
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2012

Distributed Path Authentication for Dynamic RFID-Enabled Supply Distributed Path Authentication for Dynamic RFID-Enabled Supply

Chains Chains

Shaoying CAI
Singapore Management University, shaoyingcai.2009@smu.edu.sg

Yingjiu LI
Singapore Management University, yjli@smu.edu.sg

Yunlei ZHAO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
CAI, Shaoying; LI, Yingjiu; and ZHAO, Yunlei. Distributed Path Authentication for Dynamic RFID-Enabled
Supply Chains. (2012). Information Security and Privacy Research: 27th IFIP TC 11 Information Security
and Privacy Conference, SEC 2012, Heraklion, Crete, Greece, June 4-6: Proceedings. 376, 501-512.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1655

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Distributed Path Authentication for Dynamic
RFID-Enabled Supply Chains?

Shaoying Cai1, Yingjiu Li1, Yunlei Zhao2

1Singapore Management University, 80 Stamford Road, Singapore 178902
2Fudan University, No. 825 Zhangheng Road, Shanghai, China 201203

shaoyingcai.2009@smu.edu.sg, yjli@smu.edu.sg, ylzhao@fudan.edu.cn

Abstract. In this paper, we propose a distributed path authentication
solution for dynamic RFID-enabled supply chains to address the coun-
terfeiting problem. Compared to existing general anti-counterfeiting so-
lutions, our solution requires non sharing of item-level RFID informa-
tion among supply chain parties, thus eliminating the requirement on
high network bandwidth and fine-grained access control. Our solution
is secure, privacy-preserving, and practical. It leverages on the standard
EPCglobal network to share information about paths and parties in path
authentication. Our solution can be implemented on standard EPC class
1 generation 2 tags with only 720 bits storage and no computational
capability.

1 Introduction

Supply chain is a network involving multiple parties such as suppliers, trans-
porters, storage facilities, distributors, and retailers that participate in the pro-
duction, delivery, and sale of a product [5]. It is difficult to monitor a supply
chain since the involving parties are distributed at multiple locations or even
across countries. It is therefore critical to address the counterfeiting problem,
where an adversary injects fake goods into a supply chain. The counterfeiting
problem has become a major threat to supply chains. According to the 2011
report of International Chamber of Commerce, it is estimated that the coun-
terfeiting accounts for 5-7% of world trade, or about 600 billion U.S. dollars
per year [6]. The ratio of counterfeiting is even higher in dynamic supply chains
where the involving parties and the paths of processed goods may not be fixed.

Radio Frequency IDentification (RFID) technology has been recently used
to facilitate real-time monitoring of supply chains so as to thwart counterfeiting
threats. Most existing solutions in industry rely on sharing and processing mas-
sive RFID information at item level collected by each supply chain party over
the internet. Such solutions inevitably incur high network bandwidth (due to
large volume of processed goods) and fine-grained access control (due to secu-
rity requirements by different parties). It is therefore difficult, even impossible,
? The second author’s work is supported in part by the Office of Research at Singapore

Management University. The third author is supported in part by an NSFC grant
No. 61070248, and a grant from Shanghai Municipal Education Commission.

to implement such solutions in dynamic supply chain environments, where the
involving parties may not have pre-existing trust relationship for sharing their
RFID information in a secure and efficient manner.

Since dynamic supply chains are prevalent in living supply chains [16], we
propose a new distributed path authentication scheme to thwart counterfeiting
in such environment. Our scheme verifies whether a tag comes from a reliable
source and has been precessed by a series of legitimate entities in a supply
chain. Compare to existing solutions, our scheme eliminates the needs of sharing
item-level information among supply chain parties; thus, it does not require pre-
existing trust relationship nor fine-grained access control. The verification of a
tag’s path is based on the information carried by the tag and certain auxiliary
information obtained from a trusted server in EPCgloabel network, which is
a standard infrastructure for RFID-enabled supply chains. While our scheme is
designed for the most dynamic RFID-enabled supply chains, it is also suitable for
a supply chain that has fix partnership or/and static goods processing procedure.

The challenges of designing our scheme come in two aspects. First, the tag
storage is restricted to no more than 1088 bits for the most popular low-cost
standard C1 G2 tags [4]. In order to prove that a tag has been processed by
a series of entities, the tag should carry certain credentials generated by the
entities. To avoid complicated key management at item level, a natural way is
to use the entities’ signatures on a tag’s ID as the credentials. However, it is not
practical to store all signatures and public keys on a tag as the tag’s storage is
limited, especially in the case that such information may continually increase as
the tag goes through more entities. Our solution keeps the information stored
on a tag in constant size, which is less than 1088 bits, satisfying the storage
constraint for EPC C1 G2 standard tag. In our solution, an ordered multi-
signature scheme [11] is adopted to generate a constant-size signature of the
entities on the tag’s ID. A path index is used to indicate the series of entities
which have processed a tag. The index is stored on the tag instead of the entities’
public keys, while the detailed information about the path is stored on a trusted
server such as EPCglobal Discovery Server.

The second challenge is to reduce the communication load between an entity
and the trusted server when verifying a signature. To verify a signature, an entity
queries the trusted server with the index of the path. The server sends the public
keys of the entities in the path to the entity. The communication load increases
as the path getting longer in a naive solution. We reduce the communication
load to a constant level regardless of path length in our solution. Due to the
specific constructions of the underlying ordered multi-signature scheme, in our
scheme, the server only needs to send an aggregated “path public key” instead
of the public keys of the entities. With the “path public key”, one can verify
whether a signature is generated orderly by the entities in the path or not. The
“path public key” even has smaller size than a single public key. In the case
where a batch of tags share the same path, a verifier only needs to query the
trusted server once for the aggregated “path public key” in practice.

The security of our scheme relies on the unforgeability of the underlying or-
dered multi-signature scheme. Our scheme is secure in a sense that an adversary
cannot forge any valid tag or path. To protect the privacy of each tag, we take
advantage of supply chain’s batch processing property. In a batch, each tag’s
information is encrypted with the same key. The key is divided to several shares
with a secret sharing scheme. Each tag stores a share of the key together with
its encrypted information. Only authorized readers can access the whole batch
of tags, recover the key and then decrypt the contents stored on the tags. Our
scheme is privacy preserving in a sense that an adversary cannot identify any
valid tag, or distinguish whether two valid tags have taken the same path or not.
Our scheme leverages on standard EPCglobal network and can be implemented
on standard EPC class 1 generation 2 tags with only 720 bits storage and no
computational capability.

2 Background

Many protocols such as [23,29] have been designed to provide mutual authenti-
cation or tag authentication in RFID systems. These protocols can be used to
prevent counterfeiting in supply chains. However, in order to monitor a supply
chain, these proposals require the manager to access the databases of all the enti-
ties in the supply chain. Therefore, they rely on high quality network connection
and fine-grained access control. These requirements are obstacles in deployment
of dynamic supply chain management systems. In addition, most of the existing
solutions rely on non-standard tags with certain computational abilities, such as
hash operation. This will incur high cost for not using standard low-cost tags.

The most related work address the counterfeiting problem in RFID-enabled
supply chains based on standard EPC class 1 Gen 2 tags. In Zanetti, Fellmann
and Capkun’s scheme [30], the entities cooperate together to verify the tags’ gen-
uineness without revealing information to each other. This scheme cannot resist
tracking attack since any reader can read out each tag’s ID. Blass, Elkhiyaoui
and Molva proposed TRACKER [10] and its extension [9]. In TRACKER sys-
tem, each tag stores encrypted verifiable ID and path information. The manager
decrypts the information and verifies whether the tag has gone through a valid
path. TRACKER dose not need the entities in a supply chain to have any connec-
tion except the initialization phase. However, it requires the manager to possess
the secret keys of all involving entities, the manager can only verify the tags
from a set of pre-fixed paths. Therefore, it is difficult to implement TRACKER
in dynamic supply chains.

2.1 Dynamic RFID-enabled supply chain

A supply chain consists of multiple entities. We model a dynamic supply chain
according to three properties: the affiliation of each entity, the membership man-
agement of the supply chain and the logistics flow of the supply chain. In a
dynamic supply chain, each entity is independent of each other; any entity can

freely join or leave; the logistics flow is not fixed. An RFID-enabled dynamic
supply chain management system should meet the requirements below.

– Each reader is independent with other readers and has an unique ID. Note
that some readers may belong to a same entity. Even that, we assume the
readers are independent with each other and have no pre-existing connec-
tions, such as network connection among themselves to cater for the most
flexible deployment condition.

– Each reader does not share its secret (eg. private key) with other readers.
– Each reader in the supply chain is isomorphic, with the same functionalities.

Each reader should be able to initialize the tags, identify the tags, verify the
tags and update the tags.

2.2 Adversary model

Figure 1 illustrates our adversary model. The entities in a supply chain provide
relative secure environments within their teritories, where the tags are beyond
the accessible distance of an adversary. During the transportation of tagged
goods between entities, a “hit and run” adversary can only approach the goods
for a short period of time from a not-so-close distance.

Fig. 1. Adversary Model of Supply Chain

The “hit and run” adversary modle was firstly proposed by Ari Juels [18].
Several works [22,21,19] have also adopted this model in designing secure RFID
systems. The rationals to adopt this model in supply chains are: 1) the tagged
goods usually rapid change their physical locations and ownerships so that it is
difficult for an adversary to keep in the working distance of the tags (normally
no more than ten meters); 2) as both readers and tags work in short range,
an adversary bringing a reader into a monitored environment like a shop or
warehouse might face difficulties in attempting prolonged intelligence gathering
[18].

2.3 Requirements of RFID-enabled path authentication system

In dynamic supply chains, we list the following practice requirements for design-
ing RFID-enabled path authentication:

– Any valid reader can extract a tag’s ID and the exact path that the tag has
passed through in the supply chain. However, no readers needs to store the
information of all possible paths in its own database in advance.

– An adversary cannot create new tag or modify existing one without being
detected. A tag cannot pass the verification process for a path by which it
has not passed.

– No efficient adversary can link the state information stored in a tag to the
tag’s identity. No efficient adversary can distinguish whether two tags have
taken the same path or not.

– Path authentication can be performed on general EPC Class 1 Gen 2 tags,
which have at most 1088 bits and no computational capability.

3 Our construction

Our system contains three components: tags, readers and a trusted server. Each
tag stores a tag ID, a path code, and a signature on the tag’s ID generated by
the readers in the path. Any valid reader has a pair of public key and private
key and a random number used for generating the path code. A valid reader is
able to extract each tag’s ID and the path code; while to verify them, it needs
to connect with the trusted server which stores the reader’s public information
and detailed path information. In designing a secure and privacy-preserving path
authentication scheme, we use the following building tools.

3.1 Building tools

Bilinear map: A bilinear map is a map e : G × G → GT , where: (a) G
is a (multiplicative) cyclic groups of prime order p; (b) |G| = |GT |; (c) g is
a generator of G. The bilinear map e : G × G → GT satisfies the following
properties: (a) Bilinear: for all x, y ∈ G and a, b ∈ Zp, e(xa, yb) = e(x, y)ab; (b)
Non-degenerate: e(g, g) 6= 1. We call an algorithm G that outputs (p,G,GT , e)
as above a bilinear-group generation algorithm.

Path encoding method: Noubir et al. [25] proposes to encode a software’s
state machine using polynomials such that the exact sequence of states visited
during run-time generates a unique “mark”. We adopt this technique in gener-
ating the path code. Suppose there is a path Pv = {Rv1 , · · · , Rvlv

}, where lv is
the length of path Pv, vi represents the reader’s identity of the ith step in path
Pv; we assign each reader Rj with a unique random number aj ∈ Fq, where q is
a large prime. A path is represented with a polynomial on Fq. Then the poly-
nomial corresponding to a path Pv =

−−−−−−−→
Rv1 · · ·Rvl

is defined below (all operations
are in Fq.):

QP (x) :=
l∑

i=1

avi
xl−i (1)

Given a generator x0 of Fq, we calculate the path code as φ(Pv) := QPv
(x0)

and identify a path Pv using its polynomial evaluation φ(Pv).

Secret Sharing Scheme A (τ, n)-secret sharing scheme is an algorithm that
divides data D into n pieces in such a way that: 1) knowledge of any τ or more
pieces makes D easily computable; 2) knowledge of any τ − 1 or fewer pieces
leaves D completely undetermined (in the sense that all its possible values are
equally likely) [28]. We adopt the Tiny Secret Sharing (TSS) [19] proposed by
Juels et al. in our construction.

Ordered Multisignature Scheme Ordered multisignature scheme (OMS)
allows signers to attest to a common message as well as the order in which
they signed. The concept is raised by Boldyreva et al. in [11]. A construction
of OMS is provided in [11], and we denote it as BGOY-OMS scheme from now
on. We summarize BGOY-OMS system as follows. Each BGOY-OMS system
has global information I = (p, G,GT , e, g,H), where (p,G,GT , e) is generated
by a bilinear-group generation algorithm G, g is a random generator of G, and
H : {0, 1}∗ → G is cryptographic hash function.

– Key Generation: On input I, the algorithm chooses random s, t, u ∈ Zp

and returns (S = gs, T = gt, U = gu) as pk and (s, t, u) as sk.
– Signing: On inputs ski, m, σ, L = (pk1, · · · , pki−1), the algorithm first

verifies whether Equation 2 defined below holds and if not, outputs ⊥. (This
step is skipped for the first signer, i.e. if i = 1, for whom σ is defined as
(1G, 1G).) Then it parses σ as (Q,W) and chooses random w ∈ Zp and
computes W ′ = W · gw, X = (W ′)ti+iui , Y = (

∏i−1
j=1 Tj(Uj)j)w and Q′ =

H(m)si ·Q ·X · Y . Finally, it returns (Q′,W ′).
– Verification: On inputs {(pk1, · · · , pkn), m, σ}, the algorithm first checks

that all of pk1, · · · , pkn are distinct and outputs 0 if not. Then it parses σ
as (Q,W) and checks if

e(Q, g) ?= e(H(m),
n∏

i=1

Si) · e(
n∏

i=1

Ti(Ui)i,W). (2)

If so, it outputs 1. If not, it outputs 0.

3.2 Protocol details

The tag information, including tag ID, path code, and signature is encrypted.
The tags in the same batch share the same encryption key. Then the encryption
key is distributed using TSS secret sharing scheme and each tag stores a share of
the key together with encrypted data. A valid reader can collect enough shares,
recover the key, and decrypts the information of each tag. For each tag, after
decryption, a valid reader obtains the tag ID, a path code, and a signature on
the tag ID. Querying a trusted server with the path code, the reader gets the
aggregated “path public key” of the path which is computed from the readers’
public keys, and uses it to verify the signature. If the tag is valid, then the reader
can update the path code and the signature and encrypt them with a new random
key. Finally, the reader stores the new tag information on the tag. The tags are

processed by batch in supply chain management. Polynomial signature based
path encoding method [25], BGOY-OMS [11], and TSS [19] are incorporated in
the design of our system.

System Setup: A BGOY-OMS system is set up by running a bilinear-group
generation algorithm G for output (p,G,GT , e, g,H). Choosing a large prime q,
and a random number x0 ∈ Zq, we get I = (p, q,G,GT , e, g,H, x0), which is the
global information for the scheme. Assume that there are m readers in total.
Each reader Rj is assigned with public key pkj = (Sj , Tj , Uj) and secret key
skj = (sj , tj , uj), where sj , tj , uj are randomly chosen from Zp, 1 ≤ j ≤ m.
Each reader Rj is also assigned with a random number aj ∈ Zq, where aj will
be used in generating a path code.

A trusted server publishes the global information I, each reader’s public
key pkj and random number aj . The trusted server also stores each path Pv

’s information, including “pathcodev, lv, Pv = {Rv1 , Rv2 · · · , Rvlv
}, ppkv =

(ppk1v, ppk2v) = (
∏lv

j=1 Svj
,
∏lv

j=1 Tvj
(Uvj

)j)”, where lv is the number of readers
in path Pv, vj denotes the identity of the jth reader in path Pv, pathcodev is the
path code of Pv generated using Equation (1) in Fq, and ppkv = (ppk1v, ppk2v)
= (

∏lv
j=1 Svj

,
∏lv

j=1 Tvj
(Uvj

)j) is each path’s public key stored in a path record.
With ppkv, a valid reader can verify the signature on the tag without knowing
any other reader’s individual public key. This will reduce the communication
load between a reader and the trust server. In case a reader needs to verify the
signature on a tag based on all involving readers’ public keys, it can also get
the public keys from the trusted sever. Table 1 shows the contents stored on the
trusted server.

Table 1. Contents on Trusted Server

System Parameters (p, q,G,GT , e, g, H, x0)

Reader Information
Rj , pkj = (Sj , Tj , Uj), aj

for 1 < j < m
m is the number of readers

Path Information
Pv pathcodev, lv, Pv = {Rv1 , Rv2 · · · , Rvlv

},
ppkv = (ppk1v, ppk2v) = (

∏lv
j=1 Svj ,

∏lv
j=1 Tvj (Uvj)

j)

Batch initialization of the tags: Suppose that a batch T of n tags enters
in a supply chain, where each tag is denoted as Ti with unique ID idi, for
i ∈ {1, · · · , n}. The tags can be initialized by a reader valid Rx, 1 ≤ x ≤ m.
In particular, Rx generates a key k and n shares of k using TSS-scheme, where
each share is denoted as si, for 1 ≤ i ≤ n. For each tag Ti, Rx generates a
signature σi = (Qi,Wi) on the tag ID idi under its private key using BGOY-
MOS scheme. Then Rx sets pathcodei of each tag Ti to ax. Finally, Rx encrypts
(idi, σi, pathcodei) with the key k, and stores {si, Ek(idi, σi, pathcodei)} on Ti.
After initializing the batch of tags, Rx queries the trust server to check whether
the path P = {ax, 1, {Rx}, ppk = (Sx, TxUx)} already exists; if not, Rx inserts

path P to the database on the trust server. Then Rx releases the batch of tags
into the supply chain.
Interactions between reader and tag: When a batch T of tags in the

supply chain arrives at reader Ry, where 1 ≤ y ≤ m. Each tag Ti in the batch
stores a state sti = {si, Ek(idi, σi = (Qi,Wi), pathcodei)}. Reader Ry firstly
reads all the tags in T to get sti for all 1 ≤ i ≤ n. Using at least τ shares, Ry

recovers a key k, and decrypts the information on each tag Ek(idi, σi, pathcodei)
and gets {idi, σi = (Qi, Ri), pathcodei}. According to pathcodei, Ry gets the
path’s information P = {pathcodei, l, {RP0 , · · · , RPl

}, ppk = (ppk1, ppk2)} form
the trusted server. If e(Qi, g) = e(H(idi), ppk1) · e(ppk2,W), then Ti passes the
verification. To update the batch of tags, Ry generates a new key k′ and n shares
of k′ in TSS, where each share is denoted as s′i. For each tag Ti, Ry shall update
both the signature σi and the path code pathcodei. To do these, Ry chooses a
random number w in Zp, computes W ′

i = Wi · gw, Q′i = W
′ty+(l+1)uy

i · ppkw
1 ·Q ·

H(idi)sy and pathcode′i = pathcodei ·x0 +ay. Ry updates each tag Ti by writing
{s′i, Ek′(idi, σ

′
i = (Q′i,W

′
i), pathcode′i)} to the tag. Finally, the reader queries

the trusted server: if the path Pnew = {pathcode′i, l + 1, {RP0 , · · · , RPl
, Ry},

ppk = (ppk1 · Sy, ppk2 · TyU l+1
y)} does not exist in the trusted server, then path

Pnew will be added for future queries.
Implementation details: TSS scheme can be implemented with Reed-

Solomon code [26]. A Reed-Solomon code is specified as RS(N, K)S . A codeword
has S bits. A reader chooses a pre-key with K · S bits and encodes the pre-key
to N shares with each share S bits. A hash value of the pre-key is used as the
encryption key for a batch of N tags. Reed Solomon encoding and decoding have
been implemented on an Intel Core 2 CPU 6320 1.86GHz in [2]. Choosing the
parameters (N, K, S) as (32768, 16384, 16), the fastest algorithm achieves 6.17
Mbytes throughput per second for encoding, and 2.73 Mbytes throughput per
second for decoding. Both encoding procedure and decoding procedure consume
less than one second. Suppose there are 20000 tags in a batch, one can firstly
choose a pre-key with 16 ∗ 16384 bits, encode them to 32768 symbols. Each
share contains one symbol. Then one can select 20000 shares, randomly store
on share on each tag. Any reader that can successfully read more than 16384
tags is able to get the pre-key. Regarding the encryption algorithm, Blowfish [3]
is an appropriate choice. According to [3], Blowfish has good performance that
achieves 64.386MB per second of encryption throughput on a Pentium 4 2.1 GHz
processor under Windows XP SP 1.

4 Analysis
Both the security and privacy of our scheme rely on the security and privacy
properties of the underlying secret sharing scheme, encryption scheme and OMS
scheme. Due to space limit, we leave detailed proof to an extended version of
this paper.

4.1 Security
We assume that in supply chain management, an adversary’s goal is to insert
counterfeited goods into the supply chain. The security goal of our system is

to prevent an adversary from forging a tag’s internal state so that the tag is
considered from a reliable source and has gone through a valid path that has
not actually been taken by the tag in the supply chain.

The security of our solution is based on the unforgeability of the BGOY-OMS
scheme. Intuitively, the unforgeability of BGOY-OMS scheme can be described
as follows: given an uncorrupted party with key pair (pk, sk), a forger cannot
generate a valid BGOY-OMS signature of the uncorrupted party on any message
m′ if the forger does not know the party’s signature on m′. Note that in the orig-
inal BGOY-OMS unforgeability game, given a key pair (pk, sk), the adversary
is able to get signature on any tag’s ID under the key sk so as to learn useful
information. In our system, the adversary cannot get a valid reader’s signature
on any ID it chooses since the valid reader will verify the genuineness of any tag
before generating a signature on its ID. Hence, the adversary in our system is
weaker than the adversary in the BGOY-OMS unforgeability game. BGOY-OMS
scheme is secure against the forger; hence it is also secure against the adversary
in our system. Unless an adversary has corrupted all the readers in a path with
path code pathcode, it cannot forge a tuple (ID, σ, pathcode) such that σ is a
valid signature on ID generated by the readers in the path.

While an adversary cannot forge any valid new tuple (ID, σ, pathcode) by
itself, another way to counterfeit an tag is to use an existing valid tuple in the
supply chain. From this aspect, the counterfeiting countermeasure of our system
relies on the batch processing property. Only can valid readers read the whole
batch of tags and decrypt the contents of the tags. A “hit and run” adversary
is not able to read more than τ − 1 tags in a batch , thus cannot recover the
decryption key. In EPC Class 1 Gen 2 tags, the user memory bank can be
protected by access pin. We use the encryption/decryption key as the access pin
for the tags; therefore, an adversary cannot get the complete content stored on
a tag and our system is secure against the counterfeiting attack.

4.2 Privacy

The privacy of RFID path authentication can be considered at two levels: tag
unlinkability and path unlinkability. Tag unlinkability requires that no efficient
adversary can link the state information stored in a tag to the tag’s identity.
Path unlinkability requires that no efficient adversary can distinguish whether
two tags have taken the same path or not. In our scheme, each tag stores a
copy of encrypted ID, pathcode and signature together with a single share of
the encryption key. The privacy of our system relies on honest behaving of valid
readers. Each valid reader uses a new random key to encrypt the updated state
for each tag. An hit-and-run adversary who cannot collect enough shares for
recovering the encryption keys cannot distinguish between any two ciphertexts
of the same tag and any two ciphertexts of different tags. Thus our scheme
preserves tag unlinkability. Similarly, our scheme preserves path unlinkability
since an adversary cannot obtain any information about a tag’s path from the
content of the tag.

4.3 Performance

We analyze the performance of our solution in three aspects: computation re-
quirements, communication requirements and storage requirements.
Computational requirements: Our scheme does not require tag to perform
any computation. All the computation can be performed at RFID reader side. In
computing the computational load of a reader, we omit the cheap operations such
as Reed Solomon encoding, decoding, encryption and decryption using Blowfish,
hash operation, and point addition on elliptic curve. We only count the relative
expensive operations such as point multiplication on elliptic curve and paring.
A reader needs to perform three paring operations to verify the signature and
four point multiplication four updating the signature in each tag.

Due to batch processing in supply chain, we can reduce the computational
cost if a batch of tags share the same path. Assuming that a batch of tagged
goods is transferred in a supply chain without being mixed with other goods,
then a reader can sign the batch of tags with the same random number. That is,
each tag shares the same randomization factor W in the signature. To update
the signature, the reader firstly computes (W ′, X, Y), which requires three point
multiplication operations, and uses (W ′, X, Y) to generate each tag’s signature.
With (W ′, X, Y), the reader’s computational load is reduced to one point mul-
tiplication in generating each tag’s signature. For signature verification, since
each tag in the batch stores the same randomization factor W in the signature,
a reader can pre-compute e(ppk2,W) and store the value. The computational
requirements for each tag is reduced to two paring operations. Since all the com-
putation can be performed on reader side, our solution is applicable on standard
low-cost tags with no computation capability.
Communication requirement: The verification of each tag’s ID and path code
requires a valid reader to connect to the trusted server. The reader sends the
path code to the server, then the server returns necessary path’s information. In
the case that a batch of tags passed the same path, the reader needs only one
path information from the server. Since batch processing is commonly used in
supply chain practice, the communication load required for processing a batch of
tags should be almost constant. The communication load can be further reduced
if a reader stores path information for frequently used paths in its own database.
Storage requirement: In each tag Ti, we need to store {si, Ek(idi, σi =
(Qi,Wi), pathcodei)}. si is a share of encryption key k. As we implement TSS
scheme with Reed-Solomon code, si can be a symbol, which we use 16-bit string
(a symbol’s length depends on the parameters of Reed-Solomon code). Tag ID idi

is an EPC code, which has 96 bits. Tag signature σi generated by BGOY-OMS
scheme consists of two elements on G. For 80-bit security level with embedding
degree k = 2, an element in G can be represented in 512 bits. For embedding
degree k = 6, the length can be reduced to 237 bits [13]. Hence, the storage
requirement for σi is at least 474 bits. We use 80 bits to represent a path ID,
which supports at most 280 different path codes. We adopt Blowfish block cipher
[27] for encryption which has a block size of 64-bits. Thus, we need 720 bits in
total. Our system can thus be implemented with EPC Class 1 Gen 2 tags with

an extensible EPC memory bank (scalable between 16-480 bits), a scalable user
memory bank (64-512 bits), a TID bank (32 bits), and a reserved bank (64 bits),
which are available on the market [4].

5 Conclusions

In this paper, we proposed a distributed path authentication scheme for dynamic
supply chains. Dynamic supply chain is a prevalent supply chain structure in
real world that is inherently vulnerable to the injection of counterfeiting goods
and at same time challengeable to design an RFID-enabled system which can
monitor the whole supply chain. We design a path authentication scheme to
enable any valid reader to verify the exact path that a tag has taken without
requiring the reader to have any kind of connection with other readers; it is thus
suitable for dynamic supply chains where supply chain partners (or readers)
may not have pre-existing trust relationship. Our scheme is built upon tiny
secret sharing scheme, multisignature scheme, polynomial signature scheme, and
encryption scheme. Our system is secure, privacy-preserving and practical. Our
scheme leverages on sharing path information on standard EPCglobal network,
and can be implemented on standard low-cost RFID tags with no computation
capability and limited memory.

References

1. http://www.edn.com/article/458737-Counterfeitcomponentsremains_a_huge

_electronics_supply_chain_problem.php.
2. http://algo.epfl.ch/~didier/reed_solomon.html.
3. http://www1.cse.wustl.edu/~jain/cse567-06/ftp/encryption_perf/index.html.
4. http://www.alientechnology.com/tags/index.php.
5. http://www.wisegeek.com/what-is-a-supply- chain.htm.
6. ICC Commercial Crime Services. Counterfeiting intelligence bureau. 2011.

http://www.icc-ccs.org/home/cib.
7. C. Ó hÉigeartaigh. Pairing computation on hyperelliptic curves of genus 2. PhD

thesis, Dublin City University, 2006.
8. G. Ateniese, J. Camenisch, and B. D. Medeiros. Untraceable RFID tags via insub-

vertible encryption. In CCS, pages 92–101, New York, USA, 2005.
9. E. O. Blass, K. Elkhiyaoui, and R. Molva. Tracker: Security and privacy for RFID-

based supply chains. Cryptology ePrint Archive, Report 2010/219, 2010.
10. E. O. Blass, K. Elkhiyaoui, and R. Molva. Tracker : security and privacy for

RFID-based supply chains. In NDSS, San Diego, California, USA, 2011.
11. A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum. Ordered multisignatures and

identity-based sequential aggregate signatures, with applications to secure routing.
In CCS, pages 276–285, New York, NY, USA, 2007.

12. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A survey of two signature aggre-
gation techniques. In CryptoBytes, Vol. 6, No. 2, 2003.

13. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In
ASIACRYPT, pages 514–532, London, UK, 2001.

14. S. Cai, Y. Li, T. Li, and R. H. Deng. Attacks and improvements to an rifd mu-
tual authentication protocol and its extensions. In WISEC, pages 51–58, Zurich,
Switzerland, 2009.

15. D. Dolev and A. C. Yao. On the security of public key protocols. Technical report,
Stanford, CA, USA, 1981.

16. J. Gattorna. Living Supply Chains. Pearson Education, 2006.
17. P. Golle, M. Jakobsson, A. Juels, and P. Syverson. Universal re-encryption for

mixnets. In CT–RSA, pages 163–178, San Francisco, California, USA, 2004.
18. A. Juels. Minimalist cryptography for low-cost RFID tags. In SCN, pages 149–164,

Amalfi, Italyg, 2004.
19. A. Juels, R. Pappu, and B. Parno. Unidirectional Key Distribution Across Time

and Space with Applications to RFID Security. In USENIX, pages 75–90, San
Jose, California, USA, 2008.

20. H. Krawczyk, M. Bellare, and R. Canetti. RFC2104 - HMAC:Keyed-Hashing for
Message Authentication. RFC Editor, 1997.

21. M. Langheinrich and R. Marti. Practical Minimalist Cryptography for RFID Pri-
vacy. IEEE Systems Journal, Special Issue on RFID Technology, 1(2):115–128,
2007.

22. M. Langheinrich and R. Marti. RFID privacy using spatially distributed shared
secrets. In UCS, pages 1–16, Berlin, Heidelberg, 2007.

23. Y. Li and X. Ding. Protecting rfid communications in supply chains. In ASIACCS,
pages 234–241, New York, NY, USA, 2007.

24. D. Molnar and D. Wagner. Privacy and Security in Library RFID: Issues, Practices,
and Architectures. In CCS, pages 210–219, Washington, DC, USA, 2004.

25. G. Noubir, K. Vijayan, and H. J. Nussbaumer. Signature-based method for run-
time fault detection in communication protocols. Computer Communications,
21:21–5, 1998.

26. I. S. Reed and G. Solomon. Polynomial codes Over Certain Finite Fields. Journal
of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

27. B. Schneier. Description of a new variable-length key, 64-bit block cipher (blow-
fish). In Fast Software Encryption, Cambridge Security Workshop, pages 191–204,
London, UK, 1994.

28. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
29. B. Song and C. J. Mitchell. RFID Authentication Protocol for Low-cost Tags. In

WISEC, pages 140–147, Alexandria, Virginia, USA, 2008.
30. D. Zanetti, L. Fellmann, S. Capkun. Privacy-preserving Clone Detection for RFID-

enabled Supply Chains. In IEEE RFID, pages 37–44, Orlando, Florida, USA, 2010.

	Distributed Path Authentication for Dynamic RFID-Enabled Supply Chains
	Citation

	tmp.1357803426.pdf.fi6Or

