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Abstract— Proliferation of mobile applications in unpredictable and
changing environments requires applications to sense and act on changing
operational contexts. In such environments, understanding the context of
an entity is essential for adaptability of the application behavior to chang-
ing situations. In our view, context is a high-level representation of a user
or entity’s state and can capture activities, relationships, capabilities, etc.
Inherently, however, these high-level context measures are difficult to sense
directly and instead must be inferred through the combination of many
data sources. In pervasive computing environments where this context is of
significant importance, a multitude of sensors is already being embedded in
the environment to provide streams of low-level sensor data about the en-
vironment and the entities present in that environment. A key challenge in
supporting context-aware applications in these environments, therefore, is
supporting energy-efficient determination of multiple (potentially compet-
ing) high-level context measures simultaneously using data from low-level
sensor streams. In this paper, we first highlight the key challenges that
distinguish the multi-context determination problem from single context
determination and then develop our framework and practical implementa-
tion to account for them. Our model captures the tradeoff between the ac-
curacy of estimating multiple context measures and the overhead incurred
in acquiring the necessary sensor data. Given a set of required contexts to
determine, we develop a multi-context search heuristic to compute both the
best set of sensors to contribute to context determination and parameters of
the sensing tasks. Our algorithm’s goal is to satisfy the applications’ spec-
ified needs for accuracy at a minimum cost. We compare the performance
of our heuristic approach with a brute-force approach for multi-context de-
termination. Experimental results with SunSPOT sensors demonstrate the
potential impact of this approach.

I. INTRODUCTION

The integration of sensor networks into pervasive computing
is enabling detailed monitoring of the network, the environment,
and individuals (users) in the environment. This increase in
sensing capability opens the question of how to efficiently and
reliably convert streams of low-level sensed data into high-level
abstractions called contexts. As just one example in this vast
application space, remote medical monitoring, especially of el-
derly individuals and chronically ill patients, is widely perceived
as a vital component of future health-care. Using automated and
rich analytics to extract medically significant events from raw
sensor data, remote monitoring can transform both the quality
and cost of health-care delivery. In particular, we are already be-
ginning to witness commercial activity centered on remote mon-
itoring within “smart assisted-living homes,” using a combina-
tion of body-worn medical and non-medical sensors (e.g., SpO2

monitors and accelerometers) and in-situ sensors (e.g., thermal
and motion detectors embedded in the home) [1].

Energy-efficient operation is critical in pervasive computing
environments. Communication and energy are inherently in-
tertwined, as communication is one of the most energy-costly
tasks performed in pervasive computing networks. Given the

need to collect information from sensors embedded in pervasive
computing environments, a promising approach for reducing the
communication overhead relies on understanding the degrees of
inaccuracy and imprecision that applications in these environ-
ments can tolerate. That is, as one example, we would like
to enable sensors to change the ways in which they report in-
formation (specifically, reducing the frequency with which they
communicate sensed data) if the application using those data
can tolerate the change. Different applications require their con-
text measures to be estimated to provide varying levels of accu-
racy (i.e., statistical confidence). Therefore, these context-aware
pervasive computing environments require an approach that can
dynamically relate applications’ tolerances of imprecision to pa-
rameters for determining the behavior of the underlying sensor
streams.

Pervasive computing environments typically contain many
sensors of different types contributing to the determination of
the same high-level context measure, albeit with differing de-
grees of accuracy. Multi-modal sensing, or the fusion of these
disparate data streams to infer a single context metric, is an im-
portant method for context recognition in that it can help to ac-
count for the error of individual sensing stream [2]. Two addi-
tional observations further drive our work: 1) the accuracy of
inferred context increases with the use of a progressively larger
sensor set, and 2) there is tradeoff between the energy overhead
of sensing and the achievable quality of the sensed data. The
quality of the inferred context is a function not just of the cho-
sen sensors but also of the permitted inaccuracy in the sensed
values. Using these observations, we have defined Quality-of-
Inference (QoINF) as the error probability in estimating a con-
text state, given the imprecision in the values of the contributing
sensors. In our previous work [12], we have formally related an
application’s specified QoINF value for a given context metric
to both the set of sensors used to infer that metric and the im-
precision allowed in each sensor in the set. We refer to the latter
as the sensor’s tolerance range. A tolerance range based ap-
proach allows us to transform data collection from the conven-
tional sink-initiated polling data collection into a more energy
efficient source-initiated event driven framework. Specifically,
a sensor with a specified tolerance range reports new values to
the sink only if they deviate from the previously reported value
by more than the specified tolerance. It has previously been
shown that a larger tolerance can result in a significant reduc-
tion in communication cost [14].
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Fig. 1. Impact of Choice of Different Sensor Subsets on QoINF (no considera-
tion of tolerance range)

To demonstrate the interdependency among sensor selection
streams in the multi-context recognition problem, we use an ex-
ample from an Ambient Assisted Living (AAL) environment, as
shown in Fig. 1. For example, in isolation, the single context
moving person can be determined to 94% accuracy using the fu-
sion of two sensor streams: accelerometer and ultrasonic. How-
ever, when the same system is asked to simultaneously deter-
mine the context lying on bed, the force sensitive resistors (FSR)
is best used to aid in determining the new context, while moving
person can be determined through combining the accelerometer
and FSR, albeit at the reduced accuracy of 92%. As this ex-
ample demonstrates, individual solutions to the single context
optimization problem may not be the same solutions when we
consider the joint determination of multiple contexts when the
underlying sensor streams are shared. Fig. 1 does not explic-
itly relate the sensors’ tolerance ranges to the achieved quality
of context determination. These tolerance ranges add another
dimension to this problem. In this example, however, it is easy
to see that the estimation of the moving person context will be
less accurate in both cases if the accelerometer sensor tolerance
range is ±40% (indicating that the true reading may be up to
40% higher or lower than the reported value) as opposed to a
tolerance range of ±10%.

Our contributions in this paper build on the foundation of our
previous formalization [12] of minimum-cost context informa-
tion using a generic function that captures the relationship be-
tween QoINF and the set of sensors (and their assigned toler-
ance ranges) as reviewed in Section II. Specifically, we make
the following novel contributions (described in Section III) and
its practical evaluation (presented in Section IV):

• We formalize the problem of multi-context estimation to
address the inevitable variety of context streams available
in emerging applications.

• We design a low-complexity Lagrangian-based heuristic
algorithm to approximate the selection of the best set of
sensors and the appropriate tolerance ranges to maintain
the specified QoINFs for the multiple contexts simultane-
ously at a minimum cost.

• We develop and evaluate a practical method for the QoINF
functions for multi-context estimation and empirically
demonstrate the applicability of the approach.

To evaluate our approach, we articulate a brute-force algorithm
for multi-context optimization and compare its time complex-
ity with our heuristic. We further compare the two approaches
using statistical regression. We demonstrate how a QoINF func-
tion can be computed in practice, lending support for incorporat-
ing intelligent adaptation of context quality for conserving en-
ergy expense in real world pervasive computing environments

(Section IV). We provide a discussion of issues related to our
model (Section V) and other related work (Section VI), followed
by the conclusion (Section VII).

II. CONTEXT INFERENCE MODEL

We begin with an overview of model of QoINF, that we de-
veloped in our prior work to determine a single context variable
from multiple underlying sensor streams [12]. The work in this
paper extends this to support more challenging multi-context
recognition based on multiple underlying sensing streams. In
either of the single or multi context estimation problems, de-
termination of a specific context attribute may be viewed as an
inference obtained by fusing the values from multiple sensor
streams.

A. Uncertainty in the Tolerance Ranges

The model of context inference and associated QoINF func-
tions can capture complex relationships between context infer-
encing quality and the choice of sensors used to infer that con-
text. Such a model does not, however, completely capture the
benefits that can be garnered from using continuous event-driven
monitoring as described in our problem statement. In event-
driven monitoring, sensors can be assigned tolerance ranges, al-
lowing them to only report changes that fall outside of the tol-
erance range. Given different tolerance ranges for a variety of
sensors, different sensors’ values may be known to different de-
grees of precision. Previous work has demonstrated that one
may achieve a significant reduction in the communication and
energy overheads of sensing by providing small non-zero toler-
ance ranges to individual sensors [3], [6].

Let Qθ = {q1, q2, . . . , qθ} be the collection of tolerance
ranges for the selected sensor subset θ, used to infer a single
context metric independently. We represent the error associated
with this choice of sensors through the following modified de-
pendency relationship, which explicitly relates our QoINF func-
tion to the choice of not just the sensors but also Qθ, the permit-
ted inaccuracy in the value of each sensor:

QoINFC(θ, Qθ) = 1−
∑

x∈ΛC

errC(x, {(si, qi) : si ∈ θ, qi ∈ Qθ}) (1)

where errC(.) is the probability of error, given accurate read-
ings from the sensor subset θ and tolerance range qi, when the
value for the context variable C is actually x. Note that this for-
mulation computes the average error, summing across all pos-
sible values of the context variable C. This implicitly assumes
that all context states are equally likely.

B. Cost Model

One of our primary objectives is to reduce the total energy
consumption due to communication in the pervasive computing
network, while ensuring the application’s minimum QoINF (.)
bound for a given context metric. The cost incurred in acquiring
one of the sensor streams needed to update the context variable
is basically a function of both the sensor si’s tolerance range (qi)
and the multi-hop transmission cost from the sensor to the sink.
We assume that this cost is a linear function of the number of
hops (hi) in the uplink path from sensor si to the sink, given a
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network in which links have identical transmission power. In-
tuitively, the cost and tolerance range should be inversely re-
lated: if the tolerance range is large, it is less likely for a value
to fall outside the permitted range, making communication less
frequently necessary. In the absence of any temporal correla-
tion among sensor’s samples, we assume the underlying data
samples evolve as a random walk, and the cost ∝ hi

q2
i

[6]. In
this case, the resulting cumulative cost function for the set of
selected sensors, θ, is given by: COST (θ, qθ) = κ

∑
si∈θ

hi

q2
i

,
where κ is a scaling constant and hi is the hop count.

C. Choice and Characteristics of a QoINF Function

While a completely arbitrary QoINF (.) function requires a
brute-force search for a solution, there are certain forms of
QoINF (.) that prove to be more tractable and lend themselves
to more efficient optimization heuristics. A particularly attrac-
tive case occurs when the ith sensor’s individual qoinf (.) is rep-
resented by an Inverse-Exponential distribution of the form

qoinf (i) = 1−
1

νi
exp(

−1

ηiqi
) (2)

where ηi and νi are sensitivity constants for sensor si. A larger
value of νi indicates a lower contribution from sensor si to the
inference of context C. Moreover, for a selection of sensors θ,
the resulting QoINF (.) function is modeled as:

QoINFC(θ) = 1−
∏
si∈θ

(1− qoinf C(i)) (3)

This formulation assumes that the estimation error of each sen-
sor is statistically independent of the others. The above equation
satisfies three of the key properties a QoINF (.) function must
have: (i) the value of the function always falls between 0 and 1;
(ii) QoINFC() is non-decreasing in θ in the sense that, incorpo-
rating data from an additional sensor does not lead to a reduced
QoINF value; and (iii) as a sensor’s tolerance range increases
towards infinity, the quality of the contribution of that sensor
decreases towards 0. As shown in Fig. 1, the context of lying on
bed may be computed with an inferencing accuracy of 0.9 (i.e.,
with a 10% error rate) using data from FSR sensor, but only
with 0.7 accuracy using data from a high-quality accelerome-
ter sensor. However, by fusing the data available from FSR and
accelerometer, we can achieve an inferencing accuracy of 0.97
(1− [(1−0.9)× (1−0.7)])(i.e., only a 3% error rate, calculated
based on Eqn. 3).

III. JOINT OPTIMIZATION OF MULTIPLE CONTEXTS

Pervasive computing environments that support multiple
context-aware applications entail multiple needs for context in-
formation, necessitating simultaneous determination of multiple
context metrics from shared underlying sensor streams. Recog-
nizing multiple contexts simultaneously from underlying sensor
data streams requires selection of the best subset of the sensors
along with their optimal tolerance ranges in a way that satis-
fies the applications’ QoINF functions for each of the needed
context metrics with a minimum incurred overhead. As sensor
networks become ubiquitous, they will increasingly be treated
as a platform for multi-modal sensing for multi-context recog-
nition problems. This diverges from the current paradigm of

designing an individual context recognition framework from a
specified set of sensors. However, sharing the same set of sen-
sors across multiple contexts may result the reduction of an in-
dividual context metric’s QoINF accuracy (in comparison to the
QoINF that is achievable for that context metric in isolation).
To gain a deeper understanding, we formalize the simultane-
ous determination of multiple contexts as a multi-objective op-
timization problem. In particular, we propose a linear time sen-
sor selection multi-context search heuristic algorithm to com-
pute the best set of sensors to be chosen and their associated
tolerance ranges. We also outline a brute-force algorithm for
multiple context recognition and compare the time complexity
to our heuristic.

A. Multi-Context Optimization Problem

Given a set θ of sensors, the optimization problem for a sin-
gle context variable is to choose the sensor data values of q1,
q2, . . . , qθ, that, when used together to infer the value of a
context variable C, minimize the total cost while ensuring the
application-specified minimum accuracy level of QoINF:

min COST (θ, qθ) subject to: QoINFC(θ) ≥ QoINFmin

The above joint optimization of (θ, qi) applies to the efficient de-
termination of a single context variable C, which we have inves-
tigated in [12]. Considering the problem of simultaneously de-
termining l separate context variables, {C(1), C(2), . . . , C(l)},
we propose the following Lagrangian Optimization problem:

minimize
∑
si∈θ

hi

q2
i

+
L∑

l=1

λl

[
QoINFC(l)(q1, q2, . . . , qθ)

−QoINF l
min

]
(4)

There are different sensitivity constant values νil and ηil for
each of the context l being sensed as each context has a different
sensitivity to the tolerance range of a sensor si. As the tolerance
range qi is identical across all contexts, a sensor will report only
when its new value diverges from the previous value by qi. If
the individual QoINFC(i)(.) functions have the inverse expo-
nential form, then the collective optimum values of {qi}may be
explicitly computed, as shown below. Considering the QoINF
functions for all of the context metrics are the same but with
different sensitivity constant values, we get:

minimize
∑
si∈θ

hi

q2
i

+
L∑

l=1

λl

[
1−

∏
si∈θ

[
1
νil

exp(
−1
ηilqi

)]

−QoINF l
min

]
(5)

Lemma 1: If the QoINF (.) functions for the set of l con-
texts and the set of sensors θ satisfies Equations (2) and (3),
then the optimal choices of qi that minimize the cost function
for context l follow the relationship:

2h1
q2
1∑L

l=1

[
log(1−QoINF l

min) + log(ν1l)
] −

2h1
q2
1∑L−1

l=1

[
log(1−QoINF l

min) + log(ν1l)
] =
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2h1
q2
1

+ 2h2
q2
2∑L

l=1

[
log(1−QoINF l

min) + log(ν1l) + log(ν2l)
] −

2h1
q2
1

+ 2h2
q2
2∑L−1

l=1

[
log(1−QoINF l

min) + log(ν1l) + log(ν2l)
] = . . .

=
2h1
q2
1

+ 2h2
q2
2

+ . . . + 2hθ

q2
θ∑L

l=1

[
log(1−QoINF l

min) +
∑

log(νθl)
] −

2h1
q2
1

+ 2h2
q2
2

+ . . . + 2hθ

q2
θ∑L−1

l=1

[
log(1−QoINF l

min) +
∑

log(νθl)
] (6)

and the optimal value of qi (the tolerance range to assign to sen-
sor si ∈ θ) across all contexts is given by:

q̂i =
hi ∗

[∑
l∈L

∑
si∈θl

1
hi∗ηil

]
∑

l∈L

[
log(1−QoINF l

min) +
∑

si∈θl
log(νil)

] (7)

and the minimal cost to achieve the specified inference accuracy
using these qi is:

̂COST (θ) =

(∑
l∈L

[
log(1−QoINF l

min) +
∑

si∈θl
log(νil)

])2∑
l∈L

∑
si∈θl

1
hi∗η2

il

(8)
Proof: Proof of Lemma 1: The multi-context optimiza-

tion problem can be stated as:

min
∑
si∈θ

hi

q2
i

subject to L different constraints, where the lth constraint is:

1−
∏
si∈θ

1
νil

exp(− 1
ηilqi

) ≥ QoINF l
min (9)

Taking the logarithm of each constraint and setting up the La-
grangian, we obtain:

∑
si∈θ

hi

q2
i

+
∑
l∈L

λl ∗

(
log(1−QoINF l

min) +
∑
si∈θ

log(νil)

+
∑
si∈θ

1
ηilqi

)
(10)

Taking derivative of these with respect to each qi, we get:∑
si∈θ

2hi

q3
i

+
∑
l∈L

∑
si∈θ

λl

ηilq2
i

= 0 (11)

which yields:

qi =
2hi∑
l∈L

λl

ηil

. (12)

Further taking derivatives of the Lagrangian with respect to
λl, we have:

∑
l∈L

(
log(1−QoINF l

min) +
∑
si∈θ

log(νil) +
∑
si∈θ

1
ηilqi

)
= 0.

(13)

In order to derive the values of qi, we solve together the set
of L equations. (Eqn. 13) and set of |θ| equations. (Eqn. 11).
Rewriting Eqn. (11) as follows:∑

si∈θ

2hi

q2
i

+
∑
l∈L

λl

∑
si∈θ

1
ηilqi

= 0 (14)

and replacing
∑

si∈θ
1

ηilqi
using Equation (13), we get:

∑
si∈θ

2hi

q2
i

−
∑
l∈L

λl

(
log(1−QoINF l

min) +
∑
si∈θ

log(νil)

)
= 0

⇒
∑
l∈L

λl =

∑
si∈θ

2hi

q2
i∑

l∈L

(
log(1−QoINF l

min) +
∑

si∈θ log(νil)
)

For the base case when λ = 1,

λ1 =

∑
si∈θ

2hi

q2
i

log(1−QoINF 1
min) +

∑
si∈θ log(νi1)

(15)

Similarly for λ2,

λ2 =
2∑

l=1

λl −
1∑

l=1

λl

λ2 =

∑
si∈θ

2hi

q2
i∑2

l=1

(
log(1−QoINF l

min) +
∑

si∈θ log(νil)
)

−

∑
si∈θ

2hi

q2
i

log(1−QoINF 1
min) +

∑
si∈θ log(νi1)

...
and for λL,

λL =
L∑

l=1

λl −
L−1∑
l=1

λl

λL =

∑
si∈θ

2hi

q2
i∑L

l=1

(
log(1−QoINF l

min) +
∑

si∈θ log(νil)
)

−

∑
si∈θ

2hi

q2
i∑L−1

l=1

(
log(1−QoINF 1

min) +
∑

si∈θ log(νi1)
)

In addition to finding the minimum cost for a given θ, we also
need to determine the best subset of sensors, θ, that minimizes
the overall update cost across all the contexts. Clearly, one
brute-force approach is to iterate through all possible combina-
tions, computing ̂COST (.) for each combination of sensors for
all contexts.
B. Brute-Force Sensor Selection for Multiple Contexts

Fig. 2 presents the brute-force algorithm for multiple con-
texts. The brute-force algorithm forms all possible combina-
tions of sensors from the set S (i.e., it generates the power
set of S). The algorithm iterates over all the contexts starting
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Procedure Brute Force Multi Fusion (input set S, QoINF l
min

∀ l = (1, . . . , L))

1. Initialize empty set of sensors; θ = φ; ̂COST (θ) = 0;
MinCost(l) = ∞;

2. Find the power set of S //Assume θ ⊆ P(S)
3. For (i = 1; i < |P(S)|; i + +)
4. For (l = 1; l <= L; l + +)

5. Compute the update cost ̂COST (θ) for QoINF l
min

6. if ( ̂COST (θ)−MinCost(l)) < 0
7. MinCost(l) = COST (θ).
8. End-For
9. End-For

10. return {θ, ̂COST (θ)}.

Fig. 2. Sensor Set Selection Brute Force Algorithm for Multiple Contexts

from a specific combination of sensors to determine its cost and
application-specified QoINF satisfiability. In this way, it deter-
mines the the minimal possible cost ( ̂COST (.)) with a particu-
lar subset of sensor which might be good for a subset of con-
texts. But our goal is to determine an unified set of sensors
across all the contexts simultaneously with the minimal cost and
achievable QoINF l

min. We repeat this for all combinations of
sensors and find out the optimal update cost ̂COST (θ) and the
optimal subset of the sensor θ which hold across all the con-
texts. However, because this brute-force search is excessively
inefficient for determining the best subset of sensor in practical
settings, we have developed a selection heuristic for multiple
contexts.

C. Sensor Selection Heuristic for Multiple Contexts

Here we propose a selection heuristic for multiple contexts
{C(1), C(2), . . . , C(L)}. The heuristic is based on the observa-
tion that the additional cost (based on Eqn. 8) of adding a sensor
si to an existing set θ is dependent on the term log2(νil)∗hi∗η2

il.
This can be derived from Eqn. (8) by considering the limit-
ing case of the QoINF l

min value. This term can be gener-
alized so that each sensor can have a different sensitivity and
hop count factor for each context C(l); ∀ l = (1, . . . , L) as[
log2(νil) ∗ hi ∗ η2

il

]
; that is we can allow each sensor to be in

a different distance from each of the l context fusion centers,
and we can account for the fact that decreased quality in an in-
dividual sensor stream can have different degrees of impact on
the determination of different contexts. Since a lower value of
this term indicates a greater preference for selecting a sensor,
the selection heuristic sorts the available sensor set S in ascend-
ing order of this term for each context generating L sorted lists,
<. Our goal is to incrementally select a subset of sensors, iter-
atively considering additional context metrics and adjusting the
selected set to continue to satisfy the growing set of considered
context metrics. We first select a single context metric (C(1))
and find the subset of sensors from S such that C(1)’s QoINF
function can be satisfied with least cost. We then incremen-
tally consider additional context metrics (i.e., C(2) is considered
next) and determine whether the set of sensors selected for de-
termining C(1) can also satisfactorially determine C(2). If not;
sensors are added to the selected set, enabling determination of
the newly added context metric given its QoINF function at the
least cost. This process continues until all of the contexts have
been considered. Fig. 3 shows the pseudocode for this search
heuristic for multiple contexts.

Procedure Heuristic Multi Fusion (input set S, QoINF l
min

∀ l = (1, . . . , L))
1. Initialize empty set of sensors; θ = φ; MinCost(l) = ∞;
2. Sort the sensor set S into a list <l, ∀ l = (1, . . . , L) in

increasing order of sensitivity log2(νil) ∗ hi ∗ η2
il

3. For (l = 1; l <= L; l + +)
4. For (i = 1; i <= |S|; i + +) // cardinality of set S
5. θ = θ + <l(i); //set-theoretic addition
6. For (l = l + 1; l <= L; l + +)
7. <l = <l − θ; //set-theoretic substraction

8. Compute the optimal update cost ̂COST (θ)

for QoINF l
min

9. if ( ̂COST (θ)−MinCost(l)) > 0 OR below threshold
10. break;

11. else MinCost(l) = ̂COST (θ).
12. End-For
13. End-For
14. End-For

15. return {θ, ̂COST (θ)}.

Fig. 3. Sensor Set Selection Heuristic Algorithm for Multiple Contexts

D. An Example and Computational Complexity
To understand our proposed algorithm and its time complex-

ity we consider a simple example. Consider a set of five sensors
S = {1, 2, 3, 4, 5} used to determine three different contexts
C(1), C(2) and C(3);∀l = (1, . . . , 3). Our goal is to determine
the subset of sensors that minimizes the overall update cost. We
sort the set of available sensors based on

[
log2(νil) ∗ hi ∗ η2

il

]
and generate three different lists (one for each context) as fol-
lows: RC(1) = {1, 2, 4, 5, 3}; RC(2) = {5, 4, 3, 2, 1} and
RC(3) = {3, 2, 4, 1, 5}. For list RC(1) assume the optimal
choice of sensor set θ is {1, 2} with minimum cost, these two
sensors together can achieve the specified QoINF, and includ-
ing any more sensors increases the update cost. After selecting
sensor 1 and 2, we want to see what other sensor we need to add
to the sensor set (if anything) to satisfy context C(2) with the
required QoINF accuracy. In each step we exclude the already
chosen sensor from rest of the lists and thus in this case gener-
ate new list R

′

C(2) = {5, 4, 3} and R
′

C(3) = {3, 4, 5} with fewer
sensors, remaining that are available to support these additional
context metrics. Considering the modified next list R

′

C(2), as-
sume we have optimal set θ as {1, 2, 5} with minimal cost. So
the new list R

′′

C(3) becomes {3, 4}. Considering R
′′

C(3), assume
we have the optimal sensor set θ = {1, 2, 5, 3} with minimal
cost. This example clearly states how our heuristic works with
a linear running time. Thus the time complexity of the heuristic
is O(n).

In contrast, in the case of the brute-force search algorithm,
we have to iterate over the power set of S, which, in this ex-
ample, contains 25 − 1 elements, across three different contexts
C(1), C(2) and C(3). Starting from a singleton sensor set we
assume that sensor set {1, 2} is good for context C(1), but not
satisfactory for context C(2) and C(3) simultaneously. After
iterating all set of three sensor across all contexts we find sen-
sor set {1, 2, 5} simultaneously satisfies context C(1) and C(2),
but not context C(3) with the required conditions. Next iterating
all combinations of four and five sensor across all contexts, we
find out optimal sensor set θ = {1, 2, 5, 3} which holds across
the three contexts with minimal cost and satisfies QoINF accu-
racy. Obviously, the time complexity of the brute force algo-
rithm grows exponentially as the number of sensors increases.
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IV. EXPERIMENTAL SETUP AND RESULTS

To empirically examine the validity of our approach and un-
derstand the interplay between tolerance ranges ({qi}) and in-
ferencing error, we have experimented with SunSPOT sensors
(Sun Small Programmable Object Technology devices [13]. The
SunSPOT sensor board contains a 3-axis accelerometer, a light
sensor, and a temperature sensor. For our studies, we have uti-
lized readings from the accelerometer (to estimate motion and
orientation), light sensor, and a Dual-axis Mems Gyro sensor
to characterize multiple contexts (in this case sitting, walking
and running). Fig. 4 shows the gyro sensor on the left and the
wiring of the gyro with the SunSPOT sensor board on the right.
We used this setup to evaluate a medical monitoring application
that infers a patient’s activity using a variety of sensor types.

A. Empirical Determination of Multiple Contexts

We used the SunSPOT’s accelerometer to measure the tilt of
the SunSPOT (in degrees) when the individual user was in three
different context states: sitting, walking and running. From the
collected samples, we computed the 5th and 95th percentile of
the tilt readings corresponding to each state. Table I shows the
resulting ranges in the accelerometer tilt readings observed for
each of the three states. Such results indicate that there is in-
deed an observable separation in the ranges of the tilt values
for the three different states. This suggests that the states can
be distinguished with reasonable accuracy even under moderate
uncertainty in the sensor’s readings.

TABLE I
CALIBRATED ACCELEROMETER SAMPLE VALUES

Range (5th − 95th percentile) Context
of Tilt Values (in degree) State

85.21 to 83.33 Sitting
68.40 to 33.09 Walking

28.00 to−15.60 Running

Similarly, we used the SunSPOT light sensor to measure the
light levels for different contexts. Intuitively, low values of light
intensity may indicate a sleeping state, while higher values are
likely to result in the active state. Table II shows the observed
ranges for light values for these two states. The accuracy of
context from the light sensor is, however, much lower, as users
may often be inactive (e.g., sitting) in the light. We have also

TABLE II
LIGHT SENSOR SAMPLE VALUES (LUMEN)

Average Range of Light level (lumen) Context State
LightSensor.getValue() = 10 to 50 Turned on→ active

LightSensor.getValue() = 0 to 1 Turned off→ sleeping

used the external gyro sensor to measure the variation of the
rate of angular rotation when the user is walking (active), or
sitting or sleeping (inactive). As the gyro is quite sensitive, we
use a calibration function to measure the average angular rate
variation range for both the active and inactive states, as shown
in Table III.

B. Methodology

We emulated an activity monitoring scenario deployed by
wellness management professionals to monitor the daily activ-
ities of a user on real collected traces from SunSPOT wire-
less sensors. The application specifies a quality-of-inference

TABLE III
GYRO SENSOR SAMPLE VALUES

Average Angular Rate of Rotation (degs/sec) Context State
X-Rotational Variation (Xout) = 150 to 350 Walking
Y-Rotational Variation (Yout) = 150 to 350 → active

X-Rotational Variation (Xout) = 2 to 8 Sitting
Y-Rotational Variation (Yout) = 2 to 8 → inactive

accuracy, exercising our context inference and QoINF mod-
els. We recruited participants and instrumented them with
SunSPOT sensors whose data was logged onto a laptop through
a SunSPOT base station. We mounted the sensor on the wrist
of each individual participant. To study the potential impact of
our approach, we collected initial traces for the SunSPOT mo-
tion, light, and gyro sensors for five users, who engaged in a mix
of three activities (sitting, walking and running) for a period of
three days. Our users were all adults with no known serious
medical conditions but with differing levels of physical fitness.
We then used an emulator to mimic the samples that a sensor
would have reported given the trace and a given q and compared
the context inferred from the values reported by the emulation
against the ground truth. This trace-driven event-based approach
allows us to make meaningful comparisons, as the uncontrol-
lable physiological and environmental variations would other-
wise make it impossible to obtain the exact same data stream
from two different sessions from the same user.

C. Role of Tolerance Range on Energy and QoINF Accuracy

To define the power consumption of SunSPOT sensors for
our application, we note the average power of the eSPOT board
(95 mA) and application daughter board (400 mA) in run mode
and wireless CC2420 radio transmission power (18 mA) [13].
Based on Eqn. (16) we find out the average power consumption
of each of the sensor for a specific communication frequency.

Power = Power of eSPOT board + Power of daughter board +
(Radio Transmission Power × Communication Frequency) (16)

Figure 5 shows the sensor power consumption and the corre-
sponding QoINF achieved (defined as 1 − error rate), for dif-
ferent values of the tolerance range (qm) for the motion sen-
sor. Fig. 6 and Fig. 7 plot the corresponding values versus
the tolerance ranges for the light and gyro sensor respectively.
As these figures demonstrate, in general there is a continu-
ous drop in the power consumption and the QoINF as q in-
creases, for all three types of sensors. However, as seen in
Fig. 5, for the motion sensor, the QoINF accuracy of ≈ 81%
is achieved for a q value of 20; moreover, using this toler-
ance range reduces the sensor power consumption by ≈ 63%
(3.65 × 104mA → 1.35 × 104mA). This suggests that it is
indeed possible to achieve significant savings in network en-
ergy expense, if one is willing to tolerate marginal degrada-
tion in accuracy. A similar behavior is observed in Fig. 6 for
the light sensor where q = 4 incurs a 5% loss in accuracy
vs. ≈ 62% (2.1 × 104mA → 0.81 × 104mA) reduction in
power consumption. However, as the difference between the
lumen ranges for Active versus Sleeping is only ≈ 10 (Ta-
ble II), increasing q beyond≈ 10 leads to a sharp fall in QoINF.
Similarly, for the gyro sensor results shown in Fig. 7, increas-
ing q leads to a decrease in power consumption though the
QoINF accuracy remains constant ≈ 49% after it crosses the
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Fig. 4. Single Chip Dual-Axis Gyro
Sensor with SunSPOT
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Fig. 5. Power Consumption & Accu-
racy vs. Tolerance for the Motion
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Fig. 6. Power Consumption & Accu-
racy vs. Tolerance for the Light

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3
x 10

4

P
o

w
e

r 
C

o
n

s
u

m
p

ti
o

n
 (

m
A

)

Tolerance Range (q
g
) in degrees/sec

0 50 100 150 200
30

35

40

45

50

55

6060

Q
o

IN
F

 (
%

)

Power Consumption

QoINF Accuracy

Fig. 7. Power Consumption & Accu-
racy vs. Tolerance for the Gyro

ranges for Inactive ≈ 8 . For q = 8, QoINF accuracy remains
≈ 49%, whereas power consumption got reduced to almost half
(3.0× 104mA → 1.6× 104mA).

From these results we can visualize the application of our
multi-context model properly. Consider an application speci-
fies QoINFmin as ≈ 80% and interested in recognizing all the
contexts like (sitting, walking and running) simultaneously with
an objective of reducing the energy cost as well. We can con-
clude that use of motion sensor would be a good choice in this
case with a tolerance range of q = 20 with an achievable QoINF
accuracy > 80% and with a cost (energy) reduction of ≈ 63%.

D. QoINF Accuracy & Sensor Overheads for Multiple Users

We also investigated the tradeoff between tolerance range and
QoINF for five users in our experiments. The goal was to study
the sensitivity of the tradeoff to individualized activity patterns;
we focused on results from a single sensor (the SunSPOT mo-
tion sensor). Once we collected the traces, we replayed them
through the emulator as before. In each session the five partic-
ipants were engaged in a mix of three different activities (sit-
ting, walking and running), again over the course of three days.
Figs. 8 and 9 depict the variation, across users, in the commu-
nication overhead and inferencing accuracy, respectively, as a
function of the tolerance range. There are clearly significant
differences (especially in the QoINF accuracy) across users; in
particular, user 2 has a much sharper drop in QoINF once the
tolerance range exceeds 40 degrees.

The figures suggest that personalization of the QoINF func-
tion might be an important step towards maximizing the ben-
efits of inference-quality aware sensing. However, even in the
absence of personalization, the benefits from quality-aware con-
text inference are significant. For example, if a tolerance range
of 20 is applied to all users, the lower bound of the accuracy
achieved is ≈ 71% (for User 3); at the same tolerance range,
the worst case (smallest) reduction in the reporting overhead is
observed to be ≈ 60% (for User 4).

E. Applicability of the Proposed Heuristic Algorithm

These initial results demonstrate that significant savings can
be achieved by relaxing the tolerance of each sensor without
compromising the accuracy of context estimation. To validate
and quantify these benefits, we apply our results to our formal
QoINF model. First we fit the QoINF (.) accuracy versus q
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Fig. 9. Accuracy vs. Tolerance
for Motion Sensor and Multiple
Users

curves from Figs. 5, 6 and 7 to the inverse exponential model
of Eqn. (2). After obtaining the best parametric fit (using a lin-
ear least squares regressor), we use the heuristic to compute the
q values for a target QoINFmin value and then use additional
traces to verify if this approach can provide the required accu-
racy.

We further compare the performance of our heuristic with
the brute-force search technique. Recall that, while this tech-
nique still uses the least-square estimator to first compute the
“best” inverse-exponential QoINF function, it uses an exhaus-
tive search over the 2n − 1 possible combinations (in this case
23 − 1 = 7 ) where n is the number of sensors to determine
the best QoINF vs. q tradeoff. Table IV shows the estimated
coefficients (ηi and νi) for each of the sensors for User 1, based
on the empirical data. We then use the heuristic and brute-force
algorithms to compute the optimal sensor set (θ̂) and associated
tolerance ranges Q(θ̂) that minimize the communication over-
head for a target QoINF.

TABLE IV
ηi AND νi VALUES OBTAINED BY CURVE FITTING

Sensor ηi νi

Motion 0.0512 1.8474
Light 3.6553 1.2288
Gyro 17.2512 1.8488

Fig. 10 compares the cumulative theoretical computational
cost of the heuristic and brute-force search methods to find the
minimum cost for different values of QoINFmin . The figure il-
lustrates that the heuristic solution always incurs lower cumula-
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tive computational cost than the brute-force search. It converges
much more quickly than the brute-force when the target QoINF
value is high or moderately high (≥ 0.6). At higher values of
QoINF, our heuristic search can result in a substantial decrease
in computational cost (about 97% for QoINF=0.9), compared to
the brute-force approach.

We also plot the minimum cost for heuristic and brute-force
search for different values of QoINFmin in Fig. 11 where the
brute-force minimum cost outperforms the heuristic in all cases
as it searches the entire search space to find the minimal cost.
We find this cost from Fig. 10, but here instead of cumulative
search cost we just plot the minimum cost point. Particularly,
we also note in our experiments, in case of heuristic the opti-
mal set θ remain as {motion} sensor until QoINFmin < 0.70
as the inclusion of other sensor incur an increase in cost. Be-
yond that it selects both motion and light sensors. Whereas in
case of brute-force at the minimum cost point, the optimal sub-
set of sensor θ remains {motion} sensor until QoINFmin ≤
0.50. The optimal set θ becomes {motion, light} when 0.50 <
QoINFmin < 0.70 and beyond that QoINFmin, optimal set θ
becomes {motion, light, gyro}.

More importantly, we compare the behavior of the two search
algorithms, in terms of their update overhead (cost) and their
ability to accurately attain the target QoINF objective at the
minimum cost. For this purpose, for a given QoINFmin, first
we calculate the tolerance range q for all sensors and the min-
imum cost point, followed by the determination of the optimal
subset θ associated with that minimum cost. Using the deter-
mined θ and individual q values, we find out the update over-
head. Fig. 12 plots the update overhead against that observed
empirically when the sensor data is subject to the θ, Q(θ) val-
ues suggested by the Heuristic or Brute-Force search algorithms.
Heuristic always stops if there is an increase in cost on adding
a sensor to θ, but brute-force keeps on adding sensor and com-
pares all the cost value to find the minimum one. Leveraging
all the options empower the brute-force to form a larger optimal
subset θ in comparison with the heuristic as we previously ob-
served. Thus brute-force update overhead becomes more than
the heuristic as shown in Fig. 12. Fig. 13 plots the empirically
observed QoINF values for the Heuristic algorithm verses the
target QoINF values. We can see that the heuristic approach is
able to approximate the target objectives fairly well; in particu-
lar, the inference accuracy observed by the heuristic is no more

than 5% lower than the target QoINF value. These plots provide
compelling evidence that a model-based, heuristic approach to-
wards QoINF-aware sensing can meet an application’s QoINF
objectives, while significantly reducing the sensor communica-
tion overhead and energy expense.

V. ONGOING WORK

In this section, we highlight the open issues with our pro-
posed model-based QoINF-aware sensing mechanism. We are
addressing these issues in our ongoing work.
A. Parametric Estimation of QoINF(.) Coefficients

One of the main challenges in the application of our suggested
formalism is the establishment of appropriate QoINFC(.) func-
tions for specific context variables. Indeed, much of the work
on utility-based context models has failed to achieve the de-
sired impact due to the difficulty of computing useful utility
functions. To overcome this challenge, we have used statisti-
cal regression to obtain the best coefficients for a pre-selected
QoINF (.) function from the empirically observed data. How-
ever, the appropriate initial choice of a suitable QoINF function
is itself an open question. While ideally, we would like a com-
mon QoINF function to model multiple sensor-to-context map-
pings, it is possible that the appropriate QoINF function be dif-
ferent for different contexts. Another challenge relates to how
to vary the tolerance ranges qi(.) to obtain the full specification
of the QoINF (.) function. In many pervasive computing envi-
ronments (e.g., medical contexts), it is necessary to ensure that
context estimation errors do not become too large. While oc-
casional errors in deducing certain contexts may be tolerable,
it is necessary to ensure that the errors do not occur at critical
times. Accordingly, we believe that incremental learning tech-
niques will be useful. Such adaptive techniques progressively
probe the state space of {qi} values, while ensuring that high
tolerance ranges for certain sensors are only specified when al-
ternative sensors are unlikely to provide the required accuracy.
B. Discussions

In the following we discuss some of the interrelated issues
and underpinnings of our QoINF-aware model.
Usability: The minimum QoINF level can be specified for a
particular application by the external stake holders such as well-
ness professionals. But based upon the situational requirements,
multiple optimization cycles can be triggered with a higher or
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lower QoINF level. This can be represented using traditional
database queries [3]. In the future we would like to investigate
active learning techniques and feedback control systems to make
this QoINF specification more dynamic and adaptive in nature.
Rationale of the Distribution: The basic premise behind our
QoINF distribution (i.e., the negative exponential) is to deter-
mine the optimal subset of sensors with their associated toler-
ance ranges. The choice of this distribution has been empiri-
cally validated with real traces using the curve-fitting approach
ensuring no less than 5% of targeted QoINF accuracy. Similar
work can be found in [10], where a decision fusion rule based
on counting policy has been proposed based on a Poisson sen-
sor distribution model. Another decision fusion algorithm for a
large scale sensor networks is formulated in [8], where statistical
dependence and independence of the sensors has been exploited.
Limitations: In our experiments, we collected data traces from
the users simultaneously being in multiple context states and
thus ran our emulator to determine the sensitivity factors using
QoINF and q curves through the least square regression tech-
nique. Thus we had only one set of sensitivity factors across all
the contexts for each sensor. We are currently collecting data for
each context state distinctly with a goal to determine the sensor
sensitivity factor associated with each context state separately.
We also intend to use a larger set of sensors to validate the pro-
posed algorithm.

VI. RELATED WORK

The tradeoff between communication overhead and the qual-
ity of reconstructed data was first studied in [11], which envi-
sioned the effect of tolerance ranges on the frequency of sink-
initiated fetching vs. source-initiated proactive refreshing. The
focus, however, was on snapshot queries and not on continu-
ally satisfying the QoINF bound of a long-standing subscrip-
tion. The idea of exploiting temporal correlation across succes-
sive samples of individual sensors for reducing communication
overhead for snapshot queries is addressed in [3], which used
training data to parameterize a jointly-normal density function.
While a precursor to our work, the focus there was on meet-
ing the QoINF requirements for a class of aggregation queries,
whereas we focus on arbitrary relationships between a context
variable and the underlying data. Entropy-based sensor selec-
tion heuristic algorithms are also proposed in [4], [9], [15]. In
these literature, an information theoretic approach is taken for
specific application scenarios, where the belief state of the target
value is gradually improved by repeatedly selecting the most in-
formative unused sensor until the required accuracy is achieved.
The CAPS algorithm [6] is designed for long-running aggre-
gation queries (such as {min, max}) and computes the optimal
set of tolerance ranges for a given set of sensors that minimizes
communication overhead while guaranteeing the accuracy of the
computed response. In contrast, our objective is to compute both
the best subset of available sensors and their tolerance ranges to
achieve the desired accuracy for arbitrary context variables.

QoI (quality of information) has been studied before within
the context of data collection and storage for database sys-
tems, with a focus on data consistency, completeness, currency,
etc [11]. However, the development of formal models of qual-
ity of information (or inference) has not been extensively ad-
dressed in the context of sensor-generated data streams. Recent

work [16] has suggested the use of specialized QoI models to
capture the accuracy of detecting transient events, given a set of
sensors. However, this approach does not focus on the optimal
joint selection of sensors and their tolerance ranges, which is
the distinguishing characteristic of our work.

VII. CONCLUSIONS

We have presented a formal framework for energy-efficient
determination of contexts in pervasive computing environments.
The key idea is to express the accuracy of context estimation,
for arbitrary contextual attributes, through quality of inference
(QoINF ) function that captures the dependence of estimation
accuracy on the selected sensors and their specified tolerance
ranges. Such a multi-context model in terms of the uncer-
tainty range of the underlying sensor data has not been rig-
orously investigated in the past and holds promise for reduc-
ing the communication overhead of sensor data transmissions.
We have outlined a multi-context search heuristic algorithm to
solve the proposed optimization problem. Experimental traces
collected in the laboratory setting demonstrate the significance
of the quality-verses-communication cost tradeoff and establish
that our proposed heuristic is able to provide close-to-optimal
tradeoff between the QoINF value and the communication over-
head, at the cost of only modest computational requirements.
Experiments using a combination of motion, light and gyro-
scopic sensors show that our model-based approach is able to
provide a QoINF value that is no more than ≈ 5% lower than
the desired target.
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