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Empirical Evaluation of Bug Linking

Tegawendé F. Bissyandé1, Ferdian Thung2, Shaowei Wang2, David Lo2, Lingxiao Jiang2 and Laurent Réveillère1
1LaBRI, University of Bordeaux, France

2Singapore Management University, Singapore
{bissyand,reveille}@labri.fr,{ferdianthung,shaoweiwang.2010,davidlo,lxjiang}@smu.edu.sg

Abstract—To collect software bugs found by users, develop-
ment teams often setup bug trackers using systems such as
Bugzilla. Developers would then fix some of the bugs and com-
mit corresponding code changes into version control systems
such as svn or git. Unfortunately, the links between bug reports
and code changes are missing for many software projects as the
bug tracking and version control systems are often maintained
separately. Yet, linking bug reports to fix commits is important
as it could shed light into the nature of bug fixing processes
and expose patterns in software management.

Bug linking solutions, such as ReLink, have been proposed.
The demonstration of their effectiveness however faces a
number of issues, including a reliability issue with their ground
truth datasets as well as the extent of their measurements.

We propose in this study a benchmark for evaluating bug
linking solutions. This benchmark includes a dataset of about
12,000 bug links from 10 programs. These true links between
bug reports and their fixes have been provided during bug
fixing processes. We designed a number of research questions,
to assess both quantitatively and qualitatively the effectiveness
of a bug linking tool. Finally, we apply this benchmark on
ReLink to report the strengths and limitations of this bug
linking tool.

I. INTRODUCTION

Software bugs greatly affect system reliability and as
such entail significant effort to learn how to avoid them,
predict them, and fix them when they appear. Work on
software maintenance [1]–[3] and evolution [4]–[6] often
require information on both the bugs that are reported and
the fixes that developers applied. Such valuable information
is available in bug tracking systems such as Bugzilla and
version control systems such as Subversion. When analyzed
together, information from the two kinds of systems can be
used to better understand software development and main-
tenance processes, measure software cost, triage and reduce
duplicate bug reports, predict bug locations, recommend bug
fixes, and many other software engineering tasks [2], [3],
[7], [8]. Unfortunately, information from these two kinds of
systems are generally maintained separately. Links between
bug reports and bug fixes are therefore not readily available
to researchers or practitioners to analyze.

To address the problem of bug linking, a number of
solutions have been proposed. Most of the solutions that
aim to establish bug links rely on the fact that meticulous
developers, when pushing a fix into the code version control
system, always insert specific information that identifies the

corresponding bug [9]. Thus, these solutions can establish
bug links based on heuristics to match a set of indicative
keywords (e.g., Fixed, Bug) and the corresponding bug
identifiers (e.g., #1234) in code change logs with those in
bug reports [9]–[11]. Sureka et al. have used a probalistic
approach to trace such links [12]

Other research work has shown that available datasets in
both bug tracking and version control systems are actually
plagued by quality issues and require bug linking solutions
to be augmented with heuristics for verifying the correctness
of their results [13]. The Linkster tool was designed in
this respect to enable an expert developer to quickly find,
examine, and annotate relevant changes that were identified
through heuristics [14]. However it does not solve the
problem of incompleteness and bias in datasets as many
“missing” links cannot be uncovered with these heuristics.

ReLink extends previous bug linking approaches by im-
plementing an information retrieval based solution [15].
Using similarity metrics, ReLink is able to find up to
twice more links found by previous approaches. To evaluate
ReLink, however, the authors of ReLink used as the ground
truth a dataset with links that were manually labeled by
themselves and a posteriori by an Apache Web Server
developer for their Apache Web Server dataset. Several
issues are then raised by this process:

1) The collected “ground truth” is quantitatively con-
strained by the tediousness of a-posteriori manual la-
beling.

2) The data may be plagued by bias as the labelers are
not the actual bug fixers, thos who without doubt could
link a bug report with all, and only, the commits that
address it.

Furthermore, the effectiveness of ReLink has been evalu-
ated only against traditional approaches without introducing
variations in the input data, such as the quality and quantity
of training data used in their bug linking process. We under-
take to build a benchmark for evaluating the effectiveness
of bug linking tools with a dataset of 10 programs1, and we
provide a more extensive evaluation of ReLink.

To build the benchmark dataset, we investigate a set of
clean data where the links between bug reports and code
revisions that fix the bugs are well maintained. We perform a

1ReLink was originally assessed on 3 programs
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manual check to verify that links in the dataset are sound and
complete. These links are inserted by the actual developers
during their actual bug-fixing activities over a long period
of time. The benefit of using such a dataset is clear: we can
get a large number of highly accurate bug links, and with
this ground truth, we can propose various dimensions to test
the effectiveness of bug linking tools.

In addition, there are many other widely-used information
retrieval techniques besides the one used in ReLink, such
as vector space modelling (VSM), latent semantic indexing
(LSI), and latent Dirichlet allocation (LDA) (c.f. [16]);
they have been shown to be effective for many software
engineering tasks, such as software traceability [17]–[20].
Thus in this study, we adapt these existing IR techniques
for bug linking and compare them against ReLink. These
experiments are performed to gain insights on the effective-
ness of the IR technique that was used in the bug linking
tool.

We find that the ReLink tool offers good precision in
recovering links that are actually correct, but is less effective
in recovering missing links. We also found that training
data has limited impact on the results of ReLink due to
other filtering steps used by ReLink to consolidate its
outputs. Cross-project validation has shown that, overall,
training data cannot be borrowed across different projects.
Finally, our comparison between ReLink and other standard
Information Retrieval solutions shows that there is still room
for improving the effectiveness of ReLink.

The contributions of this work are as follows:
1) We provide a benchmark dataset2 of known true links

that could be used to evaluate bug linking work, and
discuss a number of research questions for assessing
the effectiveness of a bug linking tool.

2) We evaluate the effectiveness of ReLink, a recently
proposed bug linking tool, on the benchmark.

3) We compare the effectiveness of ReLink versus stan-
dard information retrieval approaches that have been
used in prior studies on software traceability.

4) We qualitatively characterize the kinds of links that
ReLink misses and others that ReLink wrongly assigns.

The structure of this paper is as follows. In Section II, we
describe bug linking and ReLink in more details. Section III
describes the dataset that we use as the benchmark. We
elaborate how we obtain and use this dataset. Section IV
details the research questions and the metrics that we use
for assessing a bug linking tool. We describe our evaluation
results in Section V. We provide a list of related studies in
Section VI. We conclude with future work in Section VII.

II. BUG LINKING

Bug linking is the process of integrating information
from bug tracking systems with information from version

2The benchmark is available at http://momentum.labri.fr/bugLinking/

control systems to map developer code changes with the
corresponding reported issues/bugs. Once extracted, such
information can be used to understand development activities
and measure software maintainability which in return can be
used to predict defects or recommend bug fixes and to help
improve software quality.

a) Excerpt of commit change log

Revision: r363 Author: srowen Date: Apr 15, 2008
Log message: Fix Issue 50 , not building on Windows, by adding some

small workarounds for Windows paths in build files for Android

b) Excerpt of issue report

Issue 50: Building Android project problems
Status: Fixed Owner:srowen Closed: Apr 2008
Reported by his. . .@gmail.com, Mar 30, 2008
When building a BarcodeReader.apk on Windows, I got the below error. . .

I attached a diff to fix the problem for android/build.xml.
Please, check and merge it if you think it is useful.

Figure 1. An example of explicit bug link in Zxing

Figure 1 shows sample code commit log and issue/bug
report that are from the Zxing project3. In this case, the
developer who committed the code voluntarily referred to
the bug report (Issue 50) that is handled by his proposed
fix. Thus, the link between the two logs are explicit. Using
heuristics for scanning change logs to match a set of
common keywords, one can easily uncover a number of such
explicit links. Previous approaches to bug linking leverage
such heuristics for mining bug links. Unfortunately, such
approaches have weaknesses:
• There are no specific formats for referring to bugs in

code change logs, which makes it impossible to exhaus-
tively and automatically uncover all explicit links. For
example, developers may insert a bug identifier as part
of a sentence (e.g., “solve problem 101”, “see #123”,
“fixed 423”) with the possibility for typos (e.g., “fic
239”) [21], or may refer to the bug as an issue (“issue
#184”), a problem report (“PR: 11312”), etc.

• Adding bug references to a change log is not manda-
tory. This leads to a situation where many commits
that fix bugs have no references to the relevant bug.
In this context, previous approaches to bug linking are
insufficient. Figure 2 shows an example of a change
log from the same Zxing project where no reference to
the bug fixed by the commit is provided.

Incompleteness and bias are therefore two main problems
with previous approaches and may impact other studies
based on the links produced. These weaknesses have been
recently addressed in a novel approach, namely ReLink,
which is a recent work on bug linking.

Bug linking with ReLink is based on an algorithm for
identifying and assessing a set of features of links in a two-

3https://code.google.com/p/zxing/
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a) Excerpt of commit change log

Revision: r154 Author: srowen Date: Jan 22, 2008
Log message: Explictly add Yes/No commands to "Open xxx" dialog

to ensure that both options show on all platforms

b) Excerpt of issue report

Issue 20: "Open xxx" dialog has only "Cancel" option
Status: Fixed Owner:srowen Closed: Feb 2008
Reported by project member srowen, Jan 22, 2008
Looks like the way the app works now, the "OK" button in dialogs
like "Open URL?" does not show up on some phones. That is bad.

Comment 1 by horvath. . . .@gmail.com, Jan 23, 2008
Hi! I have Nokia N61i and I am in the same situation! . . .

Comment 2 by project member srowen, Jan 23, 2008
This is fixed in subversion. . .

Figure 2. An example of missing link in Zxing

fold run. In the first run, ReLink relies on the explicit links
that can be uncovered with previous approaches to build a
learning base to learn about the features that characterize
bug links. In the second run, ReLink uses those features to
further recover “missing” links—links involving fix logs that
do not contain any explicit reference to their corresponding
bug reports. To select features of links, the ReLink authors
have first performed a manual analysis of some explicit links.
We briefly describe in the following the features considered
in ReLink.

Time Interval: The ReLink algorithm considers the
interval between the bug-fixing time and the change-commit
time to filter out false positives and confirm the possibility
of a link using a threshold inferred from the explicit links
that were identified by previous heuristics.

Bug owner and change committer: ReLink authors
have performed an empirical study of explicit links to
establish that, often, there exist some relationships between
change committers in software repositories and bug owners
in bug tracking systems. Indeed, they have observed that
although the person committing the bug fix is not always
the one responsible for handling the bug report, the mapping
between them could be identified, e.g. by mining bug report
comments where developers discuss the fix.

Text similarity: Finally, in ReLink, bug reports and
change logs are considered as text documents which make
them good candidates for processing with Information Re-
trieval technology to compute their similarity. Indeed, the
text of a bug-fixing commit log is often meant to explicitly
state the problem that the commit resolves, and the problem
is likely to be described and commented with the same terms
in the corresponding bug report messages.

ReLink builds upon the Vector Space Model (VSM) [22]
in which each document containing n distinct terms is
represented as a n-dimension vector. After preprocessing
of bug reports and change logs to remove common stop
words and normalization using a stemming algorithm along
with a synonym replacement phase, ReLink relies on the
Term Frequency-Inverse Document Frequency (TFIDF) met-

ric [22] to compute the weight of each unique term.

Algorithm 1: The ReLink algorithm
Input: L // set of all possibilities of links
Lr ← ∅ // Links found by ReLink;
Le ← mineLinksUsingPreviousHeuristics();
(Tt, St) ← determineTimeAndSimilarityThresholds(Le);
Mbc cc ← determineCommenterAndCommitterMappings(Le);
foreach link l in L− Le do

if (bugCommenter(l), changeCommitter(l)) ∈ Mbc cc then
if ∃t · t← bugCommentTime(l) | satisfiesThreshold(t, Tt)=True
then

lb ← bug report;
lc ← change log;
Siml ← computeTextSimilarity(lb, lc);
if satisfiesThreshold(Siml, St) then

Lr ← {Lr, l};

return Lr + Le;

Algorithm 1 presents the overall high-level description
of ReLink’s processing steps. According to this algorithm,
ReLink produces links which include explicit links mined
through previous heuristics and missing links identified
based on selected features of links.

The ReLink paper for automatic recovery of missing links
reported very good performance: the average precision rate
was 89% and the average recall was 78% for a limited
dataset containing 3 projects. However, the ReLink authors
relied on a manually labeled “ground truth” for their ex-
periments. Given the importance of bug linking, we believe
that it is necessary to more thoroughly evaluate ReLink and
assess its effectiveness on a variety of projects, a variety
of training datasets, and a variety of usage scenarios to
effectively establish its strengths and limits with regards to
bug linking.

III. BENCHMARK DATASET

Our bug linking evaluation is performed based on a
benchmark dataset collected from ten open source projects
hosted by the Apache Software Foundation4. These pro-
grams are described in Table I with the number of bug
reports considered for each program and the number of
labeled links collected. Overall, the dataset includes about
7,000 bug reports fixed by one or more commits, thus
leading to around 12,000 bug links in the dataset. Our choice
of these software systems is influenced by (1) the capabilities
of JIRA5, a commercial bug/issue tracking system used by
Apache projects, (2) the maturity of the projects, (3) the
diverse application domains of the projects, and (4) the
different programming languages used in the programs.

JIRA has various features that make it a desirable toolkit
for dealing with bug reports. For example, as a voting-
based system, JIRA is often relied upon for effectively
prioritizing important issues (e.g., the ones that interest users
the most) [23]. Another feature of JIRA is that it provides

4http://www.apache.org/
5https://www.atlassian.com/software/jira/
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Table I
SOFTWARE SYSTEMS IN THE BENCHMARK DATASET

Program Description # bug reports # labeled links
activemq Message broker 1068 1560

felix OSGi implementation 1660 2287

hadoop Support for distributed computing 2451 4421

lucene Search library 952 2139

mahout Machine learning library 244 327

opennlp Machine learning toolkit 100 127

stdcxx C++ standard library 398 571

struts Web application framework 83 92

xalan C++ XSLT processor 139 157

xerces C++ API for XML parsing 178 200

add-ons for connecting issues to revision control systems. In
the case of the programs used in our benchmark dataset, the
Apache JIRA-based issue tracker6 was linked to the Apache
subversion repository7, allowing links to be automatically
inferred when commits are checked into the repository. One
benefit of the JIRA add-ons is that it is very convenient for
programmers to refer to the bug report they are addressing
in their commit logs. Thus, there are immediately more
opportunities for recovering links with improved quality.
In JIRA, issue/bug identifiers are composed of two parts
separated by a dash: a keyword that identifies the project
(e.g., “LUCENE” for the Lucene project) and a unique
number for each issue/bug in the project.

Table I details the number of labeled links that can be
extracted from the issue tracker for each program. These
numbers only include links to bugs fixes in the development
trunk, excluding branches. For an efficient link mining by the
issue tracker, the strategy used stills requires some manual
effort from the developers, thus introducing opportunities
for wrong links if developers make typos or mistakenly use
in their change log a format that may be confused with
a bug reference format. Figure 3 details an example of a
link automatically inferred by the issue tracker for the issue
LUCENE-1. As one can immediately notice, this link was
wrongly mined since the identifier in this case is actually
just a part of a release version number.

Repository: Revision Date User Message
ASF #151795 Mon dnaber increase version number from 1.5

Feb 07 to 1.9, so that the jar is called
called LUCENE−1.9−rc1−dev.jar

Figure 3. Wrongly labeled link

In order to use labeled links as the ground truth we have
set to manually assess those links to ensure that they were
properly inferred.

Soundness: To assess the soundness of the labeled
links, we have randomly sampled 100 links distributed
across the ten projects and manually checked whether these

6https://issues.apache.org/jira/
7https://svn.apache.org/repos/asf/

were true links. We have found that 100% of those links
were true. The link example in Figure 3 actually refers to
a revision number that is part of a branch, thus outside the
development trunk considered in our benchmark dataset.

This empirical evaluation reveals that Apache developers
are meticulous in their efforts to insert bug references in the
change logs of their fixing commits. However, we have also
noted that some bug reports were automatically imported
from a previous Bugzilla-based setup of the project’s bug
tracking system into the JIRA install, which may reduce
the reliability of links that were not labeled by bug fixers.
We have therefore parsed all labeled links from our datasets
and found that 37 out of 6507 involved a bug report
with an initial Bugzilla ID. Manually checking these links
exposed 22 wrong links with LUCENE-3. In all these links
the expression “LUCENE-3”, which was actually part of
the release version number “Lucene3.1.0”, was mistakenly
inferred as a bug number during the automated labeling
by JIRA. We have then removed these links from the
benchmark dataset.

Completeness: Completeness is an important property
that should be ensured to accurately evaluate false negative
rates of bug linking tools. We find that every issue/bug in
our benchmark dataset has been linked to some commits.
In addition, for links provided by JIRA for the issues/bugs,
we want to make sure whether all code commits related
to an issue/bug have been linked to the issue/bug in JIRA.
For this purpose, we randomly sampled 100 links to check
whether a bug report may be related to a commit not linked
by JIRA. Two situations may explain why a given commit
is not linked to a bug report. First, the commit may not be a
bug-fixing commit, or it may fix a bug that was not reported
in the bug tracking system. Second, the commit may be
part of a number of commits addressing the same bug. In
this case, we assume that the unlinked commit was caused
by missing references to its corresponding issue/bug report
in its commit log when it actually belongs to the fix split
in several commits. We have investigated the dataset and
found that when a bug is fixed by many commits, those are
usually close in time, and for the ten programs, the number
of commits do not reach 20 for a given bug. Thus, for
each linked commit in the sample set, we manually examine
the 10 commits that precede it and the 10 commits that
follow it to see whether there are unlinked commits for the
same issue/bug. Our manual investigation has established
that 100% of the sampled links were complete.

The results of these investigations allow us to use the
links extracted from the JIRA-based issue tracking system
with little clean-up as our ground truth for evaluating bug
linking tools.

IV. RESEARCH QUESTIONS & METRICS

We now discuss a number of important research questions
that we have formulated to assess the effectiveness of a bug

4



Table II
10-FOLD CROSS VALIDATION RESULTS

activemq felix hadoop lucene mahout opennlp stdcxx struts xalan xerces
Average # of test links 203 321 67 66 38 15 119 10 16 23

Precision 0.922 0.821 0.712 0.7 0.927 0.4 0.007 1.0 0.6 0.975

Recall 0.181 0.17 0.101 0.088 0.164 0.027 0.029 0.207 0.038 0.188

F-measure 0.302 0.28 0.176 0.155 0.276 0.051 0.011 0.331 0.072 0.307

linking tool.

RQ1. How effective is the tool in recovering links for
non-linked bug reports?

In this research question, we propose to evaluate the com-
pleteness and accuracy of the links generated by a bug
linking tool when provided with completely non-linked bug
reports. Indeed, a tool may fail to find a link for some bug
reports (false negatives) and may assign incorrect links to
other bug reports (false positives). It is therefore important
to assess the effectiveness of the bug linking tool based on
such cases.

RQ2. How effective is the tool in recovering links for
partially-linked bug reports?

Partial links refer to links involving bugs that are fixed in
several commits but not all of the commits are explicitly
linked to the bugs. Using partial links in studies may
introduce bias whose impact can be significant [14]. It is
therefore often necessary to identify, for every bug report,
all the commits that are related to it. Intuitively, recovering
such links could be more readily possible than in the case of
completely non-linked bug reports, as the similarity between
the commits can also be leveraged. In this research question,
we investigate whether a bug linking tool could recover
missing links from partially-linked bug reports and whether
it could be more accurate in doing so.

RQ3. What is the sensitivity of the tool when training
data is changed?

Advanced techniques for recovering missing links, as with
the ReLink tool, use machine learning algorithms that rely
on training data for computing the similarity thresholds
for detection of bug links. Variations in real-world datasets
may therefore impact the performance of such bug linking
tools. Consequently, for a bug linking tool that relies on
machine learning approaches, it is important to investigate
its sensitivity when training data is changed.

RQ4. Could the tool be trained on one software system
and used to link reports in other software systems?

Related to the previous research question, a worst case
scenario may arise when no training data can be found in the
project. For example, for the first bug report in a software
project, there is no training data available. Because explicit
links are not readily available in all real-world projects,

a bug linking tool would be more valuable if it can use
training datasets from one project to infer links in another.
We explore in this research question if the thresholds learned
in one software system could be used in other systems.

RQ5. How effective is the tool as compared with
standard information retrieval solutions including VSM,

LSI, and LDA?

Bug linking algorithms, such as ReLink, can be built atop of
Information Retrieval technology. However, since there are
many standard information retrieval solutions, it is important
to survey the benefits of the linking algorithm compared to
the the results that can be directly obtained with standard
techniques. In this research question, we propose to com-
pare the performance of the tool with standard information
retrieval solutions that are used to measure the textual
similarity of two documents.

RQ6. What kinds of links are often missed by the bug
linking tool?

When a bug linking tool misses some links (false negatives),
what are the characteristics of those links? Thouroughly
studying this question can give insights for researching new
ways to collect more links. We propose to answer this
research question by performing a qualitative study of the
false negatives of the tool’s outputs.

RQ7. What are the characteristics of extraneous links
generated by the bug linking tool?

Besides false negatives, a bug linking tool can generate false
positives, i.e., incorrect links. Exploring the characteristics
of those links can provide insighs on the limits of the
solution implemented by the bug linking tool, and suggest
potential research methodology for improving bug linking
tools.

To quantitatively evaluate a bug linking tool, we propose
to use standard metrics from the field of Information Re-
trieval, namely the Precision, Recall, and F-measure metrics.
• Precision, as captured by Equation (1), quantifies the

effectiveness of the tool to recover links that are actu-
ally correct.

Precision =
|{labeled links} ∩ {link inferred by tool}|

|links inferred by tools|
(1)

• Recall on the other hand explores the capability of the
tool to recover most of the missing links. Equation (2)

5



provides the formulation for its computation.

Recall =
|{labeled links} ∩ {links inferred by tool}|

|labeled links|
(2)

• Finally, we compute the F-measure, the harmonic
mean between Recall and Precision. We consider that
both Precision and Recall are equally important and
thus, they are equally weighted in the computation of
F-measure in Equation (3).

F −measure = 2 ·
Precision · Recall

Precision + Recall
(3)

V. RELINK EVALUATION RESULTS

In this section we report the evaluation of ReLink with
our benchmark dataset and following the research questions
previously outlined. The discussions are based on the metrics
described above. For our evaluation process, we use the
ReLink tool as a black box8, only providing desired inputs
and analyzing the outputs. We have downloaded the version
of the tool that was available at the project web page9 at the
time of writing.

Since our ground truth always contains references to the
bug reports that are involved in a link, which would hinder
the evaluation of ReLink’s capability in finding “missing
links”, we accordingly pre-process the inputs of change logs
to remove the references from the portions of data that are
used for testing, but leaving them in the training data for
ReLink to infer link features using traditional heuristics.

A. RQ1: Link Effectiveness (Non-Linked)

Since ReLink relies on a learning algorithm, k-fold cross
validation is a well suited statistical method to evaluate its
effectiveness [24]. To answer the first research question we
therefore perform a 10-fold cross validation for each of the
programs in our benchmark dataset. For this purpose, we
have randomly distributed the labeled links into 10 sets of
equal size. For each program, we ran 10 experiments using
every time 1 set as the testing set and the 9 others for training
data. The results are shown in Table II for all programs.

Discussion: These experiments show that, in general, the
ReLink tool has good precisions, reaching 100% for the
struts program, though this precision can drop in some cases,
as for the stdcxx program. Recalls, however, are very low,
which in turn cause low F-measures. The recall of ReLink
is sacrificed by the algorithm in favor of precision.

B. RQ2: Link Accuracy (Partially-Linked)

For the second research question, we consider bug reports
that are involved in multiple labeled links, i.e., bugs for
which there are more than one corresponding revisions. For
each bug, we successively consider 25%, 50% and 75% of

8We have checked that ReLink contains rules for the patterns used in
Apache systems for denoting bug IDs

9http://www.cse.ust.hk/∼scc/ReLink.htm

the relevant links for training, and compute the effectiveness
of ReLink in recovering the remaining. The results of these
experiments are shown in Table III.

Discussion: The quantitative analysis reveals that ReLink
does not succeed in inferring partially missing links more
than in the case of non-linked bug reports. We suspect
that this is due to the fact that while different change
logs may address the same bug, they often do so with
different terms which in return will reduce the success of
ReLink. Indeed, the ReLink algorithm strictly considers the
similarity between 1 commit change log and 1 bug report
and, thus, does not leverage the similarity between commits
that address the same bug.

C. RQ3: Sensitivity to Training Data

To assess the sensitivity of ReLink to training data,
we perform a series of experiments with varying sizes of
the training data. Practically, for each program, we have
randomly distributed the labeled links into nine buckets of
potential training data. We then run 9 successive experiments
where in the first experiment labels from the first bucket
are used for training, and in the second experiment we add
labels from the second bucket to double the size of training
data, and so on. This experimental scenario enables us to
consider from 10% to 90% of the labeled links as training
data and the remaining, i.e., from 90% to 10% as testing
data. Figures 4, 5 and 6 show the results of our experiments
for the different programs.

Discussion: In Figure 4, we note that precision is not
significantly impacted by the size of training data. We
believe that this is due to the fact that ReLink uses different
heuristics aside from the similarities between change logs
and bug reports, to consolidate its outputs.
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Figure 4. Precision – sensitivity to training data

The impact on recall rates is observable on datasets of
the highest and lowest sizes. Figure 5 shows that recall
is increasing for the felix program and overall is dropping
for the struts program. These results suggest that smaller
datasets, in which outliers are more noticeable, would affect
the recall of ReLink.

Finally, in Figure 6, we notice that the F-measure follows
the results of the Recall metrics. This was expected based on
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Table III
EVALUATION OF LINK ACCURACY FOR PARTIALLY LINKED LINKS

% partial links activemq felix hadoop lucene mahout opennlp stdcxx struts xalan xercesused for training

25%
Precision 1 0.977 1 1 1 1 0.212 1 1 1
Recall 0.114 0.092 0.133 0.036 0.016 0.03 0.058 0.103 0.03 0.261
F-measure 0.204 0.169 0.235 0.07 0.032 0.059 0.091 0.188 0.059 0.414

50%
Precision 0 1 1 0 0 0 0.111 0 0 1
Recall 0 0.008 0.015 0 0 0 0.023 0 0 0.16
F-measure 0 0.015 0.03 0 0 0 0.038 0 0 0.276

75%
Precision 0 1 0 0 0 0 0.083 0 0 1
Recall 0 0.008 0 0 0 0 0.016 0 0 0.095
F-measure 0 0.015 0 0 0 0 0.027 0 0 0.174
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Figure 5. Recall – sensitivity to training data

the results of Precision which did not appear to be affected
by the variation in proportion of training data.
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Figure 6. F-measure – sensitivity to training data

D. RQ4: Cross Project Effectiveness

To answer the research question related to cross project
effectiveness of ReLink, we ran experiments with all combi-
nations of pair-program in our benchmark dataset. Thus, for
each program, we consider training data from exclusively
another program, and we repeat this scenario for all other
programs. For a baseline result, we compute the effective-
ness of ReLink when no training data is used. The results
of our experiments are highlighted in Figures 7, 8 and 9.

Discussion: From the graphs detailing the precision and
recall results, we observe that, overall, using training data
from other projects datasets leads to lower precision and
recall. In a few cases, such as with the mahout and opennlp
programs, smaller sets of training data (e.g., from struts)
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Figure 7. Precision – Cross project evaluation

have less impact on the precision of ReLink and may even
improve it slightly.
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E. RQ5: Comparison with Other IR Solutions

To answer this research question we use several stan-
dard information retrieval techniques namely vector space
modeling (VSM), latent semantic analysis (LSA), and latent
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Table IV
COMPARISON OF RELINK WITH EXISTING IR TECHNIQUES: VECTOR SPACE MODELING (VSM), LATENT SEMANTIC ANALYSIS (LSA), AND LATENT

DIRICHLET ALLOCATION (LDA)
activemq felix hadoop lucene mahout opennlp stdcxx struts xalan xerces

Precision
ReLink 0.922 0.821 0.712 0.700 0.927 0.400 0.007 1.0 0.600 0.975
VSM 0.068 0.148 0.303 0.137 0.172 0.169 0.028 0.087 0.017 0.061
LSA 0.035 0.095 0.025 0.077 0.069 0.160 0.010 0.101 0.017 0.046
LDA 0.011 0.021 0.013 0.036 0.031 0.075 0.011 0.028 0.017 0.657

Recall
ReLink 0.181 0.17 0.101 0.088 0.164 0.027 0.029 0.207 0.038 0.188
VSM 0.128 0.226 0.455 0.283 0.306 0.278 0.077 0.218 0.045 0.121
LSA 0.116 0.175 0.125 0.151 0.135 0.163 0.066 0.185 0.062 0.084
LDA 0.352 0.254 0.08 0.263 0.344 0.556 0.404 0.194 0.056 0.015

F-measure
ReLink 0.302 0.28 0.176 0.155 0.276 0.051 0.011 0.331 0.072 0.307
VSM 0.068 0.155 0.331 0.152 0.199 0.18 0.035 0.106 0.02 0.068
LSA 0.037 0.099 0.029 0.083 0.078 0.155 0.014 0.11 0.018 0.051
LDA 0.011 0.024 0.018 0.04 0.037 0.071 0.015 0.028 0.018 0.015

Dirichlet allocation (LDA), which have also been used in
studies on software traceability analysis. Following is the
description of how we use these techniques for bug linking.

Practically for the purpose of fair comparison, we have
implemented the considered standard information retrieval
solutions to follow the same steps as described in the
ReLink paper. These solutions perform a simple retrieval
without considering some features of links (time interval
and mapping between bug owner and change committer).
The process for each model is the same. First, they pre-
process the text data through stemming and stop words
removal. Second, they take bug reports as query and search
the relevant change logs for this query. For every bug report,
the similarity scores between its text data and change logs
are computed based on the model in use (VSM, LSA or
LDA). Links are then inferred by selecting change logs for
which the similarity score is above a threshold which was
determined in a training phase as in ReLink.

To compare ReLink and the aforementioned IR tech-
niques, we resort to 10-fold cross validation. The experiment
scenario for each technique is similar to the one used for
answering the first research question (RQ1) for ReLink. The
results of these various IR techniques as compared to ReLink
is shown in Table IV. From the table, we could notice that
ReLink outperforms the existing IR techniques in terms of
F-measure for: activemq, felix, lucene, mahout, struts, xalan,
and xerces. VSM outperforms ReLink for: hadoop, opennlp,
and stdcxx. LDA and LSA outperform Relink for: opennlp
and stdcxx. Thus in general, ReLink is better than existing
IR approaches. The existing IR approaches are promising
too as it could outperform ReLink on 2 or 3 out of the 10
programs. In the future, it would be interesting to propose
an approach that could extend ReLink such that it could
outperform all existing IR techniques on all datasets.

F. RQ6: Missing Links

In Figures 10 and 11 we detail two categories of missing
links that Relink fails to recover. The examples are presented
as used in the testing dataset where we had removed any
explicit reference to the bug reports so as to assess the core
algorithm of ReLink.

The first example highlights the fact that ReLink’s features

a) Excerpt of commit change log

revision: 682831 author: apetrelli date: 2008−08−05 17:50:09
msg: Applied patch provided by Yannick Haudry

b) Excerpt of issue report (JIRA)

key name: STR−3160 reporter name: Yannick Haudry
created: Tue, 22 Jul 2008 21:53:28 assignee name:Antonio Petrelli
resolved: Tue, 5 Aug 2008 18:09:13 resolution: Fixed
summary: TilesRequestProcessor processTilesDefinition. . .
description: Here is the code. . .

Figure 10. ReLink missed link – Unleveraged feature of links

of links could be augmented to take into account mappings
between bug reporter name and patch acknowledgement
texts. Indeed, although the change log and bug report
description texts in Figure 10 are not similar, we can
infer a link, based on the date, report metadata and the
acknowledgement in change log.

a) Excerpt of commit change log

revision: 1177597 author: joern date: 2011−09−30 11:10:28
msg: Replaced encoding lookup with UTF−8 encoding, and

removed restriction on specific language codes

b) Excerpt of issue report (JIRA)

key name: OPENNLP−305
created: Fri, 30 Sep 2011 11:09:17 assignee name:Joern Kottman
resolved: Mon, 31 Oct 2011 23:49:31 resolution: Fixed
summary: Update leipzig format parsing code to work with their latest release
description: The Leipzig project added more content and changed the encoding

and language codes. [. . .] UTF−8 [. . .]

Figure 11. ReLink missed link – Excessive filtering
Figure 11 however details a different miss by ReLink.

Although there exist text similarity between the change log
and the bug report, and a mapping between the bug owner
(i.e., assignee) and the change committer, ReLink dismisses
a relevant link as the bug report was tagged “Resolved” until
1 month after it was actually fixed in the version control
system. This kind of miss was also mentioned by the authors
as a source of false negatives, explaining in part the poor
recall of ReLink.

G. RQ7: Extraneous Links

The precision of ReLink results is usually very high as
detailed in Sections V-A, V-B and V-C. This, as the authors
have suggested in their paper [15], is largely due to the use
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key name: STDCXX−11
created: Thu, 4 Aug 2005 11:09:02 +0000 assignee name : Unassigned
resolved: Fri, 5 Aug 2005 10:45:55 +0000 resolution: Fixed
summary: IA64 32−bit atomic operations broken
description: The atomic operations on IA64 are broken in 32−bit mode:

$ cat t.cpp && nice gmake SRCS=t.cpp
#include <iostream>
int main () { }
aCC −c −D RWSTDDEBUG −mt −D RWSTD USE CONFIG [. . .]
$ gdb −q t
(gdb) r
Starting program: /build/sebor/aCC−5.57−15s/examples/t [. . .]
Program received signal SIGSEGV, Segmentation fault [. . .]

si code: 1 − SEGV MAPERR − Address not mapped to object.
0x4118da0:1 in rw atomic add32+0x1 ()
(gdb) where
#0 0x4118da0:1 in rw atomic add32+0x1 ()
#1 0x4070880:0 in <em>rw::</em><em>rw atomic [. . .]

Figure 12. Bug report involved in several ReLink extraneous links

of different heuristics through a number of features of links.
Nonetheless, we have found that the stdcxx program involves
datasets that make ReLink’s precision drop significantly.
Manual investigation of the false positives for this program
has exposed two bug reports, namely STDCXX-11 and
STDCXX-8, for which ReLink mistakenly finds links to sev-
eral commits. Figure 12 shows an excerpt of STDCXX-11.

In the bug reports extraneously linked we observe that the
bug reporter has directly dumped his code, his compilation
command lines and even gdb output. The generality of the
terms appearing in the text may have lead ReLink to wrongly
assign many links to the bug. Though developers expect
users to provide crash information to easily reproduce the
bug, such data can be provided as part of an attachment. Bug
reporters however may not follow developer instructions.
One research roadmap for improving ReLink could therefore
consist of a more thorough analysis of bug reports to
separately process source code data and to also exclude user
command-line information which may be out of scope.

H. Threats to Validity

Our empirical evaluation bears some threats to both inter-
nal and external validity. The main threats to internal validity
are related to the process of building the benchmark dataseti.
We have tried to minimize this threat by our assessment of
the soundness and completeness of the links extracted from
the JIRA-based issue tracking system.

Threats to external validity refers to the generalizability of
our findings. We minimize this threat by considering a wide
range of projects of various domains written in different
programming languages.

VI. RELATED WORK

We highlight in the following subsections a number of
related studies on evaluation framework and bug linking.

A. Bug Linking

There have been a number of studies that propose various
techniques to either identify bug reports or link bug reports
to the revisions that fix them. Antoniol et al. propose a

technique to classify if a change request is a request for
enhancement or a bug report [25]. Tian et al. propose a
technique that detects if a revision is a bug fixing revision or
not [26]. Bird et al. propose a technique named LINKSTER
that could be used to aid developers in linking bug reports
to the revisions that fix them [14]. Their approach is semi-
automated.

Sureka et al. have used a probabilistic approach based
on the Fellegi-Model for traceability link to recover bug
links [12]. Wu et al. have recently proposed ReLink which
is an information-retrieval based technique [15].

In this study, we evaluate the effectiveness of ReLink
in several dimensions and compare it with existing work
on information retrieval that has been applied to software
traceability studies [17]–[19].

B. Empirical Evaluation & Evaluation Framework

A number of studies perform empirical evaluation to
measure the effectiveness of existing approaches [27]–[30].

Lo and Khoo propose an evaluation framework called
QUARK that evaluates existing automata-based specifica-
tion mining tools [27]. Bogdanov and Walkinshaw extend
QUARK by proposing a new metric to evaluate automata-
based specification mining tools [28]. Pradel et al. extend
the above two studies by yet another metric which is shown
to outperform the existing metrics [31].

Engstrom et al. compare and contrast various regression
test selection techniques [32]. Hutchins et al. evaluates
the effectiveness of dataflow and control-flow based test
adequacy criteria [33]. They produce a set of benchmark
programs often referred to as the Siemens test suite. Siemens
test suite itself has been widely used to evaluate many
fault localization approaches, e.g., [34]–[38]. Jones et al.
empirically evaluate a fault localization tool called Tarantula
in [35] first proposed in [34]. Lucia et al. empirically
evaluates the effectiveness of various association measures
proposed in the data mining and statistics community for
fault localization [38].

Wang et al. compare and contrast many information
retrieval solution for concern localization problem (i.e., the
detection of traceability links between a requirement docu-
ment to program elements that implement it) [20]. Lamkanfi
et al. investigate the effectiveness of various classification
algorithms for the task of predicting severity labels of bug
reports [39].

In this work, we also perform an empirical evaluation.
Our study is orthogonal to the above as we are evaluating
another important research problem namely the linking of
bug reports to the revisions in source control repositories
that fix them.

VII. CONCLUSION AND FUTURE WORK

Bug linking is an important problem which, if thoroughly
addressed, will significantly improve software maintenance
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and evolution studies and enhance capabilities of various
research tools for improving defect prediction and fix rec-
ommendations. Such studies are indeed largely discussed in
the literature as useful for improving the quality of software.

In our work we provide a clean benchmark dataset
for evaluating bug linking tools. We have applied several
research questions to the state of the art tool, namely
ReLink, to assess its effectiveness on recovering missing
links. The results of our experiments show that, overall,
ReLink achieves very good precisions, over 90%, for some
programs, but delivers lesser recall rates, dropping below
10%. The F-measure results in our various scenarios show
that there is room for improvement in the area of bug
linking. Our qualitative assessments of ReLink’s missed and
extraneous links, as well as the comparison with various
standard IR techniques, point out some weaknesses in the
algorithm and the filtering strategy of ReLink, thus opening
up new directions for future work on bug linking.
Availability. The benchmark constructed in this work is
available at: http://momentum.labri.fr/bugLinking
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