have

|2| = −3−2

¯̄̄̄
¯̄ X
1≤6=≤

X
1≤≤

D
¡


2


¢
D []

00
  0

¯̄̄̄
¯̄

≤ 8−3−2
X

1≤6=≤

X
1≤≤

kk4+2D
°°2°°4+2D D ( − )(1+)(2+)

¯̄
D []

00
  0

¯̄
≤ 8−14 max

1≤≤
°° 0 °°

(
−2−1

X
=1

X
=1

kk2D
X
=1

kk2D
°° 0 °°

) ∞X
=1

D ()
(1+)(2+)

= −1
³
 1(8+4)

´
 (1) (1) = 

³
−(7+4)(8+4)

´


where we use Lemma D.5(i) below, the fact that 4 ≡ max1≤≤ −1
P

=1 kk8+4D kk8+4D
×°°2°°4+2D =  (1) by Assumption B.1(v) and Cauchy-Schwarz inequality, and the fact that

−2−1
X
=1

X
=1

kk2D
X
=1

kk2D
°° 0 °°

≤ 1

2
−1−1

X
=1

X
=1

D
¡
2


¢
+
1

2
−1−1

X
=1

X
=1

D
¡
2


¢ °° 0 °°2 =  (1) + (1) =  (1)

by Cauchy-Schwarz and Markov inequalities. It follows that  =  (
−(7+4)(8+4))

For  we consider two cases: () # {   } = 4 and () # {   } ≤ 3 and write  = + 

where  is defined as  but with the time indices restricted to case () for  =   Apparently,  =

−3−2

¡
 2

¢
= 

¡
−1

¢
 For case ()  D {[ −D ()] [ −D ()]}

= D [] = 0 and thus  = 0 It follows that  = 

¡
−1

¢


Lemma D.5 Suppose the conditions in Corollary 3.4 hold. Let · ≡ (1  )
0 and ̂· ≡ (̂1  ̂)

0
Let ̄· denote the th column of the  ×  matrix X̄Then

(i) max1≤≤
°° 0 °° = 

¡
 1(8+4)

¢
;

(ii) max1≤≤ −1 k·k2 =  (1) ;
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(iii) max1≤≤ −1
°°00·°° = max1≤≤ °°°−1P

=1 
0
 

°°° =  ( ) ;

(iv) max1≤≤ −1 k·k2 =  () ;

(v) max1≤≤− max≤+ −1
¯̄
0·̄· −D

¡
0·̄·

¢¯̄
=  ( ) ;

(vi) max1≤≤
°°°̂(1) −  ∗(1)

°°° =  (1 ) ;

(vii) max1≤≤
°°°̂(1)°°° = 

¡
 12−1

¢
+ 

¡
 1(8+4)

¢
;

(viii) max1≤≤ max1≤≤ |̂ − | =  (1) ;

(ix)max1≤≤ −1 k̂· − ·k2 =  (1) ;

where 1 = 

¡
−1

¢
+ 

¡
 +−12 1(8+4)

¢
and  is analogously defined as  by in-

terchanging  and 

Proof. (i) The proof is analogous to that of Lemma D.2(vi)

(ii) Note that max1≤≤ −1 k·k2 ≤ max1≤≤ |−1
P

=1

£
2 − D

¡
2
¢¤ |+max1≤≤ |−1P

=1

D
¡
2
¢ | Analogously to the proof of Lemma D.2(ii), we can show the first term is  ( ). The

second term is  (1) by Assumption B.1(iv). Thus (ii) follows.

(iii) The proof is analogous to that of Lemma D.2(ii)

(iv) The proof is analogous to that of (ii)

(v) The proof is analogous to that of Lemma D.2(ii)

(vi) Write ̂(1) −  ∗(1) =
P8

=1 (1) where (1) denotes the transpose of the th row of (1)

and recall  = ((1) (2))  = 1 2  8 are defined in (C.2). By (i)-(iv), we can readily show

that max1≤≤ ||1(1)|| =  (
−1
 ) max1≤≤ ||2(1)|| =  (

−12 1(8+4)) max1≤≤ ||3(1)|| =
 ( ) max1≤≤ ||4(1)|| =  (()

−1
)max1≤≤ ||5(1)||=  (()−12 1(8+4))max1≤≤

||6(1)|| =  (()−12)max1≤≤ ||7(1)|| =  (
12−1−12 1(8+4)) andmax1≤≤ ||8(1)||

=  (
12 ( )−1 (12 +  12)) where, e.g.,

max
1≤≤

°°1(1)°° = max
1≤≤

( )−1
°°°̃ 0(1)ε0·°°° ≤ 0 ( )−1

°°°̃(1)°°° kεksp max1≤≤
k·k

= ( )−1

³
 12

´


³
12 +  12

´


³
12

´
= 

¡
−1

¢


It follows that max1≤≤
°°°̂(1) −  0(1)

°°° =  (1 ).

(vii) By Lemmas A.2(i) and D.5(i), max ||̂(1)|| ≤ max ||̂(1) −  0 (1)|| + max || 0 (1)|| =
 (

12−1 ) +  (
1(8+4))

(viii) Noting that ̂ =̂(1)
(−(1)̂(1)) and −(1)̂(1) = ((1)

0
(1)+

∗
(1)

∗
(1)+)−(1)̂(1) =

̂(1)
∗
(1) +  where  =  +(1)(

0
(1) − ̂(1)) + (

∗
(1) − ̂(1))

∗
(1) we have

̂ −  =̂(1)
 −  = −̂(1) +̂(1)

h
(1)(

0
(1) − ̂(1)) + (

∗
(1) − ̂(1))

∗
(1)

i
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It follows that

̂ −  = ̂ 0(1)
³
̂ 0(1)̂(1)

´−1
̂ 0(1) +(1)(

0
(1) − ̂(1)) + (

∗
(1) − ̂(1))

0∗(1)

−̂ 0(1)
³
̂ 0(1)̂(1)

´−1
̂ 0(1)(1)(

0
(1) − ̂(1))− ̂ 0(1)

³
̂ 0(1)̂(1)

´−1
̂ 0(1)(

∗
(1) − ̂(1))

∗
(1)

≡ 1 + 2 + 3 − 4 − 5 say. (D.4)

Noting that 1 = ̂ 0(1)(̂
0
(1)̂(1))

−1(̂(1) − 0(1))
0 + ̂ 0(1)(̂

0
(1)̂(1))

−1 0
(1)

00 we have by Lemmas

D.2(ii)-(iii) and D.5(vi)

max


|1| ≤ −1max


°°°̂(1)°°°°°°°³−1̂ 0(1)̂(1)´−1°°°°°°°̂(1) −  0(1)

°°°max

kk

+−1max


°°°̂(1)°°°°°°°³−1̂ 0(1)̂(1)´−1°°°°°°(1)

°°max


°° 0°°
= −1

h


³
 12−1

´
+ 

³
 1(8+4)

´i
 (1)

³
 12−1

´


³
 12

´
+−1

h


³
 12−1

´
+ 

³
 1(8+4)

´i
 (1) (1) ( )

= 

³
 12−2 +  12−1

´
+ 

³
 1(8+4)

´


¡
−1 + 

¢
=  (1) 

Noting that max
°°(1)

°° = 
¡
( )1(8+4)

¢
by Assumption B.1(iii) and Markov inequality, by

Theorem 3.1 we have

max


|2| ≤
°°°0(1) − ̂(1)

°°°max


°°(1)

°° = 

³

12
0 −2 ( )1(8+4)

´
=  (1) 

By Lemmas A.2(i) and (iv) Lemmas D.2(v)-(vi) and Theorem 3.1, we have

max


|3| ≤ max


°°° ∗(1) − ̂(1)

°°°max


°°°∗(1)°°°
=

h


¡
−1

¢
+ 

³
 +−12 1(8+4)

´i


³
1(8+4)

´
=  (1) 

max


|4| ≤
°°°0(1) − ̂(1)

°°°max


°°°̂(1)°°°°°°°³̂ 0(1)̂(1)´−1 ̂ 0(1)°°°°max °°(1)

°°
= 

¡
−2

¢ h


³
 12−1

´
+ 

³
 1(8+4)

´i


³
−12

´


³
 12

´
=  (1)  and

max


|5| ≤ max


°°°̂(1)°°°°°°°³̂ 0(1)̂(1)´−1°°°°°°°̂ 0(1)( 0(1) − ̂(1))
°°°max



°°°∗(1)°°°
=

h


³
 12−1

´
+ 

³
 1(8+4)

´i


¡
−1

¢


¡
−2

¢


³
1(8+4)

´
=  (1) 

(ix) max1≤≤ −1 k̂· − ·k2 = max1≤≤ −1
P

=1 (̂ − )
2 ≤ max1≤≤ max1≤≤ (̂ − )

2

=  (1) by (viii).

E Proof of Corollary 3.4

By the definitions of ̂


(1) and B  we have

C0

√
 (̂



(1) − 0(1)) = C0 [
√
 (̂(1) − 0(1))− B ]−R 
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where R = C0
̂−1
̂(1)
[(B̂1−B1 )−(B̂2−B2 )−(B̂3−B3 )−(B̂4−B4 )]. By the proof

of Theorem 3.3,
°°°̂̂(1)

− 0

°°°
sp
=  (1) and C0 [

√
 (̂(1)−0(1))−B ]

→ 
¡
0 lim( )→∞C0VC00

¢


It suffices to show that B̂ − B = o (1) for  = 1 2 3 4 and
°°°V̂ −V

°°°
sp
=  (1) 

First, we show (i) B̂1−B1 = o (1)  Let B̄1 = −52−32
P

=1
0
(1)

∗
(1)[

∗0
(1)

∗
(1)]
−1̃ 0(1)

0

00Ψ
0 00̃(1)

∗
(1)We prove (i) by showing that (i1) B̄1 −B1 = o (1) and (i2) B̂1 − B̄1 =

o (1)  To show (i1), let 0 = (10   00)
0 be an arbitrary 0 × 1 nonrandom vector such that

k0k = 1 By Lemma D.3(ii) and Assumptions A.3(i) and A.6(i), we have¯̄
00

¡
B1 − B̄1

¢¯̄
= −52−32

¯̄̄̄
¯
0X
=1

0tr
n
 ∗(1)(

∗0
(1)

∗
(1))
−1̃ 0(1)

0
£
00(−1εε0 −Ψ )

0
¤
 00̃(1)

∗0
(1)X

o¯̄̄̄¯
≤ −52−32

°°00(−1εε0 −Ψ )
0
°°°°° ∗(1)( ∗0(1) ∗(1))−1°°°°°°̃ 0(1) 0°°°2 ||∗(1)||

(
0X
=1

kXk2
)12

= −52−32

³
12 +−12

´


³
−12

´


¡
 2
¢


³
12

´


³
(0 )12

´
= 

³

12
0 (−1 12 +−12−12)

´
=  (1) 

To show (i2), we make the following decomposition:

B̂1 − B̄1

= −52−32
X
=1

 0
(1)[̂(1)(̂

0
(1)̂(1))

−1 −  ∗(1)(
∗0
(1)

∗
(1))
−1]̃ 0(1)

000Ψ
0 00̃(1)

∗
(1)

+−52−32
X
=1

 0
(1)̂(1)(̂

0
(1)̂(1))

−1̃ 0(1)[̂(1)̂
0
(1)Ψ̂ ̂(1)̂

0
(1) −  000Ψ

0 00]̃(1)
∗
(1)

+−52−32
X
=1

 0
(1)̂(1)(̂

0
(1)̂(1))

−1̃ 0(1)̂(1)̂
0
(1)Ψ̂ ̂(1)̂

0
(1)̃(1)(̂(1) − ∗(1))

≡ 11 +12 +13 say.

Let 1 =
°°°P

=1 
∗
(1)

0
0

(1)

°°°
sp
 Following the analysis of 2 in the proof of Proposition B.1,

we can readily show that 1 =  ( 12) Then by Lemmas A.2(i) and (v), D.3(i) and (iv) and

Assumption A.3(i), we have

¯̄
00

11

¯̄ ≤ −52−32
°°°°∙̂(1) ³̂ 0(1)̂(1)´−1 −  ∗(1)

³
 ∗0(1)

∗
(1)

´−1¸ °°°̃ 0(1) 0°°°2 °°00Ψ
0
°°°°°° 1

= −52−32 (
−12−1 )

¡
 2
¢
 () ( 12) =  (

−12 12−1 ) =  (1) 
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and

¯̄
00

12

¯̄ ≤ −52−32
°°°°̂(1) ³̂ 0(1)̂(1)´−1°°°°°°°̂(1)̂0(1)Ψ̂ ̂(1)̂

0
(1) −  000Ψ

0 00
°°°°°°̃(1)°°°2 1

= −52−32

³
−12

´


³
−1

1(8+4)
´
 ( ) ( 12)

=  (
−12 12−1

1(8+4)) =  (1) 

It follows that k1k =  (1) for  = 1 2 In addition,

k13k ≤ −52−32
°°°°̂(1) ³̂ 0(1)̂(1)´−1°°°°°°°̂(1)̂0(1)Ψ̂ ̂(1)̂

0
(1)

°°°°°°̃(1)°°°2 X
=1

°°(1)

°°°°°̂(1) − ∗(1)
°°°

≤ −52−32
°°°°̂(1) ³̂ 0(1)̂(1)´−1°°°°°°°̂(1)̂0(1)Ψ̂ ̂(1)̂

0
(1)

°°°°°°̃(1)°°°2 122

°°°̂(1) − ∗(1)
°°°

= −52−32

³
−12

´
 ( ) ( ) (

12
0 12 12)

³
12−12

´
=  (

12
0 −12) =  (1) under Assumption A.3(i),

where 2 =
P

=1

°°(1)

°°2 =  (0 ) It follows that B̂1 − B̄1 = o (1) and B̂1 −B1 =

o (1) 

Second, we prove (ii) B̂2−B2 = o (1)  Let B̄2 ≡ −12−32
P

=1
0
(1) 0Φ ̃(1)

∗
(1)

We prove (ii) by showing that (ii1) B2 − B̄2 = o (1) and (ii2) B̂2 − B̄2 = o (1)  Note that

B2 − B̄2 = −12−32
X
=1

 0
(1)

¡
−1ε0ε−Φ

¢
 0(1)

∗
(1)

−−12−32
X
=1

 0
(1)

0
¡
 00 0

¢−1
 00

¡
−1ε0ε−Φ

¢
 0

∗
(1)

+−12−32
X
=1

 0
(1) 0

¡
−1ε0ε−Φ

¢ ³
̃(1) −  0

´
∗(1)

≡  +  +  say,

where recall  =  0(1)
−1
11 Let 0 ≡ (10   00)

0 be an arbitrary 0 × 1 nonrandom vector

with k0k = 1 By Lemma D.4(iii) and Assumptions A.1(iii) and A.3(i),

¯̄
00


¯̄
= −12−32

¯̄̄̄
¯
0X
=1

0tr
¡
X

¡
−1ε0ε−Φ

¢
 000

¢¯̄̄̄¯
≤

(
−3

0X
=1

°°X

¡
−1ε0ε−Φ

¢
 0
°°2)12 n−12 °°0°°o

= 
12
0

h


³
−12

´
+ 

³
−(7+4)(16+8)

´i
 (1) =  (1) 

It follows that kk =  (1)  Similarly, by Lemmas D.4(i) and A.2(ii) and using 1 =  ( 12), we

can show that kk =  (
12−1 + −12) =  (1) and kk = −1 (1 +12−12) =  (1) 
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Consequently, B2 − B̄2 = o (1) and (ii1) follows. To show (ii2), note that B̂2 − B̄2 =

−12−32
P

=1
0
(1)(̂(1)

Φ̂ ̃(1)̂(1) −  0Φ ̃(1)
∗
(1)) = 21 + 22 + 23

where

21 = −12−32
X
=1

 0
(1)

³
̂(1)

− 0

´
Φ̂ ̃(1)̂(1)

22 = −12−32
X
=1

 0
(1) 0

³
Φ̂ −Φ

´
̃(1)̂(1)

23 = −12−32
X
=1

 0
(1) 0Φ ̃(1)

³
̂(1) − ∗(1)

´


By Lemmas A.2(vi), D.4(ii), and Theorem 3.3, we can readily show that k21k=  (
12−12−1 )

k22k =  (
12−12−1

1(8+4)) and k23k =  (
12−1) For example,

¯̄
00

21

¯̄ ≤ −12
(
1



X
=1

00
 0
(1)(1)0

)12

×
(
1



X
=1

̂
0
(1)̃

0
(1)Φ̂

0


³
̂(1)

− 0

´³
̂(1)

− 0

´
Φ̂ ̃(1)̂(1)

)12

≤ −12max

Ã
1



X
=1

 0
(1)(1)

!12 °°°̂(1) −  0

°°°°°°Φ̂

°°°
sp
−12

°°°̃(1)°°° 123

= −12 (1) (
−1
 ) (1) (1) (

12) =  (
12−12−1 )

where 3 =
P

=1

°°°∗(1)°°°2  It follows that B̂2 − B̄2 = o (1) 

Third, we prove (iii) B̂3 − B3 = o (1)  Let B̄3 = (B̄31  B̄30)
0 where B̄3 =

1
3212

tr{[ ∗0(1) ∗(1)]−1̃ 0(1) 000ΨX
∗
(1)}We prove (iii) by showing that (iii1) B3−B̄3 = o (1)

and (iii2) B̂3 − B̄3 = o (1) for  = 1 0 For (iii1), we have by Lemma D.3(vi) and A.6(i)

and Assumptions A.3(i) and A.6(i)

¯̄
00

¡
B3 − B̄3

¢¯̄ ≤ 1

32 12

¯̄̄̄
¯
0X
=1

0
tr

∙³
 ∗0(1)

∗
(1)

´−1
̃ 0(1)

000
¡
−1εε0 −Ψ

¢
X

∗
(1)

¸¯̄̄̄
¯

≤ 1

32 12

°°°°³ ∗0(1) ∗(1)´−1 ̃ 0(1) 0°°°°
(

0X
=1

°°00 ¡−1εε0 −Ψ

¢
X

°°2)12 °°° ∗(1)°°°
= −32−12 (1) (

12
0 32(−12 + −12))

³
 12

´
=  (

12
0 (−12 + −12)) =  (1) 
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For (iii2), we decompose 00
(B̂3 − B̄3 ) as follows

00
(B̂3 − B̄3 ) =

1

32 12

0X
=1

0tr

½∙³
̂ 0(1)̂(1)

´−1
̃ 0(1)̂ −

³
 ∗0(1)

∗
(1)

´−1
̃ 0(1)

0

¸
00ΨX

∗
(1)

¾

+
1

32 12

0X
=1

0tr

½³
̂ 0(1)̂(1)

´−1
̃ 0(1)̂

h
̂
0
Ψ̂X̂(1) −+00ΨX

∗
(1)

i¾
≡ 31 +32

By Lemmas A.2(i) and (v), and D.3(v), |31| ≤ 

¡
−2

¢
0 max1≤≤ 

−32−12
°°+00

°°
×|| ∗(1)||{

P0

=1 kXk2}12 =  (
12
0 −12 12−2 ) and similarly |32|=  (

12
0 −12 12−1 )

It follows that B̂3 − B̄3 = o (1) and B̂3 − B3 = o (1) 

Fourth, we prove (iv) B̂4 −B4 = o (1)  Let B̄4 = (B̄41  B̄40)
0 where B̄4 ≡

D (B4) =
1√

tr
£
 0D

¡
ε0X̄

¢¤
 We prove (iv) by showing that (iv1) R4 ≡ B4 − B̄4 =

o (1)  and (iv2) B̂4 −B̄4 = o (1) We first show (iv1). Note that the th element of R4 is given

by R4 = ( )−12tr{ 0 [ε0X −D (ε0X)− ε0D (X)]}  Apparently, D (R4) = 0 Let 0

be a 0×1 unit vector with 1 in its th position and zeros elsewhere. By Assumption B.2(ii) and Jensen
inequality,

D
¡
R24

¢
= VarD (R4) = ( )

−1
D

Ã
X
=1

00

nh
 0
(1) −D

³
 0
(1)

´i
 0 −D

³
 0
(1) 0

´o!2

= ( )−1
X
=1

D
h
00

nh
 0
(1) −D

³
 0
(1)

´i
 0 −D

³
 0
(1) 0

´oi2
≤ ( )

−1
X
=1

D
h
00

h
 0
(1) −D

³
 0
(1)

´i
 0

i2
≡ Ξ  say.

Let  ≡  00
¡
−1 00 0

¢−1
 0 and ̄ ≡  − D () for  = 1 0 Then we can write

Ξ =
1

 3

X
=1

D

"
X
=1

X
=1

̄

#2
=

1

 3

X
=1

X
1=1

X
1=1

X
3=1

X
4=1

1234D
£
̄1̄324

¤


Let  ≡ {1 2 3 4}  We consider three cases for the time indices in  : () # = 4 () # = 3 ()

# ≤ 2We use Ξ Ξ and Ξ to denote Ξ when the time indices in the above summation

are restricted to cases ()  ()  and ()  respectively. It is easy to show that Ξ = 

¡
−1

¢
=


¡
−10

¢
 In case ()  we consider two subcases: (1) for at least two  ∈ {1 2 3 4}  | − | ≥ ∗ for

any  6=  and  ∈ {1 2 3 4}  and (2) all the other remaining cases. We use Ξ1 and Ξ2 to denote
Ξ when the time indices in its summation are restricted to subcases (1) and (2)  respectively. In

subcase (1), wlog we assume that 4  3  2  1 (Note if either 4 or 2 is largest in  then

D
£
̄1̄224

¤
= 0 by Assumption B.2(iii).) It is easy to see that either 4 or 1 (or both) has

to lie at least ∗-apart from other time indices in  Wlog, assume that 4 lies at least  -apart from

27



(3 2 1)  Then by Davydov inequality¯̄
D

£
̄1̄224

¤¯̄ ≤ 8 k4k8+4D °°̄1̄22
°°
(8+4)3D D (∗)

(1+)(2+)


With this, one can readily show that |Ξ1| ≤  (D (∗)
(1+)(2+)

) = 
¡
−10

¢
 In subcase (2) 

noting that the total number of terms in the summation of Ξ2 is of order 
¡
 22∗

¢
 we can readily

show that |Ξ2| = 

¡
−12∗

¢
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¡
−10

¢
 Consequently, Ξ = 

¡
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¢
 Analogously, we can

show that Ξ = 
¡
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¢
 Consequently, we have D

¯̄
00

R4

¯̄2 ≤ P0

=1D
³
R24

´
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and kR4k =  (1) by Chebyshev inequality. Then (iv1) follows.

Now we show (iv2). Let B̂4 − B̄4 denote the th element of B̂4 − B̄4  Then
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= ( )−12 tr
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 0 [ε0X −D (ε0X)]
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o
+ ( )−12 tr

h
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¡
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¢trunci
≡ 41 +42 +43 +44 say.

Let 4 = (41 40)
0 for  = 1 2 3 4 Recall that · ≡ (1  )

0 and ̂· ≡ (̂1  ̂)
0

Let · denote the th columns of the  × matrices X. Then max k·k = 

¡
12

¢
by Lemma

D.5(iv). Then by Lemmas D.5(ii), (iv), and (ix), we have°°°¡ε̂0X

¢trunc°°°
sp
≤  max



¯̄
̂0··

¯̄ ≤ max

k̂·kmax


k·k
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n
max

k·k+max


k̂· − ·k

o
max

k·k
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³
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´
+ 

³
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´o


³
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´
=  () uniformly in 

It follows that by Lemma A.2(vi) and Assumption B.2(iv)

¯̄
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41
¯̄ ≤ 0 ( )−12
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°°°
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(
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)12
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−12


¡
−1

¢
 (

12
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³

12
0 12−12−1

´
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Following Moon and Weidner (2014b), let  = ε0X and  =  − trunc  Let  and  denote the

( )th elements of  and , respectively. Then  = 0 for    ≤ + and  =  otherwise. By

construction,  = 0 for  ≥  When    we apply Davydov inequality for conditional strong mixing

processes to obtain

|| =
¯̄̄̄
¯
X
=1

D ()

¯̄̄̄
¯ ≤

X
=1

|D ()| ≤
X
=1

kk8+4D kk8+4D D (− )(3+2)(4+2) 
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For an × matrix  = ()  define kk1 ≡ max1≤≤
P

=1 | | and kk∞ ≡ max1≤≤
P

=1 | | 
Then°°°D (ε0X)
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°°°
1
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³
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uniformly in 

Similarly, we can show that
°°°D (ε0X)

trunc −D (ε0X)
°°°
∞
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formly in  By the inequality kk2sp ≤ kk1 kk∞ and Assumption B.2(iv),
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In addition, by Lemmas D.5(iv)-(v) and (viii) and Assumption B.2(iv)
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Consequently, B̂4 − B̄4 = o (1) and (iv) follows.

Finally, we prove (v)
°°°V̂ −V

°°°
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=  (1)  Noting that

V̂ −V = ̂−1
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the conclusion follows provided (v1)
°°°Θ̂ −Θ

°°°
sp
=  (1)  (v2)

°°°̂̂(1)
− 0

°°°
sp
=  (1)  and (v3)

the eigenvalues of  0 and Θ are uniformly bounded away from zero and infinity as ( )→∞ As

stated in the proof of Theorem 3.3, it is trivial to show that
°°°̂̂(1)

− 0

°°°
sp
≤
°°°̂̂(1)

− 0

°°° =  (1).

(v3) is ensured by Assumptions A.4(i) and A.5(i). We are left to show (v1). We decompose Θ̂ −Θ

as follows:

Θ̂ −Θ =
1



X
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X
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0


´
≡ Θ1 +Θ2 +Θ3

It suffices to prove kΘksp =  (1) for  = 1 2 3 Let 0 be an arbitrary  × 1 nonrandom vectors

with k0k = 1 By the fact that 2 − 2 = (− )
2
+ 2 (− )  and the triangle inequality,
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¯ 1
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¯ 1
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¯ 1
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0
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¯ 

The first term is bounded from above by max1≤≤ max1≤≤ (̂ − )
2
max(

1


P
=1

P
=1 ̄̄

0
) =

 (1)  (1) =  (1) and Lemma D.5(viii) and Assumption A.5(i). For the second term, using the

expansion of ̂− in (D.4), we can readily show that 1


P
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P
=1 (̂ − ) 

0
0

̄̄
0
0

=  (1)

uniformly in 0
 It follows that kΘ1ksp =  (1) 

To prove that kΘksp =  (1) for  = 2 3 we argue that it suffices to show that uniformly in 0
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=  (1) for  = 0 1 2 (E.1)

Note that (E.1) implies that 00
Θ20 =  (1) by taking  = 2 and hence Θ2 =  (1)  In

addition,
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by Lemma D.5(viii) and by taking  = 0 and 1 in (E.1). It follows that kΘ3ksp =  (1) 
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Now we show (E.1). We observe that
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Let 0 denote the th row of  for  = 1 2  5 and  = 1 2   Note that 
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1 (0) ≤

5
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=1 || 00
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()
  say. We show that 
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ing that 
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Let  denote a  × 1 unit vector with one in its th position and zeros elsewhere. Noting that
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0
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(1)) 0 ] = [
0
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For 
()
12 we have by Lemmas A.2(i) and (v) and Lemma D.5(vi)
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we have
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One can readily show that each term on the right hand side of the last expression is  (1)  For example,
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By CS inequality, 
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 =  (1) for  = 0 1 2 This completes the proof of the corollary. ¥

F Justification of Assumption A.1(i)

In this appendix we justify Assumption A.1(i) by arguing that the bias-corrected initial estimator ̃

can

be obtained as in Moon Weidner (2014b, MWb hereafter).

Let ̃ = ̃ () be as defined in Section 2 when  ≥ 0 factors are assumed in the estimation.

Let ̃

= ̃


() be its bias-corrected version. Moon and Weidner (2014a, MWa hereafter) show that
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´
is asymptotically equivalent to
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´
where  is fixed,  and  pass

to infinity at the same rate ( → 2 ∈ (0∞)), and   0; MWb show that
√


³
̃
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´
follows asymptotic normal distribution when  is fixed,  and  pass to infinity at the same rate, and

 = 0 Here, we allow  to pass to infinity at a controllable rate such that Assumptions A.3 (i) and

A.6(i) are satisfied but restrict  to be finite. In addition, we allow that  and  to pass to infinity at

different rates.
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⎤⎦
− [ 0ε00ε 0 ]− 

⎡⎣ 0

Ã
X
=1

∆X

!0
0

Ã
X
=1

∆X

!
 0

⎤⎦⎫⎬⎭ 

Let  () be as defined in MWa (p.18 in the supplementary appendix). We make some additional

assumptions.
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Assumption S.1 (i) max1≤≤ 
°° 00ε0X

°°2
sp
=  ( ( +  )) 

(ii) max1≤≤ 
°°0Xε

0°°2
sp
=  ( ( +  )) 

Assumption S.2 For any   0 we have

(i) sup:k−0k≤−1


max(()0)√
++(+ )

12


k−0k+k−0k2 ln =  (1)  and

(ii) sup
:k−0k≤−32



[()+()0]−[(0)+(0)
0
]

(1+
√
k−0k)2

=  (1) 

Assumption S.1 can be verified easily under Assumptions B.1 and B.2. Assumption S.2(i) is a high-

level condition and parallels Assumption HL1 in MWa which incorporates the case where  and  diverge

to infinity at different rates. It can be verified under some primitive conditions as specified in MWa by

modifying the proof of Lemma S.8 in the latter paper. For example, if for each  = 1  we have

X = X (1)+X (2)  where0X (1) 0 = 0  kX (1)k2sp =  ( )  and  kX (2)k2sp = (3 )

[This condition essentially reduces to Assumption DX-2 in MWa when and  pass to infinity at the same

rate.] Then we can readily verify Assumption S.2(i) under Assumptions A.1(ii)-(iii) and (v). Assumption

S.2(ii) parallels Assumption HL2 in MWa and can also be verified under some primitive conditions.

Let Φ̃ ≡ ̃
³
̃
0
̃
´−1 ³

̃ 0̃
´−1

̃ 0 Define ̃()
 = (̃

()
1  ̃

()
)

0  = 1 2 3 where

̃
(1)
 =

1√


tr
h
̂(1)

¡
ε̃0X

¢trunci


̃
(2)
 =

1√


X
=1

X
=1

̃2

h
̃XΦ̃

0
i



̃
(3)
 =

1√


X
=1

X
=1

̃2

h
̃X

0
Φ̃
i



where [] denotes the ( )th element of the matrix  ε̃ is the residual matrix based on the initial

estimators ̃ ̃  and ̃ of   and  with ( )th element given by ̃ =  − ̃
0
 − ̃

0
̃ [Note that

̃
()
 corresponds to

q


̂ in MWb for  = 1 3, ̃

(2)
 corresponds to

q


̂ in MWb, and ̃

(1)


has the same structure as B̂4 in our Section 3.3.] Define the bias corrected estimator as:

̃

() = ̃ () + ( )−12 ̃−1

³
̃
(1)
 + ̃

(2)
 + ̂

(3)


´


where ̃ = ( )−1
P

=1 ̃
0
̃ ̃

Let  = ( )
−12

−1 (
(1)
+

(2)
 )We argue that in the case of divergent (i)

°°°̃ ()− 0
°°° =



¡
−1

¢
for any fixed (finite)  ≥ 0; (ii) ̃ (0)−0 =  +R0

 with
°°°R0



°°° = 

¡kk −1

¢
;

(iii)
°°°̃ ()− 0

°°° =  (
−32
 ) for any fixed  ≥ 0; (iv) ̃ () − 0 =  + R

 with
°°R



°° =
 (( )−12) for any fixed   0 and (v)

p


°°°̃ ()°°° =  (1) and
√
̃



 () =  (1) for

each  = 1 2 

Step 1. We show (i)
°°°̃ ()− 0

°°° = 

¡
−1

¢
for any fixed   0 Following the proof of Theorem

35



4.1 in MWa, we can readily show that under our Assumptions A.1 (v)-(vi) and (viii), and A.3(i),°°°̃ ()− 0
°°° = 

¡
−1

¢
for any fixed  ≥ 0

In particular, these assumptions ensure that eqn. (S.5) in MWa continues to hold in our case despite the

allowance of diverging  See also Su and Zhang (2014) in the case of sieve estimation.

Step 2. We show (ii) ̃ (0)−0 =  +R0

 where
°°°R0



°°° = 

¡kk −1

¢
 Given the result

in (i) and Assumptions A.1(iv)-(v) and A.3(i), we can readily show that

X
=1

¯̄
 − 0

¯̄ kXksp√


+
kεksp√


= 

¡
−1

¢
+

¡
−1

¢
=  (1)

for any  = (1  )
0
such that

°° − 0
°° ≤ −1 where  is a large constant. This indicates

Condition (S.34) in Lemma S.1 of MWa is satisfied under our Assumptions A.1(ii)-(iii). Then we can

follow the proof of Theorem 4.2 in MWa and show that

L0

 () = L0



¡
0
¢− 2 ( )

−12 ¡
 − 0

¢0 ³

(1)
 + 

(2)


´
+
¡
 − 0

¢0


¡
 − 0

¢
+ L0

 () 

where the remainder term L0 () satisfies

sup
{:k−0k≤−1}

L0
 () = 

¡
−3

¢


The last probability order can be obtained from MWa’s eqn (S.39) with
°° − 0

°° and −2 replaced

by 
−
 for  = 1 2 3 4 Following the proof of Corollary 4.3 in MWa or Theorem 3.1 in Su and Zhang

(2014), we can show that

̃ (0)− 0 = ( )
−12

−1

³

(1)
 + 

(2)


´
+R0

 =  +R0

 

where the remainder term R0

 satisfies
°°°R0



°°° = 

¡kk −1

¢
(c.f., eqn. (A.9) in Su and Zhang

(2014)).

Step 3. We show (iii)
°°°̃ ()− 0

°°° =  (
−32
 ) Here we want to determine the probability order

of
°°°̃ ()− 0

°°° by following the arguments as used in the proof of Theorem S.5 in MWa. Under our

Assumption A.1(viii),  has minimum eigenvalue bounded away from zero asymptotically. Next, we

want to determine the probability order of
°°°(1)

°°°  Note that

(1)
 = ( )

−12
tr (0X 0ε0)

= ( )
−12

tr (Xε
0)− ( )

−12
tr (X 0ε0)− ( )

−12
tr (0Xε

0) + ( )
−12

tr (0X 0ε0)

= 
(11)
 − 

(12)
 − 

(13)
 + 

(14)
 say.
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Let 
(1)
 be a × 1 vector whose th element is given by (1) Then

°°°(1)

°°°2 ≤ 4P4
=1

°°°(1)

°°°2  By
Assumption A.1(vi) and Markov inequality,

°°°(11)

°°°2 = X
=1

°°°(11)

°°°2 = 1

( )

X
=1

ktr (Xε
0)k2 =  () 

Using tr() ≤rank() kk  kksp ≤ kk ≤
p
rank () kksp  and the conditionmax1≤≤ 

°° 00ε0X

°°2
sp

=  ( ( +  )) in Assumption S.1(i), we have

°°°(12)

°°°2 =
1

( )2

X
=1

¯̄̄
tr
³
 0
¡
 00 0

¢−1
 00ε0X

´¯̄̄2
≤ 30



X
=1

°°° 0 ¡ 00 0¢−10  00ε0X

°°°2
sp

≤ 30


°°°−12 0 ¡−1 00 0¢−1°°°2 1



X
=1

°° 00ε0X

°°2
sp
= 

¡
−2

¢


Similarly, under the condition max1≤≤ 
°°0Xε

0°°2
sp
=  ( ( +  )) in Assumption S.1(ii), we

can show that
°°°(13)

°°°2 =  (−2 ) Under Assumptions A.1 (ii)-(iv) and (vii),

°°°(14)

°°°2 =
1



X
=1

°°°tr³X
0
¡
 00 0

¢−1
 00ε00

¡
000

¢−1
00
´°°°2

≤ 30


°°° 0 ¡ 00 0¢−1°°°2 °°°¡000¢−1 00°°°2 °° 00ε00°°2 X
=1

kXk2sp

= ( )
−1



¡
−1

¢


¡
−1

¢
 ( ) () =  () 

Consequently, we have
°°°(1)

°°° = 

¡
1212−1

¢
 Similarly, we can show that

°°°(2)

°°° =  (
1212

−1 ) It follows that kk = 

¡
12−12−1

¢
.

Under Assumption S.2, we can follow the proof of Theorem S.5 in MWa and show that³
̃ ()− 0

´0


³
̃ ()− 0

´
− 2 ( )−12

³
̃ ()− 0

´0 h

(1)
 + 

(2)


i
≤ 1



−0X
=1

⎧⎨⎩

⎡⎣ 0

Ã
X
=1

∆X

!0
0

Ã
X
=1

∆X

!
 0

⎤⎦
+
√
 +  + ( +  ) 

12


°°°̃ ()− 0
°°°+

°°°̃ ()− 0
°°°2  ln¾ 

Assumption A.1(viii) implies that min ( ) ≥ 2 for some   0 in large samples. This, in conjunction
with the fact that

°°°()

°°° = 

¡
1212−1

¢
for  = 1 2 implies that


°°°̃ ()− 0

°°°2 ≤
°°°̃ ()− 0

°°°

³
12−12−1

´
+
1



∙√
 +  + ( +  ) 

12


°°°̃ ()− 0
°°°+

°°°̃ ()− 0
°°°2  ln¸ 
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or equivalently (by multiplying both sides by 3),

3

°°°̃ ()− 0
°°°2 ≤ 

µ√
 + 3



¶
+
°°°̃ ()− 0

°°°

µ
12−122 +

( +  ) 2



32


¶
+

µ
3

°°°̃ ()− 0
°°°2¶

=  (1) +
°°°̃ ()− 0

°°°

³

32


´
+ 

µ
3

°°°̃ ()− 0
°°°2¶ 

where we use the fact that
√
+3


=  (1) 
(+ )2


=  (1)  and 12−122 (

32
 ) =

12−1212 =  (1) under Assumption A.6(i). It follows that 3

°°°̃ ()− 0
°°°2 =  (1)  That

is,
°°°̃ ()− 0

°°°2 =  (
−32
 )

Step 4. We show (iv) ̃ ()− 0 =  +R
 with

°°R


°° =  (( )
−12

) Given the result in

Step 3, we can apply Assumption S.2(ii) and follow the proof of Corollary S.10 in MWa and show that

L

³
̃ ()

´
≤ L0



¡
0 + 

¢
+

1




³
1 +
√


°°°̃ ()− 0
°°°´2 = L0



¡
0 + 

¢
+ 

¡
−3

¢


Then following Step 2 and the proof of Corollary 4.3 in MWa or Theorem 3.1 in Su and Zhang (2014),

we can show that

̃ ()− 0 = ( )
−12

−1

³

(1)
 + 

(2)


´
+R

 =  +R
 

where the remainder termR
 satisfies

°°R


°° = 

¡kk −1

¢
+

¡
−3

¢
= 

¡
12−12−2

¢
+


¡
−3

¢
=  (( )

−12
) under Assumptions A.3(i) and A.6(i).

Step 5. We show (v)
p


°°°̃ ()°°° =  (1) and
√
̃



 () =  (1) for each  = 1 2 

Comparing the results in Steps 2 and 4, we notice that ̃ () − 0 share the same asymptotic bias as

̃ (0)− 0. So the asymptotic analysis in MWb can be used to show that
p


°°°̃ ()°°° =  (1)

and
√
̃



 () =  (1) for each  = 1 2  The major difference is that MWb only consider fixed

 but we allow slowly diverging  Here, we outline the major steps only.

Recall 
(2)
 = 

(21)
 + 

(22)
 + 

(23)
  We want to show to show that 

(1)
 contributes to both the

asymptotic bias and variance of ̃ ()  
(21)
 and 

(22)
 contribute to the asymptotic bias, and 

(23)
 is

asymptotically negligible.

(i) First, we want to show that 
(23)
 is asymptotically negligible by showing that

°°°(23)

°°° =  (1).

Using Φ = 0
¡
000

¢−1 ¡
 00 0

¢−1
 00  0 =  −  0  |tr ()| ≤rank() kksp  and CS inequality,°°°(23)

°°°2 =
X
=1

h

(23)


i2
=

1



X
=1

h
tr
³
 00ε00X 0ε00

¡
000

¢−1 ¡
 00 0

¢−1´i2
≤ 20



X
=1

°°° 00ε00Xε
00
¡
000

¢−1 ¡
 00 0

¢−1°°°2
sp

+
20


X
=1

°°° 00ε00X 0ε00
¡
000

¢−1 ¡
 00 0

¢−1°°°2
sp
≤ 2I1 + 2I2 say.
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Using 0 =  − 0  by Assumptions A.1(ii)-(iii), A.4(iii), S.1(i)-(ii), and A.6(i), we have

I1 ≤ 0



°°°¡000¢−1 ¡ 00 0¢−1°°°2 X
=1

°° 00ε00Xε
00
°°2
sp

≤ 0



°°°¡000¢−1 ¡ 00 0¢−1°°°2 0

( )2

X
=1

°° 00ε0Xε
00
°°2
sp

+
0



°°°¡000¢−1 ¡ 00 0¢−1°°°2 X
=1

°° 00ε00Xε
00
°°2
sp

=
0



°°°¡000¢−1 ¡ 00 0¢−1°°°2 X
=1

°° 00ε0Xε
00
°°2
sp

+
0



°°°¡000¢−1 ¡ 00 0¢−1°°°2 °°°¡000¢−1 00°°°2 °° 00ε00°°2
sp

X
=1

°°Xε
00
°°2
sp

= ( )−1

³
( )−2

´


³
 ( )2 ( +  )

´
+( )−1

³
( )−2

´


¡
−1

¢
 ( ( +  )) ( ( +  ))

= 

¡

¡
−2 + −2

¢¢
=  (1)

Similarly, we can readily show that I2 = 

¡

¡
−2 + −2

¢¢
=  (1) It follows that

°°°(23)

°°° =
 (1) 

(ii) Following Footnote 18 in the main text, we can write 
(1)
 =

1√


P
=1 ̃

0
 0 where ̃ =

 − X2 and X2 =
1


P
=1 

00


¡
−1000

¢−1
0 . We can make the following decomposition:


(1)
 =

1√


X
=1

( − 0X2 )
0
 − 1√



X
=1

 0
 0

=
1√


X
=1

[ −  0D ()− 0X2 ]
0
 − 1√



X
=1

[ − D ()]
0
 0

≡  −
(1)
  say

where the first term  contributes to the asymptotic variance and the second term 
(1)
 contributes to

the asymptotic bias. Note that 
(1)
 is defined analogously to B4 in Section 3.3 with  replaced by

(1) Following Step 4 in the proof of Corollary 3.4, we can readily show that
°°°̃(1)

 −
(1)


°°° =  (1) 

In addition, we can show that kk = 

¡
12

¢


(iii) Using  0 =  −  0  tr() =tr(0)  and 0 =  − 0  we can make the following

decomposition:


(21)
 = ( )−12 tr (ε 0ε00XΦ

0)− ( )−12 tr (εε00XΦ
0) ≡ 

(21)
 (1)− 

(21)
 (2) 


(22)
 = − ( )−12 tr (Φ0X 0ε00ε) = − ( )−12 tr (ε00ε 0X0

Φ)

= ( )
−12

tr (ε00ε 0X0
Φ)− ( )

−12
tr (ε0ε 0X0

Φ) ≡ 
(22)
 (1)− 

(22)
 (2) 
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It follows that 
(2)
 = 

(2)
 (1)−(2) (2) for  = 1 2 where 

(2)
 () is obtained by stacking 

(2)
 ()

into a  × 1 vector for  = 1 2 and  = 1 2 As in (i), it is easy to show that
°°°(2)

°°° =  (1) 
(2)
 (2)

needs to be corrected for  = 1 2. Following the proof of Theorem 4.4 in MWb, we can also show that°°°̂(2)
 − 

(21)
 (2)

°°° =  (1)  and
°°°̂(3)

 − 
(22)
 (2)

°°° =  (1)  Then we can°°°̂(2)
 + 

(21)


°°° =  (1)  and
°°°̂(3)

 + 
(22)


°°° =  (1) 

(iv) As in the proof of Theorem 3.3, we have
°°°̃ −

°°°
sp
≤ ( )−1

P
=1

°°°̃

°°°2 k̃ −  0k =


¡
−1

¢
by using the fact that k̃ −  0k = 

¡
−1

¢
and Assumption A.1(viii). But this bound

is not tight. For the purpose of bias correction, we need to strengthen this result. In fact, we can show

that
°°°̃ −

°°°
sp
= 

¡
−1

¢
 To see this, we first observe that

°°°̃ −

°°°
sp
=

°°°°°( )
−1

X
=1

̃ 0
 (̃ −  0) ̃

°°°°°
sp

= max {|1 |  |2 |} 

where 1 = max

³
( )−1

P
=1 ̃

0
 (̃ −  0) ̃

´
 and 2 = min

³
( )−1

P
=1 ̃

0
 (̃ −  0) ̃

´


Then noting that tr() ≤ kk kk, we have

|1 | =

¯̄̄̄
¯ maxkκk=1

Ã
( )

−1 κ0
X
=1

̃ 0
 (̃ −  0) ̃κ

!¯̄̄̄
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¯̄̄̄
¯ maxkκk=1
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(
(̃ −  0) ( )

−1
X
=1

̃κκ0̃ 0


)¯̄̄̄
¯

≤ k̃ −  0k max
kκk=1

°°°°°( )−1
X
=1

̃κκ0̃ 0


°°°°° = 

¡
−1

¢
 (1) = 

¡
−1

¢
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max
kκk=1

°°°°°( )
−1

X
=1

̃κκ0̃ 0


°°°°°
2

= max
kκk=1

( )
−2
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⎛⎝ X
=1

̃κκ0̃ 0


X
=1

̃κκ0̃ 0
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( )

−2
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=1

κ0̃ 0


X
=1

̃κκ0̃ 0
̃κ

⎞⎠
≤ max

kκk=1
( )−2

⎛⎝ X
=1

κ0̃ 0


X
=1

̃̃
0
̃κ

⎞⎠
≤ max

Ã
1



X
=1

̃̃
0


!
max
kκk=1

1



X
=1

κ0̃ 0
̃κ

=

"
max

Ã
1



X
=1

̃̃
0


!#2
≤
"
max

Ã
1



X
=1


0


!#2
=  (1) 

where the first and second inequalities follow from the fact 0 ≤ max ()
0 ≤ kk0 the third

equality follows from the fact max (
0) = max (

0) and the last equality follows from Assumption

A.1(viii). Analogously, |2 | = 

¡
−1

¢
 It follows that

°°°̃ −

°°°
sp
= 

¡
−1

¢
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(v) Using ̃

() = ̃ ()+( )

−12
̃−1 (̃

(1)
+̃

(2)
+̂

(3)
 ) and ̃ ()−0 = ( )

−12
−1 (
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(2)
 ) +R0
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̃
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³
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´
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´
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³
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(22)
 + 
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´
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≡ I3 + I4 + I5 +R0

  say.

We can readily show that kI3k = 

³
()−12

´
 kI4k = 

³
( )−12

´
 and

°°°R0



°°° = 

³
( )−12

´
by (i)-(iii) and Step 4. Let  be an arbitrary  × 1 vector with kk = 1 Then¯̄̄

0
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=

1√
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¯tr
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X
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0
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0
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0
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³
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³
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´
= 

³
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It follows that ( )−12
°°°(1)



°°° = ( )−12

¡
1212−12

¢
= 

¡
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¢
 Similarly, we can

show that ( )
−12

°°°(21)

°°° = 

¡
12−1

¢
and ( )

−12
°°°(22)

°°° = 

¡
12−1

¢
 These results,

in conjunction with the analysis in (i) and Assumption A.6(i), imply that

kI5k = 

¡
−1

¢


³
12−2 +  ( )

−12´
= 

³
12−3

´
= 

³
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−12´


It follows that

√
 (̃

 − 0) =−1 + o (1) and
°°°̃ ()− 0

°°° =  (()−12)

Lastly, let  be the th column of the identity matrix   Then¯̄̄
̃


 ()− 0

¯̄̄
=

¯̄̄
0
³
̃

()− 0

´¯̄̄
= 0I3 + 

³
( )

−12´
= 

³
( )−12

´
+ 

³
( )−12

´
= 

³
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´
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because ( )
12

0I3 = 0
−1
 = 0

−1
0  {1 +  (1)} =  (1) by second moment calculations

and Chebyshev inequality.
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