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Real-Time Trip Information Service for a Large Taxi Fleet

Rajesh Krishna Balan, Nguyen Xuan Khoa, and Lingxiao Jiang
School of Information Systems, Singapore Management University

80 Stamford Road, Singapore 178902
{rajesh,xknguyen,lxjiang}@smu.edu.sg

ABSTRACT
In this paper, we describe the design, analysis, implementation, and
operational deployment of a real-time trip information system that
provides passengers with the expected fare and trip duration of the
taxi ride they are planning to take. This system was built in coop-
eration with a taxi operator that operates more than 15,000 taxis in
Singapore. We first describe the overall system design and then ex-
plain the efficient algorithms used to achieve our predictions based
on up to 21 months of historical data consisting of approximately
250 million paid taxi trips. We then describe various optimisations
(involving region sizes, amount of history, and data mining tech-
niques) and accuracy analysis (involving routes and weather) we
performed to increase both the runtime performance and prediction
accuracy. Our large scale evaluation demonstrates that our system
is (a) accurate — with the mean fare error under 1 Singapore dollar
(≈ 0.76 US$) and the mean duration error under three minutes, and
(b) capable of real-time performance, processing thousands to mil-
lions of queries per second. Finally, we describe the lessons learned
during the process of deploying this system into a production envi-
ronment.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organisation and Design—distributed
systems; H.2.8 [Database Management]: Database Applications—
data mining; H.3.1 [Information Storage and Retrieval]: Con-
tent Analysis and Indexing—indexing method; H.3.4 [Information
Storage and Retrieval]: Systems and Software—distributed sys-
tems

General Terms
Algorithms, Design, Experimentation, Human Factors, Performance

Keywords
Taxi Fleets, Trip Information Service, Partition-based Predictions,
Nearest Neighbour Queries, History-based Predictions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’11, June 28–July 1, 2011, Bethesda, Maryland, USA.
Copyright 2011 ACM 978-1-4503-0643-0/11/06 ...$10.00.

1. INTRODUCTION
In this paper, we describe how we built, tested, improved, and de-

ployed a real-time trip information system for a large GPS-enabled
Singaporean taxi company. The company operates a fleet of about
15,000 taxis that report their positions, status, and trip records con-
tinuously to a central server.

Our service uses historical data to allow passengers to query the
expected duration and fare of a taxi trip that they plan to take.
This allows passengers to plan their time and budget accordingly
as well as serving as a safeguard against unscrupulous drivers who
might take longer than expected routes (especially when servicing
tourists). passengers. This type of information system is potentially
useful to a wide range of public transportation operators (including
buses, trains, and taxis), and even other vehicle fleet operators. For
example, a logistics company might find the trip information ser-
vice useful in better estimating their costs a priori.

We address five key challenges when building this system. First,
the amount of spatial data collected by the taxi company was huge
— on the order of tens of millions of records per month. Second,
the system needs to answer queries in real-time; i.e., for any query,
it must be able to quickly find enough previous trip records, from
millions of past records, to accurately answer that query.

Third, we need to account for various time-related factors affect-
ing trip fares and durations. For example, trip durations are often
longer during peak traffic hours. Also, Singapore has a highly vari-
able taxi fare structure that depends on the day of the week and
time of the day (c.f. Section 2). As we show in a later Section,
these factors make existing trip prediction systems such as Google
Maps highly inaccurate in predicting taxi fares and travel durations.

Fourth, we need to determine how much historical information
is necessary to provide accurate answers to trip-related queries. For
example, is one month of historical data sufficient for accurate pre-
dictions? Would six months of data be better? Would using more
data result in more accurate predictions at the cost of more mem-
ory and time? In some cases, such as when the taxi fare struc-
ture changes or when traffic patterns are affected by transient con-
struction or special events, naively using more data naively actually
yields worse results. We need to ensure that our prediction model
is flexible enough to leverage large amounts of data (to increase ac-
curacy) while still being robust enough to handle data with unusual
and inappropriate patterns.

Fifth, like all real-world systems, our data is quite noisy and con-
tains both outright errors and non-standard behaviour patterns. We
need to discover ways to a) filter out bad data, and b) identify and
correct prediction errors due to non-standard behaviour. In partic-
ular, we identified mainly two types of non-standard behaviour: i)
variations due to route choices between any two locations, non-
standard routing trips (such as trips that are not point-to-point, i.e.,



the passenger did no want to go to their destination directly, but
rather went somewhere else first), and ii) variations due to weather
(torrential tropical thunderstorms are quite common in Singapore),

We describe the algorithms and various optimisations used in our
system and present detailed large scale evaluation results. The eval-
uation is performed on 21 months of historical data (about 250 mil-
lion data points in total) generated by approximately 15,000 taxis
and 35,000 drivers, and shows that our system has excellent per-
formance. In particular, our mean fare prediction error is under 1
Singapore dollar (≈ 0.76 US$) and our mean duration error is under
three minutes.

We end the paper with a discussion of the issues we faced in
taking our research prototype into a real deployment environment.
Overall, this paper makes the following contributions:
• A detailed description of the steps needed to build a real-time

service for a large commercial taxi fleet that uses millions of
records as input.

• Methods for identifying real-time patterns, both normal and
irregular, in spatial data, which can be applicable to other
transportation networks in addition to the taxi domain.

• A principled approach to balancing the trade-offs that arise
between the amount of history used, accuracy of the results,
and real-time performance.

• The use of nearest neighbour techniques to produce self-
scaling accurate predictors for this domain.

• Insights into the challenges in moving research prototypes
into operational environments.

2. BACKGROUND AND DATA
In this section, we describe the Singaporean taxi system as well

as the specific dataset analysed in this paper.

2.1 Overview of Singapore’s Taxi System
Singapore is a small densely populated island just 50 by 25 kilo-

metres wide with an area of 710 square kilometres (about 15%
larger than the city of San Francisco) that is inhabited by 5 million
people. To efficiently transport people across the country, Singa-
pore has a world-class very affordable public transportation system
of taxis, buses, and rapid transit rail lines. Taxis, in particular, are
widely available and relatively low-priced. Even with various sur-
charges, metered fares are usually within 2.8 to 50 Singapore dol-
lars with only a few fares exceeding 50 S$. This affordable and
accessible public transportation network, coupled with high taxes
on both private cars and fuel, result in many Singaporeans choosing
not to own a car.

In September 2010, Singapore had 25,624 taxicabs operated by
seven companies and several hundred independent owners [17].
These taxis can be flagged down at any time of the day along any
public road, with well-marked taxi stands available outside most
shopping centres and office buildings.

Except for independent owners, taxi drivers rent a taxi, for a daily
fee, from one of the seven operators and are responsible for their
fuel expenses and any road usage charges. Many renters sublet their
taxis to other drivers for a fraction of the daily rental fee. Hence,
it is common to see the same taxi being operated nearly 24 hours a
day, 7 days a week.

Each taxi driver earns money by collecting metered fares from
passengers. The meter must be used for every trip; ad-hoc pricing
is not allowed. The meter rates are mostly standard across taxi
companies [25] and combine a fixed starting fare (ranging from
2.80 S$ to 5 S$, depending on taxi types) with time and distance

based charges (20 Singapore cents for every 385 meters travelled
or 45 seconds of waiting).

To reduce congestion, Singapore has an Electronic Road Pric-
ing (ERP) system. When entering an ERP zone during operational
hours, drivers of empty taxis must pay the ERP charge themselves.
Otherwise the passenger pays the ERP charge on top of their me-
tered fare. The exact ERP charge depend on the day of the week,
the type of vehicle (car, bus, etc.) and the time of the day [16].

In addition to the variable ERP charges, there are other time and
location based surcharges affecting taxi fares [25]. For example,
the taxi fare is 35% higher during peak periods (7 a.m. to 10 a.m.
and 5 p.m. to 8 p.m. on weekdays) and 50% higher for trips that
start between midnight and 6 a.m. on any day. In addition, taxi
trips that start at the airport, casinos, or the central business district
incur additional location-based surcharges ranging from 3 S$ to 5
S$. Additional charges apply if you book a taxi by phone or SMS
(the taxi will then come to your current location and pick you up),
instead of flagging down a taxi on the road.

Overall, these variable charges make the taxi fare structure quite
complicated. This makes other fare prediction systems for Singa-
pore taxis quite inaccurate as they cannot account for this variabil-
ity, and passengers frequently don’t know the expected fare for any
given taxi trip. As a result, the taxi operator was eager to imple-
ment our solution into their operating environment as it gives them
a strong service differentiator from their competitors.

2.2 Data Collected
As part of a modernisation drive that took place over the last

decade, Singaporean taxi operators added GPS receivers, packet ra-
dio equipment (to transmit GPS locations back to a central server),
and a touchscreen LCD display to every taxi. This allowed op-
erators to know the location of every taxi at all times, and to get
accurate assessments of the earnings of each taxi (obtained directly
from the taxi’s meter). This allowed them to both better schedule
their fleet and to accurately report their drivers’ earnings to the tax
authorities. It also makes it possible to obtain accurate information
about the day-to-day operations of the taxis in the fleet.

We obtained the GPS-enhanced data logs for a period of 21
months (January 2009 to September 2010) from one Singapore taxi
operator. This company operates a fleet of about 15,000 taxis driven
by about 35,000 drivers.

Our dataset contains records about every paid trip that a taxi
made. It contains the start and end GPS coordinates of the trip,
its start and end times, the distance the taxi travelled, and the final
metered fare. In addition, we also had the positions of the taxis
as they travelled on the roads. In this paper, we use that position
information only to plot the routes of specific anomalous trips (to
understand why those trips had anomalous fares and/or times) as it
is very computationally intensive in our current setup to do more
than that (like track every taxi’s route).

Our entire dataset contained about 250 million trip records (av-
erage of 12 million paid trips from all the taxis together per month).
Naturally, with such a large dataset, we expect to find errors in the
data. We found two main types of errors; 1) location errors where
trips either started or ended outside Singapore or in unaccessible
areas, and 2) semantic errors where we found trips that had trip
time errors (negative, 0, or impossibly large trip times), fare errors
(fares that were impossibly low or impossibly high), and distance
errors (trips that had distances of 0 or impossibly large values).

We reported these errors back to the operator and verified that the
errors were valid and that these errors were caused by a number of
different reasons such as the canyon effect on GPS accuracy, clock



This is a plot of taxi locations using 10,000 randomly selected GPS points from a single day’s worth of data — less than 0.3% of one
day’s data. Note: the areas inside the Singapore outline without points, are physical areas without accessible public road networks.

Major Highways in Singapore (source: Wikipedia). The taxi locations plot matches these highways well.

Figure 1: Visual Inspection of Taxi Locations

synchronisation issues, and software bugs. Overall, about 3.6% of
our trip records were erroneous and were removed.

2.3 Properties of the Taxi Network
Overall, the Singapore taxi network has significantly different

characteristics from most US taxi networks (with the possible ex-
ception of large cities, e.g., New York City):

1 Taxis are Cheap: In particular, most fares are 10 S$ or lower
— hardly ever exceeding 50 S$. This is quite affordable
for the local population and taxis are thus a more comfort-
able and usually faster alternative to cheaper public buses
and trains.

2 Taxis Are Common and Found Everywhere: With 25,000+
taxis on the road, it is quite rare to encounter areas with no
taxis. There are peak times where all the taxis on the road
may be occupied though — but again, this happens only at
certain times and places.

3 Most Pickups are Street Pickups: More than 90% of the
taxi trips are street pickups (passengers flag down free cabs
on the street) and not pre-meditated calls. Booking calls are
usually made when there are no free taxis on the road or in
other special cases.

4 Taxis are Used for All Activities: Due to the low cost and
high availability of taxis, taxis are used for all activities —
including going to soccer practice, visiting friends, and for
travelling to and from the grocery store. This is unlike most
US cities where the taxi networks mostly serve the airport
routes.

These four factors ensure that taxis are found on every street with
very high frequencies — either dropping off or looking for passen-
gers. This is shown in Figure 1 which plots the GPS coordinates of
just 10,000 randomly sampled location points from a single day of
data (less than 0.3% of a day’s worth of taxi GPS location updates).

The figure shows two main things: 1) the error rate of location



data is low as only a few outliers are visible (we use the location
data to determine the start and end points of each trip), and 2) taxis
really do go everywhere as all the main roads and neighbourhoods
are clearly visible even with such a small subset of data (the outline
of Singapore is also quite clear due to the various coastal roads).
Overall, we found that, on average, each taxi was occupied by a
paying customer about 30% of the time and spent the remaining
70% of the time either looking for fares (59% of the time), or not
in operation (11% of the time).

Finally, we observed that there were many repeated taxi trips
between any two locations in Singapore. This could be because
individuals have common regular routes such as going to school,
work, etc. In addition, the population density in Singapore is in-
credibly high, and most of the population (> 95% [7]) stay in high
rise apartment or condominium buildings. This leads to a natural
“multiplier” effect for taxi routes. These factors suggest that rare
taxi routes, where the trip’s start and end locations are not observed
more than a few times a month, might be uncommon — even in the
Singaporean case where taxis are used for every route (and not just
a few special routes usually involving the airport). We thus decided
to use history as a prediction mechanism as we believed that we
could find sufficient similar historical trips for every route.

2.4 Privacy Concerns
In this paper, we do not address the significant privacy concerns

that can arise in working with spatial and transactional data. Our fo-
cus is on building an information service using data provided under
a confidentiality agreement with an interested taxi operator; that
collected the data with the consent of its contracted drivers. Our
service uses this data in an aggregated way to generate predictions
that are generally not traceable to individual taxis or passengers.

3. SERVICE REQUIREMENTS
In collaboration with the taxi operator, we identified four main

requirements for the trip information system. Our final system sat-
isfies all four:

1 Accuracy. Foremost, the system must produce accurate pre-
dictions that match reality. In particular, the operator men-
tioned that prediction errors must be within a few Singapore
dollars (2 S$ at most) and a few minutes (5 minutes at most)
of real values. Otherwise, passengers and drivers will not
like the system.

2 Real-Time Capability. The service must be able to handle
queries in real time. Generating a prediction should take on
the order of milliseconds.

3 Low Computational Requirements. The operator is will-
ing to provide at most one or two 64G server machines and
our system must run efficiently on those machines without
requiring a cluster environment or more powerful servers.
This is a non-negotiable requirement as the operator does
not have the budget or manpower to purchase higher-end ma-
chines or to setup an in-house cluster, and they are not com-
fortable with the cost and privacy implications of sending
their data to off-site cluster farms like Amazon S3.

4 Easy to Deploy Operationally. Finally, the system must be
easily deployable at the operator’s computing centre with an
easy interface for both passengers and in-house users (book-
ing call centre operators etc.)

4. TRIP INFORMATION SERVICE
In this section, we present the design and implementation of the

real-time trip information service.

4.1 Failed Solution: Use Google Maps
In developing this service, we considered a fairly straightforward

approach based on Google Maps that would use the Google Maps
API to retrieve an expected travelling distance and time for that trip.
We would then calculate an expected trip fare using the expected
distance and time values. However, this approach failed for three
main reasons:

First, the Maps API introduced network latencies and rate limits
(imposed by Google), slowing down the service. Google offers
high-capacity, low-latency Google Maps services; however, the taxi
operator is reluctant to pay that additional recurring cost (versus a
small one time cost for provisioning an in-house server) for a “nice-
to-have” service that is not part of their core operations.

Second, calculating an accurate trip fare given just the estimated
distance and time of the trip was hard. As mentioned earlier (Sec-
tion 2.1), Singapore uses a distance-based fare structure augmented
with time and location-based surcharges. Determining the location-
based surcharges required tracking the exact route of the trip and
this proved to be impossible, with our resources, to do in real time.

Finally, and most importantly, the Google Maps results (as of
June 2011) were not very accurate. We tested the Google Maps
API with a single month of trips (≈ 12 million clean trip records)
and found that, on average, the trip durations predicted by Google
Maps were about 35% off from the actual trip durations and about
40% off from the actual trip times. We also tested other local taxi
trip prediction systems, such as Gothere.sg (http://gothere.sg), and
found them to be similarly inaccurate on fare and duration predic-
tions. We thus needed to find a better solution that can satisfy the
requirements stated in Section 3.

4.2 Use Trip History
The insight we have for a viable solution is that taxi drivers gen-

erally know the routes between any two locations and often follow
the same routes. Hence, historically recorded taxi trips should con-
tain abundant information for predicting the trip duration and fare
for a future trip. The key to realise the insight is, for a new trip, to
find historical trips similar to it and perform predictions based on
the durations and fares for these similar trips.

Trip durations and fares can be affected by many factors, includ-
ing three obvious ones recorded in our dataset: the start location,
the end location, and the start time of a trip, which we call the three
basic features of each trip. Intuitively, in order to have an accu-
rate prediction for a new trip, the historical trips used for prediction
should have basic features similar to those of the new trip.

When we have a set of similar trips T found for a new trip t, the
prediction is as simple as calculating the average duration and fare
of these trips, where d(t) and f (t) represent the duration and fare
of a trip t respectively, and avg is the normal arithmetic mean:

d(t)≡ avgti∈T {d(ti)}, f (t)≡ avgti∈T { f (ti)} (1)

Thus, the primary challenge lies in quickly searching for similar
trips. A naive solution is to search the whole trip database to find a
historical trip with exactly the same GPS coordinates and start time
as the new trip. This solution is computationally demanding and
also incredibly fragile — as it is quite unlikely to find another trip
with the exact same start time and start and end GPS coordinates
(even with 21 months of historical data).

Also, even if we could find a trip with the same basic features,
other factors such as road construction, raining, accidents, etc. may
affect the trip duration and fare. To reduce the effect of this variabil-
ity on prediction accuracy, we need to have predictions aggregated
from multiple similar trips. The challenge then becomes finding
all trips that start and end within some fixed distance (50 meter for



example) of the trip that we are predicting. This “expansion” of
search regions must be enabled for finding more similar trips for
prediction. An obvious, but inefficient solution to this requirement
would be to use a spatial database with appropriate indexes. For
example, several simple distance range queries, on one month of
data using PostgreSQL with the PostGIS extensions, took about 10
to 30 seconds to return matches. This is not fast enough and the
speed gets progressively worse as we add more months of data.

To balance prediction accuracy, efficiency, and hit rate (a mea-
sure of how often we can have enough similar trips to make a rea-
sonable prediction), we developed our solutions using a partition-
ing approach that splits the whole continuous search space (formed
by the three basic features) into discrete, easily accessible time-
space partitions, so that expensive queries for similar trips of close
start time and close start and end locations can be turned into effi-
cient queries for trips belonging to the same partition.

4.3 Partition-based Prediction
The essence of our solutions is to split the whole trip dataset

into discrete partitions indexed by trip start time and start and end
locations (i.e., the trip features that can affect durations and fares),
and treat all trips belonging to the same partition as similar trips.
The following sections describe how we partition both the time and
location dimensions.

4.3.1 Time Windows
The trip start time is one of the three basic features and affects

trip durations and fares on an hourly and daily basis. As mentioned
in Section 2.1, there are numerous time-based fare surcharges such
as peak period and midnight surcharges. Thus, we designed four
ways to split the start time dimension in the search space into non-
overlapping time windows so that trips belonging to the same win-
dow can be treated as having similar start time and queries for trips
with similar start time can be significantly sped up:

1. Hourly Windows. The trip start time is split into 24 time win-
dows based on the hour of the time. For example, trips starting
at 2:45 p.m. are considered to be in the 2 to 3 p.m. hourly win-
dow. We do not use smaller windows, such as “minutely windows”,
since they would lead to more windows and take more memory and
time to process, without improving prediction accuracy; also, small
timestamp fluctuations started to have large effects, causing highly
variable answers for similar queries, and the amount of historical
data available for each time window dropped significantly, causing
extremely low hit rates during prediction.

2. Day-of-Week (DoW) Windows. The trip start time is split by
the day of week (Monday, Tuesday, etc.) it belongs to resulting in
7 DoW windows.

3. Hourly DoW Windows. Every hourly window is split further
by the day of week to create 24*7=168 finer-grained hourly DoW
time windows.

4. Peak Period Windows. The hourly windows and DoW win-
dows are “compacted” into five windows based on taxi fare sur-
charges: (1) peak traffic hours (7a.m.–10a.m. and 17p.m.–20p.m.)
on weekdays which have 35% surcharges, (2) non-peak day hours
(6a.m.–7a.m. and 10a.m.–17p.m.) on weekdays, (3) night hours
(0a.m.–6a.m.) on weekdays which have 50% surcharges, (4) day
hours (6a.m.–2359p.m.) on weekends (no peak hours), and (5)
night hours (0a.m.–6a.m.) on weekends which have 50% surcharges.

The effects of time windows on prediction accuracy, efficiency,
and hit rate will be illustrated in Section 5.2.

4.3.2 Location Zones
The start and end GPS coordinates of trips obviously affect trip

durations and fares, and the whole location space should be split
into zones of appropriate sizes so that trips with the same start and
end zones can be treated as having similar start and end coordinates
to speed up our queries. We designed two methods to do this:

Static Zoning: In this method, we establish zones according to
pre-chosen zone sizes and use all the similar trips found in these
pre-configured zones, called static zoning. This method is fast but
many particular zones may contain no historical records.

Dynamic Zoning: In this method, we dynamically find the small-
est zone that contains the required number of similar historical
records for any given query. It is slower but always finds the re-
quired number of historical records.

The next section focuses on static zoning while Section 4.3.4
presents dynamic zoning. Section 5.4 discusses the advantages and
disadvantages of each method in detail.

4.3.3 Static Zoning
In static zoning, we partition the whole two-dimensional Singa-

porean map (containing all possible start and end locations) into
a series of uniform square areas. To do this, we first found the
smallest rectangle that covered all of Singapore — a rectangle 25
kilometres high and 50 kilometres wide. We then split that rectan-
gle into many smaller equally sized squares also known as location
zones. To understand the effect of zone sizes on prediction accu-
racy, efficiency, and hit rate, we varied the size of the squares from
50 meters by 50 meters all the way to 5,000 meters by 5,000 meters.

In practice, we found that due to Singapore’s irregular shape and
road density (Figure 1), quite a few location zones (especially at
smaller sizes of 200 meters and below) did not contain any taxi trips
at all. To improve efficiency, we thus “compacted” the location
zones by removing any zone which did not have a trip either starting
or ending in it across the entire 21 month dataset. Table 1 shows the
different zone sizes we used along with the total number of location
zones created by each size and the effect of our compaction step.

These zones allowed us to quickly convert every trip’s GPS start
and end coordinates into a specific zone number; i.e., the number
of the rectangle containing that portion of the GPS space. This con-
verted the problem of finding trips with similar spatial properties (a
slow inaccurate process) into the much easier and faster problem of
finding trips with the same integer start and end zone numbers.

The zone size trade-off is that using smaller zones could poten-
tially result in better results (as trips in smaller zones are closer
to each other) at the cost of higher computation (as more zones
are created) and data sparsity issues (some zones may not contain
enough historical data). Section 5.2.1 shows the effects of zone
sizes on accuracy and other performance indicators.

Predictors. We combined the location zones with the four time
windows (Section 4.3.1) to create five predictors. These predictors
represent the final time-space partitions of the historical records
that we use for making predictions of durations and fares for new
trips. The five predictors are “LOC” which uses start and end lo-
cation zones only to split trips (i.e., no time effects are considered
for prediction), “HR” which combines the zones with hourly win-
dows to split trips, “DOW” which combines the zones with DoW
windows, “DOW×HR” which combines the zones with both DoW
and hourly time windows, and “PEAK” which combines the zones
with peak period windows.

Each predictor is thus a large set of partitions of time and lo-
cations, which can be implemented as any addressable data con-
tainer. For example, the LOC predictor with 200m zones contains



Zone Size (meters) Total No. After Compaction

50 x 50 565,586 162,730 (71%)

100 x 100 141,148 56,881 (60%)

150 x 150 62,559 31,834 (49%)

200 x 200 35,216 21,346 (39%)

250 x 250 22,374 15,285 (32%)

300 x 300 15,510 11,612 (25%)

350 x 350 11,502 9,197 (20%)

400 x 400 8,804 7,374 (16%)

450 x 450 6,930 6,017 (13%)

500 x 500 5,544 4,960 (11%)

“Total No.” is the total number of location zones created
for that zone size while “After Compaction” shows the no. of
location zones (and the % reduction relative to the previous
total) that are left after removing unused location zones.

Table 1: Location Zone Sizes Used
21,3462≈455 million partitions (Figure 1) while the DOW predic-
tor with 200m zones contains 21,3462×7≈3.19 billion partitions.

Implementation. The basic idea is, for each zone size, to partition
historical trips according to each predictor and then calculate and
store the average historical trip duration and fare for each partition
in the predictor based on Equation (1). Then, predicting the dura-
tion and fare for a new trip is simply a query of the average trip
duration and fare of the partition to which the new trip belongs.

The algorithm below constructs hash tables to store the average
trip durations and fares of each partition from each predictor; each
entry in a hash table represents a partition and is indexed as fol-
lows (lines 3–4): for a zone size z and for a trip t with its start time
and start and end GPS coordinates, convert the time to hour of day
(h), day of week (d), and peak period (w), and convert the start and
end coordinates to the corresponding zone numbers ns and ne for z,
then the index for the partition containing the trip t is 〈z,ns,ne〉
for LOC predictors, 〈z,ns,ne,h〉 for HR predictors, 〈z,ns,ne,d〉
for DOW predictors, 〈z,ns,ne,h,d〉 for DOW×HR predictors, and
〈z,ns,ne,w〉 for PEAK predictors.

An important feature of this algorithm is that we update the arith-
metic means incrementally when new data is added (lines 6–9)
without having to store all previous trip details — saving signifi-
cant amounts of memory at runtime.

Algorithm: Construct Trip Prediction Table
input: T : Trip Data Set

z, p: Zone Size and Predictor Kind
(LOC/HR/DOW/DOW×HR/PEAK)

output: P: A Prediction Table
BEGIN:
1: Initialise P as an empty hash table
2: For each trip t in T
3: Based on the zone size z and the predictor kind p,
4: Extract the index of the partition to which t belongs
5: Get the entry P[index] which is a 4-tuple: 〈e0,e1,e2,e3〉
6: If the entry does not exist /* insert a new entry */
7: P[index]← 〈1, t. f are, t.duration, t.distance〉
8: Else /* update the entry */
9: P[index]← 〈e0 +1, e0e1+t. f are

e0+1 , e0e2+t.duration
e0+1 ,

e0e3+t.distance
e0+1 >

RETURN P

The output of the algorithm is a prediction table for a chosen
zone size and predictor kind, which is stored in memory (using ef-
ficient hash maps) and/or disk and then queried for the duration
and fare of each new trip. If the index of a new trip exists in the
table, we return the values stored in that index as prediction values;
otherwise, we report an “unsuccessful prediction” for the new trip.
The table construction routines and prediction algorithms are both
implemented in Java (about 1600 lines of code in total). The pre-
diction table’s memory consumption is proportional to the number
of location zones and time windows used by that table’s predictor
(It also increases slightly as more historical data is used)

Also, since we need to evaluate the effects of zone sizes and
predictor kinds on on prediction accuracy, efficiency, and hit rate,
our code also allows us to load many prediction tables for various
predictors into memory at the same time, so that we can compare
the prediction accuracy, efficiency, and hit rate of various predictors
for each trip easily. Section 5.2 and 5.4 have the detailed results.

4.3.4 Dynamic Location Zones
The second kind of location zones we use have dynamically ad-

justable sizes for each trip we are predicting. Unlike static zon-
ing, dynamic zoning aims to find, for each new trip, the minimum
zone size that can give us a specified number of similar histori-
cal trips that we then use to make reasonable predictions. Thus,
it has almost-zero “unsuccessful” predictions. We used the near-
est neighbour model [3] from data mining community to achieve
dynamic zoning.

k-Nearest Neighbour (kNN). Given a set of data points T and a
query point t, the k-nearest neighbours (kNNs) for t are the k data
points in T whose distances from t are the top-k shortest among
all points in T . Using the k-nearest neighbour model for finding
similar trips has these benefits:
• Predefined location zones are no longer required. The ap-

proach can naturally collect k “closest” trips for each new
trip, no matter whether they are in the same small region or
scattered across larger, or multiple regions.

• If k is chosen appropriately, the low hit rates associated with
smaller static zone sizes will no longer be an issue, and the
effects of anomalous data (assuming most trip data is normal)
on prediction accuracies can also be offset by enough normal
data among the k trips.

The distance metric. The key to make the kNN approach work for
our dataset is to define a reasonable distance metric between any
two trips. As mentioned earlier in Section 4.2, the three basic fea-
tures of a trip (start position, end position, and start time) can affect
its duration and fare and should be used for calculating the distance
metric. Two of the basic features, start and end locations, are GPS
coordinations and standard Euclidean distances can be easily com-
puted for them. The main challenge lies in incorporating the last
feature, the trip start time, into the distance metric.

Our solution uses a 5-tuple to represent each trip: 〈SLong, SLat,
ELong, ELat, STime× f actor〉, where SLong, SLat, ELong, ELat
are the start and end longitudes and latitudes of a trip respectively;
STime is the trip start time of day, and f actor is a constant that
allows us to relate GPS coordinates to time. The f actor value
is determined intuitively as follows: we estimated that a 0.0001
degree difference in longitude or latitude around Singapore corre-
sponds to about 10 meters, and that a taxi’s average speed is about
25 kilometres per hour; thus, one hour is roughly comparable to
25000/10∗0.0001 = 0.25 degree difference, and 0.25 may be used
as the f actor. With this solution, the kNN distance metric between



any two trips can be computed as standard Euclidean distances be-
tween their 5-tuples.

Predictors. Dynamic zoning can also be combined with time win-
dows to create five kinds of predictors similar to but different from
the predictors for static zoning: LOC which only uses the distance
metric to split trips (i.e., queries for nearest neighbours will be car-
ried out in the whole trip dataset), HR which splits the trip dataset
by hourly windows before querying for nearest neighbours, DOW
which splits trips by DoW windows, DOW×HR which splits trips
by both DoW and hourly windows, and PEAK which splits trips
by the five peak period windows (c.f. Section 4.3.1).

The indices used for identifying partitions of each predictor are
also similar to but different from the indices used in static zoning:
for a trip t with a given start time and start and end GPS coordinates,
we do not need to index a partition for the LOC predictor since the
whole trip dataset is the partition; for other predictors, we convert
the start time to hour of day (h), day of week (d), and peak period
number (w), then the index for the partition containing the trip t is
〈h〉 for the HR predictor, 〈d〉 for the DOW predictor, 〈h,d〉 for the
DOW×HR predictor, and 〈w〉 for the PEAK predictor.

Implementation. The following algorithm illustrates how we use
kNN queries to make fare and duration predictions. We used k-
dimensional trees (kd-trees) [20] as our kNN data structure (lines
1–3) as it provides a convenient interface for both creating a kd-
tree for a dataset and for returning k nearest neighbours for a given
query.

Algorithm: kNN Search for Trip Prediction
input: T : Trip Data Set

p: Predictor Type (LOC/HR/DOW/DOW×HR/PEAK)
k: Required number of similar trips
t: A Trip Inquiry

output: Predicted duration and fare for t
BEGIN:
0: /* construct kd-trees (only done once) */
1: Partition T according to the predictor type p
2: For each trip partition T ′
3: Create a kd-tree using trips belonging to T ′

4: Based on the predictor type p,
5: Extract the index of the partition to which t belongs
6: Identify the kd-tree (x) created for the partition indexed by index
7: If x is empty, report an “unsuccessful prediction”
8: Else: Get k nearest trips of t from x
9: Calculate the duration and fare of t based on Equation (1)
RETURN

Unlike the static zoning algorithms, the dynamic zoning algo-
rithms keep the details of every historical trip in memory to calcu-
late the distances for each query. Its computational memory cost is
thus dependent on the size of the historical dataset. It can consume
much more memory and be significantly slower than static zon-
ing when additional months of historical data are used. The main
benefits of dynamic zoning, though, are flexible zone sizes and sig-
nificantly higher hit rates. Section 5.4 presents more comparative
results.

Finally, kd-trees are not the only way to realise kNN queries.
Many other data structures, such as B∗∗-trees [27] and R+-trees [24],
can also be used to search spatially near neighbours with varying
memory and computational costs. In this paper, although the kd-
trees-based dynamic zoning approach was much slower than static
zoning, it was still within the expected performance limits and its
accuracy and hit rate were better than static zoning (Section 5.3). In
the future, we plan to investigate other data structures to determine
if they are better suited for our particular dataset and problem.

5. EMPIRICAL EVALUATION
This section presents our experimental setup, and illustrates the

effects of various settings (e.g., time windows, zones, and amount
of history) on the three main performance indicators of our system:
prediction accuracy, efficiency, and hit rate (i.e., the prediction suc-
cess rate, which is the % of trips having prediction values). The re-
sults show that on average, our system can efficiently predict fares
to within 1 S$ of the actual fares and durations to within 3 minutes
of the actual durations, beyond the expectation of the taxi operator.

5.1 Evaluation Methodology
To evaluate our system, we divided the data into two sets. Set 1

contained the data from January 2009 to August 2010 while Set 2
contained the data for just September 2010. We created 20 different
trip subsets from Set 1 that differed in the amount of data they con-
tained: (1) The first trip subset contained all trips from August 2010
(just 1 month of data), (2) the second subset contained all trips from
July 2010 and August 2010 (2 months of contiguous data), and so
forth, with the 20th trip subset containing all of the Set 1 data (20
months from January 2009 to August 2010). We call these 20 sub-
sets history sets and used them with various zone size and predictor
settings to generate prediction values.

We used Set 2 as the query data (about 12 million trips) to test our
system. In particular, for each trip t in Set 2, we produced predicted
durations and fares for t using every predictor configured with var-
ious static or dynamic zones and/or time windows (c.f. Section 4.3)
and constructed with each history set. We then compared the pre-
dicted values with the actual trip values to determine the prediction
accuracy under each setting. Also, for each setting, we recorded the
prediction speed (the number of predictions made per second), the
memory consumption, and the hit rate (the % of trips in Set 2 for
which the predictor had enough similar historical records to make
a prediction for).

In the rest of this section, we compare the performance of the
various settings along different dimensions (e.g., zone size, pre-
dictor kind, amount of history used, etc.) to understand the best
operational settings for our system.

5.2 Results: Static Zoning
We first present the results of our static zoning approach.

5.2.1 Time Windows and Zones versus Accuracy
Figures 2 and 3 show the overall accuracies of our system with

respect to various time windows and location zones of different
sizes, using the 1-month history set. The y-axis of both figures
are the average absolute differences between the predicted values
and the actual values of every test trip, which we call average pre-
diction errors. We observe in Figure 2 that the average prediction
errors for fares go from 0.87 S$ for 50m zones to 2.53 S$ for large
5km zones. These results, especially those with errors within 1 S$,
greatly exceed the expectation of the taxi operator (Section 3).

The system also predicts trip durations well with average errors
ranging from slightly over 2 minutes (50m zones) up to 4 minutes
(5km zones). However, the duration prediction errors also showed
higher standard deviations, indicating that anomalous predictions
could occur more often.

5.2.2 Prediction Success Rate
From Figures 2 and 3, one may be tempted to use 50m zones all

the time. However, as Figure 4 shows, when static location zones
get smaller, the hit rate (i.e., the prediction success rate, which is
the % of test trips having a non-empty entry in a corresponding
prediction table) goes down significantly. In particular, the rate for
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Figure 2: Fare Prediction Errors Versus Zone Sizes
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Figure 3: Duration Prediction Errors Versus Zone Sizes

the DOW×HR predictor with 50m zones is a paltry 4% with 1
month of data.

5.2.3 Effect of Amount of History
As suggested by previous results, we may not be able to use the

50m zones due to low hit rates. Figure 5 further shows the hit rates,
for zones of various sizes, as we add up to 20 months of historical
data (Jan 2009 to August 2010).

We observe that hit rates go up consistently with more historical
data for all zone sizes. However, DOW×HR with 50m zones still
has very low hit rate (about 17%) for 20 months of data. Trading
accuracy for hit rate, we notice that the PEAK predictor with 200m
zones is the best predictor with an average fare prediction error of
1.2 S$, an average duration error of 2.8 minutes, and a hit rate of
93%.

On the other hand, we observe that prediction accuracies do not
necessarily go up when more months of data is used. Table 2 il-
lustrates this for the DOW×HR and PEAK predictors using 200m
zones. This effect is understandable as aggregate traffic patterns,
driver behaviour, fare structures, etc. do not usually change that
quickly.

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

H
it

 R
at

e
 (

%
)

Zone Size (metres)

LOC PEAK
DOW HR
DOW x HR

There are no error bars for this graphs. The values are exact.

Figure 4: Predication Success Rate Versus Zone Size
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Figure 5: Amount of History versus Hit Rate

5.2.4 Further Evaluation and Results Summary
We also conducted various sensitivity tests that we only briefly

describe here in the interest of space. First, we used different
months as the test set (with the other months as the training set)
to check if our current test (September 2010) and training set par-
tition (remaining months from January 2009 to August 2010) was
causing unusual results. We found no significant differences in our
results when we used other months as the test set. We then parti-
tioned the trips data according to the type of taxi that was used to
service that trip and found that this partitioning had no effect on the
results. Next, we tested various values for the minimum number of
historical trips (e.g., three historical trips versus 10 historical trips)
that needed to have been used to compute that prediction table in-
dex before a successful prediction could be made. We found that,
with small zones, the number of historical entries used to compute
a prediction table index had little effect as the index was describing
a small enough portion of time and space that unusual variations
were uncommon. Finally, we tested the effect of on-line learning
where we make a prediction for a new trip and then immediately
augment the prediction tables using the real data of that trip record.
We found that this had minimal effect on the prediction accuracy
and a very small positive effect on the prediction success rate.



No. of DOW×HR Diff. PEAK Diff.

Months Fare Duration Fare Duration

(cents) (s) (cents) (s)

1 101 157 122 174

5 104 160 121 172

10 106 162 120 171

15 106 162 120 170

20 107 163 120 170

This table shows the accuracies of DOW×HR and PEAK pre-
dictors using 200m zones and up to 20 months of history.

Table 2: Amount of History and Accuracies
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Figure 6: Fare Errors vs. No. of Neighbour Trips

Overall, our system based on static zoning satisfies all the perfor-
mance requirements (accuracy, speed, and low computational cost).
However, the performance depends on choosing the right zone size,
and the right predictor that best matches the data characteristics —
determining these accurately can be tedious in practice. In the next
section, we evaluate dynamic zoning which can automatically de-
termine the optimal zone size for a given set of historical and test
data.

5.3 Results: Dynamic Zoning
We use the same accuracy metric as Section 5.2 for dynamic zon-

ing. Figures 6 and 7 show the overall accuracies of dynamic zoning
with various predictor types and various numbers of neighbour trips
(k) using the 6-month history set. We observe that k has fluctuating
effects on accuracy. This is due to the fact that trips vary from each
other so much that using too few similar trips cannot sufficiently
offset the variations, but using too many may introduce variations
from unrelated trips. Overall, we empirically decided k = 25 is an
optimal choice for most of our settings.

We observe that the average fare prediction errors range from
1.05 S$ to 1.25 S$ for k ∈ {5, . . . ,100}. The average duration pre-
diction errors are larger but still within the acceptable 3-minute
range. These results are comparable to the 200m zone results in
static zones (Figures 2 and 3) except that dynamic zoning always
has 100% hit rates, while static zoning may have very low hit rates.

The amount of history used in dynamic zoning has little effects
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Figure 7: Duration Errors vs. No. of Neighbour Trips
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Figure 8: Amount of History vs. Fare Errors

on prediction accuracy when k is set appropriately. Note that the
accuracy improvements shown in Figures 8 and 9 are very small:
fare and duration predictions are improved by up to 15 cents and 15
seconds respectively, which are negligible in practical uses. This is
one benefit of dynamic zoning since it is almost always able to find
enough neighbour trips for prediction calculation.

5.4 Pros and Cons: Static vs. Dynamic Zoning
In addition to the difference in hit rates, static and dynamic zon-

ing have various characteristics that balance their prediction accu-
racy and efficiency differently.

In terms of location zone sizes, static zoning requires pre-chosen
zone sizes, while dynamic zoning does not require explicit zones; it
only requires k trips which may form implicit zones. As a compar-
ison, Figure 10 shows the average size of the implicit zones, which
are the average radii of the k nearest neighbours for all test trips.
The average radii were calculated as follows: Given a trip t and
its k neighbours {t1, ..., tk}, we call the maximum spatial distance
between t and its neighbours the radius for t, while the distance
between two trips t and ti here is defined as the larger of the dis-
tance between the two start locations and the distance between the
two end locations; then, the average radius for all test trips under
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Figure 9: Amount of History vs. Duration Errors
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Figure 10: Radii versus Number of Neighbour Trips

a particular setting can be calculated. We see, as expected, that a
smaller k leads to a smaller radius.

In terms of prediction performance, static zoning is more effi-
cient than dynamic zoning as predictions can be calculated incre-
mentally without storing individual trip details, while dynamic zon-
ing needs to store details of every trip (in the kd-trees) to decide
neighbour trips (a more time and memory intensive process). The
more months of data used, the more memory dynamic zoning will
use and the slower the queries will be, while the memory consump-
tion of static zoning only depends on zone sizes and predictor types
and its queries take constant time.

As mentioned in Section 4.3.3, we used sparse hash maps to store
the static zoning prediction tables. Our experiments used only up to
2GB of memory, regardless of the number of months of data used,
for zones greater than 400 meters in size. For the smaller zones
(400 meters and below) and more months of data, we exploited
the spatial locality of the entries in the prediction tables and stored
parts of the hash maps on disk when memory consumption reached
certain thresholds, only keeping memory mapped pointers to those
disk blocks in memory. In such cases, our experiments used up to
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Figure 11: History vs. Performance–Static Zoning
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Figure 12: History vs. Performance–Dynamic Zoning

6GB of memory only. For dynamic zoning, the memory cost is
proportional to the number of months of data but not related to the
time windows used. In our experiments, with up to six months of
data, dynamic zoning required less than 2GB of memory for each
month.

In terms of speed, static zoning on average returns the result for
a prediction query within half a microsecond (µs) when the predic-
tion tables are either in memory or disk, while dynamic zoning on
average returns a query within half a millisecond (ms) — capable
of real-time performance in all cases (and meeting the taxi opera-
tor’s requirements). Figures 11 and 12 illustrate the performance
of static and dynamic zoning respectively in more details.

A very interesting idea for future work is to improve our system’s
accuracy and efficiency by using static zoning with varying zone
sizes at different locations, with the zone size determined by the
radii from dynamic zoning. This might give us the high hit rate and
accuracy of dynamic zoning with the low memory consumption
and speed of static zoning.
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Figure 13: Trip Distances versus Durations

5.5 Accuracy Analysis
Even though the prediction accuracy of our system exceeds the

requirements, it can still be improved significantly. In this section,
we present sources of prediction errors that can be eliminated.

In our solutions, for either static or dynamic zoning, we have
only taken the three basic features into account. However, there
are intuitively many other factors that could affect trip durations
and fares, including but not limited to (1) indirect routes, either
taken by honest or dishonest taxi drivers or due to special requests
by passengers (e.g., multi-leg trips whose intermediate destinations
are not recorded in the trip records), and (2) traffic conditions.

The main challenge for addressing these factors is that our dataset
contains no direct information about them. Thus, we need to infer
them from other available information.

5.5.1 Routing
We observed that different routes often have different distances,

and that these distances appear in the trip dataset. We can thus
easily distinguish trips with different routes from each other by
measuring the differences among their travelled distances, without
needing to track the actual path of each taxi using its location data
(c.f. Section 2.2). It is also computationally much cheaper to use
distance deviations to distinguish trips with different routes than to
identify actual routes by tracking the physical movement patterns
of every taxi. We show in the following section that our prediction
accuracies are only slightly affected by alternative routes.

We first examined the correlation between distances and dura-
tions of historical trips. We observed that distances and durations
can vary a lot — even for trips that started at the same time and
start and end locations. Figure 13 shows a scatter plot for a set of
such trips, where the distances and durations can differ by up to 6
kilometres and 1000 seconds. Taxi fares have similar large varia-
tions. This illustrates an inherent reason affecting our prediction
accuracy.

We examined some of the trips having anomalously long dis-
tances or durations and noticed several kinds of anomalous routing
behaviour. For example, a passenger going from location A to B
may instruct a taxi to wait at A for an extended period first while
the fare-meter is kept running. Such a trip may show a normal dis-
tance between A and B but an anomalous high trip duration and
fare. For another example, a passenger may go from location A to a
close location C via another location B which is far away from both
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Figure 14: Distance Deviations vs. Duration Errors

A and B, but the whole trip is only recorded as a trip from A to C,
causing anomalously high trip distance, duration, and fare.

These observations prompted us to filter trips with “anomalous”
distances and durations from the dataset used for prediction in the
following ways: (1) trips with distances 2 times longer than the
straight distance between start position and end position are fil-
tered; (2) trips with average speeds slower than 20 km/h or faster
than 100 km/h are filtered (speed is estimated by dividing trip dis-
tances by durations). We picked the lower and upper bound speeds
after analysing the average speed for all trips in our dataset. We
found that these cutoffs were able to eliminate outliers without re-
moving trips that were slowed by regular traffic conditions. In par-
ticular, taxis did not normally average less than 20 km/h for any trip
(even if particular stretches of the trip were slowed by traffic during
peak hours etc.). The main exceptions we discovered were due to a)
unusual congestion due to accidents or weather (tree falling across
the road etc.), or b) the taxi waiting at some location (presumably
for the passenger to finish some activity) during the trip for a long
period of time.

In addition, we examined the correlation among actual trip dis-
tances, durations, fares, and the prediction errors of trips using our
Set 2 dataset. We observed that the prediction accuracy for each
test trip is related to the “irregularity” of the trip: when the trip dis-
tance or duration is anomalously long or short, its prediction error
is also much higher than the average.

Figure 14 illustrates the relation between duration prediction er-
rors and the distance deviation of each trip where distance devia-
tion is defined as the difference between the straight line distance
of the trip and the actual trip distance. We found that more than
75% of the trips were condensed in a small area (180 seconds by 1
kilometre) near the origin, while about 10% of the trips had fairly
anomalous distances (deviating more than 3 kilometres) and dura-
tions (deviating more than 300 seconds). We observed the same
behaviour for fare prediction errors. These results validated the use
of the filters mentioned above as just a small percentage of trips
had extremely high deviations. An acceptable practical implication
of these irregularity filters is that our system may not be suitable
for predicting the durations or fares of trips that require anomalous
routes.

Overall, 9.5% of trips from our entire dataset were filtered by the
filter (1), and 21.0% of the trips were filtered by both filters (1) and
(2). An immediate benefit of such irregularity filters is improved
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Figure 15: History vs. Fare Errors
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Figure 16: History vs. Duration Errors

prediction accuracies for “normal” trips. We performed the same
set of experiments as those shown in Section 5.2 and 5.3, and fare
and duration prediction errors were reduced by up to 20 cents and
30 seconds, respectively, for both static and dynamic zoning, as
illustrated in Figure 15 and 16. Also, the filter (1) achieved similar
accuracies to the filter (2) without dropping as many trips.

In summary, even though we had no direct information about the
route taken by each trip, we could efficiently infer the normality of
the route by examining the trip distance and duration. We incor-
porated this analysis into our system resulting in improved predic-
tion accuracy. Also, this analysis has an additional potential benefit
for passengers: our system now better identifies the expected fares
and durations for “normal” trips, hopefully eliminating anomalous
routing from dishonest drivers.

5.5.2 Traffic Conditions
The second main error inducing factor we considered was traffic

conditions such as (1) peak hours, (2) special events in the city, and
(3) road conditions (e.g., weather, accidents, construction).

Our time windows have taken the peak hours into account and
indeed improve prediction accuracy. For the other factors, we were
only able to test the effect of rain on the accuracy. Note that Singa-
pore frequently experiences torrential tropical thunderstorms that
can severely affect road conditions. The lowest monthly rainfall
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Figure 17: Effect of Rain on Prediction Accuracy

is about 5.5 inches and the highest is about 12 inches (c.f. http:
//www.weatherunderground.com). This is significantly higher and
more consistently wet than most cities in the world.

To test the effect of thunderstorms on our predictions, we ob-
tained hourly rainfall data, from March 2010 to September 2010,
from Singapore’s National Environment Agency. This data was
from 80 reporting stations.

With this data, we classified each trip that occurred within the 6
month window into either a raining or non-raining trip. However,
the rain data does not contain the area that was affected by the rain
or the exact length of the rain. It also does not directly say, for each
trip, whether it rained throughout the entire trip route either. We
thus conservatively estimated that each reporting station covered
a 1km by 1km location zone, and classified a trip as raining only
if the rainfall in the start zone exceeded a certain threshold in the
same hour when the trip started and the rainfall in the end zone
exceeded the threshold in the same hour when the trip ended.

We then compared the prediction accuracies of various predic-
tors for raining trips and non-raining trips. Figure 17 shows that
rain indeed has effects on prediction accuracy: the duration errors
for raining trips only were higher by 60 seconds on average, while
fare errors were reduced by 12 cents. The results are reasonable
since raining trips have less distance deviations due to less spe-
cially requested routes but more duration deviations due to affected
traffic conditions. On the other hand, since the raining trips account
for only about 0.6% of all trips (because of our conservative esti-
mation), the prediction errors for non-training trips were almost the
same as the errors for all trips. We plan to improve predictions for
raining trips when we obtain more detailed historical rainfall data
and integrate trip predictions with weather prediction services.

5.6 Summary of Results
Overall, our system exceeds the performance requirements stated

in Section 3. In particular, our dynamic solution with 6 months
of history and the best error filters achieves real-time performance
(Figure 12) with fare and duration errors of under S$ 0.90 (Fig-
ure 15) and 2 1

2 minutes (Figure 16) respectively. We also found
that i) a more efficient (Figure 11) static approach may not be suf-
ficient due to serious data spareness issues and low hit rates (Fig-
ures 4 and 5), and that ii) domain-specific factors that affect pre-
diction accuracy, such as indirect routing (Section 5.5.1) and rain
(Section 5.5.2), need to be identified and mitigated.



6. DISCUSSION

6.1 Deployment in a Real Environment
Our dynamic zoning solution has been installed at the taxi opera-

tor’s site. This section describes the process, challenges and lessons
learned from this real-world deployment.

Real systems have many non-uniform parts: We quickly learned
that the IT systems used in transportation companies tend to be a
mix of systems from different vendors. As such, our system had to
be modified to operate seamlessly in this mix-and-match environ-
ment. For example, we needed a separate data collection module to
integrate with the operator’s live data feed and a separate web ser-
vice component to output our results into the operator’s call centre
system (for dissemination to customers and booking call operators).

Integrating the user: Our system predicts the expected fare and
time of a trip. However, as stated earlier, the average fare error
can be up to 1 S$ and the time error up to 3 minutes. Should
these errors be shown to the end user? If so, how? In consul-
tation with the operator, we decided to tell the customer that the
predicted fare/time would likely fall between just two values; 1)
the predicted value and 2) the predicted value + the average error.
The operator felt that this was best as customers would probably be
happy about lower-than-expected fares and times but get annoyed
about higher-than-expected fares and times.

Real-world deployments take time: It has taken about 6 months
to deploy one version of our system. This was much longer than we
expected as the process involved code-reviews and deployments to
multiple test environments before deployment to the live environ-
ment. For example, we were first given access to a small test server,
then given access to a sand boxed development server (after pass-
ing a code review), and finally given access to the secure production
server after another code review. We have since realised, from talk-
ing to colleagues at various industry research labs, that this process
is fairly typical.

Live environments are not easily changed, accessed, or instru-
mented: The currently deployed system is an older version that
does not have the error filters described in Section 5.5, as each new
version needs to be approved before it can be deployed and this
takes time (weeks or even months). We are currently getting our
latest version approved. In addition, all results in this paper were
generated from tests conducted in our research lab and not at the
operator’s site because (1) we had to physically visit the operator’s
data centre to access the production servers — offsite access was
not possible, and (2) we could not instrument the code on the pro-
duction server as the operator did not want our instrumentation to
slow down their production environment in any way. These reasons
also turned out to be fairly typical.

6.2 Applicability to Other Domains
The solutions presented have a few domain-specific components

(e.g., the distance metric in the nearest neighbour search and the
specific error filters used). However, beyond those components,
the various algorithms should be applicable to other problems in the
transportation space that involve finding patterns in a large body of
data. Indeed, we plan to apply the same techniques to other trans-
portation problems such as scheduling bus routes, and planning an
optimal driving route for a courier delivery service.

7. RELATED WORK
Our work shares similarities with and draws inspiration and ideas

from prior work in two different areas: (1) systems work focusing
on various aspects of transportation networks such as traffic analy-

sis, privacy preservation, and ad-hoc network creation, and (2) prior
analytical work on taxicab and transport networks.

Systems Research. Our work is most closely related, at least
data-wise, to the analysis performed by Liao [18]. In particular,
he used similar GPS data from a Singaporean taxi operator for his
analysis. However, our work extends into areas (such as passenger
demand prediction) that were not previously tackled. Min et. al [19]
also used taxi data coupled with real-time traffic information (from
pressure sensors under the road and traffic cameras) to create a pre-
dictive traffic model for Singaporean roads. Our work looks at a
different aspect of the same data.

Our work is also similar to prior traffic behaviour analysis; in-
cluding both deployed commercial traffic monitoring and intelli-
gent routing systems such as Inrix [14], Intellione [15], Onstar [21],
and TeleNav [26] as well as research systems. For example, Yoon et
al. [30] use a combination of vehicles equipped with GPS technol-
ogy plus low-bandwidth cellular updates to dynamically estimate
street traffic. Cayford and Johnson [4], Chen and Chien [5], Turner
and Holdener [29], also provide solutions for determining traffic
conditions using vehicles as probes. Our work uses similar tech-
niques but differs in at least one of these attributes: (a) the domain
(taxi network), (b) the specific analysis (trip information), and (c)
the volume of data analysed (21 months of data).

Looking a little further upfield, our work can be neatly comple-
mented by the ongoing research in track tracing and privacy preser-
vation of traffic and location information. For example, Gruteser
and Grunwald’s [10] work in maintaining anonymity in location-
aware systems, Hoh et. al’s work on anonymising real-time traffic
updates [12] and GPS traces [13], and the StarTrack [11] system
that might allow us to use, in computationally efficient ways, the
taxis’ location data in our prediction models.

Analytical Models. There is a substantial amount of prior work
in developing analytical models of transport networks and taxicab
markets in particular. For example, in the area of traffic signal opti-
misation, Dresner and Stone presented schemes to (a) allow emer-
gency vehicles to go through signal junctions faster [8], and (b) to
improve general throughput at intersections [9]. Separately, Baz-
zan [1] and Oliveira et. al [6] showed that it is possible to effec-
tively control a series of distributed traffic signals. Finally, Tumer
and Agogino [28] showed that agents could be used to dynamically
reduce congestion in an air traffic network.

In addition, economic principles have been used by Beesley [2],
and Schroeter [23] explain the theoretical underpinnings of the taxi-
cab market. These theories and models have provided solid theoret-
ical insights, but estimating and testing them has been difficult due
to a lack of empirical data. Schaller [22] helps address this short-
coming by assembling a data set based on taxi meter and odometer
readings that the New York City Taxi and Limousine Commission
collects in its periodic inspections of New York taxicabs. Our work
complements these prior analytical studies. In particular, we hope
to (a) use the techniques developed in these studies to aid our anal-
ysis, and (b) provide real-world data for theoreticians to develop
even better traffic models.

8. CONCLUSION AND FUTURE WORK
This paper describe the design, testing, iterative improvements,

and real-world deployment of a real time trip information system
for providing passengers with accurate predicted taxi fares and trip
times that is accurate, fast, and can run on commodity server hard-
ware. This process made us re-learn many of the systems building
“rules of thumb”, namely: (a) reducing the data size through ag-



gregation and smart filtering is essential to real-time performance
on commodity hardware (especially with hundreds of millions of
records), (b) real world data needs to be cleaned before use, (c)
avoid the seduction of complexity — simple algorithms are fre-
quently good enough and make it much easier to debug problems
(especially when the output contains millions of records), (d) proper
partitioning of large amounts of data is vital to achieve both runtime-
efficiency as well as a high hit-rate, (e) don’t optimise prematurely
— once you know what you need, you can develop specific simple
solutions, using smart data structures, that allow better runtime per-
formance, and (f) deploying a research prototype into a real produc-
tion environment requires far more work than we naively expected.
We hope these observations will prove useful in reducing the sys-
tems building time for other researchers and developers.
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