
Chapter 2

INFORMATION EXTRACTION FROM
TEXT

Jing Jiang
Singapore Management University

jingjiang@smu.edu.sg

Abstract Information extraction is the task of finding structured information from
unstructured or semi-structured text. It is an important task in text
mining and has been extensively studied in various research commu-
nities including natural language processing, information retrieval and
Web mining. It has a wide range of applications in domains such as
biomedical literature mining and business intelligence. Two fundamen-
tal tasks of information extraction are named entity recognition and
relation extraction. The former refers to finding names of entities such
as people, organizations and locations. The latter refers to finding the
semantic relations such as FounderOf and HeadquarteredIn between en-
tities. In this chapter we provide a survey of the major work on named
entity recognition and relation extraction in the past few decades, with
a focus on work from the natural language processing community.

Keywords: Information extraction, named entity recognition, relation extraction

1. Introduction

Information extraction from text is an important task in text min-
ing. The general goal of information extraction is to discover structured
information from unstructured or semi-structured text. For example,
given the following English sentence,

In 1998, Larry Page and Sergey Brin founded Google Inc.

we can extract the following information,

FounderOf(Larry Page, Google Inc.),
FounderOf(Sergey Brin, Google Inc.),
FoundedIn(Google Inc., 1998).

© Springer Science+Business Media, LLC 2012
11 C.C. Aggarwal and C.X. Zhai (eds.), Mining Text Data, DOI 10.1007/978-1-4614-3223-4_2,

12 MINING TEXT DATA

Such information can be directly presented to an end user, or more
commonly, it can be used by other computer systems such as search
engines and database management systems to provide better services to
end users.

Information extraction has applications in a wide range of domains.
The specific type and structure of the information to be extracted de-
pend on the need of the particular application. We give some example
applications of information extraction below:

Biomedical researchers often need to sift through a large amount
of scientific publications to look for discoveries related to partic-
ular genes, proteins or other biomedical entities. To assist this
effort, simple search based on keyword matching may not suffice
because biomedical entities often have synonyms and ambiguous
names, making it hard to accurately retrieve relevant documents.
A critical task in biomedical literature mining is therefore to au-
tomatically identify mentions of biomedical entities from text and
to link them to their corresponding entries in existing knowledge
bases such as the FlyBase.

Financial professionals often need to seek specific pieces of informa-
tion from news articles to help their day-to-day decision making.
For example, a finance company may need to know all the company
takeovers that take place during a certain time span and the details
of each acquisition. Automatically finding such information from
text requires standard information extraction technologies such as
named entity recognition and relation extraction.

Intelligence analysts review large amounts of text to search for in-
formation such as people involved in terrorism events, the weapons
used and the targets of the attacks. While information retrieval
technologies can be used to quickly locate documents that describe
terrorism events, information extraction technologies are needed to
further pinpoint the specific information units within these docu-
ments.

With the fast growth of the Web, search engines have become an
integral part of people’s daily lives, and users’ search behaviors are
much better understood now. Search based on bag-of-word repre-
sentation of documents can no longer provide satisfactory results.
More advanced search problems such as entity search, structured
search and question answering can provide users with better search
experience. To facilitate these search capabilities, information ex-

Information Extraction from Text 13

Terrorism Template

Slot Fill Value

Incident: Date 07 Jan 90
Incident: Location Chile: Molina
Incident: Type robbery
Incident: Stage of execution accomplished
Incident: Instrument type gun
Human Target: Name “Enrique Ormazabal Ormazabal”
Human Target: Description “Businessman”: “Enrique Ormazabal Ormazabal”
Human Target: Type civilian: “Enrique Ormazabal Ormazabal”
Human Target: Number 1: “Enrique Ormazabal Ormazabal”
... ...

A Sample Document
Santiago, 10 Jan 90 – Police are carrying out intensive operations in the
town of Molina in the seventh region in search of a gang of alleged extremists
who could be linked to a recently discovered arsenal. It has been reported
that Carabineros in Molina raided the house of of 25-year-old worker Mario
Munoz Pardo, where they found a fal rifle, ammunition clips for various
weapons, detonators, and material for making explosives.
It should be recalled that a group of armed individuals wearing ski masks
robbed a businessman on a rural road near Molina on 7 January. The
businessman, Enrique Ormazabal Ormazabal, tried to resist; The men shot
him and left him seriously wounded. He was later hospitalized in Curico.
Carabineros carried out several operations, including the raid on Munoz’
home. The police are continuing to patrol the area in search of the alleged
terrorist command.

Figure 2.1. Part of the terrorism template used in MUC-4 and a sample document
that contains a terrorism event.

traction is often needed as a preprocessing step to enrich document
representation or to populate an underlying database.

While extraction of structured information from text dates back to
the ’70s (e.g. DeJong’s FRUMP program [28]), it only started gaining
much attention when DARPA initiated and funded the Message Un-
derstanding Conferences (MUC) in the ’90s [33]. Since then, research
efforts on this topic have not declined. Early MUCs defined information
extraction as filling a predefined template that contains a set of prede-
fined slots. For example, Figure 2.1 shows a subset of the slots in the
terrorism template used in MUC-4 and a sample document from which
template slot fill values were extracted. Some of the slot fill values such
as “Enrique Ormazabal Ormazabal” and “Businessman” were extracted
directly from the text while others such as robbery, accomplished and
gun were selected from a predefined value set for the corresponding slot
based on the document.

14 MINING TEXT DATA

Template filling is a complex task and systems developed to fill one
template cannot directly work for a different template. In MUC-6, a
number of template-independent subtasks of information extraction were
defined [33]. These include named entity recognition, coreference reso-
lution and relation extraction. These tasks serve as building blocks to
support full-fledged, domain-specific information extraction systems.

Early information extraction systems such as the ones that partici-
pated in the MUCs are often rule-based systems (e.g. [32, 42]). They
use linguistic extraction patterns developed by humans to match text
and locate information units. They can achieve good performance on the
specific target domain, but it is labor intensive to design good extraction
rules, and the developed rules are highly domain dependent. Realizing
the limitations of these manually developed systems, researchers turned
to statistical machine learning approaches. And with the decomposition
of information extraction systems into components such as named entity
recognition, many information extraction subtasks can be transformed
into classification problems, which can be solved by standard supervised
learning algorithms such as support vector machines and maximum en-
tropy models. Because information extraction involves identifying seg-
ments of text that play different roles, sequence labeling methods such
as hidden Markov models and conditional random fields have also been
widely used.

Traditionally information extraction tasks assume that the structures
to be extracted, e.g. the types of named entities, the types of relations, or
the template slots, are well defined. In some scenarios, we do not know
in advance the structures of the information we would like to extract
and would like to mine such structures from large corpora. For example,
from a set of earthquake news articles we may want to automatically
discover that the date, time, epicenter, magnitude and casualty of an
earthquake are the most important pieces of information reported in
news articles. There have been some recent studies on this kind of
unsupervised information extraction problems but overall work along
this line remains limited.

Another new direction is open information extraction, where the sys-
tem is expected to extract all useful entity relations from a large, diverse
corpus such as the Web. The output of such systems includes not only
the arguments involved in a relation but also a description of the rela-
tion extracted from the text. Recent advances in this direction include
systems like TextRunner [6], Woe [66] and ReVerb [29].

Information extraction from semi-structured Web pages has also been
an important research topic in Web mining (e.g. [40, 45, 25]). A ma-
jor difference of Web information extraction from information extraction

Information Extraction from Text 15

studied in natural language processing is that Web pages often contain
structured or semi-structured text such as tables and lists, whose extrac-
tion relies more on HTML tags than linguistic features. Web information
extraction systems are also called wrappers and learning such systems is
called wrapper induction. In this survey we only cover information ex-
traction from purely unstructured natural language text. Readers who
are interested in wrapper induction may refer to [31, 20] for in-depth
surveys.

In this chapter we focus on the two most fundamental tasks in in-
formation extraction, namely, named entity recognition and relation ex-
traction. The state-of-the-art solutions to both tasks rely on statistical
machine learning methods. We also discuss unsupervised information
extraction, which has not attracted much attention traditionally. The
rest of this chapter is organized as follows. Section 2 discusses current
approaches to named entity recognition, including rule-based methods
and statistical learning methods. Section 3 discusses relation extraction
under both a fully supervised setting and a weakly supervised setting.
We then discuss unsupervised relation discovery and open information
extraction in Section 4. In Section 5 we discuss evaluation of information
extraction systems. We finally conclude in Section 6.

2. Named Entity Recognition

A named entity is a sequence of words that designates some real-
world entity, e.g. “California,” “Steve Jobs” and “Apple Inc.” The task
of named entity recognition, often abbreviated as NER, is to identify
named entities from free-form text and to classify them into a set of
predefined types such as person, organization and location. Oftentimes
this task cannot be simply accomplished by string matching against
pre-compiled gazetteers because named entities of a given entity type
usually do not form a closed set and therefore any gazetteer would be
incomplete. Another reason is that the type of a named entity can be
context-dependent. For example, “JFK” may refer to the person “John
F. Kennedy,” the location “JFK International Airport,” or any other
entity sharing the same abbreviation. To determine the entity type
for “JFK” occurring in a particular document, its context has to be
considered.

Named entity recognition is probably the most fundamental task in
information extraction. Extraction of more complex structures such as
relations and events depends on accurate named entity recognition as a
preprocessing step. Named entity recognition also has many applications
apart from being a building block for information extraction. In question

16 MINING TEXT DATA

answering, for example, candidate answer strings are often named enti-
ties that need to be extracted and classified first [44]. In entity-oriented
search, identifying named entities in documents as well as in queries is
the first step towards high relevance of search results [34, 21].

Although the study of named entity recognition dates back to the early
’90s [56], the task was formally introduced in 1995 by the sixth Message
Understanding Conference (MUC-6) as a subtask of information extrac-
tion [33]. Since then, NER has drawn much attention in the research
community. There have been several evaluation programs on this task,
including the Automatic Content Extraction (ACE) program [1], the
shared task of the Conference on Natural Language Learning (CoNLL)
in 2002 and 2003 [63], and the BioCreAtIvE (Critical Assessment of
Information Extraction Systems in Biology) challenge evaluation [2].

The most commonly studied named entity types are person, organiza-
tion and location, which were first defined by MUC-6. These types are
general enough to be useful for many application domains. Extraction of
expressions of dates, times, monetary values and percentages, which was
also introduced by MUC-6, is often also studied under NER, although
strictly speaking these expressions are not named entities. Besides these
general entity types, other types of entities are usually defined for spe-
cific domains and applications. For example, the GENIA corpus uses a
fine-grained ontology to classify biological entities [52]. In online search
and advertising, extraction of product names is a useful task.

Early solutions to named entity recognition rely on manually crafted
patterns [4]. Because it requires human expertise and is labor intensive
to create such patterns, later systems try to automatically learn such
patterns from labeled data [62, 16, 23]. More recent work on named
entity recognition uses statistical machine learning methods. An early
attempt is Nymble, a name finder based on hidden Markov models [10].
Other learning models such as maximum entropy models [22], maximum
entropy Markov models [8, 27, 39, 30], support vector machines [35] and
conditional random fields [59] have also been applied to named entity
recognition.

2.1 Rule-based Approach

Rule-based methods for named entity recognition generally work as
follows: A set of rules is either manually defined or automatically learned.
Each token in the text is represented by a set of features. The text is
then compared against the rules and a rule is fired if a match is found.

A rule consists of a pattern and an action. A pattern is usually a
regular expression defined over features of tokens. When this pattern

Information Extraction from Text 17

matches a sequence of tokens, the specified action is fired. An action
can be labeling a sequence of tokens as an entity, inserting the start or
end label of an entity, or identifying multiple entities simultaneously. For
example, to label any sequence of tokens of the form “Mr. X” where X
is a capitalized word as a person entity, the following rule can be defined:

(token = “Mr.” orthography type = FirstCap) → person name.

The left hand side is a regular expression that matches any sequence
of two tokens where the first token is “Mr.” and the second token has
the orthography type FirstCap. The right hand side indicates that the
matched token sequence should be labeled as a person name.

This kind of rule-based methods has been widely used [4, 62, 16, 61,
23]. Commonly used features to represent tokens include the token itself,
the part-of-speech tag of the token, the orthography type of the token
(e.g. first letter capitalized, all letters capitalized, number, etc.), and
whether the token is inside some predefined gazetteer.

It is possible for a sequence of tokens to match multiple rules. To
handle such conflicts, a set of policies has to be defined to control how
rules should be fired. One approach is to order the rules in advance so
that they are sequentially checked and fired.

Manually creating the rules for named entity recognition requires hu-
man expertise and is labor intensive. To automatically learn the rules,
different methods have been proposed. They can be roughly categorized
into two groups: top-down (e.g. [61]) and bottom-up (e.g. [16, 23]).
With either approach, a set of training documents with manually la-
beled named entities is required. In the top-down approach, general
rules are first defined that can cover the extraction of many training
instances. However, these rules tend to have low precision. The system
then iteratively defines more specific rules by taking the intersections
of the more general rules. In the bottom-up approach, specific rules
are defined based on training instances that are not yet covered by the
existing rule set. These specific rules are then generalized.

2.2 Statistical Learning Approach

More recent work on named entity recognition is usually based on sta-
tistical machine learning. Many statistical learning-based named entity
recognition algorithms treat the task as a sequence labeling problem.
Sequence labeling is a general machine learning problem and has been
used to model many natural language processing tasks including part-
of-speech tagging, chunking and named entity recognition. It can be
formulated as follows. We are given a sequence of observations, denoted
as x = (x1, x2, . . . , xn). Usually each observation is represented as a

18 MINING TEXT DATA

Steve Jobs was a co-founder of Apple Inc.
B-PER I-PER O O O O B-ORG I-ORG

Figure 2.2. An example sentence with NER labels in the BIO notation. PER stands
for person and ORG stands for organization.

feature vector. We would like to assign a label yi to each observation xi.
While one may apply standard classification to predict the label yi based
solely on xi, in sequence labeling, it is assumed that the label yi depends
not only on its corresponding observation xi but also possibly on other
observations and other labels in the sequence. Typically this dependency
is limited to observations and labels within a close neighborhood of the
current position i.

To map named entity recognition to a sequence labeling problem, we
treat each word in a sentence as an observation. The class labels have
to clearly indicate both the boundaries and the types of named entities
within the sequence. Usually the BIO notation, initially introduced for
text chunking [55], is used. With this notation, for each entity type T,
two labels are created, namely, B-T and I-T. A token labeled with B-T is
the beginning of a named entity of type T while a token labeled with I-T

is inside (but not the beginning of) a named entity of type T. In addition,
there is a label O for tokens outside of any named entity. Figure 2.2 shows
an example sentence and its correct NER label sequence.

2.2.1 Hidden Markov Models. In a probabilistic framework,
the best label sequence y = (y1, y2, . . . , yn) for an observation sequence
x = (x1, x2, . . . , xn) is the one that maximizes the conditional probabil-
ity p(y|x), or equivalently, the one that maximizes the joint probability
p(x,y). One way to model the joint probability is to assume a Markov
process where the generation of a label or an observation is dependent
only on one or a few previous labels and/or observations. If we treat y
as hidden states, then we essentially have a hidden Markov model [54].

An example is the Nymble system developed by BBN, one of the
earliest statistical learning-based NER systems [10]. Nymble assumes
the following generative process:

(1) Each yi is generated conditioning on the previous label yi−1 and the
previous word xi−1.

(2) If xi is the first word of a named entity, it is generated conditioning
on the current and the previous labels, i.e. yi and yi−1.

(3) If xi is inside a named entity, it is generated conditioning on the
previous observation xi−1.

Information Extraction from Text 19

For subsequences of words outside of any named entity, Nymble treats
them as a Not-A-Name class. Nymble also assumes that there is a magical
+end+ word at the end of each named entity and models the probability
of a word being the final word of a named entity. With the generative
process described above, the probability p(x,y) can be expressed in
terms of various conditional probabilities.

Initially xi is simply the word at position i. Nymble further augments
it into xi = 〈w, f〉i, where w is the word at position i and f is a word
feature characterizing w. For example, the feature FourDigitNum indi-
cates that the word is a number with four digits. The rationale behind
introducing word features is that these features may carry strong corre-
lations with entity types. For example, a four-digit number is likely to
be a year.

The model parameters of Nymble are essentially the various multino-
mial distributions that govern the generation of xi and yi. Nymble uses
supervised learning to learn these parameters. Given sentences labeled
with named entities, Nymble performs maximum likelihood estimation
to find the model parameters that maximize p(X,Y) where X denotes
all the sentences in the training data and Y denotes their true label
sequences. Parameter estimation essentially becomes counting. For ex-
ample,

p(yi = c1|yi−1 = c2, xi−1 = w) =
c(c1, c2, w)

c(c2, w)
, (2.1)

where c1 and c2 are two class labels and w is a word. p(yi = c1|yi−1 =
c2, xi−1 = w) is the probability of observing the class label c1 given that
the previous class label is c2 and the previous word is w. c(c1, c2, w) is
the number of times we observe class label c1 when the previous class
label is c2 and the previous word is w, and c(c2, w) is the number of times
we observe the previous class label to be c2 and the previous word to be
w regardless of the current class label.

During prediction, Nymble uses the learned model parameters to find
the label sequence y that maximizes p(x,y) for a given x. With the
Markovian assumption, dynamic programming can be used to efficiently
find the best label sequence.

2.2.2 Maximum Entropy Markov Models. The hidden
Markov models described above are generative models. In general, re-
searchers have found that when training data is sufficient, compared with
generative models that model p(x|y), discriminative models that directly
model p(y|x) tend to give a lower prediction error rate and thus are
preferable [65]. For named entity recognition, there has also been such

20 MINING TEXT DATA

a shift from generative models to discriminative models. A commonly
used discriminative model for named entity recognition is the maximum
entropy model [9] coupled with a Markovian assumption. Existing work
using such a model includes [8, 27, 39, 30].

Specifically, with a Markovian assumption, the label yi at position i
is dependent on the observations within a neighborhood of position i as
well as a number of previous labels:

p(y|x) =
∏
i

p(yi|yi−1
i−k,x

i+l
i−l). (2.2)

In the equation above, yi−1
i−k refers to (yi−k, yi−k+1, . . . , yi−1) and xi+l

i−l
refers to (xi−l, xi−l+1, . . . , xi+l). And with maximum entropy models,
the functional form of p(yi|yi−1

i−k,x
i+l
i−l) follows an exponential model:

p(yi|yi−1
i−k,x

i+l
i−l) =

exp
(∑

j λjfj(yi,y
i−1
i−k,x

i+l
i−l)

)
∑

y′ exp
(∑

j λjfj(y′,yi−1
i−k,x

i+l
i−l)

) . (2.3)

In the equation above, fj(·) is a feature function defined over the current
label, the previous k labels as well as 2l + 1 observations surrounding
the current observation, and λj is the weight for feature fj . An example
feature is below:

f(yi, yi−1, xi) =
{

1 if yi−1 = O and yi = B-PER and word(xi) = “Mr.”,
0 otherwise .

The model described above can be seen as a variant of the maximum
entropy Markov models (MEMMs), which were formally introduced by
McCallum et al. for information extraction [48].

To train a maximum entropy Markov model, we look for the fea-
ture weights Λ = {λj} that can maximize the conditional probability
p(Y |X) where X denotes all the sentences in the training data and
Y denotes their true label sequences. Just like for standard maximum
entropy models, a number of optimization algorithms can be used to
train maximum entropy Markov models, including Generalized Itera-
tive Scaling (GIS), Improved Iterative Scaling (IIS) and limited memory
quasi-Newton methods such as L-BFGS [15]. A comparative study of
these optimization methods for maximum entropy models can be found
in [46]. L-BFGS is a commonly used method currently.

2.2.3 Conditional Random Fields. Conditional random
fields (CRFs) are yet another popular discriminative model for sequence
labeling. They were introduced by Lafferty et al. to also address infor-
mation extraction problems [41]. The major difference between CRFs

Information Extraction from Text 21

Figure 2.3. Graphical representations of linear-chain HMM, MEMM and CRF.

and MEMMs is that in CRFs the label of the current observation can
depend not only on previous labels but also on future labels. Also, CRFs
are undirected graphical models while both HMMs and MEMMs are di-
rected graphical models. Figure 2.3 graphically depicts the differences
between linear-chain (i.e. first-order) HMM, MEMM and CRF. Ever
since they were first introduced, CRFs have been widely used in natural
language processing and some other research areas.

Usually linear-chain CRFs are used for sequence labeling problems
in natural language processing, where the current label depends on the
previous one and the next one labels as well as the observations. There
have been many studies applying conditional random fields to named
entity recognition (e.g. [49, 59]). Specifically, following the same notation
used earlier, the functional form of p(y|x) is as follows:

p(y|x) =
1

Z(x)
exp

⎛
⎝∑

i

∑
j

λjfj(yi, yi−1,x, i)

⎞
⎠ , (2.4)

where Z(x) is a normalization factor of all possible label sequences:

Z(x) =
∑
y′

exp

⎛
⎝∑

i

∑
j

λjfj(y
′
i, y

′
i−1,x, i)

⎞
⎠ . (2.5)

To train CRFs, again maximum likelihood estimation is used to find
the best model parameters that maximize p(Y |X). Similar to MEMMs,
CRFs can be trained using L-BFGS. Because the normalization factor
Z(x) is a sum over all possible label sequences for x, training CRFs is
more expensive than training MEMMs.

In linear-chain CRFs we cannot define long-range features. General
CRFs allow long-range features but are too expensive to perform ex-
act inference. Sarawagi and Cohen proposed semi-Markov conditional
random fields as a compromise [58]. In semi-Markov CRFs, labels are
assigned to segments of the observation sequence x and features can mea-
sure properties of these segments. Exact learning and inference on semi-
Markov CRFs is thus computationally feasible. Sarawagi and Cohen

22 MINING TEXT DATA

applied Semi-Markov CRFs to named entity recognition and achieved
better performance than standard CRFs.

3. Relation Extraction

Another important task in information extraction is relation extrac-
tion. Relation extraction is the task of detecting and characterizing
the semantic relations between entities in text. For example, from the
following sentence fragment,

Facebook co-founder Mark Zuckerberg

we can extract the following relation,

FounderOf(Mark Zuckerberg, Facebook).

Much of the work on relation extraction is based on the task defini-
tion from the Automatic Content Extraction (ACE) program [1]. ACE
focuses on binary relations, i.e. relations between two entities. The two
entities involved are also referred to as arguments. A set of major relation
types and their subtypes are defined by ACE. Examples of ACE major
relation types include physical (e.g. an entity is physically near another
entity), personal/social (e.g. a person is a family member of another
person), and employment/affiliation (e.g. a person is employed by
an organization). ACE makes a distinction between relation extraction
and relation mention extraction. The former refers to identifying the
semantic relation between a pair of entities based on all the evidence
we can gather from the corpus, whereas the latter refers to identifying
individual mentions of entity relations. Because corpus-level relation ex-
traction to a large extent still relies on accurate mention-level relation
extraction, in the rest of this chapter we do not make any distinction
between these two problems unless necessary.

Various techniques have been proposed for relation extraction. The
most common and straightforward approach is to treat the task as a
classification problem: Given a pair of entities co-occurring in the same
sentence, can we classify the relation between the two entities into one
of the predefined relation types? Although it is also possible for rela-
tion mentions to cross sentence boundaries, such cases are less frequent
and hard to detect. Existing work therefore mostly focuses on relation
extraction within sentence boundaries.

There have been a number of studies following the classification ap-
proach [38, 71, 37, 18, 19]. Feature engineering is the most critical
step of this approach. An extension of the feature-based classification
approach is to define kernels rather than features and to apply kernel
machines such as support vector machines to perform classification. Ker-

Information Extraction from Text 23

nels defined over word sequences [14], dependency trees [26], dependency
paths [13] and parse trees [67, 68] have been proposed.

Both feature-based and kernel-based classification methods require a
large amount of training data. Another major line of work on relation
extraction is weakly supervised relation extraction from large corpora
that does not rely on the availability of manually labeled training data.
One approach is the bootstrapping idea to start with a small set of seed
examples and iteratively find new relation instances as well as new ex-
traction patterns. Representative work includes the Snowball system [3].
Another approach is distant supervision that makes use of known rela-
tion instances from existing knowledge bases such as Freebase [50].

3.1 Feature-based Classification

A typical approach to relation extraction is to treat the task as a clas-
sification problem [38, 71, 37, 18, 19]. Specifically, any pair of entities
co-occurring in the same sentence is considered a candidate relation in-
stance. The goal is to assign a class label to this instance where the class
label is either one of the predefined relation types or nil for unrelated
entity pairs. Alternatively, a two-stage classification can be performed
where at the first stage whether two entities are related is determined
and at the second stage the relation type for each related entity pair is
determined.

Classification approach assumes that a training corpus exists in which
all relation mentions for each predefined relation type have been man-
ually annotated. These relation mentions are used as positive training
examples. Entity pairs co-occurring in the same sentence but not labeled
are used as negative training examples. Each candidate relation instance
is represented by a set of features that are carefully chosen. Standard
learning algorithms such as support vector machines and logistic regres-
sion can then be used to train relation classifiers.

Feature engineering is a critical step for this classification approach.
Researchers have examined a wide range of lexical, syntactic and seman-
tic features. We summarize some of the most commonly used features
as follows:

Entity features: Oftentimes the two argument entities, including
the entity words themselves and the entity types, are correlated
with certain relation types. In the ACE data sets, for example,
entity words such as father, mother, brother and sister and the
person entity type are all strong indicators of the family relation
subtype.

24 MINING TEXT DATA

Lexical contextual features: Intuitively the contexts surround-
ing the two argument entities are important. The simplest way to
incorporate evidence from contexts is to use lexical features. For
example, if the word founded occurs between the two arguments,
they are more likely to have the FounderOf relation.

Syntactic contextual features: Syntactic relations between the
two arguments or between an argument and another word can often
be useful. For example, if the first argument is the subject of the
verb founded and the second argument is the object of the verb
founded, then one can almost immediately tell that the FounderOf
relation exists between the two arguments. Syntactic features can
be derived from parse trees of the sentence containing the relation
instance.

Background knowledge: Chan and Roth studied the use of
background knowledge for relation extraction [18]. An example is
to make use of Wikipedia. If two arguments co-occur in the same
Wikipedia article, the content of the article can be used to check
whether the two entities are related. Another example is word
clusters. For example, if we can group all names of companies such
as IBM and Apple into the same word cluster, we achieve a level
of abstraction higher than words and lower than the general entity
type organization. This level of abstraction may help extraction
of certain relation types such as Acquire between two companies.

Jiang and Zhai proposed a framework to organize the features used
for relation extraction such that a systematic exploration of the feature
space can be conducted [37]. Specifically, a relation instance is repre-
sented as a labeled, directed graph G = (V,E,A,B), where V is the set
of nodes in the graph, E is the set of directed edges in the graph, and
A and B are functions that assign labels to the nodes.

First, for each node v ∈ V , A(v) = {a1, a2, . . . , a|A(v)|} is a set of at-
tributes associated with node v, where ai ∈ Σ, and Σ is an alphabet that
contains all possible attribute values. For example, if node v represents
a token, then A(v) can include the token itself, its morphological base
form, its part-of-speech tag, etc. If v also happens to be the head word
of arg1 or arg2, then A(v) can also include the entity type. Next, func-
tion B : V → {0, 1, 2, 3} is introduced to distinguish argument nodes
from non-argument nodes. For each node v ∈ V , B(v) indicates how
node v is related to arg1 and arg2. 0 indicates that v does not cover any
argument, 1 or 2 indicates that v covers arg1 or arg2, respectively, and 3
indicates that v covers both arguments. In a constituency parse tree, a

Information Extraction from Text 25

NNS

hundreds

IN

of

NNP

Palestinians

Person

VBD

converged

IN

on

DT

the

NN

square

Bounded-Area

00 1 0 0 0 2

Person VBD

1 0

Bounded-Area

2

Figure 2.4. An example sequence representation. The subgraph on the left represents
a bigram feature. The subgraph on the right represents a unigram feature that states
the entity type of arg2.

NNS

hundreds

IN

of

NNP

Palestinians

Person

VBD

converged

IN

on

DT

the

NN

square

Bounded-Area

00 1 0 0 0 2

NPB NPB

PP

NP

1

1

0

1

S

VP

PP

NPB

3

2

2

2

on DT Bounded-Area

0 0 2

PP

NPB

2

2

Figure 2.5. An example constituency parse tree representation. The subgraph rep-
resents a subtree feature (grammar production feature).

node v may represent a phrase and it can possibly cover both arguments.
Figures 2.4, 2.5 and 2.6 show three relation instance graphs based on the
token sequence, the constituency parse tree and the dependency parse
tree, respectively.

Given the above definition of relation instance graphs, a feature of
a relation instance captures part of the attributive and/or structural
properties of the relation instance graph. Therefore, it is natural to
define a feature as a subgraph of the relation instance graph. For-
mally, given a graph G = (V,E,A,B), which represents a single relation
instance, a feature that exists in this relation instance is a subgraph
G′ = (V ′, E′, A′, B′) that satisfies the following conditions: V ′ ⊆ V ,
E′ ⊆ E, and ∀v ∈ V ′, A′(v) ⊆ A(v), B′(v) = B(v).

26 MINING TEXT DATA

NNS

hundreds

IN

of

NNP

Palestinians

Person

VBD

converged

IN

on

DT

the

NN

square

Bounded-Area

00 1 0 0 0 2

of Palestinians

10

Figure 2.6. An example dependency parse tree representation. The subgraph repre-
sents a dependency relation feature between arg1 Palestinians and of.

It can be shown that many features that have been explored in pre-
vious work on relation extraction can be transformed into this graphic
representation. Figures 2.4, 2.5 and 2.6 show some examples.

This framework allows a systematic exploration of the feature space
for relation extraction. To explore the feature space, Jiang and Zhai con-
sidered three levels of small unit features in increasing order of their com-
plexity: unigram features, bigram features and trigram features. They
found that a combination of features at different levels of complexity
and from different sentence representations, coupled with task-oriented
feature pruning, gave the best performance.

3.2 Kernel Methods

An important line of work for relation extraction is kernel-based clas-
sification. In machine learning, a kernel or kernel function defines the
inner product of two observed instances represented in some underlying
vector space. It can also be seen as a similarity measure for the observa-
tions. The major advantage of using kernels is that observed instances
do not need to be explicitly mapped to the underlying vector space in
order for their inner products defined by the kernel to be computed. We
will use the convolution tree kernel to illustrate this idea below.

There are generally three types of kernels for relation extraction:
sequence-based kernels, tree-based kernels and composite kernels.

3.2.1 Sequence-based Kernels. Bunescu and Mooney de-
fined a simple kernel based on the shortest dependency paths between
two arguments [13]. Two dependency paths are similar if they have the
same length and they share many common nodes. Here a node can be
represented by the word itself, its part-of-speech tag, or its entity type.
Thus the two dependency paths “protestors → seized ← stations” and
“troops → raided ← churches” have a non-zero similarity value because
they can both be represented as “Person → VBD ← Facility,” although

Information Extraction from Text 27

they do not share any common word. A limitation of this kernel is that
any two dependency paths with different lengths have a zero similarity.

In [14], Bunescu and Mooney introduced a subsequence kernel where
the similarity between two sequences is defined over their similar subse-
quences. Specifically, each node in a sequence is represented by a feature
vector and the similarity between two nodes is the inner product of their
feature vectors. The similarity between two subsequences of the same
length is defined as the product of the similarities of each pair of their
nodes in the same position. The similarity of two sequences is then
defined as a weighted sum of the similarities of all the subsequences of
the same length from the two sequences. The weights are introduced to
penalize long common subsequences. Bunescu and Mooney tested their
subsequence kernel for protein-protein interaction detection.

3.2.2 Tree-based Kernels. Tree-based kernels use the same
idea of using common substructures to measure similarities. Zelenko
et al. defined a kernel on the constituency parse trees of relation in-
stances [67]. The main motivation is that if two parse trees share many
common subtree structures then the two relation instances are similar
to each other. Culotta and Sorensen extended the idea to dependency
parse trees [26]. Zhang et al. [68] further applied the convolution tree
kernel initially proposed by Collins and Duffy [24] to relation extraction.
This convolution tree kernel-based method was later further improved
by Qian et al. [53] and achieved a state-of-the-art performance of around
77% of F-1 measure on the benchmark ACE 2004 data set.

We now briefly discuss the convolution tree kernels. As we explained
earlier, a kernel function corresponds to an underlying vector space in
which the observed instances can be represented. For convolution tree
kernels, each dimension of this underlying vector space corresponds to
a subtree. To map a constituency parse tree to a vector in this vector
space, we simply enumerate all the subtrees contained in the parse tree.
If a subtree i occurs k times in the parse tree, the value for the dimen-
sion corresponding to i is set to k. Only subtrees containing complete
grammar production rules are considered. Figure 2.7 shows an example
parse tree and all the subtrees under the NP “the company.”

Formally, given two constituency parse trees T1 and T2, the convolu-
tion tree kernel K is defined as follows:

K(T1, T2) =
∑

n1∈N1

∑
n2∈N2

∑
i

Ii(n1)Ii(n2). (2.6)

28 MINING TEXT DATA

Figure 2.7. Left: The constituency parse tree of a simple sentence. Right: All the
subtrees of the NP “the company” considered in convolution tree kernels.

Here N1 and N2 are the sets of all nodes in T1 and T2 respectively. i
denotes a subtree in the feature space. Ii(n) is 1 if subtree i is seen
rooted at node n and 0 otherwise.

It is not efficient to directly compute K as defined in Equation 2.6. In-
stead, we can define C(n1, n2) =

∑
i Ii(n1)Ii(n2). C(n1, n2) can then be

computed in polynomial time based on the following recursive property:

If the grammar productions at n1 and n2 are different, then the
value of C(n1, n2) is 0.

If the grammar productions at n1 and n2 are the same and n1 and
n2 are pre-terminals, then C(n1, n2) is 1. Here pre-terminals are
nodes directly above words in a parse tree, e.g. the N, V and D in
Figure 2.7.

If the grammar productions at n1 and n2 are the same and n1 and
n2 are not pre-terminals,

C(n1, n2) =

nc(n1)∏
j=1

(1 + C(ch(n1, j), ch(n2, j))), (2.7)

where nc(n) is the number of child-nodes of n, and ch(n, j) is the
j-th child-node of n. Note that here nc(n1) = nc(n2).

With this recursive property, convolution tree kernels can be efficiently
computed in O(|N1||N2|) time.

3.2.3 Composite Kernels. It is possible to combine different
kernels into a composite kernel. This is when we find it hard to include
all the useful features into a single kernel. Zhao and Grishman defined
several syntactic kernels such as argument kernel and dependency path
kernel before combing them into a composite kernel [70]. Zhang et al.
combined an entity kernel with the convolution tree kernel to form a
composite kernel [69].

Information Extraction from Text 29

3.3 Weakly Supervised Learning Methods

Both feature-based and kernel-based classification methods for rela-
tion extraction rely on a large amount of training data, which is expen-
sive to obtain. A solution to this problem is weakly supervised learn-
ing methods that work with much less training data. The most notable
weakly supervised method for relation extraction is bootstrapping, which
starts from a small set of seed relation instances and iteratively learns
more relation instances and extraction patterns. It has been widely ex-
plored [12, 3]. More recently, another learning paradigm called distant
supervision has been proposed to make use of a large number of known
relation instances in existing large knowledge bases to create training
data [50]. For both bootstrapping and distant supervision, noisy training
data is automatically generated. To achieve good performance, careful
feature selection and pattern filtering need to be carried out.

3.3.1 Bootstrapping. A representative work on bootstrapping
for relation extraction is the Snowball system developed by Agichtein
and Gravano [3], which improved over an earlier system called DIPRE
developed by Brin [12]. The idea behind Snowball is simple. We start
with a set of seed entity pairs that are related through the target rela-
tion. For example, if the target relation is HeadquarteredIn, we may
use seed pairs such as 〈Microsoft,Redmond〉, 〈Google,Mountain View〉
and 〈Facebook,Palo Alto〉. Given a large corpus, we then look for co-
occurrences of these entity pairs within close proximity. The assumption
is that if two entities related through the target relation co-occur closely,
the context in which they co-occur is likely to be a pattern for the target
relation. For example, we may find sentence fragments such as “Google’s
headquarters in Mountain View” and “Redmond-based Microsoft” and
extract patterns like “ORG’s headquarters in LOC” and “LOC-based ORG.”
With these patterns, we can search the corpus and find more 〈ORG, LOC〉
entity pairs that have the HeadquarteredIn relation. We add these en-
tity pairs to the set of seed relation instances and repeat the process.
More patterns and entity pairs are added to the results until a certain
condition is satisfied.

An important step in bootstrapping methods is to evaluate the qual-
ity of extraction patterns so as not to include many noisy patterns
during the extraction process. For example, from the seed entity pair
〈Google,Mountain View〉 we may also find “Google, Mountain View”
in the corpus. However, the pattern “ORG, LOC” is not a reliable one
and thus should not be used. Heuristic methods have been proposed to
judge the quality of an extraction pattern. Usually two factors are con-

30 MINING TEXT DATA

sidered, coverage and precision. Coverage is related to the percentage of
true relation instances that can be discovered by the pattern. Precision
is related to the percentage of correct relation instances among all the
relation instances discovered by the pattern.

3.3.2 Distant Supervision. In bootstrapping only a small
set of seed entity pairs is used. With the growth of the social Web,
much human knowledge has been contributed by a large crowd of users
and stored in knowledge bases. A well-known example is Wikipedia.
Another example is Freebase, a knowledge base that stores structured
human knowledge such as entity relations [11]. With such freely available
knowledge, it becomes possible to use a large set of entity pairs known to
have a target relation to generate training data. Mintz et al. proposed
distant supervision for relation extraction based on this idea [50]. They
assume that if two entities participate in a relation, any sentence that
contain these two entities express that relation. Because this assumption
does not always hold, Mintz et al. use features extracted from differ-
ent sentences containing the entity pair to create a richer feature vector
that is supposed to be more reliable. They define lexical, syntactic and
named entity tag features. They use standard multi-class logistic regres-
sion as the classification algorithm. Their experiments show that this
method can reach almost 70% of precision based on human judgment.
Nguyen and Moschitti further used knowledge from both YAGO and
Wikipedia documents for distant supervision and achieved around 74%
F-1 measure [51].

4. Unsupervised Information Extraction

In Section 2 and Section 3, we discussed named entity recognition and
relation extraction where the entity types and relation types are well de-
fined in advance based on the application. A large amount of labeled
training data is also required in order to learn a good named entity rec-
ognizer or relation extractor. However, both defining the structures for
the information to be extracted and annotating documents according to
the defined structures require human expertise and are time consuming.
To alleviate this problem, recently there has been an increasing amount
of interest in unsupervised information extraction from large corpora.

In this section we review some recent studies along this line. We first
discuss relation discovery and template induction where the goal is to
discover salient relation types or templates for a given domain. The key
idea is to cluster entities or entity pairs based on their lexico-syntactic
contextual features. We then discuss open information extraction where

Information Extraction from Text 31

the goal is to extract any type of relation from a large, diverse corpus
such as the Web.

4.1 Relation Discovery and Template Induction

In Section 3 we discussed relation extraction when the types of rela-
tions to be extracted are known in advance. There are also cases where
we do not have any specific relation types in mind but would like to
discover salient relation types from a given corpus. For example, given a
set of articles reporting hurricane events, it would be useful if we could
automatically discover that one of the most important relations for this
domain is the hit relation between a hurricane and the place being hit.

Shinyama and Sekine first proposed to study this problem, which they
referred to as Unrestricted Relation Discovery [60]. They started by col-
lecting a large number of news articles from different news sources on
the Web. They then used simple clustering based on lexical similarity to
find articles talking about the same event. In this way they could enrich
the feature representation of an entity using its multiple occurrences in
different articles. Next they performed syntactic parsing and extracted
named entities from these articles. Each named entity could then be
represented by a set of syntactic patterns as its features. For example,
a pattern may indicate that the entity is the subject of the verb hit.
Finally, they clustered pairs of entities co-occurring in the same arti-
cle using their feature representations. The end results were tables in
which rows corresponded to different articles and columns corresponded
to different roles in a relation. They were able to achieve around 75% of
accuracy for the discovered tables.

Rosenfeld and Feldman formulated unsupervised relation discovery in
a more general way [57]. It is assumed that the input of the problem
consists of entity pairs together with their contexts. An unsupervised re-
lation discovery algorithm clusters these entity pairs into disjoint groups
where each group represents a single semantic relation. There is also a
garbage cluster to capture unrelated entity pairs or unimportant rela-
tions. The contexts for each entity pair consist of the contexts of each
entity and the contexts of the two entities’ co-occurrences. An entity
pair can be represented by a set of features derived from the contexts.
Rosenfeld and Feldman considered only surface pattern features. For
example, “arg1, based in arg2” is a pattern to capture a co-occurrence
context between the two entities. For clustering, Rosenfeld and Feldman
considered hierarchical agglomerative clustering and K-means cluster-
ing. Their method was able to discover relations such as CityOfState
and EmployedIn.

32 MINING TEXT DATA

While relation discovery considers binary relations only, a more com-
plex task is to automatically induce an information extraction template,
which may contain multiple slots playing different semantic roles. The
most straightforward solution is to identify candidates of role fillers first
and then cluster these candidates into clusters. However, this simplified
clustering approach does not consider an important observation, which
is that a single document tends to cover different slots. To remedy this
problem, Marx et al. proposed a cross-component clustering algorithm
for unsupervised information extraction [47]. The algorithm assigns a
candidate from a document to a cluster based on the candidate’s feature
similarity with candidates from other documents only. In other words,
the algorithm prefers to separate candidates from the same document
into different clusters. Leung et al. proposed a generative model to
capture the same intuition [43]. Specifically, they assume a prior distri-
bution over the cluster labels of candidates in the same document where
the prior prefers a diversified label assignment. Their experiments show
that clustering results are better with this prior than without using the
prior.

The aforementioned two studies assume a single template and do not
automatically label the discovered slots. Chambers and Jurafsky pre-
sented a complete method that is able to discover multiple templates
from a corpus and give meaningful labels to discovered slots [17]. Specif-
ically, their method performs two steps of clustering where the first clus-
tering step groups lexical patterns that are likely to describe the same
type of events and the second clustering step groups candidate role fillers
into slots for each type of events. A slot can be labeled using the syn-
tactic patterns of the corresponding slot fillers. For example, one of the
slots discovered by their method for the bombing template is automat-
ically labeled as “Person/Organization who raids, questions, discovers,
investigates, diffuses, arrests.” A human can probably infer from the
description that this refers to the police slot.

4.2 Open Information Extraction

Relation discovery and template induction usually work on a corpus
from a single domain, e.g. articles describing terrorism events, because
the goal is to discover the most salient relations from such a domain-
specific corpus. In some cases, however, our goal is to find all the poten-
tially useful facts from a large and diverse corpus such as the Web. This
is the focus of open information extraction, first introduced by Banko et
al. [6].

Information Extraction from Text 33

Open information extraction does not assume any specific target re-
lation type. It makes a single pass over the corpus and tries to extract
as many relations as possible. Because no relation type is specified in
advance, part of the extraction results is a phrase that describes the re-
lation extracted. In other words, open information extraction generates
〈arg1, rel, arg2〉 tuples.

In [7], Banko and Etzioni introduced an unlexicalized CRF-based
method for open information extraction. The method is based on the
observation that although different relation types have very different se-
mantic meanings, there exists a small set of syntactic patterns that cover
the majority of semantic relation mentions. It is therefore possible to
train a relation extraction model that extracts arbitrary relations. The
key is not to include lexical features in the model.

Later work on open information extraction introduced more heuristics
to improve the quality of the extracted relations. In [29], for example,
Fader et al. proposed the following two heuristics: (1) A multi-word
relation phrase must begin with a verb, end with a preposition, and be
a contiguous sequence of words in the sentence. (2) A binary relation
phrase ought to appear with at least a minimal number of distinct ar-
gument pairs in a large corpus. It is found that the two heuristics can
effectively lead to better extraction results.

5. Evaluation

To evaluate information extraction systems, manually annotated doc-
uments have to be created. For domain-specific information extraction
systems, the annotated documents have to come from the target domain.
For example, to evaluate gene and protein name extraction, biomedical
documents such as PubMed abstracts are used. But if the purpose is to
evaluate general information extraction techniques, standard benchmark
data sets can be used. Commonly used evaluation data sets for named
entity recognition include the ones from MUC [33], CoNLL-2003 [63]
and ACE [1]. For relation extraction, ACE data sets are usually used.

The typical evaluation metrics for information extraction are preci-
sion, recall and F-1 scores. Precision measures the percentage of correct
instances among the identified positive instances. Recall measures the
percentage of correct instances that can be identified among all the pos-
itive instances. F-1 is the geometric mean of precision and recall.

For named entity recognition, strictly speaking a correctly identified
named entity must satisfy two criteria, namely, correct entity boundary
and correct entity type. Most evaluation is based on the exact match
of entity boundaries. However, it is worth nothing that in some cases

34 MINING TEXT DATA

credit should also be given to partial matches, e.g. when the goal is only
to tell whether an entity is mentioned in a document or a sentence [64].

For relation extraction, as we have mentioned, there are two levels of
extraction, corpus-level and mention-level. While evaluation at mention
level requires annotated relation mention instances, evaluation at corpus
level requires only truly related entity pairs, which may be easier to
obtain or annotate than relation mentions.

Currently, the state-of-the-art named entity recognition methods can
achieve around 90% of F-1 scores when trained and tested on the same
domain [63]. It is generally observed that person entities are easier to
extract, followed by locations and then organizations. It is important
to note that when there is domain change, named entity recognition
performance can drop substantially. There have been several studies
addressing the domain adaptation problem for named entity recognition
(e.g. [36, 5]).

For relation extraction, the state-of-the-art performance is lower than
that of named entity recognition. On the ACE 2004 benchmark data
set, for example, the best F-1 score is around 77% for the seven major
relation types [53].

6. Conclusions and Summary

Information extraction is an important text mining problem and has
been extensively studied in areas such as natural language processing, in-
formation retrieval and Web mining. In this chapter we reviewed some
representative work on information extraction, in particular work on
named entity recognition and relation extraction. Named entity recog-
nition aims at finding names of entities such as people, organizations
and locations. State-of-the-art solutions to named entity recognition
rely on statistical sequence labeling algorithms such as maximum en-
tropy Markov models and conditional random fields. Relation extrac-
tion is the task of finding the semantic relations between entities from
text. Current state-of-the-art methods use carefully designed features
or kernels and standard classification to solve this problem.

Although supervised learning has been the dominating approach to in-
formation extraction, weakly supervised methods have also drawn much
attention. Bootstrapping is a major technique for semi-supervised rela-
tion extraction. More recently, with large amounts of knowledge made
available in online knowledge bases, distant supervision provides a new
paradigm of learning without training data.

Unsupervised information extraction aims to automatically induce the
structure of the information to be extracted such as the relation types

Information Extraction from Text 35

and the templates. Clustering is the main technique used for unsuper-
vised information extraction.

With the fast growth of textual data on the Web, it is expected that fu-
ture work on information extraction will need to deal with even more di-
verse and noisy text. Weakly supervised and unsupervised methods will
play a larger role in information extraction. The various user-generated
content on the Web such as Wikipedia articles will also become impor-
tant resources to provide some kind of supervision.

References

[1] Automatic content extraction (ACE) evaluation. http://www.itl.
nist.gov/iad/mig/tests/ace/.

[2] BioCreAtIvE. http://www.biocreative.org/.

[3] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations
from large plain-text collections. In Proceedings of the 5th ACM
Conference on Digital Libraries, pages 85–94, 2000.

[4] Douglas E. Appelt, Jerry R. Hobbs, John Bear, David Israel, and
Mabry Tyson. FASTUS: A finite-state processor for information
extraction from real-world text. In Proceedings of the 13th Interna-
tional Joint Conference on Artificial Intelligence, 1993.

[5] Andrew Arnold, Ramesh Nallapati, and William W. Cohen. Ex-
ploiting feature hierarchy for transfer learning in named entity
recognition. In Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics, pages 245–253, 2008.

[6] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matthew
Broadhead, and Oren Etzioni. Open information extraction from
the Web. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence, pages 2670–2676, 2007.

[7] Michele Banko and Oren Etzioni. The tradeoffs between open and
traditional relation extraction. In Proceedings of the 46th Annual
Meeting of the Association for Computational Linguistics, pages 28–
36, 2008.

[8] Oliver Bender, Franz Josef Och, and Hermann Ney. Maximum en-
tropy models for named entity recognition. In Proceedings of the
7th Conference on Natural Language Learning, 2003.

[9] Adam L. Bergert, Vincent J. Della Pietra, and Stephen A.
Della Pietra. A maximum entropy approach to natural language
processing. Computational Linguistics, 22(1):39–71, March 1996.

[10] Daniel M. Bikel, Scott Miller, Richard Schwartz, and Ralph
Weischedel. Nymble: a high-performance learning name-finder. In

http://www.itl.nist.gov/iad/mig/tests/ace/.
http://www.biocreative.org/
http://www.itl.nist.gov/iad/mig/tests/ace/.

36 MINING TEXT DATA

Proceedings of the 5th Conference on Applied Natural Language Pro-
cessing, pages 194–201, 1997.

[11] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and
Jamie Taylor. Freebase: a collaboratively created graph database
for structuring human knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, pages
1247–1250, 2008.

[12] Sergey Brin. Extracting patterns and relations from the World
Wide Web. In Proceedings of the 1998 International Workshop on
the Web and Databases, 1998.

[13] Razvan Bunescu and Raymond Mooney. A shortest path depen-
dency kernel for relation extraction. In Proceedings of the Human
Language Technology Conference and the Conference on Empirical
Methods in Natural Language Processing, pages 724–731, 2005.

[14] Razvan Bunescu and Raymond Mooney. Subsequence kernels for
relation extraction. In Advances in Neural Information Processing
Systems 18, pages 171–178. 2006.

[15] Richard H. Byrd, Jorge Nocedal, and Robert B. Schnabel. Repre-
sentations of quasi-newton matrices and their use in limited memory
methods. Journal of Mathematical Programming, 63(2):129–156,
January 1994.

[16] Mary Elaine Califf and Raymond J. Mooney. Relational learning of
pattern-match rules for information extraction. In Proceedings of
the 16th National Conference on Artificial Intelligence and the 11th
Innovative Applications of Artificial Intelligence Conference, pages
328–334, 1999.

[17] Nathanael Chambers and Dan Jurafsky. Template-based informa-
tion extraction without the templates. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 976–986, 2011.

[18] Yee Seng Chan and Dan Roth. Exploiting background knowledge
for relation extraction. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages 152–160, 2010.

[19] Yee Seng Chan and Dan Roth. Exploiting syntactico-semantic
structures for relation extraction. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics, pages
551–560, 2011.

[20] Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy Girgis, and
Khaled F. Shaalan. A survey of Web information extraction sys-

Information Extraction from Text 37

tems. IEEE Transactions on Knowledge and Data Engineering,
18(10):1411–1428, October 2006.

[21] Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang. Supporting
entity search: a large-scale prototype search engine. In Proceedings
of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, pages 1144–1146, 2007.

[22] Hai Leong Chieu and Hwee Tou Ng. Named entity recognition
with a maximum entropy approach. In Proceedings of the Seventh
Conference on Natural Language Learning, pages 160–163, 2003.

[23] Fabio Ciravegna. Adaptive information extraction from text by
rule induction and generalisation. In Proceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence - Volume 2,
pages 1251–1256, 2001.

[24] Michael Collins and Nigel Duffy. Convolution kernels for natural
language. In Advances in Neural Information Processing Systems
13. 2001.

[25] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Road-
Runner: Towards automatic data extraction from large Web sites.
In Proceedings of the 27th International Conference on Very Large
Data Bases, pages 109–118, 2001.

[26] Aron Culotta and Jeffrey Sorensen. Dependency tree kernels for
relation extraction. In Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics, pages 423–429, 2004.

[27] James R. Curran and Stephen Clark. Language independent NER
using a maximum entropy tagger. In Proceedings of the 7th Con-
ference on Natural Language Learning, 2003.

[28] Gerald DeJong. Prediction and substantiation: A new approach to
natural language processing. Cognitive Science, 3:251–173, 1979.

[29] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying
relations for open information extraction. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing,
pages 1535–1545, 2011.

[30] Jenny Finkel, Shipra Dingare, Christopher D. Manning, Malvina
Nissim, Beatrice Alex, and Claire Grover. Exploring the boundaries:
gene and protein identification in biomedical text. BMC Bioinfor-
matics, 6(Suppl 1)(S5), 2005.

[31] Sergio Flesca, Giuseppe Manco, Elio Masciari, Eugenio Rende, and
Andrea Tagarelli. Web wrapper induction: a brief survey. AI Com-
munications, 17(2):57–61, April 2004.

38 MINING TEXT DATA

[32] Ralph Grishman, John Sterling, and Catherine Macleod. New York
University: Description of the PROTEUS system as used for MUC-
3. In Proceedings of the 3rd Message Understadning Conference,
pages 183–190, 1991.

[33] Ralph Grishman and Beth Sundheim. Message understanding
conference-6: A brief history. In Proceedings of the 16th Inter-
national Conference on Computational Linguistics, pages 466–471,
1996.

[34] Guoping Hu, Jingjing Liu, Hang Li, Yunbo Cao, Jian-Yun Nie, and
Jianfeng Gao. A supervised learning approach to entity search.
In Proceedings of the 3rd Asia Information Retrieval Symposium,
pages 54–66, 2006.

[35] Hideki Isozaki and Hideto Kazawa. Efficient support vector classi-
fiers for named entity recognition. In Proceedings of the 19th Inter-
national Conference on Computational Linguistics, 2002.

[36] Jing Jiang and ChengXiang Zhai. Exploiting domain structure for
named entity recognition. In Proceedings of the Human Language
Technology Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 74–81, 2006.

[37] Jing Jiang and ChengXiang Zhai. A systematic exploration of the
feature space for relation extraction. In Proceedings of the Human
Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics, pages 113–120,
2007.

[38] Nanda Kambhatla. Combining lexical, syntactic, and semantic fea-
tures with maximum entropy models for extracting relations. In
The Companion Volume to the Proceedings of 42st Annual Meeting
of the Association for Computational Linguistics, pages 178–181,
2004.

[39] Dan Klein, Joseph Smarr, Huy Nguyen, and Christopher D. Man-
ning. Named entity recognition with character-level models. In
Proceedings of the 7th Conference on Natural Language Learning,
2003.

[40] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos.
Wrapper induction for information extraction. In Proceedings of
the 15th International Joint Conference on Artificial Intelligence,
1997.

[41] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.
Conditional random fields: Probabilistic models for segmenting and

Information Extraction from Text 39

labeling sequence data. In Proceedings of the 18th International
Conference on Machine Learning, pages 282–289, 2001.

[42] Wendy Lehnert, Claire Cardie, Divid Fisher, Ellen Riloff, and
Robert Williams. University of Massachusetts: Description of the
CIRCUS system as used for MUC-3. In Proceedings of the 3rd Mes-
sage Understadning Conference, pages 223–233, 1991.

[43] Cane Wing-ki Leung, Jing Jiang, Kian Ming A. Chai, Hai Leong
Chieu, and Loo-Nin Teow. Unsupervised information extraction
with distributional prior knowledge. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing,
pages 814–824, 2011.

[44] Xin Li and Dan Roth. Learning question classifiers. In Proceedings
of the 19th International Conference on Computational Linguistics,
pages 1–7, 2002.

[45] Liu Ling, Calton Pu, and Wei Han. XWRAP: An XML-enabled
wrapper construction system for Web information sources. In Pro-
ceedings of the 16th International Conference on Data Engineering,
pages 611–621, 2000.

[46] Robert Malouf. A comparison of algorithms for maximum entropy
parameter estimation. In Proceedings of the 6th Conference on Nat-
ural Language Learning, 2002.

[47] Zvika Marx, Ido Dagan, and Eli Shamir. Cross-component cluster-
ing for template learning. In Proceedings of the 2002 ICML Work-
shop on Text Learning, 2002.

[48] Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira.
Maximum entropy Markov models for information extraction and
segmentation. In Proceedings of the 17th International Conference
on Machine Learning, pages 591–598, 2000.

[49] Andrew McCallum and Wei Li. Early results for named entity
recognition with conditional random fields, feature induction and
web-enhanced lexicons. In Proceedings of the 7th Conference on
Natural Language Learning, 2003.

[50] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Dis-
tant supervision for relation extraction without labeled data. In
Proceedings of the Joint Conference of the 47th Annual Meeting of
the Association for Computational Linguistics and the 4th Inter-
national Joint Conference on Natural Language Processing of the
AFNLP, pages 1003–1011, 2009.

[51] Truc Vien T. Nguyen and Alessandro Moschitti. End-to-end re-
lation extraction using distant supervision from external semantic

40 MINING TEXT DATA

repositories. In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics, pages 277–282, 2011.

[52] Tomoko Ohta, Yuka Tateisi, and Jin-Dong Kim. The GENIA cor-
pus: an annotated research abstract corpus in molecular biology
domain. In Proceedings of the 2nd International Conference on Hu-
man Language Technology Research, pages 82–86, 2002.

[53] Longhua Qian, Guodong Zhou, Fang Kong, Qiaoming Zhu, and
Peide Qian. Exploiting constituent dependencies for tree kernel-
based semantic relation extraction. In Proceedings of the 22nd Inter-
national Conference on Computational Linguistics, pages 697–704,
2008.

[54] Lawrence R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. 77, 77(2):257–286, 1989.

[55] Lance A. Ramshaw and Mitch P. Marcus. Text chunking using
transformation-based learning. In Proceedings of the 3rd Workship
on Very Large Corpora, pages 82–94, 1995.

[56] Lisa F. Rau. Extracting company names from text. In Proceedings
of the 7th IEEE Conference on Artificial Intelligence Applications,
pages 29–32, 1991.

[57] Benjamin Rosenfeld and Ronen Feldman. Clustering for unsuper-
vised relation identification. In Proceedings of the 16th ACM confer-
ence on Conference on Information and Knowledge Management,
pages 411–418, 2007.

[58] Sunita Sarawagi and William W. Cohen. Semi-markov conditional
random fields for information extraction. In Advances in Neural
Information Processing Systems 17, pages 1185–1192. 2005.

[59] Burr Settles. Biomedical named entity recognition using condi-
tional random fields and rich feature sets. In Proceedings of the
International Joint Workshop on Natural Language Processing in
Biomedicine and Its Applications, pages 104–107, 2004.

[60] Yusuke Shinyama and Satoshi Sekine. Preemptive information ex-
traction using unrestricted relation discovery. In Proceedings of the
Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics, pages
304–311, 2006.

[61] Stephen Soderland. Learning information extraction rules for semi-
structured and free text. Machine Learning, 34(1-3):233–272, Febru-
ary 1999.

[62] Stephen Soderland, David Fisher, Jonathan Aseltine, and Wendy
Lehnert. CRYSTAL inducing a conceptual dictionary. In Proceed-

Information Extraction from Text 41

ings of the 14th International Joint Conference on Artificial Intel-
ligence, pages 1314–1319, 1995.

[63] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to
the CoNLL-2003 shared task: Language-independent named entity
recognition. In Proceedings of the 7th Conference on Natural Lan-
guage Learning, pages 142–147, 2003.

[64] Richard Tzong-Han Tsai, Shih-Hung Wu, Wen-Chi Chou, Yu-Chun
Lin, Ding He, Jieh Hsiang, Ting-Yi Sung, and Wen-Lian Hsu. Var-
ious criteria in the evaluation of biomedical named entity recogni-
tion. BMC Bioinformatics, 7(92), 2006.

[65] Vladimir Vapnik. Statistical Learning Theory. John Wiley & Sons,
2008.

[66] Fei Wu and Daniel S. Weld. Open information extraction using
Wikipedia. In Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 118–127, 2010.

[67] Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. Ker-
nel methods for relation extraction. Journal of Machine Learning
Research, 3:1083–1106, February 2003.

[68] Min Zhang, Jie Zhang, and Jian Su. Exploring syntactic features for
relation extraction using a convolution tree kernel. In Proceedings of
the Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics, pages
288–295, 2006.

[69] Min Zhang, Jie Zhang, Jian Su, and GuoDong Zhou. A composite
kernel to extract relations between entities with both flat and struc-
tured features. In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th Annual Meeting of the
Association for Computational Linguistics, pages 825–832, 2006.

[70] Shubin Zhao and Ralph Grishman. Extracting relations with inte-
grated information using kernel methods. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics,
pages 419–426, 2005.

[71] GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. Exploring
various knowledge in relation extraction. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics,
pages 427–434, 2005.

http://www.springer.com/978-1-4614-3222-7

	Chapter 2: INFORMATION EXTRACTION FROM TEXT
	Abstract
	Keywords
	1. Introduction
	2. Named Entity Recognition
	2.1 Rule-based Approach
	2.2 Statistical Learning Approach

	3. Relation Extraction
	3.1 Feature-based Classification
	3.2 Kernel Methods
	3.3 Weakly Supervised Learning Methods

	4. Unsupervised Information Extraction
	4.1 Relation Discovery and Template Induction
	4.2 Open Information Extraction

	5. Evaluation
	6. Conclusions and Summary
	References

