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Abstract

We consider the problem of determining the number of factors and selecting the proper regressors
in linear dynamic panel data models with interactive fixed effects. Based on the preliminary estimates
of the slope parameters and factors a la Bai and Ng (2009) and Moon and Weidner (2014a), we propose
a method for simultaneous selection of regressors and factors and estimation through the method of
adaptive group Lasso (least absolute shrinkage and selection operator). We show that with probability
approaching one, our method can correctly select all relevant regressors and factors and shrink the
coefficients of irrelevant regressors and redundant factors to zero. Further, we demonstrate that our
shrinkage estimators of the nonzero slope parameters exhibit some oracle property. We conduct Monte
Carlo simulations to demonstrate the superb finite-sample performance of the proposed method. We
apply our method to study the determinants of economic growth and find that in addition to three
common unobserved factors selected by our method, government consumption share has negative
effects, whereas investment share and lagged economic growth have positive effects on economic

growth.
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1 Introduction

We consider a panel data model with interactive fixed effects as proposed and studied in Pesaran (2006),
Bai (2009), Moon and Weidner (2014a, 2014b), Pesaran and Tosetti (2011), Greenaway-McGrevy et
al. (2012), Su and Jin (2012), Su et al. (2015), among others. This model has been widely applied
in empirical research, as it allows more flexible modeling of heterogeneity than traditional fixed effects
models and provides an effective way to model cross section dependence that is widely present in macro
and financial data. To use this model, we need to determine the number of factors in the multi-factor
error component and select the proper regressors to be included in the model. This paper provides a novel
automated estimation method that combines both estimation of parameters of interest and selection of
the number of factors and regressors.

Specifically, we consider the following interactive fixed-effects panel data model
Vie =B X + NWF) 4 ey, i=1,..,N, t=1,...,T, (1.1)

where X;; is a Ky X 1 vector of regressors, 5 is the corresponding vector of slope coefficients, )\? is an
Ry x 1 vector of unknown factor loadings, Fy is an Ry x 1 vector of unknown common factors, and &;;
is the idiosyncratic error term. Here the factor structure AY' F? is referred to as interactive fixed effects
in Bai (2009) and Moon and Weidner (2014a, 2014b) as one allows both A} and F? to be correlated
with elements of X;; and )\?/Fto + &4 is called the multi-factor error structure in Pesaran (2006). We are
interested in estimating 3°, )\? and FP. It has been argued that the factor structure can capture more
flexible heterogeneity across individuals and over time than the traditional fixed-effects model. The latter
takes the form Y;; = BO/Xit + oz? + 5? + ¢+ and can be thought of as a special case of the interactive
fixed-effects panel data model by letting FY = (1,£9)" and ) = (af, 1), where o and £ are individual-
specific and time-specific fixed effects, respectively. When Xj; is absent in (1.1), the model becomes the
pure factor model studied in Bai and Ng (2002) and Bai (2003), among others.

Given the correct number Ry of factors and the proper regressors X;;, several estimation methods have
been proposed in the literature. For example, Pesaran (2006) proposes common correlated effects (CCE)
estimators; Bai (2009) and Moon and Weidner (2014a, 2014b) provide estimators based on Gaussian
quasi-maximum likelihood estimation (QMLE) and the principal component analysis (PCA). To apply
the latter methods, we must first determine the number of factors and appropriate regressors to be
included in the model. Nevertheless, in practice, we do not have a priori knowledge about the true
number of factors in almost all cases. Also there may be a large number of potential regressors, some
of which may be irrelevant. Thus it is desirable to use a parsimonious model by choosing a subset of
regressors. The common procedure is to perform some model selection in the first step and then conduct
estimation based on the selected regressors and the chosen number of factors. To select regressors, a wide
range of methods can be adopted. For example, one can apply the Bayesian information criterion (BIC)
or some cross-validation methods. To determine the number of factors, one can apply the information
criteria proposed in Bai and Ng (2002) or the testing procedure introduced in Onatski (2009, 2010),
Kapetanios (2010), or Ahn and Horenstein (2013). Bai and Ng (2006, 2007) provide some empirical
examples of the determination of number of factors in economic applications. Hallin and Liska (2007)

study the determination of the number of factors in general dynamic factor models.



In this paper, we explore a different approach. We use shrinkage techniques to combine the estimation
with the selection of the number of factors and regressors in a single step. Following Bai (2009) or Moon
and Weidner (2014a, 2014b), we can set a maximum number of factors (R, say) and obtain the preliminary
estimates of the slope parameters and factors. Then we consider a penalized least squares (PLS) regression
of Y;; on X;; and the estimated factors via the adaptive (group) Lasso. We include two penalty terms
in the PLS, one for the selection of regressors in X;; via adaptive Lasso and the other for the selection
of the exact number of factors via adaptive group Lasso. Despite the use of estimated factors that
have slow convergence rates, we show that our new method can consistently determine the number of
factors, consistently select all relevant regressors, and shrink the estimates of the coefficients of irrelevant
regressors and redundant factors to zero with probability approaching 1 (w.p.a.1). We also demonstrate
the oracle property of our method. That is, our estimator of the non-zero regression coefficients is
asymptotically equivalent to the least squares estimator based on the factor-augmented regression where
both the true number of factors and the set of relevant regressors are known. The bias-corrected version
of our shrinkage estimator of the non-zero regression coefficients is asymptotically equivalent to Moon
and Weidner’s (2014b) bias-corrected QML estimator in the case where all regressors are relevant (i.e.,
there is no selection of regressors). In the presence of irrelevant regressors, the variance-covariance matrix
for our shrinkage estimator of the non-zero coefficients is smaller than that of Moon and Weidner’s QML
estimator. In addition, we emphasize that even though Moon and Weidner (2014a) show that the limiting
distribution of the QML estimator is independent of the number of factors used in the estimation as long
as the number of factors does not fall below the true number of factors, we find that in finite samples the
inclusion of redundant factors can result in significant loss of efficiency (see Section 4.3 for detail). For
this reason, it is very important to include the correct number of factors in the model especially when
the cross section or time dimension is not very large. Our shrinkage method effectively selects all relevant
regressors and factor estimates and get rid of irrelevant regressors or redundant factor estimates.

There is a large statistics literature on the shrinkage type of estimation methods. See, for example,
Tibshirani (1996) for the origin of Lasso, Knight and Fu (2000) for the first systematic study of the
asymptotic properties of Lasso-type estimators, and Fan and Li (2001) for SCAD (smoothly clipped
absolute deviation) estimators. Zou (2006) establishes the oracle property of adaptive Lasso; Yuan and
Lin (2006) propose the method of group Lasso; Wang and Leng (2008) and Wei and Huang (2010) study
the properties of adaptive group Lasso; Huang et al. (2008) study Bridge estimators in sparse high
dimensional regression models. Recently there have been an increasing number of applications of the
shrinkage techniques in the econometrics literature. For example, Caner (2009) and Fan and Liao (2014)
consider covariate selection in GMM estimation. Belloni et al. (2013) and Garcfa (2011) consider selection
of instruments in the GMM framework. Liao (2013) provides a shrinkage GMM method for moment
selection and Cheng and Liao (2015) consider the selection of valid and relevant moments via penalized
GMM. Liao and Phillips (2015) apply adaptive shrinkage techniques to cointegrated systems. Kock (2013)
considers Bridge estimators of static linear panel data models with random or fixed effects. Caner and
Knight (2013) apply Bridge estimators to differentiate a unit root from a stationary alternative. Caner
and Han (2014) propose a Bridge estimator for pure factor models and shows the selection consistency.

Cheng et al. (2014) provide an adaptive group Lasso estimator for pure factor structures with possible



structural breaks. This paper adds to the literature by applying the shrinkage idea to panel data models
with factor structures and considering generated regressors.

The method proposed in this paper has a wide range of applications. For example, it can be used to
estimate a structural panel model that allows a more flexible form of heterogeneity. A specific example
is to study cross-country economic growth. Let Y;; be the economic growth for country i in period ¢
and X;; be a large number of potential observable causes of economic growth, such as physical capital
investment, consumption, population growth, government consumption, and lagged economic growth,
among others. Economic growth may also be caused by many unobservable common factors FY. It is
of great interest to know which observable causes are important to determine economic growth and the
number of common unobserved factors that affect all countries’ economic growth. Our new method is
directly applicable to this important economic question. Another example of application is to forecast
asset returns, as factor models are often used to model asset returns. Specifically, let Y;; be the excess
returns on asset 4 in period ¢ and X;; be observable factors such as Fama-French factors (small market
capitalization and book-to-market ratio), divided yields, dividend payout ratio and consumption gap,
among others. The asset returns may also be affected by an unknown number of common unobserved
factors. Our method automatically selects the important observable factors and unobservable common
factors. Thus it provides a powerful tool to predict future asset returns.

The paper is organized as follows. Section 2 introduces our adaptive group Lasso estimators. Section
3 analyzes their asymptotic properties. In Section 4, we report the Monte Carlo simulation results for
our method and compare it with the methods of Bai and Ng (2002), Onatski (2009, 2010), and Ahn and
Horenstein (2013). In Section 5, we apply our method to study the determinants of economic growth in
the framework of dynamic panel data models with interactive fixed effects, and find that in addition to
three common unobserved factors selected by our method, government consumption share has negative
effects, whereas investment share and lagged economic growth have positive effects on economic growth.
Final remarks are contained in Section 6. The proofs of all theorems are delegated to Appendix B.
Additional materials are provided in the online supplementary Appendices C-F.

NOTATION. For an m x n real matrix A, we denote its transpose as A’, its Frobenius norm as ||A||
(= [tr(AA")]M2), its spectral norm as || Al (= V111 (A’A)) and its Moore-Penrose generalized inverse
as AT, where = means “is defined as” and p, (-) denotes the sth largest eigenvalue of a real symmetric
matrix by counting eigenvalues of multiplicity multiple times. Note that the two norms are equal when
A is a vector. We will frequently use the submultiplicative property of these norms and the fact that
1A, < ||All < ||A||Sprank(A)1/2 . We also use p,,,, (B) and p,;, (B) to denote the largest and smallest
eigenvalues of a symmetric matrix B, respectively. We use B > 0 to denote that B is positive definite.
Let Py = A(A’ A)+ A" and M4 = I, — Pa, where I, denotes an m X m identity matrix. The operator

sp

£ denotes convergence in probability, A convergence in distribution, and plim probability limit. We use
(N,T) — oo to denote that N and T pass to infinity jointly.



2 Penalized Estimation of Panel Data Models with Interactive

Fixed Effects

In this section, we consider penalized least squares (PLS) estimation of panel data models with interactive
fixed effects where the number of unobservable factors is unknown and some observable regressors may

be irrelevant.

2.1 Panel Data Models with Interactive Fixed Effects

We assume that the true model (1.1) is unknown, in particular, Ry and K, are unknown. With a little

bit abuse of notation, we consider their empirical model
Vie=B" Xy + NWF + ey, i=1,..,N, t=1,...,T, (2.1)

where X;; is a K x 1 vector of regressors that may contain lagged dependent variables, ° = (6[1), . 5?()/
is a K x 1 vector of unknown slope coefficients, F? and )\? are R x 1 vectors of factors and factor loadings,
respectively, and g;; is the idiosyncratic error term. Here {)\?} and {Fto} may be correlated with { X} .
We consider estimation and inference on 8% when the true number of factors R, (< R) is unknown and
some variables in X;; may be irrelevant, i.e., Ky < K. In the sequel, we allow both K and Kj to pass to
infinity as (IV,T) — oo but assume that R is fixed to facilitate the asymptotic analysis.

To proceed, let X;; ; denote the kth element of X;; for k =1, ..., K. Define

Yvi = (El;"wYéT)/; X’L'E(Xila"'inT)/; EiE(Eilw"vgiT)/;
F° (F2, .. FD) 0= (A, A%, Xin = (Xivgs oo, Xir)s
Y (Yl, ...,YVN)I7 Xk = (Xl,‘ka ...,XN7.]€)/, and € = (617 ~-~75N)/-

Apparently Y, Xy, and € are all N x T matrices. Then we can write the model (2.1) in matrix form

K
Y =) BXi+\FY te. (2.2)

k=1
Without loss of generality (Wlog), we assume that only the first Ky elements of X;; have nonzero slope
coefficients, and write X;; = (Xi’t(l), X;t(z))’, where Xjy(1) and Xjy(9) are Ko x 1 and (K — Kjp) x 1 vectors,

respectively, and the true coefficients of X (1) are nonzero while those of Xj;(2y are zero. Accordingly,
we decompose % as 8° = (1), B(z))" = (5(1),0)'-
2.2 QMLE of (3% X% F°)

Given R and all regressors, following Bai (2009) and Moon and Weidner (2014a, 2014b), we consider the
Gaussian QMLE (3, \, F) of (ﬁo, 2, F?) which is given by

(ij‘,ﬁ‘) :argmin 'C?VT (ﬁv)HF)a (23)
(B, F)



where
!

K K
L7 (B F) = %tr (Y —> B X - AF’) (Y =8 Xs - AF’) : (2.4)
k=1

k=1
B=(By,....0r) isa K x 1 vector, F = (Fy,..., Fp) is a T x R matrix, and A = (A,...,Ay) isan N x R
matrix. One can first obtain the profile-likelihood estimate 3 and then the estimate (5\, F ) via the PCA
method under the identification restrictions: F'F/T = Ir and X'\ is a diagonal matrix. Namely, (A, F)

solves N
1 - N/
lﬁ 2 (vi— %) (vi - xi5)

where V7 is a diagonal matrix consisting of the R largest eigenvalues of the above matrix in the square

K
F=FVyrand A=T""! (Y - Z,kak> F, (2.5)
k=1

bracket, arranged in descending order. Moon and Weidner (2014a) show that as long as R > Ry, the
limiting distribution of the QMLE for 3 is independent of R, the number of unobserved factors used in
the estimation. Throughout the paper, we assume that R > Ry and use Bc = (Bi, e B;)/ to denote the
bias-corrected version of 8 based on the formula in Moon and Weidner (2014b) or our supplementary
Appendix F. After obtaining BC, we obtain the final estimate (5\, F) via (2.5) with A replaced by BC.

2.3 Penalized Least Squares Estimation of (60, )\*)
We first present our PLS estimators and then provide some motivations for them. Our PLS estimator
(B,\) are obtained as follows.

e Estimate model (2.1) with R factors and all K regressors and obtain (5\, F ) and BC as discussed in

Section 2.2.

e Let Y=Y ch{:l BZXk, F= (]\7T)_1 Y'YF, and i]F = T-1F'F. Compute the R eigenvalues of

Y arranged in descending order and denote them as 71,..., 7g.

e Minimize the following PLS criterion function

K R
1 YoNT 1

Q,(B,AN) =L B, A+ E — 16k + E = Al 2.6
7( ) NT( ) 1NTk:1 Z 1| k\ N L7y H H ( )

where Ly7 (8,)\) = LY7(8, A, F), A, denotes the rth column of X\, ¥ = yxr = (Vinrs Yant) 1S
a vector of tuning parameters, and k1, ko > 0 are usually taken as either 1 or 2. Let (B, 5\) =

(B(7), (7)) denote the solution to the above minimization problem.

Note that (2.6) contains two penalty terms, v,y for the regression coefficients 5,’s and v,y for
the loading vectors A.,’s. Noting that N=Y/2||A..|| = Op(1) under our Assumption A.1(iii) in Section
3.1 which apparently rules out the case of weak factors studied by Onatski (2012), we divide the second
penalty term 7oy by v/N. Note that the objective function in (2.6) is convex in (8,\) so that the
global minimizer of () can be found easily for any given tuning parameter . We frequently suppress the
dependence of (,6’ , ;\) on ~ as long as no confusion arises. Below we will propose a data-driven method to

choose 7. Also, note that we have used estimated factors Fy in (2.6).



As a referee points out, the idea to use group Lasso for selection of the number of factors has been
around for some time. For example, Hirose and Konishi (2012) derive a model selection criterion for
selecting factors in a pure factor model but they do not provide asymptotic analysis. In contrast, we
consider both variable and factor selections in dynamic panel data models and offer systematic asymptotic
analysis.

Our procedure is motivated by the literature on adaptive group Lasso (see, Yuan and Lin (2006),
Zou (2006), Huang et al. (2008)). Now we provide some details. R is usually different from Ry and
one cannot expect F to be a consistent estimator of F° or a rotational version of F°. Define H =
Hyr = (Nfl)\O’/\O) (T~ FYF). We can follow Bai and Ng (2002) and show that under certain regularity
conditions, + HF - FOHH2 = Op (6y%) and HFt - H’F,?H2 = Op (8x7) for each ¢, where F denotes the
tth row of F' and dyr = min(\/N T ). In addition, we show in Appendix A that H = Hyr converges
in probability to a sparse matrix

H = [H)y, Opyx(r—Ro))s

where H?l) is an Ry x Ry full rank matrix and O,x; denotes an a X b matrix of zeros. As a result,
AN =H +)\? also exhibits a sparse structure asymptotically, i.e., the last (R — Ry) elements of A} converge

in probability to zero. Using the above definitions of H and A}, we can rewrite (2.1) as'
Yie = Y Xo + NVHYH'F? + 65y = 8% Xy + N/ H'F? + 4. (2.7)

The sparse nature of A} (and BO) suggests that we can apply an adaptive group Lasso procedure as
introduced above. Further, we show in Appendix A that 71, ..., 7g, converge in probability to some finite
positive numbers whereas Tr 1, ..., TR converge to zero at v/N-rate. This means that & 7 provides the
information on the sparsity nature of A}. This motivates us to use ﬂ% as a weight in the second penalty
term in (2.6).

3 Asymptotic Properties

In this section we study the asymptotic properties of the proposed adaptive group Lasso estimator (B , 5\)

3.1 Estimation Consistency

Let Wyp = ﬁ Zf\il XX, and Wiy = ﬁ Zf\il X{MFUXl where X; = Xi—% Zjvzl /\?’ (N_l)\O/)\O)_l )\?Xj.
Let C' denote a generic finite positive constant that may vary across lines. We make the following

assumptions.
Assumption A.1 (i) /NT/K ’ B - BOH =Op (1) and VNT |3, — ﬁz’ =0Op(1l) foreach k=1,..., K.
(i) E||FP|° < € and T~ FYFO 25 S0 > 0 for some Ry x Ry matrix Xgo as T — oc.

(iii) B H)\?Hs < Cand N“1\\0 2, Yo > 0 for some Ry x Ry matrix Xyo as N — oo.
(iv) For k=1,..,K, (NT) " E||Xy||> < C.

!Noting that the Ro x R matrix H is right invertible, by Proposition 6.1.5 in Bernstein (2005, p.225) we have HT =
H' (HH')™', which further implies that HHT = Ig,,.



() llel,, = Op (max(v/N, ).
(vi) For k=1,.., K, (NT)"" E[tr (Xze')]” < C.

(vii) (NT)"'E ||)\°'5F0H2 <C.

(viii) There are two nonstochastic X x K matrices Wy and W, such that HWNT - WOH =op (1)

and Wy — Wolly, = op (1), where i, (Wo) and fu,;,, (Wo) are bounded away from infinity and zero,

Sp

respectively.

Assumption A.2 (i) E(ei) =0 and E (¢5) < C.
(ii) Let 0400 = E (eigjs) - maxicer N"U YL 0iin < €, N7V ST maxycocr |oijn] < €,
T Y Y ey maxi<i<n [oiigs| < Cpand (NT) Y, Zjv:1 ey Yy ol < C.
4
(iii) For every (t,s), E|N~1/2 Zl 1 [eigis — E (eneis)]| < C.

Assumption A.3 (i) As (N,T) — oo, T/N? — 0, N/T? — 0, and K?/min(N,T) — 0.
(i) As (N, T) — oo, (TKo)"/?v,yp — 0, and T2, 50 — 0.

A.1(i) is a high-level assumption. Primitive conditions can be found in Moon and Weidner (2014a,
2014b) which ensure the v/ NT-consistency of a bias-corrected preliminary estimate when K is fixed and
R = Ry. In the supplementary Appendix F, we extend the analysis to allow diverging K and R > Ry. As a
referee points out, one can relax this assumption to allow for a non-bias-corrected estimator of 3, in which
case A1(i) would become HB - ﬂOH =Op (KY/%5y7%) and HBk — BQH =Op (057) foreach k =1,2,..., K,
and more bias terms need to be corrected for the shrinkage estimator 3 than here. A.1(ii)-(iv) impose
standard moment conditions on FP, A}, and X;; see, e.g., Bai and Ng (2002) and Bai (2003, 2009).
Note that Bai and Ng (2002) assume only the fourth moment for F? but require that \) be uniformly
bounded. Moon and Weidner (2014a) demonstrate that A.1(v) can be satisfied for various error processes.
A.1(vi) requires weak exogeneity of the regressor Xj. A.1(vii) can be satisfied under various primitive
conditions and it implies that H)\O/&:F OH = Op(N'/2T'/2) by Chebyshev inequality, which further implies
that [|\”e|| = Op(NY/2T%/2) and ||eF°|| = Op(N'/2T'/?) under Assumptions A.1(ii)-(iii) by standard
matrix operations. A.1(viii) requires that the large dimensional matrices Wt and Wyt be well behaved
asymptotically.

A.2 is adopted from Bai and Ng (2002) and Bai (2009). It allows for weak forms of both cross
sectional dependence and serial dependence in the error processes. The first two parts of A.3(i) require
that T' should not grow too fast in comparison with N and vice versa; the last part of A.3(i), namely,
K?/min(N,T) — 0, is needed to ensure that the estimation of the K x 1 vector 3 plays asymptotic
negligible role on the estimation of the factors and factor loadings. A.3(ii) is a condition that ensures a
preliminary v/T-rate of consistency of our shrinkage estimator B (see Theorem 3.1 below) and it essentially
says that the two penalty terms cannot be too large.

The following theorem establishes the consistency of the shrinkage estimator (B , 5\)

Theorem 3.1 Suppose Assumptions A.1, A.2, and A.3(i)-(ii) hold. Then

R - TR 2 1 X . 2 _
|B=6°| = 0p (17272, ana N || An7 - X°| :NZ;HH&—A? =0p (T71).




Remark 1. Theorem 3.1 establishes the preliminary v/T-rate of consistency for 3 (in Euclidean norm)
and the usual T-rate of consistency for the cross sectional average of the squared deviations between
the estimated factor loadings (with rotation) and the true factor loadings. The former is a preliminary
rate and will be improved later on. The latter is the best rate of consistency one can obtain. It is

worth mentionigg that the second part of the result in the above theorem in general does not imply

% A=AHM| =0p (T’l) unless R = Ry. To see why, notice that
s _yogel? — L _ gl S 20 prr?
~|A-wmr | = SN a - a0
1 1. 2 1 /. 2
> — |5\ (1g - H'H ‘ ——H H — ) H*
2y | U= -5 (A A)

Even though Theorem 3.1 implies that the second term is Op (Tﬁl), the first term does not vanish
asymptotically as H'H' # I for any R > Ry. Nevertheless, by the triangle inequality, the fact that H
has full row rank asymptotically, and Assumption A.1(iii), we can readily show that N=||A|[?> = Op (1).

3.2 Selection Consistency

To study the selection consistency, we write 5 = (B/(l), Bl(z))/ and \ = (5\(1), 5\(2)), where 3(1) and 3(2) are
column vectors of dimensions K and K — K, respectively, and 5\(1) and 5\(2) are N X Ry and N x (R — Ry)
matrices, respectively.

To state the next result, we augment Assumption A.3 with one further condition.
Assumption A.3 (iii) As (N,T) — oo, (NT)*/2 T2+, yp — 00, and N*2/2T1/2, o — oo,

Clearly, A.3(iii) requires that the two penalty terms should not be too small. The next theorem

establishes the selection consistency of our adaptive group Lasso procedure.
Theorem 3.2 Suppose Assumptions A.1, A.2, and A.3(i)-(iii) hold. Then
P (HB@)H — 0 and HX@)H - 0) 1 as (N,T) — co.

Remark 2. Theorem 3.2 says that with w.p.a.1 all the zero elements in 3° and all the factor loadings of
the redundant factor estimates must be estimated to be exactly zero. On the other hand, by Theorem 3.1,
we know that the estimates of the nonzero elements in 3% and the factor loadings of the non-redundant
factor estimates must be consistent. This implies that w.p.a.1, all the relevant regressors and estimated
factors must be identified by nonzero coefficients and nonzero factor loadings, respectively. Put together,
Theorems 3.1 and 3.2 imply that the adaptive group Lasso has the ability to identify the true regression

model with the correct number of factors consistently.

3.3 Oracle Property

Decompose F = (ﬁ'(l), 1*:'(2)) where F(l) and 13'(2) are T'x Ry and T x (R — Ry) submatrices, respectively.
Analogously, let [ = (F(l), F(Q)) and H = (Hy, Hy)), where F(l) = (NT)_1 ?’?F(l) and Hg) =
—14,07,0 _ - % * 0 * *
Hyynr = (NTIAYN) (TP Fyy) for | = 1,2 Let Fyy = FOH(}) and ATy = A HE\. Let Fy)y and Ajfy)
denote the tth and ith rows of F| (*1) and /\2‘1), respectively. Define Fy(;) and A1) analogously. Further, write



Xi = (Xi(1), Xi2)) where X1y and X2y are T' x Ko and T' x (K — Kj) submatrices of X, respectively.

Let Dpo = (NT)™' oL, X/ Mpo X0y and Chyp = (NT) "2 3000, S0 Y FO Fiay Ny Xl gy Mpo X .
Let D=0 (F°, \°), the sigma-field generated by (F°,\"), and Ep (A) = E (A|D). Define
S -
_ —5/2 * * * h 040/ 0 07 1 *
Bive = (NT)™23 X/, Fp (F(l’)F(1)> Fly FOAYee N FY iy A,
i=1
N ~
Bont = (NT)*?3" X[y Mpoe'e Fu) Xy,
i=1
N -1
_ —3/2 * * * I
Bive = (NT)™23 X/, Fp (F(l/)F(1)> Fl, FO\°¢/e;, and
i=1
N
— !
Bivt = (NT)23" [Xiq) — Ep (Xi))] Proc.
i=1
To study the oracle property of ,5’(1) and 5\2»(1), we add the following assumptions.
Assumption A.4 (i) There exists a Ky X Ky matrix Dgo > 0 such that HDFO — Dpol| =op(1).
sp

(ii) There exists a K x Ko matrix Co such that [[Cn7 — Col|, = op (1).
(i) maxi<p<r B||[Fe'Xe'\0||* = O (N*T2 (N + 7).
(iv) maxi<i<n B | \es||* = O (T(N +T)).

Assumption A.5 (1) Let ZZ = Xi(l)_PFOED(Xi(l))_MFO/?ilNT"‘ [Xl — Ep (XZ) — MFO‘X_Z‘QNT] WEIC(L
_ ~ " _ _ -1
where X np = & 3200 AV (T FYFu))N) Ep(X;(1) and Xonr = £ S0 A (NIAYA0) 7 A Ep (X)) .

There exists © y7 such that \/%(CKD Zfil Zle 4N (07 lim(y 7y — o0 (CKOGNT(C'KO) for any £ x Ky non-

random matrix Cg, such that Cg,C%, 6 — C, where £ € [1, Ko] is a fixed finite integer and ©n7 has
eigenvalues that are bounded away from zero and infinity for sufficiently large (N, T).

(ii) There exists @i,p(*n > 0 such that % Zthl Ft*(l)sl-t 4, N(0, 9i7F(*1)).

Assumption A.6 (i) As (N,T) — oo, KS/Z(TUQNf1 + NY27-1) — 0.
(i) As (N, T) — oo, (NTKo)"? vy np — 0 and (NT)/? yypn — 0.

Assumptions A.4(i)-(ii) are weak as one can readily show that both Dgo and Cyg are Op (1) in the
case of fixed K. The positive definiteness of Do is ensured by Assumption A.1(viii). Cy is generally not
zero in A.4(ii), but it can be zero under fairly restrictive conditions on the data generating processes for
{Xit, i, FY, )\?} . See Greenaway-McGrevy et al. (2012, GHS hereafter) and the discussion in Remark
4 below. A.4(iii)-(iv) are high level assumptions. A.5 parallels Assumption E in Bai (2009) which is also
a high level assumption. Note that both cross sectional and serial dependence and heteroskedasticity
are allowed in the error terms. We verify these assumptions in the supplementary appendix by allowing
lagged dependent variables in X;;. A.6 is needed to obtain the oracle property for our adaptive group
Lasso estimator.

The following theorem establishes the asymptotic distributions of both B (1) and 5\1-(1).

Theorem 3.3 Suppose Assumptions A.1-A.6 hold. Let V1 = D;&@NTD;(} and Cg, be as defined in
Assumption A.5(i). Then

10



(i) Cicy |VNT (Bray = By ) = Bz | 2 N (0,limqn 1) o0 Cocg Vi Cl,)
(ii) ﬁ()\i(l) HE A ) WY (o, DI m)

(1)
where BNT = D;(ll) (BINT — BQNT — B3NT — B4NT)7 2F(1) = H?{)EFOH?Dv and H(Ol) s the pmbability

limat Of H(l)

Remark 3. Note that we specify a selection matrix Cg, in Theorem 3.3(i) (and Assumption A.5(i))
that is not needed if K is fixed. When the dimension of 5(()1)7 namely, Ky, is diverging to infinity, we
cannot derive the asymptotic normality of S (1) directly. Instead, we follow the literature on inferences
with a diverging number of parameters (see, e.g., Fan and Peng (2004), Lam and Fan (2008), Lu and Su
(2015)) and prove the asymptotic normality for any arbitrary linear combinations of elements of /3 a)- To
understand the results in Theorem 3.3, we consider an oracle who knows the exact number of factors and
exact regressors that should be included in the panel regression model. In this case, one can consider
the estimation of both the slope coefficients and the factors and factor loadings via the Gaussian QMLE
method of Bai (2009). This one-step oracle estimator is asymptotically efficient under Gaussian errors
and some other conditions. Ideally, one can consider a one-step SCAD or Bridge-type PLS regression
where the penalty terms on both 8 and A (or F) are added to L%, (8, A, F) defined in (2.4) instead
of LY7(8, A, 3 ). We conjecture that such a one-step PLS estimator is as efficient as the one-step oracle
estimator. Nevertheless, because we observe neither F' nor A and some identification restrictions on F
and A are required, it is very challenging to study the asymptotic properties of such a one-step PLS
estimator.? For this reason, we compare our estimator with an alternative two-step estimator that is
obtained by a second step augmented regression with estimated factors obtained using Bai’s (2009) PCA-
based QMLE method from a first-step estimation; see, e.g., Kapetanios and Pesaran (2007) and GHS.
This two-step augmented estimator is only as efficient as the one-step QMLE under some restrictive
assumptions and has more bias terms to be corrected otherwise. But after the bias correction, it is
asymptotically equivalent to the bias-corrected one-step QMLE estimator. See also Remark 7 below.
Specifically, let 3(1) and 5\1‘(1) denote the least squares (LS) estimates of 6?1) and )\;k(l) = H(l))\

the following augmented panel regression
Y = ﬁ((){)Xit(l) + )\?(/1)Ft(1) + €it, (3.1)

where €;; is the new error term that takes into account the estimation error from the first stage estimation.

Then we can readily show that

_ 1 _
— _yv—1
Bay = DF<1> NT ZXZ(I Fy Y0 Ay =2p > Fy(Yie = Xy By)s

where 15 E( T)~ ZZ 1 Xin yMi, Xi) and EF(l)

proof of Theorem 3.3, Assumptlon A6 is essential to ensure that (5(1 1(1)) is asymptotically equivalent

== Zt 1 Ft(l)F . As demonstrated in the

to (53 (1) Ai (1)) in the sense that they share the same first order asymptotic distribution. For this reason,

2Bai and Liao (2013) propose a one-step shrinkage estimator for a pure factor model where the error terms are het-
eroskedastic and cross-sectionally correlated but exhibit a conditionally sparse covariance matrix. Under the assumption
that the true number of factors is known, they establish the consistency of their estimator but state that deriving the

limiting distribution is technically difficult.
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we say that our estimator (B (1)s 5\1‘(1)) is as oracle efficient as a two-step augmented estimator by knowing

the exact number of factors and regressors.

Remark 4. Despite the oracle property of B(1)= it possesses four bias terms that have to be corrected
in practice in order to ensure its v/ NT-consistency and zero-mean asymptotic normality. Interestingly,
under a different set of assumptions, GHS establish formal asymptotics for the factor-augmented panel
regressions in the case of fixed Ky. They show that the replacement of the unobservable factor FY by
the PCA estimate Ft(l) in (3.1) does not affect the limiting distribution of the LS estimates of ﬂ((]l) under
four key conditions: (i) T/N — 0 and N/T3 — 0, (ii) there is no dynamic lagged dependent variable
in the regression, (iii) X; also possesses a factor structure: X; = FXXX 4 V;, and the estimated factors
associated with X; are also included into the augmented regression, and (iv) the exact number of factors
and the exact regressors that should be included in the model are known.? Note that we relax all the
four assumptions in this paper. We relax condition (iv) by considering the shrinkage estimation. Under
condition (i), both By 7 and B3yt are op (1). Under condition (iii), FX is a submatrix of F© so that
FX'Mpo = 0 and the factor component of Xi(1) does not contribute to Boy7; under GHS’s conditions on
Vi, €i, F and X (see their Assumptions A(v)-(viii)), the error component of X;(;) does not contribute
to Boyr either. That is, Boy7 is asymptotically negligible under their conditions. To understand the
sources of asymptotic bias and variance of our estimator, we consider the following expansion used in the

proof of Theorem 3.3:
. 1
N/ 0 —
NT(CKD (ﬂ(l) — ﬂ(l)) = (CK F(1) \/_ ZX’ MFUEZ
+Ci, D F(l) /—Z Mg, (Fy = Fay)Xia)

/
-HCKO F(1) \/_ ZX ( P MF(1)) g; +op(1)

SinT + SonT + 53NT +op (1), say. (3.2)

SinT is present even if one observes F (in which case EFO) is replaced by D o). We show that Sonr
contributes to both the asymptotic bias and variance whereas Ssyp only contributes to the asymptotic

bias:

Sont = Cry D2 (Bint — Bont — Vine 4+ Vonr) 4+ 0p (1), and Ssyr = —CKOﬁ;(ll)BsNT +op (1),

Fy

— ~C
where Viny = (NT) " S8 Xl v Mpoei, Vonr = Cg VNT(B %), and Xy o = & S0 A [T FY
F(l)])\;f(l)X 3/'(1)' In general, the parameter estimation error plays an important role. Nevertheless, under
GHS’s key condition (ii) in conjunction with some other regularity conditions specified in their Assump-

tion A, one can show that |[Vinr| = op (1) and [[Cnr|, = op (1) (and hence Cy = 0 in our Assumption

3Condition (4) is explicitly mentioned in GHS. Lagged dependent variables are ruled out by the second part of Assumption
B in their paper. The first part of (¢i7) is explicitly assumed in their equation (3) and the second part is implicitly assumed
because the factors in their equation (6) include the maximal common factor set of the observable variables (Y;, X;). (iv)

is also implicitly assumed in their paper.
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A.4(ii) and |Vanr|| = op (1) under our Assumption A.1(i)). In this case, only Sjn7 contributes to
the asymptotic variance of their augmented estimator of 5?1) and both Synyr and S3yr are asymptoti-
cally negligible under GHS’s key conditions (i), (iii) and (iv). If their key condition (ii) is also satisfied,
one can show that Siyr converges to a zero-mean normal distribution; otherwise, one has to consider

bias-correction as in Moon and Weidner (2014a).

Remark 5. The presence of Byy7 and the complicated structure of Z; in Assumption A.5(i) are mainly
due to the allowance of lagged dependent variables because X;; can be correlated with ¢;, for t > s.* In
this case, Sin7 is not centered around zero asymptotically, whereas both Vy7 and Vonr are centered
around 0 asymptotically.” We have to decompose S;y into an asymptotic bias term (which is associated

with B,n7) and an asymptotic variance term (which enters Z; via Xi) — ProEp(X;(1))):

1 1

_— X  Mpog: = ———
m? T T UNT -

=1

[Xl((l)ei - ED(X{(l))PFOEi] — BanT.

We can find primitive conditions to ensure that the first term in the last expression converges to a zero
mean normal distribution, the conditional expectation Bsn7 of the second term given D contributes to
the asymptotic bias which can be corrected, and Byy7 — Banyr is asymptotically negligible. For further
details, see the proofs of Theorem 3.3 and Corollary 3.4 in the appendix and the supplementary appendix,

respectively.

Remark 6. Now we consider some special cases where the formulae for the asymptotic bias and variance

terms can be simplified.

1. If all regressors are strictly exogenous as in Pesaran (2006), Bai (2009), and GHS, then one can set
Bunr = 0and Z; = Mpo [Xi(l)_XilNT'i‘(Xi_XZ‘QNT)W(;lCO] in Assumption A.5(i), where X y7 =
LN NTFY Fy N Xy and Xy = £ 50 A7 (N-1A%2%) 7 A%, In short, there is

no need to consider conditioning on the “exogenous” set of factors and factor loadings.

2. If in addition, X; also follows a factor structure as in GHS, then there is no need to correct BoyT
and B, n7 under the conditions specified in GHS, and one can reset Z; = Mo X1y in Assumption
A5(1).

3. If in addition, T/N — 0, there is no need to correct any bias term.

Note that we present Theorem 3.3 under a set of fairly general and high level assumptions. To estimate
the asymptotic bias and variance, one generally needs to add more specific assumptions as in Bai (2009).
In the supplementary appendix, we specify a set of assumptions (Assumptions B.1-B.2) that ensure all
the high level conditions specified in Assumptions A.1(vi)-(vii), A.2(ii)-(iii), A.4(iii)-(iv) and A.5(i)-(ii)

to be satisfied. Note that Assumption B.1(i) relies on the key notion of conditional strong mizing that

4In the absense of lagged dependent variables, one can simply combine Sy 7 with D;l (=VinT + VanT) to obtain the
(1)
asymptotic distribution without GHS’s key conditions (i), (iii) and (iv).
5VinT is centered around 0 asymptotically because Xj; yr is defined as a weighted average of X(1) which asymptotically
smooths out the endogenous component of X;;; Vonr is also asymptotically centered around 0 because of the adoption of

. . 3C . . oL
a bias-corrected estimate 3 in its definition.
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has recently been introduced by Prakasa Rao (2009) and Roussas (2008) and applied to the econometrics
literature by Su and Chen (2013) and Moon and Weidner (2014b). Assumptions B.1-B.2 are also used
to establish the consistency of the asymptotic bias and variance estimates.

In particular, under the martingale difference sequence (m.d.s.) condition in Assumption B.2, we have

M’ﬂ

Onr=(NT)"' )

T
2 7 7 _ 2
2 7.7 Q;p = lim © = E: { ]
it 1,F<1) (N T)— 00 iNT. F(l) zNT F<1) t(l
=1t t=1

1

where Z!, denotes the tth row of Z;. One can consistently estimate ©;, Fr by O; r iF % Zthl ﬁ’t(l)ﬁ't/(l)é?t,
where &;; = Y — it(1)f8(1) — /\i(l)Ft(1)~ Below we focus on inferential theory for B(()l).

Let \ifNT *diag(inlT,. S Onr) and Sy =diag(@y, -, ) where P = TV 82 and ¢,y =
NN &2 Let Zi = Xy — PF(UXM) MF(l)XlNT +[Xi = Pp,, X MFO)XQNT}WJ;;ONT,
where X“NT = sz 1 i(l)[T F(l)F( )])\j(l)X (1), and XignT = ~ Zj 1 2(1 [N, )\(1))\ nl~ 1)\]-(1)Xj7
Chr = (ND) 2, Y0 Ny Fly Fyhia \X{y Mg, Xj, War = . L XM XZ, and X,

X; — Xjont. Note that we can erte the kth elementb of Bsnr and Byyr = Ep (IB4NT) rebpectlvely as

>l

Bynrs = (NT) /% {(F(I)F(* ))_1F(I)FO)\O’55’X;€F(*1)} and Byyry = (NT) 2 tr [Pro Ep (/X))

We propose to estimate the bias and variance terms as follows:

N
~ ~ ~ ~ ~ ~l A~ ~
BINT = N_S/QT_S/QZX;(l)F(l)(F(ll) (1))_1F(1)F( ))\( )\IJNT)\(l) (I Fl))\z(l
i=1
N ~ ~
Bonr = N71/2T73/2 Z X@{(l)Mﬁ(l)(I)NTF(l)Ai(l)y
=1
B3NT,k = N_3/2T_1/2t1' |:(F(I1)F(1)) 1)F(1 5\ 1)@NTX]QF(1):| for k = 1, ceny Ko,
T 1 -~ runc
Banr = \/Wtr [PF(I) (€IXk)t } for k=1, ..., Ky,

OnT

1l
.
I Mz
MH
%
N
‘;.:N\>

NT

where A'UnC = tT;lM Ziﬁl Aj, for any T x T matrix A = (As) and A, is a T x T matrix with
(t,s)th element given by A;s and zeros elsewhere, and Z!, denotes the ¢th row of Z,;. Let Bsny =
(BanT1,- Bant ic,) and Banr = (Bant1, -, Bant.i,)'- We define the bias-corrected adaptive group

Lasso estimator of B(()l) as
le ﬁ(1) —(NT)""*D F( ' (Bint — Bant — Banr — Ban).
The following corollary establishes the asymptotic distribution of B((:l)

Corollary 3.4 Suppose Assumptions A.1(i), (v), (viii), A.3, A.4(i)-(ii), A.6, and B.1-B.2 hold. Let
VNT = .Df(l éNTDI;(ll)' Then (CKDV (ﬂ(l ﬁ 1)) —> N (O hm(N T)—o0 (CKOVNT(C ) and (CKO(@NT_

VNT)(CKO = Oop 1
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Remark 7. The proof of the above corollary is quite involved and we delegate it to the supplementary
appendix. If only strictly exogenous regressors are present in the model, following Remark 6, we can set
Byn7 = 0 and redefine Z; = Mﬁ(l) [(Xia) — XNt + (X; — étA’igNT)Wﬁ%CA'NT] to be used in the variance
estimation. When other conditions are also satisfied, both the bias and variance estimates can be further
simplified with obvious modifications according to Remark 6. It is worth mentioning that our bias-
corrected estimator is asymptotically equivalent to Moon and Weidner’s (2014b) bias-corrected estimator
in the case where all regressors are relevant (i.e., there is no selection of regressors) and Kj is fixed. In
the presence of irrelevant regressors, the variance-covariance matrix for our shrinkage estimator of the

non-zero coefficients is smaller than that of Moon and Weidner’s estimator.

Remark 8. Belloni and Chernozhukov (2013) study post-model selection estimators which apply ordi-
nary least squares to the model selected by first-step penalized estimators and show that the post Lasso
estimators perform at least as well as Lasso in terms of the rate of convergence and have the advantage of
having a smaller bias. After we apply our adaptive group Lasso procedure, we can re-estimate the panel
data model based on the selected regressors and number of factors and the QMLE method of Bai (2009)
or Moon and Weidner (2014a, 2014b). We will compare the performance of these post-Lasso estimators

with the Lasso estimators through simulations.

Remark 9. Note that our asymptotic results are “pointwise” in the sense that the unknown parameters
are treated as fixed. The implication is that in finite samples, the distributions of our estimators can be
quite different from the normal, as discussed in Leeb and Poscher (2005, 2008, 2009) and Schneider and
Poscher (2009). This is a well-known challenge in the literature of model selection no matter whether the
selection is based on a information criterion or Lasso-type technique. Despite its importance, developing

a thorough theory on uniform inference is beyond the scope of this paper.

Remark 10. As a referee kindly points out, our procedure does not take into account the possible
correlation in £;; and it may not work well in the case of strong serial correlation like Bai and Ng’s
(2002) information criterion. Suppose that the error term has an AR(1) structure: e; = p’e;s_1 + e,
where {e;;,t > 1} is a white noise for each i. Then one can transform the original model in (2.1) via the

Cochrane and Orcutt’s (1949) procedure to obtain
Yig — p%Y;—1 = B (Xt — p° Xieo1) + AYED 4+ ey, (3.3)

where FY = (F? — p°F_,) . We propose the following two-stage estimator:

Stage 1: Obtain the residuals &;; using the largest model (i.e., » = R and including all regressors)
and let p be the OLS estimator of p by regressing &;; on &;;_1.

Stage 2: Apply our Lasso method to the following transformed model:

(Yie — pYir1) = B (Xur — pXir—1) + A EL? 4y, (3.4)

where 7,, is a new error term that incorporates both the original error term e;; and the estimation error
due to the replacement of p° by p. Simulations demonstrate such a method works fairly well in the case

of serially correlated errors.
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3.4 Choosing the Tuning Parameter v

Let Sg (v) and Sy (7) denote the index set of nonzero elements in 3 () and nonzero columns in A (),
respectively. Let S (v) = Sg () X Sx (7). Let |S| denote the cardinality of the index set S. We propose

to select the tuning parameter v = (74, 75) by minimizing the following information criterion:

IC(7) = 6% (v) + pine 1S5 (M| + pant N 1Sy ()], (3.5)

where 6% (7) = Ly7(8(7), A (7)). Similar information criteria are proposed by Wang et al. (2007) and
Liao (2013) for shrinkage estimation in different contexts.

Let Spg = {1,..., K} and Sy g = {1, ..., Ko} denote the index sets for the full set of covariates and the
(true) set of relevant covariates in X, respectively. Similarly, Spx = {1,..., R} and Sz = {1, ..., Ro}
denote the index sets for the full set of factors and the (true) set of relevant factors in F}, respectively.
Let S =(Sp,S\) be an arbitrary index set with Sg = {j1,...,JKx+} C Sk and Sx = {j1,..,jr*} C Sk
where 0 < K* < K and 0 < R* < R. Consider a candidate model with regressor index Sg and factor
index Sy. Then any candidate model with either Sg 2 S5 or Sy 2 Sr,y is referred to as an under-fitted
model in the sense that it misses at least one important covariate or factor. Similarly, any candidate
model with Sg D Sr g, Sx D Sr,x and either Sg # Sr g or Sy # St (ie., |Sa| +|Sa| > [Sr.8| + |Sr.al) is
referred as an over-fitted model in the sense that it contains not only all relevant covariates and factors
but also at least one irrelevant covariate or factor.

Denote Q1 = [0,71 max] and Q2 = [0, V5 ax) » two bounded intervals in R*, where the potential tuning
parameters v,y and o7 take values, respectively. Here we suppress the dependence of Q1, Qa, ¥1 max
and Yo oy 00 (N, T) . We divide ©Q = € x Qy into three subsets g, Q_ and Q. as follows

Qp = {’7 e 255 (’7) ZST,g and S (’y) :ST)\}7
Q. = {y€Q:85(7) 2SrporSa(v) 2 Srat,
Qr = {ve€Q:8(7) DSrp Sx(7) DSt and [Sg| + [Sa| > [Sr| + [STal}-

Clearly, Qq, 2_ and 24 denote the three subsets of {2 in which the true, under- and over-fitted models
can be produced.

For any & = Sg x Sy with S = {jl,...,j‘sﬁ‘} C Srp and Sx = {l1,....l|s,|} C Sr, We use
B3, = By By

N x |8y| submatrix of X. Similarly, Xy s, and Ft,SA denote the |Sa| x 1 subvector of X;; and |Sy| x 1

)’ to denote an |Sg| x 1 subvector of § and As, = <)‘ll"“’Al|sA\) to denote an

subvector of F, according to S. Let 3 s, and 5\37 denote the ordinary least squares (OLS) estimators of

BSB and s, , respectively, by regressing Y;; on X;; s, and Ft"g)\. Define

o _ 1 o Vo Fs)
6% = NT Z (Yit — Bsy Xit,sy — >‘i7SAFt73A) 5 (3.6)

i=1 t=1

where 5\;7& denotes the ith row of As,. Let Sp = Sr5xSr. One can readily show that 6%, il 0%, =
lim(y 7)—o00 ﬁ Zivzl 23:1 E (E%t) under Assumptions A.1-A.2.

To proceed, we add the following two assumptions.
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Assumption A.7 For any S = Sz x Sy with either Sg 2 Srg or Sx 2 Sr,a, there exists 0% such that
6?9 L 0% > U?ST.
Assumption A.8 As (N,T) — o0, pyyrKo — 0, poneN — 0, pyypSar — 00, and pynNojp — 0.

Assumption A.7 is intuitively clear. It requires that all under-fitted models yield asymptotic mean
square errors that are larger than O'?ST, which is delivered by the true model. A.8 reflects the usual
conditions for the consistency of model selection. The penalty coefficients p; ypr and pypp cannot shrink
to zero either too fast or too slowly.

Let 737 = (V7 19nr) where 79y and 79y satisfy the conditions on v, vz and vy, respectively

in Assumptions A.3(ii)-(iii).

Theorem 3.5 Suppose that Assumptions A.1, A.2, A.3(i), A.6(i), A.7 and A.8 hold. Then

P <7€§%r_1£9+ IC (v) > IC (7(])\,7«)> —1as (N,T) — occ.

Remark 11. Note that we do not impose Assumptions A.3(ii)-(iii), A.4, A.5 and A.6(ii) in the above
theorem. Theorem 3.5 implies that the «’s that yield the over- or under-selected sets of regressors or
number of factors fail to minimize the information criterion w.p.a.1. Consequently, the minimizer of
IC () can only be the one that meets Assumptions A.3(ii)-(iii) so that both estimation and selection

consistency can be achieved.

4 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performance of our

proposed adaptive group Lasso (agLasso) method.

4.1 Data Generating Processes

We consider the following data generating processes (DGPs):
DGP 1: Yy = A1 FPy + Ao FPy + Ocin,
DGP 2: Vi = BYXie1 + B9 X2 + AL FPy + Ao FPy + Ogi, where (57, 89) = (1,1),
DGP 3: Yi; = 89Xir1 + B9Yir_1 + )\?’IF& + )\?’QFEQ + 0e;t, where (ﬁ?,ﬂg) = (1,0.25),
DGP 4: Yy = B1Xi1 + B5Xit2 + B9Xies + BIXita + BoXit 5 + /\?71F£1 + A?,ngz + fei¢, where
(81,55, 83, 81, 85) = (1,1,0,0,0),
DGP 5: Viy = B1Xi1 + B9Yi1 + 85X + B9Xirs + B3Yie—2 + A1 FLy + A oFYy + Oz, where
(81, B2, B3, B4, B3) = (1,0.25,0,0,0),
DGP 6: Yy = 34y B Xit, + N1 FPy + Ao Lo + Ocig, where (67, 85) = (1,1), B, =0 for k=3,.., K,
and K = |[5(NT)Y/5].

In all the six DGPs, )\?71, )\?72, and g;; are independent N (0,1) random variables. In DGPs 1, 2,
4 and 6, FtOJ and Fgg are independently and standard normally distributed. In DGPs 3 and 5, we
consider an AR(1) structure for the factors: FY; = 0.5F ;; + (;; and Fy = 0.5F? | 5 + (; 5, where
(Cy15Ce o) are independent N (0,1) random variables. Xipx = 0.25(A) F) + A F) + &4y 1., Where &,
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are IID N (0,1) across both ¢ and ¢t for k¥ = 1,...,10 and the rest X;; ’s are independent N (0,1) for
k =11,...,K (in DGP 6). We use 6 to control for the signal-to-noise (SN) ratio, which is defined as
Var(8” X + A} F?) /Var(fs;;) . For each DGP, we choose §’s such that the SN ratio equals 1.9

DGP 1 is a pure factor structure without any regressor X;;. DGPs 2 and 3 are static and dynamic
panel structures with interactive fixed effects, respectively. DGP 4 is identical to DGP 2 except that in
DGP 4 we include three more irrelevant regressors: X;; 3, Xj;4 and X;; 5. Hence, in DGP 4, we consider
both the selection of the regressors and determination of the number of factors, while in DGP 2 we only
consider the latter. DGP 5 is identical to DGP 3, except that DGP 5 includes three irrelevant regressors:
Xit,2, Xit,3 and Yj_o. Thus, we select both the regressors and number of factors in DGP 5. DGP 6 is
identical to DGPs 2 and 4 except that we consider a model with a growing number of regressors (K),
where K = |5(NT)'/?] and |-| denotes the integer part of -. Note that in this model, K can be quite
large, e.g., K = 25 when N = 60 and T" = 60.

The true number of factors is 2 in all the above six DGPs. In our simulations, we assume that we
do not know the true number of factors. We consider different combinations of (N, T) : (20, 20), (40,40),
(20, 60), (60,20) and (60,60). The number of replications is 250.

4.2 Implementation

One of the important steps in our method is to choose the tuning parameters v,y and y457. Following
our theoretical arguments above, we use the information criterion in (3.5). Let s3- denote the sample
variance of Y;;. For DGPs 1-3 where we only choose the number of factors, we set p; 7y = 0 and pyyr =
s3 In(dnr) /(N min (N,T)). For DGPs 4-6, we set p,yp = 0.055% In (dn7) /min (N, T) and pyyp =
s2.In(n7) /(Nmin (N, T)).” In DGPs 1-3, we only select factors, hence we let v,y = 0 and choose
Yoy from the set:{Cys3712(NT)~Y/2?(In (NT)) =1}, where C, are 50 constants that increase geometri-
cally from 0.01 to 25, i.e., Cy = 0.01, 0.014, ..., 18.045, and 25. For DGPs 4-5, we let the candidate set of
(YinT»YanT) be the Cartesian product: {C,s% (NT)~'/2(In(NT))~'} x{C,s37§>(NT)~/?(In (NT)) "'},
where C., are 25 constants that increase geometrically from 0.01 to 25.% We set k1 = k2 = 2 in all cases.

We also consider choices of (77, y7, Vont) based on a “rule of thumb” for DGPs 2-6:
(VivrsYanr) = ¢+ ($H(NT) 2@ (NT)) ™, 3o (NT) 7 /2(In (NT)) )

where ¢ is a constant and we use the fact that N and T pass to infinity at the same rate and Ky = 2 is
fixed in DGPs 2-6. Of course, we reset v, yp = 0 for DGP 1. We consider three values for c¢: 0.5, 1 and
2.

6The results for SN being 2 are reported in an early version of this paper and available upon request.
5%/ In(6nT)
X

TA natural BIC-type choices of p; y7 and py yp that satisfy Assumption A.8 would be pynp = and pynp =

2
i‘%. Neverthess, in practice In (6x7)dy% = In (min(N1/2,71/2)) max (N~1,T~1) is quite big in magnitude in
comparison with the usual BIC tuning coefficient In (NT') / (NT) as NT denotes the total number of observations in our

panel data model. We find that through simulations that a downward adjustment of the above p; 7 by a scale of 1/10
2
r= 0'055‘1’12(& in
NT

would enhance the finite sample performance of the proposed IC. That is why we choose to use p;

our simulations and applications.

8To control the scale effect of the eigenvalues, we include 752 in the v, yp. Here we implicitly assume that there is at

lease one factor.
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We compare our aglasso method with the methods of determining the number of factors proposed
in Bai and Ng (2002), Onatski (2009, 2010), and Ahn and Horenstein (2013). Their methods only apply
to pure factor structures without regressors. Thus, we have to modify their methods to account for
the presence of regressors. Specifically, we apply their methods to the factor component: /\?/FtO + €4,
which can be consistently estimated by Yy = Vi — BC/Xit, where BC is Moon and Weidner’s (2014b)
bias-corrected estimator of 8 using the largest number of factors R. We briefly describe their methods

here. Bai and Ng (2002, p.201) consider the following information criteria to select the number of factors:

PCI(r) = V() +r-V(R)- (NN;T) ‘In (NNfT) ,
PCy(r) = V() 4r-V(R)- (NN;T) In (min (N, T)),
() = ln(V(T))—l—T-(NN+TT>~IH(NN+TT),
ICy(r) = Wm(V(r)+r- (NN+TT> In (min (N, 7)),

where V (r) = (NT)71 Zf\il 627(7,)614,(7), and &; (, is the T' x 1 residual vector when r factors are included
in the model.

Onatski (2009) develops a test to test the null hypothesis that the true number of factors Ry = r,
against the alternative r < Ry < R. The test can be used to determine the number of factors. Specifically,
we start by testing Hy : Ry = 0 versus H; : 0 < Ry < R. If Hy is not rejected, then we conclude Ry = 0.
Otherwise, we continue to test Hy : Ry = 1 versus H; : 1 < Ry < R. We repeat the procedure until
Hy : Ry = r is not rejected and conclude Ry = r. The test is based on the largest eigenvalue of the
smoothed periodogram estimate of the spectral density matrix of data and the details are described in
Section 4 in Onatski (2009, p. 1455). Onatski (2010) develops an estimator for the number of factors
based on the fact that all the “systematic” eigenvalues diverge to infinity.

Ahn and Horenstein (2013) propose the ER (eigenvalue ratio) and GR (growth ratio) estimators for
determining the number of factors. The ER estimator maximizes the ratio of two adjacent eigenvalues,

while GR estimator maximizes the growth rates of residual variances.

4.3 Effects of the Number of Factors on the Estimation of 3’s

Before we compare various methods, we first examine the effects of the number of factors included in the
model on the performance of the estimators of 4’s. Table 1 presents the mean squared errors (MSEs) of
Moon and Weidner’s (2014b) bias-corrected estimators of 8, and (3, with different numbers of factors :
r=0,1,2, 4,6 and 8.7 It is easy to see that when 7 = 2 (the true number of factors), the MSEs are
the smallest. In general, the number of factors has substantial effects on the MSEs, especially when N
or T is small. For example, when N = 20 and T = 20 in DGP 3, the MSEs of the estimate of 5, with
r=0and r = 8 are 7 and 3 times as large as those with r = 2, respectively; the MSEs of the estimate of

By with = 0 and r = 8 are 3 and 33 times as large as those with r = 2, respectively. The simulations

9The results for r = 3, 5, and 7 are available upon request. In DGPs 4, 5 and 6 all the regressors are included in the

models and the estimation results for the slope coefficients of other regressors are also available upon request.

19



suggest that the finite sample performance of the estimates of 8’s crucially depends on the number of

included unobservable factors, especially when N or T is small.

4.4 Tllustration of the Main Ideas

The main innovation of this paper is to use agl.asso to determine the number of factors. There are three
key ideas underlying our approach. First, the smallest R — Ry eigenvalues of by p (= F'F /T) converge to
zero in probability, while the largest Ry eigenvalues converge to some positive numbers, which ensures
the adaptive nature of our approach. Second, the penalty term Aonp controls the number of factors
selected. The larger the penalty term Aoy is, the fewer factors are selected. Third, the information
criterion chooses an appropriate penalty term Aoy7. Below, we set R = 8 and use the simple DGP 1 to
illustrate these three main ideas. Note that in DGP 1, there is no regressor so that we only consider the
selection of the number of factors.

Plots (a) and (b) in Figure 1 show the medians of the eight eigenvalues of 3 7 over the 250 replications
for (N,T) = (20,20) and (40,40), respectively. It is clear that the two largest eigenvalues are greater
than zero, while the six smallest eigenvalues are all close to zero. Plots (¢) and (d) show the effects of the
penalty term Aoyt (= Cysg/r'fzm) on the selected number of factors for (V,T) = (20,20) and
(40,40) , respectively. To make the picture clearer, we choose a wide range of C., values: 250 points that
increase geometrically from 0.001 to 25. We can see that when C, (and thus Aony7) increases, i.e., the
penalty becomes larger, a smaller number of factors are selected. We also note that for this DGP, there
is quite a wide range of C., values (and thus Aon7) that correctly select the number of factors, especially
for (N, T) = (40,40). Plots (e) and (f) show how our information criterion (IC) changes with respect to
C, for (N,T) = (20,20) and (40,40), respectively. In general, the minimizer of IC falls in the range of

C, that correctly selects the number of factors.

4.5 Simulation Results

The simulation results are summarized in Tables 2-4. Table 2 reports the proportions of the replications
in which the number of factors is correctly determined out of total 250 replications. Our aglLasso method
is among the best performers in general. For example, for DGP 2, when N = 20, T" = 20, our agLasso
method based on our IC selects the true number of factors with a correct rate of 54%, while Bai and Ng’s
(2002) PCy, PCs, ICy, ICy with 0%, 0%, 14%, 8%, respectively, Onatski (2009) with 1%, Onatski (2010)
with 22%, and ER and GR estimators of Ahn and Horenstein (2013) with 23% and 25%, respectively.
Our “rule of thumb” method for the choice of tuning parameters also gives good results. It has a correct
rate of 37%, 49% and 47% for ¢ = 0.5, 1 and 2, respectively. When N and T increase, the performances
of all the methods improve. In general, among other methods, Bai and Ng’s (2002) IC; and ICs, Onatski
(2010), and Ahn and Horenstein (2013) are preferred.

Table 3 shows the proportions of the replications in which the estimates of the §’s are shrunk to

zero out of total 250 replications for DGPs 4-6.1 Note that all other methods discussed above cannot

10Ty save space, we only report the results based on our IC. The results based on our “rule of thumb” are similar and

available upon request. Also for DGP 6, we only report the results for the coefficients of the first five regressors. The results
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select regressors. Thus we only report the results using our agliasso method. For DGPs 4 and 6, the
relevant regressors X;; 1 and X;; o are always selected, while a large proportion (e.g., 100% for N = 60
and T = 60) of the estimated coefficients of the irrelevant regressors (5, 3, and §5) are shrunk to zero.
For DGP 5, when T is large, the relevant regressors are always selected, though a small proportion of
relevant regressors are not selected when 7' is small. For the irrelevant regressors, a large proportion of
estimated f33’s and ,’s are shrunk to zero. However, a large proportion of estimated (;’s are shrunk to
zero only when T is large.

Table 4 reports the MSEs of estimated 3;’s and 3,’s for DGPs 2-6 using different methods.!! In
addition to our aglLasso estimators, we also report the performances of the bias-corrected agLasso (BC-
aglasso) estimator introduced in Section 3.3 and the post-adaptive group Lasso (post-aglasso) estima-
tors, which is Moon and Weidner’s (2014b) bias-corrected estimators using the number of factors and
regressors selected by our aglLasso method. For most of the cases, our aglLasso, BC-aglLasso, post-agLasso
estimators achieve smaller MSEs than other methods when N and T are small. For example, for ; in
DGP 5 and (N, T) = (20,20), the 100xMSEs for our agLasso, BC-agLasso and post-agLasso estimators
are 4.82, 4.70 and 4.70 respectively, while those for PCy, PCy, IC;, ICy in Bai and Ng (2002), Onatski
(2009), Onatski (2010), ER and GR in Ahn and Horenstein (2013) are 18.05, 17.89, 17.90, 15.25, 15.51,
8.59, 6.60 and 7.13, respectively. When N and T are large, all the methods perform similarly well. In
general, the post-aglasso estimator performs best among the three aglasso-type of estimators, whereas

the agLasso and BC-agLasso estimators perform similarly.!?

5 Empirical Application

In this section, we apply our method to study the determinants of economic growth. There is a large
literature on the empirical studies of economic growth. For example, Barro (1991) and Sala-i-Martin
et al. (2004) investigate this question using cross-sectional data. For panel data, Islam (1995) employs
country fixed effect models and Moral-Benito (2012) uses a Bayesian model averaging approach. Durlauf
et al. (2005, DJT) provide a comprehensive literature review. To the best of our knowledge, none of
the existing studies allows interactive fixed effects.'®> However, it is plausible that the economic growth
is determined not only by observable regressors but also some common unobservable shocks or factors.
Thus the panel data model with interactive fixed effects provides much more flexibility in this context.
Nevertheless, in practice, we do not have a priori knowledge about the number of unobservable factors
that should be included in the model. In addition, there are a large number of potential observable
variables that may determine economic growth and economic theory does not provide much guidance

for the selection of them. For example, DJT survey 145 possible determinants of economic growth and

for the coefficients of the remaining (K — 5) irrelevant regressors are available upon request.
HFor DGPs 4-6, our aglLasso method selects the regressors and determines the number of factors, while other method are

capable of the latter only. So all the regressors are included for their methods. The estimation results for the coefficients of

other (K — 2) regressors are available upon request.
12For the BC-agLasso estimators, we ignore the fact that the exogenous regessors share the same factor structure as the

dependent variable in which case there is no need to correct some of the bias terms (Bgyp in particular). See Remark 6.
13 The only exception is Su et al. (2015), who apply a specification test of panel models with fixed effects to economic

growth data. However, they do not provide estimation results.
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point out that “approximately as many growth determinants have been proposed as there are countries
for which data are available. It is hard to believe that all these determinants are central...”. Thus, it is

important to determine the number of factors and select the relevant regressors in this context.

5.1 Data and Implementation

Let Y be the growth rate of real GDP per capita for country ¢ in year t. X;; includes 9 variables as
listed in Table 5. The sample covers 108 countries for the period 1970-2005, i.e., N = 108 and T = 36.
Here we need a balanced panel, and the selection of the 108 countries is completely determined by the
availability of data.!* The data sources are the Penn World Table (Penn Table) and World Bank World
Development Indicators (WDI).

We include maximum 8 factors in the model. As in the simulations, we choose (17, Yonr) from the
set {Cwsim} X {075%7'1” m} , where C., are 100 constants that increase geometrically
from 0.01 to 25. Both 1 and ks are equal to 2. The information criterion is the same as that in the
simulations.

We also consider other methods, including IC; and IC3 in Bai and Ng (2002) and the methods in
Onatski (2010) and Ahn and Horenstein (2013), as our simulations show that they are preferred methods.

In the case that different methods give conflicting conclusions, we can use a simple majority rule.

5.2 Estimation Results
5.2.1 Estimation without regressors

We first consider a pure factor structure without including any regressors. Our aglasso method chooses
3 factors. The eigenvalues (771, ..., 7s) used in our agLasso are shown in Figure 2(a). Other methods also

choose 3 factors as shown in Table 6.

5.2.2 Linear estimation

We consider a linear specification that uses the 9 variables listed in Table 5 and the first 3 lags of Yj;
as regressors. The first half of Table 6 shows the estimation results for the different numbers of factors,
r =0, 3,5 and 8.!> The estimates of the coefficients vary substantially with different numbers of factors.
For example, the coefficient of consumption is negative and significant when r is smaller than 4 and
becomes insignificant when r is greater than 4. However, the coefficients of government consumption
share, investment share, and the first lag of economic growth are significant for most of the numbers of
factors.

Our agLasso method chooses 3 factors, which is consistent with Bai and Ng’s (2002) IC; and ICy
and Onatski’s (2010) method as shown in Table 6. Ahn and Horenstein (2013) choose 1 factor. The
eigenvalues used in our aglLasso are shown in Figure 2(b). The estimation results are presented in Table
7. Our aglasso selects five regressors: population growth, government consumption share, investment

share, and the first and second lags of economic growth. Among them, government consumption share,

M The list of the 108 countries is available upon request.
15The results for the number of factors r = 1, 2, 4, 6 and 7 are available upon request.
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investment share, and the first lag of economic growth are significant. The government consumption
share has a negative effect on economic growth, while the investment share and lagged economic growth

have positive effects.

5.2.3 Nonlinear estimation

In this subsection, we examine the nonlinear effects of the regressors. Our aglasso method selects five
regressors in the linear specification. Thus, we include the squared and interaction terms of those five
selected regressors in addition to the 12 regressors in the linear specification. The total number of
regressors included is 27. In this case, all methods except Ahn and Horenstein (2013) select 3 factors
again. The eigenvalues used in our aglasso are shown in Figure 2(c). Among the 27 regressors, our
aglasso method selects 9 regressors. Table 8 presents the estimation results for the 9 selected regressors.
Based on the post-aglasso method, we find that consumption share, investment share, and the interaction
term of government consumption share and investment share are significant at the 1% level, while the
first lag of economic growth is significant at the 10% level. The signs of those significant regressors are
in general consistent with those in the linear specification. The government consumption share has a
negative effect through its interaction term with investment share, while the lagged economic growth has
positive effects. The effect of investment share is 0.219 — 0.008 x Gov, which is positive for most values
of government consumption share in the sample. However, population growth becomes insignificant, and
consumption share becomes significant with a negative sign.

To further examine the nonlinear effect, we consider a “high dimensional” model by including the
linear, squared, and interaction terms of all the original 12 regressor (i.e., the 9 variables listed in Table 5
and the first 3 lags of the economic growth). The total number of regressors is 90 in this case. All methods
select 3 factors again. Among the 90 regressors, our aglasso method selects 11 regressors as shown in
Table 9. The first half of Table 8 also reports the estimation results for the 11 regressors using the model
that includes all the 90 regressors with different numbers of factors.!'® Note that almost all the regressors
are insignificant when all 90 regressors are included. This is not surprising, as the standard errors can
be easily inflated when a large number of regressors are included. Nevertheless, our aglasso is effective
in selecting the relevant regressors. Based on the post-aglasso estimation results, consumption share,
government consumption share, investment share, the first lag of economic growth and the interaction
term of fertility rates and the lagged economic growth are significant. Among them, consumption share
and government consumption share have negative effects, while investment share and lagged economic
growth have positive effects on economic growth.'”

To summarize, we find that in general there are 3 unobservable factors that determine economic
growth. Among the observable regressors, considering both linear and nonlinear specifications, we find
that government consumption share has a negative effect, while investment share and lagged economic
growth have positive effects on economic growth. This finding is largely consistent with the existing

empirical literature on economic growth (see, e.g., DJT, Appendix 2).

16The estimation results for the other 79 regressors are available upon request.
17 The effect of the first lag of economic growth is 0.321 — 0.049x Fert, which is positive in general.
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6 Conclusion

We propose a novel adaptive group Lasso procedure for simultaneous selection of factors and relevant
regressors and estimation in dynamic panel models with interactive fixed effects. We show that our
method consistently determines the number of factors and selects relevant regressors. Our estimators of
the slope parameters in the models achieve an oracle property. Our simulations suggest that our new
method performs well in finite samples. We apply our method to study the determinants of economic
growth and find that government consumption share has negative effects, whereas investment share and
lagged economic growth have positive effects on economic growth.

There are several interesting topics for further research. First, we only allow the numbers of relevant
regressors (Kp) to grow with the sample size but assume that the true number of factors (Rp) is fixed in
this paper. The divergence of K| to infinity is particularly useful for the nonparametric sieve estimation of
dynamic panel models with interactive fixed effects (see, e.g., Su and Zhang (2014)). But it is also desirable
to extend our method to allow Ry to increase with both N and T'. Second, we only consider strong factors
in our model. As a referee points out, it is interesting to focus on the pure factor model with weak or
semi-strong factors and compare our method with Bai and Ng’s (2002) method in the determination of
the number of factors. To fix the idea, we can assume that the factors are well normalized such that
T—'F'F has a well-behaved probability limit but allow

N7 A Lo e (0,00) forr =1, ..., R,

where a, € [0,1/2] for r = 1,..., R. Apparently, a,, = 0 and 1/2 correspond to the weak factors studied in
Onatski (2012) and the commonly studied strong factors, respectively. Preliminary simulations indicate
the good performance of our approach in comparison with Bai and Ng’s (2002) when the factors are
semi-strong (e.g., a, = 1/4). We conjecture that by allowing for different degrees of strength for different
factors, our shrinkage method can also help identify strong or semi-strong factors and separate them from
those relatively weak or inessential factors, but we leave the rigorous theoretic analysis for future research.
Third, as an alternative to the adaptive group Lasso used in this paper, the SCAD method of Fan and
Li (2001) can also be employed and it will be interesting to compare our method with that based on the
SCAD method. Fourth, it is also possible to allow endogeneity in panel data models with interactive fixed
effects, in which case various important issues would arise, including how to extend the usual instrumental
variable (IV) estimation to the current framework, how to determine the set of instruments, and how to
select the number of factors and relevant regressors. Endogeneity naturally arises in dynamic panel data
models with measurement error (e.g., Lee et al., 2012) and in various macro and micro panel data models
(e.g., Moon et al., 2014). Fifth, instead of considering variable and factor selection in augmented panel
regression models, an alternative is to consider SCAD- or Bridge-based penalized PCA in one step. We

are exploring some of these topics in ongoing works.
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APPENDIX

A  Some Technical Lemmas

Recall Y =Y — Y1 1,B;X,C, F=(NT)"'"Y'YF, H=Hyr = (N"\"\) (T FYF), and T~'F'F =
Ig. Recall F = ( (1),F(2)) (F(l),F(Q )and H = (H(y), H(2)), where, e.g., F and F(2 are T'x Ry and
T x (R — Ry) submatrices, respectively. Noting that T—Y||F||? =tx(T~'F'F) = R, ||F|| = Op (T'/2).
Write Viyp =diag(Vvr 11, Vvr22) where Vyri11 and Voo are Ry X Ry and (R — Ro) x (R — Rp)
submatrices of Vi, respectively. Let F(*l) = FOH(l) and )\?l) = )\OHa;. For matrices G and G, we write
G=G+0p (enT) if HG’ — GH = Op (cyr) and G=0G+op (ent) if HCJ— GH = op (cnr) . Note that
Op and op are equivalent to Op and op respectively when the associated matrices are of finite (fixed)
dimensions.

We first state some technical lemmas whose proofs are given in the supplementary Appendix C.

Lemma A.1 Suppose that Assumptions A.1 and A.3(i) hold. Then
(i) T-'F' (NT) "' Y'YF =Vyr 5V,
(ii) (T-'F'F°) (N —1>\°’/\0) (TFYEF) Ly,
(i) T~ 1FO’F L Ay and T-LFY F(Q) Lo,
(iv) Hyy Lt H(l) =Yy 0A; and Hy) Lt 0,
where VT is an R X R diagonal matriz consisting of the R largest eigenvalues of (NT)_1 ?’?, and
Vin 0

V = 0 0 with Vi1 being an Ry X Ry matriz consisting of the Ry eigenvalues of XyoX o, both

arranged in descending order; Ay is an Ry X Rg full rank matriz.

Lemma A.2 Suppose that Assumptions A.1, A.2 and A.3(i) hold. Let 71,...,7r denote the eigenvalues
of TTYH'FYFOH in descendmg order. Then

(i) T~ ‘ FOHH = 0p(032.),

(ZZ) T-1 HF(l) — FO© H(l)V];T 11” = Op(éﬁT) and ||H(2)|| = Op((sjivlT),

(iii) T~ (Fi1y — FOH)) FO = Op(6 5% + (NT/K)™?) and T~ (F(g) — FOH3))'F® = Op(N~/2),

(iv) T (Fy — FOH) F = Op(dy% + (NT/K) /%), T=(Flyy — F'H3))'F = Op(N~/2), and

(- FOH)’F@) = Op(6y7), -

(0) T=H(Ey Foy—H}y FYFOH () = Op(5x7+(NT/K) %) and T-Y(F'F—H'F" F°H) = Op(N~/?),

(vi) Hpﬁm ~ Py [ = 0p 63,

(vii) 7, — 7 = Op(Nfl/Q) forl =1,2,...Ry and 7, = Op(Nfl/Q) forl = Ry +1,..., Ry, where
T1,...,TR denote the R eigenvalues of T F'F arranged in descending order.

Lemma A.3 Suppose that Assumptions A.1, A.2, A.3(i), and A.6(i) hold. Let )\;-k('l) denote the ith row
of A{1y- Then
(1) ¢— Zz 1 X ( Fay - P (1))(F(1) - F(*1))/\f(1) =Binr +op (1),
(i) % Zi:l Xi(l)(F(l) F(l)>(F(1)F(1))71F(*1/)5i = OP(K3/2T1/25X/2T) =op (1),
(iti) = S X Fy (Bl Fay) 7 (B — Fryy)'es = Bsnr + Op(Ky*TY263%) = Bsnr + 0p (1),
(iv) % (Fay — Fy))'ei = Op(Sy7) fori=1,.., N,
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where Bint = soizers S0l Xy Fooy (Fil) By ™ oy FOX” e/ X FOFy Ny, Bonr = 3/ Fbsnr and
N N — * * —
bant = % >im1 Zj:l(T 1X/( )F(l))(T 1F(ll)F(l)) Y (T 1F(/l)FO))‘O(T te} si)'

B Proofs of the Main Results

In this appendix, we prove the main results in the paper.

B.1 Proof of Theorem 3.1

The proof is done in the same spirit of Fan and Li (2001), Fan and Peng (2004), and Lam and Fan
(2008). In particular, the latter two papers consider estimation with a diverging number of parameters.
Recall that A} = HtAY and \* = (A\},...,\y)" = A\’H*. Let ayp = T-%2. Let 8 = 8° 4+ an7b and
A = X" + ay7u, where b= (b1, ..., bK)/ and u= (u.1, ..., u.g) are matrices of dimensions K x 1 and N x R,
respectively. Apparently, we use w., to denote the rth column of u for r = 1,2, ..., R. Let u} denote the
ith row of u : u= (uq, ...,uN)/ . Our aim is to show that for any given € > 0, there exists a large constant
L such that for sufficiently large (IV,T") we have

{lbl—La NEI}/ZHUH’H:L Q'Y (6 + aNT + aNTU,) Q'Y (ﬂ )} > € ( )

This implies that with probability approaching one (w.p.a.1) there is a local minimum (B , 5\) such that ei-
ther 3 lie inside the ball {(B°+antd) : Ib] <L}, or A lies inside the ball {(\* +anru) : N7V2|lu|| < L},
or both. Then we have HB - BOH = Op (anT), or N~1/2 H(S\ - )\*)H'H = Op (anT), or both.

Let D~ (b,u) = Q4 (BO + anTh, A" + anTu) — Q (60, A*). By (2.6),

N T
1 L
D, (b,u) = NT ZZ[( o — Y "Xit — A} thaNTbthaNTuFt) (Yitﬁo’X”/\i’Ft)]
= K, ’y
+71NTZ ~c K1 |Bk+a’NTbk’ |Bk 2NTZ|T K2 H)‘ +a’NTuT|| H)‘*r”)
1 XL 9 N T
0 0
= W;;(QNTbXt'FaNTU H'F)" — NT '_1;&1 (anTb' Xit + anruiH'FY)

N T
: 2
tNT Z Z [(aNTb Xit + antu; Ft) (anTb' Xit + anruiH'F)) }
2

N T
NT Z Z [éit (aNTb/Xit + CLNT’U,;Ft) — Eit (aNTb’Xit + CLNT’UJ;H/FtO>]
=1
K R
+YINT Z "1 |5k + aNTbk} |5k

= Al (ba u) - 2A2 (b, u) + A3 (ba u) - 2A4 (bv U) + AS (b) + Ab (U) , Say,

rHanru || = [IAG])

=1

where £;; = Y;; — BO'XZ-t — )\Z'Ft. We want to determine the probability order of A;’s. First,
H' FYFO Hy'
Ay (b, u) = a0 Ab + a2 ptr (“———) E:U( F%’X’)
1 ( ) NT NT \/N T \/N NT \/—
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where A = <= Zf\il Zthl XX, = WNT, and X is an N x K matrix with the ith row given by
X/,. Second, As (b,u) = aNTb/ﬁ i 1 Zt 1 Eit X + R fil Zthl eitFY Hu; = Az 1 (b) + Aap (u),
say. Noting that H(NT)_l/2 Zfil thl enXit|| = Op(Kl/Q) by Assumption A.1(vi), A21 (b) = Op(ant
(NT/K)=Y2)||b|| = op(a7)|b]| - By Cauchy-Schwarz (CS hereafter) inequality, Assumption A.1(viii),
and the fact that [[H|| = Op (1), we have |4z (u)] = K&|tr(eFOHW)| < K& ||eF°|| [ H] |u| =

Op(arN=2) |lu||. Tt follows that Az (b,u) = op (akr) [[b]| + Op(adN~/?) ||uH Third, using the

fact that a2 — a2 = (a1 — a2)” + 2 (a1 — a2) az, we have

2 R R / 242 N L
) = S (5 ) (5 ) - 2SS ()
= 1 i=1 t=1
2027 o ~ !
ALY (Ft _ H’Fto) u;
=1 1
+ 2

=1 t=
A371 (U) A3,2 (u) + 2A373 (b, u) , say.

N

—

t

By the submultiplicative property of the Frobenius norm, CS inequality, and Lemmas A.2(i) and (iii),

[

a —1c— 2 — 2
Asp ()] < “XELJIE — FOHIP Jul® = Op (ar N7'033) lull® = op (aer N ) Jull

a1 _s _
gz ()] < BE|(F — FPH)FH]| [ul = Op (akrN72) llul* = op (arN7) [lul*,

and

1/2
a3 A 1 N
Ass(bu)| < —NL __7-12)\fp_ pop|d — X; |2 bl |
| Az 3 (b, u) NT/K) I I NK;H I (1611 ||

Op(a%r (NT/K) ™2 5500 8]l [[ull = op(aRer N~2) [1b] [Ju|
op(akr) Bl +op (aXrN71) [lul”.

IN

Thus As (b, u) = op(ar) DI + op (ar N 1) [l
Next, let &; = (81, ...,&1)". In view of the fact that &;; — e;s = —)\;‘/(Ft — H'F)), we have &; — ¢; =
—(F — FOH)A; and

N
NT 2

T
Ay (byu) = Z {5“ (aNTb’XZ-t + aNTu;ﬁ't) — &t (aNTb/Xit + GNTU;H’FtO)}
=1 t=1
a N N N
. JANT ‘ anNT A ) aNT 0
= == ;X —e)+ 3o Z:: +NT Z:: (F—F°H

- —b’aNTZX F— FOH)X! —“ﬂz,\*’F FH z—&—C]L\]fv—;Za;(ﬁ—FOH)ui
=1

*A4,1 (b) — A4,2 ( ) + A4,3 ( ) , say.
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Using the fact that \} = HTA) = H' (HH')"' \) and H = (H(y), H(s)), we have

2

a
A (0) = 0 NTZ [(Fay = FOHe)) Hiyy (HH') X

+b’ aNT ZX F(2 FOH(2))H€2) (HH/)—l )‘?
= Aiia (b) + A471,2 (b), say.

Following the proof of Lemma A.3(iii) in Bai (2009), we can show that <= Zfil X;(ﬁ'(l) - FOH(l))Hél)
X (HH") '\ = Op (K'/255%) . Tt follows that Ay 11 (b) = Op (anrK/263%) |6l = op (a%r) [0l by
Assumption A.3(i). For A41.2 (b), we have by the triangle and CS inequalities, and Lemmas A.2(i)-(ii),

N N
1 1 2
aaa®) = K% (g oo} { e W S
x || Hegy |1 (HE) ]| 8]
= K'"2anrOp (65%1) Op (1) Op (657) Op (1) |[bll = op (ax7) [1B]] -

Then Ay (b) = op (adr) [|b]] . Note that

1/2

Ao (u) = ‘;\]]V—TTtr[/\*(F — FOHYFHu') + (j\jfv—;tr[)\*(ﬁ — FOH)(F — FOHW) = Ay (u) + Agoo (u).

Using \* = \’H* = \° (HH')™" H, we further decompose A4 5 1 (u) as follows Ay 21 (u) = 8T [\ (HH") ™!
H(l)(F(l) — F'Hy)) FPHu'] + W—TTU[AO (HH") ™ Hy) (F(z) — FOH(5)) FOHU'| = Ag 2,14 (u) + As 216 (),
say. By CS inequality, Lemma A.2(iii), and the fact that 67 + K (NT)_l/2 = o(T~"/?) under Assump-
tion A.3(i), we have
aNT 0 0 0
Aizaa @) < 55 N1/2 [N [ez2z0n H(l)H = [[Bey = Py FOR |l
= Op (aneN7V2(03% + K (NT) ™)) lull = op (a3 N7/ Jull .

Similarly, by Lemmas A.2(ii)-(iii), we can show that Ay 1, (u) = op (%7 N~?) [|lul|. In addition, by

Lemma A.2(i), we can readﬂy show that

aNT
i () = BT N o |~ PRl = Op (aneN26535) lull = 0 (aRerN2) ]

It follows that Ay 2 (u) = op (a%N~1/2) |Ju||. By the fact that [tr(4;) | <rank(A;) |4

o 1A <

A1l | A2], and [[A1]ly, < [[A1]], Lemma A.2(i), and Assumption A.l(v),
aNT ~ Ranr
Ass @) = DI e (& (£ FOB) )| < 1AL el 77 ||F ~ F0]| ol
RGNT

= —NT1/2OP (T1/2 + N1/2> Op (5;\7171) HU” —op (aNTN_1/2> HUH )

Consequently, A4 (b,u) = op (a%1) |b]|+op (a%7N~/?) [Ju|| . Noting that As (b) > v,y 25:01 W(Wﬁ
+anrbr| — |52|), by the triangle and CS inequalities and Assumption A.3(ii), we have

Ko Ko
1 1/2
Yinr 3 o (8% + anrbi| = |B3))| < Op(antyine) D 1kl < Op(Ky2anryinr) Ib] = op(adr) b,
k=1 k k=1
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we have A5 (b) > —op(adyp) ||b]| . Similarly, Ag (u) > —op(adN72)||ul|. It follows that
D, (6,) 2 Tyr (bu)-+ op(ader) {1 + K2 bl + N1l + N2} = T (b, )+ s,

where

T
i , uH' FYF° Hu' 2 uH' o, o\ 2 o Hu'
Iny (by,u) = ajp | Ab+ tr <_\/N T U + NiET ;,1 tr _\/NFt b X, N2 tr [ eF 7~

and s.m. denotes terms of smaller order than the leading term. Let B = (FOT'«FO ) ®In,C = ﬁ 23:1 F'®
X, D= WEFO, and n = ﬁvec(uH') . Following Bai (2009, p.1265), we have

Ony (byu) = ayg [ Ab+n'Bn+20'C'n — 2n'vec (D))

[V (A—C'B~'C) b+ (n +b'C'B™") B (n+ B~'Cb) — 2n/vec (D)]
|V Ab+ 7' By —2 (7 — B7Cb)’ vec (D)]
7 [V Ab+ 20/ C' B~ 'vec (D)] + akq [ Bf) — 277 vec (D)],

where A = A—C'B~'C, j = n+B~'Cb, and the first equality follows from the fact that tr(B; Bs) =vec(B})’
xvec(B1), tr(B1B2Bs) zvec(Bl)/ (B2 ® I)vec(Bj), and tr(B; B2B3By) zvec(Bl)/ (B2 ® Bj)vec(Bj) for
any conformable matrices By, Be, B3, By and an identity matrix I (see, e.g., Bernstein (2005, p.247 and
p.253)). Assumptions A.1(viii) and (ii) ensure the asymptotic positive definiteness of A and B. We can
verify that HC'B_1||:I) = fimax (C'B7'B7C) < fiax (B™Y) inax (C'B71C) < finaxe (B™Y) nax (4)
= Op(1) and [|D||, = Op(1). By allowing [[b] and [|7]| to be sufficiently large, the linear terms
20'C' B~ 'vec(D) and —27'vec(D) are dominated by the quadratic terms &’ Ab and #’ B7, respectively.
It follows that for any e > 0, there exists a large constant L such that
P {Ibll iEn“f;7H EQW (BO +anTh, \* + aNTu) > @y (,6’0, /\*)} >1—c¢

where ) = 1+ B7'Cb = izvec(ul') + B~'Cb. Letting b = ay(B - BY), & = ayh (A — ),
i = sizvec(dH') and 7 = #) + B~1Cb, this further implies that either |[b|| or |[7||, or both must be
stochastically bounded. We consider two cases: (a) ||b|| is stochastically bounded, and (b) |[7]] is sto-

chastically bounded.
Suppose (a) holds. Then HB — BOH = Op(T~1/?) and the first part of the theorem follows. To prove

the second part of the theorem, observe that

0 > ayn [QW (B, X) -Q, (,60,)\*)] > ani Iy (13, a) + s.m.
A FYFO Ho/uH' O Qi 2
/ / ! ~ 17! 170 0 A~/
b Ab + tr ( 7 7) + 26 5= ;1 XyaH'F = St (eF°H@') + s.m.

; FYFC Ha'aH'
= Tr _—
T N

) + \/Lﬁ [aH']| Op (1) + Op (1) + s.m.,

where the last line follows from the fact that &’ Ab < p,.. (A)[|b]|> = Op (1),
ﬁ |6H'|| 5 23:1 | X% | FP|| = ﬁ |lGH'||Op (1), and the analysis of Aj o (u) above. It follows

77 1 T 1~y 0
¥+ ST X aH'F Hg
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that tr(F ol H“J:;H/) = Op (1), which further implies that tr(xH@'aH') = +||[aH'|[* = Op (1) as

tr(B1Ba) > piyin (B1)tr(Bs) for any positive semidefinite matrix By and symmetric matrix By (see, e.g.,

Bernstein (2005, p.275)) and T-'F”F? is asymptotically nonsingular by Assumption A.1(ii). Noting

that & = VT(A — A’H*) and HH* = Ip,, the last result implies that ”S‘Hl — )\0H2 =O0p (T71).
Now, suppose (b) holds. Note that

0 > ay [QW ([3, x) —Q, (8, A*)] [b’Ab + 25" B vec (D)} + [E’Bﬁ — 97 vec (D)} +sm.
{IA)’/_HA) — ¥ C'B ™ tvec (D)} +Op (1) +sm.,

which further implies that ||b|| is stochastically bounded by the positive definiteness of A and stochastic
boundedness of | D], and HC’B*IHSP. Then ||7] = HﬁfB’IC’lA)H < |a| + HC"B*lHSp =0p(1).
This, in conjunction with the fact that HH' = Ig,, implies that

Op (1) = 5 [0l = 5 [anh G = 38| = < ki =20

~ 2
That is, % [AH' =\’ = 0p (171) . m

B.2 Proof of Theorem 3.2

Let A, denotes the rth column of \ for r = 1,..., R. We want to demonstrate that

P(‘Bk‘ =0 and

=Kog+1,..., K, andr:R0+1,...,R> —las (N,T) — o0

Suppose that to the contrary, ﬁk # 0 for some k € {Ko+1,..., K} or H;\TH # 0 forsomer € {Ry + 1, ..., R}
for sufficiently large (N,T). Wlog assume that 35 # 0 or ||A.g|| # 0. If 35 # 0, by the first order

condition (FOC) with respect to 8 for our minimization problem, we have

K A

2 A Cn T1/?

0 = 7t [x’ (Y N B Xy - /\F’> #5—1’( (B.2)

k=1 K ’/BK‘

2 0

= 7NT1/2 XKE T Ztr (ﬁk /Bk)
2 1 (3 i 0 1707 T'/? YiNT BK
+Wtr {XK ()\F —A'F )] +t == T

K

= 7231 + 2B2 + 2B3 + 234, say.

Note that B; = Op(N~'/?) by Assumption A.1(vi). For Bs, using |tr (C1Cs)| < ||C1||||C2]|| and
b'Bb < pi.x (B) b'b for any conformable matrices Cq, Ca, b and B, we have by Assumptions A.1(iv) and
(viii) and Theorem 3.1,

B < < Xl tr<§_j§_j( - 8) Xi.X, (Bl—ﬁ?)>
= Xl (B 8°) Wr (B 4°)

(7 151 ) s (Fv2) (3= 7)) = 00 0 0r ()0 (1) = 0 (1),
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where we recall that Wyr = & S, S/, X X),. In addition, |Bs| < b [tr[Xf (AH' — %) FY]|
+W|tt[X'K5\(F — F°HY'|| = B31 + Bs 2. By Assumptions A.1(ii) and (iv) and Theorem 3.1, B3 <
(NT)=1/2 || X k|| {TV2N-1/2|| AH' — \0||}T7—1/2 | F°|| = Op (1) . Similarly, Bs > = Op (1) by Assumption
A.1(iv), Lemma A.2(i) and the remark after Theorem 3.1. It follows that B3 = Op ( ) and —Bj + By +

Bs = Op (1). Noting that 3% = Op((NT)_l/Q) by Assumption A.1(i), |Bs| = W is explosive in

probability because (NT)'“/2 T2, yp — o0 by Assumption A.3(iii). This implies that (B.2) cannot be
true for sufficiently large N and 7. Consequently, w.p.a.l B x Must be in a position where || is not
differentiable, i.e., P(|3x| = 0) — 1 as (N,T) — .

Let A;, and S\i,r denote the rth elements of \; and 5\1-, respectively. If HS\RH # 0, the FOC for \; g
implies that for all ¢ =1, ..., N, we have

T ~
—2 ; P A VNTyynr iR
0 = — [Fir(Yie — X{ Br — N Fy)] + — (B.3
/2 E o TR gl )
2 <& 2 —
= _sztRfit TZ RXn\/_B 8° )
t=1 t=1
T

VNTyonr Nik

Tl Al

9 VIR
t77m O BN E - N HVH'E) +
t=1

2dy1; + 2dg; + 2d3; + da;, say,

where F,;R denotes the Rth element of F}. Observe that N~} Zf;l (d1; + do; + dgi)Q <3N-1 Zi\;l(d%l +
d3; + d3;). By the C, inequality, Lemma A.2(i), Assumption A.2(i), we have

N NTT 2 N T 2
Ny d, < 2N‘1T‘1Z Z(Ft—H’Ft())Reit +2N‘1T_1Z[Z (H'F?) 5“]
i=1 i=1 Lt= i=1 [t=1
< oN“IT- e(Fp— FOH.p) H FoNTIT 1Z}|5F0|| |H.g|| = D11+ Dy,

where (b), and B.r denote the Rth element of the R x 1 vector b and the Rth column of matrix B,
respectively. Di o = Op (51}1T) by the fact that N~17T~1 Zfil ||€;F0”2 = Op (1) under Assumptions
A.1(vii) and (iv) and ||H.g|| = Op (6 y7) by Lemma A.2(ii). Using the decomposition for F—FH in the
proof of Lemma A.2(i), we can readily show that D11 = Op (1). It follows that N1 Zf\il d3, =0p(1).
By CS inequality, Theorem 3.1, Lemma A.2(i), and Assumption A.1(viii),

SR IEIPE) i S G RES S AT ER
im1 o i=1 " t=1 " t=1 lt
- % ZT: (ﬁt,R)2 VT (B = B°Y Wy VT (53 - 8°)

IN

Ft,RHZ fimax (WnT) = Op (1) .

1 T
Ve 012
TIIﬁ—BIT;’
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Noting that YL | By p(AFy, —AYHH'FP) = E'LB(X; — HY M) + B/ (F — FOH)H* )0, we have

N N R R 2 N R R 2
NN @ < eNTiTS [ o (,\i - H*A?)] +oNTITy [F,’R (F - FOH) HJD\?}
=1 =1 =1

2D3’1 + 2D3’2, say.

Noting that F'yF = (F.g — FOH.g)'(F — FOH)+ (F.r — FOH.g) FOH + H', FO(F — FOH) + H', FY FOH,
we have by the C,. inequality,

N
N ~ N 2
Dy < 4NT'TTY [(F.R ~ FOH.p)(F — F°H) (/\i - Hug)]
=1
N oo . 2
HANTITTEY [(F.R — FOH.R) F°H ()\i - Hﬂ?ﬂ
=1
N . . 2 N . 2
HANTITHY [HfRFO’(F — FOH) (/\i - Ht\?)} +ANTITY [H(RFO’FUH (/\i - H*A?)]
=1 i=1
= 4D31,1+4D312+4D313+4D314, say.

By Lemma A.2(i) and the remark after Theorem 3.1, Ds 11 < T{T~||F. g — FOH g|2}{T~||F - F°H||?}
{N"YX=XH"|]?} = TOp (6]7\,27«) Op (6&27«) Op (1) = op (1) under Assumption A.3(i). Similarly, by

Lemma A.2, Theorem 3.1 and the remark after it, we have

N
Diiz < T7|(Fa- FOH,R)’F0H2 NS (HA - A?)2 = Op (To3%) Op (T7Y),
i=1
N
Dyvs < HalPT |0~ Fom)|[ NS 5 5N = 06 (55%) Op (T532) 02 (1),
=1
2 N 2 2
Dsya < |HgIPT7H|[FOFO"N> HHAi M| =0p (55%) Op (T)Op (T7).
=1

It follows that D31 = op (1). In addition, by the triangle inequality and Lemma A.2(iv),
P al 2 2
Dso <T Y| Fig(F = FPH) PN N HY|" = 0p (T637) Op (1) = 0p (1),
i=1

It follows that N~ >~ | d2, = op (1). Consequently we have shown that

N
N7YS " (dyi + doi + dsi)* = Op (1). (B.4)

i=1
Now, we study N ~* Zil d3;. In view of the fact that 7z = Op(N~'/2) by Lemma A.2(vii), N ! Zf\il d3;
= (%%1)2 is explosive in probability because N”2/2T1/272NT — 00 by Assumption A.3(iii). This, in
conjunction with (B.4), implies that N~} Zivzl d3, > 4N—! Zf\;l (dy; + da; + ds;)* so that (B.3) cannot
be true for all i for sufficiently large N and T. Then we conclude that w.p.a.1, ||A.z|| must be in a

position where ||A.z]| is not differentiable. Consequently P(||A.z|| =0) — 1 as (N,T) — co. B
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B.3 Proof of Theorem 3.3

Define

D(B;);B(U) _ 71NT /81 Nt Br,

5.3 VNYanr Aia VNyanr Air
Di(A\1y; A = o o0 fori=1,...,N.
(A Awy) 3778 5\.1) 272 T or i
Let D(Bfl)) = D(Bfl);Ba)) and Di(X(l)) = Di(x(l);;\(l)), where, e.g., 5\(1) = (5\.1,...,5\.30). W.p.a.l,
Be/1Bul = Bi/IBy| for k = 1,...., Ky by the consistency of 3, and 3, and the fact that 89 # 0 for
k=1,..., Ky So D(B((:l); 3(1)) = D(Bfl)) w.p.a.l. It follows from Theorem 3.2 and the FOCs, w.p.a.1 we

have

)

N T p e
0= ﬁ Dim1 2oi—1 Xit(1) {Yit - X;t(l)/@(l) F >‘z(1 } - D(Bu))a

T 7 .
0 = % Zt:l Ft(l) |:)/zt — Xz/t(l)ﬁ(l) t(1)>\ :| — ’L(>\(1)) fOI' 7 = 1, ceny N
Solving for 3(1) and 5\1(1) yields

z -1 N ~ A ~
By :DF(U {ﬁ >im1 X] )MF( )Yz D(ﬂu )+ & NT Zz 1Zt 1 Xit(1 F( )EFmD (A(l))} )

. L -

Ay =35 {% S By (Yie = Xy Bly) i(Au))] fori=1,2,...N,

. oA i
where Dﬁ(l) = %7 Zz 1 Xz(l)M Xz(]) and ZF( N =13 Ft(l)Ft/(l)- By Lemma A.2(vi) and Assump-
. . ~ N —
tion A.3(i), [|Dg,, — DF(UHsp < HDF(l) Dry, Il = ﬁAZizl |\Xi(1)||2\|Pﬁ(p — Py |l = Op(Kodyr) =
op (1) . In view of the fact that Mgy = Mpo, we have HDF(*I) — Dpollsp = ||Dro — Dpol|sp +op (1) by As-
sumption A.4(i). Then ||[)F(1) —Dpollsp = op (1) by the triangle inequality and ||DP:(1) —Dollsp = op (1).

1
By Lemmas A.2(v) and A.1(iv) and Assumption A.1(ii)-(iii), f];(l) = Op (1) . By Assumption A.6(ii) and
1
S _ %e 1/2 ~1/2

the fact that [|[\..]|~* = Op(N~/2) for r = 1, ..., Ry, ’D(ﬁ(l))H = Op(KO/ YinT) = op((NT) / ) and

HDz(;\u))H = Op (Yan7) = 0p((NT)™*/?). With these results, we can readily show that

2 1/2
Bay= F NT Zz 1 Xi) F()Y'+0P ((NT) )

» —1/2 .
Ay = pm T Zt 1Ft(1) (th i/t(l)/B(l)) +op ((NT) / ) fori=1,2,...,N.

Below we study the asymptotic distributions of 3(1) and 5\1-(1) in turn.

Asymptotic distribution of 5(1)- Noting that Y; = F(1)>\;'6(1) + Xi(l)ﬁ%) +ei+ (F(*l) — F'(l))kf(l),

we have
1 N N
P 0 _ -1 , -1 *
VNTCx (Bay ~Ahy) = CxD! TNT 2 ZXZ{(l)MF”EZ +CxDy Z M, (Ffy = Fi)Niy
% =1

+Ck F()\/_Z ( " MF(*l))eiJroP(l)

= Sint + Sant + Sant +op (1), say.
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By Propositions B.1-B.2 below and the fact that ||Dp:(1) —D;& [lsp = op (1), we have Sonp = (CKDI;:) (BinT—
1 1

Bont —Vint + Vonr) +o0p (1), and Ssyr = _CKD;:l)BiSNT +op (1), where |Binr|| = Op(/KT/N),

IBont| = Op(VE + /EN/T), |Bsnrll = Op(yVET/N), and |[Vinr| = Op (\/E) for = 1,2. Conse-

quently,

VNTCk (ﬁ(l) -p 1)) (CKD (BlNT — Bont — B3nr)

1
= CxD:' [ — ) X/, \Mpog; -V A\ 1).
K F(l) (mz_zl i(1) FO 1NT+ 2NT>+0P()

Following Moon and Weidner (2014a, 2014b) and as demonstrated in the supplementary Appendix F |
we have \/ Bc — ﬁo = W]\_/%VNT + OP( ), where WNT = NlT valX/MpoXi, Xz = Xz — XiQNT,

-1
V \/_ Zz 1[X PFOED (X ) MFOXzQNT] Eiy and X12NT =N Zj 1 >\Ol (Nil)\OI)\O) )\?Xj.lg It
follows that \/— ZZ L X! )MFoal Vint + Vonr = Iy +0p (1), where
N /
JINT = Z {MpoX;1) — MpoXitnT + [X; — ProEp (X;) — MpoXiont] WirCOnr } €

and X;n7 is defined in Remark 4. In the presence of lagged dependent variables, Jy7 does not center
around 0 asymptotically and it contributes to both the asymptotic bias and variance of B (1)- We make the
following decomposition: Jyr = \/% Zfil Ziei—Bynt, where Z; = X;(1)— Ppo Ep(X;1)) —Mpo Xjinr+
[X; — ProEp (X;) — MpoXianT] WQ%C’NT and Byyr = ﬁ Zij\il[Xi(l) — Ep(X;(1))]' Ppog;. Then by
Assumptions A.4(i)-(ii) and A.5(i)

N
Cr, [\/NT (B(l) —B‘()l)> —IBNT} = \/%(CKODEU Zz;ei +op (1)

= \/— Z Zlei+op( 4N (07 (Nl%l)fl (CKOVNTCKO)

where By = D21
Fuy

Asymptotic distribution of 5\2-(1). Noting that Y; — th(1)B(1) = F(l))\;u) +e&i— X¢(1)(3(1) — ﬂ((]l)) +

(Bint — Bant — Bsnr — Bant) and Vyr = Dpd©Onr Do

18 () _ N % 1 1) (»0 £0 ; ;
Let Cyp = INT 2i=1 X \/WC( ) ()\ f ,Xk,e) defined in Moon and Weidner
(2014b, Section 4.1) which contributes to both the asymptotic bias and variance. We make the following decomposition:

i. Its kth element corresponds to

CI(\}%“ = Z (Xi — MpoXionT) €5 — ZX Proe;

N
1
[X; — PpoEp (Xi) — MpoXianT] i — T Z [X; — Ep (X;)] Proe;
i=1

T\ 7\
iM= 1

where the first term is Vyr and contributes to the asymptotic variance and the second term can be corrected as in Moon
and Weidner (2014b); see also the proof of Corollary 3.4 for the correction of Byn7. In the absence of lagged dependent
variables, one can replace Vy7 by C](\}% as in Bai (2009).
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(Ftyy = Fay)Ai), we have
L
8 * _ el A 0
VT(>\¢(1)—/\1(1)) = Zﬁ(l)_/—T ;:1 Fyyeit F(l)\/_g Ft(l)th(l (/3(1 /3(1)>

L Z. _
+Eﬁ<11>ﬁ;Ft<1> (Fit = Bon) Ay +om (N2)

e1; — e2; +e3; +op (N_l/Q) , say.

By Lemmas A.2(v) and A.1(iv), ilﬁ( . Hél)FO’FOH 1 +O0p (5 ) ZF* +op (1). By Lemma A.2(i)

and Assumptions A.1(ii) and (iv),

IN

1 Z
T Z Ft(l)Xz{t(l)
t=1

1 & g
HHG)TZF?X% ! Z( b7) Yo
= - 1/2
= 0r(K7) + { ZHFm) 0, P Z||th<1>”}

= 0p (Ky*)+0p (K&“&;VlT) = op (K%).

By the study of the asymptotic distribution of ﬁ(l), ’6(1) - 1)H = Op(K, 1/26NT) It follows that
=0Op (K0T1/25N2T) =op (1). By Lemma A.2(iv) and Assumption A.3(i)

IN

11 - .
lesil < VTS50 || 7 B (F°Hay = B[ | |

VTOp (1) Op(63% + K (NT)*)0p (1) = 0p (1).

Py

In addition, by Lemma A.3(iv) and Assumptions A.3(i) and A.5(ii), % ZtT 1 Ft )Eit = ﬁ ZZ;I Floeit

op (1) <, N(0, @i,p(*l)). It follows that \/T(S\i(l) - X)) <, N(0, E;é) O; F(I)E F2, ) by Slutsky theorem. W

Proposition B.1 Suppose that the conditions of Theorem 8.3 hold. Then syt = ﬁ Zivzl Xz{(l)Mﬁ‘(l)

(Fy — Fay)Aiay = Binr — Bant — Vine + Vanr + op (1), where Biyr, Bonr, Vinr, and Vonr are
defined in Section 3.3.

Proof. Note that

N
1 / * 7 *
SNT = —,—NT;XZ@)(M% = Mg ) (Fy) = PNy + /—ZX Mg, (Fy = Fiy)hia

= SiNT + SanT, Say.

By Lemma A.3(i), siy7 = BinT + 0p (1). By (C.2) in the supplementary appendix and the fact that
8 N 8 . .

Mpo = MF@) SONT = — Dy ﬁ iy Xzf(l)MFoal(l))\f(l) =—Y,_, Sanr,, say. We dispense with the

terms that are easy to analyze first. First, son72 = san7,5 = 0 as MpoF9 = 0. Next, we want to show

that sonr; = op (1) for I =4, 7, and 8. Let ¢k, = (cik,, ...,CKUKU)/ be an arbitrary Ky X 1 nonrandom

vector with ||ck, | = 1. Using tr(AB) §tr(A’A)1/2tr(B'B)1/2 for any two conformable matrices A and B,
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by the triangle inequality and Assumptions A.1(i), (iii) and (iv),

N K K
e 2 Xl D (5% - BZ) MpoXj > (5? - Bzc) X FyA)

=1 k=1 =1

|C/K052NT,4| = (NT)73/2

N N
= (NT) 2 ltr | Fay Y Ny, Xl Mpo Y X (50 - BC) (ﬁo - BC>/XJ/'
i=1 j=1

1/2 1/2
< (NT)” 8/ 1]/VT§2{VT7

where ¢,y :tr(zfv L Xi (B = BB = B X] Mpo 301, X5(8° = B)(8° = B)' X)) and conr =tr(Fy
ZZ 1 M) Crey X o Z] L X Cra N (1) (’1)) . Using piyax (Mpo) = 1, the fact that tr(AB) <tr(A)tr(B)
for any two conformable positive semidefinite matrix A and B, the rotational property of the trace
operator, the fact that A’BA < p,.. (B) A’A for any symmetric matrix B and conformable matrix A,

and Assumptions A.1(i) and (viii), we have

v < [ (0B (- ) S x (- ) (- F) 0

i=1 j=1
2 N N B ,
< o= e | oS (8- 5°) (50 5) xpx;
i=1j=1
~cl|2 ~c\'/ N N c
= || =B (- 5) x> xxix (8- B)
i=1 =1
o N N
S A (ZX S XXX | <[ B (ZXX’)umax > XX,
j=1 i=1
’ 2
_elld N
= 8% Bt (ZX;XJ- =0p ((NT/K)%) Op ((NT)Q) =0p (K?).
j=1
Similarly, noting that j,,, (cx,ck,) < ||¢k.Ck, || = 1, we have

N N o o N N
SoNT = tr ZA:(1)0%0X£(1)ZXj(l)CKo/\;Zl)F(Il)F(l) SHF(l)H ZZCKon(l)X (1)CKo>\;E1)>\f(1)

i=1 =1 i=1 j—1
1/2 1/2
~ 2
< F(l) ZZCKO 2(1 CKoCKng/'(l)Xi(l)cKo Z ()‘;El))‘;‘k(l)>
i=1j—1 i=1j—1
) 2 ,
< 7w § Zqu) ZX XjXimero ¢ Y ’ A311)”
=1
n 2 / 2 22
< WFo|| Hmax ZXi(l)Xi(l) ; 1)” =O0p(T)Op (NT)Op (N) = Op (N*T7),
i=1 i=1

where the second inequality follows from the fact that . (Zf\il X{(l)Xiu)) < tnax (Zf\il X;Xi) =
Op (NT) under Assumption A.1(viii). It follows that |cj¢ sonta| = (NT)"** Op (K) Op (NT) = op (1)
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under Assumption A.3(i), implying that ||sonr4| = op (1) . For sont,7, we have

’C/KUSQNTJ‘ = (NT —3/2

ZCKO XiyMpoe' Z (ﬁk 5k) Xk F )Ny

=1

_s ~ " ~c\’ 1/2 1/2
= (VD)7 | F(l)ZAz’a)C'KoX{(nMFOZEj (8" 5°) X7 || < WD) irsiin
i=1 j=1

where canr =tr(31L; Xi(8° — B%)elMpo Y0, 25(8° — B)'X]). Note that

N N ,
SoD X (BB el (80 - B) X

i=1 j=1

o LN . o2 N N
= (8- 8) oD Xy Xaeles (80— B7) < |80 = Bt | D0 D0 X)Xt
=1 j=1 =1j=1

= 0 ((NT/K)™") Op (N + T) NT) = Op (K (N +T))

IN

S3NT

where we use the fact that under Assumptions A.1(v) and (viii)

N N N N
Pomasx ZZX;XZ-EQQ = max 1%’22X§X¢5gsj%
=11 w=(51,0k) | 2 || = =1 =1
K K
= max tr E E S ey X X! g€’
w=(51,...,xK) || ]||=1 el el
K K
2 /
< el max g E st (X X5,)
= Coromrt) =1

K K N T
2
= ||E||5p %:(%17“%&3,:“%”:1 Z Z Z Z %m%nXit,mXit,n
= lel, tmax (ZZXwX’> p (N +T)O0p (NT).

=1 t=1
It follows that | ¢, sanryr| = (NT)™*/* Op (NT) Op (KY/2 (NY/? 4 TV/?)) = Op (K2 (N~V2 4 T-1/2))
=op (1), _OP(Kl/Q(N—l/Q
+T712)) = op (1).
For sonT1, Sont,3, and santT, We have sonp1 = (NT)73/2 Zf\;l Xzf(l)MFoe’sl*:‘(l))\f(l) = Bonr,

SoNT3 = (NT)—1/2 Zf\il {NlT Z )\OIFO/F )\* ) 3(1)} Mpog; = Vy,7, and

(1) . Analogously,

N K
—sonre = (NS0 XY, (ﬁk Bk)MFoX’)\OFO’F A
i=1 k=1

N N
= |(NT)2Y SN AV FYEu) N Xy Mpo X; | VNT(B - 8°)

i=1 j=1
= ClhpVNT(B - B°) = Vanr.

Combining the above results yields the conclusion. m
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Proposition B.2 Suppose that the conditions of Theorem 3.8 hold. Then ﬁgf\;l X£(1)(MF(1) -
MF(*U)EZ' = —BsnyT + 0p (1), where Byyr is defined in Section 8.3.

6
72?:1 ﬁ Zf\; Xz{(l)blei = 72?:1 BinT, say. Let cx, = (clKO,...,cKOKO)/ be an arbitrary Ky x 1
nonrandom vector with ||cg,[| = 1. Then by the facts that [tr(A) [ <rank(A)[|Al|,, and [|A]|,, < [|A]l, the
submultiplicative property of the spectral norm, Lemmas A.2(i) and (v), and Assumptions A.1(iv)-(v)

and A.3(i)

Proof. Using (C.3) in the supplementary appendix, we have ﬁ Zf\il Xzf(l)(Mpm — Mpx )g; =

sp

N ~ ~ ~ -1, 1
| Binr| = (NT)~H? ZC}(OXZ{(U (F(l) *F(*1)) (F(II)F(l)) (F(l) *F(*1)) €
=1
A N N —1 “ / N
= o) o | (B - Ry ) (Bl Foy) - (Foy - By ZfiC'KoXi(l)l
i=1
—1/2 1 A - 1 - * 2 al / /
i=1 sp

= (NT)"Y20p (1) Op (35%) Op((N/2 + TYV2)NV2TY2) = 0p (1),

where we use the fact that

N N N N

2
ZsiC/Kon{(l) =  Mmax ZZEiCII(OXz{(l)Xj(l)CKogg < H5||sp Hmax (Z le(l)Xz(l)>
=1

sp i=1 j=1 i=1

= Op(N+T)Op(NT) by Assumptions A.1(v) and (viii).

2

By Lemma A.3(ii), Bont = op(1). By Lemma A.3(iii), Bsyr = Bsnr + op (1). Lastly, by Lemma
A.2(v) and Assumptions A.1(ii), (iv) and (vii)

N -1 —1
—1/2m—3/2 * —1 7 r- —1 % * *
|Banr| = N7VEPTY ZXZ{Q)F(U {(T F(II)F(l)) _(T F(ll)F(1)> }F(ll)gi

=1
< N—I/QT—3/2 T—IFI F 71_ T—lF*I F* -1 iv: X/ F* F*/ .
= ot ot i) (m&i

=1
N 1/2 . N 1/2
< N—1/2T—3/2 T_lﬁl F 71_ T—lF*I F* -1 Z X! F* 2 Z ! ‘2
= ot ot i)t (m&i
=1 =1

= N7V2T320, (5;@ + K (NT)™V 2) Op (NWT) Op ((NT)1/2)

= Op (Nl/%;fT + KT‘l/Q) =op(1).

Consequently, we have ﬁ Zfil Xz((l)(MFu) — MF(*U)EZ- = -Bsyr+op(l). m

B.4 Proof of Theorem 3.5

By Theorem 3.2, we know that the shrinkage estimation based on 74 can correctly select all relevant

covariates and factors and shrink the coefficients of irrelevant covariates and factors to 0 w.p.a.1. This
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implies that 7%, € Qo and w.p.a.1

IC (vr) = 6° (Wr) + pine [Ss (Vr) | + pane N [Sx (Vivr) | = 65, +op (1) 5 05r

where the second equality holds by Theorem 3.2 and Assumption A.8, and the last convergence holds by
Assumption A.7. We consider the cases of under- and over-fitted models separately.

Case 1: Under-fitted model. In this case, we have either Sg (v) 2 Sr,3 or Sy () 2 Sr,x. Noting that
5% (y) > < Zf\’:1 ZZ;I(YZ-t - /B;[;‘(’Y)Xitasb‘(’)/) — X;Sx(v)Ft,SA(,Y))z = &fg(,y), we have by Assumption A.7

IC(Y) = 62N+ pinr IS8 (V] + pane N [Sx (7)] > &é(y)
> min 525 in 0% > O'?gT.

m
{SZ 5/—}281",/-} or SA;Z}ST,)\} s {SI S/—}QST,B or SA;}ST,A}
It follows that P (infyeq_ IC (v) > IC (V}p)) — 1.

Case 2: Over-fitted model. Let S ={Sg x Sx : Sg D S1.3, Sx D Srx, [Ss] + |Sal > |Sr8] + |STAl}-
Let v € Q4 such that S (7) = Sg (7) x Sx(y) € S. Let

: (B.5)

Y — Xis:Bs, — Fs, \is,

1 N
Lyt,s (58[37>\SA) -~ NT Z)
i=1

where § = S X Sx, Asy = (A1,855 -+ AN,s,)'s Xi,s, denotes the T x |Sg| submatrix of X; with column
indices given by Sg, and FSA is analogously defined. By the definition of &?9 in (3.6), we have &?9 =
LNT,S(BSWS\SA)- In view of the facts that P (&2 (Vr) = &%T) — 1 as (N,T) — oo by Theorem 3.2 and
that 62 (y) > 6‘28(7), we have that w.p.a.1

5?VT[IC (v) - 1C (79\7T)]
= 6?VT[62 (v) — & (’Y(J]\/T)] + 5?\/7’ [PiNT (|S,6 (V)| = Ko) + panrN (ISx (7)] — Ro)]
> 5?\@[:29@) - &?ST] + 87 lpint (1S5 (7)) = Ko) + paneN (ISx ()| — Ro)] -

By Assumption A.8, 63701 yr — 00 and SappanrN — co. In addition, for any S = Sp x Sx€ S we have
max(|Sg| — Ko, |Sx| — Ro) > 1 and min(|Sg| — Ko, |Sx| — Ro) > 0. Then by Proposition B.3 below

P ( inf IC (v) > IC (ﬁw))

TEQ

= P ( inf 6%7[IC () — IC (v%r)] > 0)

TEQ

S=853XS\€S
— las (N,T)— co. B

> P < min  63,[6% — 6%T] + 037 [orvr (151 = Ko) + ponr N (1Sa] — Ro)] > 0)

Proposition B.3 Suppose that the conditions in Theorem 3.5 hold. Suppose that S € S ={Sz x Sy :
8/3 ) ST,,Bv S\ D ST,,\7 |S/5‘ + |S,\| > |ST,,8| + ‘ST7A|}. Then 5"25- — 6§T = OP((SRI2T)

Proof. Consider the minimization of the following objective function

’ (B.6)

Y = Xisr B8y, — FON

Lnt.sy (ﬂSTﬁ’)‘> -~ NT Z‘
i=1
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where we pretend that the factors are observed. Let 3, , and A denote the OLS solution to the above

problem. Let 6?9T = LnT.5,p (B Sr. ﬁ,j\) . Straightforward algebra shows that

N
1 - / _
U?ST - NT Z (}/l - Xi,ST,ﬁBSTﬁ) MFO (}/z - XivsT,B’BST,B) (B?)
i=1
and
By, = 8%,,|| = 0r ((VT/K0)?). (B.3)
Noting that |65 — 6§T| < |6% — o5, |+ \(7§T — 0%, <2 max 6% — 0%, |, it suffices to prove

S3DST,8, SADST, A
that for each S € S = SUSy with Sy = Sr.5 X Sr., we have 6% — 0%, = Op(657).

Now, fix S € S. We consider the minimization of the least square objective function in (B.5).
Noting that T1F é)\FSA is asymptotically singular when |Sy| > Ry, the OLS estimate 5\&(7) is not
necessarily unique whereas B S5(7) is. Despite this, the minimum of Lyz s(f SBa/\SQ is uniquely de-
termined. Standard algebra shows that Bsg = (NT ZZ L X! SBM X Sﬁ)7 = vazl Xi/,S/aMFSAYiv
and j\i,& = (F‘/SAFSAYFYSA Y; — Xi75535ﬁ), where A~ is any generahzed inverse of A and MFsA =
Ity — Fs, (F§ Fs,)*F% . It follows that

.2 1 / .
05 = WLNTS (ﬁSBJ\SA) NT Z (Y X; sﬁﬂsﬁ) Fs, (Yi - Xi"SBBSB) . (B.9)

In addition, using Lemma A.3 we can readily show that
HBSB - B%ﬁ H =0Op (K1/25;,2T) . (B.10)

Recall F* = FH and A} = H*)]. Define F% as an N x |S,| submatrix of F* whose column
indices are given in Sy. Similarly define A} g, . Noting that V; — Xi,SaBSB = (XLSBBgB + F5 N s, +

52) i 5[355[j = ]3"&/\;-“75A +e; where e; = &; + X s, (5‘%/j —Bs,) +(Fs, — FSA))\ZSA, we can decompose

= NT ZZ 1€:Mp_ e; as follows
Sx
1 N
52 — 0 Ve 1 0 2
0s = NTZE Fs, €z+ﬁ;(ﬁsﬁ—ﬂgﬁ) ZSHM ngﬁ(ﬁsﬁ—ﬂsﬁ)
1 & . ) .
o7 O Mls, (B3, — Bs,)' My, (F3, — Fs )X s, + 7= Za X1, (8%, — Bs,)
i=1
Z&: FS)\ FSA)AZ S>\ NT Z ﬁSg 655) Z{7SBMFS>\ (FS*A - FA‘SA)A;:SA

ANt 4 Aoyt + Asnr 4 284Nt + 28557 + 286 N7, say.

By (B.10), Lemma A.2(i), Assumption A.1(viii), and the fact that :“max(MFsA) =1, Aynr < HB‘OSB -
o N — A * - N * 2 -
By P thmax (7 Soiy X5, Xis,) = Op(Koyy), and Agny < %||F3, —Fs, [P il [[Ms, |- = Op(057).
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By CS inequality, |A6NT‘ S {AQNTAgNT}l/Q = OP(K1/2(SR,?%) For A5NT7 we have
N
tr (MFSA (F;‘)\ — FS>\> ZA;:SAE;> ‘
i=1
1SAl
v S

by Lemma A.2(i), the fact that |tr(A)| < r||A]| for any r X r matrix A, the submultiplicative property of
=Op (1). Next,

Bove]| =

NT

<

\/— Z Ais\Eil = Op (N71/251T/1T>

the Frobenius norm, and the facts that iy, (Mg, ) =1 and that H T ZZ L A8y E

by the triangle inequality

A 1
Awr| = = stz s,(8%, — Bs,)| +

=1

IN

NT Zﬁ lSﬁ /335 Bsﬁ)

= Aynti+ Dunt2, say.

By (B.10) and the fact that ’ ~T Zl 1€ i’SBH = Op ((NT/K)~'/?) under Assumption A.1(vi), we

have

N
. 1 .
A4NT,1 < ﬁ ZE;Xi,SB Hﬂ%ﬁ — BSBH =0Op (K(NT)—l/Q(S;\[Q,z«) .
i=1
By CS inequality, Lemma A.2(i) and Assumption A.1(v)
~ 0 2 N ~ 0 / 2
/
e < NTZHH e ) (FsﬁFHSA) &
. / .
< |17, % Z [P + —tr [(FSA - F'H, ) e'e (Fs, - FOHSA)}

~ 2
= Op(1)+ N7 HFSA — PO, || llel)?, = 0p (1).

This result, in conjunction with CS inequality and (B.10), yields

1/2

N 1/2 N
A 1 - 1 .
Asnr2 = {ﬁ > EQPFSA&} {(ﬂ%ﬁ ~Bss) Y X} s, Xis, (83, —535)}
=1 i=1

+1/2{

— Op (Kl/QT’l/de_ﬁf) ,

IN

1/2
. . 2 N
() b~ it

N
nl
)FS)\gi
=1

where VanT = fnax(F7 Ziv 1 X! sﬁXz 56) = Op (1) under Assumption A.1(viii). Thus Ayyr = op (6n7) -
Consequently, we have shown that 6% = == ZZ 1 & Mg &t Op(6n7).

Analogously, using Y; — X; STﬁIBSTB =FOX\) 4 ¢ + Xl,gTﬁ (,BgT’B - BST,B)’ (B.7), and (B.8) we can
readily show that 6% = w5 S| ZMpoemLOP((NT) Y). Tt follows that 6% —5% = iy Soi (¢} Proci—
E/Pﬁs g;) + Op(éz_\,QT). Noting that W i 1 el Ppog; = Op( ), we are left to show that Ry =
L3N P & = Op(0y7)- Note that Ryt = yptr(Pp, €'e) < §r Hs||§ptr(PFSA) Balel?, =

Op(I3%). Conbequently, we have shown that 6% — 0%, = Op(0y%) forany S€S. m
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Table 1: MSEs of estimates of (81, 8,) for different numbers of factors included in the model

Number of factors included

DGP N T 0 1 2 4 6 8

2 20 20 B 19.37 6.47 3.77 4.43 6.49 9.96
By 20.56 6.61 3.84 3.71 5.73 9.67

40 40 B 18.25 4.68 0.57 0.62 0.75 0.92

By 17.80 4.21 0.42 0.48 0.66 0.85

20 60 B1 17.13 3.99 0.73 0.80 1.08 1.57

By 18.67 4.69 0.80 0.91 1.23 1.71

60 20 B1 18.62 4.25 0.72 0.82 1.11 1.52

By 19.46 4.86 0.88 0.92 1.19 1.67

60 60 B1 16.75 3.81 0.23 0.25 0.29 0.31

Bo 16.71 3.89 0.19 0.21 0.24 0.26

3 20 20 B 30.40 8.74 4.24 4.87 6.52 11.32
Ba 1.45 0.63 0.44 1.46 5.47 14.70

40 40 B1 26.59 5.82 0.59 0.74 0.86 0.97

By 1.35 0.45 0.06 0.11 0.23 0.67

20 60 B1 28.09 6.30 0.87 1.11 1.25 1.75

By 1.40 0.48 0.09 0.17 0.26 0.44

60 20 B1 27.10 6.06 0.86 1.07 1.80 6.18

By 1.31 0.36 0.12 0.79 4.88 15.48

60 60 B1 27.06 6.13 0.23 0.28 0.33 0.39

Bo 1.34 0.40 0.03 0.04 0.06 0.10

4 20 20 B 11.71 6.17 4.15 5.19 7.61 10.57
By 11.83 6.24 4.02 3.98 6.32 11.05

40 40 B1 10.13 3.58 0.58 0.73 0.85 0.96

By 10.26 3.67 0.54 0.65 0.73 0.89

20 60 B1 10.05 3.74 0.98 1.02 1.32 1.78

By 10.11 3.70 0.88 0.97 1.23 1.68

60 20 B1 11.00 4.00 0.95 1.08 1.35 1.77

By 10.63 3.81 0.70 0.90 1.04 1.39

60 60 B1 9.71 2.97 0.19 0.21 0.25 0.27

Ba 9.80 2.99 0.20 0.22 0.25 0.29

5 20 20 B1 19.24 8.22 4.67 4.94 7.68 18.05
By 0.97 0.60 0.53 2.20 9.58 33.48

40 40 B1 16.51 4.81 0.60 0.73 0.86 1.10

By 0.80 0.34 0.06 0.11 0.27 1.23

20 60 B1 17.57 5.32 0.91 1.12 1.26 1.75

By 0.85 0.39 0.11 0.19 0.28 0.46

60 20 B1 16.97 5.08 0.93 1.11 4.74 17.77

By 0.80 0.28 0.13 1.56 12.15 37.73

60 60 B 16.90 4.91 0.24 0.28 0.33 0.39

Ba 0.78 0.29 0.03 0.04 0.06 0.12

6 20 20 B1 6.77 5.88 4.62 4.80 6.98 9.72
By 6.97 5.53 4.33 4.68 7.05 11.18

40 40 B1 5.29 2.86 0.46 0.56 0.64 0.89

By 5.64 3.05 0.57 0.65 0.75 0.89

20 60 B1 5.54 3.26 0.87 0.90 1.22 1.55

Bo 5.42 3.12 0.68 0.82 1.11 1.38

60 20 B1 5.95 3.40 0.82 1.15 1.44 1.84

Ba 5.61 3.03 0.80 0.94 1.21 1.62

60 60 B 5.00 2.21 0.18 0.21 0.23 0.26

Ba 5.01 2.20 0.21 0.24 0.29 0.32

Note: Numbers in the main entries are 100 xMSEs of the estimates of 3; or 5.
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Table 2: Selection of the number of factors (SN ratio=1)

Comparison methods AgLasso

Bai and Ng- Ona-  Ona- AH- 1C Rule of thumb
DGP N T PCi  PCo 1Cy IC2  ReSt  Eca ER GR c=0.5 c=1 c=2
1 20 20 r<2 0.00 0.00 002 014 0.08 0.71 0.33  0.23 0.00 0.17 0.28 0.42
r=2 0.00 0.00 046 0.86 0.87 0.22 0.67 0.77 0.76 0.82 0.72 0.57
r>2 1.00 1.00 052 0.00 0.05 0.07  0.00 0.00 0.24 0.01 0.00 0.00
40 40 r<2 0.00 0.00 0.00 0.00 @ 0.00 0.07 0.02 0.01 0.00 0.02 0.03 0.07
r=2 0.00 0.72 1.00 1.00 1.00 0.88 0.98 0.99 0.98 0.98 0.97 0.93
r>2 1.00 028 000 0.00 0.00 0.06  0.00 0.00 0.02 0.00 0.00 0.00
20 60 r<2 0.00 0.00 0.01 0.01 0.00 0.20  0.10 0.06 0.00 0.04 0.09 0.20
r=2 0.00 0.00 099 0.99 1.00 0.73 0.90 0.94 1.00 0.96 0.91 0.80
r>2 1.00 1.00 0.00 0.00 0.00 0.06  0.00 0.00 0.00 0.00 0.00 0.00
60 20 r<2 0.00 0.00 0.00 0.01 0.00 0.26  0.09 0.07 0.00 0.08 0.10 0.17
r=2 0.00 0.00 1.00 0.99 0.98 0.69 0.91 0.93 1.00 0.92 0.90 0.83
r>2 1.00 1.00 000 0.00 0.02 0.05 0.00  0.00 0.00 0.00 0.00 0.00
60 60 r<2 0.00 0.00 000 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.01
r=2 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 1.00 1.00 0.99
r>2 0.00 000 000 0.00 0.01 0.05 0.00  0.00 0.00 0.00 0.00 0.00
2 20 20 r<2 0.00 0.00 029 092 0.74 0.92 0.56  0.55 0.16 0.04 0.13 0.30
r=2 0.00 0.00 0.14 0.08 0.22 0.01 0.23 0.25 0.54 0.37 0.49 0.47
r>2 1.00 1.00 057 0.00 0.04 0.07 0.21  0.20 0.31 0.59 0.38 0.23
40 40 r<2 0.00 0.00 031 070 0.10 0.80 0.30 0.24 0.00 0.01 0.05 0.11
r=2 0.02 0.69 069 030 0.90 0.16 0.70 0.76 0.94 0.72 0.85 0.86
r>2 098 031 000 0.00 0.01 0.04 0.00 0.00 0.06 0.27 0.10 0.03
20 60 r<2 0.00 0.00 052 0.70 0.32 0.85 043  0.39 0.34 0.03 0.06 0.14
r=2 0.00 0.00 0.48 0.30 0.67 0.08 0.56 0.59 0.65 0.47 0.67 0.76
r>2 1.00 1.00 0.00 0.00 0.01 0.07 0.01 0.02 0.00 0.50 0.27 0.10
60 20 r<2 0.00 0.00 051 0.69 0.30 0.90 0.51  0.46 0.33 0.03 0.09 0.18
r=2 0.00 0.00 0.49 0.31 0.69 0.08 0.49 0.54 0.67 0.55 0.70 0.76
r>2 1.00 1.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.42 0.20 0.06
60 60 r<2 0.00 001 006 028 0.00 0.44 0.08 0.04 0.00 0.00 0.00 0.04
r=2 099 099 094 0.72 0.98 0.52 0.92 0.96 1.00 0.95 0.99 0.96
r>2 0.0l 000 000 0.00 0.02 0.04  0.00 0.00 0.00 0.05 0.00 0.00
3 20 20 r<2 0.00 0.00 0.06 0.50 @ 0.52 0.88 0.56  0.53 0.08 0.17 0.24 0.36
r=2 0.00 0.00 0.03 0.37 0.36 0.04 0.32 0.33 0.42 0.47 0.56 0.56
r>2 1.00 1.00 091 0.14 0.11 0.08 0.12 0.14 0.49 0.36 0.20 0.08
40 40 r<2 0.00 0.00 0.16 045 0.07 0.69 030 0.24 0.00 0.01 0.06 0.13
r=2 0.00 0.62 0.84 0.55 0.92 0.23 0.70 0.76 0.90 0.82 0.88 0.87
r>2 1.00 038 0.00 0.00 0.01 0.08 0.00 0.00 0.10 0.17 0.06 0.00
20 60 r<2 0.00 000 034 052 0.15 0.78 038 0.34 0.16 0.03 0.08 0.18
r=2 0.00 0.00 0.66 0.48 0.83 0.16 0.62 0.66 0.84 0.67 0.77 0.78
r>2 1.00 1.00 000 0.00 0.02 0.07  0.00 0.00 0.00 0.30 0.15 0.04
60 20 r<2 000 0.00 004 012 0.19 0.86  0.50 0.41 0.19 0.08 0.16 0.28
r=2 0.00 0.00 0.54 0.81 0.80 0.07 0.50 0.59 0.80 0.77 0.77 0.70
r>2 1.00 1.00 042 0.08 0.02 0.06  0.00 0.00 0.01 0.15 0.06 0.02
60 60 r<2 0.00 000 003 015 0.00 0.29 0.09 0.06 0.00 0.01 0.03 0.05
r=2 1.00 1.00 0.97 0.85 0.99 0.64 0.91 0.94 1.00 0.99 0.97 0.95
r>2 0.00 000 000 0.00 0.01 0.07  0.00 0.00 0.00 0.00 0.00 0.00

Notes: Numbers in the main entries are the proportions of the replications in which the selected number of factors is less than,
equal to, or greater than the true number of factors (i.e., 2) out of total 250 replications. Bai and Ng refers to Bai and Ng (2002),
Ona-ReSt refers to Onatski (2010), Ona-Eca refers to Onatski (2009) and AH refers to Ahn and Horenstein (2013).
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Table 2: Selection of the number of factors (SN ratio=1) (cont’d)

Comparison methods

AglLasso

Bai and Ng- Ona- Ona- AH- 1C Rule of thumb
DGP N T PCy PCa 1Cy 1Co ReSt Eca ER GR c=0.5 c=1 c=2
4 20 20 r<2 0.00 0.00 0.19 0.93 0.75 0.94 0.48 0.50 0.24 0.06 0.12 0.25
r=2 0.00 0.00 0.04 0.07 0.20 0.02 0.21 0.24 0.44 0.26 0.38 0.45
r>2 1.00 1.00 0.77 0.00 0.05 0.04 0.30 0.26 0.32 0.68 0.50 0.30
40 40 r<2 0.00 0.00 0.33 0.72 0.10 0.82 0.27 0.23 0.00 0.01 0.04 0.12
r=2 0.00 0.66 0.67 0.28 0.90 0.12 0.73 0.77 0.97 0.67 0.82 0.84
r>2 1.00 0.34 0.00 0.00 0.00 0.06 0.00 0.00 0.02 0.32 0.15 0.04
20 60 r<2 0.00 0.00 0.54 0.76 0.32 0.83 0.46 0.42 0.36 0.02 0.04 0.12
r=2 0.00 0.00 0.46 0.24 0.67 0.10 0.52 0.57 0.64 0.40 0.67 0.76
r>2 1.00 1.00 0.00 0.00 0.01 0.07 0.02 0.02 0.00 0.58 0.29 0.12
60 20 r<2 0.00 0.00 0.49 0.68 0.32 0.88 0.44 0.39 0.34 0.02 0.06 0.14
r=2 0.00 0.00 0.51 0.32 0.67 0.09 0.56 0.60 0.65 0.54 0.69 0.73
r>2 1.00 1.00 0.00 0.00 0.01 0.03 0.01 0.01 0.01 0.45 0.24 0.13
60 60 r<2 0.00 0.00 0.05 0.32 0.00 0.38 0.07 0.04 0.00 0.00 0.01 0.03
r=2 1.00 1.00 0.95 0.68 1.00 0.58 0.93 0.96 1.00 0.96 0.98 0.97
r>2 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.01 0.00
5 20 20 r<2 0.00 0.00 0.01 0.20 0.48 0.88 0.52 0.46 0.13 0.14 0.23 0.34
r=2 0.00 0.00 0.00 o0.11 0.34 0.03 0.30 0.31 0.32 0.53 0.57 0.57
r>2 1.00 1.00 0.99 0.70 0.18 0.09 0.18 0.23 0.55 0.34 0.20 0.09
40 40 r<2 0.00 0.00 0.16 0.42 0.07 0.73 0.31 0.24 0.00 0.02 0.05 0.13
r=2 0.00 0.44 0.84 0.58 0.92 0.21 0.69 0.76 0.90 0.83 0.88 0.86
r>2 1.00 0.56 0.00 0.00 0.01 0.06 0.00 0.00 0.10 0.15 0.06 0.01
20 60 r<2 0.00 0.00 0.35 0.51 0.18 0.79 0.41 0.36 0.23 0.04 0.08 0.15
r=2 0.00 0.00 0.65 0.49 0.80 0.17 0.59 0.64 0.77 0.63 0.75 0.79
r>2 1.00 1.00 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.34 0.17 0.06
60 20 r<2 0.00 0.00 0.00 0.00 0.30 0.89 0.52 0.42 0.34 0.08 0.18 0.29
r=2 0.00 0.00 0.00 o0.00 0.56 0.03 0.45 0.49 0.56 0.68 0.70 0.65
r>2 1.00 1.00 1.00 1.00 0.13 0.08 0.04 0.08 0.10 0.24 0.12 0.06
60 60 r<2 0.00 0.00 0.04 0.15 0.00 0.30 0.08 0.06 0.00 0.01 0.03 0.06
r=2 1.00 1.00 0.96 0.85 0.99 0.63 0.92 0.94 1.00 0.99 0.97 0.94
r>2 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00
6 20 20 r<2 0.00 0.00 0.05 0.88 0.75 0.95 0.46 0.47 0.22 0.04 0.10 0.20
r=2 0.00 0.00 0.01 o0.11 0.17 0.02 0.17 0.20 0.51 0.28 0.41 0.50
r>2 1.00 1.00 0.94 0.01 0.08 0.04 0.37 0.33 0.27 0.67 0.49 0.31
40 40 r<2 0.00 0.00 0.29 0.67 0.09 0.77 0.26 0.21 0.01 0.01 0.04 0.08
r=2 0.01 0.52 0.71 0.33 0.89 0.18 0.73 0.78 0.94 0.66 0.82 0.86
r>2 0.99 0.48 0.00 0.00 0.02 0.06 0.00 0.00 0.05 0.33 0.14 0.06
20 60 r<2 0.00 0.00 0.48 0.66 0.27 0.86 0.39 0.36 0.32 0.01 0.04 0.11
r=2 0.00 0.00 0.52 0.34 0.71 0.11 0.60 0.62 0.68 0.46 0.64 0.76
r>2 1.00 1.00 0.00 0.00 0.02 0.03 0.01 0.01 0.00 0.53 0.32 0.13
60 20 r<2 0.00 0.00 0.44 0.64 0.30 0.86 0.45 0.40 0.34 0.02 0.07 0.15
r=2 0.00 0.00 0.56 0.36 0.69 0.08 0.54 0.60 0.65 0.48 0.70 0.73
r>2 1.00 1.00 0.00 0.00 0.01 0.06 0.01 0.01 0.01 0.49 0.24 0.12
60 60 r<2 0.00 0.00 0.05 0.30 0.00 0.39 0.05 0.04 0.00 0.00 0.00 0.02
r=2 1.00 1.00 0.95 0.70 0.99 0.54 0.95 0.96 1.00 0.95 0.99 0.97
r>2 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.05 0.01 0.00
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Table 3: Selection of regressors (SN ratio=1)

DGP N T B B2 B3 Ba Bs
4 20 20 0.00 0.00 0.80 0.74 0.72
40 40 0.00 0.00 0.98 0.98 0.98

20 60 0.00 0.00 0.94 0.97 0.93

60 20 0.00 0.00 0.94 0.95 0.92

60 60 0.00 0.00 1.00 1.00 1.00

5 20 20 0.00 0.22 0.70 0.67 0.10
40 40 0.00 0.00 0.94 0.92 0.70

20 60 0.00 0.00 0.92 0.94 0.90

60 20 0.00 0.11 0.76 0.78 0.04

60 60 0.00 0.00 1.00 1.00 0.98

6 20 20 0.00 0.00 0.84 0.87 0.87
40 40 0.00 0.00 0.99 1.00 0.98

20 60 0.00 0.00 0.99 0.98 0.99

60 20 0.00 0.00 0.98 0.98 0.98

60 60 0.00 0.00 1.00 1.00 1.00

Note: Numbers in the main entries are the proportions of the replications in which the estimates of 3’s
are shrunk to zeros out of total 250 replications.
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Table 4: MSEs of the estimates of 8;and B4 (SN ratio=1)

Comparison methods AgLasso

Bai and Ng- Ona-  Ona- AH- BC- Post
DGP N T PCq PCsy 1C4 1Co ReSt Eca ER GR AgLasso  AgLasso  AgLasso
2 200 20 By 9.98 9.40 794 1118 794 17.53  5.07 4.72 4.08 4.11 3.83
By 9.69 9.02 7.70  11.33  7.84 19.15 548 5.46 4.02 4.08 3.79

40 40 pB; 0.63 0.58 1.43 4.33 0.90 1396 1.21 1.04 0.63 0.65 0.57

By 0.49 0.42 1.31 4.20 0.80 1341 1.13 0.96 0.45 0.47 0.40

20 60 B4 1.24 1.01 2.30 3.56 1.70  13.68 1.47 1.33 1.35 1.45 1.31

Ba 1.47 1.18 2.66 4.56 1.91 14.89 1.80 1.65 1.71 1.83 1.65

60 20 (4 1.21 1.03 1.95 3.53 1.45 1577 1.81 1.65 1.39 1.42 1.33

Bo 1.22 1.12 2.41 4.05 1.68 16.36  2.02 1.89 1.66 1.70 1.60

60 60 pB; 0.23 0.23 0.34 1.14 0.23 6.76  0.40 0.31 0.23 0.23 0.23

By  0.19 0.19 0.28 1.11 0.19 6.56  0.33 0.26 0.19 0.19 0.19

3 20 20 pB; 11.33  10.73 10.53  7.48 7.03 23.10 5.83 5.65 3.87 3.97 4.30
By 1467 1341 1396 1.73 0.78 142  0.92 0.99 5.00 3.11 0.95

40 40 pB; 0.75 0.61 1.09 2.99 0.84 17.86 1.55 1.30 0.62 0.64 0.62

By 013 0.07 0.07 0.18 0.07 0.89 0.11 0.08 0.25 0.16 0.07

20 60 B4 1.35 1.21 2.32 3.88 1.71 21.03 213 1.94 1.45 1.53 1.39

By 0.28 0.24 0.17 0.26 0.13 1.04 0.16 0.15 0.17 0.16 0.12

60 20 B4 5.77 4.65 2.49 1.12 1.54 21.82 245 2.05 1.62 1.95 1.31

By 14.65 12.05  4.02 0.17 0.14 1.28  0.13 0.15 2.18 1.09 0.12

60 60 By 0.23 0.23 0.30 0.63 0.23 6.75  0.46 0.33 0.24 0.24 0.23

Bs  0.03 0.03 0.03 0.05 0.03 0.36  0.04 0.03 0.06 0.04 0.03

4 20 20 By 1057 10.61 10.07 7.73 6.28 10.53 6.67 6.08 5.06 5.07 4.37
By 11.05 10.73  9.67 7.82 6.39 10.72 6.27 5.78 4.46 4.46 3.97

40 40 pB; 0.72 0.63 1.31 3.51 0.84 8.05 1.06 0.96 0.62 0.64 0.58

Ba  0.66 0.57 1.44 3.51 0.82 7.88 1.05 0.99 0.58 0.59 0.55

20 60 B4 1.39 1.26 2.41 3.65 2.03 8.43 191 1.77 1.82 1.92 1.82

Ba 1.39 1.27 2.28 3.34 1.84 8.38 1.77 1.60 1.78 1.89 1.82

60 20 B4 1.46 1.28 1.96 3.13 1.70 9.24 1.71 1.57 1.60 1.64 1.61

By 1.13 0.96 1.83 2.86 1.35 8.85 140 1.25 1.26 1.29 1.27

60 60 By 0.19 0.19 0.26 0.83 0.19 3.54 029 0.24 0.19 0.19 0.18

By 0.20 0.20 0.27 0.86 0.20 334 031 0.24 0.20 0.20 0.20

5 20 20 pB; 1805 1789 1790 1525 859 1551 6.60 7.13 4.82 4.70 4.70
By 3348 3335 3344 26.14  4.63 1.12 3.21  4.79 8.65 5.68 3.00

40 40 B4 0.78 0.65 1.04 2.47 0.82 11.42 145 1.19 0.65 0.68 0.61

By  0.17 0.09 0.07 0.15 0.07 0.58 0.09 0.08 0.49 0.33 0.09

20 60 B4 1.42 1.27 2.12 3.31 1.78 1342 2.18 1.96 1.74 1.85 1.65

By 0.30 0.25 0.17 0.23 0.15 0.66 0.17 0.16 0.21 0.18 0.14

60 20 By 1777 1775 17.68 17.22 3.21 1381 2.69 2.72 3.58 4.31 2.05

By 37.73 37.69 37.54 36.58 3.78 1.12  0.90 1.58 2.92 1.70 1.05

60 60 By 0.24 0.25 0.31 0.57 0.24 454 041 0.34 0.24 0.25 0.23

By 0.03 0.03 0.03 0.04 0.03 0.22  0.03 0.03 0.07 0.05 0.03

6 200 20 By 9.72 9.84 9.55 5.73 5.36 6.67 6.42 6.14 4.38 4.44 4.52
By, 11.18 11.20 10.92  5.53 5.36 6.93 6.58 5.78 5.00 5.01 4.81

40 40 By 0.55 0.49 1.06 2.24 0.61 411 087 0.73 0.49 0.49 0.45

By 0.67 0.56 1.13 2.39 0.69 426 0.88 0.79 0.59 0.59 0.54

20 60 B4 1.33 1.19 1.73 2.27 1.19 475 141 1.34 1.36 1.42 1.39

By 1.16 1.09 1.54 2.40 1.11 452 125 1.19 1.22 1.29 1.25

60 20 B4 1.64 1.47 1.62 2.17 1.26 4.98 1.36  1.30 1.44 1.47 1.42

By 1.41 1.24 1.53 2.06 1.29 476 148 1.35 1.48 1.50 1.46

60 60 By 0.18 0.18 0.23 0.68 0.18 1.96 0.24 0.22 0.19 0.19 0.19

Ba 0.21 0.21 0.26 0.70 0.21 1.99 0.25 0.25 0.21 0.21 0.21

Notes: Numbers in the main entries are 100xMSEs of the estimates of 3; or B,5. Bai and Ng refers to Bai and Ng (2002)
Ona-ReSt refers to Onatski (2010), Ona-Eca refers to Onatski (2009) and AH refers to Ahn and Horenstein (2013).
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Table 5: Summary statistics

Variables  Description Mean Median SD Min Max Data sources

Dependent variable:

Growth Annual growth rate of 1.57 1.84 6.12 -70.89 76.75 Penn Table

real GDP per capita

Independent variables:

Young Age dependency ratio, young 66.02 72.92 23.15 19.34 106.43 WDI
(% of working-age population)
Fert Fertility rate (births per woman) 4.27 4.25 1.98 0.90 8.29 WDI
Life Life expectancy at birth (years) 62.21 63.98 11.78 26.82 82.03 WDI
Popu Population growth 1.92 2.05 1.38 -17.28 17.91 Penn Table
Invpri Price level of investment 88.36 62.33 174.75 9.88 2612.60 Penn Table
Con Consumption share 71.77 71.08 17.89 8.64 193.96 Penn Table
Gov Government consumption share 10.54 8.40 7.63 0.73 58.64 Penn Table
Inv Investment share 22.42 21.24 10.43 -11.50 80.12 Penn Table
Open Openness 59.56 51.97 37.21 3.78 377.79 Penn Table
Table 6: The number of factors determined by various methods
Bai and Ng AH
1C, 1Co Ona-ReSt ER GR AgLasso
Estimation without regressors 3 2 3 3 3 3
Linear estimation 3 3 3 1 1 3
Nonlinear estimation I 3 3 3 1 1 3
Nonlinear estimation II 3 3 3 3 3 3

Note: Bai and Ng refers to Bai and Ng (2002), Ona-ReSt refers to Onatski (2010), and AH refers
to Ahn and Horenstein (2013).

Table 7: Linear estimation

Young Fert Life Popu Invpri Con Gov Inv Open Lagl Lag2 Lag3
Number of factors=0
estimate  0.018 -0.001 0.019 -0.446  0.001 -0.026 -0.053 0.085 0.002 0.143 0.041 0.031
t-stat 0.987 -0.003 1.754  -1.103 1.215  -2.907*  -2.604* 5.598* 0.732  2.904* 1.521 1.160
Number of factors=3
estimate  0.026 -0.680  -0.011 -0.161  0.002 -0.083 -0.159 0.146 -0.011 0.060 0.017 0.035
t-stat 1.241 -2.382*  -0.390 -1.081 1.717 -5.013*  -4.153* 6.195* -1.842  2.094%* 0.753 1.706
Number of factors=>5
estimate  0.006 0.090 0.005  -0.441  0.000 -0.009 -0.157 0.264 -0.004 0.067 -0.064  -0.023
t-stat 0.127 0.159 0.148 -0.881  0.058 -0.319  -2.089* 5.002%* -0.360 1.277 -1.428 -0.501
Number of factors=8
estimate  -0.001 -0.040  -0.033 -0.234  0.003 0.003 -0.048 0.323 -0.006 0.092 -0.061 -0.046
t-stat -0.032 -0.094  -1.379  -1.209 1.461 0.153 -0.875 9.215%* -0.894  2.652*  -2.052*%  -1.507
AgLasso: Number of factors=3
estimate 0 0 0 -0.146 0 0 -0.075 0.226 0 0.044 -0.031 0
BC-est. 0 0 0 -0.174 0 0 -0.074 0.222 0 0.073 -0.003 0
t-stat 0 0 0 -1.437 0 0 -2.677 11.500%* 0 2.618* -0.145 0
Post-aglLasso: Number of factors=3
estimate 0 0 0 -0.065 0 0 -0.168 0.222 0 0.080 -0.009 0
t-stat 0 0 0 -0.554 0 0 -6.402*%  12.117* 0 2.787* -0.446 0

Note: BC-est. denotes the bias-corrected estimate. * denotes significance at the 5% level.

first, second, and third lag of economic growth, respectively.

o1

Lagl, Lag2, and Lag3 refer to the



Table 8: Nonlinear estimation I

Fert Popu Con Inv Lagl Lag2 Lag3 Lagl? Gov x Inv
Number of factors=0
estimate -0.145 -0.350 -0.021 0.128 0.128 -0.004 0.031 0.009 -0.002
t-stat -0.741 -0.729 -2.223%* 2.067* 1.476 -0.045 1.306 3.103* -0.998
Number of factors=3
estimate -0.101 0.052 -0.094 0.180 0.145 -0.047 0.014 0.006 -0.005
t-stat -0.352 0.122 -5.525%* 2.431%* 2.070* -0.769 0.663 3.009* -2.189*
Number of factors=>5
estimate -0.223 0.037 -0.027 0.350 0.082 -0.136 0.015 0.006 -0.003
t-stat -0.572 0.069 -1.371 3.513* 0.937 -1.687 0.515 2.629%* -1.304
Number of factors=8
estimate 0.187 -0.151 -0.029 0.362 0.057 -0.251 0.036 0.005 -0.006
t-stat 0.332 -0.211 -0.996 2.745% 0.520 -2.638%* 0.983 1.292 -1.401
AgLasso: Number of factors=3
estimate 0.579 -0.318 -0.038 0.303 0.015 -0.087 -0.009 0.003 -0.006
BC-est. 0.512 -0.351 -0.035 0.300 0.045 -0.052 -0.016 0.003 -0.006
t-stat 3.314* -2.317* -3.861* 12.84* 1.690 -2.245% -0.793 1.702 -4.807*
Post-aglLasso: Number of factors=3
estimate -0.151 -0.286 -0.104 0.219 0.052 -0.012 -0.003 0.003 -0.008
t-stat -0.709 -0.839 -5.434%* 7.423% 1.703 -0.499 -0.115 1.224 -4.536*

Note: BC-est. denotes the bias-corrected estimate. * denotes significance at the 5% level. Lagl, Lag2, and Lag3 refer to the
first, second, and third lag of economic growth, respectively.

Table 9: Nonlinear estimation IT

Fert Fert Fert Fert Fert
Life Con Gov Inv Lagl Fert? X Young X Life x Popu x Lagl x Lag2
Number of factors=0
estimate  -0.247 0.155 0.353 0.473 0.594  -0.489 0.065 0.017 0.564 0.005 0.004
t-stat -1.540 1.323 1.053 1.921 1.504 -1.871 1.778 0.852 2.273* 0.113 0.094
Number of factors=3
estimate  0.179 0.026 0.787 -0.020 0.391  -0.364 0.058 -0.020 0.143 0.010 -0.024
t-stat 0.629 0.137 1.155 -0.056 0.831  -0.974 1.147 -0.607 0.313 0.169 -0.480
Number of factors=5
estimate  0.216 -0.046 0.728 0.006 0.244  -0.426 0.057 -0.030 0.082 -0.011 -0.083
t-stat 0.919 -0.247 1.226 0.020 0.606  -1.143 1.139 -0.930 0.231 -0.192 -1.614
Number of factors=8
estimate  0.169 -0.107 0.445 0.043 0.065  -0.602 0.085 -0.028 0.231 -0.038 -0.052
t-stat 0.576 -0.504 0.669 0.122 0.150  -1.264 1.277 -0.729 0.571 -0.647 -0.931
AgLasso: Number of factors=3
estimate  0.018 -0.035 -0.059 0.084 0.145 0.003 0.003 -0.001 -0.045 -0.014 -0.001
BC-est. 0.009 -0.031 -0.054 0.081 0.178 0.001 0.003 -0.000 -0.049 -0.016 0.003
t-stat 0.566  -2.912*  -1.772  4.472* 3.101*  0.021 0.598 -0.074 -1.694 -1.406 0.632
Post-agLasso: Number of factors=3
estimate -0.043  -0.082 -0.252 0.139 0.321 0.003 0.002 -0.006 -0.033 -0.049 0.004
t-stat -1.126  -4.875*  -6.435*%  6.169* 5.611*  0.066 0.378 -0.865 -1.341 -4.250%* 0.936

Note: BC-est. denotes the bias-corrected estimate. * denotes significance at the 5% level. Lagl and Lag2 refer to the first
and second lag of economic growth, respectively.
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This supplementary material provides proofs for the technical lemmas and Corollary 3.4 in the above
paper. We also present some primitive conditions to verify some high level conditions in Assumptions

A1, A2, A4, and A5 in the text.

C Proofs of the technical lemmas in Appendix A

Proof of Lemma A.1. (i) From the principal component analysis, we have the identity (NT)™' Y'Y F =
FVnr. Pre-multiplying both sides by 7' F” and using the normalization T F'F = I yield T-F' (NT) ™"
Y'YF = Vyr. (i) follows provided V =plimVyr, which we show below.

(i) Let e = € + ¥4, (8 — Bl)Xs. Then lefl,, < llelly, + Xiy 180 — Bil IXally, < llelly, +
[0 B[ (I IXul2 )2 = Op(VN + VT) + Op(K) = Op(VN + VT) by Assumptions A1(i).
(iv) and (v) and A.3(i). Noting that ¥ =Y — Z,[f:l B X = A'FY 4+ e, (i) implies that

(T F'FO) (NTINN) (T FYF) 4+ dyp = Vr 2 V (C.1)
where
dyy = NIT72F e eF + (T F FOYNITI\YeF) + (NI LE XY (T FYF).

Noting that N~1T~2||F'e'eF|| < RN T-YT~Y|F||?} le||?, = N"'T10p (N + T) = Op(N 1 +T1),
NP Y \YeF|| < N=YHT2||F|[H{N-Y2T-12 |||} = Op(N~Y/2), and T~Y||FYF|| = Op (1),
we have [|dy7| = Op(T~* + N=Y/2) = op (1). Tt follows that (F'FO/T) (A" \°/N) (F"F/T) £ V.

We are left to show that V is the probability limit of Vyp. We discuss two cases: R = Ry and
R > Ry. The first case is studied in Bai (2003, Lemma A.3) who characterizes V as a diagonal matrix
consisting of the Ry eigenvalues of ¥y 0X po, arranged in descending order. In the second case, observe
that (T7*F'F0) (N7IAYX?) (T'FYF) has rank Ry at most in both finite and large samples. Let
Ainr =T~ FYEyy for [ = 1,2, and £y = N~'AY )% Then

A NrErAint Al yrEaAonT

(TflﬁﬂFO) (NflAOI/\O) (Tle[)/F) — N N
AL nrErAine  AjnrErAont



By Lemma A.3(ii) of Bai (2003), A} yrErAinT Lt Vi1, which has full rank Ry under Assumptions
A.1(ii) and (iii). This ensures that (F”F°/T) (AO/)\O/N) (FYF/T) has rank Ry in large samples and

A NTf] \AaNT £ 0. Then A} NTf] \AanT £ by Cauchy-Schwarz (CS hereafter) inequality. It follows

Vii O
that V= | ]

0
(iii) From the above proof and the fact that 3 is asymptotically nonsingular by Assumption A.1(iii),

we have Asyr £ 0 and AinT Lt A1 where Aq is an Ry X Ry full rank matrix.

(iv) This follows from (iii), Assumption A.1(iii), and Slutsky lemma. W

Proof of Lemma A.2. (i) Using Y — Y1 3, X, = AFY 4+ ¢ + 325 (8% — B)X and FOH =
(NT)"" FOAYXOFO'F yields

K ! K
F-F°H = (NT)™* Y—Zézxk> (Y—ZBZXk>F—FOH

k=1 k=1
= (NT) '€ eF + (NT) " FONeF + (NT) '\’ FVF
K K
+(NT) Z ( k- BZ) X} Z (51 Blc) X, F
k=1 p =1 p
+(NT) T PO S (80— BL) XaF o+ (NT) ™30 (8 - B ) XA O F
N k=1 N k=1 ~
1e’Z( Bk)XkFJr (NT) 12(5 ) 1 eF
k=1 k=1
= a1+ a2 +asz+as+as+ag+ay + as, say. (C.2)

It follows that T—||F — FOH|]> < 8T-' Y20 |la;||* by CS inequality. Similarly, we can write F(l) -
FOH(l) = Z?Zl aj(1), where a; = (ay(1), ay(2)) and a;(1y denotes a T x Ry submatrix of a; for [ = 1,2, ..., 8.

By Bai and Ng (2002, pp.213-214), T~ ||a;||*> = Op (657) for I =1,2,3 under Assumptions A.1(ii)-
(iii) and A.2(i)-(iii) as our assumptions also ensure their Lemma 1 to hold. By the facts that ||3° — 3°|| =
Op((NT/K)™), T-Y|F|1> = Op (1), (NT)™* | X = Op (1), N1 A" = Op (1), T|F'FO)| =
Op (1), and that Zszl ||X;€zs||52p = Op(NTK(N +T)) under Assumptlon A.1, we have

T df® < K2 ”4{T1HFH2}{NTK 1k§1|xk| }2—0P<K4<NT>‘2>,

T as* < KHBO—“{T-IHFHQ}{NTK éj:nxkn} ) HEOAY | = 0p(K2 (NT) ),
T lag|? < 2{T—1HF’FOH}Q{N*HAOHQ}{NTK Zuxkn }=OP<K2<NT>—1>,
T arl? < NPT P 60— 5 2{T1 Hﬁjf}n;&ki|x;e||2—op(K2<NT>2<N+T>>,




and

|2

T las|* < N7 27 ||6° -

K
{T_l HFHQ} INT Z IX}el|”> = Op(K? (NT) 2 (N +T)),
k=1

where 7y = NTK(N + T). Hence T-!||F — FOH||? = Op(655 + K2 (NT)™") = Op(65%) under
Assumption A.3(i).

(i) By the definition F = (NT) ™' Y'Y F and the identity (NT) ' Y'Y F = FVyp, T7||F—FOH||2 =
T~Y|FVyr — FOH||? = T~Y|Fy Va1 — FOHu)||? +T7Y|Fo)Vnr,22 — FOH9)||*. Then (i) implies
that 77| Fy)Vivrn —FOHy|[2 = Op(6y7) and T7Y|Fo)Vivra2 —F Hy)|[? = Op(d57). Noting that
V.11 is asymptotically nonsingular by Lemma A.1(i), we have T |F(1) - FOH(l)VNT Ll = 0p(63%).
In addition,

T [FOH ||

IN

- 2 - 2
o7 HF@)VNT,QQ — FYHy, H 47! HF<2)VNT,22H

= Op (oy7) +Op (T2 +N7') = Op (dy7)
~ 2
because 7~ HF(z)VNT,zzH < (e (Vvr,22)] HF@)H (R — Ro) [tpax (Vvr,22)]” and

i (VNT.22) = fimys (Vvr) < pign (T FFY) (NTIAVX0) (T FYF)) + ldwr |

= 0+0p(T" '+ N7

y (C.1), the calculation below it, Weyl’s inequality and the fact that [|Al|, < [|A[|. Observing
that 7! ”FOH(Q)H2 = T*Itr(H(g)HéQ)FO'FO) > fiin (T7PFYFO) [|[Hig)|[?, it follows that ||Ho)|| <
Op (057r) /[tiin (T FOF)]Y2 = Op (637 )

(iii) Writing 7= Y (F—FOH)' FO = Y0 | T~ a}F° = S0 | Ay, it suffices to show that || 4;]| = Op(dy2+
(NT/K)~Y2) for | = 1,3,...,8, ||A2]| = Op(N~1/?), and [[Aoy|| = Op(65%), where Ag(ry is defined
analogously as A with as being replaced by ap(1). By the definitions of a;’s in (C.2) and Assumption
A.1, we can readily show that ||A1]| = Op(6x%), |Az]| = Op(N~1/2), |As] = Op((NT)~'/?), ||A4]| =
Op(K2(NT)™"), and ||A;|| = Op(K (NT)™") for | = 7,8. For As, we have

N N
= N7 PR NN (80 - B) xpF
=1

K
Fo/Fvo/Z (B2 _Bz> X, F

k=1

N-l7-1/2 {TA HFO/FOH T7-1/2 HFH}UlNT,

145 = NTITT?

IN

e\
where viNT = HZJ 1 J ﬂ) Xj’- . Note that

Cap = ( ~)ZZXXJAO’AO( ) HBO 5” o ZZXXAO’/\O

i=1 j=1

Op ((NT/K)* ) Op (N*T) = Op (NK),



where we use the fact that under Assumptions A.1(iii) and (viii)

N N N N
[max (Z > XX, A(;’A?) = max POIDIP O OO

sem (e, r) sl =1

i=1 j=1 i=1 j=1
K K
= max tr (Z Z %m%nX(m)XEn))\O)\O/>
=51, c i) 1| 22]| =1 1 el
) K K
< P x SO sty (Xom X))
w=(oe1,000i) ||| =1 A

K K N T
= H)‘OHQ% max Zzzzﬂm%nxit,mxit,n

=(e15emi) ||| =1

N T
Y (zzxﬂxgt

=1 t=1

Op (N)Op (NT) .

It follows that [|As|| = N~'T-Y20p (1) Op (NY/2K'/?) = Op ((NT/K)~'/?) . Similarly, we can show
that ||Ag|| = Op (NT/K)~1/?) . It follows that

T~YF - F'H)YF° = Op(N~Y2 4 (NT/K)~'/?) = Op(N~'/?) under Assumption A.3(i),

implying the second part of (iii). In addition, by (ii) we have

[aoll = N7 | Fye x|
< N2 {H (F(l) - FOH(l)V];%,H) e’)\OFO’FOH n HVJ;;HH@)F%'AOFO'FOH}
< N7 || By = FOH Vi | [N [FFO)| + |[Vak o Ho || 1792 7P}

= N7'T? {op(Tl/Zang)oP(Nl/QTl/Q)op (T) + Op (1) Op(N'/2T'/?)0p (T)} =O0p (537) -

It follows that T~ (Eyy — FOH 1)) F° = Op(dx7 + (NT/K)~1/2).

(iv) Noting that T—Y(F — FOH)'F = T-*(F — FOH) (F — FOH) + T~ (F — FOH) F°H, the first two
parts of the result follow from (i) and (iii). To prove the third part, note that 7—(F — FOH)’F(Q) =
(Tﬁl(ﬁ’(l) — FOH(l))’F@), T’l(ﬁ’(g) - FOH(Q))’F(Q)). By the triangle inequality, the submultiplicative
property of the Frobenius norm, and (i)-(iii)

(Foy = F*H)' o

IN

)

! H(Fm ~ FPH)) (Fppy ~ FOH@))H
+77 |y = FoHy ) P [| o |

= Op(dyr) + Op(Byr + (NT/K)™/%)0p(03r) = Or(637),
and

T |[(Fay — FOHp) Fo|

IN

! H(F(z) ~ FOHp)) (Fo) — FOH(2))H

471 )

(Fioy = FOHe) Y F°|| [ He |

= Op(dy7) +O0p(N~V*)0p(d51) = Op(637).



It follows that 7~ (F — FOH)'F3) = Op(dy7). This proves (iv).

(v) In view of the fact that T—(F"F—H'FYFOH) = T-Y(F—FYH) (F—F°H)+T Y (F—F°H) F°H
+T-1 (FOH)/ (F'— FOH), the result follows from (i) and (iii).

(vi) Observe that

Pp,, = Prs, = Fu (F(nﬁ(l))ilﬁ('l) - I (F<1>F< )) E
= (B - ) (Bl F) (B —#0) + (B~ By ) (Bl B) Bl
A . -1 /. l R . -1
+F (ByFo) (B - Foy) + oy [(F&)F(l)) - (FthFry) ]Fm

by + ba + bg + by, say. (03)

By (v), T~Y|F) — Fiyll? = Op(6y7) and T_1||F(/1)F(1) - F)Fiyll = Op(Oy7 + (NT/K)~'/?). With
these, one can readily show that [|b1|| = Op(65%) and [|ba]| = Op(6 573 + (NT/K)~1/2). For by, we have
Iball < T2\ Fwy — Fgy 1 11T By Bray) T2 |Fy | = Op(55%). Noticing that b = b, we have
completed the proof of (vi).

(vii) Note that T-*H'FYF°H = (F'F°/T) (\Y\°/N) (F”F°/T) (A X°/N) (F”F/T) has rank Ry
in large samples by Lemma A.1(iii). As a result, 7; converges in probability to some positive number
i forl =1,..,Rp and 7, = 0 for I = Ry + 1,..., R. In addition, by (iv) and perturbation theory for
eigenvalue problems (e.g., Stewart and Sun (1990, p.203)),

= Al < [T T FY RO = Op(N V) for L =1, Ry

and
il =lm — 7l < [T E - T FYEOH = 0p(NV2) for L = Ro 41, R
It follows that 7, = 77 +op (1) for [ = 1,..., Ry and 7; = Op(N~Y/?) for | = Ry + 1,..., R. &

Proof of Lemma A.3. (i) By (C.3) we have

1 N
W;X&n (Pm PF{’1>) (Fm F(l)) i = Z \/—Zqu)bl (Fm - F(l)) i) = ZBZNT

Let ¢k, be an arbitrary K1 nonrandom vector with ||ck, || = 1. For By, noting that |tr (4)| <rank(A) || A4||

and [|b1|| = Op (057) , we can apply Lemma A.2(i), and Assumptions A.1(iii) and (viii) and A.3(i) to



obtain

|CIKOBINT| = (NT)71/2 tr

N
(Z N (1)Cro Xigny i (F(l) - F(*l))> ‘

i=1

N
< Ro(NT)™'2 3" Ny ey Xiay b (Fu)—F(*l))‘
i=1
N
—1/2 - * *
< Ro(NT)™'2 by HF(l)*Fu)H HZAM)C/KO i
=1

= (NT)"?0p (057) Op (T253}) Op(NT'?) = Op (NY2TV255} ) = op (1),

where we use the fact that HZf\Ll i) re Xiq) H = Op (NT'/?) by analogous arguments as used in the
study of ¢ony7 in the proof of Proposition B.1. It follows that ||Biyr|| = op (1). Similarly, using that
ba]l = Op (657 + (NT/K)_l/Q)7 Lemmas A.2(i), (iii) and (iv), and Assumptions A.1(iii) and (viii) and
A.3(i), we have

N
o Banr| < Ro (NT) ™/ b HF(l) _ S Nk Xl
i=1
= (NT) V20, (5NT+(NT/K)—1/2) Op (Tl/%;VIT) Op (NT1/2>
= 0 N1/2T1/2573 +K1/2671 —op(1
P NT NT P s
and
N
/ _ 1 / / r * SR o (f * *
i Banr| = Hﬁ ;CKOXM) (F(l) - Fu)) (Fu) (1)) F (F(l) - F(l)) Ai)

1/2 || £ 7 R -1 al
< ro vy 15| 5 (o = 5 | (7 ) [ M
=1
- (NT) Y20, (Tl/%;vl ) Op (5NT + (NT/K)*W) Op (1) Op (NT1/2)

= Op (NY2TV25505 + K263 ) = or (1).

For Bynr, using Lemmas A.2(i) and (v), we can readily show that Byyr = Banr+Op(NV2TV/25 2. (55 +
(NT/K)A/Q)) = Bsyr +o0p (1), where

Bsyr = \/%i 1(1)F(1 ( )F(*l))_l (ﬁ‘(l) - F(*l))l (F(l) - F(*1)> )\;'k(l).

By (C.2), we can write Bsy7 as Byyr = Zizl Z?Zl ﬁ Zfil Xl Foy(FEG)) ™ 1a;€(1)al(1)/\f(1) =
S S0 Banr (k, 1), say. Note that

N
1 et T *
> Xi)Foy (F) Fiy) ™ Flyy FOX" e NFY Fiay Ny = Bawr.

Banr (3.3) = e
i=1




In addition, one can readily show that Bsyr (k,1) = op (1) for k,l =1,...,8 with k # [ or k = [ # 3. For

example,
= 1 * * 1 n *
[Bsnr (L) = N5/2T5/2 ZXZ(I (1) (F(1I)F(1)> Fyye'ee’eFy) Ay
K, -1 (X
i=1

= NTRTTROL (NT)Op (N +T) Op (T7Y/2) Op (K *NTY?)

_ OP( KV (N2 Jr]\71/2T73/2)) =op(1),

< HVJG%,MH@)FO&I (F(l) - FOH(l)VJ\?%,u) elH < HVJ\771“,11H
| | B [ Py — POH Vigha |l = O (N2 703553 (172 & 702) = 0, (1
T'/?) by Lemmas A.1(iii) and A.2(ii) and Assumptions A.1(v) and (vii). Similarly

where we use the fact that Hﬁ(’l)s'

— 1 . -
|Bsve 22 = s ZXZU & (P (1)) Flye N FYFONeFy A,
= N5/2T5/2 HFﬂ)“OH |1 | Fy (FitvFiy) H{ZHXMH\ i H}

= NTO2T520, (NT?63%) Op (T) Op (T‘1/2> Op(KY2NTY/2)
= Op (K" NTV2TV2533 ) = op (1),

where we use the fact that HF’ s’/\OH < HV&% i FOE,/\OH+H Fl) — F°Hy )VA?% 11 s’/\OH < HVA?%’HHX
HH 1)” HFO /)\OHJFHF(D _ FOH(1)VN71~ 11” HE >‘OH = Op(NY2TV2 17126 L NV2T1/2) = Op (N1/2T5]—v}f)
by Lemmas A.1(iii) and A.2(ii) and Assumption A.l(vn). Consequently, ﬁ Zi:l i) (Pp(l) Pp(l))(F(l)
—Fy)Na) =Binr +op (1).

(ii) Let XA]F(I) = T’lﬁ’(’l)ﬁ’(l). Let cg, be an arbitrary Ky x 1 nonrandom vector with |cg,| = 1. Let
Anr = c'KUﬁ Zfil Xz{(l)(p(l) - F(*l))i];(le(*{)&- It suffices to show that Ay = OP(KS/QTUQ(SZ_VQT).
Note that

N
-1 -1 0 7 * -1 ||e-1 I
|Anz| = (NT)  tr <2F(1)Hg1)§ PV ke, Xl (F(l) —F(l))> < Ry (NT) HZF(UH |Hoy || Avr
=1

T R N - « . B .
where Ay = N~ FOsiche X (Fay = Py )| Noting that ||| = Op (1), and S5 s
asymptotically nonsingular by Lemma A.2(v) and Assumption A.1(ii), it suffices to show that Ayr =
KL/2 N ; X 8 N
Op(K, / T2537). By (C.2), T Hzizl FO/EiCQ(on{u)(F(l) - F(l))H =Y wrll it FO/EiCII(on{(l)al(l)||
= lel AinT, say. By Assumptions A.1(iv), (v) and (vii),

N
Z F%ce, Xjye'eFa

i=1

1

2
T vin llells,

AinT

Ro )
< — F

= (NT)’ (I)H

= (NT) 20p (NT)Op (N +T)Op (T1/2) — Op(NITYV2 4 7172,



where vinT = HZZ\;I Fo’aic'KoX;(l) H and we use the fact that

N N
Ving = ZZc}(OXg(l)Xj(l)cKOEQFOFO'si
i=1 j=1
NN V2 /0N 1/2
< ZZClKon{(l)Xj(l)CKoCIKOXJ/'(I)Xi(l)cKO ZZE}FOFO’QEQFOFO’EJ»
i=1j=1 i=1 j=1
N N 12y
2
< | DX XX Ximer, | D [F|
i=1j=1 i=1
1/2
N N N ,
< Hmax ZXJ(l)Xj/(l) Hmax (Z Xz/(l)XZ(l)> Z HFO/EiH - OP (NT) OP (NT) :
j=1 i=1 i=1

Let Hp = H(l)VJ\?%,ua which corresponds to the H matrix in Bai (2009). By the triangle inequality,

N
Aoy = (NT) 2| FYc, Xi FOA e Fyy,
i=1
N N )
< (NT) 2| FVeidi, X1 FONeFO Hp || + (NT) 72 || 3 FViche, Xy FOAe (F(l)—FOHB)
=1 i=1

AonT1 + AonT 2, SaY.

By Assumptions A.1(ii) and (vii) and the fact ||Hg|| = Op (1),

IN

AanT (NT) ™2 vanr || || FO|| |\ e FO|| || Hz |

(NT)"20p (NT) Op (T1/2) Op (N1/2T1/2) Op (1) = Op(N~1/2).

Similarly, by Lemma A.2(ii) and Assumptions A.1(ii), (iii) and (v)

IN

Asnrs (NT) 2 vanr || || FONe|| HF“) - FOHBH

(NT)"20p (NT) Op (N1/2T1/2(N1/2 + T1/2)> Op (Tl/%;vlT) — Op(TV2632).

It follows that Asyr = Op(T'/265%). By Assumption A.4(iii),
N ~
Z FOIEiCIKOXi/(l)E/)\OFO/F(l)

=1

(NT)"20p (Kg/ NT (N1/2 + T1/2>) Op (T) = Op (K;/ 2T1/25g2T) .

N
Z FO/EiCIKOXi/(l)&?/)\O HFO/F(I) H

=1

Asyy = (NT)™? < (NT)?

as
N 2 Ko 2
E Z c’ROFO/giC/KDXZ((l)E/)\O - E Z CkKOC/ROFOI€/Xk€/)\O
=1 k=1
Ko ,
< KoY G B (cp, FYeXie'\)" = O (KoN*T? (N +T)) .
k=1




For the other terms, following the arguments as used in the analysis of Proposition B.1 and using the fact
that v1x7 = Op (NT), we can readily apply Assumption A.1 to show that Aynr = Op(KN~1T-1/?),
Asyt = Op(KY2N1) for s = 5,6, and A,y = Op(KY/2(N-Y27-1/2 1 N—1)) for s = 7,8. Conse-
quently, h=||FVe'X(Fay — Fry))l| = Op(Ky/*TV/2657%) and (i) follows.

(iii) Note that
(B - F) s
(B - F) e
N N N —1 1 R /
Z XioFy {(F(m W)~ (FhEy) }(F(l)_F(*1)> &

XioFy (F<1)F<1

)
)

Mz

! *
X<1>F<1> ( FGOFoy

<.
Il

Ji+ J27 say.

By Lemmas A.2(i) and (iii), Assumptions A.1(iv)-(v), for any arbitrary Ky x 1 vector ck, with |ck, || = 1,

1 ~ N -1
~ ~ -1 -1
Ro (NT)™'/? {% HF&) 1) — FE?)H} H(TIF@)Fm) - (T*IF(*{)F&)) '

Ko 1/2
2
X { E |Xk|sp}

= (NT) 2 0p(03y)0p(05% + (NT/K) *)Op(NY? + TY?)Op((KoNT)'/?)
= Op (Kl/QKg/Q(s;“T).

IN

el

Hence ||.)2]| = Op(Kl/zKé/Qéf\,QT). For Ji, by (C.2) we have

—1 - * * * - I * !

V/NT ;Xl((l)F(l) (F(ll)F(l)> (F(1) - F(l)) €

8 1 N )

= ZZ N1/2T1/2 ZlXi/(l)F(l) (F(l)F(l ) ayyEi = ZANT say.
=1 =

One can readily show that Ay (1) = Op (K, K2 Snr) forl =4,5,...,8. For Ayt (1), we apply Assumptions
A.1(iv)-(v) to obtain

1

’clKoANT (1)‘ N3/273/2

1. Ko
o (Fu) (Fo ) (nE'EZ%Koe/Xk) ‘

k=1

Ko 1/2
3 2
el {z |xk|3p}
Sp k=1

(NT) 32 0p (1) Op(N?? + T3?)0p((KoNT)/?) = Op(KY*63%),

Ry

-1 .
!
< N3/273/2 Fay (F(l)F(l)) Fy




where we also use the fact that |tr (4)] <rank(A) || 4], , and the submultiplicative property of the spectral

sp?
norm, and the triangle inequality. Hence || Anr (1)|| = Op(Kl/Q(S_ ). Next, we decompose Ayt (2) as
follows:

1 N

-1

_ ’ * / 07 140/ 1207 ..

ANT(2) = TTM E Xl(l)F(l) (F(I)F(1)> HBF eENF &;
i=1

N
1 * * * -1 n !
+N3/2T3/2 ZXz((l)F(l) (F(ll)F(l)> (F(l) - FOHB) e\ FY;
i=1

= Apnr (2, 1) + ANt (2,2), sa;

By Assumptions A.1(ii), (iv), (v) and (vii),

N
1 -1
|C/[(OANT (2, 1)’ = ‘W ZCII(O ZI(I)F(*l) (F(*l/)F(*l)) H/BFOIE/)\O/FO/Ei
i=1
1 * -1 07 107 O/K0 /
N T F (Fu)F(l)) HpFUeA"FYY e, X
k=1
Ry —1 Ko ) 1/2
< N3/273/2 F(1 (F(1)F(1)) H}g HFO/E//\OIH HFUH ||€||sp {ank” }
_ (NT)73/2 Op (T—1/2> Op (N1/2T1/2> Op (T1/2> Op (N1/2 + T1/2) Op ((KONT)I/Z)
= Op(Ky*o5%).
Similarly,
1 -1 , . /
’C/](UANT (2,2)’ = ‘W ZCRU )F(l) (F(l)F(l)) (F(l) — FOHB) E’AO/FU/EZ‘
1 « b 0 L N0 O L /
= | | Fo (F(l)F(l)) (F(l)fF HB) ENFY Y ey’ X
k=1
R Ko 1/2
< ot [ () [ o] Her U e, { Y
k=1

= (NT)0p (T712) 0p (TV263)) Op (NV2TY/2) Op (TV2) Op (N2 4 T/2)
xOp ((KONT)1/2>
- Op (K;/ 2T1/251_\,2T) .

It follows that Ayt (2) = OP(K3/2T1/257\,2T). For Ayt (3), we have

N
1 / * %/ Tk -1 n 0407
Ant (3) = Smmgaz 2 X Fly (F&hFty)  FayF*\esi = Banr.
=1

This completes the proof of (iii).
(iv) By (C.2), %(ﬁ’(l) - F(Ol))’ai = ?:1 %ag(l)ei = 218:1 Ant (1), say. The proof is analogous to that

of Lemma A.2(iii) and we only show that Axr (1) = Op (%) for I = 1,2,3 as the analysis of the other
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terms is simpler. By the triangle inequality, the relationship between the spectral and Frobenius norms

and their submultiplicative property, and Assumptions A.1(ii), (v), and (vii), A.2(i), and A.4(iv),

lAvr (I = N7T72|| 7 eles:

< RN T2 || By | N, lil

= NT20p (TY2) 0p (N + 1) 0 (TV2) = Op (55%)

lAvr @) = NTT2|| By e AR | < N2 B | (|0 [P
— N'T20, (T1/2> Op (N1/2T1/2> Op (T1/2> — Op (N‘l/QT_l/Q) ,
and
lAnr @) = N7 By POX ]| < N2 ([ FO| 4|

N=1T720, (T) Op (N1/2T1/2 + T) = Op (JW1 + N*1/2T*1/2) .

This completes the proof of (iv). W

D Some primitive assumptions and technical lemmas

In this appendix we present two assumptions that replace some high level conditions in Assumptions
Al, A2, A4 and A5 in the text. They are also used to prove the technical lemmas in this appendix and
Corollary 3.4 in the next appendix.

Recall that D = o (F°,\°) and Ep (A) = E(A|D). Let All,p = [Ep(||A||%)]Y.

Assumption B.1 (i) max;<;<7 E||F?||¥7° < C for some 0 > 0 and C' < oo and T~ F F° L S >0
as T — oo.
(i) max;<;<y E||A0[[3+47 < C and N=1AYA° L5 50 > 0 as N — oo.

%747 and max; << x maxy<i<n1<i<r B | X x| < C.

(iv) maxi <<y T2 Y20, Ep (%) = Op (1) and maxi<i<r N1 Y1, Ep (¢%) = Op (1), maxi<i<,
max;<;<y T~ Y Bp(X2,) = Op (1) and max; <p< i, maxi<y<r N2 S0 Bp(X2,) = Op (1).
(V) maxi<<T N1 sz\il ||5it‘|g+4g7p =0Op (1) and maxi<ip<K, Maxi<i<T N1 211\;1 ||Xit,k

Op(1).

4 J—
|8+4a,D =

Note that Assumptions B.1(i)-(iii) strengthen the moment conditions in Assumptions A.1(ii)-(iv)
and A.2(i) and require finite eighth plus moments for Fy, )\?, X, and g4 to derive the asymptotic
distribution of our adaptive group Lasso estimator and to estimate the asymptotic bias and variance
terms. Admittedly, our moment conditions are generally different and may sometimes be stronger than
those assumed in the literature (e.g., Bai, 2009). For example, Bai (2009) only requires finite fourth
moments for Fy, )\? and X;; and finite eighth moments for £;;; but he assumes independence between

it and (X, F2, )\_(;) for all 4,7,t,s, and thus rules out dynamics in the model. Moon and Weidner
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(2013) assume eighth moments for e;; but they also assume that both the factors and factor loadings
are uniformly bounded. In addition, they assume that the error terms €;; are independent across both
i and t, which may rule out conditional heteroskedasticity in dynamic panels. Assumptions B.1(iv)-(v)
are needed to show some uniform results below.

To state the next assumption, we first provide the definition of conditional strong mixing processes.
Definition D.1 Let (2, A, P) be a probability space and B be a sub-o-algebra of A. Let P (-) = P (-|B).
Let {&,,t > 1} be a sequence of random variables defined on (2, A, P). The sequence {£;,t > 1} is said

to be conditionally strong mizing given B (or B-strong-mizing) if there exists a nonnegative B-measurable

random variable o (t) converging to 0 a.s. ast — oo such that
|Ps (AN B) — Ps (A) Ps (B)| <5 (t) a.s. (D.1)
forall Ac o (&,..,6), B€o (&t Eppeprr-) and k>1,1> 1.

The above definition is due to Prakasa Rao (2009); see also Roussas (2008). When one takes
a® (t) as the supremum of the left hand side object in (D.1) over the set {A € o (£y,...,&), B €

o (ng, Ehatals ) , k> 1}, we refer to it as the B-strong-mixing coefficient.

Assumption B.2 (i) For each i = 1,..., N, {(Xi,e:) : t = 1,2, ...} is conditionally strong mixing given
D with mixing coefficients {ajr; ()} ap () = aRp () = maxici<y oy, (-) satisfies ap (s) =
Oa.s. (s7?) where p = (24 0)/(1 + o) + € for some arbitrarily small ¢ > 0 and o is as defined in
Assumption B.1(i). In addition, there exist integers 7¢, 7. € (1,T) such that NTap (1¢) = 045 (1),
T(T + NY2)ap (1,) T/ = 5, . (1), and NV/2T-172 = o (1).

(ii) (g4, X;), @ = 1,..., N, are mutually independent of each other conditional on D.

(iii) For each ¢ = 1,...,N, E (¢i|Fnri—1) = 0 a.s., where Fyry = 0(D, {Xi 141, Xit, €its Xit—1,
Eit1y I 1)

(iv) As (N,T) — oo, KQPMNY2T=12(65% + anr) — 0 and KgNTap (M + 1)3T29/2F0)

0a.s. (1), where a7 is defined in Lemma D.2 below.

B.2(i) requires that each individual time series {(X;t,e;+) : t = 1,2, ...} be D-strong-mixing. To appre-
ciate the importance of conditioning, we take the simple panel AR(1) model considered by Su and Chen

(2013) as an example:
Vit =pYin1 + N F) ey, i=1,.,N, t=1,....T (D.2)

Even if {(gs, F) , t > 1} is a strong mixing process, {Yi;,t > 1} is generally not unless A is nonstochas-
tic. For this reason, Hahn and Kuersteiner (2011) assume that the individual fixed effects are nonrandom
and uniformly bounded in their study of nonlinear dynamic panel data models. In the case of random

fixed effects, they suggest adopting the concept of conditional strong mixing where the mixing coefficient
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is defined by conditioning on the fixed effects. Our spirit is similar to theirs as we define the conditional
strong mixing processes by conditioning on both factors and factor loadings. The dependence of the
mixing rate on o defined in B.1 reflects the trade-off between the degree of dependence and the moment
bounds of the process {(X;t,€:t),t > 1}. As Su and Chen (2013) remark, Assumption B.2(ii) does not
rule out cross sectional dependence among (X, ;1). When X, =Y, ;1 and €;; exhibits conditional het-
eroskedasticity (e.g., €;+ = 0o (Yit—1) €ix where €;; ~IID(0,1) and o (-) is an unknown smooth function)
as in (D.2), (X, i) are not independent across ¢ because of the presence of common factors irrespective
of whether one allows )\? to be independent across i or not. Nevertheless, conditional on D, it is possible
that (X, e4¢) is independent across 4 such that A.2(ii) is still satisfied. Note that here the cross sectional
dependence is similar to the type of cross sectional dependence generated by common shocks studied by
Andrews (2005), but the latter author assumes IID observations conditional on the o-field generated by
the common shocks in a cross-section framework. B.2(iii) requires that the error term e;; be a martingale
difference sequence (m.d.s.) with respect to the filter Fnr which allows for lagged dependent variables
in X, and conditional heteroskedasticity, skewness, or kurtosis of an unknown form in ;. In contrast,
both Bai (2009) and Pesaran (2006) assume that €;; is independent of X, A;, and F; for all ¢, ¢, j and s;
Moon and Weidner (2013) allow dynamics but assume that €;;’s are independent across both ¢ and ¢. The
allowance of lagged dependent variables broadens the potential applicability of our shrinkage estimation

method. B.2(iv) requires that M should not grow too fast.

To proceed, we remark that with Assumptions B.1-B.2, the high level conditions in Assumptions
A 1(vi)-(vii), A.2(ii)-(iil), A.4(iii)-(iv) and A.5(i)-(ii) can be easily verified. Assumption A.1(vi) follows
from Assumptions B.1(iii) and B.2(ii)-(iii) and Chebyshev inequality. Assumptions A.1(vii) holds because
BIIF"eN| = Sicijen Ticrser BlEp (cueis) FVFNYX)) = S5 S0 B [Ep () 11PN
= O (NT) under Assumptions B.1(i)-(iii) and B.2(ii)-(iil). Assumption A.2(ii) is trivially satisfied under
Assumption B.1(iii) and B.2(ii)-(iii) and A.2(iii) can be verified under Assumptions B.1(iii) and B.2(ii)
by the law of iterated expectations. Assumptions A.4(iii)-(iv) follow because we can show that
Ep HFO/E,X’CE’:IAOHQ = Z Z Ep (it Xis k€js€ir Xmr,kEmg) Fg'FtO/\?')\?
1<i,j,l,m<N 1<t,8,r,g<T
= Op(N*T*(N +T)) and
N N T T

Ep H)\O/ssi||2 = Z ZED [€jt€itEisChs) /\2/)\? =0p(T(N+T))
=1k

1k=1t=1s=1
under Assumptions B.2(i)-(iii) by the use of Davydov inequality for conditional strong mixing processes;
see, e.g., the proof of Lemma D.3(vi) below. Finally, Assumptions A.5(i)-(ii) follow under B.1-B.2 by
straightforward verification of the moment conditions for the martingale central limit theorem (e.g.,
Pollard (1984, p.171)).

To prove Corollary 3.4, we need several lemmas.
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Lemma D.2 Suppose that the conditions in Corollary 3.4 hold. Then

(i) maxs i [T S0, [ = Bp (3)]] = Op (anr);

(iiJmaxi <i<n T~ |lel|* = Op (1)

(#1) maxi<i<n ||T_1F0'6iH = Op (anT);

(tv) maxi<i<n HT*IXZ((UQH = Op(Ké/QaNT);

(v) maxi<i<n T4 || Xy ||* = Op (o) ;

(vi) maxcin [N || = op (N1/E+4))

(vii) maxycion T4 ||| XYy = Bo(X[0))| FO|| = Op (55 2anr);
where oy = max{(NT)"/**27) log (NT) /T, (log (NT) /T)*/2}.

Proof. (i) The proof is analogous to that of Lemma A.7(iii) in Su and Chen (2013) by using Bernstein
inequality for conditional strong mixing processes (see, e.g., Lemma A.4 in Su and Chen (2013)).
(i)maxi<icn T~ e < maxi<icn )T_l Yot [5% — Bp (e})] ‘ +maxi<icn (T3, Bp (E?t)‘ =
Op (ant)+ Op (1) =Op (1) by (i) and Assumption B.1(iv).
(iii) The proof is analogous to that of (i).
(iv) The proof is analogous to that of (i).
(v) Following the proof of (i), we can show that max;<;<n ‘T‘l 23:1 Xi/tu)Xit(l) - ED(XZ{t(l)Xit(l))‘
= Op (Koanr) . Then the result follows from this, Assumption B.1(iv) and the triangle inequality.'?
(v

i) By Boole and Markov inequalities, for any € > 0 we have

P ( max_[[A7]| > N1/(8+4a)6> < N max P(H)‘?H > Nl/(8+4o—)6)
l<i<N 1<i<N

< O max BT LA = v/
1<i<N

— 0,

where the last line follows from Assumption B.1(ii) and the dominated convergence theorem. It follows
that max;<;<n H)\?H = op(N'/(8+49)) The conclusion follows as one can write Ny = H(E)IA? and Hq)
is asymptotically nonsingular.

(vil) The proof is analogous to that of (i). m

Let Wnr =diag(vp, ..., ¥y7) and P = T30 Ep [e2] . Recall Wy =diag(th; 7, ..., Y y7) and
Yip =TV, =TS &2, where &; = (Bin, ..., &i7)-
Lemma D.3 Suppose that the conditions in Corollary 3.4 hold. Then

(i) \'U N A’ = Op (N);

(ii) \' (T~'ee’ = Ung) A’ = Op (N2 + NT-1/2) ;

(iii) H\PNT WU g — ig| = op (S3h NG+

= IMaXj<i<N
sp

19 Alternatively, under Assumption B.1(iii), the fourth moment of 71 HXi(l) Hz =71 Zthl Xz{t(l)Xit(l) is finite. Then

following the proof of (vi) below, we have max;<;<n 71 ||Xi(1) ||2 = oP(Ké/le/‘l), a rough bound that also suffices for
our purpose, but stringent conditions are required on the relative rates at which Kp, N and T pass to infinity.
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(iv) (NT) ™ || Fy N g Ay = FOX g X0 FY || = op (335 NY/H40))

1 ol ~ —
() (NT)"" (N O nrXiFy) — HEN Nt X, F) = Op (Oyr) for k=1, ..., Ko;
(vi) N73Ep |\ (T~'ee’ — Unp) Xp|* = Op (N1 +T71) fork =1,..., Ko.

Proof. (i) By Assumption B.1(ii) and (iv) A”¥n7A® < max <<y ¢;r H)\OH2 =0p(1)0Op(N) =
Op (N).

(ii) Under Assumption B.1(iv), T~ Ep [A”ee'\’] = SN MAN'T-1 ST Ep [62] = A Unr A" Let
ENT = Cp, (T’lx\o'ee’/\o - AOI\I/NTAO) R, where ¢p, is similarly defined as cg, with ||¢g,| = 1. Then

Ep (EnT) = 0. Noting that by Assumptions B.2(ii)-(iii)

Vir¥rr ifi=j#k=1
T2 T 2.2 i - . . .
E fi=k =1 =1 =k
T2 Z Ep [E’Ltgjtgk‘ssls] _ . Zt 1D [ ltejt:l 1 Z ‘ #J or 2 #j
t=1 s=1 Zt 125 1ED[zt8] ifi=j=k=I
0 otherwise
(D.3)
we have
= —140/ 0 2 /\Or 0~ 12
Varp (-:'NT) = ED {(C A ee )\ CRU) } — [CR())‘ \I/NTA CRU]

7 ~ ~ 2
= T 2Eptr [ee'\ R, cp A\ e’ \eRy o, A ] — [ A UnT A CR, |

2
N
—2 I RN
= T g g CRO)\ Aj CROCRO)‘k)‘l CroEp [citejtcrsEis) — [E CRo i CRosz‘|

+
~
&
(1=
(1=
[~
)
o)
[=]
>/
o
>/
o
Q
=
o
O
=
o
>/
gs)
>/
o
(‘.)
=
[=}
+
O
=
[=}
>/
o
>/
)
(‘}
=
S
=
9
:m

It follows that T—1\Yee’\? — /\OI\IINT)\O =0Op (Nl/2 + NT71/2) by conditional Chebyshev inequality.
(iii) Noting that &; = MF( )(Y}-—Xi(l)@(l)) and Yé—Xm)B(D = (Xi(1)5?1)+F(*1)>\*( )+5z) Xia )5(1) =
F(l))\ y + € where e; =¢; + Xl(l)(ﬁ(()l) —Ba)) + <F(*1) — Fl1)) A1), we have

& —ei=Mp ei—ei=—Pp e+ Mg [Xi(l)(ﬁ(()l) - 3(1)) + (Fyy — F(l)) f(1)} .

(1
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It follows that
T
bip —tir = T (g —cla) + T Z &3 — Ep(e)]
t=1
T

= 7! (egMF(l)ei - 52@) +T7> " [ef — Bp(e})]
t=1
_ 0 .
= T 15§Pp(1>€i +T 1B — By iy Mg, Xy (B = Bay)
— * * - * - * — 0 s
+T Ny (Fy — Fay) Mg, (F(y = Fay) Xy + 2T 15§Mﬁ(1)X¢(1)(5(1) —Bay)
2T el M, (F(y — Fiy) Ny + 2080 — Bay)' T~ X0y Mg, (F(yy — Fay)Ai)

6
T
+T Z [51215 - ED(szzt)]
t=1

=Dy + Dyp o + Dy s + 2DV 4 + DYip 5 + 2D 6 + Dy 7, say.

We bound each term in the last expression in order. First, by Lemmas A.2(vi) and D.2(iii),

_ —1 7 N _ . ) -1 / . .

max |Dip,| = @?&‘T gl (PF(l) Pp(l)) ei+ T 'e;Pry €
) =1 (-2 —1 07 770 —2 || 07~ |2
< HPF<1> —PF(*U 121%)%\[T leill® + timax (T~ F'F )122%>§VT HF 51”

= Op (6XIIT) Op(1)+0p (1)Op (Q?VT) =0p (6XIIT) .
By Theorem 3.3 and Lemma D.2(v),

2
0 z -1 2 —4 2¢—4
2 | Dty o < H’B(l) - /3(1)H 121%}5\7T | Xin||” = Op (Kody7) Op (Ko) = Op (Kgé ) -
By Lemmas A.2(i) and D.2(vi),
2
—1 * I
5 Db ST |[Fy = Fuo | ma

Using MF(I) = IT 7PF0 — (Pﬁ

(1

2
Afm” = Op (3%) op (NV@2)) = op (533N (44270

) — Ppo) and Pro = Pp(*l), we have that by Lemmas A.2(vi) and D.2(ii)-(v)
and Assumption B.1(i),

max \DwiT,4| <  max ‘Tﬁlngi(l)(ﬁ?l) - 3(1))‘ + max ‘T*ls;PFoXi(l)(ﬁ?l) - 3(1))’

1<i<N 1<i<N
+ max ‘T_lf{(Pﬁ PF(*n)Xi(l)(ﬂ(()l) _B(l)))

1<i<N v )

8% —3(1)‘){ max [T Xiq)|

1<i<N

IN

o [t (T FOFO)] 7 max T [l 772 || FO| max, 7742 | X

+ HPFu) — Prg, 158N T2 e 158N T HXi(l)H}
= Op(Ky?657)

X {OP(Ké/QaNT) +0p (1) Op (ant) Op (1) Op(K,'*) + Op (531) Op (1) OP(Ké/Q)}
= op (Oyr)-
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. —1
Using My = Ir—Pp = Ir—Ppo+(Ppo—Pp, ), the fact that Pro = P, , and Ppo = FO (FYF) ™" P,

we have that by Lemmas A.2(i) and (vi) and D.2(ii)-(v) and Assumption B.1(i),

max |Di;ps| < max ‘T ei(Fy — F( )))\;‘(1)‘+121i3é>§vT—

1<i<N 1<i<N
+1I<Illa<)§VT €i(Pry, ~ PF(*1>)(F(*1)7F(1))/\:(1)‘
< e T2l T2 | R - Foof| [N |

+ [t (T FYFO)] ™ max 771 ||} 70| T HFO’(F(*l) _F“))H max

1<i<N 1<i<N

A H

+ max T2 lle:l
1<i<N

—-1/2 R 7
T2 Ry - P | ma,

Xo

= 0p(1)Op (63) op (NY/EH17)) 1. 0p (1) Op (an) Op (035 + (NT/K) %)
xop (NYEH9)) 4 0p (1) Op (33r) Op (33r) op (NV/E49))

= op (SpNVEH).

— P«
‘ Fy oy

By CS inequality, maxi<;<nN }DwiT,ﬁl < {maxlgiSN ‘DwiT,Q} maxi<;<nN ‘DwiT,B}}l/Q _ OP(KO(;JT/‘?NU@JFALG))-
Lastly, maxi<i<n |D¢;r.7| = Op (ant) by Lemma D.2(i). Consequently, (iii) follows.
(iv) Observe that
oy
— (NT)! (F(l)x - FO/\O’> TN A FY 4 (NT) ' FON Dy (Fh)?\'(l) - FO/\O’)
_ A At N 1A at A A N
+(NT) ™ (B dyy = FOA”) W (BiyAy = FOAY ) + (NT) ™ By Ay (B — e ) Ay
I+ 1T+ 111+1V, say.

By the facts that

/ . . o )
HF(l  — FO\Y|| < H(F(l) — F(*l))/\({)H + HF(l)(/\(l) _ )\(1))/H
< HFM) - F(*l)H H)\E)H + Hﬁ'@)” Hj\(l) — X(kl)H

- Op (Nl/QTl/QSR,IT) L Op (N1/2T1/25z_vlcr>

by Lemma A.2(i) and Theorem 3.1, ||A| <rank(A)[|Al|, , and that [[A|,, < [[A]l, we have

sp?

11| < Ro(NT)™' max szHF(l)S\I—FO)\O/ [A°F

1<i<

(NT)™ Op (1) Op (NV2T'263) Op (NVATY2) = Op (33)

Similarly, |[IT]| = |I|| = Op (§y%) and |IIT]| = Op (65%) - In addition, |IV] < Ro (NT)™* ||Fy)A'|[2
max)<;<n [Vir — Vir| = 0p(6NTN1/(8+4")) by (iii). Hence (vi) follows.

(v) Observe that (NT) ™" (A& nr X Fly) — HEAY Oy p Xy, FAy) = (NT) ™ A= X HY) O Ny X F) +
(NT) " NUwaXp (B — Fryy) + (NT) TN (g —Wng)XiFlyy = Ji + Ja + Js, say. By Theorem 3.1

17



and Lemmas A.2(i) and D.3(iii), we can show that J, = Op(Jyy) for s = 1,2,3. For example,

-1 N \Ogpts
Il < Bo(NT)™ max || A~ NH

Xkl HF(*”H

= (NT) " 0p (1) Op(NY255)Op(NY2TV2)Op(TY?) = Op (3 5h).

It follows that (NT)_1 (X/quTXkF(l) — H+)\O/\I/NTXkF(*1)) = Op((S]_\,%r)
(vi) Let ED = N=3Ep |\” (T-'ee’ — Uny) X,||* . Note that

ED = N7Eptr {\” (T 'ee’ — Uny) Xi X}, (T e’ — Unr) A0}
= N73T72 Z Z Cijlm7tsr/\?711>‘?’

1<4,5,l,m<N 1<t,s,r<T

where C; i1 150 = ED {leitejt — Ep (itjt)] [etrEmr — ED (€1rEmr)] Xjs, ke Xis,k } - We consider four cases for
the individual indices {7, j,l,m} : (a) #{i,7,l,m} =4, (b) # {i,4,I,m} =3, (¢) #{i,5,l,m} = 2, and (d)
#{i,j,l,m} = 1. We use ED,, EDy, ED., and ED; to denote ED when the individual indices in the
summation are restricted to cases (a), (b), (¢), and (d), respectively. In case (a), we can readily verify
that C;jim ssr =0 @S Cijim tsr = Epleit] Ep €5t Xjs k] Ep[€1r Xis k]| ED]Ems] = 0 by Assumption B.2(ii)-(iii)
when # {7, j,I,m} = 4. In case (b), wlog we consider three subcases: (b1) i =j, (b2) i =1, and (b3) i =m
as the other cases can be analyzed analogously, and write the corresponding summations as F Dy, E Dy,
and EDyg, respectively. In subcase (b1), Cijim.rsr = Ep{leh — Ep (¢3)]1Xis 1} Ep(e1r X15,1) Ep(Emr) = 0
by Assumption B.2(ii)-(iii) and thus EDy; = 0. In subcase (b2) C;jjm tsr = Ep(€itir Xis k) ED (€56 X s k)
Ep(emr) = 0 by Assumption B.2(ii)-(iii) and thus EDyz = 0. In subcase (b3), we have (., 150 =
Ep(eiteir)Ep (et Xjs. k) Ep(€1rXis k) by Assumption B.2(ii). In view of the facts that Ep(eies) = 0 if
t #r, Ep(ejsXjs k) = 0if t > s, and that Ep (e, Xisx) = 0 if r > s by Assumption B.2(iii), we have

_ _ 2
EDy; = N7°T72 Z Z ED(5z’t5ir)ED(5thjs,k)ED(5erls,k)H/\?H
1<iAjA<N 1<t,5,r<T

— N372 Z Z ED(512t)ED(5thjs,k)E’D(5ltXls,k)H>‘?H2'
1<i£jAI<N 1<t<s<T

By the fact that Ep(e;:) = 0 and Davydov inequality for conditional strong mixing processes (e.g., Su and
Chen (2013, Lemma A.3)), we have |Ep(g;j: Xjs 1) < 8 HsthS-&-éla,D ||Xj57k”8+4o,D ap (t— S)(3+2o)/(4+2a)
for any t < s and any j. It follows that

2

N N
GAN—T 2 Z H/\(i)”z Z Ep(ey) ¢ N7 Z Hsjt”8+4a,D ‘lXjS,k||8+4U,D ap (s — t)(3+20)/(2+0)
j=1

i=1 1<t<s<T

IN

| EDys]

IN

N T o
64clNT {N1T2 Z Z ED(f':?t) H)\(z) HQ} Z op (7_)(3+2<7)/(2+2<7)
=1

i=1 t=1

= Op()Op(T71)Op(1)=0p (T7),
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where we use the facts that ¢jy7 = maxj<g i< N7* Zjvzl lejtllg a0 1 Xis,
(7_)(3+20)/(2+2J)

= Op (1) by As-

< 0o by Assumption

sumption B.1(v) and Cauchy-Schwarz inequality and that >~°7 | ap
B.2(i). It follows that ED, = Op (T7').

Now we consider case (¢). We consider three subcases (cl1) i =j #1=m, (c2) i =1 # j = m, and
()i =m # j =1, and use ED.1, ED. and ED.3 to denote ED when the individual indices in its

summation are restricted to these three subcases respectively. By Davydov inequality,

|[EDa| = N7T21 > " Ep{lel, — En(e})ler, — Ep(eh)) Xis k Xisn } N A
1<i#l<N 1<t,s,r<T

SN Y Y (o {h Eo(eh s 1B 1 B X 10 0]
I<iAISN 1<t#£s£r<T
+O0p (Nil)
< 64N T2 Z Z H5i2t”4+20—,D ||Xi37k||4+20,17 HleTHAHQO—, l H HA?H
1<iAI<N 1<t#s£r<T
xap (|s — t\)(1+0)/(2+0) ap (|s — 7«|)(1+<7)/(2+0) +0p (Nfl)
2
< Seonrmax||ehly 505 N T Z Z XN 1K g2 {Z% <1+0>/<2+0>}
+O0p (Nil)
= Op(1)op ((NT)l/(4+2U)) Op (N'T™') +0p (N7') =o0p ((NT)_1+1/(4+20)) +0p (N7,
where we use the facts that con7 = maxi<, s<7 N1 leil H8l27“||4+2a',D 1 Xs kMl gy 200 ||)\?||] = 0p(1)

by Assumption B.1(v) and Cauchy-Schwarz inequality, that max; ||512t||4+20 D= OP((NT)I/MHU)) as
E[Hs%t|}4+20 ) 127 = Eley[*t17 < oo by Assumption B.1(iii), and that Y->7 | ap (r) I+ @) — op (1)
by Assumption B.2(i). Next, noting that Ep (e;1€ir) = 0 if t # r and Ep (€67 Xisx) = 0 of t # 7 and

max (t,7) > s by Assumption B.2(iii), we apply Davydov inequality to obtain

‘EDc2| = N73772 Z Z Ep (EitEiTXis,k) Ep (EthjTst,k:) )\?/)\?
1<iAj<N 1<t.r<s<T

< N73T72 Z Z |Ep (gitgirXis k)| |1 ED (€5t 5r Xjs,k)| H>\?H HA?H
1<i#j<N 1<t,r<s<T
< NPT N Y |Bp (eusir Xas) [ 1B (5025 Xgo ) [N I + Op (N )
1<i#£j<N 1<t<r<s<T
< 128N73T?2 Z Z ||5it€iT||4+20,D ||Xi87k||8+40—,1) ||8jt||8+4g’"D ngTstuk”AlJng,'D
1<i#j<N 1<t<r<s<T
< XN A e (5 = ) HAVEHD oy () EHADEHD 4 O (N1
<

128¢znr max[|eielg .4, p max || Xis,

N T
{N—QT—QZZHMW,D||A?||}

i=1r=1

2
{Za (5+4U /(8-‘1—40‘)} +OP (Nfl)
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= Op(1)op ((NT)l/(8+4")> op ((NT)1/<8+4<’>) Op (N"'T™Y) Op (1) + Op (N71)

= op ((NT)—1+1/(4+20)) 1 0p (N‘l) :

where csyr = maxg s, N ! Zjvzl lejtllsyaop €5 Xjskllsyo0 D H)\?H = Op (1) by Assumption B.1(v) and
CS inequality. In addition, noting that Ep (€it€ir€jt€jr Xjs e Xjs k) = Ep (€it€ir) Ep(€jtcjr Xjs kXjs k)
and the last expression is zero if either ¢t # r or max (t,7) > s under Assumptions B.2(iii), we have
EDul = N ST,y Srcecnr o (2) ol 32,0 [N = 0p (N71). Tn sum, £D, =
Op (N"2+T71Y) + op((NT)~HYEH29)) = Op(N~1 4+ T71).

For case (d), we can also consider the application of Davydov inequality when the time indices (¢, s, 7)
are all distinct. Straightforward calculation shows that EDy; = op (N*Q(NT)U(HQJ)) = op (Nfl) .
(Note that one can obtain a rough bound for EDy by N~*T~20p (NT?) = Op (N~2T) without the
need to apply Davydov inequality.) Consequently, we have shown that ED = Op (N -4 T_l) .

Let ®nr =diag(qy, - pry) and o,y = N71 Zf\il Ep [e?t] . Recall ®nr =diag(P s -, Gy and
. 1N 4
gptN = N ! Zl:]. E,th.
Lemma D.4 Suppose the conditions in Corollary 3.4 hold. Then
(Z) FY (N*lels _ (I)NT) FO=0p (T1/2 +TN71/2) ,
(“) HéNT — PN = MaxXi<¢<T “lth — <ptN| =op (6;\]}11]"1/(8"!‘40)) ;
5D

(iii) T3Ep | Xy (N'e'e — Dyr) FO||* = Op (N71) + op (T~ TH40)/(+H49)) for | =1, ..., K.

Proof. (i) The proof is analogous to that of Lemma D.3(ii) and thus omitted.
(ii) The proof is analogous to that of Lemma D.3(iii) and thus omitted.
(iii) Note that

T3 Ep X, (Ve's - ) PO
= T % [Xy (N7lee — Oyp) FOFY (N7le'e — Q) X}

= TN ) > En{lejicis — Ep (e5i2)s)] [erja — Ep (08j9)]} Bp [Xitk Xig 1] FY'FY
L<iAJ<N 1<t,5,7,q<T

N
+T73N~? Z Z Ep {[itcis — Ep (cit€is)] [eirciq — Fp (eirciqg)] Xit x Xiqi } FY F?
i=1 1<t,s,r,q<T
I+ 11, say,

where the second equality follows because <;jirstq = Ep{lejtcjs — Ep (€j:€5s)] [€1rerg — Ep (€1r€iq)] Xit ke
Xiqr} = 0 under Assumption B.2(ii)-(iii) if #{i,j,k} = 3 or j =i # lor | = i # j. To study I,
we consider three cases for the time indices {t,s,r,¢q} inside the summation: (a) #{¢t,s,r,q} = 4, (b)
#{t,s,m,q} = 3, and (c) all other cases. We use I,, I, and I, to denote I when the time indices in the

summation are restricted to cases (a), (b), and (c), respectively. Apparently, I, =0 and I. = Op (T7)
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under Assumptions B.2(ii)-(iii) and B.1(i) and (iii). In case (b) noting that under Assumption B.2(iii) we

always have

Ep {[ejiejs — Ep (gjt€js)] [ejrejq — Ep (€jr€jq)]}

= Ep(ejigjseireja) = Ep (€5ig)s) Ep (€5r€jq) = Ep (€j1€55€5r€54) »

wlog we can assume r = ¢ and then consider two subcases (bl) max(t,s) > r and (b2) r > s > t.
Accordingly, we define I, as I, but with the time indices restricted to subcase (bs) for s = 1,2. Noting

that Ep (gjt€j5€jr€j9) = Ep (EthJSEQ ) = 0 in subcase (bl), I1 = 0. For subcase (b2) we apply the

Jgr

Davydov inequality for conditional strong mixing processes to obtain

}E’D (5jt5J553r)| < 8 ||8jt€js||4+20 D Hg ||4+2U D (T - S)(1+g)/(2+0) .

Consequently, we have

o] = TN > > Ep(cjgjsel,) Bp [XiwXirk] FYFY
1<i£j<N 1<t<s<r<T
< ST 3N 2 Z Z ||8Jt€]8||4+20 D H6 ||4+20 QD (r— s)(1+a)/(2+a) |ED [Xit,kXir,k] FSO/FS‘

1<i#£j<N 1<t<s<r<T

L e W il 2} 3 am 047/

= T lop (TY6419) 0p (1) Op (1) = 0 (T‘(7+4")/(8+4")) :

IN

where we use Lemma D.5(i) below, the fact that cyn7 = maxi<y s <7 N7 Zj\;l lejtllg s l€islg a0

X HEETH = Op (1) by Assumption B.1(v) and Cauchy-Schwarz inequality, and the fact that

4+4+-20,D
N T T
T_2N_1 Z Z HXit,k”Qp Z ||X’iT7k‘|2,D ||F79”
i=1 t=1 r=1
1 NI 2
< —T—lN—lzzED X))+ = T 1IN- 122% X2 ) IE | =0p 1)+ 0p (1) =0p (1)

i=1 t=1 i=1r=1
by Cauchy-Schwarz and Markov inequalities. Tt follows that I = op(T—(7+40)/(8+40)),

For 11, we consider two cases: (a) # {t,s,r,q} =4 and (b) #{¢t,s,r,q} <3, and write [T = I, + I,
where I7; is defined as IT but with the time indices restricted to case (I) for | = a,b. Apparently, 11, =
T3N20p (NTQ) =Op (N_l) . For case (a), Ep {[eircis — ED (€it€is)] [Eir€iq — ED (€ir€iq)] Xit kXig.k }
= Ep [euciscireiqXit k Xigk] = 0 and thus I1, = 0. It follows that /T =Op (N7'). m
Lemma D.5 Suppose the conditions in Corollary 3.4 hold. Letes = (€14, ...,ent) and &y = (E1g, -, Ene)
Let X.5 1 denote the sth column of the N x T matriz Xy.Then

(i) maxi<¢<p HFtOH =op (Tl/(8+4")) ;

(it) maxy<p<r N71 leq]|* = Op (1);
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(iii) maxi<i<r N1 | A”e.|| = maxi<i<r HN—l SN ey
(iv) maxi<i<r N~ | X4|)* = Op (K);

(v) max)<y<p—pr maxpcs<prnr N° |6{tX.S7k —Ep (sftX.syk” =Op (arn);
(vi) maxy<e<r Hﬁ’tu) - FJ‘(UH = Op (1)

(vii) maxi << Hﬁt(l) H = Op (TY?6 ) + op (TV/ B+

(viti) maxi <<y maxi<¢<7 |&it — €| = op (1) ;

(iz)maxy <i<7 N7t |64 — eql? = op (1);

=Op (arn);

where 0,y = Op (5]7\,17«) + op (aTN + N_l/QTl/(S“"l")) and ary 18 analogously defined as ant by in-
terchanging N and T.

Proof. (i) The proof is analogous to that of Lemma D.2(vi).

(ii) Note that maxj<t<7 N7 |le. t|| < maxj<i<r [N~ ZZ 1 €% — Ep (¢)] |+ maxi<p<p [N~ ZZ L
Ep (€2,) |. Analogously to the proof of Lemma D.2(ii), we can show the first term is Op (arn). The
second term is Op (1) by Assumption B.1(iv). Thus (ii) follows.

(iii) The proof is analogous to that of Lemma D.2(ii).

(iv) The proof is analogous to that of (ii).

(v) The proof is analogous to that of Lemma D.2(ii).

(vi) Write Ft(l) - Ft*(1) = 218:1 a1y where ayy(1y denotes the transpose of the tth row of a;()
and recall a; = (1), ay2)), | = 1,2,...,8, are defined in (C.2). By (i)-(iv), we can readily show
that maxi<i<r ||a1en)|] = Op(Sx7), maxi<i<r ||age)l] = op (N /2T EH)) max) <ycr ||agi)l| =
op (arn) , maxi<i<r ||ase || = Op(NT/K) ™), maxi<o<r |lasy || = op (NT/K) =21 (+49)) max; <y r
llage |l = Op((NT/K) /%), maxi<i<r |lazyyl| = op (KY2N~IT=H2TY EH49)) and maxi <i<r [|asi)
= Op(K'2(NT) ™" (N2 + T'/2)), where, e.g.,

= <
pixlaa] = s OO [Be'ed < R0 [Fo| ety s, el

(NT)™ 0p (T'2) Op (N2 4+ T'2) Op (N'/2) = Op (05F) -

Fyay = Fly || = Op (mne)-
(vii) By Lemmas A.2(i) and D.5(i), max; Hﬁt(l)H < maxt||ﬁt(1) — FtoH(l)H + maXtHFtOH(l)H
Op(Tl/Q(sng) + OP(TI/(8+4U)).

N

F(l)/\ ) +ei where e; =¢; —I-XZ(1 (B B ) ( 1y~ F(l))/\i(l), we have

It follows that maxj<¢<7r )

éi—Ei:Mﬁ

0 o * - *
0,6 — & =—Pg g+ Mg [Xiu)(ﬂu) =By + (FH) — F(l)))‘i(l)} :
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It follows that

A . 1 ) R
&ir—en = Ky (F(/l)F(1)> Flyyei + Xawy) (8L — Bay) + (Fiay — ) o)

R n “ -1 ~ n R R -1 . R N
_Ft/(l) (F(ll)F(l)) F(ll)Xi(l)(ﬁ(()l) - 5(1)) - Ft/(1) (F(/1)F(1)) F(Il)(F(l) - F(l)))‘i(l)

V1t + Doir + Vit — Vi — Usie, say. (D.4)

Noting that 91, = Ft'(l)(F('l)ﬁ'(l))_l(ﬁ'(l) —F°H))'e; + ﬁ’t'(l)(ﬁ’(l)F(l))_lHél)FO’ei, we have by Lemmas
D.2(ii)-(iii) and D.5(vi)

~ ~ ~ -1
max [J1| < T’lmtaXHFtu)H H(TlF(nF(l))
)

| Eay = F*He || max e
+7! m?x‘

- 7! [op (T1/25;\,1T) +op (T1/<8+40))} Op (1) Op (T1/25;,1T) Op (T1/2>
+7-1[0p (TV263%) + op (TV/+19))] Op (1) Op (1) Op (Tant)

= Op (T1/2(5]—VQT + TI/Q(SX/lTOéNT) +op (Tl/(8+4g)) Op (611717“ + aNT) = op (1) .

~ ~ ~ —1
Fuo | H(T_lFEDF(l)) H [ H || max || FOi|

Noting that max; ¢ ||Xz-t(1)” = op ((NT)l/(8+4U)) by Assumption B.1(iii) and Markov inequality, by

Theorem 3.1 we have
max [9a:] < (|80 — By || max | Xiegn || = op (K035 (NT)VEH49)) = o0 (1).

By Lemmas A.2(i) and (iv), Lemmas D.2(v)-(vi), and Theorem 3.1, we have

el < [ Figy = P ma [ |
—_ |:OP (61—\7:}) +op (aTN +N71/2T1/(8+4(7)>:| op (Nl/(8+40')) =op (1),
N . . . -1 .
H}%X|ﬂ4it| < Hﬁ?n *5(1)”111?)(‘3(1)” H(F(/1)F(1)> F(/1) m?XHXi(l)H
= OP (5]7\;211) [OP (T1/25]7\/'1T) +op (Tl/(8+40)>] Op (T_1/2> Op (T1/2> = op (].), and
. PN -1 N .
it = w8 ) " 0~ e |

(0p (TV2631) + op (TV &) | Op (T71) Op (To37) 0p (NY/EH49) = 0p (1),

(ix) maxy ;< N7 [y — el|” = maxi<ocr N7V (i — e0)? < maxi<icny maxi<ocr (it — €it)’

=op (1) by (viii). =

E Proof of Corollary 3.4
By the definitions of B?l) and By, we have
Cr,VNT(B1y — Bhy) = Cio VNT(B(1y — B) — Byr] — R,
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Where RNT = CKOD;&) [(ElNTf]BlNT)f (BQNTfBQNT)f (EgNTfﬁgNT) — (B4NT*E4NT)]~ By the pI‘OOf
bﬁm — Dpo|| =op (1) and Cg,[v NT(B(l)_B(()l))_BNT] 4N (0, im(n, )00 Cr, VNrCl,) -
. =0op (1) .

sp

of Theorem 3.3,

sp
It suffices to show that B,y — By = op (1) for 1 =1,2,3,4, and HYA/NT — VNt

First, we show (i) Binr—Binr = op (1). Let Biny = N=/2T3/2 08 X1 Fpy [ |7V FO
)\OI\I/NT)\OFO'FO))\E). We prove (i) by showing that (i1) Byxy7 —Binr = op (1) and (i2) BinT —BinT =
op (1). To show (il), let cx, = (c1kys - CKoK,) De an arbitrary Ky x 1 nonrandom vector such that

llex, || = 1. By Lemma D.3(ii) and Assumptions A.3(i) and A.6(i), we have

|y (Bint — BinT)|

Ko
= NTPTRIN o te {F<*1>(F<*1/>F(*1))_1F('1)F0 AT tee’ — W)\ FO'F(l))‘?bX’C}

k=1

[ ) ) Ko 1/2
< NPT ee! — Tnr) )| HF(*I)(F(*{)F(*U)”H HF(1>F°H I/\&)II{ZIIXMIZ}
k=1

= NTRTTROp (NY2 4 NTTV2) 0p (T71/2) 0p (T2) Op (NY/2) Op ((KoNT)' )

- Op (KS/2(N71T1/2 JrNf1/2Tf1/2)> —op (1).
To show (i2), we make the following decomposition:

BinT — BinT

N
— N75/2T73/2 Z le(l) [F(l) (F(ll)F(l))71 _ F(*l) (F(*1/)F(*1))71]F(/1)FO)‘OI\IINTAOFO/F(I)A:(l)

i=1

N
A A A ~ A ~/ A ~ A ~ *
+N—3/2=3/2 E Xz{(l)F(l)(F(Il)F(l))ilF(ll)[F(l)A(l)\IJNT)‘(l)F(/l) - FO)‘OI‘I’NT)‘OFO/]F(l)Ai(l)
i=1

N
—5/277—3/2 P T 2 Y PPN .
+NTPET /ZXZ{(l)F(l)(F(Il)F(l)) F(/1)F(1))‘(1)‘I’NT)\(1) ('1)F(1)()\i(1)—>\i(1))
i=1
= DBin1,1+DBinT2 + DBiNT3, say.

Let vinyr = HZfil )‘;'k(l)CIKOXi(l)H . Following the analysis of ¢on7 in the proof of Proposition B.1,
sp
we can readily show that viy7 = Op(NT'/?). Then by Lemmas A.2(i) and (v), D.3(i) and (iv) and

Assumption A.3(i), we have

N—5/2T—3/2

IN

ViNT

~ N N —1 —1 - 2
[Fﬂ) (F(1>F<1>) — Fy (F<*1'>F<§>> ]HF(DFOH A" @y A?|

N=P2T=320p(T~125 () 0p (T?) Op (N) Op(NTY?) = Op(N~/2TYV25 (1) = op (1),

o DBinT |
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and

N—5/2T—3/2

IN

~ ~l oA ~ ~ - 2
HF(l)/\(l)\I/NT)\(l)F(Il)—FO/\O/\I/NT)\OFO/ HF(DH VINT

Fay (F('l)ﬁ’u))il

— NO27320, (T*W) op (NT(SR,lTNl/ (8+40>) Op (T) Op(NTY/?)

/
ko DBiNT 2

_ OP(N71/2T1/25;V}TN1/(8+40')) =op (1) .

It follows that ||DBin7,| = op (1) for I = 1,2. In addition,

N
— _ A Al A ~ N ~ 2
IDBinrsll < NTVRT2 |F My Enrdn | || || X 1w |
=1

n U n -1 N *
Fay (FmF(l)) Ay — AimH

N75/2T73/2

IN

VI N 7 = 1212 % *
HF(l)M)‘I’NTA(l)F(’l)H HFmH VINT H/\u) - A(UH

Fuy (F('l)ﬁm)_l

= N5277320, (T‘1/2) Op (NT)Op (T) Op(KL2NV2TV/2)0p (NWT—W)

= Op(Ké/QNfl/Q) = op (1) under Assumption A.3(i),

where vonT = vazl HXz(l)H2 = OP(K()NT) It follows that BlNT *BlNT =op (1) and BlNT —BinT =
op (1) .

Second, we prove (ii) Bon7—Bont = Op (1). Let Bonr = N-1/2p-3/2 Zf\il XZ{(DMFO‘I)NTF(D)\:Q)-
We prove (ii) by showing that (iil) Boyr — Boyr = op (1) and (ii2) Bong — Bont = 0p (1). Note that

N
Bony —Bony = NV2T7323 X[, (N7'e'e — Onr) FOH)A

=1

N
NS X P (FOF) Y (Nt = ) PO
i=1

N
ANTETN X Mpo (NT'ee — @) (Fu) - FOHB) Ain)
i=1

I+ 11+ 111, say,

where recall Hg = FOH(l)V]ﬁl«,n. Let ¢k, = (C1kys -+ CKoK,) De an arbitrary Koy x 1 nonrandom vector

with ||ck, || = 1. By Lemma D.4(iii) and Assumptions A.1(iii) and A.3(i),

N—1/2T—3/2

Ko
Z CkKotr (Xk (N_lé'lE — (I)NT) FOAOI)
k=1

Ko 1/2
{T‘?’ZHXk (Vie'e ) F0||2} (=2 o))
k=1

= K2 [OP (N—1/2> Top (T—(7+4a)/(16+80))] Op (1) = op (1)

|k 1|

IN

It follows that ||I|| = op (1) . Similarly, by Lemmas D.4(i) and A.2(ii) and using vy y7 = Op(NT?), we
can show that ||IT|| = Op(NY2T~' 4 T-1/2) = 0p (1) and ||[I1I|| = 6570p(1 + NY/2T=1/2) = 0p (1).
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Consequently, Boyr — Bayr = op (1) and (iil) follows. To show (ii2), note that Bonr — Bony =

N3N X{(l)(Mpm‘i)NTFu)j\m) - MFOq’NTFu))\f(l)) = DBont1 + DBaont2 + DBant 3,

where

N

DBant1 = N~Y2p=3/2 ;Xz{(l) (MF(U N MFO) LA ACORVIEHE
N ~

DBynro = NV2773/2 ZXz{(l)MFO (‘I)NT - (I)NT) FyAiys
i=1
N ~

DBon73 = N—Y2p=3/2 ZX;(UMFU@NTF(I) (/\l(l) - /\;k(l)) :
i=1

By Lemmas A.2(vi), D.4(ii), and Theorem 3.3, we can readily show that | DBaoy71|| = Op(NY2T=125 L),
|DBanra| = Op(NV2T=1/25, 1TV 3+49)) and || DBy 3| = Op(NY2T—1). For example,

N 1/2
_ 1
T—1/2 {ﬁ ZC/KOXi/(l)Xi(l)CKO}
=1

|y DBanta| <
1 N y o A o 1/2
X {T Z/\z(l)F(ll) GVT (MF(I) — MFO) (Mﬁ(l) — MFO) (I)NTF(I)/\i(l)}
- N 1/2
< T2, (% ;xg(l)xi(1)> HPF(U — Ppol| | ne ; 172 HF@)H a2

T720p (1) Op(6y7)Op(1)Op(1)Op(NY2) = Op(NY2T 71251,

2 N _
Xi|| - 1¢ follows that Boyr — Bawr = op (1).

N
where vayr =)0, ‘

Third, ‘we prove (111) EgNT - EgNT = O0p (1) Let BgNT = (B3NT,17 ---7B3NT,K0)/a where ESNT,k =
Wtr{[F(*l’)F(*l)]_113’('1)F0A0/\I/NTXkF(*1)}. We prove (iii) by showing that (iiil) Bsy7—Bsnt = op (1)
and (iii2) Bsyrx — Banrx = op (1) for k = 1, ..., Ko. For (iiil), we have by Lemma D.3(vi) and A.6(i)
and Assumptions A.3(i) and A.6(i)

Ko
_ 1 1
|CIKO (BgNT — B3NT)| < W ZCkKotr |:(F(*1/)F(*1)) F(Il)FO)\O/ (T—lssl _ \I/NT) XkF(*l):l
=1
1 -1 . Ko 0 2 2
< eEriR ( (*1'>F(*1)> Fiy)F° {ZH’\/(Tleel‘I’NT)XkH } HFEE)‘
1=1

_ N_3/2T_1/2OP(1)0P(Ké/2N3/2<N_1/2+T_1/2))Op (T1/2)

= Op(KA(NTV2+T712) =0p (1).
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For (iii2), we decompose ¢, (Bsnt — Bsnr) as follows

Ko
A = 1 T -l a -1 0| 0 *
CIKO(IB:;NT *]B3NT) = —N3/2T1/2 ZCkKotr{[(F(/1)F(l)) (Il)F — (F(l)F(l)) F(Il)F :| A '\IJNTXkF(l)}
i=1

Ko
1 of RPN p r 0 *
+N3—/2T1/2 ZCkKOtr { (F(/l)F(l)) F(/l)F |:>\ \IJNTXkF(l) — H+>\ I\I]NTXkF(l):|}
i=1

DBsnr1+ DBsnro.

By Lemmas A.2(i) and (v), and D.3(v), [DBsnr,1| < Op (657%) Ro maxi<i<n 1,y N~3/2T71/2 HH“‘)\O/H
|| ||{2 Xk )PYY2 = Op(K/PN=Y/2TY/25,2), and similarly [DBsyr.2| = Op(Ky/2N=1/2T/25 L),

It fOHOWS that EgNT - BgNT = Op(l) and BgNT — BsnyT = 0p (1) .

Fourth, we prove (iv) BynT — BunT = Op (1). Let Bynr = (IE%4NT’1, ...,IE%4NT’KO)', where IEL;NT’;Q =
Ep (Bantk) = ﬁtr[PFoEp (e’)_(k)] . We prove (iv) by showing that (ivl) Rynt = Byt — Bant =
op (1), and (iv2) Bynr —Bynr = op (1) . We first show (ivl). Note that the kth element of Ryn7 is given
by Ranrx = (NT) ™ *tr{ Pro [¢/Xy, — Ep (€'Xy,) — € Ep (X)]} . Apparently, Ep (Ranrx) = 0. Let 1,
be a Ky X 1 unit vector with 1 in its kth position and zeros elsewhere. By Assumption B.2(ii) and Jensen

inequality,

2
Ep (R2yr,) = Varp (Ranry) = (NT) ' Ep (Z%KO {[ Xt = Bo (Xl )| Proci = Bo (X0 Pros:) })

s {[¥ic) — B (X )] Proes = B (i Proce) ]

IN

N
(NT) ZED
i=1
N 2
(NT)'S Ep [L;KO [X;(l) — Bp (X;(l))} Pposz} = Zpn7, say.
1=1
Let n,, = FY (T*IFO/FO)f1 FO and X1 = Xitx — Ep (Xt x) for k=1,..., K. Then we can write

—_

ERNT = 3753 Z Ep
i=1

T T 2 A A S
E N Xit kEis| = N3 E E E g E NeytaMeats B [ Xity 1k Xitg kEitoEity ] -
t=1 s=1 i=1t1=1t1=1t3=11t4=1

Let S = {t1,t2,t3,t4} . We consider three cases for the time indices in S : (a) #S =4, (b) #S =3, (¢
#S5 < 2. We use EZ, o, EE) 5, and EZj, . to denote Zgyr when the time indices in the above summation
are restricted to cases (a), (b), and (c), respectively. It is easy to show that EZ;. = Op (T7') =
op (Kg') . In case (a), we consider two subcases: (al) for at least two j € {1,2,3,4}, [t; — ti| > 7. for
any k # jand k € {1,2, 3,4}, and (a2) all the other remaining cases. We use E=y, 41 and E=y, 42 to denote
EEj . when the time indices in its summation are restricted to subcases (al) and (a2), respectively. In
subcase (al), wlog we assume that ty < t3 < to < t;. (Note if either t4 or ty is largest in S, then
Ep [Xitl,k)_(it27k5it25it4] = 0 by Assumption B.2(iii).) It is easy to see that either ¢4 or ¢; (or both) has

to lie at least T,-apart from other time indices in S. Wlog, assume that ¢4 lies at least T-apart from
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(t3,t2,t1) . Then by Davydov inequality

}ED I:X-’itl,kX’itz,kEitzgit4j| } S 8 ||€it4|‘8+407D HXitl,kXitg,kgitQ H(8+40')/37'D ap (T*)(1+a)/(2+0) .

With this, one can readily show that |EZj 41| < Op(Tap (T*)(1+U)/(2+0)) =op (K;") . In subcase (a2),
noting that the total number of terms in the summation of EZy, 42 is of order O (N T2T$) , we can readily
show that |EZj 42| = Op (T‘le) =op (Kgl) . Consequently, EZj , = op (Kgl) . Analogously, we can
show that EZj, = op (Ko_l) . Consequently, we have Ep |CIK0R4NT|2 < ch{:"l Ep (RZNT),J =op (1)
and ||Ryn7|| = op (1) by Chebyshev inequality. Then (ivl) follows.

Now we show (iv2). Let IB%4NT7;€ — B4NT,1€ denote the kth element of Byyr — Byn7. Then

B4NT7I€ — BunTk
= (NT) V4 {PM (&'X,)"™ = PpoEp (s’xk)}

= ) u|(py

- PFO) (é’Xk)“”“‘“} +(NT) ™t {PFO [(a—’xk)““““ — Ep (EIX;C)} }

= (NT) e [(Pg,, — Pro) (€X4)

trunc
Fa

+ (NT) Y 4r {PFO [ED (e'Xp)"™" — Ep (EIX’“)} }

F(NT) Vg {PFO €'X), — Ep (e'xk)]“““c} +(NT) V2 4 [PFU (&'X) — £'Xy)

trunc]

DBy i + DByg i + DBys  + DByay, say.

Let DBy = (DBuyj 1, ...., DBy, ) for 1 = 1,2,3,4. Recall that €., = (14, ...,ene)’ and &4, = (14, .., Ene)'-
Let X., 1 denote the sth columns of the N x T’ matrices X;. Then max, || X.s x| = Op (N/?) by Lemma
D.5(iv). Then by Lemmas D.5(ii), (iv), and (ix), we have

|

trunc

IN

(Fx)

M max ’éftX.s,k’ < M max ||&.,|| max || X s k]
sp t,s t s

IN

M {mgax el + mae e = el mas | X

M {op (N1/2) +op (N1/2) } Op (N1/2) = Op (NM) uniformly in .
It follows that by Lemma A.2(vi) and Assumption B.2(iv)

Ko ) 1/2
Rl )

= (NT)"V20p (55%) Op(K/>NM) = Op (Kg/ 2MN1/2T*1/26§1T> =op(1).

C/KO DB41 | (é/Xk)trunc

IN

Ry (NT)™?||Pg,, = Pro

Following Moon and Weidner (2014b), let A = €’Xy and B = A — A", Let A;s and Bys denote the
(t, s)th elements of A and B, respectively. Then B;s; = 0 for t < s < t+ M and By = A otherwise. By
construction, A;s = 0 for t > s. When t < s, we apply Davydov inequality for conditional strong mixing

processes to obtain

N N
3+2 442
< 1Bp e Xisw)l < Nleitlls ragp 1 Xiskllgyag.p op (s — 1) FH2/ 427
i=1 i=1

N
Z Ep (e14Xis k)

i=1

|At8| =
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For an m xn matrix E = (Ej;) , define || B||; = maxi<j<, >0, |Eij| and || E|| , = maxi<i<m 25—y [Eijl -

=
Then
T
max E | Ats|
1<t<T—M—1
s=t+M+1
N T

L R Z Z ||5itHs+4a,D ([ Xis,k
== i=1 s=t+M+1

| o (%)™ ~ Ep (e'Xk)Hl

t) (3420)/(4+20)

IN

|3 440,00 (5 =

N
T 2 2 3+20)/(4+20
< max 3 Y (il arp + 11Xtk 1. ) ap (M + 1)@/ (052)

=1

= Op (NTaD (M + 1)(3+20)/(4+2U)> uniformly in k.

Similarly, we can show that HED (e'X;)"™ — Ep (s’Xk)H = Op(NTap (M + 1)(3+20)/(4+20)) uni-
oo
< ||E|, |E||l, and Assumption B.2(iv),

2
sp }

Ko
< ZR(QJ (NT)—I HED (€/Xk>trunc _ ED (€/Xk)H1 HED (E/Xk>trunc _ E’D (EIX/C)HOO
k=1

formly in k. By the inequality ||E pr
/ 2 <t —-1/2 / trunc /
¢ DBa|” < S {Ry(NT) HED (€'X;,)™ — Ep (€'Xy)

k=1

< Op (KONTaD (M +1)3+20)/ <2+”>) = op (1).

In addition, by Lemmas D.5(iv)-(v) and (viii) and Assumption B.2(iv)

1/2
2
)

Ko
|CIKODB43| < Ry (NT)_1/2 {Z H(elxk)trunc —Ep (elxk)trunc
k=1

< Ro(NT) “?K)*M max  max o le X.so — Fp (e, X s1)
= Ro(NT) V2 KY*MOp (Nant) = Op (K3/2N1/2T’1/2MaNT) =op(1),
and
1/2
/ _1/2 Ko ~! trunc / trunc 2
. DBu| < Ro(NT) 3 H (EX0)"™™ — (%) ™|
k=1
< Ry(NT V2 KY2 0 max  max Er—et) Xk
0 :

t t<s<t+M

< Ro(NT)™V? KoM max 250 — eie| max || X 1
= Ry (NT)_l/2 Ké/2M0p (1) Hl?XOP (Nl/Q) =op (KéﬂT*l/QM) =op(1).
Consequently, BynT — Bant = Op (1) and (iv) follows.

Finally, we prove (v) HVNT —Vnr|| =op(1). Noting that

sp

N A_q A A_q 1 _1
Vyr —Vnr = Dp(l)G)NTDF(l) —DpoOnTDro
= (15?1 — D_l) éNTﬁfl + D7l (éNT — @NT) D + D_l@NT (ZA)TI — D_l)
Py FO Py FO FO FO P Fo )
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the conclusion follows provided (v1) HéNT — G)NTH =op (1), (v2)
sp

Dy, — Dro

=op (1), and (v3)
sp
the eigenvalues of Do and © yr are uniformly bounded away from zero and infinity as (N,T) — co. As
< H'DF(U — Dpol|| =op (1)
(v3) is ensured by Assumptions A.4(i) and A.5(i). We are left to show (v1). We decompose © 7 — Oy

stated in the proof of Theorem 3.3, it is trivial to show that Hﬁp(l) — Dro
sp

as follows:
R | XNT
Onr —Onr = W ZZ (é?t Eit ) thlt N ZZE” ( ltZzt thZzt)
i=1 t=1 i=1 t=1
T o o
tNT > D (Ei-<h) (ZitZz(t - ZitZz{t) =Onr1 +Onr2 + Onrs.
i=1 t=1

It suffices to prove ||[On7,sl|,, = op (1) for s =1,2,3. Let ¢, be an arbitrary K x 1 nonrandom vectors

with [|cx, || = 1. By the fact that a2 — b% = (a — b)> 4+ 2 (a — b) b and the triangle inequality,

N T
1 A o
‘CIKD('—)NTJCKO| = ﬁ Z Z (E?t — E?t) CIKO ZitZZ(tho
=1 t=1
1 ZN T 1 N T
< ﬁ ;; (éft - 51,2t) C/KUZth +CKo| + 2 ﬁ ; ; Eit — Cit EthKOZusztCKO .

The first term is bounded from above by max;<;<y maxy<;<7 (€1 — eit)2 ,umax(ﬁ Zfil Zle ZuZl,) =
op (1) Op (1) = op (1) and Lemma D.5(viii) and Assumption A.5(i). For the second term, using the
expansion of &;;—¢;; in (D.4), we can readily show that ﬁ Zf;l Zthl (&t — €at) z—:itc'KU ZuZlcr, = op (1)
sp = op (1) .

To prove that |©nr,sll,, = op (1) for s = 2,3, we argue that it suffices to show that uniformly in cx,

uniformly in cg, .

N T
01
Dz%). = =7 ZZ learl” )CKD ( Zull, — Zﬁzlt) cxy| = op (1) for r=0,1,2. (E.1)

Note that (E.1) implies that ¢ ©OnT2cK, = op (1) by taking 7 = 2 and hence On72 = op(1). In
addition,

1
NT

IA

N T
ZZ Eit — Eit) CKU (Z Zzt ZitZz(t)cKO

i=1t=1
9 N T
ﬁ ZZ Eit — €zt €thK (Zthn Zthn) CK,

=1 t=1

| ONT 3CK, |

-l ) exi

IN
=
I
<
o
|
O
=
=
-
Q
gz
/N
N
N

Il
s

by Lemma D.5(viii) and by taking r = 0 and 1 in (E.1). It follows that |©On73ll,, = op (1).
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Now we show (E.1). We observe that

N T
1 . N _ . Y
DZ}\%’ < NT ;; |€it] C/Ko (Zit - Zit) (Zit - Zit) CKy
2 L )
tm I leal |, (Zit = Zie) Zirero| = g + =5 sa.
i=1 t=1
Notice that
Zi - Zz' = - |:PF<1)X( 1) — PFDE’D (Xz(1)>] [MFO)XlNT — MFOQE‘ilNT]

Xi (WitCnr = W5 Co) = [P, XiWxtCovr — ProBp(Xo)Wq ol
{MF(l)XQNTWJG%CNT - MFO/?ZQNTW(;ICO}
= —X1i — Xo2i T X3i — Xai — Xsis Say.

Let x};; denote the tth row of y; for I = 1,2,...,5, and t = 1,2,...,T. Note that w(lg\),T (cr,) <
52}5:1 ﬁ ZZV:1 23:1 lei]” CIKOXlitX;itCKO = 52?:1 Xl(,rzszv say. We show that wg\)/T = op (1) by show-
ing that Xl(,rzsz =op (1) forl=1,2,...,5.

Let ¢y7 denote a T' x 1 unit vector with one in its tth position and zeros elsewhere. Noting that
X1it = [le(l)Pﬁ(l) —ED(X{(l))PFo]LtT = [Xzf(l) —ED(XZf(l))}PFoLtT+ED(X’( ))(P —PFO)LtT—F[X{(l) -

Ep(Xq)l(Pp,

" Pro)iir, we have

o | NI
r r 2
XinTe = NT §:1 ;:1 leael” [Ix1ael
N T
3 . 2
< N7 ZZ el H[ i — Bp (X'a))}PF“tT‘
i=1 t=1

HMH

3 2
N—Z 51t| HED( z(l))( Fy PF”)”TH
*%ZZ eal” | [ Xty = B0 (Xi))] (Pr,, = Pro) e

i=1 t=1

‘ 2

3XY,3VT1 + 3XY])VT2 + 3X§,NT37 say.

We want to show that X(l J)VT =op (1) for r =0, 1,2, 4 by showing that XY:])VTI =op (1) forl=1,2,3 and
r=20,1,2,4. For XY])VTI, we have by Lemma D.2(vii)

T
[ i o [y = o ()] e 21
2 a2 1 R 2
max |77 [Xig = Eo (X )| P[50 7)Y {N_ZZ|Eit|THFtOH }
=1 t=1

Op (K()Oé%VT) OP (1) Op (1) =op (1) .

(r)
X 1TNT1

IN

IN
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For X@vma we have by Lemmas A.2(i) and (v) and Lemma D.5(vi)

) L N ) A N Gy
Xhre = WZ};M HED (X5<1>)[ w (B F) B = B (FFy) Ft(l)}
o
2 L& . -1 -1 2
< ﬁZZ|5it|THED 1(1))[ 1 (F(l)F(l)) - (F(*ll)F(*1)> :|Ft*(1)
i=1 t=1
2 N T ) A A 1 . 2
+WZZ|€”THED (Xz{(l)) (1)( (/1) (1)) (Ft() t(1))
=1 t=1
N —1|2 2 L&, NI
< §7|fe (Bmn) ™ - P (Fib ) w7z 2 2 el [ B (X ) ||| P
i=1 t=1
~ PN —1)|2 2 2 N T , , 2
ol o) [ i il {5 S e 2 ()}
=1 t=1

= Op (0x7) Op (Ko) + Op (1) Op (1 n7) Op (Ko) = op (1).

Analogously we can show that XgTJ)VTs =op (1). It follows that Xg’:])VT =op (1) forr=0,1,2,4.
Next, HOtiI’lg that X2i = MFO (')EilNT — .)EMNT>+(Mﬁ(1)—MFO).)EﬂNT+(MFN(1) —MFO> (-)E‘ilNT — )EilNT) s

we have

1 N T
r 2
Xsnr < T 2 2 el
=1 t=1
3 N T ) B , 2
< NT ZZ leit|” H (XilNT - XilNT) Mo
3 N T 2
N_ZZ €1t| H 1NT( F(l)_MFU) LtTH
e :
ZZ leie|” H (Xz'lNT - XilNT) (Mp(l) - MFO) LT
= 3Xg1)\/T1 + BXéT])VTQ + 3XgJ)VT3’ say.
Noting that
XilNT_/’E‘ilNT
N
. 1
0 07 7040 0. 0 040
- NTZ[ o FoForia —N'F /F’\} 1)+NTJ 1A/F "FONS [Xje) = Ep (X))
= (A A T-1FYF0) A X )\ 71 (B — HE RO RO ) 2 3 Ny X
= (i<1>— m)) (T Z Xje(r) + Aiq) ( A~ A <1>>NZ 3(1)<4t(1)
j=1
N
+hi T Fy Py Z( X)) Xie) + NTZ/\O'FO/FO/\O [Xje) = Ep (Xjw)]
j=1 j=1
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we have

21 &
Xo,NT1 = 4||T_1FOIFOH N

1 & 1 Y

* r 0

A1) H 7 2 leul" || D2 XX
t=1 j=1

+4HT (()F(l) H{y FYFOH )H

) 2 T 1 N
>‘z‘(1)H > leal” NZA;(I)XJtl
=1 i=1

2

2

1)” Z( 3 (1) g(1)> Xjt(1)

N T
+4HT Fl)F(l)H ZZ

2

4 L& 1
+ 5T ZZ%I 7 DN FYEON (X — B (X))
i=1 t=1 j=1

=

One can readily show that each term on the right hand side of the last expression is op (1) . For example,
the first term is op (1) because it is bounded above by

1/2
972y Y

Sipormon2 S 1R *21/21 1 r1N0
el {NH)\(U— (1)|} DI D DICTE ) PPvS e
= 0p(1)Op (T—W) Op (Ko) = op (1).

To see why the last term is op (1), we first notice that maxj<¢<r H% Zj\;l )\? [th(l) — Ep (th(l))} H =
Op(Ké/QozTN) by arguments as used in proving Lemma D.5(iii). Then
2

1 N T 1 N
NT Z > leul" || 575 DA FOFON] [Xj) — Ep (X))
i=1 t=1 j=1

1 N T .
< O (Koad) T PO 75 33l NI = O (o) = or 1),
=1 t=1

Consequently, Xg:J)VT1 = op (1). Analogously, using Lemma A.2(vi) we can show that ngg\,Ts = op (1)
for s = 2, 3. Hence Xé BVT =op (1) for r=0,1,2,4.

Next, we can readily show that War = Wy —|—0p(K‘1/2) and Cyr = Cp +0p(K_1/2). It follows that
forr=20,1,2,4

N T
T 1 T i—1 A — ! i—1 A —
XShr = NT > > leul" ek, (WNTI“CNT -W 100) X Xiy (WN’}“CNT -W 100) €I
=1 t=1

IA

N T
et e~ Wi o] g 3 S el Il = o (K1) O (1) =01 ().
i=1 t=1

Analogously, we can show that XEITJ)VT = op (1) and Xg])\,T = op (1) for r = 0,1,2,4. It follows that

@g\)/T (¢k,) = op (1) and thus wgg\),T =op (1) forr=0,1,2,4.
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By CS inequality, wgg\),T < {wgzl\?)T}l/Q {@gNT}l/Q =o0p(1)Op (1) = op(1) for r = 0,1,2, where
we use the fact that @ony = ﬁ Zil Zthl C’KOZ#ZZQCKO < umax(ﬁ Zil Zthl ZaZl,) = Op(1).

Consequently we have DZJ(\;% = op (1) for » = 0,1,2. This completes the proof of the corollary. B

F Justification of Assumption A.1(i)

In this appendix we justify Assumption A.1(i) by arguing that the bias-corrected initial estimator BC can
be obtained as in Moon Weidner (2014b, MWb hereafter).

Let B = B(R) be as defined in Section 2 when R > Ry factors are assumed in the estimation.
Let 3 = B°(R) be its bias-corrected version. Moon and Weidner (2014a, MWa hereafter) show that
VNT (B (R) — BO> is asymptotically equivalent to v NT (B (Rp) — 50) where K is fixed, N and T pass
to infinity at the same rate (N/T — k2 € (0,00)), and R > Ry; MWb show that v/ NT (Bc (R) — BO>
follows asymptotic normal distribution when K is fixed, NV and T pass to infinity at the same rate, and
R = Ry. Here, we allow K to pass to infinity at a controllable rate such that Assumptions A.3 (i) and
A.6(i) are satisfied but restrict R to be finite. In addition, we allow that N and T' to pass to infinity at
different rates.

Define

1 T K ! K
L7 (8) = NT Z Hor (Y - Zﬁkxk> (Y - Zﬁkxk>
r=R+1 k=1 k=1
Note that the (k1, k2)th element of the K x K matrix Wy defined in Section 3.1 is given by Wxr kb, =
~ptr(Myo Xy, MpoXy, ). Let & = A0 (/\0')\0)_1 (FO’FO)_lFO’. Let C’](\}gp and CJ(\?% be K x 1 vectors

whose kth elements are respectively given by

1
ONry = mtr(M/\oXkMFoe'),
1
Cﬁ%’k = - tr (X ®'e Mpoe' Myo + Xy Mpoe' Myoe®' + Xy Mpoe' ®e’ Myo)

VNT

(2,1) (2,2) (2,3)
Cnri T OnTe T CONTter

where C%), denotes the kth element of gy for s = 1,2, and 3. Let A = § — 8° = (ABy, ..., ABg)"
Define

R—Ry K ! K
d(p) = Z o | Mpo <€_ZAB’€X’“> Mo <€—ZAﬁkxk> Mo
=1 k=1 k=1

K K
—pty [Mpoe' Myoe Mpo] — p,. | Mo <Z A,kak> Mo <Z A,kak> Mo

k=1 k=1

Let B(B) be as defined in MWa (p.18 in the supplementary appendix). We make some additional

assumptions.
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Assumption S.1 (i) max;<x<x F y|F0's'Xk}yf}) =O(NT(N+T1)).
(i) maxi cp<xc B | \Xpe'|2, = O (NT (N +T)).

Assumption S.2 For any L > 0, we have
. max(d(3),0) —
(1) SUPg: | 8—p0 <Lok VNFT+H(N+T)S 28— +NT|| -2/ In N Op (1), and
.. pe[BB)+B®B) |-, [B(8°)+B(8°)] _
() $UP 5o < o732 (/N TI—])? =0r(1).

Assumption S.1 can be verified easily under Assumptions B.1 and B.2. Assumption S.2(i) is a high-
level condition and parallels Assumption HL1 in MWa which incorporates the case where N and T diverge
to infinity at different rates. It can be verified under some primitive conditions as specified in MWa by
modifying the proof of Lemma S.8 in the latter paper. For example, if for each k£ = 1,..., K, we have
Xi = Xy, (1) +X; (2), where MyoXy (1) Mpo = 0, E || Xy, (1)[|2, = O (NT), and E|| X (2)||2, = O(8%7)-
[This condition essentially reduces to Assumption DX-2 in MWa when N and T pass to infinity at the same
rate.] Then we can readily verify Assumption S.2(i) under Assumptions A.1(ii)-(iii) and (v). Assumption
S.2(ii) parallels Assumption HL2 in MWa and can also be verified under some primitive conditions.

=5 (Vs\ (et A0 _ A A0 v
Let D= A (A X F'F F'. Define By (BNT,l""’B ), 1=1,2,3, where

NT,K
~(1) o 1 -7 trunc
Bl = g [Pr, (X)),

) 1 N T
B®, = — 22 [M~X é/} ,

NT,k NT ;; t Dbl i

) 1 N T
(3 _ o e
BNT,k = _NT ; ;5# [MFXI@(I)} o

where [B],; denotes the (i,j)th element of the matrix B, € is the residual matrix based on the initial
estimators 3, F, and X of 3, F and \ with (i,t)th element given by &;; = Y;; — BIX” — S\;Ft. [Note that
B](\l,)Tk corresponds to \/%Bl,k in MWb for [ = 1,3, B](\?%wk corresponds to \/?Bl,k in MWb, and Bg\}%ﬂk
has the same structure as 1@4 NT,, in our Section 3.3.] Define the bias corrected estimator as:

B (R) = B () + (NT) 2 Wik (BU) + BS) + BY ).
where Wyr = (NT) " N | XIM X,

Let vyp = (NT)fl/2 W;,%(CJ(\PT—&—CJ(\?)T) We argue that in the case of divergent K, (i) HB (R) —p° H =
Op (3 for any fixed (finite) R > Ro; (i) B (Ro) — B° = vy + R A% with HRﬁOT =Op (Ivnrll Onr) 5
(iii) HB(R) - B0 = Op(é;\,[”;ﬂ) for any fixed R > Ry; (iv) B(R) — 8% = yyr + RE, with ||Rﬁ,TH =
op((NT)™?) for any fixed R > Ry, and (v) \/m) B (R)H = O0p (1) and VNTB,, (R) = Op (1) for
each k=1,2,..., K.

Step 1. We show (i) HB (R) —p° H =0p (5&%) for any fixed R > Ry. Following the proof of Theorem
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4.1 in MWa, we can readily show that under our Assumptions A.1 (v)-(vi) and (viii), and A.3(i),
HB (R) — BOH =O0p (5]7\,1T) for any fixed R > Ry.

In particular, these assumptions ensure that eqn. (S.5) in MWa continues to hold in our case despite the
allowance of diverging K. See also Su and Zhang (2014) in the case of sieve estimation.

Step 2. We show (i) 3 (Ro) — 8° = vnr + RE9. where HR%OT
in (i) and Assumptions A.1(iv)-(v) and A.3(i), we can readily show that

= Op (|lynrll d7r) - Given the result

zwk 8 e Tl o, (1553 + O (957%) = or ()

for any 8 = (54, ...,ﬁK)/ such that HB — ﬁOH < L6§1T where L is a large constant. This indicates
Condition (S.34) in Lemma S.1 of MWa is satisfied under our Assumptions A.1(ii)-(iii). Then we can
follow the proof of Theorem 4.2 in MWa and show that

L (8) = Ly (B%) —2(NT) ™2 (8= 8°) (CRp + Cix ) + (B — B) Wivrr (8= 8°) + L5 (8).
where the remainder term L35 (3) satisfies

sup L™ (8) = Op (On7) -
{B:11B-B°lI<Ls }

The last probability order can be obtained from MWa’s eqn (S.39) with H 8 — ,BOHj and N~9/2 replaced
by JEJT for j = 1,2, 3, 4. Following the proof of Corollary 4.3 in MWa or Theorem 3.1 in Su and Zhang
(2014), we can show that

B(Ro) —B° = (NT)71/2 Wyt (Cz(\}%“ + CE\?%“) + R = ynr + RS,

= Op (|lynrll 5&17«) (c.f., eqn. (A.9) in Su and Zhang

: Ro tiefac Rg
where the remainder term Ry satisfies H’R NT

(2014)).

Step 3. We show (iii) HB (R) — BOH = Op((SXfT/Q). Here we want to determine the probability order
of H B (R) — BOH by following the arguments as used in the proof of Theorem S.5 in MWa. Under our
Assumption A.1(viii), Wy has minimum eigenvalue bounded away from zero asymptotically. Next, we

want to determine the probability order of ’

C’J(\}%H . Note that

CNrk (NT) ™2 tr (Myo X, Mpoe')

1,2 1,3 1,4
= CI(VT k CJ(VT)k C](VT,)k + CI(VT,)k? say.
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Let CI(\}% be a K x 1 vector whose kth element is given by CNTk Then HC’NTH < 421 1 HCI(\}T{ H . By

Assumption A.1(vi) and Markov inequality,

Hc};;)H ZHcg;;kH 3 Htr(Xke)H = Op (K).

Using tr(A) <rank(A) [|A], [|All,, < [|All < y/rank (A) [|A]l,, , and the condition maxi<x<x E | FYe' X, ||
=O(NT (N +1T)) in Assumption S.1(i), we have

sp

K
2 R} 2
0(172) H — E ’t FO FO/FO FOI IX ’ HFO FOIFO FO/ IX
H NT (/\]T)2 I'( € ) NT g € Ak Sp

IN

R¥||,— a1 2 _
el s G I N—kg]\FO’e'Xk]ysp:oP(KN5N2T).

Similarly, under the condition maxi<y<x E ||)\0Xk€'||:p = O(NT(N+T)) in Assumption S.1(ii), we
2
can show that HC'](\};’)H = Op(KN§y%). Under Assumptions A.1 (ii)-(iv) and (vii),

’2

2 07 _10][2 - 2

IEY XD Ikl
k=1

= (NT)'0p (T7")Op (N"1) Op (NT) Op (NTK) = Op (K).

K
D)% 1 -1 ~1
HCI(\}T) H _ 7 ; Htr (XkFO (FO/FO) FO7g/ )0 ()\Ol)\()) )\0/)

< % ‘FO (FOIFO)*1H2H(/\O/AO)—l/\OI

Consequently, we have HC H = K1/2N1/26 ) Similarly, we can show that HC’(Q) H = Op(KY2N/?
Snp)- Tt follows that ||y yr|l = Op (KI/ZT_I/zéNlT).
Under Assumption S.2, we can follow the proof of Theorem S.5 in MWa and show that

(B (R) = 6°) Wir (B (R) — 8°) —2(NT) ™2 (B (R) - 8°) [C) + O]

!

R—Ro K K
< NT Z o | Mo (ZA/Bka> Mo (ZA/Bka> Mo

k=1 k=1

+VNFT + (N +T)6Y2 Hﬂ ﬁOH+NTHB(R)—ﬁ0H2/1nN}.

Assumption A.1(viii) implies that p,;,, (Wn1) > 20 for some b > 0 in large samples. This, in conjunction

with the fact that HC’ H = K1/2N1/25 L ) for [ = 1,2, implies that
oz -2 < (3-8 o (kT 03k)

7 VI T+ D)2 5 ) = 7 [ - ]
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or equivalently (by multiplying both sides by 0% /b),

0 N +7T) 53
or () o pon (e« P e

o (e - )
= 0+ 3R =] 0p (343) + o (8%r | - 57 )
where we use the fact that WTITW?VT = 0(1), % = O(1), and K1/2T71/25?\7T/(5%%) =
K1/2T—1/261/2 = 0(1) under Assumption A.6(i). It follows that o’ HB(R) —BOHQ = Op(1). That
is, HB( 50H = 0p(653%).

Step 4. We show (iv) B (R) — 8° = vy + R, with |REL|| = op((NT)™'/?). Given the result in

IN

e |p ) -7

Step 3, we can apply Assumption S.2(ii) and follow the proof of Corollary S.10 in MWa and show that

Loy (/5’( )) < L3y (8% +nr) + NTOP (1+\/_HB ,BO)DQZE%; (B° +vnr) +op (O5r) -

Then following Step 2 and the proof of Corollary 4.3 in MWa or Theorem 3.1 in Su and Zhang (2014),

we can show that

B(R)— B = (NT)_l/Q Wyt (CJ(\}%“ + Cﬁ%) +REr =Ynr + RNT,

where the remainder term R satisfies | RR || = Op (||l Snir)+op (O57) = Op (K212 2 )+
op (5&3}) = OP((NT)fl/Q) under Assumptions A.3(i) and A.6(i).

Step 5. We show (v)\/NT/K ||8

(R)H — Op (1) and VNTB, (R) = Op (1) for each k = 1,2, ..., K.
Comparing the results in Steps 2 and 4, we notice that ,5’ (R) — 8% share the same asymptotic bias as
B (Ro) — 3. NT/E |3 (B)| = 0r (1)
and \/WBZ (R) =0p (1) for each k =1,2,..., K. The major difference is that MWb only consider fixed

K but we allow slowly diverging K. Here, we outline the major steps only.

Recall 0(2%1 = C’(2 Yo+ 01(5512) + C’](\?;’). We want to show to show that C(”T contributes to both the

asymptotic bias and variance of /3 (R), CJ(\?Tl ) and O ’T) contribute to the asymptotic bias, and C 275)’ ) is

asymptotically negligible.
(i) First, we want to show that C](\?E,?) is asymptotically negligible by showing that HC(2 :3) H =op (1).

Using & = A’ (AO’AO)’1 (FYFO) ™" FY Mo = Iy — Ppo, |tr (A)| <rank(A)||4],, , and CS inequality,

sp ?

|
M=

K
[fesszs 3>H {C](\?ﬁ)kr - % Z [tr (P My Xy Mo X (A27) ! (FO’FO)*)]2

k

‘\’H
Om)—‘

—1)2

IN

Z | P& M0 Xpe A (AOX) T (FOFY)

sp

2
§ 2:[1 + 212, say.

sp

2R0 Z | PV My X Prog/A° (A7X°) 7 (FOF) ™!
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Using Myo = Iy — Pyo, by Assumptions A.1(ii)-(iii), A.4(iii), S.1(i)-(ii), and A.6(i), we have

R
A N G ZHFO/E‘IM o Xie N2

IA

e [ G anO/e/x o

(NT )?
R_; H()\O/AO)_l (F(]/FO)—1H2 Z HFO,E‘:/P/\OX’C&:/AOH;
k=1

Ry 0740y~ 1 0/0—12K 0r 1 7,012
= w007 @) e xel,

_1_%)‘()\0/)\0 (FOIFO H H /\0/>\0 1yor

i ’AO}LPZI}X 2y

= (NT)'Op ((NT)*Q) Op (K (NT)? (N + T))
+(NT) " Op ((NT)_Q) Op (N"1) Op (NT (N +T)) Op (KNT (N +T))

= Op (K (657 +TN?)) =op(1).

Similarly, we can readily show that Zo = Op (K (617\,2T + TN_Z)) = op(1). It follows that HCJ(\?;)H =
op(1).

(ii) Following Footnote 18 in the main text, we can write C’I(\})T = \/% Zf\il X{M roe;, where X; =
X; — Xjont and Xponr = % Zjvzl )\(Z-)/ (N_l)\()')\o)_l )\(;Xj. We can make the following decomposition:

N
1 1
c) —— N (Xi — MpoXiony) 6i — — > X! Proc;
= g 2 (i MeXaw)'s - oz ) XiPre
1 & 1 &
- ﬁ;[XifPFOE'D(Xi)fMpoXigNTy&‘i*W;[XszD(X )]’ Ppoe;
= VNT*BJ(\}%, say

where the first term Vi contributes to the asymptotic variance and the second term B](\}% contributes to
the asymptotic bias. Note that B(l)T is defined analogously to Byy7 in Section 3.3 with X; replaced by
Xi(1)- Following Step 4 in the proof of Corollary 3.4, we can readily show that HB(U BJ(\})T ‘ =op(1).
In addition, we can show that ||[Vyr| = Op (K1/2).

(iii) Using Mpo = Ip — Ppo, tr(A) =tr(A’), and Myo = Iy — Py, we can make the following

decomposition:
Ok = (NT)™ V2 tr (ePpoe’ My Xy,®') — (NT) ™ /? tr (e Myo Xy ®') = Cit) (1) — O (2).
e = —(NT) V2 tr (@' X Mpoe' Myoe) = — (NT) ™/ tr (€' Myoe Mpo X}, @)

= (NT) "?tr (e' PyoeMpoX}®) — (NT) /% tr (€'e Mpo X}, @) = Cip), (1) — Clor), (2).
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It follows that C\Z) = ¢ (1 )—Cﬁqf)k (2) for s = 1,2, where C'& (1) is obtained by stacking C’NT (1)
2,5

= op(1). CX7 (2)

needs to be corrected for s = 1,2. Following the proof of Theorem 4.4 in MWb, we can also show that

HBZ@T — o@D (2)” = op (1), and HB};"; -2 (2)” = 0p (1) . Then we can

into a K x 1 vector for [ = 1,2 and s = 1,2. As in (i), it is easy to show that HC](\?;)

HBJ(\?)T—FC(Q 1)H =op (1), and HBZ@T —l—C](\?i?)H =op(1).

(iv) As in the proof of Theorem 3.3, we have HWNT - WNTH NT) fil ‘ X;
Op (KéNT) by using the fact that ||Pz — Ppo|| = Op (5N1T) and Assumption A.1(viii). But this bound

is not tight. For the purpose of bias correction, we need to strengthen this result. In fact, we can show

that HWNT — WNTH =0Op (5]7\,17«) . To see this, we first observe that
sp

= max {{o;n7|, |oon7l}

Sp

where 0; N7 = fimax ((NT)%ZZ-IL Xz/ (Pﬁ_PFO)Xi) sand 0o N7 = fnin (( )" Zz 1X/( _PFO)X)
Then noting that tr(AB) < ||A]| || B||, we have

N
1 = >
loiny| = max ( e ZX’ = — Ppo) X; %> = | max, tr{(Pﬁ — Ppo) (NT) ;Xi%%' ;}
N ~ ~
< HPF — Pro|| mﬁ'lX -1 ZXiJ{%/X; =0p ((5;\,171) Op(1)=0p (5]7\[171)
i=1
because
N 2 N N
max |[(NT) 'S X/ X! = max (NT) *tr X XY X0 X!
s (V) Z:: o (V) Z} jzl S
N N
= max (NT)~ Z%’X'ZX%J/XX%
<l =1 =T e
N N
< max (NT)™* [ Y /X)) XXX
Iell=1 =T
o [~ 3581 ) max ~o 3K
= max |\ A7 P 1<% 3¢l =1 NT ot V)
| 2 N 2
_ v v/ /
- |:umax <ﬁ ;XZ z)] < [Nmax (NT ;XZX1>]
= Op(1),

where the first and second inequalities follow from the fact A’/BA < p_ .. (B) A’A < ||B|| A’ A, the third
equality follows from the fact p .. (AA") = p. (A’A) and the last equality follows from Assumption
A.1(viii). Analogously, |0,x7| = Op (5%) . Tt follows that HWNT - WNTH = 0p (55%).

sp
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(v) Using B (R) = B(R)+(NT) 2 Wy (B 4+ B +B3)) and 3 (R)-8° = (NT) 2 Wik O+
Cj(\?%«) + R, we have

~C

BR -8 = B(R) -8+ (NT) "Wt (BYL + BYL + BYY)

= (NT> 1/2W (VNT_ NT+021)+C(2 2)"‘01(\?&?))
+(NT) 2 Wk (BYY + BGY + BYY) + R

= (NT)""*WypVivr
+(NT) AWk [(-BGE + BOL) + (0% + BOY) + (€87 + BUY) + c%]
+(NT) 2 (Wit — Wih) (-BRE + 8P + CiP + ) + R

= T3+ Iy +Is + R, say.

We can readily show that | Z|| = Op ((NT/K)*”?) N Zall = op ((NT)*W) ,and HRﬁOT
by (i)-(iii) and Step 4. Let cx be an arbitrary K x 1 vector with |cx|| = 1. Then

— op ((NT)*W)

N
1
Nr| = JNT tr <;5iC/K [Xi — Ep (Xi)]/PFo>‘
N
1 —1
- T | (ZFK [Xi — Ep (X,)] F (FUF) )‘
R |l
< 0 ‘FOIF(J*H FO/i/ X, — Ep (X; ! o
= VNT ( ) z:zl eick | D (X))
R 1/2
9 2
= UNT ‘ (EVE?) H{ZHFO'%H ZHX Ep (X)) FO|| }

< Op (NTVPT2) 0p (KVANT) = Op (KV2N2T71/2).

It follows that (NT)~"/?|| B} H— NT)™Y20p (KY2NY2T=1/2) = Op (K'/2771) . Similarly, we can
show that (NT) ™/ |G| = 0p (/2N 1) and (NT) 77| €3 | = Op (K/2T71) . These results,

in conjunction with the analysis in (i) and Assumption A.6(i), imply that
IZ5]) = O (63°7) Or (K207 +0p (NT)™1%) = Op (K/253%) = op (NT) /).
It follows that
VNT(B" = 8% = WtV +op (1) and |3 (R) - 8°)| = 0p(NT/K) ™).

Lastly, let ¢y be the kth column of the identity matrix Ix. Then

L (R) - 3|

L;c (BC (R) - 50)‘ = L%Ig +op ((NT)_1/2>
= Op ((NT)il/Q) + op ((NT)71/2> =Op ((NT)fl/Q)
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because (]\7T)1/2 Iy = L;WJ}}VNT = L}CWO_IVNT {1+0p (1)} = Op (1) by second moment calculations

and Chebyshev inequality.
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