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Abstract

In this paper, we study a partially linear dynamic panel data model with fixed effects, where either

exogenous or endogenous variables or both enter the linear part, and the lagged dependent variable

together with some other exogenous variables enter the nonparametric part. Two types of estimation

methods are proposed for the first-differenced model. One is composed of a semiparametric GMM

estimator for the finite dimensional parameter  and a local polynomial estimator for the infinite

dimensional parameter  based on the empirical solutions to Fredholm integral equations of the

second kind, and the other is a sieve IV estimate of the parametric and nonparametric components

jointly. We study the asymptotic properties for these two types of estimates when the number of

individuals  tends to ∞ and the time period  is fixed. We also propose a specification test for the

linearity of the nonparametric component based on a weighted square distance between the parametric

estimate under the linear restriction and the semiparametric estimate under the alternative. Monte

Carlo simulations suggest that the proposed estimators and tests perform well in finite samples. We

apply the model to study the relationship between intellectual property right (IPR) protection and

economic growth, and find that IPR has a nonlinear positive effect on the economic growth rate.
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1 Introduction

Recently nonparametric panel models have received a lot of attention. The increasing popularity of

nonparametric approach to panel data modelling largely comes from its flexibility in exploring hidden

structures and its robustness to model misspecification which often occurs under a parametric setting.

On the other hand, a fully nonparametric model usually suffers from the notorious problem of “curse

of dimensionality” when the dimension of the nonparametric covariates is high, and it becomes very

difficult to interpret a nonparametric estimator in empirical applications when the dimension is larger

than two. To overcome these shortcomings, many semiparametric models have also been proposed in the

panel data literature as a compromise between nonparametric and parametric specifications. By imposing

different structures on the unknown functions, various semiparametric models such as additive models,

partially linear models, single-index models, transformation models, and varying-coefficient models have

been studied extensively in the literature. For example, Chen et al. (2012) consider partially linear panel

data models where the time trend enters the nonparametric component; Chen et al. (2013a; 2013b)

and Dong et al. (2014) study the estimation of panel data models with different single-index structures;

Dong et al. (2015) consider a partially linear panel data model with cross-sectional dependence and

non—stationarity; Feng et al. (2015) consider the estimation of varying-coefficient panel data models. For

recent selective overviews, see Su and Ullah (2011), Chen et al. (2013), and Sun et al. (2015).

In this paper, we focus on the following partially linear dynamic panel data model with fixed effects

 = 00 + (−1) +  +  (1.1)

 = 1    = 1   where  is the scalar dependent variable for individual  at time period ,  is

a  × 1 vector of regressors that enter the linear component of the model, 0 is an unknown parameter
that takes value on the compact parameter space Θ ⊂ R ,  (·) is an unknown smooth function defined
on R+1,  is a ×1 vector of regressors that enter the nonparametric component  (·) together with
the lagged dependent variable −1 ’s are unobserved individual effects, and ’s are idiosyncratic

error terms. The subscript “0” in 0 indicates the true parameter value. Clearly, −1 is correlated with
the fixed effect . We also allow  and  to be correlated with . As in Baltagi and D. Li (2002),

Baltagi and Q. Li (2002), and Yao and Zhang (2015), we allow  or a subset of  to be endogenous

and assume the existence of a  × 1 vector of instrumental variables (IVs)  where  ≥ 
1 Also like

them, we restrict  to be exogenous to avoid the ill-posed inverse problem. The latter problem can

be addressed by extending the estimation procedure of Ai and Chen (2003), Chen and Pouzo (2012), or

Florens et al. (2012) to the panel setting but is certainly beyond the scope of the current paper. We are

interested in the estimation of 0 and  (·) under large  and small  .

Since Engle et al. (1986) and Robinson (1988), partially linear models have been widely studied

and applied in the econometrics literature. In the panel framework, partially linear structures have also

attracted a lot of attention. For example, Li and Stengos (1996) and Li and Ullah (1998) consider kernel

estimation of partially linear panel data models with random effects where the endogenous variables

appear in the linear component; Baltagi and D. Li (2002) and Baltagi and Q. Li (2002) respectively

propose series and kernel estimation of partially linear dynamic panel models with fixed effects where the

1When some variables in  are exogenous, we choose themselves as their IVs.
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lagged dependent variables enter the model linearly; Su and Ullah (2006a) study profile likelihood kernel

estimation of partially linear static panel data models with fixed effects; Baglan (2010) considers series

estimation of partially linear dynamic panel data models with fixed effects where the lagged dependent

variable enters the model linearly; Qian and Wang (2012) consider kernel estimation of nonparametric

component in a fixed-effect partially linear static panel data model via marginal integration. To the

best of our knowledge, so far endogeneity and lagged dependent variables have been allowed to enter

the partially linear panel data models only through the linear component. It remains unclear whether

one can allow both to enter the nonparametric component of the model. In this paper, our goal is

less ambitious in the sense that we only allow lagged dependent variables to enter the nonparametric

component. The endogenous variables, if present, only enter the linear component of the model. Despite

this less ambitious goal, the inclusion of lagged dependent variables in the nonparametric component turns

out to be sufficiently technically challenging and the introduction of endogeneity in the linear component

further complicates the issue to a great deal.

Despite the existence of a large literature on nonparametric panel data models, there is a lack of

satisfactory development in nonparametric and semiparametric panel data models where a lagged de-

pendent variable enters the nonparametric component of the model. The few exceptions include Su and

Lu (2013) and Lee (2014), who consider kernel and sieve estimation of nonparametric dynamic panel

data models, respectively. Su and Lu (2013) also document the empirical evidence of nonlinear effects of

lagged dependent variables in the economic growth literature. This paper contributes to the literature

by allowing lagged dependent variables to enter the nonparametric component in panel data models.

For notational simplicity, let 

≡ ¡ −1  1¢  where  =   or  Following Su and Lu

(2013), we assume that (| −1  ) = 0 and consider the first-differenced model

∆ = ∆
0
0 + (−1)− (−2−1) +∆ (1.2)

where, e.g., ∆ ≡  − −1 Clearly, the first-differenced model in (1.2) exhibits some important
features. First, (1.2) still has a partially linear structure with a linear component (∆00) and two
additive nonparametric components ( (−1) and  (−2−1)). Second, the two additive
nonparametric components share the same functional form which should be incorporated in the estimation

procedure. In fact, as we show below, this feature, in conjunction with the martingale difference sequence

(m.d.s.) type of conditions on  implies that (·) implicitly solves a class of Fredholm integral equations
of the second kind indexed by the finite dimensional parameter  Third, the error term ∆ follows a

non-invertible moving average process of order 1 (MA(1)) and is correlated with both −1 and ∆
in general. Despite the fact that it is hard to apply this last feature to improve efficiency as in Xiao et

al. (2003), Su and Ullah (2006b), and Gao et al. (2006), it invalidates the traditional kernel estimation

based on either marginal integration or backfitting method because of the endogeneity issue in the first-

differenced model. In addition, the presence of the linear component ∆ in (1.2) makes our model

different from that in Su and Lu (2013) and complicates our estimation procedures and asymptotic

analysis substantially.

In this paper, we propose two estimation procedures, both of which take into account all the features

mentioned above. The first one comprises the semiparametric GMM estimation of 0 and kernel estima-

tion of  (·) based on the empirical solutions to Fredholm integral equations of the second kind. The
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second one estimates both the parametric and nonparametric component at a single step via the sieve IV

method. As remarked later on, our methods can be used to estimate models with both individual and

time fixed effects.

Under some fairly general and mild conditions that allow for the nonstationarity of (−1  
 ) along the time dimension and conditional heteroskedasticity among , we show that both types

of estimates of the finite dimensional parameter have the usual parametric convergence rates and follow

asymptotic normal distributions. We also derive the uniform convergence rates for the nonparametric

estimates over a compact support and establish their asymptotic normal distributions by passing 

to infinity and keeping  fixed as in typical micro panel data models. Based on our estimators, we

also propose a nonparametric test for the linearity of the nonparametric component. We examine the

finite sample performance of our estimators and tests through Monte Carlo simulations. We apply the

proposed model to study the relationship between economic growth, its lagged value, and intellectual

property right (IPR) protection. We find substantial nonlinearity in the relationship between a country’s

economic growth rate and its lagged value and a positive nonlinear relationship between economic growth

rate and IPR protection.

The rest of the paper is organized as follows. In Section 2 we introduce the semiparametric GMM

estimation of  and kernel estimation of  based on a Fredholm integral equation of the second kind and

study the asymptotic properties of these estimators. In Section 3 we discuss the sieve IV estimation of

 and  and derive the asymptotic properties of our proposed estimators. In Section 4, we propose a

nonparametric test for the linearity of the nonparametric component. In Section 5 we conduct a small

set of Monte Carlo simulations to evaluate the finite sample performance of our estimators and tests. We

apply our method to a real data set in Section 6. Final remarks are contained in Section 7. All technical

details are relegated to the Appendix.

Throughout the paper, we restrict our attention to a balanced panel. We use  = 1      to denote

individuals and  = 1      to denote time. All asymptotic theories are established by passing  to

infinity and holding  as a fixed constant. For natural numbers  and  we use I to denote an  × 

identity matrix, 0× an ×  matrix of zeros, and  an × 1 vector of ones. Let  ≡  −  for  = 1 2

For conformable vectors  and  we use  to denote element-wise division. For a real matrix , let

kk ≡ptr (0) denote its Frobenius norm and kksp ≡
p
max (0) its spectral norm where max (·)

is the largest eigenvalue of “·”. Let P ≡ (0)− and M ≡ I−P where (·)− denotes the Moore-
Penrose generalized inverse and I is a conformable identity matrix. Let

→ and
→ signify convergence in

probability and distribution, respectively.

2 Semiparametric GMM estimation of  and kernel estimation

of 

In this section, we first outline the idea for the semiparametric GMM estimation of  and kernel estimation

of  (·) based on the empirical solution to a Fredholm integral equation of the second kind and then

present the estimation details. We also derive the convergence rates for the proposed estimators and

establish their asymptotic normal distributions.
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2.1 Basic idea

Note that (| −1  ) = 0. By the law of iterated expectations, we have (| −1)

= 0. Based on this observation, we obtain the following conditional moment conditions


£
∆ −∆00 − (−1) + (−2−1) | −2

¤
= 0 (2.1)

 = 1    = 3   , where  −2 ≡ (−2 −3  1) and  ≡
¡


0
+1

¢0
. Clearly, for large

 the conditioning information set  −2 contains a large number of valid IVs for the local nonparametric
identification of  (·)  But for both technical reasons and practical concerns, it seems unrealistic to use
all variables in  −2 in nonparametric regressions. To avoid the curse of dimensionality problem, we
consider only a small number of IVs that are measurable with respect to the -algebra generated by

 −2 In this paper, we only use −2 and leave the optimal choice of IVs for the estimation of the
nonparametric component as future research.

To proceed, we define some notation. Let U be a compact subset of R+12 We assume that −2
has a positive density on U and denote the conditional probability density function (PDF) of −1 given
that −2 lies in U as −2 (·)  Similarly, we use −1|−2 (·|·) to denote the conditional PDF of −1
given −2, conditionally on −2 ∈ U  Let

 ≡
X
=1

X
=3

1 (−2 ∈ U) and −2 ≡
X
=1

1 (−2 ∈ U) for  ∈ {3  } 

where 1 (·) is the usual indicator function. By the Kinchin law of large numbers (LLN), −2
→

−2 ≡  (−2 ∈ U) and 
→P

=3 −2 ≡  Let 
[]
|−2 () ≡ (−∆|−2 = ) and 

[]
|−2 () ≡

 (−∆|−2 = ). Define

 () ≡
X
=3

−2


−2 ()   (̄|) ≡
X
=3

−2


−1|−2 (̄|) , (2.2)

 () ≡
X
=3

−2



[]
|−2 ()   () ≡

X
=3

−2



[]
|−2 () and  () ≡  ()− 0 () (2.3)

where we suppress the dependence of   ()   (̄|)   (),  () and  () on 

(2.1) implies that

 () =  [ (−1) |−2 = ] + (−∆|−2 = )− 00 (−∆|−2 = ) 

=

Z
 (̄) −1|−2 (̄|) ̄+ 

[]
|−2 ()− 00

[]
|−2 () for  = 3   (2.4)

Multiplying both sides of (2.4) by −2 and summing up over  = 3   yields

 () =

Z
 (̄)  (̄|) ̄+ £ ()− 00 ()

¤
 (2.5)

Under certain regularity conditions, for any  ∈ Θ there exists a unique solution  () to a Fredholm

integral equation of the second kind in an infinite dimensional Hilbert space L2 ():
 = A +  (2.6)

2The reason to introduce U is to handle the non-compact support of −2 If one is willing to assume that −2 has
compact support, then one can take U as the support of −2
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where A: L2 ()→ L2 () is a bounded linear operator defined by

A () ≡
Z

 (̄)  (̄|) ̄ for  ∈ U (2.7)

and L2 () is a Hilbert space with norm kk2 ≡ [
R
U  ()

2
 () ]12 Let I be the identity operator.

Under some conditions to be specified later on, I −A is invertible and

sup
kk2≤1

°°°(I −A)−1°°°
2
∞ (2.8)

Then given , the unique solution to (2.6) is given by

 = (I −A)−1
¡
 − 0

¢
=  − 0 (2.9)

where  ≡ (I −A)−1  and  ≡ (I −A)−1  are solutions to

 () = A () +  () and  () = A () +  ()  respectively. (2.10)

To facilitate the theoretical study, we will consider the following auxiliary first-differenced models

∆ =  (−1)− (−2) + 

∆ =  (−1)− (−2) +   = 1   (2.11)

where  and  denote the -th element in  and , respectively, the error terms  and  satisfy


¡
|−2

¢
= 0 and 

¡
|−2

¢
= 0 It is easy to see that under these moment conditions, 

and  ≡ (1  
)0 are the solutions to the Fredholm integral equations of the second kind in

(2.10).

Apparently,  is linear in  Given the estimates ̂ () and ̂ () of  () and  ()  we can

estimate  () by ̂ () ≡ ̂ () − 0̂ () for any  ∈ Θ. Below we first introduce how one can

obtain the kernel estimates ̂ () and ̂ () based on local polynomial regressions, and then study the

semiparametric GMM estimation of  based on some identification conditions.

2.2 Semiparametric GMM Estimation

2.2.1 Kernel estimation of  () and  ()

Now we consider how to estimate  () and  () as the solutions to the two equations in (2.10).

Assume that nonparametric estimates of ,  and A are given by ̂, ̂ and bA, respectively. Then the
plug-in estimators ̂ and ̂ are given by the solutions to

̂ = bA̂ + ̂ and ̂ = bA̂ + ̂ (2.12)

respectively.

Here we consider the local polynomial estimates of ,  and A Let  ≡ ( 0)0 ≡ (0 1  )0
be a ( + 1)× 1 vector, where  is  × 1 and  is a scalar. Let j ≡ (0 1  )0 be a ( + 1)-vector
of non-negative integers. Following Masry (1996), we adopt the notation:  ≡ Π

=0

  j! ≡ Π

=1!
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|j| ≡ P
=0  and

P
0≤||≤ ≡

P
=0

P
0=0

  
P

=0
0+1++=

 Let  ≡ ( + )!(!!) be the number of

distinct ( + 1)-tuples j with |j| =  Let  ≡ P
=0  Let  (·) =  (·)  where  is a stacking

function such that  (−2 − ) denotes a × 1 vector that stacks ((−2 − ) )

 0 ≤ |j| ≤  in

lexicographic order (e.g.,  () = (1 ()
0)0 when  = 1).

To estimate  ()  we consider the following minimization problem:

min


X
=1

X
=3

⎡⎣−∆ − X
0≤||≤

0 ((−2 − ) )j

⎤⎦2 (−2 − )1 (−2 ∈ U)  (2.13)

where β stacks the  ’s (0 ≤ |j| ≤ ) in lexicographic order,  () = −10  (0)Π

=1

−1
  () for

 ≡ ( 0)0   is a univariate PDF, and  = (0 1  )0 is a bandwidth sequence that shrinks to zero
as  → ∞ Note that in (2.13) we use an indicator function 1 (·) to handle the non-compact support
of −2. Like Mammen et al. (1999), Mammen et al. (2009), and Su and Lu (2013), our estimators
only use observations in the estimation of  () if the covariates −2 lie in a compact set U on R+1
This device greatly facilitates the asymptotic analysis of our estimator in the case of infinite support for

−2; it is not needed if −2 is compactly supported.
Let ̂ () denotes the first element of the solution to the above minimization problem. Then

̂ () = −01[ ()]
−1 1



X
=1

X
=3

1 (−2 − ) (−2 − )∆ =
−1


X
=1

X
=3

K ()∆

where

 () ≡ 1



X
=1

X
=3

1 (−2 − ) (−2 − ) (−2 − )
0
 (2.14)

K () ≡ 1
0
1 ()

−1
 (−2 − ) (−2 − )  (2.15)

1 ≡ (1 0  0)0 is a ×1 vector with 1 in the first position and zeros elsewhere, and 1 ≡ 1 (−2 ∈ U) 
Similarly, we can estimate A () by bA () = −1

P
=1

P
=3K ()(−1).

In terms of numerical algorithm, if (2.8) is satisfied, it is well known that the first part of (2.10) implies

that = (I−A)−1 =
P∞

=0A. Rust (2000) discusses several methods to solve an integral equation,

including both iterative and non-iterative methods; see also Linton and Mammen (2005) and Darolles et

al. (2011) for related discussions. The iterative method relies on the observation (e.g., Theorem 2.10 in

Kress (1999)) that the sequence of approximations

()
 = A(−1)

 +   = 1 2  (2.16)

is ultimately close to the truth from any starting point 
(0)
 . As in Su and Lu (2013), the initial estimator

can be constructed based on the sieve IV method detailed in Section 3. If bA and ̂ are sufficiently close

to A and  respectively, then

̂()
 = bA̂(−1)

 + ̂  = 1 2  (2.17)
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is close to  The non-iterative method involves solving a linear system of equations. Using the local

polynomial estimates to replace the unknown conditional expectations in (2.10) yields

̂ ()− 1


X
=1

X
=3

K () ̂ (−1) = − 1


X
=1

X
=3

K ()∆ (2.18)

Evaluating (2.18) at  = −1,  = 1   ,  = 2   , yields the following linear system of equations

with 2 equations and 2 unknowns:

M̂ −KM̂ = −KY (2.19)

where M̂ ≡ [̂ (12)   ̂ (1−1)   ̂ (2)   ̂ (−1)]
0
 Y ≡ (∆13 ∆1   ∆3

∆ )
0, Z ≡ [∆013 ∆01  ∆03 ∆0 ]

0
and

K ≡ 1



⎡⎢⎢⎣
K13 (12)  K (12)

...
. . .

...

K13 (−1)  K (−1)

⎤⎥⎥⎦ 
The solution to the above linear system of equations is given by M̂ = − (I2 −K)−KY Then we can
obtain ̂ () based on (2.18) for any  ∈ U  The iterative and non-iterative estimators are asymptotically
equivalent. Nevertheless, the non-iterative estimator involves the inversion of an 2×2 matrix which

may not be stable if 2 is large, say, 2 ≥ 1000. For further discussions, see Section 3.3 in Linton and
Mammen (2005).

By the same algorithms (iterative and noniterative), we can obtain the estimate ̂ ≡ (̂1   ̂
)

of  ≡ (1  
) Then we have the ̂ ≡ ̂ − 0̂ as the estimate of  =  − 0 for any

given  ∈ Θ

2.2.2 Semiparametric GMM estimation of 

Now we turn to the estimation of . Let ∆ () = ∆ −∆0− [ (−1)− (−2)]  Then by
(2.9),

∆ () = [∆ − (−1) + (−2)]− 0 [∆ − (−1) + (−2)]

=  − 0 (2.20)

where  ≡ ∆ −∆  ≡ ∆ −∆ ∆ =  −−1 and  ≡  (−1)
for  =   and  Note that ∆ = ∆ (0)  In principle we can obtain an infeasible estimate of  by

considering the regression of  on  Difficulty arises because of the endogeneity issue. To see this,

observe that


¡
∆

¢
=  () + (−1−1)−  (−1) + [−1 (−1)]

− (−1)− [ (−2)] + [−1 (−2)]−  [ (−1)]

=  () + (−1−1)−  (−1)− (−1)

+ [−1 (−1)] 
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where we use the fact that  [ (−)] = 0 for any  ≥ 1 under the m.d.s. condition that

(| −1  ) = 0. Note that each of the five terms in the last expression is typically non-

vanishing if  contains endogenous regressors. Even if  is strictly exogenous, we have (∆) =

 [−1 (−1)] 6= 0 because of the dynamic nature of the model. Thus (∆) 6= 0 in general
and we need to find a  × 1 vector  of IVs to consistently estimate  where  ≥ . We need 

to be orthogonal to ∆ and correlated with  Given the m.d.s. assumption, the set of valid IVs

could be very large, which is particularly true if  is large. But it seems extremely difficult to address the

optimal choice of IVs here. Given the IV  for  such that  () = 0 and  (
0
) 6= 0, in this

paper we simply recommend choosing  ≡
¡
 0
−1 

0
−2

¢0
as the IVs for  and leave the efficient

choice of IVs for future research.3 Note that

 (∆) = 0 (2.21)

Let  = (∆∆
0
 

0
−1 

0
−2 

0
)
0 and ̂ (·) = (̂ (·)  ̂ (·))  Let ̂ = ∆ − ̂ +

̂−1 and ̂ = ∆ − ̂ + ̂−1 where ̂ = ̂ (−1) for  =  and  Let 1̃ =

1 (−1 ∈ U)1 (−2 ∈ U) and ̃ = 1̃. By (2.20) and (2.21), we define the semiparametric

GMM estimator ̂ of 0 as the solution

̂ = argmin
∈Θ

°°°

³
 ̂
´°°°



where kk = 0  for a ×1 vector   is a × matrix that is symmetric and asymptot-

ically positive definite (p.d.),  ( ) =
1
̃

P
=1

P
=3 (  )  (·) = ( (·) 1 (·)  

(·))
̃ =

P
=1

P
=3 1̃ and

 (  ) =
¡
 − 0

¢
̃

=
©
[∆ − (−1) + (−2)]− 0 [∆ − (−1) + (−2))]

ª
1̃

Note that (  ̂) =
¡
̂ − 0̂

¢
̃ and we have restricted our attention to those observations

with −1 ∈ U and −2 ∈ U in the above procedure for some technical reasons. Apparently

̂ =
³
η̂0W̃W̃

0η̂
´−1

η̂0W̃W̃
0η̂ (2.22)

where W̃ ≡ (̃ 0
1  ̃

0
 )

0 ̃ ≡ (̃3  ̃ )
0 η̂ ≡ (̂01  ̂0 )0 and ̂ ≡ (̂3  ̂ )0 for

 =  and  In case  = (
1
̃
W̃0W̃)

−1
 ̂ becomes the two-stage least squares (2SLS) estimator:

̂2 =
¡
η̂0P̃ η̂

¢−1
η̂0P̃ η̂ (2.23)

where PW̃ ≡ W̃(W̃0W̃)−1W̃0. Let  ≡ (3   )0, and η ≡ (01  0 )0 for  =  and .

Then the infeasible semiparametric GMM estimator of 0 is given by

̃ =
³
η0W̃W̃

0η
´−1

η0W̃W̃
0η (2.24)

Under some regularity conditions, both ̂ and ̃ are asymptotic normal but with different as-

ymptotic variances.

3Even if  is strictly exogenous so that  =  we still need IVs for  because of the appearance of the lagged

dependent variable in  (−1). In this case, we can use either

0 

0
−2

0
or

∆0 

0
−2

0
as IVs for 
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2.2.3 Final estimation of  ()

Up to now, we have suppressed the dependence of all feasible estimates (̂, ̂ ̂) on the bandwidth

vector  = (0 1  ) As we shall see, to obtain the usual
√
̃-consistency of ̂, we require the

use of undersmoothing bandwidth (see Assumption A.6 below). For the estimation of the nonparametric

object  ()  we still follow the literature and recommend the use of the optimal rate of bandwidth se-

quence. To avoid confusion, we use  = (0 1  ) to denote such a bandwidth sequence. Accordingly,

we use ̂
 and ̂

 to denote ̂ and ̂ when the bandwidth  is replaced by 

Plugging the estimator ̂ into ̂ (), we obtain the estimate of  () by

̂

̂
() ≡ ̂

 ()− ̂
 ()

0
̂

for any  ∈ U 
Note that (·) is identified only upon to a location shift in (1.2). Under some assumptions (A.1(i)-(ii))

in the next subsection, we have [ (−1)] = ( −00) This motivates us to recenter ̂


̂
()

to obtain

̂

̂
() +

1

1

X
=1

X
=2

[ − 0̂ − ̂

̂
(−1)]

2.3 Asymptotic properties of ̂ and ̂̂
()

Let  ≡ (1   )
0
. Similarly, we define    or  Recall that  = ∆ − ∆


¡
|−2

¢
= 0,  = ∆ −∆ and 

¡
|−2

¢
= 0. Let 2−2 () ≡Var(∆|−2 =

) 2−2 () ≡Var(|−2 = ), and 2−2 () ≡Var(|−2 = ) for  = 1   Let ̄ = 

if  is odd and  + 1 if  is even. We make the following assumptions on {    } the
function of interest  the kernel function  and the bandwidth 

Assumptions.

A.1. (i) (    )   = 1   are IID.  () = 0

(ii) 
¡
| −1  

¢
= 0.

(iii) The PDF  (·) is uniformly bounded and bounded below from 0 on U 
(iv) kk2 ≤  max1≤≤ kk2 ≤  for some   ∞ where  is the -th element of 

(v)
R
U [ (̄)− ()]2  ()  (̄|) ̄  0 for all  ∈ L2 () with  6= 0

(vi)
R
U
R h(̄|)

(̄)

i2
 (̄)  () ̄ ∞

(vii) supkk2≤1 sup∈U
R | (̄)|  (̄|) ̄ ∞

A.2. (i) For  = 3   −2 (·) has all (̄ + 1)-th partial derivatives which are uniformly continuous on
U .
(ii)  (·) and  (·) have all (̄ + 1)-th partial derivatives which are uniformly continuous on U 
(iii) For  = 3   2−2 (·)  2−2 (·)  and 2−2 (·)   = 1  , have all second order partial

derivatives which are uniformly continuous on U .
A.3. The kernel function  : R→ R is a symmetric and continuous PDF that has a compact support.

A.4. Let ! ≡ Π=0 and kk2 ≡
P

=0 
2
  As  → ∞  is fixed, kk → 0 ! log → ∞,

 kk2(̄+1) !→  ∈ [0∞)
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A.1-A.4 parallel Assumptions A.1-A.4 in Su and Lu (2013). A.1(i) rules out cross sectional depen-

dence among {    } but allow nonstationarity along the time dimension for the time series
{   }=1 The latter means that the observed data can have time-varying marginal or
transition density functions. A.1(ii) imposes sequential exogeneity on ( ). A.1(iii) requires that

 (·) be well behaved on U as in typical local polynomial regressions. A.1(iv) imposes the finite second
moment on  (−1) so that L2 () is well defined. A.1(v) imposes assumptions on the functional forms
of the regression function  (·) and the mixture densities  (·) and  (·|·). It ensures that the operator
I − A is one-to-one and (2.8) is satisfied. A.1(vi) implies that there is not much dependence between

−1 and −2 under the mixture transition density  (·|·) and it ensures that the operator A is Hilbert-
Schmidt and a fortiori compact (see Carrasco et al. (2007) for further discussions). A.1(vii) also imposes

some restriction on the operator A and can be easily satisfied. For example, if R  ()2  ()  ∞ and

sup∈U
R
 (̄|)2  (̄) ̄ ∞, A.1(vii) holds by Cauchy-Schwarz inequality.

A.2 mainly specifies the smoothness conditions on −2   
2
−2 2−2 and 2−2 A.3

requires that the kernel  be compactly supported. This assumption can be relaxed at the cost of lengthy

arguments. A.4 specifies conditions on the choice of bandwidth sequences and the local polynomial order

. Note that we shall use the fact that the bias for the th order local polynomial regression is of order

(kk+1) if  is odd and (kk+2) if  is even when the kernel function  is symmetric. See Li and

Racine (2007, pp. 90-91).

Let  () ≡  (−2)− ()−
P
1≤|j|≤

1
j!

(j)
 () (−2 − )j  Define

 () ≡ 1



X
=1

X
=3

K̄ () () and  () ≡ 1



X
=1

X
=3

K̄ () , (2.25)

where

K̄ () ≡ 01
£
̄ ()

¤−1
1 (−2 − ) (−2 − )  (2.26)

and ̄ () ≡  [ ()]  Note that the non-stochastic term ̄ () is used in the definition of

 () and () to facilitate the asymptotic analysis. Analogously, define () and  ()

with  in the definitions of  () and  () being replaced by  for  =  1    By the

standard local polynomial regression theory (e.g., Masry, 1996; Hansen, 2008), we have sup∈Θ sup∈U
| ()| =  [(log)

12 (!)−12] and sup∈Θ sup∈U | ()| =  (kk̄+1) Similar results hold
for  () and  () with  =  1   

The following theorem characterizes the Bahadur-type representations of ̂ ()   =  1   

and ̂ () with a uniform control on the higher order terms that are asymptotically negligible in later

study.

Theorem 2.1 Suppose Assumptions A.1-A.4 hold. Then

(i) sup∈U
¯̄̄
̂ ()− ()− (I −A)−1  ()− (I −A)−1 ()

¯̄̄
= 

¡
2
¢
for  = 

1   

(ii) sup∈Θ sup∈U
¯̄̄
̂ ()− ()− (I −A)−1  ()− (I −A)−1 ()

¯̄̄
= 

¡
2
¢


where  ≡ (!)−12(log)12 + kk̄+1 
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Remark 2.1. The result in Theorem 2.1(i) is analogous to that in Theorem 2.1 in Su and Lu (2013)

for the case  = . In particular, the terms (I −A)−1  () and (I −A)−1 () signify the

asymptotic variance and bias of ̂ ()  respectively. In terms of our notation, Su and Lu (2013) show

that

sup
∈U

¯̄̄
̂ ()− ()−  ()− (I −A)−1 ()

¯̄̄
= 

h
−12 (log)12 + 2

i


where the asymptotic bias term has the same structure as ours but the variance term is different from

ours. Observing that (I −A)−1 = I + A (I −A)−1  the variance term in Theorem 2.1(i) for the case

 =  can be decomposed into two terms

(I −A)−1  () =  () +A (I −A)−1  ()  (2.27)

The first term  () stands for the usual variance term for local polynomial regression that is

 [(!)
−12] for each  ∈ U and [(!)

−12(log)12] uniformly in  ∈ U  The second termA (I −A)−1
× () appears frequently in kernel estimation based on solving a Fredholm integral equation of the

second kind (see, e.g., Linton and Mammen (2005) and Su and Lu (2013)), and it is  (
−12) for each

 ∈ U and  [
−12(log)12] uniformly in  ∈ U (see also condition (B4b) in the proof of Theorem

2.1(i)). Apparently, the second term is of smaller order than the first term and has been ignored by Su

and Lu (2013) in their study of kernel estimation of nonparametric dynamic panel data models. We keep

the second term in (2.27) because it contributes to the asymptotic variance of our semiparametric GMM

estimator ̂ of  despite the fact it does not contribute to the asymptotic variance of our nonparamet-

ric estimator ̂
̂

() of  ()  As in Su and Lu (2013), the asymptotic bias term in Theorem 2.1(i)

reflects the fact that the bias accumulates during the iteration.

To study the asymptotic normality of ̂ we need to introduce more notation. Let  ≡
̃−1

P
=1

P
=3

0
1̃ and  ≡  (). Define the operator L (̄ ) by

(I −A)−1 () =
Z
U
L ( ̄) (̄)  (̄) ̄ (2.28)

Let L̄ ( ) ≡ RU L ( ̄)1 ( ∈ U) 01̄ (̄)
−1

 ( − ̄) ( − ̄) ̄ Note that L̄ ( ) ≡ RU L ( ̄)
×1 ( ∈ U) ( − ̄) ̄ in case  = 1 Let  = ( 01  

0
  

0
3 

0
  3   )

0 For  =
 1    define

1
¡


¢
=
− ( − 1)

2̃

X
=3

X
=3



££L̄ ( −1)− L̄ ( −2)¤ 1̃

¤
 (2.29)

where denotes expectation with respect to variables indexed by  Let 1() = (1(1)  1( ))

Note that 1() and 1() are of dimensions  × 1 and  ×  respectively, and they reflect the

estimation errors by replacing  and  in (2.20) by their respective kernel estimates ̂ and ̂

We add the following assumptions.

A.5. (i) As  →∞ 
→   0 and 

→ .  has full rank .

(ii) max3≤≤ 
°°°̃

°°° ∞

(iii) 1√
̃
W̃0∆ε+

√
̃


P
=1[1()− 1()0]

→  (0Ω0).
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A.6. As  →∞  kk2(̄+1) → 0 and  (!)
2
(log)2 →∞

A.5(i) and (ii) are standard in the GMM literature. If one chooses  = (̃
−1W̃0W̃)

−1
 we could

require  ≡ ̃−1
P

=1

P
=3

0
1̃

→  ()  0 A.5(iii) is a high level condition. Let

 =
P

=3 ̃∆+
£
1
¡


¢− 1
¡


¢
0
¤
 Under our large  and fixed  framework, one set of

sufficient conditions for A.5(iii) is: (i)  are independent across  with 
¡


¢
= 0; (ii)  kk2+  

for some  ∞ and some   0 The zero mean restriction can be easily verified. The main complication

lies in the verification of the moment conditions on 1
¡


¢
and 1

¡


¢
 where we find it is difficult

to obtain more primitive conditions. The term [1()− 1()0] indicates the effect of parameter

estimation error (PEE) because of the use of ̂  =  and  in the semiparametric estimation of 

The first part of A.6 requires the use of an undersmoothing bandwidth for the nonparametric estimates

in order to eliminate the impact of their asymptotic biases on the second stage parametric estimates, and

the second part is needed to ensure ̃2 =  (1) 

The following theorem establishes the asymptotic normality of ̂.

Theorem 2.2 Under Assumptions A.1-A.6, we have

√
̃
³
̂ − 0

´
→ 

³
0 (0)

−1
0Ω0 (

0
)

−1´


Remark 2.2. We prove the above theorem based on the explicit formula for the semiparametric GMM

estimator ̂ and Theorem 2.1. As expected, ̂ converges to 0 at the usual parametric rate ̃
12

but with the asymptotic variance different from that of its infeasible version ̃ because it is standard

to show that

√
̃
³
̃ − 0

´
→ 

³
0 (0)

−1
0Ω

†
0 (

0
)

−1´
where Ω†0 ≡ lim→∞ 1

̃
Var(W̃0∆ε) To make inference, we need to obtain consistent estimates of 

and Ω0 Apparently, we can estimate  by  The estimation of Ω0 is quite involved. We follow

Chen et al. (2003) and Mammen et al. (2015) and recommend the use of bootstrapping for practical

purpose. The procedure is standard and detailed in these papers.

Remark 2.3. Alternatively, we can establish the above result based on the literature on semiparametric

estimation with nonparametrically generated covariates; see Newey (1994), Ahn (1997), Chen et al.

(2003), Ichimura and Lee (2010), Kong et al. (2010), Hahn and Ridder (2013), Escanciano et al. (2014),

Mammen et al. (2015), among others. Under certain conditions, these authors show that the estimator

̂ exhibits the following representation

√
̃
³
̂ − 0

´
= − ¡0





¢−1
0


(
1√
̃

X
=1

X
=3

 ( 0 0)+
√
̃


 [̂ − 0]

)

+

µ°°°̂ − 0

°°°2
Ξ

¶
+  (1)  (2.30)

Here 
 denotes the ordinary derivative of  ( ) with respect to  evaluated at the true value

(0 0); 

 [̄] ≡ 


 (0 0)

£
̄
¤
denotes the pathwise derivative of  (0 ) at 0 in the direction

̄ i.e., 

 [̄] ≡ lim→0

£


¡
0 0 +  ̄

¢− (0 0)
¤
 for any ̄ such that 0 +  ̄ ∈ Ξ for | |
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sufficiently small; k·kΞ denotes the pseudo-norm induced by the sup-norm on a suitable class of smooth

functions Ξ. That is, for any  = (1  
) ∈ Ξ

kkΞ ≡ sup
∈U

| ()|+ sup
∈U

X
=1

¯̄
 ()

¯̄


Noting that 
 = − and

P
=1

P
=3  ( 0 0) = W̃0∆ε in out setup, the representa-

tion in (2.30) implies that ̂ is
√
̃-consistent and asymptotically normal with asymptotic variance

(0)
−1

0Ω0 (
0
)

−1
provided°°°̂ − 0

°°°
Ξ
= 

³
̃−14

´
(2.31)

and
1√
̃
W̃0∆ε+

√
̃


 [̂ − 0]

→  (0Ω0)  (2.32)

Verifying (2.31) is straightforward given the uniform convergence results in Theorem 2.1. To verify (2.32),

we can readily calculate the path derivative of  (0 ) at 0 to obtain

√
̃


 [̂ − 0] =

1√
̃

X
=1

X
=1

̃

£
(− + −1)− (− + −1)

0
0
¤

(2.33)

where  = ̂ (−1) − (−1) for  =  and  Under our conditions that include the use of

undersmoothing bandwidth , we can apply Theorem 2.1 and show that

√
̃


 [̂ − 0] =

√
̃



X
=1

[1()− 1()0] +  (1)

where both 1
¡


¢
and 1

¡


¢
have zero mean and are square-integrable.

We did not use the above arguments in our proof for two reasons. First, we have explicit formula for

our semiparametric GMM estimator and their asymptotic distribution can be established by following

standard asymptotic tools without resorting to the empirical process theory. Second, to apply the results

in papers such as Newey (1994) and Chen et al. (2003), we have to limit our attention to a particular

class of smooth functions (e.g., Ξ is the popular nonparametric function class studied in detail in van

der Vaart and Wellner (1996, p.154)), and verify that the corresponding nonparametric estimates, ̂

 =  1   also belong to this class with probability tending to one. It is well known such a

verification can be extremely difficult even in applications that are involved with standard kernel estimates

(e.g., local polynomial quantile regression estimates). This is indeed the case here because ̂’s do not

possess a closed-form expression and we are unable to verify that they belong to the same function class

as their population truth. See Escanciano et al. (2014) for further discussions.

Given the asymptotic normality result of ̂ in the above theorem, we establish the uniform con-

vergence and point-wise asymptotic normality of ̂

̂
() in the following theorem.

Theorem 2.3 Suppose Assumptions A.1-A.6 hold. Suppose that Assumption A.4 is also satisfied with

 replaced by  = (0 1  ) Then
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(i) sup∈U
¯̄̄
̂

̂
()− ()

¯̄̄
=  ((!)

−12(log)12 + kk̄+1);
(ii) for any  ∈interior(U) 

√
!
h
̂

̂
()− ()− (I −A)−10 ()

i
→ 

µ
0
20 ()

 ()
01S−1KS

−11

¶


where 0 () ≡ 01S−1
P

|j|=̄+1 (j!)
−1

(j) ()
R
 () () ( ¯ )j  S ≡ [ ()]−1 lim→∞[̄ ()]

K ≡ R  (̄)2  (̄) (̄)0 ̄ and 20 () =
P

=3 (−2) −2 ()
2
−2()

Remark 2.4. The above results are as expected. Since the parametric estimate ̂ converges to

0 at the usual parametric rate, it has no asymptotic impact on the estimation of the nonparametric

component  (). As in Su and Lu (2013), the asymptotic bias and variance formulae in Theorem 2.3

exhibit complicated forms because of the allowance of a general order of local polynomial regressions and

the use of different bandwidths for different covariates. In the special case where  = 1 one can easily

verify that

S =

Ã
1 01×(+1)

0(+1)×1 I+1
R
2 () 

!
 and K =

⎛⎜⎝
hR

 ()2 
i+1

01×(+1)

0(+1)×1 I+1

hR
2 ()2 

i+1
⎞⎟⎠ 

Then the asymptotic variance simplifies to
20()
() [

R
 ()2 ]+1 and0 () =

1
2

P
=0 

2

2()
2



R
2 () 

Remark 2.5. From Theorem 2.3, we can see that the asymptotic variance of the estimator ̂

̂
()

shares the same structure as that of a typical local polynomial estimator of either  in the model

∆ − 00∆ =  (−1)− (−2) +∆ (2.34)

by pretending the other one and the finite dimensional parameter 0 are known. Nevertheless, the

asymptotic bias of ̂

̂
() is different from the case where one of the two ’s and 0 are known in

(2.34) since the operator (I −A)−1 signifies the accumulated bias. Since the error term ∆ in (2.34)
follows an MA(1) process, it is interesting to explore such an MA(1) structure and propose a more efficient

estimate of  (). But because the process {∆  ≥ 2} is not invertible, the techniques developed in
Xiao et al. (2003) and Su and Ullah (2006b) are not applicable here.

Remark 2.6. Interestingly, our method can also be applied to estimate the partially linear model with

both individual and time fixed effects:

 = 00 + (−1) +  +  +  (2.35)

where the new term  indicates unobserved time effect. The first-differenced model now becomes

∆ = ∆†0
†
0 +0

 + (−1)− (−2−1) +∆

= ∆†0
†
0 + (−1)− (−2−1) +∆ (2.36)

where  = (1   )
0 †0 = (

†0
0  

0)0 ∆† = (∆
0


0
)
0 and  is a  × 1 vector with 1 and −1 in its

 and ( − 1)th positions, respectively, for  = 2   Then one can apply the method proposed in this
section to estimate both  (·) and 

†
0 jointly.
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3 Sieve IV estimation

In this section, we consider sieve IV estimation of  and .

3.1 Estimation

Since  (·) is unknown, we propose to estimate (·) and  jointly by the method of sieves (see, e.g., Chen
(2007)). To proceed, let {()  = 1 2   } denote a sequence of known basis functions that can well

approximate any square-integrable function of . Let  ≡  be some integer such that →∞ as  →
∞ Let () ≡ (1() 2()     ())0 be the × 1 vector of basis functions. Let −1 ≡ (−1)
∆−1 ≡ −1 − −2 ∆ ≡ (∆2    ∆−1)0 and ∆p ≡ (∆01∆02    ∆0 )0 Obviously, we
suppress the dependence of  ∆ ∆ and ∆p on   or  In particular, ∆ and ∆p are of

dimension 2 ×  and 2 ×  respectively.

Under fairly weak conditions, we can approximate  (−1) − (−2) in (2.1) by 0∆−1 for
some × 1 vector  This motivates us to consider the following model

∆ = ∆
0
0 + 0∆−1 +∆ + (3.1)

where  ≡  (−1)− (−2)−0∆−1 signifies the sieve approximation error. Note that∆−1
is correlated with ∆ and that ∆ may be correlated with ∆ too unless  is strictly exogenous.

To estimate  and  in the above model consistently, we run the regression of ∆ on ∆ and ∆−1
by using a ̄ × 1 vector ̄ as the IV for ∆−1 and ∆ where ̄ ≥  +  Note that a variety of

measurable functions of  −2 can serve as valid instruments for ∆−1 Following the lead of Anderson
and Hsiao (1981), in the simulations and applications below we choose ̄ ≡ ( 0

−1 
0
−2)

0 when  is
endogenous and can be implemented by  and ̄ ≡

¡
∆0 

0
−2

¢0
when  is strictly exogenous. We

assume that ̄ ≤  for some   1

Let ̄ ≡ (̄3     ̄ )
0 W̄ ≡ (̄ 0

1 ̄
0
2     ̄

0
 )

0 ∆ ≡ (∆3    ∆ )
0 and ∆Y ≡ (∆ 0

1 

∆ 0
2     ∆

0
 )

0. Similarly define  and R Then the sieve IV/2SLS estimate of
¡
0 0

¢0
is given by4³

̂
0
 ̂

0


´0
≡ £(∆Z∆p)0PW̄ (∆Z∆p)

¤−
(∆Z∆p)0PW̄∆Y

where PW̄ ≡ W̄(W̄0W̄)−W̄0 Let Y ≡ PW̄∆Y, Z ≡ PW̄∆Z, and p ≡ PW̄∆p. By the formula for
partitioned regressions, we have

̂ = (p
0
MZp)

−1
p0MZY and ̂ = (Z

0
MpZ)

−1
Z0MpY

Then we can estimate  () by ̂ () ≡ ̂
0


() We recenter ̂ () as follows

̂ () +
1

1

X
=1

X
=2

h
 −  0̂ − ̂ (−1)

i


4More generally, we can consider the sieve GMM estimate defined by: (̂
0
, ̂

0
)

0 = [(∆Z∆p)0 W̄̄W̄
0 (∆Z∆p)]−

(∆Z∆p)0 W̄̄W̄
0∆Y ̄ is a ̄ × ̄ weight matrix that is symmetric and asymptotically positive definite. The

asymptotic properties are similar to the 2SLS estimator but the notation is slightly more complicated. So we decide to

focus on the sieve 2SLS estimation here.
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3.2 Asymptotic properties of ̂ and ̂

To apply the method of sieves, we assume that  () satisfies some smoothness conditions. Let X ≡
Y×X1 ⊂ R×R be the support of (−1). Early literature (e.g., Newey (1997) and de Jong (2002))

requires compact support implicitly or explicitly. To allow for the unboundedness of X , we follow Chen
et al. (2005), Su and Jin (2012), and Lee (2014) and use a weighted sup-norm metric defined as

kk∞ ≡ sup
∈X

| ()|
h
1 + kk2

i−2

for some  ≥ 0. (3.2)

If  = 0, the norm defined in (3.2) is the usual sup-norm that is suitable for the case of compact support.

Recall that a typical smoothness assumption requires that a function  : X → R belong to a

Hölder space. Let α ≡ (1     +1)
0 denote a ( + 1)-vector of non-negative integers and |α|

≡ P+1
=1 . For any  = (1     +1), the |α|th derivative of  : X → R is denoted as ∇() ≡

||()(11    +1). The Hölder space Λ
(X ) of order   0 is a space of functions  : X → R

such that the first de derivatives are bounded, and the deth derivatives are Hölder continuous with the
exponent  − de ∈ (0 1]. Define the Hölder norm:

kkΛ ≡ sup
∈X

| ()|+ max
||=de

sup
 6=∗

|∇()−∇(∗)|
k− ∗k−de



The following definition is adopted from Chen et al. (2005).

Definition 1. Let Λ(X ) ≡ © : X → R such that (·)[1 + || · ||2]−2 ∈ Λ(X )ª denote a weighted
Hölder space of functions. A weighted Hölder ball with radius  is

Λ (X ) ≡
n
 ∈ Λ(X ) :

°°°(·)[1 + || · ||2]−2
°°°
Λ
≤  ∞

o


Function (·) is said to be ()-smooth on X if it belongs to a weighted Hölder ball Λ (X ) for
some   0,   0 and  ≥ 0.
To proceed, we define some additional notation. Let̄ ≡ −1−12

P
=1

P
=3 ̄∆

0
 ̄ ≡

−1−12
P

=1

P
=3 ̄̄

0
 and ̄ ≡ −1−12

P
=1

P
=3 ̄∆

0
 Let ̄ ≡ (̄)  ≡

(̄) and ̄ ≡ (̄) Define

1 ≡ 0̄
−1
̄ ̄ −0̄

−1
̄ ̄

¡
0̄

−1
̄ ̄

¢−1
0̄

−1
̄ ̄

2 ≡ 0̄
−1
̄ −0̄

−1
̄ ̄

¡
0̄

−1
̄ ̄

¢−1
0̄

−1
̄ 

3 ≡ 0̄
−1
̄ ̄ −0̄

−1
̄ ̄

¡
0̄

−1
̄ ̄

¢−1
0̄

−1
̄ ̄ and

4 ≡ 0̄
−1
̄ −0̄

−1
̄ ̄

¡
0̄

−1
̄ ̄

¢−1
0̄

−1
̄ 

Let  ≡
R
∈X  ()  ()0  ()  where  () is a nonnegative weight function.

To establish the large sample properties of ̂ we need the following assumptions.

A.7. (i) (·) is ()-smooth on X for some   ( + 1)2 and  ≥ 0.
(ii) For any ()-smooth function  ()  there exists a linear combination of basis functions

Π∞ ≡ 0
 (·) in the sieve space G ≡

©
 (·) = 0 (·)ª such that k−Π∞k∞

= 
¡
−(+1)

¢
for some ̄   + 
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(iii) plim( )→∞ (1)
−1P

=1

P
=2

¡
1 + ||−1||2

¢̄
 (−1) ∞.

(iv) There are a sequence of constants 0 () and compact sets U satisfying that sup∈U kk =
(0 ()

1̄) sup∈U
°° ()°° ≤ 0 ()  and 0 ()

2
 → 0 as  →∞

A.8. (i) sup2≤≤  kk4 ≤  ∞ for  =  ̄ and 

(ii) ̄
→ ̄  0 ̄

→ ̄ and ̄
→ ̄ (̄ ̄) has full rank  + 

(iii) Ω1 ≡ Var[−122

P
=3 ̄1∆1]  0

(iv) There exist positive constants 1
 ̄1  3

and ̄3 such that 0  
≤ min () ≤ ̄

 ∞
for  = 1 3

(v) max () ∞.
A.9. As  →∞ 3 → 0,

√
−(+1) → 0

Assumptions A.7(i)-(iii) are widely assumed in the literature on sieve estimation when an infinite

support is allowed; see Chen et al. (2005), Su and Jin (2012), Lee (2014), and Su and Zhang (2015).

A.7(iv) is needed to obtain the uniform convergence rate for the sieve estimate ̂ () over a possibly

divergent sequences of compact sets. A.8(i) imposes moment conditions on , ̄ and  A.8(ii)-(iii)

are standard (see, e.g., Newey (1997)). A.8(iv) is a high level assumption. A.9 imposes further restrictions

on  to control the sieve approximation bias and variance.

We establish the asymptotic normality of ̂ in the following theorem.

Theorem 3.1 Suppose Assumptions A.1(i)-(ii) and A.7-A.9 hold. Then
√
2(̂ − 0)

→ (0

−11 2Ω1
0
2
−1
1 )

Remark 3.1. The above theorem gives the asymptotic distribution of ̂ The sieve IV estimation

uses all observations in the estimation procedure and it is easier to implement than the kernel-based

semiparametric GMM estimation. Nevertheless, it seems difficult to make a theoretical comparison

between the two types of estimates. We compare them only through Monte Carlo simulations.

The following theorem reports the convergence rates and asymptotic normality of ̂ () 

Theorem 3.2 Suppose Assumptions A.1(i)-(ii) and A.7-A.9 hold. Suppose
°° ()°° ≥   0 Then

(i)
R
[̂ ()− ()]

2
 ()  = 

¡
 + −2(+1)

¢


(ii) 1
1

P
=1

P
=2 [̂ (−1)− (−1)]

2
= 

¡
 + −2(+1)

¢


(iii) sup∈U |̂ ()− ()| =  (0 () (
p
 + −(+1)))

(iv)
√
2 ()

−12
[̂ ()− ()]

→  (0 1) 

where  () ≡  ()
0
−13 4Ω1

0
4
−1
3  ().

Remark 3.2. Following Newey (1997), we can also study the consistency and asymptotic normality of

the plug-in estimates of linear or nonlinear functionals of . The argument is standard and we do not

repeat it to save space. To improve the finite sample performance of the nonparametric estimate, we

can treat ̂ as the true value 0 and then apply the method in Su and Lu (2013) to re-estimate the

unknown function  (). Given ̂, we can solve the following integral equation

 () = A () +
h
 ()− ̂

0
 ()

i
 (3.3)
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Solving the empirical integral equation gives the new local polynomial estimator ̂ () of  ()  which

can be written as ̂

̂
() using notation defined in Section 2 when the bandwidth is chosen to be 

and the same kernel function is used as before. We denote these estimators as ̂ and ̂ when

iterative and noniterative algorithms are used, respectively. It is trivial to show that both estimators

have the same asymptotic distribution as ̂

̂
() given in Theorem 2.3.

Remark 3.3. Once we obtain the estimators ̂ and ̂, we can update the estimates of 

by treating ̂ or ̂ as the true unknown function  by IV or OLS method based on the

following first differenced models:

∆ − [̂ (−1)− ̂ (−2)] = ∆00 +∆ (3.4)

or

∆ − [̂ (−1)− ̂ (−2)] = ∆00 +∆ (3.5)

When  is endogenous, one could use the same IV as before, i.e., we can use a subvector of ̄ that

corresponds to the IV for ∆. If  is strictly exogenous, then OLS regression will yield consistent

estimates of  But because  (·) can only be estimated sufficiently well on compact sets, we only use
observations for which both −1 and −2 lie on U in the above regression. We denote these two

estimates of  as ̂ or ̂, respectively. Following the proof of Theorem 2.2, we can readily

establish their
√
 -consistency and asymptotic normality under some regularity conditions. We omit the

details to save space.

4 Testing for the linearity of the unknown nonparametric com-

ponent

In this section we maintain the correct specification of the partially linear panel data model and con-

sider testing the linearity of the nonparametric component  (·) in the partially linear model. The null
hypothesis is

H0 :  (−1) = 0 + 00−1 a.s. for some (0 
0
0)
0 ∈ Υ ⊂ R+2

where  = 1    = 2   , and Υ is a compact subset of R+2. The alternative hypothesis is given
by

H1 : Pr [ (−1) =  + 0−1]  1 for ∀ ( 0)0 ∈ Υ for some  = 2   .
There are several tests for linearity in nonparametric panel data models. Lee (2013) proposes a

residual-based test to check the validity of the linear dynamic models with both large  and  and her

test requires the consistent estimation of the generalized spectral derivatives which is impossible for fixed

 In the spirit of Härdle and Mammen (1993), Su and Lu (2013) introduce a nonparametric test for

linearity in nonparametric dynamic panel data models by comparing two estimates, i.e., the restricted

estimate under H0 and the unrestricted estimate under H1 when  is large and  is fixed, and Lin et

al. (2014) propose a similar test for a linear functional form in static panel data models when both 

and  are large. This idea is also used in Su and Zhang (2015) who propose a test for linear functional

form in nonparametric dynamic panel data model with interactive fixed effects when both  and  are
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large. In addition, Li et al. (2011) propose a test for linearity of nonparametric component in a cross-

sectional partially linear model and propose to obtain the -value by using fiducial method. Nevertheless,

to the best of our knowledge, there is no test for linearity of nonparametric component in partially linear

dynamic panel data models with fixed effects.

Following Su and Lu (2013), we consider the smooth functional

Γ ≡
Z
U
[ ()− 0 − 00]

2
 ()  () 

where  () is a user-specified nonnegative weighting function with compact support U . Clearly, we have
Γ = 0 under H0 and generally Γ  0 under H1 This motivates us to propose a test based on Γ. Under
H0 we estimate the following linear panel data model

 = 00 + 0 + 00−1 +  + 

by applying the usual IV/GMM method to the first-differenced model. For example, if  and  are

strictly exogenous, we can follow Anderson and Hsiao (1980) or Arellano and Bond (1991) to obtain

the IV/GMM estimates of  and . Let (̆ ̆) be the IV/GMM estimate. Then we can estimate  by

̆ = 1
2

P
=1

P
=3

³
 − 0̆ −  0−1̆

´
under the identification restriction that  () =  () = 0

Then we have two natural test statistics

Γ1 =
1

1

X
=1

X
=2

£
̂ (−1)− ̆ −  0−1̆

¤2
 (−1) 

and

Γ2 =
1

1

X
=1

X
=2

h
̂
0
 + ̂ (−1)− 0̆ − ̆ −  0−1̆

i2
 (−1) 

where  (·) is a nonnegative weight function, ̂ is either one of the two estimates (̂ and ̂sieve)

discussed above, ̂ is either one of the four estimates: ̂ ̂ ̂ and ̂.

We do not recommend the use of ̂ because simulations indicate that it tends to be outperformed

by the other four estimates.

Note that all parametric estimates have the usual parametric convergence rate under the null hy-

potheses. Following the asymptotic results in Sections 2 and 3 and the analysis in Su and Lu (2013),

one can easily show that Γ1 and Γ2 are asymptotically equivalent under the null, and after being

suitably normalized, they share the same asymptotic normal null distribution as the corresponding test

statistic Γ in Su and Lu (2013):³
1 (!)

12 Γ − B

´
→ 

¡
0 20

¢
for  = 1 2 under H0

where B and 20 are as defined in Su and Lu (2013, eqns. (3.7) and (3.8)). Under H0 we can
consistently estimate them by B̂ and ̂2 whose formulae are also given in the latter paper. The

feasible test statistics are then given by

 ≡
³
1 (!)

12 Γ − B̂

´


q
̂2   = 1 2
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which are asymptotically distributed as  (0 1) under the null. Following Su and Lu (2013), one can also

study the local power properties of 1 and 2 and demonstrate that they can detect local alterna-

tives converging to the null at the usual nonparametric rate (1)
−12 (!)−14  The global consistency

of the tests can also be established, following almost identical arguments as used in Su and Lu (2013).

We omit the details to save space.

Remark 4.1. (Specification test for the partially linear model) One might also be interested in

testing for the correct specification of the partially linear model. For simplicity, assume that  is also

sequentially exogenous and  (| −1 ) = 0 In this case, the null and alternative hypotheses

are

H00 :  (| −1 ) = 00 +0 (−1) +  a.s. for some 0 ∈ Θ ∈ R and 0 ∈M

and

H01 : Pr [ (| −1 ) = 0 + (−1) + ]  1 for all  ∈ Θ ∈ R and  ∈M

where M is certain class of smooth functions. There are several possible ways to conduct the tests.

For example, one may follow Fan and Li (1996) and construct a residual-based kernel-smooth test. For

another example, one may follow Delgado and González-Manteiga (2001) and Li et al. (2003) and

consider a residual-based non-smooth test via the use of empirical process theory. Alternatively, one

may consider a weighted square-distance-based test by comparing the semiparametric estimate of the

regression function under the null with the purely nonparametric estimate under the alterative. Such

ideas have been frequently applied in the nonparametric literature to construct specification tests for

parametric or semiparametric models in either cross section or time series studies. A major problem

that pertains to our panel data model is that the fixed effects ’s cannot be consistently estimated in

the case of fixed  and thus it is difficult to construct a test based on the estimated residuals. That

motivates Su and Lu (2013) to take the third approach mentioned above. Apparently, this approach is

also problematic if  +  + 1 the dimension of ( −1) is high because it is then hard to estimate
the nonparametric function under the alternative. Of course, other approaches to specification tests are

also typically subject to the “curse of dimensionality”. It remains an open question how to derive a

practical test in this framework and we leave it for future research.

Remark 4.2. (A bootstrap version of the test) It is well known that nonparametric tests based

on their asymptotic normal null distributions may perform poorly in finite samples. As an alternative,

people frequently rely on bootstrap -values to make inference. Below we propose a recursive bootstrap

procedure to obtain the bootstrap -values for our test. Let  be one of 1 and 2 defined

above. The procedure goes as follows:

1. Estimate the restricted model under H0 and obtain the residuals ̆ = − 0̆−̆−(−1 0
) ̆

where ̆ ̆ and ̆ are the IV or GMM estimates of   and  under the null. Calculate the test

statistic  based on the original sample {  } Let ̆ ≡ ̆ ≡ −1
P

=1 ̆

2. Obtain the bootstrap error ∗ =
¡
̆ − ̆·

¢
 for  = 1 2     and  = 2      where ̆· ≡

−1
P

=1 ̆ and ’s are IID across both  and  and follow a two-point distribution:  =
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(1 −√5)2 with probability (1 +√5)2√5 and  = (
√
5 + 1)2 with probability (

√
5 − 1)2√5

Generate the bootstrap analogue  ∗ of  as

 ∗ = 0̆ + ̆ +
¡
 ∗−1

0


¢
̆ + ̆ + ∗ for  = 1 2     and  = 2     

where  ∗1 = 1

3. Given the bootstrap resample { ∗    } estimate both the restricted (linear) and unre-
stricted (semi-parametric) first-differenced model and calculate the bootstrap test statistic ∗

analogously to  

4. Repeat steps 2 and 3 for  times and index the bootstrap test statistics as {∗}=1 The bootstrap
-value is calculated by ∗ ≡ −1

P
=1 1(

∗
   )

Note that we impose the null hypothesis of linear dynamic panel data models in step 2. Conditional

on the data, ( ∗  
∗
) are independently but not identically distributed (INID) across  and ∗ are also

independently distributed across  So we need to resort to the CLT for second order  -statistics with

INID data (e.g., de Jong (1987)) to justify the asymptotic validity of the above bootstrap procedure. See

Su and Lu (2013) for more discussions.

5 Simulations

In this section, we conduct a small set of Monte Carlo simulations to examine the finite sample perfor-

mance of our proposed estimators and test statistics.

5.1 Data generating processes

We first consider the following three data generating processes (DGPs) where both  and are strictly

exogenous:

DGP 1:  = 05 + 025−1 + +  + ;

DGP 2:  = 05 +  (−1) +2
 +  + ;

DGP 3:  = 05 + (−1 −  2
−1) [15 + ()] +  + ;

where  (·) is the standard normal PDF,  are IID  (0 1) across both  and ,  are IID  (−12 12) 
 = 025 +  with {} being IID  (0 1) across both  and  and independent of {} and
{},  = 025 +  with {} being IID  (0 1) and independent of {  }. DGP 1

is a linear dynamic panel data model whereas DGPs 2-3 specify partially linear dynamic panel data

models. The lagged dependent variable −1 and regressor  enter the model additively in DGP 2

and multiplicatively in DGP 3.

Next, we consider another three DGPs with exogenous  but endogenous  :

DGP 4:  = 05 + 025−1 + +  + ;

DGP 5:  = 05 +  (−1) +2
 +  + ;

DGP 6:  = 05 + (−1 −  2
−1) [15 + ()] +  + ;
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where the regression functions parallel those in DGPs 1-3 in order, {} are generated in the same

way as in DGPs 1-3, the endogenous regressor  is generated according to

 = 025 +  + 

( ) are IID draws from 

ÃÃ
0

0

!


Ã
1 03

03 1

!!
 and  are IID  (0 1) and independent of

{ }.
Obviously,  is defined as follows:  ( ) = 025 +  in DGPs 1 and 4,  ( ) =  () + 2 in

DGPs 2 and 5, and ( ) = ( − 2) [15 + ()] in DGPs 3 and 6. All the six DGPs are used to

evaluate the performance of our estimates and tests for the linearity of the function  (·). In the case
of testing for the nonlinearity of  (·), DGPs 1 and 4 are used for the size study and all the other four
DGPs are for power comparisons.

5.2 Implementation

In the estimation, we consider the following estimates for  and  (·):

1. ̂ and ̂ : semiparametric GMM estimate of  and local quadratic estimate of 

respectively; both are based on the local quadratic estimates of  () and  () via the iterative

algorithm. We choose  = (∆ 
0
−2)

0 in DGPs 1-3 and  = (−1  0−2)
0 in DGPs 4-6.

2. ̂ and ̂ : semiparametric GMM estimate of  and local quadratic estimate

of  respectively; both are based on the local quadratic estimates of  () and  () via the

non-iterative algorithm. We choose  = (∆ 
0
−2)

0 in DGPs 1-3 and  = (−1  0−2)
0

in DGPs 4-6.

3. ̂ and ̂ : sieve IV estimates of  and , respectively. We choose ̄ = (∆ 
0
−2)

0 in
DGPs 1-3 and ̄ = (−1 0−2)

0 in DGPs 4-6.

4. ̂ and ̂ : local quadratic estimates of  by finding the empirical solution to eqn.

(3.3) through the iterative and non-iterative algorithms, respectively. See remark 7 in Section 3.

5. ̂ and ̂ : IV or OLS estimates of  by running the regression in (3.4) and (3.5),

respectively. See remark 8 in Section 3 for more details.

To obtain ̂ or ̂, we consider the semiparametric 2SLS estimates of  by setting

 = (
1
̃
W̃0W̃)

−1
 Note that when a local polynomial regression is called upon, we always apply the

local quadratic regression so that  = 2 For all iterative local quadratic estimates of the nonparametric

components, we follow Su and Lu (2013) and choose the sieve-IV estimates as the initial estimates. For

the sieve estimates, we choose the cubic B-spline as the sieve basis and include the tensor product terms

to approximate the bivariate function  ( )  Along each dimension of the covariate in  (·), we let
0 = b(2)

14c+1 and choose 0 sieve approximating terms, where bc denotes the integer part of 5
5We also apply 0 = b(2)14c+1 for different values of  (0.5, 1, 2) and find our iterative estimates are quite robust

to the choice of 
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For the convergence criterion in the iterative algorithms, we terminate the procedure ifP
=1

h

(+1)
 ()−

()
 ()

i2
P

=1

h

()
 ()

i2
+ 00001

 0001  =  1   

where    = 1   are the  evaluation points. In practice, researchers can choose the evaluation

points on their own. Here we let the number of evaluation points be 625, with 25 grid points along each

dimension. For each DGP, the evaluation points are fixed across replications and approximately evenly

distributed between 0.2 quantile and 0.8 quantile of the data points. A similar convergence criterion is

used in the literature; see Nielsen and Sperlich (2005), Henderson et al. (2008), Mammen et al. (2009),

and Su and Lu (2013), to name just a few. In the specification test, we choose the data points on U as
the evaluation points.

For both estimation and testing, we need to choose the kernel function and the bandwidth sequence.

We use the Epanechnikov kernel  () = 075
¡
1− 2

¢
1 (|| ≤ 1) and choose the bandwidths by Silver-

man’s “rule of thumb”:  = 235 (2)
−1[2(+2)−05] and  = 235 (2)

−1[2(+2)++1] where
 = 1  = 2  = (  )  and  and  denote the sample standard deviation of {−1} and
{}  respectively. Note that  satisfies the undersmoothing requirement, and  has the optimal rate for
local quadratic regressions. Admittedly, these choices of bandwidth sequences are usually not optimal for

either the estimation or the testing issue. There is a room to improve the performance of our estimates

and tests by developing a data-driven rule for the selection of “optimal” bandwidth sequences. It is

well known that a bandwidth that is optimal for the estimation problem is typically not optimal for the

testing problems. One has to separately consider these two issues. Given the complication of our kernel

estimates, we do not address these issues in this paper and leave them for future research.

In the sieve IV estimates discussed in Section 3, we also use cubic B-spline, choose 0 = b(2)
14c+1

sieve approximating terms along each dimension of the covariates in  (·), and include the tensor product
terms in the approximation.

Also, we need to choose the compact set U . For this, we trim out the data on the two-sided 5%

tails along each dimension in −1 or −2. This trimming is also used for implementing our tests,
in which case the weight function  (·) is an indicator function: it takes value 1 if −1 lies in U
and 0 otherwise. We only consider the testing results for 1 defined in Section 4 by comparing

the semiparametric estimates of  (·) with its Anderson-Hsiao-type IV estimate under the linear null

hypothesis. Given the poor performance of ̂ in simulations, we only consider the other four estimates

of  (·): ̂, ̂, ̂ and ̂, and denote the corresponding -test statistics

as , ,  and , respectively.

For the ( ) pair, we consider  = 25, 50, 100 and  = 4 6. For each scenario, the number of

replications is 1000 for the estimation. For the test, we use 500 replications and 200 bootstrap resamples

for the size study and 250 replications and 200 bootstrap resamples for the power study.

5.3 Estimation and testing results

Table 1 reports the bias (Bias) and root mean squared error (RMSE) of various estimates of  We

summarize the findings from Table 1. First, for all DGPs under investigation, the RMSEs decrease as
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Table 1. Estimation results for 

̂ ̂ ̂ ̂ ̂
DGP T N Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 4 25 -0.035 0.195 -0.033 0.195 -0.089 0.236 -0.043 0.185 -0.041 0.184

50 -0.027 0.136 -0.026 0.137 -0.049 0.150 -0.028 0.129 -0.028 0.129

100 -0.035 0.097 -0.035 0.097 -0.024 0.094 -0.034 0.095 -0.095 0.095

6 25 -0.026 0.134 -0.025 0.134 -0.043 0.147 -0.029 0.128 -0.028 0.128

50 -0.027 0.094 -0.027 0.094 -0.019 0.095 -0.027 0.090 -0.027 0.090

100 -0.029 0.070 -0.028 0.069 -0.015 0.066 -0.027 0.067 -0.027 0.067

2 4 25 0.009 0.285 0.006 0.266 -0.071 0.239 -0.000 0.260 -0.002 0.242

50 0.007 0.201 0.007 0.189 -0.035 0.155 0.002 0.187 0.004 0.176

100 0.003 0.134 0.001 0.122 -0.014 0.097 0.001 0.129 0.001 0.118

6 25 0.005 0.203 0.002 0.190 -0.027 0.154 0.003 0.188 0.000 0.177

50 0.009 0.140 0.004 0.129 -0.001 0.098 0.007 0.132 0.005 0.123

100 0.002 0.095 -0.003 0.088 -0.004 0.065 0.001 0.091 0.002 0.086

3 4 25 0.000 0.181 0.001 0.184 -0.099 0.234 -0.015 0.174 -0.016 0.174

50 0.006 0.127 0.006 0.130 -0.061 0.158 0.000 0.123 -0.001 0.124

100 0.000 0.086 0.000 0.086 -0.030 0.100 -0.001 0.085 -0.002 0.085

6 25 0.004 0.132 0.004 0.132 -0.047 0.155 -0.001 0.127 -0.001 0.128

50 0.003 0.088 0.002 0.088 -0.022 0.096 0.000 0.085 0.001 0.085

100 0.000 0.061 0.001 0.061 -0.013 0.067 0.000 0.060 0.000 0.060

4 4 25 -0.075 0.297 -0.070 0.298 0.059 0.180 0.095 0.159 0.096 0.161

50 -0.065 0.197 -0.062 0.194 0.051 0.137 0.081 0.129 0.082 0.129

100 -0.068 0.145 -0.067 0.146 0.030 0.104 0.036 0.095 0.036 0.095

6 25 -0.060 0.182 -0.058 0.182 0.072 0.147 0.086 0.132 0.087 0.132

50 -0.051 0.133 -0.050 0.134 0.035 0.104 0.046 0.099 0.045 0.099

100 -0.059 0.104 -0.058 0.103 0.019 0.073 0.017 0.071 0.018 0.072

5 4 25 0.014 0.371 0.011 0.367 0.080 0.183 0.145 0.237 0.143 0.228

50 -0.002 0.246 0.002 0.230 0.078 0.149 0.122 0.195 0.129 0.193

100 0.003 0.172 -0.004 0.162 0.045 0.110 0.082 0.157 0.092 0.163

6 25 0.011 0.243 0.011 0.229 0.091 0.156 0.123 0.201 0.134 0.202

50 0.011 0.171 0.009 0.160 0.059 0.115 0.102 0.170 0.111 0.174

100 0.004 0.115 0.000 0.106 0.033 0.078 0.064 0.124 0.073 0.130

6 4 25 0.009 0.236 0.007 0.244 0.056 0.171 0.135 0.185 0.134 0.185

50 0.000 0.161 0.001 0.159 0.047 0.137 0.120 0.154 0.120 0.154

100 0.001 0.111 0.000 0.112 0.029 0.105 0.083 0.117 0.081 0.116

6 25 0.014 0.151 0.014 0.152 0.075 0.148 0.128 0.163 0.127 0.163

50 0.007 0.108 0.006 0.108 0.042 0.105 0.092 0.121 0.091 0.120

100 -0.002 0.073 -0.002 0.073 0.020 0.074 0.063 0.087 0.062 0.086
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Table 2. Estimation results for  (RMSE)

̂ ̂ ̂ ̂ ̂

DGP T N Median Mean Median Mean Median Mean Median Mean Median Mean

1 4 25 0.410 0.390 0.392 0.369 0.751 0.732 0.399 0.381 0.408 0.384

50 0.320 0.304 0.310 0.295 0.625 0.614 0.311 0.295 0.320 0.307

100 0.250 0.241 0.246 0.236 0.444 0.437 0.245 0.235 0.253 0.241

6 25 0.306 0.289 0.294 0.278 0.633 0.618 0.297 0.284 0.298 0.285

50 0.243 0.233 0.235 0.224 0.441 0.439 0.236 0.227 0.239 0.229

100 0.190 0.184 0.186 0.179 0.362 0.354 0.186 0.179 0.189 0.184

2 4 25 0.707 0.680 0.438 0.412 0.712 0.690 0.459 0.432 0.457 0.430

50 0.621 0.602 0.324 0.311 0.611 0.590 0.353 0.336 0.341 0.320

100 0.543 0.540 0.244 0.231 0.437 0.429 0.278 0.264 0.254 0.239

6 25 0.594 0.581 0.320 0.305 0.608 0.597 0.344 0.329 0.323 0.305

50 0.515 0.504 0.240 0.228 0.434 0.423 0.271 0.258 0.247 0.234

100 0.454 0.449 0.179 0.173 0.359 0.356 0.211 0.203 0.184 0.178

3 4 25 0.381 0.364 0.377 0.351 0.703 0.679 0.378 0.356 0.380 0.358

50 0.302 0.291 0.301 0.288 0.597 0.578 0.304 0.291 0.306 0.296

100 0.236 0.227 0.234 0.227 0.440 0.437 0.235 0.230 0.236 0.229

6 25 0.293 0.280 0.292 0.276 0.604 0.589 0.295 0.282 0.292 0.281

50 0.231 0.220 0.230 0.221 0.432 0.423 0.232 0.225 0.231 0.223

100 0.181 0.174 0.182 0.175 0.360 0.353 0.183 0.175 0.184 0.177

4 4 25 0.397 0.375 0.404 0.380 0.727 0.698 0.388 0.370 0.395 0.375

50 0.313 0.296 0.312 0.296 0.625 0.613 0.304 0.292 0.312 0.301

100 0.243 0.234 0.245 0.238 0.445 0.439 0.238 0.233 0.245 0.238

6 25 0.302 0.290 0.300 0.286 0.623 0.611 0.291 0.277 0.292 0.277

50 0.239 0.232 0.236 0.230 0.431 0.423 0.232 0.224 0.236 0.236

100 0.190 0.183 0.189 0.181 0.365 0.360 0.185 0.177 0.188 0.181

5 4 25 0.717 0.690 0.455 0.425 0.704 0.672 0.450 0.431 0.453 0.425

50 0.633 0.617 0.338 0.318 0.613 0.602 0.348 0.335 0.342 0.325

100 0.544 0.536 0.254 0.242 0.441 0.427 0.278 0.268 0.259 0.246

6 25 0.601 0.592 0.334 0.315 0.603 0.589 0.341 0.325 0.328 0.312

50 0.523 0.518 0.248 0.238 0.424 0.415 0.268 0.256 0.250 0.239

100 0.461 0.454 0.184 0.178 0.357 0.354 0.212 0.205 0.186 0.179

6 4 25 0.367 0.352 0.381 0.370 0.710 0.687 0.369 0.353 0.372 0.363

50 0.288 0.276 0.295 0.290 0.622 0.595 0.292 0.280 0.294 0.281

100 0.223 0.216 0.232 0.223 0.428 0.421 0.230 0.221 0.231 0.224

6 25 0.287 0.270 0.296 0.281 0.616 0.606 0.292 0.272 0.288 0.270

50 0.228 0.219 0.233 0.222 0.433 0.426 0.232 0.220 0.232 0.217

100 0.179 0.174 0.181 0.177 0.359 0.354 0.181 0.176 0.181 0.177
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either  or  increases and are roughly halved as  is quadrupled. Second, for the linear DGPs (DGPs 1

and 4), ̂ and ̂ tend to have smaller RMSEs than ̂, ̂ and ̂ Third,

for nonlinear DGPs, ̂ usually has the smallest RMSE but largest bias among all estimates under

study, ̂ and ̂ tend to have smaller RMSE than ̂ and ̂ when  is small.

Table 2 presents the median and mean RMSEs for the estimates of the nonparametric component

. Clearly, we can see that both median and mean RMSEs of ̂ are much larger than those of

other estimates. ̂ and ̂ can improve the original sieve IV estimate ̂ significantly.

As expected, ̂ and ̂ have similar performance as ̂ and ̂ for most

DGPs. Note that in DGPs 2 and 5, both ̂ and ̂ have much larger median and mean

RMSEs than their non-iterative analogues, which may be caused by the bad convergence of the iterative

algorithm. In empirical applications, both estimates based on iterative and noniterative algorithms can

be reported. When there is a large difference between the two estimates, we recommend the use of the

noniterative algorithm when 2 is not excessively large (e.g., 2  1000) and that of the iterative

algorithm otherwise.

Table 3 gives the empirical rejection frequency for our proposed tests. From this table, we can see

that the levels behave reasonably well for DGPs 1 and 4. All the four tests are slightly undersized for

DGP 1 and oversized for DGP 4. DGPs 2-3 and 5-6 examine the empirical power of our tests. The

powers of all four tests are reasonably good.

6 An empirical application: the impact of IPR protection on

economic growth

6.1 Motivation

In this section, we apply the partially linear dynamic panel data model to study the classical question

of how intellectual property right (IPR) protection affects economic growth. IPRs, as the rights to

use and sell knowledge and inventions, with the aim of guaranteeing adequate returns for innovators

and creators, has played a central role in the long-standing debates concerning economic policy. In

forming a decision on how to protect IPR, there is a typical trade-off: if IPR protection is stronger,

only the owner of knowledge design will use it and the impact on economic growth will be smaller; if

IPR protection is weaker, the diffusion or transfer of knowledge and technology will be accelerated and

the adopters will benefit without paying adequate costs. This could cause higher economic growth, but

at the same time weaken the incentive of innovation and then reduce the growth enhancement. Many

theoretic growth models have discussed this topic, but the conclusions are ambiguous. Some advocate

stronger IPR protection reform and the others oppose to this. For instance, Dinopoulos and Segerstrom

(2010) develop an endogenous economic growth model to evaluate the effect of stronger IPR protection

in developing countries, and conclude that stronger IPR protection in the South promotes innovation in

the global economy and explains faster growth rate of some developing countries. In some North-South

trade models, Branstetter et al. (2006) and Glass and Wu (2007) support a similar view that patent

reform increases the economic growth rate permanently. However, Furukawa (2007) proves that IPR

cannot increase economic growth in an endogenous growth model with costless imitation, whereas Eicher
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Table 3: Empirical rejection frequency

   

DGP T N 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 4 25 0.008 0.042 0.074 0.012 0.036 0.066 0.008 0.034 0.056 0.010 0.036 0.064

50 0.012 0.032 0.060 0.008 0.030 0.056 0.008 0.026 0.038 0.006 0.032 0.070

100 0.008 0.040 0.058 0.002 0.024 0.060 0.008 0.028 0.060 0.002 0.020 0.062

6 25 0.012 0.040 0.060 0.010 0.040 0.080 0.016 0.036 0.062 0.008 0.042 0.086

50 0.006 0.042 0.084 0.010 0.044 0.084 0.008 0.050 0.092 0.012 0.036 0.080

100 0.010 0.058 0.088 0.014 0.046 0.086 0.014 0.036 0.086 0.018 0.036 0.078

2 4 25 0.020 0.116 0.192 0.100 0.268 0.392 0.004 0.024 0.060 0.076 0.236 0.376

50 0.080 0.276 0.472 0.364 0.592 0.696 0.024 0.056 0.132 0.316 0.556 0.696

100 0.380 0.676 0.792 0.804 0.932 0.980 0.064 0.192 0.312 0.804 0.952 0.980

6 25 0.168 0.396 0.584 0.464 0.708 0.840 0.112 0.260 0.400 0.416 0.716 0.836

50 0.376 0.712 0.848 0.932 0.992 1.000 0.308 0.542 0.692 0.900 0.992 1.000

100 0.572 0.840 0.996 0.992 0.996 1.000 0.760 0.920 0.956 1.000 1.000 1.000

3 4 25 0.024 0.100 0.184 0.016 0.056 0.128 0.032 0.100 0.204 0.020 0.052 0.120

50 0.104 0.212 0.300 0.052 0.160 0.268 0.104 0.232 0.316 0.048 0.164 0.244

100 0.152 0.288 0.392 0.116 0.224 0.312 0.136 0.276 0.416 0.124 0.228 0.292

6 25 0.080 0.200 0.296 0.052 0.168 0.288 0.088 0.220 0.336 0.028 0.144 0.264

50 0.144 0.288 0.420 0.112 0.248 0.360 0.136 0.320 0.420 0.096 0.232 0.316

100 0.360 0.584 0.688 0.284 0.528 0.612 0.416 0.572 0.708 0.244 0.420 0.624

4 4 25 0.032 0.070 0.130 0.026 0.066 0.116 0.034 0.070 0.136 0.028 0.078 0.120

50 0.018 0.046 0.088 0.020 0.052 0.102 0.020 0.068 0.114 0.018 0.062 0.110

100 0.018 0.066 0.100 0.014 0.054 0.104 0.014 0.048 0.110 0.028 0.074 0.126

6 25 0.024 0.060 0.114 0.024 0.074 0.102 0.032 0.078 0.116 0.024 0.060 0.122

50 0.016 0.050 0.122 0.014 0.058 0.098 0.020 0.060 0.104 0.020 0.062 0.112

100 0.012 0.060 0.112 0.020 0.072 0.108 0.022 0.078 0.116 0.016 0.076 0.124

5 4 25 0.020 0.108 0.236 0.076 0.240 0.364 0.012 0.024 0.056 0.084 0.232 0.312

50 0.100 0.288 0.432 0.280 0.512 0.688 0.020 0.072 0.124 0.244 0.484 0.624

100 0.276 0.576 0.728 0.700 0.868 0.928 0.048 0.128 0.248 0.656 0.860 0.932

6 25 0.040 0.204 0.396 0.396 0.628 0.752 0.012 0.084 0.184 0.324 0.588 0.732

50 0.188 0.424 0.600 0.824 0.972 0.984 0.088 0.240 0.328 0.792 0.932 0.972

100 0.544 0.856 0.904 0.980 1.000 1.000 0.268 0.532 0.724 0.984 1.000 1.000

6 4 25 0.052 0.108 0.176 0.036 0.076 0.104 0.044 0.092 0.144 0.020 0.068 0.108

50 0.064 0.180 0.284 0.056 0.144 0.236 0.104 0.208 0.316 0.044 0.120 0.224

100 0.148 0.292 0.472 0.096 0.220 0.328 0156 0.304 0.424 0.112 0.216 0.340

6 25 0.048 0.192 0.288 0.056 0.140 0.244 0.088 0.208 0.276 0.036 0.152 0.248

50 0.196 0.380 0.496 0.132 0.344 0.448 0.196 0.400 0.536 0.116 0.260 0.420

100 0.388 0.708 0.776 0.336 0.592 0.700 0.384 0.636 0.776 0.312 0.544 0.672
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and Garcia-Peñalosa (2008) show that the relationship between IPR and economic growth is ambiguous.

From another side, there is also no conclusive result from a large body of empirical studies. For example,

Chen and Puttitanun (2005) find a positive effect for developing countries, Park and Ginarte (1997) and

Kanwar and Evenson (2003) discover a general positive effect; Groizard (2009) and Falvey et al. (2009)

find an ambiguous relationship. In addition, there are also some studies on the nonlinear relationship

between IPR protection and economic growth; see Furukawa (2007) and Panagopoulos (2009) for an

inverted-U relationship, Chen and Puttitanun (2005) for a U-shape relationship between optimal IPR

and economic growth for developing countries, and Falvey et al. (2009) for a nonlinear relationship which

depends on other variables such as the level of development, the imitative ability and the market size of

the importing country. In summary, from the theoretical or empirical point of view, there is no conclusive

relationship between IPR and economic growth. Note that most of the empirical studies on this question

use linear models and exclude dynamic nature. In this section, we reinvestigate this topic using our

proposed partially linear dynamic panel data models that allow general nonlinearity of unknown form for

the lagged dependent variable and IPR and the usual linearity of control variables.

6.2 Data and variables

The data set includes 93 countries or regions for the years 1975-2005. We examine the five-year economic

growth rate. Let ∆ ln = ln − ln−5 denote the growth rate of country  over the

-th five-year period, where  and −5 denote the real GDP per capita for country  in

the end year  and the starting year  − 5, respectively. For example, 1 = 1980 and ∆ ln1 =

ln1980 − ln1975 We include two more sets of regressors other than the lagged growth rate

(∆ ln−1) The first set includes IPR (), the variable of our main interest, measured by

the updated Ginarte-Park index of patent rights (Park, 2008), which enters the model together with

∆ ln−1 nonparametrically. The second set includes linear control variables (1 · · ·  9) =
( 2       ), where 

denotes the inward FDI inflows as a share of GDP and 2 is its squared term,  denotes

the average of human capital measured as percentage of secondary school enrollment in total population,

 denotes the domestic investment measured by gross capital formation as a share of GDP,

denotes the general government final consumption expenditure as a share of GDP,  is a

measure of market distortions, as proxied by the Fraser Institute’ Index of Legal Structure and Security

of Property Rights,  is measured by imports plus exports as a share of GDP,  is the

population growth rate, and  denotes the inflation measured by percentage change in the GDP

deflator. Following the literature on economic growth, we take five-year averages of annual values for

 and all the control variables. For the list of countries/regions and the sources of all variables, see

the data appendix. Table 4 provides summary statistics on the data set. From Table 4 we see that the

five-year GDP growth rates (non-annualized) range from −5344% to 5593%. There is also considerable

variation in the five-year average IPR with the smallest value 0 and the largest value 488. The summary

statistics for control variables are also listed in the table.
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Table 4. Descriptive statistics (93 countries, 1975-2005)

Variable Mean Median Std deviation Max Min

GDP growth 0.0846 0.0884 0.1430 0.5593 -0.5344

IPR 2.5683 2.3850 1.1016 4.8800 0.0000

FDI 0.0183 0.0101 0.0253 0.2079 -0.0335

Domestic investment 0.2116 0.2097 0.0625 0.5182 0.0248

Schooling 0.2766 0.2545 0.1689 0.7523 0.0053

Government consumption 0.1553 0.1494 0.0572 0.4036 0.0409

Population growth rate 0.0177 0.0187 0.0111 0.0631 -0.0464

Institutions 5.4397 5.3800 2.0275 9.6200 1.1400

Openness 5.9992 6.1350 2.2893 9.7200 0.0000

Inflation 0.3942 0.0799 2.6733 48.2871 -0.0673

6.3 Estimation results

We consider the following partially linear dynamic panel data model with fixed effects

∆ ln =  (∆ ln−1 ) + 1 + 22 + 3 + 4

+5 + 6 + 7 + 8 + 9

+ + 

 = 1  93  = 2  6 For both the estimation and testing, we follow the details in Section 5.2 and

consider five estimates for the parametric component, five estimates for the nonparametric component,

and four test statistics to test the linearity or quadraticity of the nonparametric component. To make

inferences on the estimated parameters, we also report the -values based on bootstrap standard errors

(s.e.’s) where we resample the  individual countries with replacement to form 400 bootstrap resamples.

The details of implementation of our estimation and tests are the same as in the simulations.

Table 5 presents the semiparametric estimation results for the parametric part and the parametric

estimation results based on Anderson-Hsiao estimator. We report five semiparametric estimates, ̂

̂ ̂ ̂, and ̂ as explained in Section 5.2. The numbers in parentheses are

the t-values based on the bootstrap s.e.’s when 400 bootstrap resamples are used. We also report the

linear and quadratic estimates ̂ and ̂ in the last two columns. Their bootstrap -values are

given in the parentheses based on 400 wild bootstrap resamples with the estimated parametric functional

forms being imposed in the bootstrap world. We summarize the main findings as follows. First, we can

see that the estimated results are quite robust among all estimating procedures but ̂. Second, for

the semiparametric estimates, only the estimated coefficients for Investment and GonvC are significant

at the 5% significance level. Third, most control variables are not significant at the 5% level possibly due

to the inclusion of the lagged dependent variable in the model. Forth, there are large differences between

parametric and semiparametric estimates for the control variables FDI, FDI 2, Schooling, Institutions ,

Openness and POP. Sixth, we find negative but insignificant effects of IPR protection on economic

growth rate in both the linear and quadratic models at the 5% level. Last, we see an insignificant U-
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shape relationship between IPR and economic growth rate in the quadratic model, which is similar to

the findings in Chen and Puttitanun (2005).

In Figure 1, we plot the estimated surface of (· ·) to present the relationship between the economic
growth rate and IPR and the lagged five-year growth rate as well. Apparently, as in the simulation

the sieve estimate in Figure 1(a) is quite different from the other four estimates. Subplots (b)-(e) in

Figure 1 clearly demonstrate the existence of a nonlinear relationship between economic growth rate and

IPR protection and the lagged growth rate. In sharp contrast to the parametric estimation results, it

seems that there exists a (basically) positive association between the economic growth rate and the IPR

protection, which is conformable with many empirical studies and implies that the positive effects of IPR

dominate its negative effects.

Figure 2 present the estimated two-dimensional relationships between economic growth rate and its

lag and IPR. Since the sieve estimate is less accurate as shown in the simulation, we only report the other

four estimates for the nonparametric component. Figures 2(a), 2(c), and 2(e) present the relationships

between economic growth rate and its lag when IPR is fixed at its 0.25, 0.5 and 0.75 sample quantiles,

respectively. Specifically, they show the estimates of (·; 025) (·; 05) and (·; 075),
where  is the -th empirical quantile of data {} We summarize the main findings as follows.
First, we can see clearly a significant nonlinear relationships between economic growth rate and its lag,

and the shapes of ̂(·; ),  = 025 0.5 and 0.75 are drastically different. It seems that the patterns of

dynamics in economic growth rate vary with the change of the level of IPR protection. Figures 2(b), 2(d),

and 2(f) give the estimated relationships between economic growth rate and IPR when the lagged growth

rate is fixed at its 0.25, 0.5 and 0.75 sample quantiles, respectively. From this column, we first find slight

nonlinear relationships between economic growth rate and IPR. Second, it seems that IPR protection has

a global positive impact on economic growth rate, which contradicts the findings in the parametric models.

Third, for all the three estimated curves, their first order derivatives neither monotonically decrease nor

increase as IPR increases, which implies the relationships between IPR and economic growth rate is

neither inverted-U-shaped nor U-shaped. Figures 3 and 4 report the 90% pointwise confidence bands for

the semiparametric GMM and sieve estimates of the nonparametric component, respectively, based on

400 bootstraps. As usual, these bands seem to be wide given the fact the effective number of observations

used in our estimation is given by 2 = 93× (6− 2) = 372 which is not very large.

6.4 Specification test results

Based on our proposed testing procedure, we can test two commonly used linear and quadratic functional

form specifications. The null hypotheses for linear and quadratic functional forms can be stated as follows:

0 :  (−1 ) = −1 +  for some ( ) ∈ R2
 0
0 :  (−1 ) = −1 + 1 + 2

2
 for some ( 1 2) ∈ R3

Table 6 reports the bootstrap -values for our test 1 for different estimation procedures based on

2000 bootstrap resamples. We can reject either 0 or 
0
0 at the 5% significance level for the 

 and  statistics and at the 10% significance level for the  statistic. In general, we

can conclude that the nonparametric component  (· ·) is neither linear nor quadratic in IPR at least at
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Table 5. Estimation results of the parametric part

Dependent variable: five-year per capita GDP growth rate

Var.\Coeff. est. ̂ ̂ ̂ ̂ ̂ ̂ ̂

FDI 03882
(08692)

06254
(16878)

06417
(17245)

05176
(12643)

05574
(13236)

23772
(49943)

23875
(49363)

FDI2 −05619
(−21829)

−03876
(−09849)

−04907
(−12886)

−04074
(−12252)

−04876
(−15242)

−71854
(−28423)

−73474
(−28347)

Schooling 00050
(00274)

−01367
(−06889)

−00747
(−04031)

−01245
(−06149)

−00827
(−04157)

03041
(22252)

02987
(22043)

Investment 09915
(33873)

08973
(35642)

09018
(34605)

08746
(31676)

09144
(33107)

10011
(43078)

10017
(42820)

GonvC −10128
(−30822)

−10427
(−34668)

−10181
(−33812)

−10843
(−34157)

−09291
(−29157)

−08670
(−29374)

−08808
(−29478)

Institutions 00000
(00014)

00035
(04465)

00026
(03172)

00035
(04060)

00030
(03396)

00073
(11756)

00073
(11654)

Openness 00003
(00393)

−00044
(−06566)

−00030
(−04359)

−00060
(−08376)

−00048
(−06764)

00021
(03807)

00023
(04151)

Inflation −00022
(−02752)

−00023
(−02709)

−00026
(−03078)

−00027
(−02562)

−00028
(−02811)

−00045
(−32430)

−00045
(−32569)

Population −08022
(−15938)

−10487
(−14287)

−09330
(−09484)

−10934
(−16077)

−09765
(−14023)

−04786
(−04481)

−04951
(−04590)

Lag of growth rate — — — — — 00155
(02411)

00193
(03000)

IPR — — — — — −00250
(−19342)

−00402
(−09043)

IPR2 — — — — — — 00029
(03793)

Note. The numbers in parentheses are the t-values based on bootstrap standard errors.

Table 6. Bootstrap p-values based on 2000 bootstrap resamples

Test statistics    

Linear function (0 vs 1) 0.0055 0.0075 0.0575 0.0110

Quadratic function ( 0
0 vs 

0
1) 0.0075 0.0070 0.0560 0.0105

the 10% significance level.

7 Conclusion

This paper provides two types of estimates of partially linear dynamic panel models where the lagged

dependent variable enters the nonparametric component. One is based on the solutions to a class of Fred-

holm integral equations of the second kind and the other is based on the sieve approximation. We prove

the asymptotic normality for the estimates of the parametric component and uniform consistency and

asymptotic normality for the estimates of the nonparametric component. We also consider a specification

test for the linearity of the nonparametric component based on the weighted squared distance between

the semiparametric and parametric estimates. Monte Carlo simulations show that our estimators and

tests perform reasonably well in finite samples. We illustrate our methods with an empirical application
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Figure 1: Relationship between the economic growth rate and the lagged growth rate (−1) and IPR
()
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Figure 2: Relationship between the economic growth rate and the lagged growth rate (−1) and IPR
()
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Figure 3: 90% confidence bands for the semiparametric GMM estimates of the nonparametric components

at variance quantiles
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on economic growth and find a positive nonlinear relationship between the IPR protection and economic

growth rate.

There are several interesting topics for further research. First, we do not address the choice of

optimal IVs in this paper. Since we need IVs for the estimation of both the parametric and nonparametric

components, we need a separate consideration of the choice of IVs for the estimation of the nonparametric

component and the parametric component. Due to the nature of our first approach, we choose the IV

for the nonparametric component as −2 in order to derive a Fredholm integral equation of the second

kind. More researches are needed to consider the optimal choice of IV for nonparametric estimation

despite the fact that it is only relatively well studied how to choose optimal IVs for the parametric

estimation. Second, we do not allow the endogenous regressors to enter the nonparametric component to

avoid the ill-posed inverse problem. It is of great interest to allow the endogenous regressors to enter the

nonparametric component in the panel data framework. We leave these for future research.

ACKNOWLEDGMENT

The authors thank the editors, three referees, Aman Ullah, and the participants at the AIE Confer-

ence in Honor of Aman Ullah for valuable comments. Su gratefully acknowledges the Singapore Ministry

of Education for Academic Research Fund under grant number MOE2012-T2-2-021. Zhang gratefully ac-

knowledges the Renmin University of China for Academic Research Fund under grant number 14XNF045.

37



Appendix

A Proof of the results in Sections 2 and 3

Proof of Theorem 2.1. The proof follows from that of Theorem 2.1 in Su and Lu (2013, SL hereafter)

closely. The major difference is that we also maintain the second order variance term that plays an

important role in the determination of the asymptotic variance of our parametric estimator but not

in that of our nonparametric estimator. Let ||∞ ≡ sup∈U | ()|  Let ∆ ≡ (!)−12 and  ≡
∆(log)

12 + kk̄+1  We prove the first part of the theorem by verifying the conditions in Mammen

and Yu (2009):

(B1) supkk2≤1 |A|∞ ∞;
(B2) supkk2≤1

°°°(I −A)−1°°°
2
∞;

(B3) supkk2≤1
¯̄̄
( bA−A)¯̄̄

∞
=  () ; and

(B4) For each  ∈ { 1  }  there exists a decomposition ̂ −  + ( bA − A) =  +

 + with random functions    and  such that: (B4a) || ||2 =  (∆) 

(B4b) |A (I −A)−1  |∞ =  (
p
log) (B4c) || ||2 =  (kk̄+1) and (B4d) | |∞ =

 [∆(log)
12]

To see this, we focus on the case  =  in the theorem and in (B4) since all the other cases can be

proved similarly. Using A−1 − C−1 = A−1(C −A)C−1 and (I −A)−1 = I +A (I −A)−1  we have
̂ − = (I − bA)−1̂ − (I −A)−1

= (I − bA)−1 (̂ − ) + [(I − bA)−1 − (I −A)−1]
= (I − bA)−1 h(̂ − ) + ( bA−A)(I −A)−1i
= (I − bA)−1 h(̂ − ) + ( bA−A)

i
= (I − bA)−1 [ + + ]

=  +A(I −A)−1 + (I −A)−1

+D1 +D2 + (I − bA)−1  (A.1)

where D1 ≡ bA(I − bA)−1 − A (I −A)−1  D2 ≡ (I − bA)−1 − (I −A)−1  and the fifth equality follows
from (A.2) below. Following the proof of Theorem 5 in Mammen et al. (2009), we can show that

|D1 |∞ =  (∆) by (B2), (B3), (B4a), and (B4b),

|D2 |∞ =  ( kk̄+1) by (B2), (B3), and (B4c),
|(I − bA)−1 |∞ =  [∆(log)

12] by (B2), (B3) and (B4d).

With these results, by the fact that (I −A)−1 = I +A (I −A)−1 and Minkowski inequality, we have¯̄
̂ − − (I −A)−1 − (I −A)−1

¯̄
∞

≤ |D1 |∞ + |D2 |∞ +
¯̄̄
(I − bA)−1

¯̄̄
∞

= 

³
∆ +  kk̄+1 +∆(log)

12

´
= 

¡
2
¢

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That is, the first part of Theorem 2.1 holds for  = . Analogously, it holds for  = 1    Noting

that ̂ ()− () = ̂ ()− ()− 0 [̂ ()− ()],  () =  ()− 0 ()  and

 () =  () − 0 ()  we have by Minkowski and Cauchy-Schwarz inequalities and the

fact that Θ is compact

sup
∈Θ

sup
∈U

¯̄̄
̂ ()− ()− (I −A)−1  ()− (I −A)−1 ()

¯̄̄
≤ sup

∈U

¯̄̄
̂ ()− ()− (I −A)−1  ()− (I −A)−1 ()

¯̄̄
+ sup

∈Θ
kk sup

∈U

°°°̂ ()− ()− (I −A)−1  ()− (I −A)−1 ()
°°°

= 

¡
2
¢
+

¡
2
¢
= 

¡
2
¢


Thus, the second part of Theorem 2.1 also follows.

Now, we verify (B1)-(B4). Apparently, Assumption A.1(vii) ensures (B1). By the discussion of

Assumption A.1(v) in SL, Assumption A.1(v) implies (B2). To verify (B3), letting ̄ () ≡ A () 

we have the following bias-variance decomposition

( bA−A) ()

=
1



X
=1

X
=3

K ()(−1)− ̄ ()

=
1



X
=1

X
=3

K () [(−1)− ̄ (−2)] +
1



X
=1

X
=3

K () [̄ (−2)− ̄ ()]

≡ 1 () +2 ()  say,

where in the second equation we use the fact that 1


P
=1

P
=3K () = 1 because  () ()

−1 =
I By the same fact, 2 () =

1


P
=1

P
=3K ()̄ ()  where ̄ () ≡ ̄ (−2) −

̄ () −
P
1≤|j|≤

1
j!̄

(j)
 () (−2 − )j  Using the arguments as used in Masry (1996) and Hansen

(2008), we can readily show that sup∈U |1 ()| =  [∆(log)
12] and sup∈U |2 ()| =

 (kk̄+1) Consequently (B3) follows. Noting that ∆ =  (−1)− (−2)+ and  ()+
̄ () =  () (see eqns. (2.10) and (2.11)), we have

̂ ()−  () + bA ()−A ()

=
1



X
=1

X
=3

K () [−∆ + (−1)]− [ () + ̄ ()]

=
1



X
=1

X
=3

K ()
©£
 (−2)− 

¤− ()
ª

=
−1


X
=1

X
=3

K ()  +
1



X
=1

X
=3

K () [ (−2)− ()]

=
−1


X
=1

X
=3

K ()  +
1



X
=1

X
=3

K ()D ()

=  () + () + ()  (A.2)
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where

 () ≡ 1



X
=1

X
=3

K̄ () () 

 () ≡ 1



X
=1

X
=3

K̄ () 

 () = 01{[ ()]
−1 − £̄ ()

¤−1} [1 () +2 ()]  (A.3)

 () ≡  (−2)− ()−
P
1≤|j|≤

1
j!

(j)
 () (−2 − )j  1 () =

−1


P
=1

P
=3 1

(−2 − ) (−2 − )  and2 () =
1


P
=1

P
=3 1 (−2 − ) (−2 − ) () 

Using the above decomposition and following SL, one can readily verify conditions (B4a)-(B4d). ¥

Proof of Theorem 2.2. We make the following decomposition:

̂ − 0 = (̃ − 0)

+
³
η̂0W̃W̃

0η̂
´−

η̂0W̃W̃
0η̂ −

³
η0W̃W̃

0η
´−

η0W̃W̃
0η

= (̃ − 0) +
³
η0W̃W̃

0η
´− ³

η̂0W̃W̃
0η̂ − η0W̃W̃

0η
´

+

∙³
η̂0W̃W̃

0η̂
´−
−
³
η0W̃W̃

0η
´−¸

η0W̃W̃
0η

+

∙³
η̂0W̃W̃

0η̂
´−
−
³
η0W̃W̃

0η
´−¸³

η̂0W̃W̃
0η̂ − η0W̃W̃

0η
´

≡ (̃ − 0) +1 +2 +3 say.

Let ∆ε ≡(∆1 ∆ )0 where ∆≡ (∆3 ∆ )0 It suffices to prove the theorem by showing that

(i) 1
̃2
η̂0W̃W̃

0η̂ = 0 +  (1) 

(ii)
√
̃(̃ − 0) = (

0
)

−1
0

1√
̃
W̃0∆ε+  (1) 

(iii)
√
̃1 = (

0
)

−1 √̃


P
=1[

0
1

¡


¢
+1

¡


¢0
0] +  (1) 

(iv)
√
̃2 = − (0)

−1 √̃


P
=1[

0
1

¡


¢
+ 1

¡


¢0
]0 +  (1)  and

(v)
√
̃3 =  (1) 

because these results, in conjunction with Slutsky lemma, the continuous mapping theorem, and Assump-

tion A.5(iii), imply that

√
̃
³
̂ − 0

´
= (0)

−1
0

(
1√
̃
W̃0∆ε+

√
̃



X
=1

[1()− 1()0]

)
+  (1)

→ 
³
0 (0)

−1
0Ω0 (

0
)

−1´


We first show (i). By Theorem 2.1, Remark 1, and Assumption A.6, we have that uniformly in  ∈ U ,

̂ ()− () = (I −A)−1  () +  (
−12) for  =   and (A.4)

̂ ()− () =  () for  =   (A.5)
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It follows that max 1̃ k∆ −∆̂k =  () for  =  and  Noting that ̂ −  =

∆ −∆̂ we have by Assumption A.5(ii) and Markov inequality°°°° 1̃ (η̂ − η)0 W̃
°°°° ≤ 1

̃

X
=1

X
=3

1̃ k∆ −∆̂k kk

≤ max

1̃ k∆ −∆̂k 1

̃

X
=1

X
=3

kk 1̃ =  () (A.6)

With this result, one can readily show that 1
̃2
η̂0W̃W̃

0η̂ =
1
̃2
η0W̃W̃

0η +  (1)  Then (i)

follows by noticing that
1

̃2
η0W̃W̃

0η
→ 0  0 (A.7)

by Assumption A.5(i) and Slutsky lemma.

For (ii), by (2.23) and the fact that  = 00 +∆ we have

√
̃
³
̃ − 0

´
=

µ
1

̃2
η0W̃W̃

0η

¶−1
1

̃
η0W̃

1√
̃
W̃0∆ε

Then (ii) follows by (A.7), Assumption A.5(i) and the fact that 1√
̃
W̃0∆ε =  (1) 

To show (iii), let the operator L (̄ ) be as defined in (2.28). As in Linton and Mammen (2005,
p.821), we can show that

R
U
R
U L ( ̄)2 (̄)  (̄)  () ̄ ∞ under Assumptions A.1(iv)-(vi) and

(I −A)−1  () =

Z
U
L ( ̄) 1



X
=1

X
=3

1
0
1̄ (̄)

−1
 (−2 − ̄) (−2 − ̄) ̄

=
1



X
=1

X
=3

L̄ (−2 )  (A.8)

where L̄ ( ) ≡ RU L ( ̄)1 ( ∈ U) 01̄ (̄)
−1

 ( − ̄) ( − ̄) ̄6 Next, we make the following

decomposition

1

̃32

³
η̂0W̃W̃

0η̂ − η0W̃W̃
0η
´

=
1

̃32
η0W̃W̃

0(η̂ − η) +
1

̃32
(η̂ − η)0W̃W̃

0η +
1

̃32
(η̂ − η)0W̃W̃

0(η̂ − η)
≡ 1 + 2 + 3 say.

Apparently, by (A.6) and Assumptions A.5(i) and A.6, 3 =
√
̃ (

2
) =  (1)  To study 1 and 2 we

resort to the results in (A.4) and (A.8) and the theory for second order U-statistics. For  =  1   

define

0
¡
 

¢
= − ( − 1)

̃

X
=3

X
=3

£L̄ (−2 −1)− L̄ (−2 −2)¤ 1̃


¡
 

¢
= [0

¡
 

¢
+ 0

¡
  

¢
]2

6Define the operator L† by A (I −A)−1 () =

U L† ( ̄) (̄)  (̄) ̄ Strictly speaking, Linton and Mammen

(2005, p.281) show that L† ( ̄) satisfies the square integrability condition. The result for L follows from the fact that

(I −A)−1 = I +A (I −A)−1 and that we restrict the integration to be done over the compact set U .
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where  = ( 01  
0
−1

0
3 

0
  3   )

0 Let 1
¡


¢
= 

£

¡
 

¢ |¤ and
2( ) = 

¡
 

¢−1
¡


¢−1
¡


¢
+

£
1
¡


¢¤
for any  6=  It is easy to verify that

1 is as given in (2.29) and 
£
1
¡


¢¤
= 0 By (A.4) and (A.8),

1√
̃
W̃0(η̂ − η) = − 1√

̃

X
=1

X
=3

(∆̂ −∆) 1̃

= − 1√
̃

X
=1

X
=3

[(̂ −)− (̂−1 −−1)] 1̃

= − 1√
̃

X
=1

X
=3

⎡⎣ 1


X
=1

X
=3

£L̄ (−2 −1)− L̄ (−2 −2)¤ 
⎤⎦ 1̃ +  (1)

=
√
̃V +  (1)

where

V = − 1

̃

X
=1

X
=1

X
=3

X
=3

£L̄ (−2 −1)− L̄ (−2 −2)¤ 1̃

=
2

( − 1)
X

1≤≤

¡
 

¢
+
1

̃

X
=1


¡
 

¢ ≡ V1 + V2 say,

By Markov inequality, we can readily show that V2 = 

¡
−1

¢
 Let H(1)

 =
1


P
=1 1

¡


¢
and H(2)

 = 1
(−1)

P
1≤≤ 2

¡
 

¢
 By Hoeffding decomposition (e.g., Lee (1990, p.26)),

V1 = 2H(1)
 + H(2)

  By straightforward moment calculations, 
°°°H(2)



°°°2 = 
¡
−2

¢
. So

H(2)
 = 

¡
−1

¢
= 

¡
̃−12

¢
 Then we have 1√

̃
W̃(η̂−η) =

√
̃V1+ (1) =

√
̃


P
=1 1

¡


¢
+ (1) and

1 =
1

̃
η0W̃

1

̃12
W̃0 ¡η̂ − η¢ = 0

√
̃



X
=1

1
¡


¢
+  (1) 

By the same token we can show that 1
̃12

(η̂ − η)0 W̃ =
√
̃


P
=1 1()+ (1)  where 1

¡


¢
=

(1(1)  1( )) is a × matrix. Using  = 00+∆ again, we can readily show that
1
̃
W̃0η =

1
̃
W̃0η0 +

1
̃
W̃0∆ε =0 +  (1)  It follows that 2 =

1
̃12

(η̂ − η)0 W̃
1
̃
W̃0η =√

̃


P
=1 1

¡


¢0
0 +  (1)  Consequently,

1

̃32

³
η̂0W̃W̃

0η̂ − η0W̃W̃
0η
´
=

√
̃



X
=1

h
01

¡


¢
+ 1

¡


¢0
0

i
+  (1) 

and (iii) follows.

Now, we show (iv). By the fact that −11 − −12 = −11 (2 − 1)
−1
2 for any two conformable

nonsingular matrices 1 and 2 and that  = 00 +∆, we have

√
̃2 = Φ̂

−1


√
̃
³
Φ − Φ̂

´
0 + Φ̂

−1


√
̃
³
Φ − Φ̂

´
Φ−1

1

̃2
η0W̃W̃

0∆ε ≡ 4 + 5 say,
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where Φ̂ =
1
̃2
η̂0W̃W̃

0η̂ and Φ =
1
̃2
η0W̃W̃

0η By arguments as used in the derivation
of (i) and (iii), we can readily show that

4 = − (0)
−1
√
̃



X
=1

h
01

¡


¢
+ 1

¡


¢0


i
0 +  (1) and

5 =  (1) (1) (1) (̃
−12) =  (1) 

Then (iv) follows.

Lastly, noting that 1
̃
W̃0η̂ − 1

̃
W̃0η =  () for  =  and , we can readily show that

√
̃3 =√

̃ (
2
) =  (1) by Slutsky lemma and Assumptions A.5(i) and A.6. This completes the proof of the

theorem. ¥

Proof of Theorem 2.3. Let ̂
0
() ≡ ̂

 ()−00̂
 ()  Let  ()   ()  and  () be analogously

defined as 0 () in Theorem 2.3 with  being replaced by  ()   ()  and  ()  respectively. In

view of the fact that 0 () =  () and 0 () = 0 ()  we have

√
![̂

̂
()− ()− (I −A)−10 ()] =

√
![̂

0
()−0 ()− (I −A)−10 ()]

+
√
![̂

̂
()− ̂0 ()]

It suffices to prove the theorem by showing that (i)
√
![̂

0
() − 0 () − (I −A)−10 ()]

→

³
0

20()
() 

0
1S−1KS

−11
´
 (ii) sup∈U |̂

0
() − 0 () | = 

³
(!)−12(log)12 + kk̄+1

´
 (iii)

sup∈U
°°°(I −A)−10 ()°°° = 

³
kk̄+1

´
 and (iv)

√
! sup∈U |̂

̂
()− ̂

0
() | =  (1) 

Noting that ̂
0
()−0 () = [̂


 ()− ()]−00

£
̂
 ()− ()

¤
 0 () =  ()−00 () 

and ∆ (0) = − 00 = ∆ the proof of (i)-(iii) follows straightforward from that of Theorems

2.1 and 2.2 in SL. Noting that ̂
 () = ̂

 () − 0̂
 () for  = ̂ and 0 we have by Theorems

2.1 and 2.2

√
! sup

∈U
|̂

̂
()− ̂

0
() | ≤

√
!
°°°̂ − 0

°°° sup
∈U

¯̄
̂
 ()

¯̄
= −

√
!
°°°̂ − 0

°°°µsup
∈U

| ()|+  (1)

¶
=
√
! (̃

−12) (1) =  (1) 

Thus (iv) follows. ¥

Proof of Theorem 3.1. Noting that Y = Z0 + p +PW̄∆ε+PW̄R andMpp = 0 we have

̂ − 0 = (Z0MpZ)
−
Z0MpY − 0

= (Z0MpZ)
−
Z0MpPW̄∆ε+ (Z

0
MpZ)

−
Z0MpPW̄R

It suffices to prove the theorem by showing that (i) 1 ≡ 1
2

Z0MpZ
→ 1  0 (ii)  ≡

1
2

Z0MpPW̄R =  (
−12) and (iii) 1√

2
Z0MpPW̄∆ε

→ (0 2Ω1
0
2) 
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To show (i), note that 1 = 1
2

Z0Z − 1
2

Z0PpZ = 1
2
∆Z0PW̄∆Z − 1

2
∆Z0PW̄∆p

(∆p0PW̄∆p)
−∆p0PW̄∆Z By Assumptions A.1(i) and A.8(i) and Chebyshev inequality, one can readily

show that °°°° 1

2
W̄0∆Z−̄

°°°° = 

³p


´


°°°° 1

2
W̄0∆p−̄

°°°° = 

³

√

´
°°°° 1

2
W̄0W̄−̄

°°°° = 

³

√

´
 (A.9)

By (A.9), the triangle inequality, the submultiplicative property of Frobenius norm and Assumption A.8,

we can readily show that

1

2
∆Z0PW̄∆Z=

∆Z0W̄
2

µ
W̄0W̄
2

¶−
W̄0∆Z
2

= 0̄
−1
̄ ̄ +

µ
√


¶


Similarly, 1
2
∆Z0PW̄∆p = 0̄

−1
̄ ̄+ (

√
) and 1

2
∆p0PW̄∆p = 0̄

−1
̄ ̄+ (

√
)

It follows that 1
→ 0̄

−1
̄ ̄ −0̄

−1
̄ ̄

¡
0̄

−1
̄ ̄

¢−1
0̄

−1
̄ ̄ = 1  0

Next, we show (ii). By the submultiplicative property of the spectral norm, the fact that kPW̄ksp = 1
and that kMpksp = 1 we have

k k2sp =
1

(2)
2 kZ0MpPW̄Rk2sp ≤

1

(2)
2 kZk2sp kRk2

= max

µ
1

2
Z0Z

¶
1

2
kRk2 ≤ max

µ
1

2
∆Z0∆Z

¶
1

2
kRk2

=  (1)

³
−2(1+)

´
where we use the fact that 1

2
kRk2 = 

¡
−2(1+)

¢
under Assumptions A.1(i) and A.7 by arguments

as used in the proof of Lemma A.2 in Su and Jin (2012). Then by Chebyshev inequality and Assumptions

A.8 and A.9,
√
 k k =  (

√
−(1+)) =  (1) 

Now, we show (iii). Let 2 ≡ Z0MpW̄(W̄0W̄)
−
 Using Mp = I2 −PW̄∆p (∆p0PW̄∆p)−

∆p0PW̄ Z = PW̄∆Z andPW̄W̄ = W̄ we have2 = [∆Z
0W̄−∆Z0P̄∆p (∆p

0P̄∆p)
−
∆p0W̄]

(W̄0W̄)
−
 Using (A.9), we can readily show that

k2 −2k =
°°°°°
"
∆Z0W̄
2

−∆Z
0PW̄∆p
2

µ
∆p0PW̄∆p

2

¶−
∆p0W̄
2

#µ
W̄0W̄
2

¶−
−2

°°°°° = 

³

√

´

where 2 = [
0̄
 −0̄

−1
̄ ̄(

0̄


−1
̄ ̄)

−10̄]
−1
̄  It follows that || (2 −2)

1√
2

W̄0∆ε||
≤||2 −2|| 1√

2

°°W̄0∆ε
°° =  (

√
) (

√
) =  (1) as

1√
2

°°W̄0∆ε
°° =  (

√
) by Cheby-

shev inequality. Consequently, we can apply the Liapounov CLT to obtain

1√
2

Z0MpPW̄∆ε =
1√
2

2W̄∆ε+ (2 −2)
1√
2

W̄∆ε

=
1√
2

2W̄∆ε+  (1)
→  (0 2Ω1

0
2)

where we use the fact that max (2Ω1
0
2) ∞ by Assumption A.8. ¥
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Proof of Theorem 3.2. (i) Using ̂ = (p0MZp)
− p0MZY and MZY = MZ(p+

PW̄∆ε +PW̄R) we have with probability approaching 1 (w.p.a.1)

̂ ()− ()

=  ()0 ̂ − () =  ()0 (p0MZp)
−
p0MZY − ()

=  ()
0
(p0MZp)

−
p0MZPW̄∆ε+  ()

0
(p0MZp)

−
p0MZPW̄R+

£
 ()

0
 − ()

¤
≡ 1 () +2 () +3 () , say, (A.10)

where we use the fact that 1
2

p0MZp is asymptotically nonsingular (see (A.14) below). Then by

Cauchy-Schwarz inequality,
R
[̂ ()− ()]

2
 ()  ≤ 3P3

=1

R
 ()

2
 ()  By Assump-

tions A.1 and A.8 and (A.9), one can readily show that°°°° 1

2
∆p0PW̄∆p−0̄

−1
̄ ̄

°°°° = 

³

√

´
°°°° 1

2
∆p0PW̄∆Z−0̄

−1
̄ ̄

°°°° = 

³

√

´
°°°° 1

2
∆Z0PW̄∆Z−0̄

−1
̄ ̄

°°°° = 

³

√

´
 (A.11)

Let 3 ≡ 1
2

p0MZp. Then we can apply the triangle inequality and the fact that p
0
MZp =

p0p − p0Z (Z0Z)− Z0p = ∆p0PW̄∆p−∆p0PW̄∆Z (∆Z0PW̄∆Z)−∆Z0PW̄∆p to obtain

k3 −3k =  (
√
) (A.12)

where 3 ≡ 0̄
−1
̄ ̄−0̄−1̄ ̄

¡
0̄

−1
̄ ̄

¢−1
0̄

−1
̄ ̄  0 under Assumption A.8. This

implies that w.p.a.1

max

µ
1

2
p0MZp

¶
≤ max (3) + (

√
) ≤ 2max (3) (A.13)

and

min

µ
1

2
p0MZp

¶
≥ min (3)− (

√
) ≥ 1

2
min (3)  (A.14)

By the rotational property of the trace operator and the fact that tr() ≤tr()max () for any
symmetric matrix  and p.s.d. matrix  (e.g., Bernstein (2005, p.275)),Z

1 ()
2
 () 

= tr
h
(p0MZp)

−
p0MZPW̄∆ε∆ε

0PW̄MZp (p
0
MZp)

−


i
≤ max () tr

h
p0MZPW̄∆ε∆ε

0PW̄MZp (p0MZp)
−
(p0MZp)

−i
≤ max () 

−2
1

1

(2)
2 tr (p

0
MZPW̄∆ε∆ε

0PW̄MZp)

= max () 
−2
1

1

(2)
2 tr

³
W̄0∆ε∆ε0W̄(W̄0W̄)

−
W̄0MZpp

0
MZW̄(W̄0W̄)

−´
≤ max () 

−2
1 2

1

(2)
2 tr

¡
W̄0∆ε∆ε0W̄

¢

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where =
R
 ()  ()0  ()  1 = min(

1
2

p0MZp) and 2 = max((W̄
0W̄)

−
W̄0MZ

pp
0
MZW̄(W̄0W̄)

−
) =  (1) by using results in (A.9) and (A.11). In addition, tr(W̄

0∆ε∆ε0W̄) =

 () by straightforward expectation calculations and Markov inequality. It follows that
R
1 ()

2

 ()  =  ()  Analogously, noting that max (PW̄) = 1 and 1
2

kRk2 = 

¡
−2(+1)

¢
by

Assumptions A.1 and A.7 and Lemma A.2 of Su and Jin (2012), we haveZ
2 ()

2
 ()  ≤ max () 

−2
1

1

(2)
2 tr

¡
p0MZPW̄RR

0PW̄MZp
¢

= max () 
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that max (
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0) for any real matrix In addition,
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2
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by Assumption A.7 and standard arguments (see, e.g., Chen et al. (2005) and Su and Jin (2012)). It

follows that
R
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(ii) The proof is analogous to that in part (i) and thus omitted.

(iii) The proof parallels that of part (i). The major difference is that now we also need to use Assump-

tion A.7(iv) and restrict our attention to the sequence of compact subsets {U} of X that is expanding at

controllable rate. To appreciate this, we focus on the analysis of 2 () and 3 ()  As in the proof

of (i), we can show that
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°°° =  (
−(+1)) Then by Cauchy-Schwarz

inequality and Assumption A.7(iv), sup∈U |2 ()| ≤
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(iv) By the decomposition in (A.10), we can prove the theorem by showing that (iv1) D1 ≡√
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Let 4 ≡ p0MZW̄(W̄0W̄)
−
 Noting that p0MZW̄ = p0W̄− p0Z (Z0Z)− Z0W̄ = ∆p0W̄

−∆p0PW̄∆Z (∆Z0PW̄∆Z)−∆Z0W̄ we can readily apply (A.9) and (A.11) to show that
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It is standard to verify the Liapounov conditions and show that D11
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Then (iv1) follows.

Next, by the Cauchy-Schwarz inequality, the fact that 0 ≤ 0max () for any vector  and
conformable p.s.d. symmetric matrix  that max (
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0) for any real matrix  and that
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. Then (iv2) follows. By (A.15) and Assumptions
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Thus (iv3) follows. ¥

B Data

List of countries/regions (93)

Algeria, Argentina, Australia, Austria, Bangladesh, Belgium, Benin, Bolivia, Botswana, Brazil, Bu-

rundi, Cameroon, Canada, Cyprus, Central African Rep., Chile, China, Colombia, Congo, Costa Rica,

Denmark, Dominican Rep., Ecuador, Egypt, El Salvador, Fiji, Finland, France, Gabon, Ghana, Greece,

Guatemala, Guyana, Haiti, Honduras, Hong Kong, India, Iceland, Indonesia, Iran, Ireland, Ivory Coast,

Israel, Italy, Jamaica, Japan, Jordan, Kenya, Korea (South), Malawi, Malaysia, Mali, Malta, Mauritius,

Mexico, Morocco, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Pakistan, Norway, Papua New
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Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Romania, Rwanda, Senegal, Sierra Leone, Sin-

gapore, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Syria, Tanzania, Thailand, Togo, Trinidad

& Tobago, Tunisia, Turkey, Uganda, United Kingdom, United States, Uruguay, Venezuela, Zambia,

Zimbabwe.

Lists of variables

Variables Definition Source

GDP growth rate Growth rate of real GDP per capita (constant 2005 prices) UNCTAD

IPR updated GP index of patent rights Park (2008)

Foreign Direct Investment Inward FDI flows (US Dollars at current prices UNCTAD

and current exchange rates in millions)

Government consumption General Government final consumption expenditure as UNCTAD

a share of real GDP

Schooling Percentage of secondary schooling attained in population Barro and Lee (2013)

Domestic Investment Gross capital formation (US Dollars at current prices and UNCTAD

current exchange rates in millions)

Openness Fraser Institute’s Index of Freedom to trade internationally Fraser Institute

(Gwartney et al., 2010)

Population growth rate five-year average annual growth rate UNCTAD

Inflation Percentage change in the GDP deflator World Bank
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