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Models
Liangjun SU
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Xi QU
Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200052, China
(xiqu@sjtu.edu.cn)

This article considers a simple test for the correct specification of linear spatial autoregressive models,
assuming that the choice of the weight matrix Wn is true. We derive the limiting distributions of the test
under the null hypothesis of correct specification and a sequence of local alternatives. We show that the
test is free of nuisance parameters asymptotically under the null and prove the consistency of our test. To
improve the finite sample performance of our test, we also propose a residual-based wild bootstrap and
justify its asymptotic validity. We conduct a small set of Monte Carlo simulations to investigate the finite
sample properties of our tests. Finally, we apply the test to two empirical datasets: the vote cast and the
economic growth rate. We reject the linear spatial autoregressive model in the vote cast example but fail
to reject it in the economic growth rate example. Supplementary materials for this article are available
online.

KEY WORDS: Generalized method of moments; Nonlinearity; Spatial autoregression; Spatial depen-
dence; Specification test.

1. INTRODUCTION

There exists an enormous literature on the estimation of
econometric models with spatial dependence among cross-
sectional units. Among the various models involving spatial
dependence, the linear spatial autoregressive (SAR) model is
perhaps the most popular one. It has been widely used in re-
gional science and urban economics to model the spillover ef-
fects. See Ord (1975), Anselin (1988), Kelejian and Prucha
(1998, 1999, 2010), Smirnov and Anselin (2001), Lee (2002,
2003, 2004, 2007a), Klier and McMillen (2008), Lin and Lee
(2010), Liu, Lee, and Bollinger (2010), Robinson (2010), Su
and Yang (2013, 2015), and Gupta and Robinson (2015) for
different estimation strategies for this kind of models. In ad-
dition, the SAR model can also be used to estimate the peer
effects in social network analysis; see Lee (2007b), Goldsmith-
Pinkham and Imbens (2013), Helmers and Patnam (2014), and
Liu (2014).

Assuming the spatial weight matrix is true, there is still poten-
tial misspecification of functional form in linear SAR models.
Motivated by this, Su and Jin (2010) considered the profile
quasi-maximum likelihood estimation (QMLE) of partially lin-
ear SAR models. They demonstrated that the spatial parameters
can be poorly estimated if nonlinearity is not correctly taken
into account in the estimation procedure. Noting that the esti-
mator of Su and Jin (2010) does not have an analytic form and
it is not easy to implement in practice, Su (2012) proposed a
nonparametric generalized method of moment (GMM) to es-
timate semiparametric SAR models. Zhang (2013) proposed
a pairwise difference estimator for partially linear SAR mod-
els with heteroscedastic or/and spatially correlated error terms.
Osipenko (2014) provided a generalized-difference-based two-
stage least squares (2SLS) estimator for the linear coefficients
in a partially linear SAR model with a general error structure.

Despite the fact that all these researchers consider nonlinear
SAR models, they still assume a specific spatial data-generating
mechanism through the use of exogenous spatial weight matrix.

Another strand of research in the spatial literature tries to
forgo the use of exogenous spatial weight matrix by imposing
strong spatial mixing or spatial stationary structures in the data
or/and to relax the linear parametric assumption on the func-
tional form; see Conley (1999), Banerjee et al. (2004), Hallin,
Lu, and Tran (2004), Majumdar et al. (2006), Lin, Li, and Gao
(2009), Robinson (2011), Jenish (2012), among others. These
articles allow for spatial dependence with the effect of one spa-
tial unit on the others not necessarily being an interest in itself,
unlike in the SAR model where the spatial parameter is of inter-
est. More recently, Sun (2014) proposed a functional-coefficient
SAR by allowing elements in the spatial weight matrix Wn to be
a common nonparametric function of certain distance measure
and the exogenous regressors to enter the model with functional
coefficients. So her model is of semiparametric nature too.

It is well known that a correctly specified parametric model
can afford precise statistical inference, a misspecified one may
offer possibly misleading inference, whereas nonparametric
modeling is associated with both greater robustness and lesser
precision. An intermediate strategy is to apply some semipara-
metric method. A natural question is whether one should use
the parametric, semiparametric, or nonparametric specification
in practice. This motivates the development of model specifica-
tion tests.

In this article, based on nonparametric kernel smoothing tech-
niques, we propose a consistent model specification test for SAR
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models, assuming the correct choice of spatial weight matrix
Wn. Our test has several key features. First, unlike the available
model specification tests that are applicable for independent data
or time series data, our test is designed for SAR models where
we have to take into account the spatial dependence among the
cross-sectional units. To the best of our knowledge, our test
is the first nonparametric test for the correct specification of
parametric SAR models, assuming Wn is true.

Second, our test is a kernel-based smoothing test. It has the
asymptotic normal distribution under the null hypothesis and
can detect Pitman local alternatives converging to the null at
the usual nonparametric rate. Fan and Li (2000) showed that
the kernel-based tests can be more powerful than nonsmooth-
ing tests (e.g., Bierens 1982, 1990; Chen and Fan 1999) for the
“singular” local alternatives considered by Rosenblatt (1975).
The main feature of the “singular” local alternatives is that they
have narrow spikes and change rapidly as the sample size n
increases to infinity. According to Fan and Li (2000), these
“singular” local alternatives can be thought of as representing
high frequency alternatives and the Pitman local alternatives
as representing low frequency alternatives. Our kernel-based
smoothing test has power to detect the singular local alterna-
tives that converge to the null model at a rate faster than n−1/2

whereas the nonsmoothing tests can only detect such “singular”
alternatives that approach the null at rate n−1/2. See Fan and
Li (2000, p. 1018 and p. 1029) and Remark 3 in Su and White
(2008) for more explanation on this.

Third, our test allows for both discrete and continuous re-
gressors. As Hsiao, Li, and Racine (2007) remarked, existing
kernel-based tests are limited to situations involving continu-
ous regressors only. These tests may be generalized to admit
discrete regressors by using a conventional frequency estima-
tion method that splits the sample into different cells. Never-
theless, this sample-splitting frequency approach often results
in a substantial loss of finite-sample efficiency in estimation
and a great loss of power in test when the number of obser-
vations in each cell is small. This motivates them to smooth
the discrete regressors in the construction of their test statis-
tic. In this article, we follow Hsiao, Li, and Racine (2007)
and propose a kernel-based test that smooths both continu-
ous and discrete regressors. We use the least-square cross-
validation (LSCV) method to select the smoothing parameters
for both types of regressors and the Monte Carlo results demon-
strate that the proposed test is substantially more powerful than
the frequency-based kernel tests that use the sample-splitting
technique.

Fourth, even though we only focus on testing the correct
specification of the linear SAR models, our test can be easily
generalized to test for the correct specification of nonlinear SAR
models or semiparametric SAR models, assuming the spatial
weight matrix is true.

The article is organized as follows. In Section 2, we introduce
our hypotheses and test statistic. In Section 3, we investigate the
asymptotic properties of our test under the null hypothesis as
well as a sequence of local alternatives and show the consistency
of the test. We propose a wild bootstrap version of our test
and justify its asymptotic validity in Section 4. We provide
a small set of Monte Carlo experiments to evaluate the finite
sample performance of our tests in Section 5. Two empirical

applications are studied in Section 6. Section 7 concludes. All
proofs are relegated to the online supplementary appendix.

Notation. For a real matrix An, we denote its transpose
as A′

n, its Frobenius norm as ‖An‖ (≡ [tr
(
AnA

′
n

)
]1/2), and its

(i, j )th element as an,ij . Here, tr(·) is the trace operator. Sim-
ilarly, for a vector an, an,i denotes its ith element. When An

is m1 × m2, we use ‖An‖max (≡ max1≤i≤m1,1≤j≤m2

∣∣an,ij

∣∣) and
‖An‖1 (≡ sup1≤j≤m2

∑m1
i=1

∣∣an,ij

∣∣) to denote its max norm and
maximum absolute column sum norm (or 1-norm in short), re-

spectively. Let
d→ and

p→ denote convergence in distribution
and probability, respectively.

2. HYPOTHESIS AND TEST STATISTIC

2.1 The Hypothesis

Consider the following SAR model with potential nonlinear-
ity:

Yn = mn(Xn) + ρ0
nWnYn + Un, (2.1)

where ρ0
n is the spatial lag parameter, Wn is a specified constant

n × n spatial weight matrix, WnYn is the spatial lagged variable,
n is the total number of spatial units, Xn ≡ (xn,1, . . . , xn,n)′ is
an n × p matrix of exogenous regressors that do not contain
the constant term, Un is an n-dimensional vector of zero mean
independent disturbances that are not necessarily identically
distributed, mn(Xn) ≡ (mn(xn,1), . . . , mn(xn,n)

)′
, and mn (·) is

an unknown smooth function defined on R
p.

Under the condition that In − ρ0
nWn is nonsingular, (2.1) has

the reduced form

Yn = (In − ρ0
nWn

)−1
(mn(Xn) + Un). (2.2)

This reduced form will be frequently used in the derivation of the
asymptotic properties of the estimator proposed below. Clearly,
mn

(
xn,i

)
is not the conditional mean of yn,i given xn,i unless

the true spatial parameter ρ0
n is 0. In the general case, mn

(
xn,i

)
plays the same role as β0

n0 + x ′
n,iβ

0
n1 in the conventional linear

SAR model:

Yn = 1nβ
0
n0 + X′

nβ
0
n1 + ρ0

nWnYn + vn, (2.3)

where 1n is an n × 1 vector of ones and vn represents the error
term in the linear model.

As LeSage and Pace (2009, chap. 2.7) remarked, the inter-
pretation of the slope coefficients in an SAR model is quite
complicated, so we do not intend to interpret them. Instead, we
confine ourselves to testing whether the linear specification of
mn(·) in (2.3) is adequate. In other words, the null hypothesis of
interest is

H0 : mn(x) = β0
n0 + x ′β0

n1 for some β0
n ≡ (β0

n0, β
0′
n1

)′
∈ B ⊂ R

p+1, (2.4)

and the alternative hypothesis is

H1 : mn(x) 	= βn0 + x ′βn1 for any βn ≡ (βn0, β
′
n1

)′
∈ B ⊂ R

p+1. (2.5)

We next study the estimation of the restricted model in (2.3) and
propose a test for the null hypothesis specified in (2.4).
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2.2 Estimation

We base our test on the estimation of the restricted model
(2.3) only. There are two popular types of estimators in the
literature. One is the maximum likelihood estimator (MLE) or
QMLE; see Anselin (1988) and Lee (2004), among others. The
other is the GMM estimator; see Kelejian and Prucha (1998,
1999, 2010), Lee (2003), Lin and Lee (2010), and Liu, Lee, and
Bollinger (2010). Under the correct specification of the error
distribution, the MLE is efficient. When the error distribution
is misspecified, the QMLE is still consistent under some reg-
ularity conditions provided that the error terms do not exhibit
heteroscedasticity of unknown forms. Lin and Lee (2010) and
Kelejian and Prucha (2010) demonstrated that the MLE may be
inconsistent in the presence of heteroscedastic disturbances and
study independently the GMM estimation of SAR models. More
recently, Su and Yang (2013) studied the instrumental variable
(IV) quantile estimation of (2.3), which demands less moment
conditions on the error term.

Let θ̂n ≡ (β̂ ′
n, ρ̂n)′ be an estimator of θ0

n ≡ (β0′
n , ρ0

n)
′
in (2.3).

Let x̄n,i ≡ (1, x ′
n,i)

′ and X̄n ≡ (x̄n,1, . . . , x̄n,n

)′
. Define the re-

stricted residual

V̂n ≡ Yn − X̄nβ̂n − ρ̂nWnYn.

Under appropriate assumptions, we then have

v̂n,i = vn,i + op(1), (2.6)

where vn,i = yn,i − x̄ ′
n,iβ

0
n − ρ0

n

∑n
j=1 wn,ij yn,j by (2.3) and

vn,i = un,i under H0. Consequently, we can propose a residual-
based test for H0.

2.3 Test Statistic

To motivate our test statistic, we assume that xn,i is ran-
dom with the probability density function (PDF) fn,i (·) so
that the restriction on un,i turns to be E

(
un,i |xn,i

) = 0. Then
we can consider a test statistic that was independently pro-
posed by Fan and Li (1996) and Zheng (1996) in the indepen-
dent and identically distributed (iid) framework. The test statis-
tic is based upon J ≡ E[vn,iE

(
vn,i |xn,i

)
fn,i

(
xn,i

)
]. Note that

J = E{[E (vn,i |xn,i

)
]2fn,i

(
xn,i

)} is zero under H0 and strictly
positive under H1. Thus it can serve as a valid candidate for
testing H0.

The sample analog of E[vn,iE
(
vn,i |xn,i

)
fn,i

(
xn,i

)
] is

1

n

n∑
i=1

vn,iE
(
vn,i |xn,i

)
fn,i

(
xn,i

)
,

which is infeasible since neither vn,i nor fn,i (·) is known. To
construct a feasible test statistic, we need to replace vn,i and
E
(
vn,i |xn,i

)
fn,i

(
xn,i

)
by their consistent estimators.

We consider the case in which a subset of regressors is contin-
uous and the remainders are discrete. As Li and Racine (2007,
chap. 3) remarked, theoretically one can use a nonparametric
frequency method to handle the presence of discrete regressors,
but such an approach cannot be used in practice if the number of
discrete cells is large relative to the sample size. In this article,
we follow Racine and Li (2004) and Li and Racine (2007, 2008),

and consider the kernel approach to handle both continuous and
discrete data.

For clarity, write xn,i = (xc′
n,i , x

d ′
n,i)

′
, where xc

n,i denotes a
pc × 1 vector of continuous regressors and xd

n,i denotes a pd × 1
vector of remaining discrete regressors with pd = p − pc. We
assume each discrete variable in xd

n,i takes a finite number of dis-
crete values. Further, we assume some discrete regressors have
a natural ordering, for example, environmental conditions (ex-
cellent, good, poor) or preference ordering (like, indifference,
dislike). Let 
xd

n,i denote a p1 × 1 vector (say, the first p1 com-
ponents of xd

n,i , 0 ≤ p1 ≤ pd ) of discrete regressors that have
a natural ordering. Let x̃d

n,i denote the remaining p2 = pd − p1

discrete regressors that do not have a natural ordering. Denote
xc

n,is and xd
n,is as the sth element of xc

n,i and xd
n,i , respectively

(s = 1, . . . , pc or pd ).
For the continuous regressor, we choose a kernel function

Q (·) defined on R
pc and a vector of smoothing parameters

h = (h1, . . . , hpc

)
, where we have suppressed the dependence

of h and its elements on n for notational simplicity. Let Qh (x) =
(�pc

s=1h
−1
s )Q

(
x1/h1, . . . , xpc

/hpc

)
. Let

Qh,ij = Qh

(
xc

n,i − xc
n,j

)
. (2.7)

In practice, a frequently used choice of Q (·) is the prod-
uct of a univariate kernel function q (·). In this case, Qh,ij =
�

pc

s=1h
−1
s q((xc

n,is − xc
n,js)/hs). Following Li and Racine (2007),

we use a variation of the kernel function of Aitchison and Aitken
(1976) for the unordered discrete regressor:

l̃
(
x̃d

n,is , x̃
d
n,js , λs

) =
{

1 if x̃d
n,is = x̃d

n,js

λs otherwise
, (2.8)

and use


l (
xd
n,is , 
xd

n,js , λs

) =
{

1 if 
xd
n,is = 
xd

n,js

λ

∣∣∣
xd
n,is−
xd

n,js

∣∣∣
s otherwise

(2.9)

for the ordered discrete regressor, where λs ∈ [0, 1] is the
smoothing parameter. In the special case of λs = 0, l̃ (·, ·, ·)
reduces to the usual indicator function as used in the nonpara-
metric frequency approach. When λs = 1, x̃d

n,is or 
xd
n,is is com-

pletely smoothed out in the sense that it will not affect the
nonparametric estimation result.

Combining (2.8) and (2.9), the product kernel function for
the discrete regressors is

Lλ,ij ≡ L
(
xd

n,i , x
d
n,j , λ

)
≡
[

p1∏
s=1

λ

∣∣∣
xd
n,is−
xd

n,js

∣∣∣
s

][
p2∏

s=1

λ
1−1(x̃d

n,is=x̃d
n,js )

s+p1

]
, (2.10)

where 1 (A) = 1 if A holds and 0 otherwise, and λ =
(λ1, . . . , λpd

). Again, for notational simplicity we suppress the
dependence of λ and its elements on n. Combining (2.7) and
(2.10), we obtain the product kernel function for all the regres-
sors:

Khλ,ij ≡ Qh,ijLλ,ij . (2.11)

Now we can estimate E
(
vn,i |xn,i

)
fn,i

(
xn,i

)
by the leave-one-

out kernel estimator 1
n

∑n
j=1,j 	=i v̂n,jKhλ,ij , where we divide by

n instead of n − 1 for notational simplicity. Our test statistic is
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then based upon the random quantity

Jn = 1

n2

n∑
i=1

n∑
j=1,j 	=i

v̂n,i v̂n,jKhλ,ij . (2.12)

We will study the asymptotic properties of Jn in the next section.
It is worth mentioning that the asymptotic normal null dis-

tribution of the Jn-based test derived for the iid data indepen-
dently by Fan and Li (1996) and Zheng (1996) only allows
for continuous regressors. Hsiao, Li, and Racine (2007) studied
the asymptotic properties of the Jn-based test for the iid data
when both continuous and discrete regressors are present and
the smoothing parameters are chosen by the LSCV method.

3. ASYMPTOTIC THEORY

In this section, we investigate the asymptotic properties of Jn-
based test under H0 and a sequence of Pitman local alternatives.
We also study the global consistency of the test.

3.1 Basic Assumptions

Following Lee (2004), let Sn(ρn) = In − ρnWn, Gn (ρn) =
WnSn(ρn)−1, Sn = Sn

(
ρ0

n

)
, and Gn = Gn

(
ρ0

n

)
. To provide a

rigorous analysis, we make the following assumptions.

Assumption A1. (i) Any diagonal element wn,ii of Wn is zero.
(ii) ρ0

n ∈ (an, ān) with −∞ < a ≤ an < ān ≤ ā < ∞. (iii) The
matrix Sn(ρn) is nonsingular for all ρn ∈ (an, ān) and sufficiently
large n. (iv) For all sufficiently large n, there exists a constant c <

∞ such that ‖Wn‖1 + ∥∥W ′
n

∥∥
1 ≤ c and

∥∥S−1
n

∥∥
1 + ∥∥S−1′

n

∥∥
1 ≤ c.

Assumption A1 concerns essential features of the spatial
weights matrix. A1(i)–(iii) parallel Assumptions 1(a)–(c) in
Kelejian and Prucha (2010). A1(i) is clearly a normalization
rule. A1(ii) concerns the parameter space of ρn, which may
vary over the sample size. Section 2.2 of Kelejian and Prucha
(2010) provides an excellent discussion on this. A1(iii) ensures
that Yn defined in (2.1) has the reduced form in (2.2 ). A1(iv)
limits the spatial correlation to some degree but facilitates the
study of the asymptotic study. It is commonly assumed in the lit-
erature (see, e.g., Kelejian and Prucha 1998, 1999, 2001, 2010;
Lee 2004).

Assumption A2. (i) {(xn,i , un,i)}ni are independently dis-

tributed. (ii) xn,i = (xc′
n,i , x

d ′
n,i)

′
exhibits a PDF fn,i(xc, xd ) on

the support Xn≡ X c
n × X d

n and fn,i(xc, xd ) is continuously
differentiable with respect to (wrt) its continuous argument
xc. (iii) E(un,i |xn,i) = 0, E(u2

n,i) = σ 2
n,i , E(u4

n,i) = μ4
n,i ;

there exist constants σ̄ 2 < ∞ and μ̄u4 < ∞ such that
supi,n σ 2

n,i ≤ σ̄ 2 and supi,n μ4
n,i ≤ μ̄u4. (iv) Let σ 2

n,i(x) =
E(u2

n,i |xn,i = x), μ4
n,i(x) = E(u4

n,i |xn,i = x), f̄n(x) =
n−1∑n

i=1 fn,i(x), σ̄ 2
n (x) = n−1∑n

i=1 σ 2
n,i(x)fn,i(x), and

μ̄4
n (x) = n−1∑n

i=1 μ4
n,i(x)fn,i(x). For each x = (xc, xd ) on the

support Xn, f̄ (x) = limn→∞ f̄n(x) exists, limn→∞
∫

[σ̄ 2
n (x)]2dx

exists,
∫

[σ̄ 2
n (x)]4dx and

∫
[μ̄4

n(x)]2dx are bounded above
from infinity. (v) There exists a constant μ̄x4 < ∞ such that
supi,n E||xn,i ||4 < μ̄x4.

For notational simplicity, here and below we write
∫

an (x) dx

for
∑

xd∈X d
n

∫
X c

n
an

(
xc, xd

)
dxc, where the summation is over

all possible values of xd on X d
n . Assumption A2 concerns es-

sential features of the exogenous regressors and error terms in
the model. Following the suggestion of a referee, we consider
stochastic exogenous regressors and assume

{(
xn,i , un,i

)}n
i

fol-
low independent but nonidentical distributions in A2(i)–(iv).
A2(iii)–(iv) allow for both conditional and unconditional het-
eroscedasticity and kurtosis in the error terms. In the presence
of heteroscedasticity, the QMLE of Lee (2004) in the linear
SAR models is generally inconsistent. For this reason, Kelejian
and Prucha (2010) and Lin and Lee (2010) explored the GMM
estimation of the linear SAR models with heteroscedasticity.
Nevertheless, they require the existence of (4 + ε)th moments
of un,i for some ε > 0. In Su and Yang (2013), the IV quantile
estimation of SAR models only requires the existence of the first
moment of un,i . A2(v) imposes a moment condition on xn,i .

Assumption A3. (i) The kernel function Q (·) is a symmetric
PDF such that Q (·) is continuously differentiable and uniformly
bounded from above by cQ. (ii) As n → ∞, ‖λ‖ → 0, ‖h‖ →
0, and nh1 . . . hpc

→ ∞.

Assumption A3 concerns the kernel and bandwidth se-
quences. As Li and Racine (2007, chap. 4) remarked, in the
nonparametric kernel estimation with mixed data, the optimal
choice of smoothing parameters requires that ‖λ‖ is of the same
order as ‖h‖2 when pc ≥ 1, that is, the model has at least one
continuous regressor. In this case, the optimal bandwidth rates
only depend on the dimension (pc) of the continuous regressors:
the optimal bandwidth rate for the continuous regressors (hj ’s)
should be proportional to n−1/(4+pc) and that for the discrete
regressors (λj ’s) should be proportional to n−2/(4+pc) when a
second-order kernel is used. In the absence of continuous re-
gressors (pc = 0), Ouyang, Li, and Racine (2009) showed that
the optimal bandwidth rate for the discrete regressors should be
proportional to n−1/2. Below we assume pc ≥ 1 and remark on
the case of pc = 0 after Theorem 2.

3.2 Asymptotic Null Distribution

The following assumption is added for the asymptotic null
distribution of our test statistic.

Assumption A4. θ̂n − θ0
n = op

(
n−1/2

(
�

pc

l=1hl

)−1/4
)

.

Assumption A4 is only imposed under the null hypothesis.
Under H0, A4 requires that θ0

n can be consistently estimated by

θ̂n at any rate faster than n1/2
(
�

pc

l=1hl

)1/4
. The commonly used

2SLS or GMM estimators (e.g., Kelejian and Prucha 2010; Lin
and Lee 2010) typically converge to the true value at the usual
n1/2-rate and thus meet A4. The QMLE of Lee (2004) also has
the n1/2-rate of convergence in the regular case. Under some
further conditions on both the bandwidths hj ’s and the spatial
weight matrix Wn, the QMLE of Lee (2004) in the irregular case
may converge to the true value slower than n1/2 but faster than
n1/2

(
�

pc

l=1hl

)1/4
and thus meets A4 too.
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The following theorem studies the asymptotic null distribu-
tion of our test statistic Tn.

Theorem 1. Suppose Assumptions A1–A4 hold. Then un-

der H0, Tn ≡ n
(
�

pc

l=1hl

)1/2
Jn/̂Sn

d→ N (0, 1) , where Ŝ
2
n ≡

2n−2�
pc

l=1hl

∑n
i=1

∑n
j=1,j 	=i v̂2

n,i v̂
2
n,jK

2
hλ,ij is a consistent esti-

mator of S
2 ≡ lim

n→∞ 2
∫ [

σ̄ 2
n (x)

]2
dx
∫

Q2 (u) du.

Proof of Theorem 1 can be found in the supplementary ap-
pendix. In the case of homoscedasticity, that is, σ 2

n,i = σ 2
0 for all

1 ≤ i ≤ n, we have S
2 ≡ lim

n→∞ 2σ 4
0

∫
f̄ 2

n (x) dx
∫

Q2 (u) du.

Let zα be the upper α-percentile of the standard normal dis-
tribution. Noting that Tn is a one-sided test, we reject the null
hypothesis when Tn > zα at the α-level of significance.

3.3 Local Power

To study the local power property, consider the following
sequence of local alternatives:

H1 (αn) : mn(x) = β0
n0 + x ′β0

n1 + αnδn(x), (3.1)

where δn (·) is an unknown nonlinear function defined on
R

p such that limn→∞
∫

δ2
n(x)fn (x) dx > 0, and αn → 0 is

a scalar that specifies the speed at which the local alter-
native converges to the null model. Let β0

n = (β0
n0, β

0′
n1)′,

θ0
n = (β0′

n , ρ0
n)′, β̄0

n0 = β0
n0 + cn0, β̄0

n1 = β0
n1 + cn1, and δ̄n(x) =

δn(x) − (cn0 + c′
n1x
)
/αn, where cn� = o (αn) for � = 0, 1. Not-

ing that β0
n0 + x ′β0

n1 + αnδn(x) = β̄0
n0 + x ′β̄0

n1 + αnδ̄n(x), β0
n

and thus θ0
n can only be identified up to the probability or-

der o (αn). But this fact does not affect the study of the local
power property of our test.

Under H1 (αn), αn affects the convergence speed of the para-
metric estimator θ̂n to θ0

n . In the following, we will choose

αn = n−1/2
(
�

pc

l=1hl

)−1/4
to obtain the nontrivial power for our

test. We add the following assumption.

Assumption A4. θ̂n − θ0
n = αnBn (αn) + op (αn) with Bn ≡

Bn (αn)
p→ B where B is nonrandom.

Assumption A4∗ will be imposed under H1 (αn) for αn =
o (1) such that n1/2αn → ∞. We now check that the 2SLS
estimator of θ0

n satisfies Assumption 4∗ under weak condi-

tions. Let X̃n = (X̄n,WnYn) and PZn
= Zn

(
Z′

nZn

)−1
Zn, where

Zn ≡ (X̄n,WnXn) is the chosen instrument. Denote δn (Xn) =
(δn

(
xn,1
)
, . . . , δn

(
xn,n

)
)′. Then, the 2SLS estimator θ̂2SLS of θ0

n

is given by

θ̂2SLS = (
X̃′

nPZn
X̃n

)−1
X̃′

nPZn
Yn

= θ0
n + αn

(
X̃′

nPZn
X̃n

)−1
X̃′

nPZn
δn (Xn)

+ (X̃′
nPZn

X̃n

)−1
X̃′

nPZn
Un ≡ θ0

n + αnBn + Vn,

(3.2)

where Bn and Vn contribute to the bias and variance of θ̂2SLS,

respectively. In the supplementary appendix, we show explicitly
that

Bn = Op (1) and Vn = Op(n−1/2) = op (αn) (3.3)

under fairly weak conditions that are typically assumed for IV
estimation of linear SAR models. That is, the 2SLS estimator
can easily meet the condition in Assumption 4∗. In fact, one
can check that this assumption can be satisfied for the general
GMM estimators of Kelejian and Prucha (2010) and Lin and
Lee (2010) under weak conditions. In C.2 of the supplementary
appendix, we verify A4∗ for Lee’s (2004) QMLE under certain
conditions.

To proceed, let ξn,i ≡∑n
j=1 gn,ij x̄

′
n,jβ

0
n, where

gn,ij is the (i, j ) th element of Gn ≡ WnS
−1
n . De-

fine Rn,x̄,δ ≡ n−2∑n
i=1

∑n
j=1,j 	=i E[x̄n,iδn(xn,j )Khλ,ij ],

Rn,ξ,δ ≡ n−2∑n
i=1

∑n
j=1,j 	=i E[ξn,i ×δn(xn,j )Khλ,ij ], and

Rn ≡
(

Rn,x̄,x̄ Rn,x̄,ξ

R′
n,x̄,ξ Rn,ξ,ξ

)

≡

⎛⎜⎜⎜⎜⎜⎜⎝

n−2∑n
i=1

∑n
j=1,j 	=i E

[
x̄n,i x̄

′
n,iKhλ,ij

]
n−2∑n

i=1

∑n
j=1,j 	=i E

[
x̄n,iξn,jKhλ,ij

]
n−2∑n

i=1

∑n
j=1,j 	=i E

[
x̄ ′

n,iξn,jKhλ,ij

]
n−2∑n

i=1

∑n
j=1,j 	=i E

[
ξn,iξn,jKhλ,ij

]

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.4)

We make the following assumption concerning the local power
of our test.

Assumption A5. (i) δn

(
xc, xd

)
is continuously dif-

ferentiable wrt its continuous argument xc such that∫
σ̄ 2

n (x) δ2
n (x) f̄ 2

n (x) dx < ∞ and limn→∞
∫

δ2
n (x) f̄ 2

n (x) dx

exists and is positive. (ii) R ≡ limn→∞ Rn exists. (iii) Rx̄,δ ≡
limn→∞ Rn,x̄,δ and Rξ,δ ≡ limn→∞ Rn,ξ,δ exist.

Under Assumptions A1–A3, we can easily argue that Rn,

Rn,x̄,δ, and Rn,ξ,δ are all bounded. Hence, it is reasonable to
assume their limits exist in A5(ii)–(iii). We give explicit expres-
sions for these limiting objects in the supplementary appendix
(Appendix C.5).

Write Bn = (B′
n1,Bn2)′ and B = (B′

1,B2)′, where Bn1 and
B1 are (p + 1) × 1 vectors. The following theorem states that
our test can distinguish local alternatives H1 (αn) at rate αn =
n−1/2

(
�

pc

l=1hl

)−1/4
.

Theorem 2. Suppose that Assumptions A1–A3, A4∗, and
A5 hold. Then under H1 (αn) with αn = n−1/2

(
�

pc

l=1hl

)−1/4
,

Tn ≡ n
(
�

pc

l=1hl

)1/2
Jn/̂Sn

d→ N (
/S, 1) , where 
 ≡ limn→∞∫
δ2
n (x) f̄ 2

n (x) dx + B′RB − 2B′
1Rx̄,δ − 2B2Rξ,δ .

Theorem 2 indicates that our test has power to detect lo-
cal alternatives that converge to the null at the rate αn =
n−1/2

(
�

pc

l=1hl

)−1/4
and this rate only depends on the dimen-

sion (pc) of the continuous regressor and the corresponding
bandwidths (hl’s). Here we implicitly assume that pc ≥ 1. In
the special case of pc = 0, it is easy to argue that our test has
power to detect local alternatives that converge to the null at the
n−1/2-rate but the asymptotic variance (S2) of nJn would have
a much more complicated form than the one given in Theorem
1. In this case, the proof of Lemma B.1 in the appendix breaks
down because one cannot apply the central limit theorem of
de Jong (1987). Instead, it is well known from the U-statistics
literature that Tn is no longer asymptotically pivotal under the
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null and it has an asymptotic mixture χ2 distribution under the
null and local alternatives.

Let 
 = 
1 + 
2, where 
1 ≡ limn→∞
∫

δ2
n (x) f̄ 2

n (x) dx

and 
2 ≡ B′RB − 2B′
1Rx,δ − 2B2Rξ,δ. Then, 
1 is present no

matter whether we need to estimate the parameter θ0
n in the

model or not, whereas 
2 reflects the local power due to the
estimation error.

3.4 Global Power

To study the global power property of our test, we take αn = 1
in ( 3.1) and study the asymptotic property of the test under the
global alternative H1 (1) , or H1 in short. Note that under H1

there does not exist βn = (βn0, β
′
n1)′ such that we can write

mn (x) = βn0 + β ′
n1x for almost everywhere x on the support of

xn,i .

We need to replace Assumption 4∗ by the following assump-
tion for the estimator θ̂n.

Assumption 4∗∗. There exists an Op (1) object θ
†
n such that

θ̂n − θ
†
n = op (1) .

Assumption 4∗∗ is weak and it essentially requires θ̂n to be
OP (1) . In the supplementary appendix, we show that the 2SLS
estimator θ̂2SLS meets the above condition, and

θ̂2SLS − θ †
n = Op(n−1/2), (3.5)

where θ
†
n = θ

‡
n + B̄, θ

‡
n = (β‡

n, ρ
0
n), and β

‡
n =

(X̄′
nX̄n)−1X̄′

nmn(Xn) = Op (1). Since the last element of
B̄ is generally nonzero, this implies that the 2SLS estimator
of the spatial parameter ρn is generally biased under H1. In
the supplementary appendix, we give the expression of B̄ and
verify Assumption 4∗∗ for Lee’s QMLE.

Write θ
†
n = (β†′

n , ρ
†
n)′ = (β†

n0, β
†′
n1, ρ

†
n)′. We redefine δn(x) =

mn(x) − β
†
n0 − β

†′
n1x. Apparently, δn(x) is a nonconstant func-

tion of x under H1. Our test will be operational pro-
vided δn(Xn) and WnYn are not asymptotically multicollinear
in the sense there exists a constant cδ > 0 such that
plimn→∞ infγ n−1‖δn(Xn) − γWnYn‖2

Kn
≥ cδ, where ‖A‖2

C =
A′CA and Kn = {n−1Khλ,ij }. A sufficient condition for the
last inequality to hold is that there does not exist (βn, ρn) ∈
R

p+1 × R such that

mn (Xn) + ρ0
nWnYn = X̄nβn + ρnWnYn + en

with plimn→∞ n−1 ‖en‖2
Kn

= 0. That is, we cannot approximate
mn (Xn) + ρ0

nWnYn by an affine function of Xn and WnYn with
an asymptotically negligible error term.

The following theorem establishes the consistency of Tn.

Theorem 3. Suppose that Assumptions A1–A3, A4∗∗, and A5
hold. Suppose that plimn→∞ infr n−1 ‖δn(Xn) − γWnYn‖2

Kn
≥

cδ > 0. Then under H1, P (Tn > cn) → 1 as n → ∞ for any

nonstochastic sequence cn with cn = o(n
(
�

pc

l=1hl

)1/2
).

Theorem 3 implies that Tn diverges to infinity at the rate
n
(
�

pc

l=1hl

)1/2
under the global alternative and thus our test has

power to detect any global alternatives.

4. A BOOTSTRAP VERSION OF THE TEST

It is well known that nonparametric tests based on asymp-
totic distributions may perform poorly in finite samples. An
alternative approach is to use the bootstrap approximation. In
this section, we propose and analyze a wild bootstrap version of
our test, following the spirit of Härdle and Mammen (1993).

We construct the bootstrap version of the test statistic Tn :

T ∗
n =

(
�

pc

l=1hl

)1/2

n̂S∗
n

n∑
i=1

n∑
j=1,j 	=i

v̂∗
n,i v̂

∗
n,jKhλ,ij , (4.1)

where v̂∗
n,i’s are bootstrap residuals and

Ŝ
∗
n =

⎧⎨⎩n−2
(
�

pc

l=1hl

) n∑
i=1

n∑
j=1,j 	=i

v̂∗2
n,i v̂

∗2
n,jK

2
hλ,ij

⎫⎬⎭
1/2

. (4.2)

To construct T ∗
n , first we generate the wild bootstrap error

v∗
n,i = v̂n,iηi , where ηi’s are iid, independent of the process{
yn,i , xn,i

}
, and satisfy the conditions: E (ηi) = 0, E

(
η2

i

) = 1,

and μη4 ≡ E
(
η4

i

)
< ∞. There are many ways to obtain such

a sequence {ηi} . In our simulation, we draw them indepen-
dently from a distribution with masses c = 1+√

5
2
√

5
and 1 − c

at the points 1−√
5

2 and 1+√
5

2 , respectively. Hence, the wild
bootstrap draws each v∗

n,i from a distribution with mean zero
and variance v̂2

n,i conditional on the data. Second, we generate
the bootstrap resample Y ∗

n by Y ∗
n = (In − ρ̂nWn)+ (X̄nβ̂n + v∗

n),
where (·)+ denotes the Moore–Penrose generalized inverse, and
have θ̂∗

n as the estimator of θ̂n based on the bootstrap resam-
ple {Y ∗

n ,Xn}. For simplicity, we focus on the 2SLS estimator:

θ̂∗
n = (X̃∗′

n PZn
X̃∗

n

)−1
X̃∗′

n PZn
Y ∗

n , where PZn
is the same as Sec-

tion 3.3 and X̃∗
n = (X̄n,WnY

∗
n ). Then, we obtain the bootstrap

residual V̂ ∗
n = Y ∗

n − X̃∗
nθ̂

∗
n to construct our T ∗

n .
This procedure is repeated B times to obtain the sequence

{T ∗
n,j }Bj=1. We reject the null when p∗ = B−1∑B

j=1 1(Tn ≤ T ∗
n,j )

is smaller than the given level of significance.
For the asymptotic validity of the bootstrap method, we add

the following assumption.

Assumption A6. (i) There exists a nonrandom vec-

tor θ̄n ≡ (β̄ ′
n, ρ̄n)′ such that θ̂n − θ̄n

p→ 0, supn |ρ̄n| <

ρ∗, supn

∥∥ρ∗W ′
n

∥∥
1 < 1, supn

∥∥S−1
n (ρ̄n)

∥∥
1 < ∞, and

supn

∥∥S−1
n (ρ̄n)′

∥∥
1 < ∞; (ii) limn→∞ n−1Z′

nZn exists and
is nonsingular; (iii) limn→∞(n−1Z′

nX̄n, n−1Z′
nḠnX̄nβ̄n) exists

and is of full rank; (iv) There exist a constant cm < ∞ such that
supi,n E

∣∣mn

(
xn,i

)∣∣4 < cm.

If the linear SAR model is correctly specified or approx-
imately correctly specified (i.e., αn → 0 under H1 (αn)), As-
sumption A6(i) is implied by A4 or A4∗ with θ̄n = θ0

n . In
the case of misspecification, A6(i) mainly requires that θ̂n

should converge to some nonrandom object θ̄n in the sense
that θ̂n − θ̄n = op (1) . To relate this to A4∗∗, we can simply
choose θ̄n = θ

‡
n + B̄. A6(ii) is standard in the IV estimation of

SAR models. A6(iii) requires that limn→∞ n−1Z′
nX̄n be of full

rank, limn→∞ n−1Z′
nḠnX̄nβ̄n 	= 0, and the latter limit be lin-

early independent of the former one. So it rules out the case
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where β̄n = 0 or Z′
nX̄n and Z′

nḠnX̄nβ̄n are asymptotically mul-
ticollinear. A6(iv) imposes some moment conditions.

Theorem 4. Suppose Assumptions A1–A3, A5, and A6 hold.

Then, conditional on the original sample, T ∗
n

d→ N (0, 1) .

Theorem 4 implies that T ∗
n

d→ N (0, 1) unconditionally no
matter whether the null hypothesis holds or not for the original
sample. On one hand, under H0, both Tn and T ∗

n converge in
distribution to N (0, 1) . For this reason, a test based on the
bootstrap p-value would yield the correct asymptotic level for
Tn. On the other hand, under H1, Tn diverges to infinity in
probability by Theorem 3 whereas Theorem 4 ensures that T ∗

n
d→ N (0, 1) unconditionally. It follows that the test based upon

the bootstrap p-value is consistent against all global alternatives.
Therefore, the wild bootstrap test is asymptotically valid.

5. MONTE CARLO SIMULATIONS

We now examine the finite sample performance of our test
using Monte Carlo experiments.

5.1 Test With Continuous Regressors Only

To study the size behavior of our test, we generate the null
models as:

DGP 1: Yn = 1n + Xn1 + 0.5WnYn + Un,

DGP 2: Yn = 1n + Xn1 + Xn2 + 0.5WnYn + Un,

where Xn1 = (xn,11, . . . , xn,1n

)′
, Xn2 = (xn,21, . . . , xn,2n

)′
,

xn,1i’s are iid and each is equal to the sum of 48 indepen-
dent random variables each uniformly distributed on [−0.25,
0.25], and xn,2i’s are iid U (−2, 2). According to the cen-
tral limit theorem, we can treat xn,1i as being nearly a nor-
mal random variable with truncated support on [−12, 12].
For the error term, we generate un,i’s in two ways: (a) un,i’s

are iid N (0, 1) ; (b) un,i =
√

0.5(1 + x2
n,1i)εn,i in DGP 1 and

un,i =
√

0.5(1 + x2
n,1i + x2

n,2i)εn,i in DGP 2, where εn,i’s are iid

N (0, 1) . Clearly, the error terms are homoscedastic in case (a)
and heteroscedastic in case (b).

To study the power behavior of our test, we generate the
alternative models as:

DGP 3: Yn = 1n + Xn1 + 0.5WnYn + 0.5X2
n1 + Un,

DGP 4: Yn = 1n + Xn1 + 0.5WnYn + 0.5 exp (Xn1) + Un,

DGP 5: Yn = 1n + Xn1 + Xn2 + 0.5WnYn + 0.5X2
n1 + Un,

DGP 6: Yn = 1n + Xn1 + Xn2 + 0.5WnYn + 0.5 exp (Xn2)
+ Un.

To implement our test, we choose either the Gaussian kernel
or the product of Gaussian kernels. As it is difficult to specify
the optimal smoothing parameters in the framework of hypoth-
esis testing, one natural choice of h = (h1, . . . , hpc

)
(pc = 1 or

2 here) is to follow Silverman’s normal reference rule of thumb
(ROT) and set hi = sXni

n−1/(pc+4), where sXni
is the sample stan-

dard deviation of Xni. Alternatively, one can consider choosing
h by minimizing some LSCV function.

Recently, Su (2012) proposed a nonparametric
GMM estimation of the semiparametric SAR mod-
els of the form Yn = ρ0

nWnYn + m (Xn) + Un, where
m (Xn) = (m (xn,1

)
, . . . , m

(
xn,n

))′
, the functional form

of m (·) is unknown, and xn,i can contain both continuous and
discrete regressors. His estimator ρ̃n of ρn is easy to implement
due to the closed form expression. Su shows that

√
n(ρ̃n − ρ0

n)
is asymptotically normally distributed under some regularity
conditions. This implies that we can conduct the LSCV by
regressing Ỹn = Yn − ρ̃nWnYn on Xn. Let m̂−i

(
xn,i

)
be the

leave-one-out local constant estimator of m
(
xn,i

)
by leaving

the observation
(
xn,i , ỹn,i

)
out in the estimation procedure and

by using the smoothing parameters (h, λ) . We can choose
(h, λ) to minimize the LSCV objective function

CV (h, λ) = n−1
n∑

i=1

[
ỹn,i − m̂−i

(
xn,i

)]2
w
(
xc

n,i

)
,

where w(xc
n,i) is a nonnegative weight function that has compact

support. The use of a compactly supported weight function can
mitigate the boundary bias problems and ensures that CV (h, λ)
is well behaved asymptotically. We follow the nonparametric
literature and set w(xc

n,i) = �
pc

s=11(
∣∣xc

n,s − x̄c
s

∣∣ ≤ 2sXc
ni

), where
x̄c

s is the sample mean of Xc
ns.

To check the robustness of our tests regarding different spa-
tial weights, we construct two sets of Wn’s. The first set is
like Su and Yang (2015): we generate the spatial weights ac-
cording to Rook contiguity, by randomly allocating the n spa-
tial units on a lattice of 5 × n

5 squares with n =50, 100, and
200, finding the neighbors for each unit, and row normalizing.
The second set is like Case (1991) used in Lee (2004): we set
Wn= I 30⊗(1/(m − 1))(lml′m−Im) and consider m = 3, 5, and
10. In all cases, we consider 1000 Monte Carlo replications and
200 bootstrap replications. We report the rejection frequencies
of tests based on the asymptotic result and the bootstrap result.

Table 1 reports the empirical rejection frequencies when nom-
inal levels are given by 0.01, 0.05, and 0.10. To see how the
bootstrap test improves the small sample behaviors, for each
parameter configuration, we have two sets of results: the first
row of each quadrant is from the bootstrap test and the second
row is from the asymptotic test. These results are based on the
LSCV bandwidths. Results from Silverman’s ROT smoothing
parameters tend to have smaller empirical sizes, but other pat-
terns are similar. We summarize some important findings from
Table 1. First, we see that for both DGP 1 and DGP 2 with ei-
ther homoscedastic or heteroscedastic errors, our bootstrap test
is moderately oversized while the asymptotic test tends to be
undersized. The sizes of both types of tests improve generally
as the sample size increases. Second, both bootstrap and asymp-
totic tests are powerful in detecting any deviations from linearity
in DGPs 3–6. The power is reasonably high for sample sizes as
small as n =100. Note that the power for the heteroscedas-
ticity case is smaller than that for the homoscedasticity case.
This is expected because in the presence of heteroscedasticity
in DGPs 3–6, the signal/noise ratio is smaller than the case of
homoscedasticity. In general, the larger the signal-to-noise ratio,
the easier to detect any deviations from the null models, hold-
ing everything else fixed. These patterns are robust to different
choices of spatial weight matrices.
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Su and Qu: Specification Test for Spatial Autoregressive Models 579

Table 1. Empirical rejection frequency for DGPs 1–6

Rook contiguity Wn Wn= I 30⊗(1/(m − 1))(lml′m−Im)

Homoscedasticity Heteroscedasticity Homoscedasticity Heteroscedasticity

DGP 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

n = 50 m = 3 (n = 90)
1 0.013 0.069 0.140 0.024 0.076 0.136 0.025 0.082 0.154 0.025 0.093 0.164

0.005 0.021 0.039 0.018 0.036 0.057 0.008 0.028 0.055 0.020 0.055 0.088
2 0.024 0.073 0.146 0.026 0.088 0.160 0.039 0.101 0.162 0.036 0.098 0.180

0.006 0.026 0.052 0.012 0.040 0.061 0.009 0.037 0.066 0.017 0.047 0.081
3 0.419 0.672 0.791 0.464 0.674 0.787 0.807 0.925 0.967 0.794 0.929 0.967

0.344 0.515 0.611 0.450 0.596 0.670 0.803 0.889 0.925 0.871 0.921 0.948
4 0.188 0.381 0.493 0.197 0.389 0.507 0.444 0.672 0.783 0.458 0.674 0.773

0.191 0.303 0.389 0.264 0.388 0.452 0.467 0.601 0.690 0.565 0.687 0.745
5 0.277 0.509 0.645 0.199 0.400 0.527 0.663 0.841 0.903 0.470 0.697 0.793

0.194 0.333 0.424 0.125 0.245 0.333 0.567 0.755 0.814 0.403 0.571 0.662
6 0.177 0.412 0.540 0.136 0.325 0.452 0.475 0.655 0.774 0.330 0.536 0.657

0.099 0.208 0.305 0.064 0.155 0.231 0.311 0.495 0.590 0.198 0.366 0.466
n = 100 m = 5(n = 150)

1 0.035 0.077 0.136 0.025 0.077 0.130 0.021 0.079 0.141 0.022 0.070 0.136
0.016 0.035 0.041 0.017 0.040 0.070 0.009 0.031 0.053 0.019 0.041 0.064

2 0.021 0.085 0.147 0.029 0.090 0.166 0.024 0.083 0.164 0.024 0.091 0.175
0.005 0.023 0.047 0.015 0.045 0.064 0.006 0.022 0.050 0.007 0.034 0.066

3 0.860 0.951 0.974 0.848 0.941 0.974 0.981 0.994 0.997 0.975 0.996 0.998
0.845 0.912 0.945 0.887 0.935 0.957 0.978 0.993 0.995 0.990 0.996 0.998

4 0.486 0.706 0.809 0.492 0.690 0.796 0.725 0.884 0.943 0.714 0.868 0.931
0.500 0.645 0.719 0.586 0.706 0.763 0.738 0.830 0.888 0.792 0.878 0.917

5 0.692 0.876 0.933 0.490 0.706 0.811 0.923 0.978 0.991 0.753 0.904 0.948
0.605 0.782 0.859 0.412 0.578 0.680 0.897 0.954 0.976 0.704 0.836 0.884

6 0.491 0.705 0.800 0.327 0.538 0.672 0.749 0.878 0.938 0.535 0.735 0.817
0.331 0.507 0.622 0.214 0.353 0.452 0.634 0.788 0.842 0.398 0.583 0.692

n = 200 m = 10(n = 300)
1 0.029 0.070 0.133 0.024 0.071 0.133 0.026 0.072 0.120 0.020 0.062 0.124

0.015 0.029 0.051 0.021 0.055 0.076 0.012 0.026 0.038 0.019 0.038 0.068
2 0.026 0.075 0.158 0.029 0.079 0.156 0.025 0.077 0.143 0.022 0.078 0.156

0.009 0.026 0.057 0.010 0.036 0.077 0.010 0.027 0.051 0.010 0.036 0.073
3 0.997 0.999 1 0.996 0.998 0.999 1 1 1 1 1 1

0.998 0.999 0.999 0.998 0.999 0.999 1 1 1 1 1 1
4 0.866 0.959 0.980 0.864 0.940 0.974 0.976 0.994 0.998 0.975 0.991 0.995

0.883 0.943 0.963 0.923 0.957 0.978 0.979 0.991 0.996 0.988 0.994 0.994
5 0.979 0.996 0.999 0.900 0.970 0.982 1 1 1 0.983 0.997 0.999

0.972 0.987 0.995 0.873 0.946 0.972 1 1 1 0.983 0.995 0.998
6 0.893 0.959 0.976 0.700 0.861 0.916 0.982 0.993 0.998 0.891 0.957 0.984

0.829 0.917 0.947 0.598 0.758 0.837 0.970 0.988 0.995 0.826 0.923 0.955

5.2 Test With Both Continuous and Discrete
Regressors

In this subsection, we examine how our test behaves in fi-
nite samples when both continuous and discrete regressors are
present in the regression. The null models are

DGP m1: Yn = 1n + Xd
n1 + Xd

n2 + Xc
n1 + 0.5WnYn + Un,

DGP m2: Yn = 1n + Xd
n1 + Xd

n2 + Xc
n1 + Xc

n2 + 0.5WnYn +
Un,where Xc

n1 and Xc
n2 are generated in the same way as

Xn1 and Xn2 were generated in DGP 2, Un ∼ N (0, In) , and
for t = 1, 2, Xd

nt = (xd
n,t1, . . . , x

d
n,tn

)′
, P (xd

n,t1 = l) = 0.5
for l = 0, 1.

We consider four alternative models:

DGP m3: Yn = 1n + Xd
n1 + Xd

n2 + Xc
n1 + 0.5WnYn + Xc2

n1
+ Un,

DGP m4: Yn = 1n + Xd
n1 + Xd

n2 + Xc
n1 + 0.5WnYn

+ Xd
n1X

c
n1 + Xd

n2X
c2
n1 + Un,

DGP m5: Yn = 1n + Xd
n1 + Xd

n2 + Xc
n1 + Xc

n2 + 0.5WnYn

+ Xc2
n1 + Un,

DGP m6: Yn = 1n + Xd
n1 + Xd

n2 + Xc
n1 + Xc

n2 + 0.5WnYn

+ Xd
n1 cos

(
πXc

n1

)+ Xd
n2 sin(πXc

n2) + Un.

For our alternatives, DGPs m3 and m5 deviate from the null
in extra squared terms of the exogenous regressor Xc

n1; DGP
m4 has additional interaction terms between discrete and con-
tinuous regressors; DGP m6 uses the trigonometric function
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Table 2. Empirical rejection frequency for DGPs m1–m6 under Rook contiguity weight

(i) LSCV h, λ (ii) LSCV h, λ = 0 (iii) ROT h, λ = 0 (iv) ROT h, λ

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

n = 50
m1 0.011 0.031 0.065 0.006 0.027 0.054 0.004 0.017 0.035 0.003 0.015 0.031

0.009 0.020 0.028 0.003 0.011 0.017 0.001 0.006 0.009 0 0.002 0.008
m2 0.014 0.055 0.097 0.008 0.035 0.071 0.005 0.03 0.056 0.02 0.026 0.053

0.007 0.034 0.062 0.003 0.014 0.036 0.002 0.007 0.023 0 0.004 0.015
m3 0.460 0.666 0.747 0.332 0.567 0.677 0.345 0.561 0.671 0.402 0.616 0.715

0.762 0.876 0.925 0.521 0.729 0.814 0.544 0.741 0.827 0.687 0.833 0.886
m4 0.349 0.539 0.664 0.306 0.527 0.645 0.325 0.519 0.638 0.324 0.529 0.650

0.390 0.594 0.681 0.366 0.554 0.647 0.368 0.548 0.635 0.391 0.572 0.655
m5 0.416 0.626 0.733 0.267 0.474 0.590 0.217 0.434 0.560 0.336 0.549 0.652

0.568 0.753 0.842 0.299 0.540 0.668 0.265 0.480 0.617 0.425 0.658 0.754
m6 0.090 0.230 0.340 0.035 0.114 0.201 0.026 0.072 0.136 0.021 0.079 0.152

0.045 0.170 0.281 0.013 0.076 0.139 0.004 0.031 0.067 0.003 0.026 0.064
n = 100

m1 0.006 0.037 0.071 0.008 0.04 0.073 0.005 0.026 0.059 0.005 0.025 0.044
0.003 0.018 0.032 0.001 0.017 0.028 0 0.011 0.020 0 0.005 0.015

m2 0.013 0.064 0.117 0.012 0.044 0.086 0.004 0.038 0.067 0.006 0.035 0.068
0.005 0.024 0.049 0.004 0.013 0.032 0.003 0.008 0.022 0.001 0.008 0.019

m3 0.845 0.923 0.948 0.824 0.920 0.940 0.809 0.907 0.939 0.826 0.908 0.944
0.990 0.998 1 0.982 0.992 0.996 0.982 0.993 0.997 0.990 0.997 0.998

m4 0.844 0.931 0.972 0.835 0.943 0.968 0.839 0.938 0.970 0.839 0.932 0.971
0.906 0.951 0.972 0.903 0.949 0.968 0.910 0.949 0.967 0.913 0.953 0.970

m5 0.882 0.953 0.974 0.839 0.930 0.960 0.799 0.916 0.955 0.860 0.931 0.964
0.981 0.992 0.996 0.941 0.975 0.983 0.917 0.966 0.982 0.970 0.983 0.989

m6 0.373 0.612 0.735 0.228 0.466 0.568 0.143 0.365 0.500 0.180 0.400 0.554
0.295 0.528 0.649 0.149 0.352 0.460 0.078 0.243 0.367 0.095 0.268 0.388

n = 200
m1 0.012 0.044 0.081 0.014 0.044 0.085 0.005 0.034 0.071 0.005 0.032 0.064

0.002 0.014 0.033 0.004 0.016 0.036 0.002 0.012 0.026 0.001 0.006 0.017
m2 0.017 0.062 0.109 0.016 0.050 0.096 0.009 0.036 0.073 0.013 0.035 0.072

0.004 0.027 0.049 0.003 0.020 0.038 0.003 0.014 0.028 0.002 0.013 0.024
m3 0.988 0.996 0.998 0.988 0.997 0.998 0.988 0.995 0.998 0.989 0.996 0.998

1 1 1 1 1 1 1 1 1 1 1 1
m4 1 1 1 1 1 1 0.998 1 1 0.997 1 1

1 1 1 1 1 1 1 1 1 1 1 1
m5 0.997 0.999 0.999 0.998 0.999 0.999 0.995 0.999 0.999 0.996 0.999 0.999

1 1 1 1 1 1 1 1 1 1 1 1
m6 0.916 0.973 0.988 0.823 0.937 0.965 0.795 0.917 0.964 0.831 0.943 0.978

0.877 0.964 0.979 0.784 0.892 0.944 0.722 0.868 0.931 0.767 0.905 0.947

as in Lavergne (2001) and Hsiao, Li, and Racine (2007). This
functional form is unusual in economic settings despite its wide
use in the statistics literature.

We compare the size and power performances of our boot-
strap (first row of each quadrant) and asymptotic (second row
of each quadrant) tests for four different choices of smooth-
ing parameters: (i) the proposed LSCV smoothing parameters
(h, λ); (ii) h is chosen by the usual LSCV method and λ = 0;
(iii) Silverman’s ROT h and λ = 0; (iv) Silverman’s ROT h and
λ is also chosen by some rule of thumb: λs = sXd

ns
n−2/(pc+4),

where sXd
ns

is the sample standard deviation of Xd
ns. Note that

tests based on (ii) and (iii) are frequency-based tests and are
expected to be less powerful than those based on (i) and (iv),
respectively.

Tables 2 and 3 report the empirical rejection frequencies of
our test by using the above four different sets of smoothing

parameters under the Rook contiguity Wn and Case’s Wn, re-
spectively. We now summarize some important findings. First,
in all cases, the test based upon the LSCV choices of both h and
λ performs best in terms of size precision and power. Further-
more, one can see that the test based upon (i) is more powerful
than that based upon (ii) across all cases under our investigation.
Similarly, the test based upon (iv) is more powerful than that
based upon (iii). In short, smoothing the discrete regressors helps
improving the power of the test, and the largest improvement
occurs in DGP m6 that has the unusual trigonometric function.
In addition, as Hall, Li, and Racine (2007) had shown, LSCV
helps to smooth out irrelevant regressors asymptotically as the
LSCV-based smoothing parameters for the irrelevant compo-
nents converge in probability to the upper extremities of their
respective ranges. Second, the power increases as the sample
size increases in all cases. Compared to the Rook contiguity
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Su and Qu: Specification Test for Spatial Autoregressive Models 581

Table 3. Empirical rejection frequency for DGPs m1–m6 under Case’s weight

(i) LSCV h, λ (ii) LSCV h, λ = 0 (iii) ROT h, λ = 0 (iv) ROT h, λ

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

m = 3
m1 0.018 0.055 0.099 0.015 0.048 0.089 0.011 0.038 0.077 0.008 0.029 0.073

0.006 0.024 0.037 0.005 0.018 0.027 0.004 0.015 0.021 0 0.011 0.018
m2 0.017 0.066 0.112 0.015 0.056 0.106 0.012 0.039 0.086 0.007 0.034 0.077

0.003 0.024 0.051 0.005 0.021 0.034 0.003 0.013 0.031 0.002 0.008 0.021
m3 0.975 0.997 0.998 0.964 0.988 0.998 0.963 0.989 0.998 0.978 0.995 0.998

0.990 0.995 0.998 0.974 0.994 0.996 0.978 0.994 0.996 0.992 0.996 0.998
m4 0.894 0.960 0.978 0.878 0.964 0.980 0.890 0.963 0.976 0.906 0.965 0.985

0.860 0.939 0.964 0.858 0.934 0.964 0.863 0.935 0.962 0.877 0.943 0.969
m5 0.959 0.991 0.996 0.896 0.975 0.983 0.858 0.945 0.980 0.925 0.980 0.992

0.970 0.994 0.996 0.891 0.969 0.984 0.835 0.940 0.974 0.928 0.984 0.988
m6 0.372 0.565 0.682 0.235 0.403 0.492 0.151 0.330 0.454 0.172 0.364 0.498

0.231 0.440 0.563 0.124 0.259 0.363 0.056 0.175 0.278 0.065 0.190 0.304
m = 5

m1 0.009 0.036 0.070 0.009 0.043 0.075 0.006 0.028 0.060 0.005 0.023 0.061
0.002 0.013 0.029 0.001 0.011 0.025 0 0.004 0.012 0 0.003 0.010

m2 0.017 0.045 0.097 0.011 0.037 0.075 0.013 0.033 0.059 0.009 0.027 0.057
0.005 0.021 0.038 0.005 0.014 0.030 0.002 0.011 0.020 0.002 0.010 0.016

m3 1 1 1 1 1 1 0.999 1 1 0.998 1 1
1 1 1 1 1 1 1 1 1 1 1 1

m4 0.995 1 1 0.993 0.999 1 0.995 1 1 0.995 1 1
0.997 1 1 0.996 1 1 0.996 1 1 0.997 1 1

m5 1 1 1 0.999 1 1 0.998 0.999 1 1 1 1
1 1 1 1 1 1 0.996 1 1 1 1 1

m6 0.730 0.879 0.927 0.576 0.767 0.850 0.489 0.735 0.833 0.557 0.784 0.862
0.644 0.809 0.870 0.472 0.663 0.756 0.357 0.579 0.718 0.414 0.636 0.759

m = 10
m1 0.006 0.040 0.080 0.008 0.040 0.079 0.007 0.034 0.067 0.007 0.032 0.060

0.002 0.012 0.029 0.001 0.011 0.029 0.001 0.007 0.023 0.001 0.008 0.018
m2 0.024 0.053 0.110 0.015 0.055 0.095 0.015 0.038 0.077 0.017 0.038 0.072

0.009 0.030 0.046 0.007 0.026 0.043 0.006 0.022 0.034 0.005 0.018 0.034
m3 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
m4 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
m5 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
m6 0.998 0.999 0.999 0.993 0.999 0.999 0.988 0.999 0.999 0.992 0.998 0.999

0.997 0.999 1 0.990 0.996 0.999 0.986 0.996 0.999 0.988 0.999 1

Wn, powers are larger when Case’s Wn is adopted due to the
more sparse spatial weight matrices. Third, these patterns are
robust for both the bootstrap and asymptotic tests. The asymp-
totic tests tend to be undersized while the bootstrap tests greatly
improve the size performances.

6. EMPIRICAL APPLICATION

In this section, we consider two empirical examples by using
the specification test presented in previous sections.

6.1 Vote Cast Example

The first example is the study on votes cast. Voting rate is an
important indicator of how the elected government or president
represents the will of people. As we see from the famous map

describing people’s distribution of republicans and democrats in
the United States, their location is spatially clustered. However,
including unit level attributes (state or individual level) in the
traditional regression cannot remove this correlation. Therefore,
more and more spatial econometrics models have been adopted
in modeling election behavior. For example, Kim, Elliott, and
Wang (2003) used the U.S. county-level presidential election
outcomes from 1988 to 2000 to identify spatial patterns of vot-
ing behavior. Shin and Agnew (2007) introduced the spatial
analysis of Moran’s I statistic to investigate the geographical
dynamics of Italian electoral change from 1987 to 1994. Soares
and Terron (2008) adopted an SAR model to study the vot-
ing of Lula in Brazil in 2006. All these studies are based on
linear spatial models, so we want to test the model specifica-
tion using the vote cast dataset from Pace and Barry (1997).
In total, there are 3111 counties (or their equivalents) in the
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Table 4. The estimates and test statistics of the linear SAR model for the vote data

Regression based on the log-ratio specification Regression based on the ratio specification

Variable Coeff. estimate p-Value Variable Coeff. estimate p-Value

Constant 0.7675 <0.001 Constant −0.1006 <0.001
ln(Edu/Pop) 0.1520 <0.001 Edu/Pop 0.3350 <0.001
ln(Home/Pop) 0.2098 <0.001 Home/Pop 0.7538 <0.001
ln(Income/Pop) −0.0877 <0.001 Income/Pop −0.0081 <0.001
WnYn 0.5530 <0.001 WnYn 0.5290 <0.001
Test statistic Tn 21.45 <0.001 Test statistic Tn 28.17 <0.001
Bootstrap p-value <0.002 Bootstrap p-value <0.002

continental United States (48 States, with Alaska, Hawaii, and
D.C. excluded) from the 1990 Census that recorded votes in
the 1980 presidential election. The variables in use are the to-
tal number of votes cast per county (Votes), the population in
each county of 18 years of age or older (Pop), the population
in each county with a 12th-grade or higher education (Edu),
the number of owner-occupied housing units (Home), and the
aggregate income (Income). Four counties have zero votes (La
Paz at AZ, Broomfield at CO, Yellowstone National Park at
MT, and Cibola at NM), so they are excluded and this results a
sample size of 3107. The original data can be downloaded from
http://www.census.gov/support/USACdataDownloads.html.

LeSage (1998) used this dataset to estimate the linear SAR
model:

Yn = ρ0WnYn + 1nβ
0
0 + X1nβ

0
1 + X2nβ

0
2 + X3nβ

0
3 + vn,

where the dependent variable is the voting rate Votes/Pop, the ex-
ogenous variables are log per capita education ln(Edu/Pop), log
per capita homeowner ln(Home/Pop), and log per capita income
ln(Home/Pop). The Wn is a 3107 × 3107 spatial weight matrix
based on the first-order contiguity. To check the robustness, we
also consider the specification with exogenous variables being
nominal values, not the log. Table 4 presents the results for the

MLE, the asymptotic test, and the bootstrap test based on 500
resamples.

For both specifications of exogenous regressors, all the co-
efficients are highly significant, giving strong support to the
parametric model. However, when we choose the Gaussian ker-
nel and use the LSCV bandwidth h to apply our test, the linear
SAR model is rejected at 1% level using either the bootstrap
p-value or the asymptotic p-value. This lends strong support to
nonlinearity in the SAR model despite the fact such a result may
not necessarily be economically interpretable.

6.2 Economic Growth Example

The second example is the study of economic growth rate
from Ertur and Koch (2007). Knowledge accumulated in one
area might depend on knowledge accumulated in other areas,
especially in its neighborhoods, implying the possible exis-
tence of spatial spillover effects. Therefore, spatial econometrics
models are widely used to study the technological interdepen-
dence. For example, Autant-Bernard and LeSage (2011) em-
pirically examined spatial spillovers associated with public and
private research expenditures in own- and other-industry sec-
tors for a sample of 94 French regions. More recently, with the

Table 5. The estimates and test statistics of the linear SAR model for the growth data

Variable W1n with w∗
ij,n = d−2

ij for i 	= j W2n with w∗
ij,n = e−2dij for i 	= j

Coeff. estimate p-Value Coeff. estimate p-Value

Constant 0.9699 0.608 0.4801 0.798
ln (s) 0.8245 <0.001 0.7914 <0.001
ln (np+0.05) −1.4978 0.008 −1.4505 0.009
Wn ln (s) −0.3257 0.075 −0.3813 0.020
Wn ln (np+0.05) 0.5738 0.498 0.1431 0.856
Wn ln (y) 0.7420 < 0.001 0.6630 <0.001
Test statistic Tn −0.672 0.749 −0.725 0.766
Bootstrap p-value 0.664 0.560
Restricted regression
Constant 2.1089 <0.001 2.9405 <0.001
ln (s)− ln (np + 0.05) 0.8419 <0.001 0.8185 <0.001

Wn[ ln (s)− ln (np+0.05)]
−0.2740 0.122 −0.2694 0.098

Wn ln (y) 0.7360 < 0.001 0.6440 <0.001
Test statistic Tn −0.145 0.558 0.427 0.665
Bootstrap p-value 0.560 0.260

NOTE: dij denotes the great-circle distance between the capital cities of countries i and j .
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development of spatial panel data models such as Yu, de Jong,
and Lee (2008), Lee and Yu (2010), and Yu and Lee (2010),
more and more researches are based on panel data to study the
technological spillovers. For example, Rho and Moon (2014)
study the spatial dependence in China’s regional innovation us-
ing China’s province level data from 2000 to 2009. Ho, Wang,
and Yu (2013) empirically examined the international spillover
of economic growth through bilateral trade using a sample of
26 OECD countries over the period 1971–2005. Evans and Kim
(2014) studied the spatial dynamics of growth and convergence
in Korean regional incomes.

In this subsection, we want to test the cross-sectional linear
SAR model specification in Ertur and Koch (2007). Their dataset
covers a sample of 91 countries over the period 1960–1995
originally from Heston, Summers, and Aten (2002) obtained
from Penn World Tables (PWT version 6.1). Variables in use
include per worker income in 1960 (y60) and 1995 (y95),
average rate of growth between 1960 and 1995 (gy), av-
erage investment rate of this period (s), and average rate
of growth of working-age population (np). The dataset can
be downloaded from JAE Data Archive at http://qed.econ.
queensu.ca/jae/2007-v22.6/.

The spatial Durbin model (SDM) considered in Ertur and
Koch (2007) is given by

Yn = ρ0WnYn + 1nβ
0
0 + Xnβ

0 + WnXnθ
0 + vn,

where the dependent variable is log real income per worker
ln(y95) and the explanatory variables include log investment
rate ln(s) and log physical capital effective rate of depreciation
ln(np + 0.05) . The associated parameters are β0 = (β0

1 , β0
2 )′

with Xn and θ0 = (θ0
1 , θ0

2 )′ with WnXn. A restricted regression
based on the joint constraints of β1 = −β2 and θ1 = −θ2 is also
considered in Ertur and Koch (2007) and is preferred. Wn is
constructed based on dij , the great-circle distance between the
capital cities of countries i and j.

Table 5 presents the estimation and testing results based on
an SAR expression of this model that Yn = ρ0WnYn + 1nβ

0
0 +

X̃nb
0 + vn, where X̃n = [Xn, WnXn] and b0 = (β0′, θ0′)′. We

use the Gaussian kernel and the LSCV bandwidth h. Coefficients
of the restricted regression are highly significant, supporting the
SDM model. Both the asymptotic p-value and bootstrap p-value
based on 500 bootstrap resamples exceed 10%, so we cannot
reject the linear SDM specification.

7. CONCLUDING REMARKS

In this article, we propose a nonparametric test for correct
specification of linear SAR models. We establish the asymptotic
normal distributions of the test statistic under the null hypothesis
and a sequence of local alternatives, and show the consistency of
the test. To improve the finite sample performance of our test, we
advocate a residual-based wild bootstrap procedure and justify
its asymptotic validity. A small set of Monte Carlo simulations
are conducted to show the test is well behaved in finite samples.
This test is applied to two empirical applications. We reject the
linear SAR model in the vote cast example and cannot reject the
linear SDM model in the economic growth example.

Several extensions are possible. First, it is straightforward to
extend our test to the case of nonlinear or panel spatial autore-

gressive models. Second, we conjecture that one can allow for
some semiparametric specification of the SAR models and ex-
tend our test to that case. Third, it may be possible to extend our
test to the SAR models with spatial errors. Fourth, it is also im-
portant to test for the correct specification of the spatial weight
matrix by extending the important work of Pinkse, Slade, and
Brett (2002) and Sun (2014). We leave these topics for future
research.

SUPPLEMENTARY MATERIALS

The online supplementary appendix gives the proofs of the
main results in the article. It also contains some discussions on
the assumptions and claims in Section 3.
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