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Automated Parameter Tuning Framework for

Heterogeneous and Large Instances: Case Study

in Quadratic Assignment Problem

Lindawati, Zhi Yuan, Hoong Chuin Lau, and Feida Zhu

School of Information Systems, Singapore Management University, Singapore
{lindawati,zhiyuan,hclau,fdzhu}@smu.edu.sg

Abstract. This paper is concerned with automated tuning of parame-
ters of algorithms to handle heterogeneous and large instances. We pro-
pose an automated parameter tuning framework with the capability to
provide instance-specific parameter configurations. We report prelimi-
nary results on the Quadratic Assignment Problem (QAP) and show that
our framework provides a significant improvement on solutions qualities
with much smaller tuning computational time.

Keywords: automated parameter tuning, instance-specific parameter
configuration, parameter search space reduction, large instance parame-
ter tuning

1 Introduction

Good parameter configurations are critically important to ensure algorithms to
be efficient and effective. Automated parameter tuning (also called automated

algorithm configuration or automated parameter optimization) is concerned with
finding good parameter configurations based on training instances. Existing ap-
proaches for automated parameter tuning fall into two categories: model-free and
model-based. Some model-free approaches can handle a large number of numerical
and even categorical parameters (for example GGA [1], F-Race [4] and ParamILS

[16]). Model-based approaches, on the other hand, offers statistical insights into
the correlation of parameters with regard to algorithm performance. Examples
of the model-based approaches are SPO [2] and SMAC [15].

In this paper, we are concerned with two specific challenges of automated
parameter tuning:

1. Heterogeneity. This refers to the phenomenon that different problem in-
stances require different parameter configurations on the same target al-
gorithm to solve. [14] defines ”inhomogeneous” instances as those for which
algorithm rankings are unstable across instances. They state that inhomoge-
neous instance sets are problematic to address with both manual and auto-
mated methods for offline algorithm configuration. [26] provides two quan-
titative measures of homogeneity and observes that homogeneity increases
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when partitioning instance sets by means of clustering based on observed
runtimes. In this paper, we are concerned with the notion of heterogeneity
in the sense that instances perform differently when run with different con-
figurations. Table 1 gives an illustration of this phenomenon for benchmark
QAP instances on robust tabu search algorithm as presented in [9].

2. Large problem instances. By ”large”, we mean instances that require a pro-
hibitively long computation time [28]. This notion of largeness is typically
tied to the size of the problem instances (i.e. larger problem instances typi-
cally take longer time to run), but one needs to be mindful that this quantity
varies across problems and target algorithms.

Table 1. Effect of Three Different Parameter Configurations on 4 QAP instances
performance. The performance is an average of percentage deviation from optimum or
best known solution.

Instances Configuration 1 Configuration 2 Configuration 3

tai40a 1.4 1.0 2.0
tai60a 1.7 1.6 2.2
tai40b 9.0 9.0 0.0

tai60b 2.1 2.9 0.3

There have been approaches that attempt to find instance-specific configura-
tions for a heterogeneous set of instances (see for example, [17, 21, 29]). Unfor-
tunately, finding instance features itself is often tedious and domain-specific [8],
requiring a discovery of good features for each new problem. Similarly, tuning
algorithms for large instances is a frustrating experience, as the tuning algo-
rithm typically requires a large number of evaluations on training instances. This
quickly makes automatic tuning suffer computationally prohibitive run time.

In this paper, we attempt to tackle the above challenges by proposing a
new automated parameter tuning framework AutoParTune that attempt to bring
together components that are helpful for automated parameter tuning. Having
a unified software framework allows algorithm designers to readily experiment
with different mixes of parameter tuning components in deriving good parameter
configurations. Our emphasis in this paper is heterogeneity and large instances,
and we briefly describe our approach as follows.

To handle heterogeneous instances, we propose a generic instance cluster-
ing technique SufTra that mines generic features from instance search trajectory
patterns. For this purpose, we make use of a novel data structure ”suffix tree”
[7]. A search trajectory is defined as a path of solutions discovered by the target
algorithm as it searches through its neighborhood search space [13]. A nice char-
acteristic of our work is that we can obtain these trajectories from the target
local search algorithm with minimal additional computation effort. Our approach
improves the work of [21] that captures similarity using a single (and relatively
short) segment through out the entire sequence, and works only on short and
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small number of sequences due to its inherit computational bottleneck. In con-
trast, our approach is capable of retrieving similarity across multiple segments
with linear time complexity. Using a Suffix Tree data structure, our approach
can efficiently and effectively form better and tighter clusters and hence improve
the overall performance of the underlying target algorithm.

To handle large instances, we propose ScaLa that automatically finds compu-
tationally less expensive instances as surrogate to large instances. ScaLa detects
similarity among different instances with different runtime using performance-
based similarity measures [26]. In this work, we experimentally explore the fea-
sibility of this approach.

We apply our approach on the Quadratic Assignment Problem (QAP), since
it is a notoriously hard problem that has been shown to have heterogeneous
instances, and whose run time grows rapidly with input size. The major contri-
butions (and thus the flow) of this paper are summarized as follows:

– We propose a new generic automated parameter tuning framework AutoPar-

Tune for handling heterogeneous and large instances.
– We present SufTra, a novel technique for clustering heterogeneous instances.
– We present ScaLa that performs runtime analysis for scaling large instances.

2 AutoParTune

AutoParTune is a realization of the concept proposed in [20]. As shown in
Fig. 1(a), the framework consists of four components: (I) parameter search space
reduction; (II) instance-specific tuning to handle heterogeneous instances; (III)
scaling large instances; and (IV) global tuning. The first components are con-
sidered as pre-processing steps which can be executed in any combination and
in any order. The detail of the AutoParTune subsystems is shown in Fig. 1(b).

SufTra File(s) Upload Tuning Setting User’s ContactDOE ParamILSScaLaTuning FrameworkUser Interface
RPre-Process Global Tuning(b) Framework Subsystem(a) Automated Parameter Tuning Framework ConceptParameter Search Space Reduction Scaling Large Instances Instance-specific TuningGlobal Tuning

Performance Metric HInstance y
One-size-fits-all Configuration

Target Algorithm A(x), Training Instances I
Instance-specific Configuration

Fig. 1. Automated Parameter Tuning Framework Concept and Infrastructure
Overview

Parameter Search Space Reduction. This component allows us to drasti-
cally reduce the size of the parameter space before tuning. We implement the
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method presented in [6], which is based on Design of Experiment (DOE), a well-
established statistical approach that involves experiment designs for the empir-
ical modeling of processes. This work has been presented in [6], and briefly, it
consists of three phases: screening, experimentation, and exploitation phase.
Instance-specific Tuning. For the instance-specific tuning, we construct a
generic instance-specific parameter tuning: SufTra. The detail will be presented
in Section 4.
Scaling Large Instances. For handling large instances, we present a novel
technique based on the computational time analysis: ScaLa. The detail will be
presented in Section 5.
Global Tuning. There are many global tuning methods in the literature. Here,
we embed ParamILS [16] which utilizes Iterated Local Search (ILS) to explore the
parameter configuration space in order to find a good parameter configuration
for the given training instances. ParamILS has been very successfully applied
to a broad range of high-performance algorithms for several hard combinatorial
problems with large number of parameters.

3 Target Algorithm and Experiment Setup

To avoid confusion, we refer the algorithm whose performance is being optimized
as target algorithm and the one that is used to tune it as the configurator. As
target algorithm, we use the hybrid Simulated Annealing and Tabu Search (SA-
TS) algorithm (presented in [22]). It uses the Greedy Randomized Adaptive
Search Procedure (GRASP) [30] to obtain an initial solution, and then using a
combined Simulated Annealing (SA) [18] and Tabu Search (TS) [5] algorithm to
improve the solution. There are four parameters, discrete and continuous, to be
tuned as described in Table 2.

In SufTra, we use a set of instances from two generators in [19] for single-
objective QAP as in [23]. The first generator generates uniformly random in-
stances where all flows and distances are integers sampled from uniform distribu-
tions. The second generator generates flow entries that are non-uniform random
values, having the so called real-like structure since it resemble the structure of
QAP problems found in practical applications. We generated 500 instances with
size from 10 to 150 from each generator and randomly choose 100 as training
instances and 400 as testing instances. In ScaLa, we use 120 training instances
with size 50, 70, 90, and 150; and 100 testing instances with size 150 from the
first generator.

All experiments were performed on a 1.7GHz Pentium-4 machine running
Windows XP for SufTra and on a 3.30GHz Core (TM) running Windows 7 for
ScaLa . We measured runtime as the CPU time needed by these machine.

4 SufTra: Clustering Heterogeneous Instances

SufTra is premised on the assumption that an algorithm configuration is corre-
lated with its fitness landscape, i.e. configuration that performs well on a problem
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Table 2. Parameters for SA-TS on QAP

Parameter Description Type Range Default

Temp Initial temperature of SA algorithm Continuous [100, 5000] 5000
Alpha Cooling factor Continuous [0.1, 0.9] 0.1
Length Length of tabu list Discrete [1, 10] 10
Limit maximum number of non-improving itera-

tions prior to intensification strategy (re-
start the search from best-found solution)

Discrete [1, 10] 10

instance of certain fitness landscape will also perform well on another instance of
a similar topology [24]. Furthermore, since fitness landscape is difficult to com-
pute, it can be approximated by a search trajectory [10, 11] which is deemed a
probe through the landscape under a given algorithm configuration. SufTra is an
extension of the preliminary work on search trajectory clustering CluPaTra [21]
that overcome the following CluPaTra major limitations.

1. Scalability.

Pair-wise sequence alignment is implemented using standard dynamic pro-
gramming with a complexity O(m2), where m is the maximum sequence
length of the sequences. Hence, the total time complexity for all instances is
O(n2×m2), where n is the number of instances and m is the maximum se-
quence length. This poses a serious problem for instances with long sequences
and when the number of instances is large.

2. Flexibility.

The nature of sequence alignment is to align a segment of sequences pair
that gives us the highest alignment score. A matched symbol contributes a
positive score (+1), while a gap contributes a negative score (-1). The sum of
the scores is taken as the maximal similarity score of the two sequences. How-
ever, it is possible that sequences share similarity on more than one segment,
especially for long sequences. Sequence alignment is not flexible enough to
capture multi-segment alignment with an acceptable time complexity.

SufTra works by transforming search trajectory into a string of symbols based
on its solution attributes. A suffix tree is constructed on these strings to extract
frequent substrings with length ≥ min length and support ≥ min support. Sub-
strings may occur in multiple segments along the search trajectory, it allows us
to consider multi-segment similarities to improve the accuracy of the clusters.
Using these frequent substrings as features to cluster the strings, we calculate
the similarity and cluster the instances.

4.1 Search Trajectory Representation and Extraction

Suffix Tree Structure. Suffix Tree is a data structure that exposes internal
structure of a string for a particularly fast implementation of many important
string operations. The construction of a suffix tree proves to have a linear time
complexity w.r.t. the input string length [7]. A suffix tree T for an m-character
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string S is a rooted directed tree having exactly m leaves numbered 1 to m.
Each internal node, other that the root, has at least two children and each edge
is labeled with a substring (including the empty substring $) of S. No two edges
out of a node has edge-labels beginning with the same character. To represent
suffixes of a set {S1, S2, ....Sn } of strings, we use a generalized suffix tree.
Generalized suffix tree is built by appending a different end of string marker
(which is a symbol not in used in any of the string) to each string in the set, then
concatenate all the strings together, and build a suffix tree for the concatenated
string [7].

Search Trajectory for Suffix Tree Structure. In building a suffix tree for
a search trajectory, we first transform the search trajectory to a sequence of
symbols based on its solution’s attributes. Each symbol encodes a combination
of two solution attributes: (1) position type, based on the topology of the local
neighborhood as given in Table 3 [13]; and (2) percentage deviation of quality
from optimum or best known. These two attributes are combined; of which the
first two digits are the deviation of the solution quality and the last digit is the
position type. To handle target algorithms with cycles and (random) restarts,
SufTra adds two additional symbols: ’CYCLE’ and ’JUMP’; ’CYCLE’ is used
when the target algorithm returns to a previously-visited position, while ’JUMP’
is used when the local search is restarted.

Table 3. Position Types of Solution

Position Type Label Symbol < = >

SLMIN (strict local min) S + - -
LMIN (local min) M + + -
IPLat (interior plateau) I - + -
SLOPE P + - +
LEDGE L + + +
LMAX (local max) X - + +
SLMAX (strict local max) A - - +

’+’ = present, ’-’ = absent; referring to the presence of neighbors
with larger (’<’), equal (’=’) and smaller (’>’) objective values

Note that in a search trajectory, several consecutive solutions may have simi-
lar solution properties before final improvement and reaching local optimum. We
therefore compress the search trajectory sequence to a Hash String by removing
the consecutive repetition symbols and store the number of repetitions in a Hash

Table to be used later in pair-wise similarity calculation. Removing consecutive
repetition symbols gives us two advantages: (1) it offers greater flexibility over
SufTra in capturing more varieties of similarity for symbol patterns between two
instances. Two instances may share similar pattern (such as: 14L-5L) but dif-
ferent number of consecutive symbols, e.g., for 14L, one has 10 while the other
one has 5. And (2) it reduces computational cost for constructing and exploring
suffix tree, since the time needed is decided by the sequence length. Hash String
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is a more compact and shorter representation of the original search trajectory
string.

Suffix Tree Construction. We construct the suffix tree using Ukkonen’s al-
gorithm [7]. To cover every training instances, we build a single generalized

suffix tree by concatenating all the Hash String together. Length of the con-
catenate string is proportional to the sum of all the Hash String lengths. The
Ukkonen’s algorithm works by first building an implicit suffix tree containing the
first character of the string and then adding successive characters until the tree
is complete. Details of Ukkonen’s algorithm can be found in [7]. Our Ukkonen’s
algorithm implementation requires O(n× l), where n is the number of instances
and l is the maximum length of the Hash String.

Features Extraction. After constructing the suffix tree, we extract frequent
substrings as features. A substring is considered as frequent if it has a length
greater than minlength and it occurs in at least minsupport number of strings.
Minlength and minsupport value is different for each problem. Fixing the value is
not be flexible but running exhaustive search also requires a substantial amount
of time. To find optimum (or near-optimum) value, we apply local search, a
simple but effective method to provide good enough value in reasonable time.
We use local search to move from minlength and minsupport initial value to its
neighbors by changing either minlength or minsupport at each move until it finds
optimum cluster. To find minlength and minsupport initial value, we run a com-
petition between 5 candidate: (1) Lower bound of minlength and minsupport; (2)
Upper bound of minlength and minsupport; (3) Middle value between lower and
upper bound; (4 and 5) Random values.

4.2 Similarity Score Calculation

After extracting the features, we calculate instance’s scores for each feature and
construct an instance-feature metric using the following rules:

1. If the instance does not contain the feature, the score is 0.
2. Else the score is calculated by summing number of repetition for each symbol

in feature from previously constructed Hash Table. A frequent substring may
occur few times in one string. We calculate the score for each occurrence and
choose the maximum score as a score for instance-feature metric.

Using the metric, we calculate similarity for each pair of instances by applying
cosine similarity. Cosine similarity has been widely used to measure similarity
between two vectors by measuring cosine angle between them [7]. Cosine sim-
ilarity result is equal to 1 when the angle is 0, and it is less than 1 when the
angle is of any other value. Cosine similarity is formulated as follows.

similarity =

∑n

i=0
(Inst1(featurei) × Inst2(featurei))

√
∑n

i=0
Inst1(featurei)2 +

√
∑n

i=0
Inst2(featurei)2

(1)
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with Inst1(featurei) and Inst2(featurei) as score from instance-feature
metric for Instance 1 and 2.

4.3 Clustering

Similar to [21], we cluster the instances bys a well-known clustering approach
AGNES [12] with L method [25]. AGNES or AGglomerative NESting is a hier-
archical clustering approach that works by creating clusters for each individual
instance and then merging two closest clusters (i.e., a pair of clusters with the
smallest distance) resulting in fewer clusters of larger sizes until all instances
belong to one cluster or a termination condition is satisfied (e.g. a prescribed
number of clusters is reached). We implement the L method [25] to automati-
cally find the optimal number of clusters, which works by using the evaluation
graph where the x -axis is the number of clusters and the y-axis is the value of
the evaluation function at x clusters. In this paper, we use the average distance
among all instances in two different clusters as the evaluation function. L method
fits the curve in the evaluation graph into two lines and chooses the intersection
point between these two lines as the optimal number of clusters.

4.4 Experimental Result

To evaluate SufTra’s effectiveness, we first compared the time needed (in seconds)
for SufTra and CluPaTra to form the clusters in training phase and to map the
testing instances in testing phase. Table. 4 (I) shows the result. From the table,
we observe that SufTra is 18 times faster then CluPaTra.

Next, we compared the target algorithm performance using parameter config-
uration from SufTra, CluPaTra and ISAC as well as the one-size-fits-all configura-
tor ParamILS. Since ISAC requires problem-specific features, we used 2 features:
flow dominance and sparsity of flow metric which is believed to have significant
influence on the performance [27].

For the three instance-specific methods, we used the same one-size-fits-all
configurator, ParamILS [16]. Since ParamILS works only with discrete parameters,
we first discretized the values of the parameters. We measured the performance
as the average of percentage deviation from optimum or best known solution.
We set the cutoff runtime of ParamILS to 100 second. For CluPaTra and SufTra,
we allowed each configurator to execute the target algorithm for a maximum
of two CPU hours for each cluster. To ensure fair comparison, we set the time
budget for ISAC and ParamILS to be equal to the total time needed to run SufTra.
For unbiased evaluation, we used a 5-fold cross-validation [12] and measured the
average performance over all folds. We also performed a statistical test (t-test)
on the significance of our result where a p-value below 0.05 is deemed to be
statistically significant.

In Table. 4 (II), we show the performance comparison results. From the table,
we observe that SufTra performs better on training and testing instances compare
to other approaches. But the result for training instances is not statistically
significant compare to ISAC.
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Table 4. QAP Experiment Result

Training Testing

I. Computational Time

CluPaTra 1,051 s 2,718 s
SufTra 56 s 146 s

II. Performance Result

ParamILS 1.07 2.12
CluPaTra 0.87 1.54
ISAC 0.83 1.21
SufTra 0.81 1.16

p-value* 0.061 0.042

*based on statistical test on ISAC and SufTra

5 ScaLa: Scaling Large Instances

As mentioned in the introduction, tuning on instances that requires long compu-
tation time to solve is a challenging task. These instances are referred to as hard

or large instances throughout this section. To make automatic tuning applicable
for such hard instances, one idea is to tune on easier instances [3, 28]. Styles et
al. proposed in [28] to run multiple tuning processes on small instances, validate
the independently tuned configurations on medium instances, and use the best
validated configuration for solving the large instances. Our current work takes
a different direction. The goal is to tune on easy instances with short runtime,
such that the tuned configuration performs similarly on hard instances with long
runtime. In order to realize this goal, a number of questions have to be addressed:

1. how to measure similarity among different instances?
2. Does there exist similarity between easy instances and hard instances at all?
3. Do good configurations on easy instances perform well on similar hard in-

stances?

Each of the three questions above will be answered in one of the following sub-
sections.

5.1 Measuring instance similarity

To answer question 1, there exist two different approaches to finding similarities
among instances. One is based on problem-specific instance features, e.g. in-
stance size, fitness distance correlation, search trajectory patterns [21] etc. Both
instance-specific configurators ISAC [17] and CluPaTra [21] cluster instances
based on problem-specific features, then tune on each cluster, and confirm that
tuning on separate clustered instance set leads to better performance than tuning
on all instances. Unlike our approach in this work, they didn’t take into account
the computation time. Another approach is based on empirical performance [26].
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Scheider et al. introduced in [26] two measures, a ratio measure and a variance

measure, for measuring instance similarity based on relative performance of dif-
ferent algorithms (or same algorithm with different configurations). However,
the performance-based similarity measure depends on two folds: the computa-
tion time and the solution quality. Although [26] considered computation time,
but didn’t consider scaling among different instances by, e.g. considering dif-
ferent solution quality threshold. In this work, we adopt the performance-based
similarity measures proposed in [26], more specifically, the variance measure that
is described in more details in the next section, and use them to find similarities
among different instances with different runtime.

5.2 Finding similarities between hard and easy instances

To answer question 2, we set up experiments to test the hypothesis whether hard
instances could be similar to easy instances at all given different computation
time. Unlike in SufTra (Sec. 4) where we try to separate heterogeneous instances,
here the goal is to join instances with different features, given different runtime.
We take QAP as our target problem, and an implementation of SA-TS algorithm
as our target algorithm (see Sec. 3 for a description and parameter ranges). Our
preliminary experiments consider only instance size as a measure of instance
“hardness”. 30 instances are generated for each of the four instance sizes 50,
70, 90, and 150. The SA-TS has four parameters as described in Table 2. In
order to use the performance-based measure, 100 parameter configurations are
sampled uniformly within the parameter range. Each parameter configuration
runs once on each instance. The solution cost cθ(n, tn) of a configuration θ ∈
Θ on an instance size n ∈ N = {50, 70, 90, 150} with a given runtime tn is
computed by taking the mean solution cost across the 30 instances with size n,
and CΘ(n, tn) = {cθ(n, tn), θ ∈ Θ}. For each instance size n, a set of runtime Tn

is determined as follows: let minimum runtime tmin = 0, maximum runtime tmax

takes value of the maximum natural stopping time of the algorithm (no restart),
and Tn takes values in a logarithmically spaced sequence between tmin and tmax,
excluding tmin. Following [26], we perform a standardized z-score normalization
for each cost vector CΘ(n, tn), and use the variance measure

Qvar(Θ, N ′, TN′) =
1

|Θ|

∑

θ∈Θ

V ar(cθ(N
′, TN′)), for N ′ ⊆ N (2)

for measuring similarity (more precisely, dissimilarity) among different pairs of
(n, tn) ∈ (N, TN). Based on this measure Qvar, instances of different size and
computation time can be clustered with the goal of optimizing similarity of
the resulting subsets. A classical clustering approach Hierarchical Agglomera-
tive Clustering or AGNES [12] is adopted in our preliminary experiments (an
alternative clustering method K-mean also gives very similar clustering result).
For illustrative purpose, 5 logarithmic time intervals for each instance size n are
used, excluding tmin, this makes |Tn| = 4. The clustering results are shown in
Fig. 2. Interestingly, the most similar two subgroups turned out to be the longest
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Fig. 2. Clustering four different instance sizes each with four different computation
times by hierarchical agglomerative based on variance measure.

runtime (natural stopping time) of each of the four instance sizes n ∈ N , and
the second longest logarithmic runtime level of each n ∈ N . More specifically,
the four (n, tn)-pairs (50, 23.6), (70, 29.8), (90, 39.2), (150, 127.6) form the most
similar group, while (50, 6.7), (70, 8.0), (90, 9.8), (150, 23.8) comprise the second
most similar group. In the two shorter levels of runtime, the similarities across
the four instance sizes are less obvious. Nevertheless, this interesting cluster-
ing result confirms our hypothesis raised in question 2: using performance-based
similarity measure, given the right runtime, different instances, easy or hard, can
become similar to each other.

5.3 Solving hard instances by tuning on easy instances

How can automatic tuning benefit from this automatically detected instance sim-
ilarity? One straightforward follow-up idea is to use the best parameter configu-
ration tuned on easy instances with short runtime to solve similar hard instances
with long runtime. However, it remains unjustified that how good these tuned-
on-easy parameter configurations are, compared with, for example, parameter
tuned directly on instances of the same size with the same runtime. In this ex-
periment, two most similar groups of size-runtime pairs (see Fig. 2 of Sec. 5.2)
are used: the first group includes (50, 6.709), (70, 8.002), (90, 9.822), and (150,
24.823); the second group includes (50, 23.556), (70, 29.796), (90, 39.156), (150,
127.609). For each of the two groups, two sets of experiments are set up: 1) tuned
by oracle: as a quick proof-of-concept, we take the best configuration from 100
configurations based on 30 instances on each instance size as found in Sec. 5.2,
and test them on another 100 testing instances of size 150 with corresponding
runtime; 2) tuned by ParamILS [16]: we tune the target algorithm using three
independent runs of ParamILS for each instance size using the size-runtime pairs
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mentioned above, each run was assigned maximum 300 calls of target algorithm
on new randomly generated training instances, and each tuned configuration is
tested on 100 same testing instances as in 1). The second experiment set is to
test generalizability of the similarity information detected in Sec. 5.2. The goal
is to see how good these best configurations tuned on small instances such as 50,
70, and 90 with shorter runtime, compared with the best configuration tuned on
instance size 150, when tested on instance size 150 with the same runtime.

The results are listed in Table 5. The results confirm that, firstly as expected,
a large amount of tuning time is saved by tuning on small instances, ranging from
59 to 81% in our experiments; and secondly, in general, parameter configurations
tuned on smaller instances with shorter runtime don’t differ significantly from
the ones directly tuned on large instances, as long as similarities between them
can be found. In both groups in both experiment sets, there is no statistical
difference between the configurations tuned on 50, 70, 90, and 150, tested by
Wilcoxon’s rank-sum test. In the first experiment set tuned by oracle, config-
urations tuned on size 70 and 90 sometimes perform even better than tuned on
150. The mean performance difference from the tuned-on-150 configuration in
the first group is usually less than 0.1%, and even less than 0.01% in the second
group. In the second experiment set tuned by ParamILS, although configuration
tuned on size 150 performs best, the difference is not significant: the mean per-
formance difference is usually less than 0.1% in the first group, and less than
0.05% in the second group. This shows the similarity information detected from
Sec. 5.2 can be actually generalized to tuners with different training instances.
As reference, the performance of the default parameter configuration (listed in
Table 3) is presented in Table 5, and it is statistically significantly outperformed
by almost all the above tuned configurations in both groups, which proves the
necessity and success of tuning process. We also include as reference the best
configuration tuned on instance size 150 with runtime 23.556 (127.609) seconds
to be tested on instance size 150 with different runtime, i.e. 127.609 (23.556)
seconds, respectively (in row 150’ of Table 5). Although the tuning and testing
instances are of the same size, different runtime makes a great performance dif-
ference, resulting in almost one order of magnitude worse than tuning on the
small instances with appropriate runtime. The 150’ performance is statistically
significantly worse than all the above tuned configurations belonging to the same
group, and it is even significantly worse than the default configuration in the sec-
ond group. This contrasts with the fact that the difference among the similar
size-runtime pairs (the first four rows of Table 5) is indeed very minor, and it
also shows the risk of tuning on algorithm solution quality without assigning
the right runtime, which in fact proves the necessity of our automatic similarity
detection procedure in ScaLa.

6 Conclusion and Future Work

In this paper, we proposed an automated parameter tuning framework for het-
erogeneous and large instances and tested it on Quadratic Assignment Problem
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Table 5. Results for the performance of the best parameter configurations tuned on
sizes 50, 70, 90, 150, and tested on instances of size 150. Two most similar groups of size-
runtime pairs (see text or Fig. 2) are used. Two experiment sets are presented, oracle
and ParamILS (see text). Each column of %oracle and %ParamILS shows the mean
percentage deviation from the reference cost. In each column, +x (−x) means that the
tuned configuration performance is x% more (less) than the reference cost. %time.saved
shows the percentage of tuning time saved comparing with tuning on instances of size
150. The performance of default parameter configuration is shown in row “def.”. The
last row 150’ used the best parameter configuration tuned on instance size 150 with
runtime 127.609 (23.556) seconds, and tested on instance size 150 with runtime 23.556
(127.609) seconds, respectively. Results marked with † refers to statistically significantly
worse results compared to tuned-on-150 using Wilcoxon’s rank-sum test.

23.556 seconds 127.609 seconds

tuned.on %oracle %ParamILS %time.saved %oracle %ParamILS %time.saved

50 −0.48 −0.047 72 −0.048 −0.048 81
70 −0.65 −0.053 66 −0.060 −0.027 76
90 −0.61 −0.093 59 −0.057 −0.040 69
150 −0.58 −0.151 0 −0.060 −0.070 0

def. +1.17† +0.150† - −0.008† −0.024 -

150’ +1.16† +0.195† - +0.232† +0.208† -

(QAP). We construct SufTra for tuning heterogeneous instances and ScaLa for
large instances. We verify SufTra’s performance and observed a significant im-
provement compared to a vanilla one-size-fits-all approach (ParamILS) and other
generic instance-specific approach CluPaTra. We claim that: (1) SufTra is a suit-
able approach for instance-specific configuration that significantly improves the
performance with minor additional computational time; and (2) SufTra has over-
come CluPaTra limitations with a new efficient method for feature extraction and
similarity computation using suffix tree. In the development of ScaLa, we use the
performance-based similarity measure and clustering technique to automatically
detect and group similar instances with different sizes by assigning different run-
time, such that one can tune on easy instances with much less runtime and apply
the tuned configuration to solve hard instances with long runtime. This greatly
reduces computation time required when tuning large and computationally-hard
instances. Through our preliminary experiments, we empirically show that easy
instances and hard instances can be similar when given the right runtime, and
in such case, the good configurations tuned on easy instances can also perform
well on hard instances.

Up to this stage of our work, the SufTra and ScaLa are not yet integrated.
In near future, we plan to integrate those two components on the AutoParTune

framework, in particular, we plan to integrate more problem features into ScaLa

apart from instance size. As future works on SufTra, we will investigate how to
generate clusters from population-based-algorithm using generic features per-
taining to population dynamics, since currently SufTra can only be applied to
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target algorithms which are local-search-based due to the search trajectory. On
the other hand, ScaLa is still an actively ongoing work. Future works include
largely extending the amount of experiments, consider also testing on problems
other than QAP, and extend our studies to other state-of-the-art algorithms.
The correlation between computation time and instance size may be algorithm-
specific, therefore, an automatic approach to detecting it is practically valuable.
Our current approach is still a proof-of-concept, since it is computationally ex-
pensive for computing the performance-based measure. In future work, we plan
to investigate how to reduce the computation expenses by, e.g. taking fewer in-
stances and fewer but good configurations found during the tuning process. In
particular, we plan to investigate the possibility of predicting the “right” runtime
for an unseen instance such that it is similar to a known group of instances.
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