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Abstract

Consider a nonseparable model Y = R(X,U) where Y and X are observed, while U is unobserved

and conditionally independent of X. This paper provides the first nonparametric test of whether R

takes the form of a transformation model, meaning that Y is monotonic in the sum of a function

of X plus a function of U . Transformation models of this form are commonly assumed in economics,

including, e.g., standard specifications of duration models and hedonic pricing models. Our test statistic

is asymptotically normal under local alternatives and consistent against nonparametric alternatives.

Monte Carlo experiments show that our test performs well in finite samples. We apply our results to

test for specifications of generalized accelerated failure-time (GAFT) models of the duration of strikes

and of marriages.
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1 Introduction

We consider a general nonseparable structural equation

Y = R (X,U) , (1.1)

whereY is a scalar observable outcome, X a dx × 1 vector of observable covariates of interest, U a du × 1

vector of unobservable causes or errors, and R an unknown measurable function. Our goal is to test the
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following hypothesis:

H10 : There exist three measurable functions G : R→ R, H1 : Rdx → R and H2 : Rdu → R

such that Y = G [H1 (X) +H2 (U)] a.s., and G is strictly monotonic.

H1A : H10 is false.

Specifications that are monotonic functions of additive models have been called “transformation models”

(e.g., Chiappori et al., 2011), or “transformed additively separable models” (e.g., Jacho-Chávez et al.,

2010), or “generalized additive models with unknown link function” (e.g., Horowitz, 2001, and Horowitz

and Mammen, 2004).

Broadly speaking, there are two kinds of transformation models that are common in the economics

literature. The first type assumes that Y and X are observable, U is unobservable, and the link function

G (·) may be known or unknown. Our paper belongs to this category. Ridder (1990), Horowitz (1996),
Ekeland et al. (2004), Chiappori et al. (2011), and Ichimura and Lee (2011) discuss identification and

estimation for transformation models of this category. Since U is unobservable in this class of models, only

the functions G and H1 are identified and estimated. The second kind of transformation model assumes

both X and U are observable, and takes Y to be an object that can be estimated like a conditional mean

or quantile function. Horowitz (2001), Horowitz and Mammen (2004, 2007, 2011), Horowitz and Lee

(2005), and Jacho-Chávez et al. (2010) provide identification and estimation results for this second kind

of transformation model, while Gozalo and Linton (2001) consider specification tests for such models. See

also Horowitz (2013) for a recent survey on the latter class of models.

The transformation models under our null are commonly used (and hence assumed to hold) in a wide

range of economic applications. For example, they are often used to study duration data (see, e.g., Heckman

and Singer, 1984, Keifer, 1988, Mata and Portugal, 1994, Engle, 2000, and Abbring et al., 2008), including

generalized accelerated failure-time (GAFT) models, which includes accelerated failure-time (AFT) models,

proportional hazard (PH) models, and mixed proportional hazard (MPH) models as special cases. The

MPH specification in particular is a widely used class of duration data specifications (for a review, see Van

den Berg, 2001).

Despite its popularity, economic theory rarely justifies the MPH specification. For example, Van den

Berg (2001, p. 3400) points out that “the MPH model specification is not derived from economic theory

and it remains to be seen whether the MPH specification is actually able to capture important theoretical

relations.” He also provides many specific economic examples where the MPH specification is violated.

In their microeconometrics textbook, Cameron and Trivedi (2005, p. 613) say that “the multiplicative

heterogeneity assumption [in MPH models] is also rather special, but it is mathematically convenient...”

Given the popularity (and the limitations) of GAFT models, especially MPH models, it is obvious that a

formal specification test of these models would be useful for empirical research. While some specification

tests for certain parametric forms of duration models exist (see, e.g., Fernandes and Grammig, 2005), to

the best of our knowledge, ours is the first that specifically tests for the general specification of GAFT

models.

Another major set of applications of transformation model specifications where U is unobservable are

hedonic models (see, e.g., Ekeland et al., 2004, and Heckman et al., 2005). Here again, we believe that our
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paper is the first to provide a general specification test for this class of transformation models. Chiappori

and Komunjer (2011) discuss a hypothesis similar to ours, but they do not provide specific test statistics.

A conditional exogeneity assumption is imposed to test H10, i.e., we assume that U and X are condi-

tionally independent, conditioning on an observable covariate vector Z. This is analogous to the conditional

unconfoundedness assumption in the treatment effect literature, and to the assumptions required for use of

control function type methods of dealing with endogeneity (see, e.g., Blundell and Powell 2003). Chiappori

et al. (2011) provide a nonparametric estimator for the transformation model under similar assumptions.1

We first show that (given some regularity conditions) the data are generated by a transformation model,

so H10 holds, if and only if the ratio of the derivatives with respect to Y and to X of the conditional CDF

of Y given (X,Z) is a multiplicative function of X and Y .2 We then use local polynomial methods to

estimate these derivatives, and construct test statistics based on the L2 distance between restricted and

unrestricted estimators of this ratio of derivatives. We show that our test statistic is asymptotically normal

under the null and under a sequence of Pitman local alternatives.

To facilitate application of our test, we propose and compare a few different methods of obtaining limit

distributions. These are direct estimation of the limiting variance, two different bootstrap methods, and

subsampling. We also evaluate our test both in a Monte Carlo setting, and in two different empirical

applications. Both applications have data sets with similar numbers of observations and have the same

dimension. In the first application, concerning duration of strikes by manufacturing workers, the GAFT

model is not rejected, while in a second application, on the duration of first marriages of divorced couples,

GAFT and hence also MPH are strongly rejected.

Our null H10 is weaker than additive separability but stronger than monotonicity. Lu and White

(2013) and Su et al. (2013) propose tests for additive separability under the same conditional exogeneity

assumption we make, i.e., they test whether there exist two unknown measurable functions G1 and G2
such that

Y = G1 (X) +G2 (U) a.s.

Testing H10 is more general than testing for separability, since our null is equivalent to additive separability
in the special case where G is known to be the identify function. Hence if we reject H10, then we also reject
additive separability.

Hoderlein et al. (2011) (HSW) test for monotonicity under a conditional exogeneity assumption. Let

Ũ ≡ H2 (U) . HSW test whether there exists a function R̃ such that

Y = R̃(X, Ũ)

where R̃ is strictly monotonic in its second argument. Our null is stronger than monotonicity, so if the

HSW test rejects monotonicity, then our null H10 is also rejected. Our null H10 combines monotonicity
1Specifically, Chiappori et al. (2011) provide identification (up to some normalizations) and an estimator for the transfor-

mation model, assuming the data are generated by this model, while we provide a test for whether this assumption is valid.

The model they consider is more general than ours in that we only permit control function type endogeneity, while they allow

for more general nonparametric instrumental variables assumptions
2Horowitz (1996) considers the estimation of the semiparametric model under our null, where H1 takes a parametric form

(unlike our nonparametric case) and without covariates Z. His estimator also relies on the implication that the ratio of the

derivatives is a multiplicative function of X and Y .
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with the additional restriction that the observable X and unobservable Ũ are additively separable under

a transformation function G. Our test exploits this additivity restriction, and so should be generically

stronger than HSW for testing H10. Also, the HSW test requires that Z not be empty, while our test of

H10 can be applied even if we have no conditioning covariates Z.
Note that in all these models, under the null Y equals a function of X and a scalar unobservable Ũ ,

e.g., Ũ ≡ H2 (U) or Ũ ≡ G2 (U), but under the alternative U may be a random vector.

The rest of the paper is organized as follows. In Section 2, we propose and motivate our test. In Section

3, we show that our test statistics are asymptotically normal under the null, and we analyze their global

and local power. In Section 4, we conduct some Monte Carlo simulations to evaluate the finite sample

performance of our test statistics. In Section 5, we provide two empirical applications, testing for the

specification of GAFT models in data on the durations of strikes and of first marriages. In Section 6, we

discuss extensions to other closely related hypotheses. Section 7 concludes, and mathematical proofs are

relegated to the Appendix.

2 A Specification Test for Transformation Models

In this section, we describe implications of H10 that are used to motivate our test construction, and then
propose a test statistic.

2.1 Motivation

To construct our test, we first impose a conditional exogeneity assumption. Let X ⊥ U | Z denote that X
and U are independent given Z.

Assumption A.1 Let Z be an observable random vector of dimension dz ∈ N, such that X ⊥ U | Z and
that X and U are not measurable with respect to the sigma-field generated by Z.

Assumption A.1 is equivalent to the unconfoundedness assumption in the treatment effect literature

and is widely used to identify causal effects. For detailed discussions, see Altonji and Matzkin (2005),

Hoderlein and Mammen (2007), Imbens and Newey (2009), and White and Lu (2011), among others. It

is also closely related to the assumptions used to allow for endogeneity in the control function literature,

where Z would equal the residuals from a regression of X on exogenous instruments. See, e.g., Blundell

and Powell (2003), (2004).

Under H10, the condition X ⊥ U | Z can be relaxed a bit to X ⊥ H2 (U) | Z in Theorem 2.1(a) below.

Let F (y | x, z) ≡ FY |X,Z (y | x, z) and f (y | x, z) ≡ fY |X,Z (y | x, z) denote the conditional cumulative
distribution function (CDF) and probability density function (PDF) of Y given (X,Z) = (x, z) , respec-

tively. Let V ≡ X ×Z denote the support of V ≡ (X ′, Z ′)
′ and Y the support of Y. Let W ≡ Y × V. Let

r (y;x, z) ≡ DxF (y|x,z)
f(y|x,z) , so r (y;x, z) is the ratio of two partial derivatives of F (y | x, z), since f (y | x, z) =

∂F (y | x, z) /∂y and DxF (y | x, z) ≡ ∂F (y | x, z) /∂x.
The following theorem characterizes some useful properties of the transformation model under H10.

Theorem 2.1 Suppose that f (y | x, z) 6= 0 for all (y, x, z) ∈ W.
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(a) If H10 and A.1 hold and the first order (partial) derivatives of G and H1 exist, then there exist two

measurable functions s1 : Rdx → Rdx and s2 : R→ R+ (or s2 : R→ R−) such that

r (Y ;X,Z) = s1 (X) s2 (Y ) a.s., (2.1)

where s1 (x) = −∂S1 (x) /∂x for some measurable function S1 : Rdx → R, and 1/s2 (y) = ∂S2 (y) /∂y for

some measurable function S2 : R→ R.
(b) If there exist two measurable functions s1 : Rdx → Rdx and s2 : R→ R+ (or s2 : R→ R−) such that

(2.1) holds, s1 (x) = −∂S1 (x) /∂x for some function S1 : Rdx → R, and 1/s2 (y) = ∂S2 (y) /∂y for some

measurable function S2 : R → R, then H10 holds in the sense that there exist two measurable functions
G : R→ R and H1 : Rdx → R such that

Y = G
[
H1 (X) + Ũ

]
a.s. (2.2)

where G is strictly monotonic and differentiable, all first order partial derivatives of H1 exist, and Ũ is a

scalar unobservable random variable satisfying X ⊥ Ũ | Z.

Remark 2.1 Theorem 2.1(a) says that under H10 and the conditional exogeneity condition in A.1, the
ratio r (y;x, z) is free of z and can be factored out as the product of a function s1 of x and a function s2
of y, the function s1 can be written as the derivative of a scalar function, and the function s2 does not

alternate in sign on its support. Theorem 2.1(b) says the converse is also true: as long as the factorization

in (2.1) holds with s1 and s2 satisfying appropriate conditions, the observables (Y,X,Z) will satisfy the

version of transformation model (2.2) under the null. Note that even though U can be a vector in the true

data generating process, Ũ is a scalar unobservable here and it satisfies the conditional exogeneity in A.1.

Remark 2.2 Theorem 2.1 gives a characterization of H10, but it does not by itself provide a test for
H10. The proof of Theorem 2.1(a) shows that s1 and s2 in the theorem depend on the unknown functions

H1 and G, respectively, so we cannot directly test equation (2.1). We instead propose a feasible and

straightforward test statistic that is based on implications of the factorization in (2.1).

Let Y0 ≡ [y, ȳ] ⊂ Y for finite real numbers y and ȳ. Let 1 {·} denote the indicator function that equals
one when · is true and zero otherwise, and let EY (·) and EXZ (·) denote expectations with respect to Y
and (X, Z), respectively. Define

r (y;x, z) ≡ DxF (y | x, z)
f (y | x, z) 1 {y ∈ Y0} , (2.3)

r0 ≡ EY EXZ [r (Y ;X,Z)] ,

r1 (x) ≡ E [r (Y ;x, Z)] ,

r2 (y) ≡ E [r (y;X,Z)] ,

where with a little abuse of notation we have redefined r (y;x, z) to denote a trimmed instead of untrimmed

ratio of partial derivatives of F (y | x, z). Note that r, r0, r1 and r2 are all dx × 1 vectors and it is easy to

see that H10 implies that
r (y;x, z) ◦ r0 = r1 (x) ◦ r2 (y) , (2.4)
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where ◦ denotes the Hadamard product. It would be possible to base a test similar to ours on equation
(2.4) directly. However, when dx > 1, comparing equations (2.4) and (2.1), s2 (y) in (2.1) is a scalar,

which is not exploited in (2.4). To incorporate the implications of H10 into our test as much as possible,
we consider a simple average of r2 (y) . We define π ≡ (π1, ..., πdx)

′ as a dx × 1 weight vector such that∑dx
l=1 πl = 1. Then H10 implies that

r (y;x, z) · (π′r0) = r1 (x) · (π′r2 (y)) .

In practice, we can simply choose π = (1/dx, ..., 1/dx) . Let

rπ2 (y) ≡ π′r2 (y) and rπ0 ≡ π′r0.

The following corollary summarizes a testable implication of (2.1) under H10 and A.1.

Corollary 2.2 Suppose that H10 and A.1 hold. If rπ0 6= 0, then

r (Y ;X,Z) rπ0 = r1 (X) rπ2 (Y ) a.s. (2.5)

Remark 2.3 This corollary remains valid if we drop the indicator 1 {y ∈ Y0} in the definition of r in
(2.3). Equivalently, one can take Y0 = Y in the definition of r and still obtain the above result provided
that r is well defined. We incorporate the indicator function in our theorem to permit the trimming of

the data in the tails that facilitates the establishment of the asymptotic properties of our test. Specifically

our asymptotic theory below requires consistent estimation of r (y;x, z) uniformly in (y;x, z) ∈ Y0 × V.
If f (y | x, z) is too close to zero for some values of (y;x, z) ∈ Y × V, then we cannot estimate r (y;x, z)

uniformly in (y;x, z) ∈ Y × V at a suffi ciently fast rate. We therefore restrict our attention to a subset Y0
of Y such that f (y | x, z) is bounded away from zero on Y0 × V.

Based on Corollary 2.2, consider the following null hypothesis

H0 : Pr [r (Y ;X,Z) rπ0 − r1 (X) rπ2 (Y ) = 0] = 1. (2.6)

The alternative hypothesis HA is the negation of H0, i.e.,

HA : Pr [r (Y ;X,Z) rπ0 − r1 (X) rπ2 (Y ) = 0] < 1. (2.7)

According to the characterization result in Theorem 2.1, rejection of (2.6) can only be due either to the

violation of H10, the original null hypothesis of interest, or to the violation of conditional exogeneity in
A.1. Maintaining the conditional exogeneity assumption, we may therefore use the null hypothesis H0 to
test the original null of interest, H10. Alternatively, if we maintain the transformation model specification
in H10, our test can be used to test the conditional exogeneity assumption A.1.
To test the null hypothesis H0 in (2.6), we follow the lead of Härdle and Mammen (1993) and consider

the weighted L2 distance between rrπ0 and r1r
π
2 :

Γ ≡ E
[
‖r (Y ;X,Z) rπ0 − r1 (X) rπ2 (Y )‖2 · a (Y ;X,Z)

]
, (2.8)

where ‖·‖ denotes the Euclidean norm, and a (y;x, z) is a nonnegative weight function that has compact

support Y0 × V0, where V0 ≡ X0 ×Z0 ⊂ V. Then Γ = 0 under H0 and generally deviates from zero under

HA. In the next subsection we consider the sample version of Γ based on local polynomial estimates of r,

rπ0 , r1, and r
π
2 .
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2.2 Estimation and test statistic

The derivations in the previous section allow the covariates Z to be continuous or discrete. To describe our

estimators and associated test statistics, we first consider the (more diffi cult) case where Z is continuous.

Remark 2.4 below then discusses the case were some or all of the elements of Z are discrete.

We employ local polynomial regression to estimate various unknown population objects. Let v ≡
(x′, z′)

′
= (v1, ..., vd)

′ be a d× 1 vector, d ≡ dx + dz, where x is dx × 1 and z is dz × 1. Let j ≡ (j1, ..., jd)

be a d-vector of non-negative integers. Following Masry (1996), adopt the notation

vj ≡ Πd
i=1v

ji
i , j! ≡ Πd

i=1ji!, |j| ≡
d∑
i=1

ji,
∑

0≤|j|≤p

≡
p∑
k=0

k∑
j1=0

· · ·
k∑

jd=0

j1+···+jd=k

.

From vj ≡ Πd
i=1v

ji
i , the ji’s represent powers applied to the elements of v when constructing polynomials.

Consider the p-th order local polynomial estimators DxF̂b (y|x, z) of DxF (y|x, z) . The subscript b = bn

is a bandwidth parameter. Let Vi ≡ (X ′i, Z
′
i)
′ so Vi − v = ((Xi − x)′, (Zi − z)′)′. Given observations

{(Yi, Vi) , i = 1, ..., n}, we estimate DxF (y|v) by solving the weighted least squares problem

min
β
n−1

n∑
i=1

1 {Yi ≤ y} −
∑

0≤|j|≤p

β′j ((Vi − v) /b)
j

2Kb (Vi − v) . (2.9)

Here β stacks the βj’s (0 ≤ |j| ≤ p) in lexicographic order (with β0, indexed by 0 ≡ (0, ..., 0), in the first

position, the element with index (0, 0, ..., 1) next, etc.) and Kb (·) ≡ K (·/b) /bd, where K (·) is a symmetric
PDF on Rd. Let β̂ (y|v) denote the solution to the above minimization problem.

Let Nl ≡ (l + d − 1)!/(l!(d − 1)!) be the number of distinct d-tuples j having |j| = l. In the above

estimation problem, this denotes the number of distinct lth order partial derivatives of F (y|v) with respect

to v. Let N ≡
∑p
l=0Nl. Let µ (·) be a stacking function such that µ ((Vi − v)/b) denotes an N × 1 vector

that stacks ((Vi − v) /b)
j
, 0 ≤ |j| ≤ p, in lexicographic order (e.g., µ (v) = (1, v′)′ when p = 1). Let

µb (v) ≡ µ (v/b) . Then

β̂ (y|v) = [Sb (v)]−1 n−1
n∑
i=1

Kb (Vi − v)µb (Vi − v) 1 {Yi ≤ y} , (2.10)

where Sb (v) ≡ n−1
∑n
i=1Kb (Vi − v)µb (Vi − v)µb (Vi − v)

′
. The p-th order local polynomial estimator

DxF̂b (y|x, z) of DxF (y|x, z) is given by

DxF̂b (y|x, z) = e1β̂ (y|x, z) /b (2.11)

where e1 ≡ [0dx×1, Idx , 0dx×(N−dx−1)] selects the estimator of the coeffi cient of (Xi − x)/b in the above

regression.

To estimate f(y|v), the conditional PDF of Yi given Vi = v, we again employ local polynomial regression.

Like Fan et al. (1996), we estimate f(y|v) as f̂c(y|v), the minimizing constant in the weighted least squares

problem

min
γ
n−1

n∑
i=1

Lc (Yi − y)−
∑

0≤|j|≤p

γ′j ((Vi − v) /c)
j

2Kc (Vi − v) ,
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where γ stacks the γj’s (0 ≤ |j| ≤ p) in lexicographic order and Lc (·) ≡ L (·/c) /c, with L (·) a symmetric
kernel function defined on R and c ≡ cn a bandwidth parameter. Here, we use the same bandwidth

sequence for Yi and Vi, although different choices of bandwidths are also possible. To reduce the bias of

the estimator f̂c, we permit use of a higher-order kernel for L. It is straightforward to verify that

f̂c(y|v) = e′2[Sc (v)]−1 n−1
n∑
i=1

Kc (Vi − v)µc (Vi − v) Lc (Yi − y) , (2.12)

where e2 ≡ (1, 0, ..., 0)
′ is an N × 1 vector.

Define

r̂ (y;x, z) ≡ DxF̂b (y|x, z)
f̂c(y|x, z)

1 {y ∈ Y0} , r̂0 ≡
1

n2

n∑
i=1

n∑
j=1

r̂ (Yi;Xj , Zj) ,

r̂1 (x) ≡ 1

n

n∑
i=1

r̂ (Yi;x, Zi) , and r̂2 (y) ≡ 1

n

n∑
i=1

r̂ (y;Xi, Zi) .

Let r̂π0 ≡ π′r̂0 and r̂π2 (y) ≡ π′r̂2 (y) . Our proposed test statistic is

Γ̂ =
1

n

n∑
i=1

‖r̂ (Yi;Xi, Zi) r̂
π
0 − r̂1 (Xi) r̂

π
2 (Yi)‖2 a (Yi;Xi, Zi) , (2.13)

which is a sample analogue of Γ in (2.8). We next study the asymptotic properties of Γ̂ under H0, HA, and
a sequence of Pitman local alternatives.

Remark 2.4 The above estimators and associated tests are easily extended to allow some or all elements

of Z to be discrete. To estimate r (y;x, z) in this case, we can simply stratify the sample by each distinct

discrete outcome. Specifically, suppose Z = (Zc, Zd) , where Zc is continuous and Zd discrete. Then

estimate r (y;x, z) = r (y;x, zc, zd) as above (replacing Z with Zc everywhere), just using the data having

Zdi = zd, and repeat for each value zd in the support of Zd. The functions r0, r1 and r2 can be estimated

exactly the same way, by averaging out (Xi, Yi, Zi) , (Yi, Zi) , and (Xi, Zi), respectively, and then our test

statistic Γ̂ is still given by (8.3). More sophisticated estimators (e.g., smoothing across the discrete Zd cells

as proposed in Li and Racine, 2003) could also be used to estimate r these functions. We omit the details

for brevity.

3 Asymptotic Properties of the Test Statistic

3.1 Basic assumptions

To study asymptotic properties of Γ̂, make the following assumptions.

Assumption C.1 Let Wi ≡ (Yi, X
′
i, Z
′
i)
′
, i = 1, 2, ..., n, be IID random variables on (Ω,F , P ), with

(Yi, Xi, Zi) distributed identically to (Y,X,Z).

Assumption C.2 (i) The PDF f (v) of Vi is continuous in v ∈ V, and f (y|v) is continuous in (y, v) ∈ Y0×V.
(ii) There exist C1, C2 ∈ (0,∞) such that C1 ≤ infv∈V f (v) ≤ supv∈V f (v) ≤ C2, and C1 ≤

inf(y,v)∈Y0×V f (y|v) ≤ sup(y,v)∈Y0×V f (y|v) ≤ C2.
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Assumption C.3 (i) F (·|v) is equicontinuous on Y0: ∀ε > 0, ∃δ > 0 : |y − ỹ| < δ ⇒ supy∈Y0 |F (y|v) −
F (ỹ|v)| < ε. For each y ∈ Y0, F (y | ·) is Lipschitz continuous on V and has all partial derivatives up to
order p+ 1, p ∈ N.

(ii) Let DjF (y|v) ≡ ∂|j|F (y|v) /∂j1v1...∂
jdvd. For each y ∈ Y0, DjF (y | ·) with |j| = p+1 is uniformly

bounded and Lipschitz continuous on V : for all v, ṽ ∈ V, |DjF (y | v)−DjF (y | ṽ) | ≤ C3||v− ṽ|| for some
C3 ∈ (0,∞) where ‖·‖ is the Euclidean norm.

(iii) For each v ∈ V and for all y, ỹ ∈ Y0, |DjF (y | v)−DjF (ỹ | v) | ≤ C4 |y− ỹ| for some C4 ∈ (0,∞)

where |j| = p+ 1.

Assumption C.4 Let r ≥ 2. The rth derivative f (r) (y|v) of f (y|v) with respect to y and all the (p+ 1)th

partial derivatives of f (y|v) with respect to v are uniformly continuous on Y0 × V.

Assumption C.5 (i) The kernel K : Rd → R+ is a continuous, bounded, and symmetric PDF.
(ii) v → ‖v‖2p+1K (v) is integrable on Rd with respect to the Lebesgue measure.
(iii) Let Kj(u) ≡ vjK(v) for all j with 0 ≤ |j| ≤ 2p + 1. For some finite constants σK , σ̄1, and σ̄2,

either K (·) is compactly supported such that K (v) = 0 for ‖u‖ > σK , and |Kj(v)−Kj(ṽ)| ≤ σ̄2 ‖v − ṽ‖
for any v, ṽ ∈ Rd and for all j with 0 ≤ |j| ≤ 2p+ 1; or K(·) is differentiable, ‖∂Kj (v) /∂v‖ ≤ σ̄1, and for
some ι0 > 1, |∂Kj (v) /∂v| ≤ σ̄1 ‖v‖−ι0 for all ‖v‖ > σK and for all j with 0 ≤ |j| ≤ 2p+ 1.

Assumption C.6 The univariate kernel function L satisfies
∫
L (y)

2
dy <∞ and is a symmetric rth order

kernel, i.e.,
∫
L (y) dy = 1,

∫
ysL (y) dy = 0 for all s = 1, ..., r−1, and

∫
yrL (y) dy <∞. The rth derivative

of L exists and is continuous.

Assumption C.7 (i) p > d/2.

(ii) As n→∞, (cp+1 + cr)/bd/2 → 0, (bp + cp+1 + cr)bd/2+2/cd+1 → 0, bd+4/cd+1 → 0, nb2(p+1)+d → 0,

and nbd+2(c2(p+1) + c2r)→ 0.

(iii) As n → ∞, min{nb2d, nb3d/2+1/ lnn, nbd+2, nbdx+2/ lnn, nbd+1c(d+1)/2/ lnn, nbd/2cd+1/ lnn,

nb−(d/2+2)c2(d+1)/ lnn, nb−1c3(d+1)/2/ lnn, nb−(d+4)c3(d+1)} → ∞.

We assume IID observations in Assumption C.1, which is standard in cross-section studies. Assumptions

C.2-C.4 impose smoothness conditions on the conditional CDF (y|v) and PDF f (y|v) that are used to ensure

uniform consistency of our local polynomial estimators, based on results of Masry (1996) and Hansen (2008).

Assumptions C.5 and C.6 impose conditions on the kernels K and L, which are standard in the literature

for local polynomial regression or conditional density estimation. Assumption C.7 restricts the choice of

bandwidth sequences b and c, the order p of local polynomial regressions, and the order r of the kernel L.

This assumption allows c to differ from b, but in the case where b = c Assumption C.7 simplifies to the

following assumption.

Assumption C.7∗ (i) p > d/2 and r > d/2.

(ii) As n→∞, nb2(p+1)+d → 0 and nb2r+d+2 → 0.

(iii) As n→∞, min{nb2d, nb3(d+1)/2/ lnn, nbd+2, nbdx+2/ lnn} → ∞.
Note that we allow dz = 0, otherwise the condition nbdx+2/ lnn→∞ as n→∞ becomes redundant.
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3.2 Asymptotic null distribution

In this section, we study the asymptotic behavior of the test statistic in (2.13). To state the next result,

let wi ≡ (yi, v
′
i)
′ and introduce the following notation:

ζ1k (y; v) ≡ b−1f (y|v)
−1
e1S̄b (v)

−1
µb (Vk − v)Kb (Vk − v) 1̄y (Wk) 1{y ∈ Y0},

ζ2k (y; v) ≡ f (y|v)
−2
DxF (y|v) e′2S̄c (v)

−1
µc (Vk − v)Kc (Vk − v) L̄y (Wk) 1{y ∈ Y0},

ζk (y; v) ≡ ζ1k (y; v)− ζ2k (y; v) , ζ (Wi,Wj ,Wk) ≡ ζj (Yi;Vi)
′
ζk (Yi;Vi) ai,

ϕ (wi, wj) ≡ E [ζ (W1, wi, wj)] ,

where S̄b (v) ≡ E [Sb (v)] , 1̄y (Wk) ≡ 1{Yk ≤ y} − F (y|Vk) , L̄y (Wk) ≡ Lc(Yk − y) − α (y|Vk) , α (y|v) ≡
E [Lc(Yk − y)|Vk = v] and ai ≡ a (Yi;Xi, Zi) . Define an asymptotic bias term

Bn ≡ n−1b
d
2+2 (rπ0 )

2
n∑
i=1

ϕ (Wi,Wi) + n−4b
d
2+2

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

n∑
k=1

ζk (Yj ;Xi, Zj) r
π
2 (Yi)

∥∥∥∥∥∥
2

ai

−2n−3b
d
2+2rπ0

n∑
i=1

n∑
l=1

ζl (Yi;Vi)
′
n∑
j=1

n∑
k=1

ζk (Yj ;Xi, Zj) r
π
2 (Yi) ai

≡ B1n + B2n − 2B3n, say.

We establish the asymptotic null distribution of the Γ̂ test statistic as follows:

Theorem 3.1 Suppose Assumptions A.1 and C.1-C.7 hold. Then

nb
d
2+2Γ̂− Bn

d→ N
(
0, σ20

)
,

where σ20 ≡ limn→∞ σ2n and σ
2
n = 2bd+4 (rπ0 )

4
E[ϕ (W1,W2)

2
].

Remark 3.1. The asymptotic bias Bn of nb
d
2+2Γ̂ contains three terms B1n, B2n, and −2B3n. The first

two terms reflect the contributions of r̂ (Yi;Vi) r̂0 and r̂1 (Xi) r̂
π
2 (Yi) respectively, and the last term reflects

the interaction between these latter two terms. We show that B1n = OP (b
d
2+2(b−d−2 + c−d−1)) in Lemma

8.4, B2n = OP (b
d
2+2(b−dx−2 + c−dx)) in Lemma 8.5(b), and B3n = OP (b

d
2+2

(
b−dx−2 + c−dx)

)
in Lemma

8.6(b). Clearly, B1n never vanishes asymptotically whereas B2n and B3n are asymptotically negligible under
certain conditions, say when b = c and dz > dx. The asymptotic variance σ2n of nb

d
2+2Γ̂ only reflects the

contribution of r̂ (Yi;Vi) r̂0, due to the faster convergence rate of r̂1 (Xi) r̂
π
2 (Yi) to r1 (Xi) r

π
2 (Yi) than that

of r̂ (Yi;Vi) r̂0 to r (Yi;Vi) r0.

To implement the test, we need consistent estimates of the asymptotic bias and variance. Let

ζ̂1k (y; v) ≡ b−1f̂c (y|v)
−1
e1Sb (v)

−1
µb (Vk − v)Kb (Vk − v) 1̂y (Wk) 1{y ∈ Y0},

ζ̂2k (y; v) ≡ f̂c (y|v)
−2
DxF̂b (y|v) e′2Sc (v)

−1
µc (Vk − v)Kc (Vk − v) L̂y (Wk) 1{y ∈ Y0},

ζ̂k (y; v) ≡ ζ̂1k (y; v)− ζ̂1k (y; v) , ϕ̂ (Wj ,Wk) ≡ n−1
n∑
i=1

ζ̂j (Yi;Vi)
′
ζ̂k (Yi;Vi) ai,

where 1̂y (Wk) ≡ 1 {Yk ≤ y} − F̂b (y|Vk) , L̄y (Wk) ≡ Lc(Yk − y) − n−1
∑n
i=1 f̂c (y|Vk) , and F̂b (y|Vk) is

the pth order local polynomial estimator of F (y|Vk) by using the kernel K and bandwidth b. We propose
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estimating the asymptotic bias Bn and variance σ2n respectively by

B̂n ≡ n−1b
d
2+2 (r̂π0 )

2
n∑
i=1

ϕ̂ (Wi,Wi) + n−4b
d
2+2

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

n∑
k=1

ζ̂k (Yj ;Xi, Zj) r̂
π
2 (Yi)

∥∥∥∥∥∥
2

ai

−2n−3b
d
2+2r̂π0

n∑
i=1

n∑
l=1

ζ̂l (Yi;Vi)
′
n∑
j=1

n∑
k=1

ζ̂k (Yj ;Xi, Zj) r̂
π
2 (Yi) ai

σ̂2n ≡ 2n−2bd+4 (r̂π0 )
4

n∑
i=1

n∑
j=1

ϕ̂ (Wi,Wj)
2
.

It is straightforward to show B̂n − Bn = oP (1) and σ̂2n − σ2n = oP (1) . We can now compare

Tn ≡
(
nb

d
2+2Γ̂− B̂n

)
/

√
σ̂2n (3.1)

to the critical value zα defined as the upper α percentile from the N(0, 1) distribution (since the test is

one-sided) and reject the null when Tn > zα.

3.3 Consistency and asymptotic local power

The following theorem shows that the test Tn is consistent for the class of global alternatives

HA : µA ≡ E
{

[r (Y ;X,Z) rπ0 − r1 (X) rπ2 (Z)]2a (Y ;X,Z)
}
> 0.

Theorem 3.2 Suppose Assumptions C.1-C.7 hold. Then under HA, P (Tn > en) → 1 for any nonstochas-

tic sequence en = o(nb
d
2+2).

To study the local power of the Tn test, we consider the sequence of Pitman local alternatives:

HA (γn) : r (y;x, z) rπ0 − r1 (x) rπ2 (y) = γnδn (y;x, z) , (3.2)

where γn → 0 as n→∞, and δn is a non-constant measurable function with µ0 ≡ limn→∞E[δn (Y1;X1, Z1)
2

a (Y1;X1, Z1)] <∞.

Theorem 3.3 Suppose Assumptions C.1-C.7 hold. Then under HA (γn) with γn = n−1/2b−d/4−1, Tn
d→

N (µ0/σ0, 1) .

Theorem 3.3 implies that the Tn test has non-trivial power against Pitman local alternatives that

converge to zero at rate n−1/2b−d/4−1, provided 0 < µ0 <∞. The asymptotic local power function of the
test is given by 1− Φ (zα − µ0/σ0) , where Φ is the standard normal CDF.

3.4 Simulating the null distribution

As an alternative to estimating the bias and variance of the test’s asymptotically normal distribution, in

this subsection and Appendix II, we discuss simulation methods to obtain p-values. These methods may

perform better than the normal critical-value-based tests in finite samples, or they may be more convenient

to implement. Below we describe a simple subsampling procedure. In Appendix II, we propose two possible
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bootstrap procedures and discuss potential advantages and disadvantages associated with each bootstrap

method in the context of our tests.

Let m = mn be a sequence of positive integers such that m→∞ and m/n→ 0 as n→∞. Let B be a

large integer. The subsampling procedure goes as follows:3

1. Randomly draw B subsamples
{(
X
∗(k)
i , Y

∗(k)
i , Z

∗(k)
i

)
, i = 1, ...,m

}B
k=1

of size m from the original

sample {(Xi, Yi, Zi)}ni=1 .

2. For k = 1, ..., B, compute Tn using the subsample
{(
X
∗(k)
i , Y

∗(k)
i , Z

∗(k)
i

)}m
i=1

and denote this as

T̂
∗(k)
n,m .

3. Calculate the subsampling p-value as

p = B−1
B∑
k=1

1
{
Tn < T̂ ∗(k)n,m

}
.

The asymptotic validity of the above subsampling method can be established as in Politis et al. (1999).

Under the null hypothesis both Tn and T̂
∗(k)
n,m are asymptotically distributed as N (0, 1) and thus the test

based on this subsampling based p-value has the correct asymptotic size, and under the fixed alternative

Tn diverges to infinity at a speed faster than T̂
∗(k)
n,m , giving the test its power.

4 Monte Carlo Simulations

In this section, we use simulations to examine the finite sample performance of our test. We consider eight

data generating processes (DGPs), the first four of which are as follows:

DGP 1: Y = X + U ;

DGP 2: Y = X + U +X
√

1 + U2;

DGP 3: Y = Φ(X + U), where Φ is the standard normal CDF;

DGP 4: Y = Φ(X + U +X
√

1 + U2);

where X ∼Uniform(−1, 1) , U ∼Uniform(−1, 1) , and X and U are independent.

DGPs 5-8 are identical to DGPs 1-4, respectively, except that X and U are no longer independent:

X = 0.5Z + 0.5ε1 and U = 0.5Z + 0.5ε2, where ε1 ∼Uniform(−1, 1) , ε2 ∼Uniform(−1, 1) , Z follows a

standard normal distribution truncated by −2 and 2 in the tails, and ε1,ε2, and Z are mutually independent.

By construction, X ⊥ U | Z, DGPs 1, 3, 5 and 7 satisfy the null, and DGPs 2, 4, 6, and 8 obey the
alternative.

We use second order (quadratic) local polynomial estimators, i.e., p = 2, with a Gaussian PDF for the

kernel function. For the bandwidth sequence b and c, we use the rule κ·std(V ) · n−
1

2(p+1)+1 and κ·std(Y ) ·
n−

1
2(p+1)+1 associated with V and Y, respectively, where κ is a constant and std(V ) and std(Y ) are sample

standard deviations of V and Y, respectively. In general, the optimal κ depends on the underlying specific

DGPs. For simplicity we let κ = 1 for DGPs 1-4 and κ = 2 for DGPs 5-8. For DGPs 1-4, we specify the

3Alternatively, one can refer this as to the m-out-of-n bootstrap procedure.
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weight function a = 1, corresponding to no trimming, whereas for DGPs 5-8, a trims out 2.5% data on

each tail of each dimension of (Y,X,Z), so

a (Y,X,Z) = 1 [y0.025 ≤ Y ≤ y0.975] · 1 [x0.025 ≤ X ≤ x0.975] · 1 [z0.025 ≤ Z ≤ z0.975] ,

where y0.025 and y0.975 are the 0.025 and 0.975 quantiles of Y respectively, and similarly for x0.025, x0.975,

z0.025, and z0.975.

We first consider the subsampling test with the sample sizes n = 200 and 300. We try three different

subsample sizes m = bn0.8c, bn0.85c, and bn0.9c, where b·c denotes the integer part of ·. The number of
subsamples is B = 200 and the number of replications is 200.

Table 1 presents the rejection frequencies for DGPs 1, 3, 5, and 7 under the null. We consider three

conventional nominal levels: 0.01, 0.05 and 0.10. When the sample size is 200, the subsampling tests are

undersized. However, when the sample size increases to 300, the performance improves and the rejection

frequencies are closer to their nominal levels. This suggests that a moderate to large sample is required

for the test to have good level behavior. This is not surprising, as the estimation of derivatives is much

harder and has a slower convergence rate than the estimation of the conditional expectation itself. The

level behavior is similar for different subsample sizes m.
Table 1: Empirical rejection frequency: levels

DGP n Subsample size

bn0.80c bn0.85c bn0.90c
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 200 0 0.015 0.035 0 0.010 0.050 0 0.010 0.035

300 0.010 0.035 0.130 0.005 0.030 0.125 0 0.020 0.085

3 200 0 0.010 0.035 0 0.010 0.040 0 0.005 0.020

300 0.010 0.035 0.085 0 0.030 0.080 0 0.025 0.065

5 200 0 0.015 0.045 0 0 0.020 0 0.005 0.015

300 0 0.025 0.100 0 0.015 0.060 0 0 0.035

7 200 0 0.015 0.050 0 0.015 0.030 0 0.005 0.020

300 0 0.035 0.100 0.005 0.020 0.065 0 0.005 0.035
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Table 2: Empirical rejection frequency: powers

DGP n Subsample size

bn0.80c bn0.85c bn0.90c
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

2 200 0.540 0.930 0.985 0.470 0.875 0.965 0.235 0.760 0.905

300 0.940 1.000 1.000 0.895 0.995 1.000 0.725 0.980 0.995

4 200 0.610 0.960 0.990 0.350 0.890 0.975 0.110 0.580 0.930

300 0.790 0.990 1.000 0.505 0.975 1.000 0.145 0.745 0.970

6 200 0.340 0.810 0.950 0.180 0.665 0.875 0.075 0.465 0.770

300 0.790 0.980 1.000 0.685 0.950 0.995 0.365 0.825 0.965

8 200 0.075 0.250 0.435 0.030 0.160 0.310 0 0.060 0.225

300 0.135 0.460 0.705 0.100 0.395 0.655 0.025 0.210 0.440

Table 2 reports the rejection frequencies for DGPs 2, 4, 6 and 8 under the alternative. The power of

the tests behaves well. When n = 200, even at the 0.01 nominal level, the test has substantial power;

for example, the rejection frequency is 0.540 for DGP 1 when sample size n = 200 and subsample size

m = n0.80. The power increases rapidly as the sample size increases. For example, the rejection frequency

becomes 0.940 for DGP 1 when n = 300 and m = n0.80. The power of the tests increases when the

subsample size m decreases. This is likely because, under the alternative, the test statistics diverge, so the

difference between the original test statistics and subsampled test statistics is large when the difference

between the original sample size and subsample size is large.4

5 Empirical Applications

In this section, we consider testing whether duration data obey the class of nonlinear generalized accelerated

failure-time (GAFT) models. We then apply our test empirically on two different data sets. The first

application is duration of strikes among manufacturing workers in the US, and the second is duration of

first marriages among divorced couples.

For these applications, Y is the duration of a certain state (a nonnegative random variable) such as

duration of a strike. Our test is directly applicable to nonlinear GAFT models, since such models can be

written in the form Y = G [H1 (X) + U ], where X is a vector of covariates, and U an unobservable random

variable (see, eq. (2.5) in Ridder, 1990). The GAFT models include accelerated failure-time (AFT) models,

proportional hazards (PH) models, and mixed proportional hazard (MPH) models.

4We also consider the weighted bootstrap discussed in Appendix II. We find that for some DGPs, especially when the

dimension of (X,Z) is large, this bootstrap over-rejects the null. However, we find that the weighted bootstrap procedure

has better power than subsampling uniformly for all DGPs. Since the weighted bootstrap test can be significantly over-sized,

we do not recommend its use. The weighted bootstrap simulation results are available upon request.
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MPH models are a particularly popular class of GAFT models (for a detailed review, see Van den Berg

(2001)). Below we provide a direct link between our null hypothesis and MPH models. Let h (Y,X, ξ)

denote the hazard function for Y . An MPH model of survival time Y is one where

h (Y,X, ξ) = λ (Y ) · θ (X) · ξ (5.1)

holds for some baseline hazard function λ (Y ) and some nonnegative function of covariates θ (X). The

MPH model is widely applied in empirical research. For example, when ξ = 1, this is the standard

proportion hazard (PH) model developed by Cox (1972). A particularly popular parametric specification

of the MPH model due to Lancaster (1979) assumes that λ (Y ) = αY α−1, θ (X) = exp (X ′β) and ξ is

a gamma distributed random variable. The following Proposition provides a general characterization of

MPH models.

Proposition 5.1 Suppose that the hazard function of the survival time Y is h (Y,X, ξ) , where Y ∈ R+,
X ∈ Rdx , ξ ∈ R+ and ξ 6= 0 with probability 1. Let λ : R→ R+ and θ : Rdx→ R+ be two measurable

functions such that λ (Y ) = 0 with probability 0 and θ (X) = 0 with probability 0. Then h (Y,X, ξ) is a

MPH model:

h (Y,X, ξ) = λ (Y ) · θ (X) · ξ,

if and only if

Y = G [H1 (X) + U ] ,

where G : R→ R+ is a strictly increasing function that is differentiable a.e. on its support, H1 : Rdx→ R,
and U = ln

[
− ln(1−ε)

ξ

]
, where ε is a uniform random variable on [0, 1] and ε ⊥ (X, ξ) .

Proposition 5.1 shows that the MPH model has two important implications: (i) it equals a transforma-

tion model of the type given by our null, and (ii) U allows a distribution determined by ln(− ln (1− ε) /ξ).
In principle, both restrictions might be testable, though we focus on implication (i), corresponding to our

null hypothesis.5 If our null is rejected, then the specification of MPH models is rejected, so our test can

used as a falsification test for MPH models.

5.1 Duration of strikes

In this subsection, we test the specification of GAFT models using data on the duration of strikes. Here

Y is the duration of strikes in U.S. manufacturing firms, defined as the number of days since the start of a

strike. Our X is a scalar variable indicator of the business cycle position of the economy, measured by the

deviation of output from its trend. Positive values of X mean that the economy is above its growth trend.

We assume that A.1 holds with X ⊥ U , i.e., Z is empty.
Our dataset was used in Kennan (1985) and is employed in several econometrics textbooks including as

Cameron and Trivedi (2005) and Greene (2011). The sample size is 566. Table 3 presents data summary

statistics.
5More broadly, this proposition shows that nonparametrically the only difference between GAFT and MPH models is some

regularity conditions, since if one is given a GAFT model which by Ridder (1990) satisfies Y = G [H1 (X) + U ], then given

the regularity assumed in Proposition 5.1, one can construct an equivalent MPH model by letting ξ = [− ln (1− ε)] e−U where
ε is uniform.
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Table 3: Summary statistics for the strike data (sample size n = 566)

Variable Name Mean Median Standard Deviation Min Max

Y Duration of strikes (days) 43.62 28.00 44.67 1 235

X Business cycle position 0.006 0.008 0.050 -0.140 0.086

We apply our subsampling based test. Results based on 1000 subsamples are reported in Table 4. The

p-values are high for all subsample sizes under investigation. This suggests that our test supports the

specification of GAFT models.

Table 4: Test results for the strike data (sample size n = 566)

Subsample size bn0.80c = 159 bn0.85c = 219 bn0.90c = 300

p-values 0.651 0.578 0.572

5.2 Duration of marriage

In this subsection, we apply our test to study the duration of the first marriage of divorced couples. Let Y

be the duration of the first marriage of a couple andX be the age difference of the couple. The dataset is the

U.S. survey data taken from Lillard and Panis (2003). We choose a relatively homogeneous subpopulation

where the divorced couples are white and have more than 10 years of education. The sample size is 542.

Data summary statistics are provided in Table 5.

Table 5: Summary statistics for the marriage data (sample size n = 542)

Variable Name Mean Median Standard Deviation Min Max

Y Duration of marriage 10.37 8.04 7.89 0.10 50.38

X Age difference 2.13 2.35 4.21 -31.25 33.00

We implement our test with this dataset and find that the GAFT model (and hence also the MPH

model) is soundly rejected. The p-values are all smaller than 0.01 for all subsample sizes. These test

results based on 1000 subsamples are shown in Table 6.

Table 6: Test results for the marriage data (sample size n = 542)

Subsample size bn0.80c = 154 bn0.85c = 211 bn0.90c = 289

p-values 0.006 0.005 0.005

This rejection of the null hypothesis could be due either to inadequacy of the GAFT specification, or

the assumption that X ⊥ U in our homogeneous subpopulation could be violated. This subpopulation

controls for education and race, but it is possible that GAFT would not be rejected if we observed and

conditioned on other covariates Z such as the religious affi liation, the number of children, and the income

of the couple, among others.

Given our results, one could either propose a more general duration model than the GAFT class, such

as Chesher’s (2002) nonseparable semiparametric model h (Y,X, ξ) = ψ (Y, θ (X)) /ξ, where ψ and θ are

unknown functions. Alternatively, one could seek out a data set with more covariates to condition on (and

more observations to deal with the curse of dimensionality that would arise with more covariates), and test

if GAFT holds in this larger data set.
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6 Extensions

Our methodology can be extended to test other related hypotheses for specifications in nonseparable models.

For example, suppose that X is multi-dimensional such that X ≡ (X1, X2) . Then our results can be used

to test the hypotheses:

H20 : There exist two measurable functions R2 and H3 such that

Y = R2 [H3 (X1, X2) , U ] a.s.

H2A : H20 is false;

and

H30 : There exist three measurable functions R3, H4 and H5 such that

Y = R3 [H4 (X1) +H5 (X2) , U ] a.s.

H3A : H30 is false.

Given the key conditional exogeneity assumption A.1, a testable implication of H20 is

∂FY |X1,X2,Z (y | x1, x2, z) /∂x1
∂FY |X1,X2,Z (y | x1, x2, z) /∂x2

= r3 (x1, x2) , (6.1)

where FY |X1,X2,Z (y | x1, x2, z) is the conditional CDF of Y given (X1, X2, Z) and r3 some unknown mea-

surable function. Similarly, H30 implies that

∂FY |X1,X2,Z (y | x1, x2, z) /∂x1
∂FY |X1,X2,Z (y | x1, x2, z) /∂x2

= r4 (x1) · r5 (x2) (6.2)

for some unknown measurable functions r4 and r5.

Our test can also be extended to test for semiparametric specifications. For example, one may be

interested in testing

H40 : There exist β ∈ Rdx and two measurable functions R4 and H2 such that

Y = R4 [X ′β +H2 (U)] a.s.

H4A : H40 is false;

Then H40 implies that

r (y;x, z) ≡ DxF (y | x, z)
f (y | x, z) = r6 (y) (6.3)

for some unknown measurable function r6.
To test equations (6.1), (6.2), and (6.3), one can readily construct test statistics similar to ours, using

marginal integration as proposed in testing H0.

7 Concluding Remarks

In this paper, we proposed a specification test for a transformation model containing a vector of covariates

and a vector of unobservable errors. This test is related to tests for separability and monotonicity in

17



nonseparable structural equations. We derive the testable implication of the transformation model that

the ratio of the derivatives of a conditional CDF takes a product form. Our test statistics are based on the

L2 distance between restricted and unrestricted estimators of this ratio of derivatives. We show that the

test statistics are asymptotically normal and consistent against the alternative of this testable implication.

We provide limit normal distribution theory as well as bootstrap and subsampling methods for obtaining

p-values under the null. Our simulations suggest that the test statistics perform well in moderate size

samples. We apply our statistics to test the specification of generalized accelerated failure-time models for

data on the durations of strikes among manufacturers in the US and of first marriages of divorced couples.

Both data sets are similar size and have the same dimension. We fail to reject GAFT for the strikes data,

while strongly rejecting it in the marriage data.

8 Appendix I: Mathematical Proofs

Proof of Theorem 2.1

We first prove (a). Let Ũ = H2 (U) . Then

F (y | x, z) = Pr [Y ≤ y | X = x, Z = z]

= Pr
[
G
[
H1 (X) + Ũ

]
≤ y | X = x, Z = z

]
= Pr

[
Ũ ≤ G−1 (y)−H1 (x) | Z = z

]
= FŨ |Z

[
G−1 (y)−H1 (x) , z

]
,

where FŨ |Z (·, z) denotes the conditional CDF of Ũ given Z = z. Let F1,Ũ |Z be the derivative of FŨ |Z with

respect to its first argument. Then,

∂F (y | x, z) /∂x
∂F (y | x, z) /∂y =

F1,Ũ |Z
[
G−1 (y)−H1 (x) , z

]
· [−∂H1 (x) /∂x]

F1,Ũ |Z [G−1 (y)−H1 (x) , z] · [∂G−1 (y) /∂y]
=
−∂H1 (x) /∂x

∂G−1 (y) /∂y
.

So the functions s1 and s2 exist and are given by

s1 (x) = −C ∂H1 (x) /∂x and s2 (y) =
1

C∂G−1 (y) /∂y
,

where C 6= 0 is an arbitrary constant. Clearly, s2 : R → R+ if C > 0 and s2 : R → R− if C < 0. The

measurable functions S1 and S2 are given by CH1 and CG−1, respectively.

We now prove (b) .Without loss of generality, assume that s2 : R→ R+.We can always find two scalar
functions S1 and S2 such that ∂S1 (x) /∂x = −s1 (x) and ∂S2 (y) /∂y = 1/s2 (y) , where S2 (·) is strictly
increasing. Combining this with the definition of r (y;x, z) gives

DxF (y | x, z)
DyF (y | x, z) = s1 (x) s2 (y) =

−∂S1 (x) /∂x

∂S2 (y) /∂y
for all (x, y, z) ∈ W. (8.1)

Let Ũ ≡ S2 (Y )−S1 (X) and ũ ≡ S2 (y)−S1 (x) . By the monotonicity of S2, we have Y = S−12 [S1 (X)+ Ũ ]

and y = S−12 [S1 (x) + ũ]. It follows that

FŨ |X,Z (ũ, x, z) ≡ P
(
Ũ ≤ ũ|X = x, Z = z

)
= P (S2 (Y )− S1 (X) ≤ ũ|X = x, Z = z)

= P
(
Y ≤ S−12 (S1 (x) + ũ) |X = x, Z = z

)
= P (Y ≤ y|X = x, Z = z) = F (y|x, z) .
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Then

DxF (y | x, z)
DyF (y | x, z) =

DxFŨ |X,Z (ũ, x, z)

DyFŨ |X,Z (ũ, x, z)
=
∂FŨ |X,Z (ũ, x, z) /∂ũ · s1 (x) + ∂FŨ |X,Z (ũ, x, z) /∂x

∂FŨ |X,Z (ũ, x, z) /∂ũ · (1/s2 (y))

= s1 (x) s2 (y) +
∂FŨ |X,Z (ũ, x, z) /∂x · (1/s2 (y))

∂FŨ |X,Z (ũ, x, z) /∂ũ
for all (x, y, z) ∈ W. (8.2)

Comparing (8.1) with (8.2) yields ∂FŨ |X,Z (ũ, x, z) /∂x = 0 for all (ũ, x, z) ∈ U × V where U denotes the
support of Ũ . Therefore, Ũ ⊥ X|Z. So far, we have shown that

Y = S−12 [S1 (X) + Ũ ]

where S−12 is strictly monotonic and X ⊥ Ũ |Z. The conclusion in part (b) follows by setting G = S−12 and

H1 = S1. �

Proof of Corollary 2.2

Under H10 and A.1, (2.1) in Theorem 2.1(a) holds, implying that

rπ0 ≡ π′EY EXZ [r (Y ;X,Z)] = π′E [s1 (X)]E [s2 (Y )] ,

r1 (x) ≡ E [r (Y ;x, Z)] = s1 (x)E [s2 (Y )] ,

rπ2 (y) ≡ π′E [r (y;X,Z)] = s2 (y)π′E [s1 (X)] .

It follows that

r (X,Y, Z) rπ0 − r1 (X) rπ2 (Y ) = [s1 (X) s2 (Y )] {π′E [s1 (X)]E [s2 (Y )]}

−{s1 (X)E [s2 (Y )]} {s2 (Y )π′E [s1 (X)]}

= 0. �

To prove Theorem 3.1, we first establish some technical lemmas. Recall that Vi ≡ (X ′i, Z
′
i)
′
, v ≡ (x′, z′)

′
,

Kb (v) ≡ b−dK (v/b) , and µb (v) ≡ µ (v/b) . Let Wi ≡ (Yi, V
′
i )′ and w ≡ (y, v′)

′
. Define

Bb (y; v) ≡ 1

n

n∑
i=1

Kb (Vi − v)µb (Vi − v) ∆i,y (v) ,

Vb (y; v) ≡ 1

n

n∑
i=1

Kb (Vi − v)µb (Vi − v) 1̄y (Wi) ,

where ∆i,y (v) ≡ F (y|Vi)− F (y|v)−
∑

1≤|j|≤p
1
j!D

jF (y|v) (Vi − v)
j
, and 1̄y (Wi) ≡ 1 {Yi ≤ y} − F (y|Vi) .

Let S̄b (v) ≡ E[Sb (v)] and B̄b (y; v) ≡ E[Bb (y; v)], where Sb (v) is defined after (2.10). The next lemma

establishes uniform consistency of DxF̂b (y|v) .

Lemma 8.1 Suppose that Assumptions C.1-C.3, C.5, and C.7 hold. Then uniformly in (y, v) ∈ Y0 × V,
(a) DxF̂b (y|v)−DxF (y|v) = b−1e1S̄b (v)

−1
[Vb (y; v) + B̄b (y; v)] +OP (ν21bb

−1 + ν1bb
p),

(b) DxF̂b (y|v)−DxF (y|v) = OP (ν1bb
−1 + bp),

where ν1b ≡ n−1/2b−d/2
√

lnn.
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Proof. By Lemma 10.1 in HSW (2011), β̂ (y|v)− β (y|v) = S̄b (v)
−1

[Vb (y; v) + B̄b (y; v)] +OP (ν21b +

ν1bb
p+1) = OP (ν1b + bp+1) uniformly in (y, v) ∈ Y0 ×V. The results follow from the fact hat DxF̂b (y|v)−

DxF (y|v) = e1[β̂ (y|x, z)− β (y|v)]/b.

Define

V(L)
c (y; v) ≡ 1

n

n∑
i=1

Kc (Vi − v)µc (Vi − v) L̄y (Wi) ,

B(L)
c (y; v) ≡ 1

n

n∑
i=1

Kc (Vi − v)µc (Vi − v)

α (y|Vi)− f (y|v)−
∑

1≤|j|≤p

1

j!
α(j) (y|v) (Vi − v)

j

 ,
where L̄y (Wi) ≡ Lc(Yi−y)−α (y|Vi) and α (y|v) ≡ E [Lc(Yi − y)|Vi = v] . Let B̄

(L)
c (y; v) ≡ E[B

(L)
c (y; v)].

The next lemma establishes uniform consistency of f̂c(y|v).

Lemma 8.2 Suppose that Assumptions C.1-C.7 hold. Then uniformly in (y, v) ∈ Y0 × V,
(a) f̂c(y|v)− f(y|v) = e′2S̄c (v)

−1
[V

(L)
c (y; v) + B̄

(L)
c (y; v)] +OP (ν22c + ν2cc

p+1),

(b) f̂c(y|v)− f(y|v) = OP (ν2c + cp+1 + cr),

where ν2c ≡ n−1/2c−(d+1)/2
√

lnn.

Proof. The results follow from Lemma 10.5 in HSW (2011).

Lemma 8.3 Suppose that Assumptions C.1-C.7 hold. Then

(a) r̂ (y; v) − r (y; v) = b−1e1S̄b (v)
−1

Vb (y; v) f (y|v)
−1 − DxF (y|v) e′2S̄c (v)

−1
V
(L)
c (y; v) f (y|v)

−2
+

OP (νbc) uniformly in (y, v) ∈ Y0 × V,
(b) r̂0 − r0 = OP

(
νbc + n−1/2b−1

)
,

(c) supy∈Y0 |r̂2 (y)− r2 (y)| = OP (νbc + n−1/2b−1
√

lnn),

where νbc ≡ ν21bb−1 + bp + ν22c + cp+1 + cr + ν1bν2cb
−1 = o(n−1/2b−(

d
2+1)).

Proof. (a) Let q̂ (y; v) ≡ r̂ (y; v)−r (y; v) .Noting that f̂c(y|v)−1 = f(y|v)−1−[f̂c(y|v)−f(y|v)]/f(y|v)2+

R1 (y; v) where R1 (y; v) ≡ [f̂c(y|v)− f(y|v)]2/[f(y|v)2f̂c(y|v)], we have that for any (y, v) ∈ Y0 × V,

q̂ (y; v) =
DxF̂b (y|v)

f̂c(y|v)
− DxF (y|v)

f(y|v)

=
DxF̂b (y|v)−DxF (y|v)

f(y|v)
+

[
1

f̂c(y|v)
− 1

f(y|v)

]
DxF (y|v) +R2 (y; v)

=
DxF̂b (y|v)−DxF (y|v)

f(y|v)
− f̂c(y|v)− f(y|v)

f(y|v)2
DxF (y|v) +R1 (y; v)DxF (y|v) +R2 (y; v)

≡ q̂1 (y; v)− q̂2 (y; v) +R1 (y; v)DxF (y|v) +R2 (y; v) , say,

where R2 (y; v) ≡ [f̂c(y|v)−1 − f(y|v)−1]
[
DxF̂b (y|v)−DxF (y|v)

]
. Using Lemmas 8.1 and 8.2 we can

bound the last two terms in the last expression uniformly by Op (η2c(η1b + η2c)) , where η1b ≡ ν1bb−1 + bp

and η2c ≡ ν2c + cp+1 + cr. In addition, uniformly in (y, v) ∈ Y0 × V,

q̂1 (y; v) = [DxF̂b (y|v)−DxF (y|v)]/f (y|v)

= b−1e1S̄b (v)
−1

[Vb (y; v) + B̄b (y; v)]/f (y|v) +OP (ν21bb
−1 + ν1bb

p)

= b−1e1S̄b (v)
−1

Vb (y; v) /f (y|v) +OP (ν21bb
−1 + bp),
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and

q̂2 (y; v) = DxF (y|v) [f̂c(y|v)− f (y|v)]/f (y|v)
2

= DxF (y|v) e′2S̄c (v)
−1

[V(L)
c (y; v) + B̄(L)

c (y; v)]/f (y|v)
2

+OP (ν22c + ν2cc
p+1)

= DxF (y|v) e′2S̄c (v)
−1

V(L)
c (y; v) /f (y|v)

2
+OP (ν22c + cp+1 + cr).

It follows that uniformly in (y, v) ∈ Y0 × V,

q̂ (y; v) = b−1e1S̄b (v)
−1

Vb (y; v) f (y|v)
−1 −DxF (y|v) e′2S̄c (v)

−1
V(L)
c (y; v) f (y|v)

−2

+OP
(
ν21bb

−1 + bp + ν22c + cp+1 + cr + η2c(η1b + η2c)
)

= b−1e1S̄b (v)
−1

Vb (y; v) f (y|v)
−1 −DxF (y|v) e′2S̄c (v)

−1
V(L)
c (y; v) f (y|v)

−2
+OP (νbc) .

(b) Write r̂0 − r0 = r̂01 + r̂02, where

r̂01 =
1

n2

n∑
i=1

n∑
j=1

[r̂ (Yi;Xj , Zj)− r (Yi;Xj , Zj)] , and r̂02 =
1

n2

n∑
i=1

n∑
j=1

[r (Yi;Xj , Zj)− r0] .

It is easy to show that r̂02 = OP
(
n−1/2

)
by the Chebyshev inequality. For r̂01, we have by (a)that

r̂01 = R1n −R2n +OP (νbc) , where

R1n ≡ 1

n2

n∑
i=1

n∑
j=1

b−1e1S̄b (Vj)
−1

Vb (Yi;Vj) f
−1
ij 1i,

R2n ≡ 1

n2

n∑
i=1

n∑
j=1

Dxije
′
2S̄c (Vj)

−1
V(L)
c (Yi;Vj)f

−2
ij 1i,

1i ≡ 1 {Yi ∈ Y0} , fij ≡ f (Yi|Vj) , and Dxij ≡ DxF (Yi|Vj) . For R1n, we have

R1n =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

b−1e1S̄b (Vj)
−1
µb (Vk − Vj)Kb (Vk − Vj) 1̄Yi (Wk) 1i

=
1

n3

n∑
i=1

n∑
j=1,j 6=i

n∑
k=1,k 6=j,i

b−1e1S̄b (Vj)
−1
µb (Vk − Vj)Kb (Vk − Vj) 1̄Yi (Wk) 1i

+
1

n3

n∑
i=1

n∑
j=1,j 6=i

b−1e1S̄b (Vj)
−1
µb (Vi − Vj)Kb (Vi − Vj) 1̄Yi (Wi) 1i

+
1

n3

n∑
i=1

n∑
j=1,j 6=i

b−1e1S̄b (Vj)
−1
µb (0)Kb (0) 1̄Yi (Wj) 1i

+
1

n3

n∑
i=1

b−1e1S̄b (Vi)
−1
µb (0)Kb (0) 1̄Yi (Wi) 1i

≡ R1n,1 +R1n,2 +R1n,3 +R1n,4.

It is easy to show that R1n,4 = OP
(
n−2b−d−1

)
, R1n,3 = OP

(
n−3/2b−d−1

)
, and R1n,2 = OP

(
n−1b−1

)
.

Noting that R1n,1 is a third-order U -statistic with E (Rn,1) = 0, it is straightforward to show that

E
(
R21n,1

)
= O

(
n−1b−2 + n−2b−d−2

)
. ThusR1n,1 = OP

(
n−1/2b−1

)
andR1n = OP

(
n−1/2b−1

)
as n−1b−d =

o (1) . By the same token, we can show that R2n = OP
(
n−1/2

)
. It follows that r̂0−r0 = OP (νbc+n

−1/2b−1).
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(c) Write r̂2 (y)− r2 (y) = r̂21 (y) + r̂22 (y) , where

r̂21 (y) =
1

n

n∑
i=1

[r̂ (y;Vi)− r (y;Vi)] and r̂22 (y) =
1

n

n∑
i=1

[r (y;Vi)− r2 (y)] .

By standard chaining arguments and the exponential inequality, we can show that supy∈Y0 ‖r̂22 (y)‖ =

O(n−1/2
√

lnn). By (a), r̂21 (y) = r̄21 (y)+OP (νbc) uniformly in y ∈ Y0, where r̄21 (y) ≡ r̄21,1 (y)− r̄21,2 (y) ,

r̄21,1 (y) ≡ 1
n

∑n
i=1 b

−1e1S̄b (Vi)
−1

Vb (y;Vi) f (y|Vi)−1 1 {y ∈ Y0} , and r̄21,2 (y) ≡ 1
n

∑n
i=1 f (y|Vi)−2DxF (y|Vi)

×e′2S̄c (Vi)
−1

V
(L)
c (y;Vi) 1 {y ∈ Y0} . Now write r̄21,1 (y) as the summation of a first order U -statistic and

a second order U -statistic: r̄21,1 (y) = r̄21,11 (y) + r̄21,12 (y) , where

r̄21,11 (y) ≡ 1

n2

n∑
i=1

b−1e1S̄b (Vi)
−1
µb (0)Kb (0) 1̄y (Wi) f (y|Vi)−1 1 {y ∈ Y0} , and

r̄21,12 (y) ≡ 1

n2

n∑
i=1

n∑
j=1,j 6=i

b−1e1S̄b (Vi)
−1
µb (Vj − Vi)Kb (Vj − Vi) 1̄y (Wj) f (y|Vi)−1 1 {y ∈ Y0} .

By the exponential inequality, we can show that supy∈Y0 ‖r̄21,11 (y)‖ = O(n−3/2b−d−1
√

lnn). For r̄21,12 (y) ,

one can follow the proof of (A.10) in Gozalo and Linton (2001) and show that supy∈Y0 ||r̄21,12 (y) || =

O(n−1/2b−1
√

lnn).6 Hence supy∈Y0 ‖r̄21,1 (y)‖ = O(n−1/2b−1
√

lnn). Similarly, supy∈Y0 ‖r̄21,2 (y)‖ = O(n−1/2
√

lnn). Thus supy∈Y0 ‖r̂2 (y)− r2 (y)‖ = OP (νbc + n−1/2b−1
√

lnn).

Proof of Theorem 3.1

Let ai ≡ a (Yi;Xi, Zi) , ri ≡ r (Yi;Xi, Zi) , r1i ≡ r1 (Xi) , r2i ≡ r2(Yi), r
π
2i ≡ rπ2 (Yi), r̂i ≡ r̂ (Yi;Xi, Zi) ,

r̂1i ≡ r̂1 (Xi) , r̂2i ≡ r̂2(Yi), and r̂π2i ≡ r̂π2 (Yi). Then

nb
d
2+2Γ̂ = b

d
2+2

n∑
i=1

‖r̂ir̂π0 − r̂1ir̂π2i‖
2
ai

= b
d
2+2

n∑
i=1

‖[(r̂i − ri) + ri] [(r̂π0 − rπ0 ) + rπ0 ]− [(r̂1i − r1i) + r1i] [(r̂π2i − rπ2i) + rπ2i]‖
2
ai

= b
d
2+2

n∑
i=1

‖[rirπ0 − r1irπ2i] + [(r̂i − ri) rπ0 + ri (r̂π0 − rπ0 )− (r̂1i − r1i) rπ2i − r1i (r̂π2i − rπ2i)]

+ [(r̂i − ri) (r̂π0 − rπ0 )− (r̂1i − r1i) (r̂π2i − rπ2i)]‖
2
ai

= Γ1n + Γ2n + Γ3n + 2Γ4n + 2Γ5n + 2Γ6n, (8.3)

6 If we ignore the boundary points, we can write S̄b (v) = f (v) S+ bV (v) + o (b) uniformly in v in the interior of V, where S
and V are defined as M and V in Li, Lu and Ullah (2003, p.617). Following the proof of Lemma A.3 in their paper, one can

show that r̄21,12 (y) = O(n−1/2) elementwise by using the degeneracy of the second order U -statistic defined analogously to

r̄21,12 (y) but with S̄b (Vi)
−1 replaced by its leading term f (Vi)

−1 S−1. But their argument breaks down when v takes values
on the boundary of V.
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where

Γ1n ≡ b
d
2+2

n∑
i=1

‖rirπ0 − r1irπ2i‖
2
ai,

Γ2n ≡ b
d
2+2

n∑
i=1

‖(r̂i − ri) rπ0 + ri (r̂π0 − rπ0 )− (r̂1i − r1i) rπ2i − r1i (r̂π2i − rπ2i)‖
2
ai,

Γ3n ≡ b
d
2+2

n∑
i=1

‖(r̂i − ri) (r̂π0 − rπ0 )− (r̂1i − r1i) (r̂π2i − rπ2i)‖
2
ai,

Γ4n ≡ b
d
2+2

n∑
i=1

[rir
π
0 − r1irπ2i]

′
[(r̂i − ri) rπ0 + ri (r̂π0 − rπ0 )− (r̂1i − r1i) rπ2i − r1i (r̂π2i − rπ2i)] ai,

Γ5n ≡ b
d
2+2

n∑
i=1

[rir
π
0 − r1irπ2i]

′
[(r̂i − ri) (r̂π0 − rπ0 )− (r̂1i − r1i) (r̂π2i − rπ2i)] ai,

Γ6n ≡ b
d
2+2

n∑
i=1

[(r̂i − ri) rπ0 + ri (r̂π0 − rπ0 )− (r̂1i − r1i) rπ2i − r1i (r̂π2i − rπ2i)]
′

× [(r̂i − ri) (r̂π0 − rπ0 )− (r̂1i − r1i) (r̂π2i − rπ2i)] ai.

Under H0, Γjn = 0 for j = 1, 4, 5. It suffi ces to prove the theorem by showing that (i) Γ2n−Bn
d→ N

(
0, σ20

)
,

(ii) Γ3n = oP (1) , and (iii) Γ6n = oP (1) .

To show (i), we write Γ2n =
∑10
j=1 Γ2n,j where

Γ2n,1 ≡ b
d
2+2

∑n
i=1 ‖(r̂i − ri) rπ0 ‖

2
ai, Γ2n,6 ≡ −2b

d
2+2

∑n
i=1 (r̂i − ri)′ (r̂1i − r1i) rπ0 rπ2iai,

Γ2n,2 ≡ b
d
2+2

∑n
i=1 ‖ri (r̂π0 − rπ0 )‖2 ai, Γ2n,7 ≡ −2b

d
2+2

∑n
i=1 (r̂i − ri)′ r1irπ0 (r̂π2i − rπ2i) ai,

Γ2n,3 ≡ b
d
2+2

∑n
i=1 ‖(r̂1i − r1i) rπ2i‖

2
ai, Γ2n,8 ≡ −2b

d
2+2

∑n
i=1 r

′
i (r̂1i − r1i) (r̂π0 − rπ0 ) rπ2iai,

Γ2n,4 ≡ b
d
2+2

∑n
i=1 ‖r1i (r̂π2i − rπ2i)‖

2
ai, Γ2n,9 ≡ −2b

d
2+2

∑n
i=1 r

′
ir1i (r̂π0 − rπ0 ) (r̂π2i − rπ2i) ai,

Γ2n,5 ≡ 2b
d
2+2

∑n
i=1 (r̂i − ri)′ rirπ0 (r̂π0 − rπ0 ) ai, Γ2n,10 ≡ 2b

d
2+2

∑n
i=1 (r̂1i − r1i)′ r1irπ2i (r̂π2i − rπ2i) ai.

By Lemmas 8.4, 8.5(b) and 8.6(b) below, Γ2n,1+Γ2n,3+Γ2n,6−Bn
d→ N

(
0, σ20

)
, where Bn ≡ B1n+B2n−2B3n.

By Lemmas 8.5(a) and (c) and Lemmas 8.6 (a) and (c)-(f), Γ2n,s = oP (1) for s = 2, 4, 5, 7, ..., 10. It follows

that Γ2n − Bn
d→ N

(
0, σ20

)
.

Next, we show (ii). By the Cauchy-Schwarz inequality, Γ3n ≤ 2Γ3n,1+2Γ3n,2, where Γ3n,1 ≡ b
d
2+2 (r̂π0 − rπ0 )

2

×
∑n
i=1 ‖r̂i − ri‖

2
ai and Γ3n,2 ≡ b

d
2+2

∑n
i=1 ‖(r̂1i − r1i) (r̂π2i − rπ2i)‖

2
ai. By Lemmas 8.3(b) and 8.4,

Γ3n,1 = (r̂π0 − rπ0 )
2

(rπ0 )
−2

Γ2n,1 = OP
(
ν2bc + n−1b−2

)
OP

(
b
d
2+2

(
b−d−2 + c−d−1

))
= oP (1) .

Following the proof of Lemma 8.5(b), we can show that Γ̄3n,2 ≡ b
d
2+2

∑n
i=1 ‖r̂1i − r1i‖

2
ai = OP (b

d
2+2(b−dx−2

+c−dx)). It follows that

Γ3n,2 ≤ sup
y∈Y0

|r̂π2 (y)− rπ2 (y)|2 Γ̄3n,2 = OP
(
ν2bc + n−1b−2 lnn

)
OP

(
b
d
2+2

(
b−dx−2 + c−dx

))
= oP (1) ,

and hence Γ3n = oP (1) .
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To show (iii) , we first decompose Γ6n as follows:

Γ6n = b
d
2+2 (r̂π0 − rπ0 ) rπ0

n∑
i=1

‖r̂i − ri‖2 ai − b
d
2+2rπ0

n∑
i=1

(r̂i − ri)′ (r̂1i − r1i) (r̂π2i − rπ2i) ai

+b
d
2+2 (r̂π0 − rπ0 )

2
n∑
i=1

r′i (r̂i − ri) ai − b
d
2+2 (r̂π0 − rπ0 )

n∑
i=1

r′i (r̂1i − r1i) (r̂π2i − rπ2i) ai

−b d2+2 (r̂π0 − rπ0 )

n∑
i=1

(r̂1i − r1i)′ (r̂i − ri) rπ2iai + b
d
2+2

n∑
i=1

‖r̂1i − r1i‖2 (r̂π2i − rπ2i) rπ2iai

−b d2+2 (r̂π0 − rπ0 )

n∑
i=1

r′1i (r̂i − ri) (r̂π2i − rπ2i) ai + b
d
2+2

n∑
i=1

r′1i (r̂1i − r1i) (r̂π2i − rπ2i)
2
rπ2iai

≡ Γ6n,1 − Γ6n,2 + Γ6n,3 − Γ6n,4 − Γ6n,5 + Γ6n,6 − Γ6n,7 + Γ6n,8.

By Lemmas 8.3(b) and 8.4,

Γ6n,1 = (r̂π0 − rπ0 ) (rπ0 )
−1

Γ2n,1 = Op

(
νbc + n−1/2b−1

)
Op(b

d
2+2(b−d−2 + c−d−1)) = oP (1) .

Using Γ̄3n,2 and Γ2n,1 defined above, by Lemmas 8.3(c) and 8.4 and the Cauchy-Schwarz inequality,

|Γ6n,2| ≤ sup
y∈Y0

|r̂π2 (y)− rπ2 (y)| b d2+2
n∑
i=1

∣∣(r̂i − ri)′ (r̂1i − r1i) rπ0 ∣∣ ai
≤ sup

y∈Y0
|r̂π2 (y)− rπ2 (y)|

(
Γ2n,1Γ̄3n,2

)1/2
= OP

(
νbc + n−1/2b−1

√
lnn

){
OP

(
b
d
2+2

(
b−d−2 + c−d−1

))
OP

(
b
d
2+2

(
b−dx−2 + c−dx

))}1/2
= oP (1) .

By Lemmas 8.3(b) and 8.6(a), Γ6n,3 = (r̂π0 − rπ0 ) Γ2n,5/(2r
π
0 ) = oP (1) oP (1) = oP (1) . Following the

proof of Lemma 8.6(f), we can show that Γ̄6n,4 ≡ b
d
2+2

∑n
i=1 r

′
i (r̂1i − r1i) (r̂π2i − rπ2i) ai = oP (1) . This, in

conjunction with Lemma 8.3(b), implies that Γ6n,4 = (r̂π0 − rπ0 ) Γ̄6n,4 = oP (1) . By Lemma 8.3 and 8.6(b),

Γ6n,5 = − (r̂π0 − rπ0 ) Γ2n,6/ (2rπ0 ) = oP (1) . Analogously to the proof of Lemma 8.4, we can show that

Γ̄6n,6 ≡ b
d
2+2

∑n
i=1 ‖r̂1i − r1i‖

2 |rπ2i| ai = OP (b
d
2+2(b−dx−2 + c−dx)). Combining this with Lemma 8.3(c)

yields

|Γ6n,6| ≤ sup
y∈Y0

|r̂π2 (y)− rπ2 (y)| Γ̄6n,6 = OP

(
νbc + n−1/2b−1

√
lnn

)
OP

(
b
d
2+2

(
b−dx−2 + c−dx

))
= oP (1) .

By Lemmas 8.3(b) and 8.6(c), Γ6n,7 = − (r̂π0 − rπ0 ) Γ2n,7/ (2rπ0 ) = oP (1) . Lastly, by the Cauchy-Schwarz

inequality, Lemmas 8.3(c), 8.5(b), and 8.5(c), we have

|Γ6n,8| ≤ sup
y∈Y0

|r̂π2 (y)− rπ2 (y)| b d2+2
n∑
i=1

|r′1i (r̂1i − r1i) (r̂π2i − rπ2i) rπ2i| ai

≤ sup
y∈Y0

|r̂π2 (y)− rπ2 (y)| {Γ2n,3Γ2n,4}1/2

= OP

(
νbc + n−1/2b−1

√
lnn

){
OP

(
b
d
2+2

(
b−dx−2 + c−dx

))
oP (1)

}1/2
= oP (1) .

Consequently we have proved Γ6n = oP (1) . �
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Lemma 8.4 Suppose Assumptions C.1-C.7 hold. Then Γ2n,1−B1n
d→ N

(
0, σ20

)
where B1n = n−1b

d
2+2 (rπ0 )

2

×
∑n
i=1 ϕ (Wi,Wi) = OP (b

d
2+2

(
b−d−2 + c−d−1

)
).

Proof. Recall 1i ≡ 1 {Yi ∈ Y0} . Let fi ≡ f (Yi|Vi) and Dxi ≡ DxF (Yi|Vi) . Then

r̂i − ri = b−1e1S̄b (Vi)
−1

Vb (Yi;Vi) f
−1
i 1i −Dxie

′
2S̄c (Vi)

−1
V(L)
c (Yi;Vi) f

−2
i 1i +OP (νbc) .

It follows that

Γ2n,1 = b
d
2+2

n∑
i=1

‖(r̂i − ri) rπ0 ‖
2
ai

= b
d
2+2 (rπ0 )

2
n∑
i=1

∥∥∥b−1e1S̄b (Vi)
−1

Vb (Yi;Vi) f
−1
i −Dxie

′
2S̄c (Vi)

−1
V(L)
c (Yi;Vi) f

−2
i

∥∥∥2 ai
+nb

d
2+2OP

(
ν2bc + νbc

(
ν1bb

−1 + bp + ν2c + cp+1 + cr
))

= Γ̄2n,1 + oP (1) ,

where Γ̄2n,1 ≡ b
d
2+2 (rπ0 )

2∑n
i=1

∥∥∥b−1e1S̄b (Vi)
−1

Vb (Yi;Vi) f
−1
i −Dxie

′
2S̄c (Vi)

−1
V
(L)
c (Yi;Vi) f

−2
i

∥∥∥2 ai,7 and
we use the fact that 1iai = ai as a (y; v) has compact support Y0×V0. Let ζk (w) ≡ ζk (y; v) be as defined

in Section 3.2. Then

Γ̄2n,1 = b
d
2+2 (rπ0 )

2
n∑
i=1

∥∥∥∥∥n−1
n∑
k=1

ζk (Wi)

∥∥∥∥∥
2

ai

= n−2b
d
2+2 (rπ0 )

2
n∑

i1=1

n∑
i2=1

n∑
i3=1

ζ (Wi1 ,Wi2 ,Wi3) ,

where ζ (Wi1 ,Wi2 ,Wi3) ≡ ζi2 (Wi1)
′
ζi3 (Wi1) ai1 . Let ϕ (wi1 , wi2) ≡ E [ζ (W1, wi1 , wi2)] , and ζ̄(wi1 , wi2 ,

wi3) ≡ ζ (wi1 , wi2 , wi3)− ϕ (wi2 , wi3) . We can decompose Γ̄2n,1 as Γ̄2n,1 = Γ̄2n,11 + Γ̄2n,12, where

Γ̄2n,11 = n−1b
d
2+2 (rπ0 )

2
n∑

i1=1

n∑
i2=1

ϕ (Wi1 ,Wi2) and Γ̄2n,12 = n−2b
d
2+2 (rπ0 )

2
n∑

i1=1

n∑
i2=1

n∑
i3=1

ζ̄ (Wi1 ,Wi2 ,Wi3) .

Consider Γ̄2n,12 first. Write E(Γ̄22n,12) = n−4bd+4 (rπ0 )
4∑n

i1,...,i6
E
[
ζ̄ (Wi1 ,Wi2 ,Wi3) ζ̄ (Wi4 ,Wi5 ,Wi6)

]
.

Noting that E
[
ζ̄ (Wi1 , wi2 , wi3)

]
= E

[
ζ̄ (wi1 ,Wi2 , wi3)

]
= E[ζ̄(wi1 , wi2 ,Wi3)] = 0, E[ζ̄(Wi1 ,Wi2 ,Wi3)ζ̄(Wi4 ,

Wi5 ,Wi6)] = 0 if there are more than three distinct elements in {i1, . . . , i6} . With this, it is easy to show
that E(Γ̄22n,12) = O(n−1bd+4(b−4−3d+c−3(d+1))) = o (1) . Hence Γ̄2n,12 = oP (1) by the Chebyshev inequal-

ity.

For Γ̄2n,11, we have

Γ̄2n,11 = n−1b
d
2+2 (rπ0 )

2
n∑
i=1

ϕ (Wi,Wi) + 2n−1b
d
2+2 (rπ0 )

2
∑

1≤i<j≤n
ϕ (Wi,Wj)

≡ B1n + V1n, say, (8.4)

7Write Γ̄2n,1 = b
d
2
+2
(
rπ0
)2∑n

i=1 ‖ξ1ni − ξ2ni‖
2 ai where ξ1ni ≡ b−1e1S̄b (Vi)

−1 Vb (Yi;Vi) f
−1
i and ξ2ni ≡

Dxie
′
2S̄c (Vi)

−1 V
(L)
c (Yi;Vi) f

−2
i . By straightforward moment calculations, we can show that ξ1ni contributes to both the

asymptotic bias and variance of the test statistic whereas ξ2ni only contributes to the asymptotic bias.
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where ϕ (Wi,Wj) =
∫
ζ (w,Wi,Wj) dF (w) =

∫
ζi (w)

′
ζj (w) a (w) dF (w) , and B1n and V1n contribute to

the asymptotic bias and variance of Γ̄2n,11, respectively. Note that as V1n is a second-order degenerate U -
statistic, we can easily verify that all the conditions of Theorem 1 of Hall (1984) are satisfied and a central

limit theorem applies to it: V1n
d→ N

(
0, σ20

)
, where σ20 = limn→∞ σ2n and σ

2
n = 2bd+4 (rπ0 )

4
E [ϕ (W1,W2)]

2.

Thus Γ2n,11 − B1n
d→ N

(
0, σ20

)
.

Lastly, noting that E |B1n| = b
d
2+2O

(
b−d−2 + c−d−1

)
, we have B1n = OP (b

d
2+2(b−d−2 + c−d−1)) by the

Markov inequality.

Lemma 8.5 Suppose Assumptions C.1-C.7 hold. Then

(a) Γ2n,2 = b
d
2+2

∑n
i=1 ‖ri (r̂π0 − rπ0 )‖2 ai = oP (1) ,

(b) Γ2n,3 = b
d
2+2

∑n
i=1 ‖(r̂1i − r1i) rπ2i‖

2
ai = B2n + oP (1) ,

(c) Γ2n,4 = b
d
2+2

∑n
i=1 ‖r1i (r̂π2i − rπ2i)‖

2
ai = oP (1)

where B2n ≡ n−4b
d
2+2

∑n
i=1

∥∥∥∑n
j=1

∑n
k=1 ζk (Yj ;Xi, Zj) r

π
2i

∥∥∥2 ai = OP (b
d
2+2

(
b−dx−2 + c−dx

)
). If dz > 0,

then (b) also holds when we replace B2n by B̄2n ≡ n−4b
d
2+2

∑n
i=1

∑n
j=1

∥∥∑n
k=1 ζj (Yk;Xi, Zk) rπ2i

∥∥2 ai.
Proof. (a) Note that Γ2n,2 = nb

d
2+2 (r̂π0 − rπ0 )

2
Γ̄2n,2, where Γ̄2n,2 ≡ n−1

∑n
i=1 ‖ri‖

2
ai. By Assumptions

C.2(ii) and C.3(i), the compact support of a, and the Markov inequality, Γ̄2n,2 = OP (1) . Using this and

Lemma 8.3(a) we have Γ2n,2 = nb
d
2+2OP

(
n−1b−2

)
OP (1) = OP (b

d
2 ) = oP (1) .

(b) Noting that r̂1 (x)− r1 (x) = 1
n

∑n
i=1 [r̂ (Yi;x, Zi)− r (Yi;x, Zi)] + 1

n

∑n
i=1 [r (Yi;x, Zi)− r1 (x)], we

have b
d
2+2

∑n
i=1 ‖[r̂1 (Xi)− r1 (Xi)] r

π
2i‖

2
ai = R3n +R4n + 2R5n, where

R3n ≡ b
d
2+2

n2

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

[r̂ (Yj ;Xi, Zj)− r (Yj ;Xi, Zj)] r
π
2i

∥∥∥∥∥∥
2

ai,

R4n ≡ b
d
2+2

n2

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

[r (Yj ;Xi, Zj)− r (Xi)] r
π
2i

∥∥∥∥∥∥
2

ai, and

R5n ≡ b
d
2+2

n2

n∑
i=1

n∑
j=1

n∑
k=1

[r̂ (Yj ;Xi, Zj)− r (Yj ;Xi, Zj)]
′
[r (Yj ;Xi, Zj)− r (Xi)] (rπ2i)

2
ai.

By Lemma 8.3(a) we can readily show that R3n = B2n + oP (1). We further decompose B2n as B2n =

B2n,1 + B2n,2, where

B2n,1 ≡ b
d
2+2

n4

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

ζi3 (Yi2 ;Xi1 , Zi2)
′
ζi3 (Yi4 ;Xi1 , Zi4) (rπ2i1)

2ai1 , and

B2n,2 ≡ b
d
2+2

n4

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

n∑
i5=1,i5 6=i3

ζi3 (Yi2 ;Xi1 , Zi2)
′
ζi5 (Yi4 ;Xi1 , Zi4) (rπ2i1)

2ai1 .

By direct moment calculations and the Chebyshev inequality, we can show that B2n,2 = OP (b
dz
2 +b

d
2+2c−

dx
2 )

which is oP (1) under Assumption A.7 if dz > 0, and that

B2n,1 = B̄2n =
1

n4
b
d
2+2

n∑
i1=1

n∑
i3=1

∥∥∥∥∥
n∑

i2=1

ζi3 (Yi2 ;Xi1 , Zi2) r
π
2i1

∥∥∥∥∥
2

ai1 = OP (b
d
2+2(b−dx−2 + c−dx)).
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It follows that R3n = B̄2n + oP (1) if dz > 0. By the Markov inequality, R4n = OP (b
d
2+2) = oP (1) . By

the Cauchy-Schwarz inequality, R5n ≤ {R3nR4n}1/2 = OP ({[b d2+2(b−dx−2 + c−dx) + 1]b
d
2+2}1/2) = oP (1) .

This completes the proof of part (b).

(c) Noting that r̂2 (y)−r2 (y) = 1
n

∑n
i=1 [r̂ (y;Xi, Zi)− r (y;Xi, Zi)]+

1
n

∑n
i=1 [r (y;Xi, Zi)− r2 (y)] , by

the Cauchy-Schwarz inequality we have Γ2n,4 ≤ 2R6n + 2R7n, where

R6n ≡ b
d
2+2

n2

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

r1iπ
′ [r̂ (Yi;Xj , Zj)− r (Yi;Xj , Zj)]

∥∥∥∥∥∥
2

ai and

R7n ≡ b
d
2+2

n2

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

r1iπ
′ [r (Yi;Xj , Zj)− r2 (Yi)]

∥∥∥∥∥∥
2

ai.

By the Markov inequality R7n = OP (b
d
2+2) = oP (1). For R6n we can first apply Lemma 8.3 to show that

R6n = R̄6n + oP (1) , where

R̄6n ≡
b
d
2+2

n2

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

r1iπ
′
[
b−1e1S̄b (Vj)

−1
Vb (Yi;Vj) f

−1
ij − f

−2
ij Dxije

′
2S̄c (Xj , Zj)

−1
V(L)
c (Yi;Vj)

]∥∥∥∥∥∥
2

ai,

fij ≡ f (Yi|Vj) , and Dxij ≡ DxF (Yi|Vj) . Observe that R̄6n ≤ 2R̄6n,1 + 2R̄6n,2, where

R̄6n,1 =
b
d
2+2

n2

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

r1iπ
′b−1e1S̄b (Vj)

−1
Vb (Yi;Vj) f

−1
ij

∥∥∥∥∥∥
2

ai, and

R̄6n,2 =
b
d
2+2

n2

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

r1iπ
′f−2ij Dxije

′
2S̄c (Vj)

−1
V(L)
c (Yi;Vj)

∥∥∥∥∥∥
2

ai.

E
(
R̄6n,1

)
=

b
d
2

n4

n∑
i=1

E

∥∥∥∥∥∥
n∑
j=1

n∑
k=1

r1iπ
′e1S̄b (Vj)

−1
µb (Vk − Vj)Kb (Vk − Vj) 1̄Yi (Wk) f−1ij

∥∥∥∥∥∥
2

ai

=
b
d
2

n4

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

n∑
i5=1

E
{[
r1i1π

′e1S̄b (Vi2)
−1
µb (Vi3 − Vi2)Kb (Vi3 − Vi2) 1̄Yi1 (Wi3) f

−1
i1i2

]
×
[
r1i1π

′e1S̄b (Vi4)
−1
µb (Vi5 − Vi4)Kb (Vi5 − Vi4) 1̄Yi1 (Wi5) f

−1
i1i4

]
ai1

}
= O

(
b
d
2 + n−1b−

d
2 + n−2b−

3d
2

)
= o (1) .

Similarly, E
(
R̄6n,2

)
= b

d
2+2O

(
1 + n−1c−(d+1) + n−2c−2(d+1)

)
= o (1) . Thus R6n = oP (1) by the Markov

inequality, and b
d
2+2

∑n
i=1 [r̂2 (Yi)− r2 (Yi)]

2
= oP (1) .

Lemma 8.6 Suppose that Assumptions C.1-C.7 hold. Then

(a) Γ2n,5 = 2b
d
2+2

∑n
i=1 (r̂i − ri)′ rirπ0 (r̂π0 − rπ0 ) ai = oP (1) ,

(b) Γ2n,6 = −2b
d
2+2

∑n
i=1 (r̂i − ri)′ (r̂1i − r1i) rπ0 rπ2iai = −2B3n + oP (1) ,

(c) Γ2n,7 = −2b
d
2+2

∑n
i=1 (r̂i − ri)′ r1irπ0 (r̂π2i − rπ2i) ai = oP (1) ,

(d) Γ2n,8 = −2b
d
2+2

∑n
i=1 r

′
i (r̂1i − r1i) (r̂π0 − rπ0 ) rπ2iai = oP (1) ,
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(e) Γ2n,9 = −2b
d
2+2

∑n
i=1 r

′
ir1i (r̂π0 − rπ0 ) (r̂π2i − rπ2i) ai = oP (1) ,

(f) Γ2n,10 = 2b
d
2+2

∑n
i=1 (r̂1i − r1i)′ r1irπ2i (r̂π2i − rπ2i) ai = oP (1) ,

where B3n≡n−3b
d
2+2rπ0

∑n
i=1

∑n
l=1 ζl (Wi)

′∑n
j=1

∑n
k=1 ζk (Yj ;Xi, Zj) r

π
2 (Yi) ai = OP (b(dz−dx)/2).

Proof. (a)Write Γ2n,5 = 2b
d
2+2rπ0 (r̂π0 − rπ0 ) Γ̄2n,5 where Γ̄2n,5 ≡

∑n
i=1 (r̂i − ri)′ riai. By Lemma 8.3(a),

we can show that Γ̄2n,5 = Γ̄2n,51 + oP (n1/2b−(
d
2+1)), where

Γ̄2n,51 =

n∑
i=1

(
b−1e1S̄b (Vi)

−1
Vb (Yi;Vi) f

−1
i −Dxie

′
2S̄c (Vi)

−1
V(L)
c (Yi;Vi) f

−2
i

)′
riai

=
1

n

n∑
i=1

n∑
j=1

ζ1j (Yi;Vi)
′
riai −

1

n

n∑
i=1

n∑
j=1

ζ2j (Yi;Vi)
′
riai ≡ R8n +R9n.

In view of R8n = 1
n

∑n
i=1

∑n
j=1[b

−1e1S̄b (Vi)
−1
µb (Vj − Vi)Kb (Vj − Vi) 1̄Yi (Wj) f

−1
i ]′riai, it is easy to

show that E
(
R28n

)
= O

(
nb−2 + b−2d−2

)
. Thus R8n = OP

(
b−d−1 + n1/2b−1

)
. Similarly, R9n = OP (c−d−1

+n1/2). It follows that Γ̄2n,51 = OP (b−d−1 + n1/2b−1 +c−d−1), and by Lemma 8.3(b),

Γ2n,5 = OP (n−1/2b
d
2+1)

[
OP

(
b−d−1 + n1/2b−1 + c−d−1

)
+ oP (n1/2b−(

d
2+1))

]
= OP (n−1/2b−d/2 + b

d
2 + n−1/2b

d
2+1c−d−1) + oP (1) = oP (1) .

(b) Write Γ2n,6 = −2rπ0 Γ̄2n,6 where Γ̄2n,6 ≡ b
d
2+2

∑n
i=1 (r̂i − ri)′ (r̂1i − r1i) rπ2iai. Then Γ̄2n,6 = R10n +

R11n, where

R10n ≡ n−1b
d
2+2

n∑
i=1

n∑
j=1

(r̂i − ri)′ [r̂ (Yj ;Xi, Zj)− r (Yj ;Xi, Zj)] r
π
2iai,

R11n ≡ n−1b
d
2+2

n∑
i=1

n∑
j=1

(r̂i − ri)′ [r (Yj ;Xi, Zj)− r (Xi)] r
π
2iai.

Using Lemma 8.3, we can show that R10n = R̄10n + oP (1) , where

R̄10n = n−1b
d
2+2

n∑
i=1

n∑
j=1

[
b−1e1S̄b (Vi)

−1
Vb (Yi;Vi) f

−1
i −Dxie

′
2S̄c (Vi)

−1
V(L)
c (Yi;Vi) f

−2
i

]′
×
[
b−1e1S̄b (Xi, Zj)

−1
Vb (Yj ;Xi, Zj) f̄

−1
ji −Dxie

′
2S̄c (Xi, Zj)

−1
V(L)
c (Yj ;Xi, Zj) f̄

−2
ji

]
1i1jr

π
2iai

= B3n/rπ0 .

Noting that E
(
R̄210n

)
= O

(
bd+4

(
b−2dx−4 + c−2dx

))
, we have R̄10n = OP (b(dz−dx)/2 + b

d
2+2c−dx) which is

oP (1) under Assumption A.7 if dz > dx and otherwise not. Hence R10n = B3n/rπ0 +oP (1) . For R11n, we ap-

ply the Cauchy-Schwarz inequality to obtainR11n ≤ {α1nα2n}1/2 , where α1n ≡ b
d
2+2

∑n
i=1 ‖(r̂i − ri) rπ2i‖

2
ai

and α2n ≡ n−1b
d
2+2

∑n
i=1

∥∥∥∑n
j=1 [r (Yj ;Xi, Zj)− r (Xi)]

∥∥∥2 ai. Analogously to the determination of the
probability order of Γ2n,1, we can show that α1n = OP (b

d
2+2(b−d−2+c−d−1)). Next, α2n = OP (b

d
2+2) by the

Markov inequality. It follows that R11n = OP (b−
d
4 +b

d
4+1c−

d+1
2 )OP (b

d
4+1) = OP (b+b

d
2+2c−

d+1
2 ) = oP (1) ,

and Γ2n,6 = −2B3n + oP (1) .

(c) Write Γ2n,7 = −2rπ0 Γ̄2n,7 where Γ̄2n,7 ≡ b
d
2+2

∑n
i=1 (r̂i − ri)′ r1i (r̂π2i − rπ2i) ai.We further decompose
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Γ̄2n,7 as Γ̄2n,7 = R12n +R13n, where

R12n ≡ n−1b
d
2+2

n∑
i=1

n∑
j=1

(r̂i − ri)′ r1iπ′ [r̂ (Yi;Vj)− r (Yi;Vj)] ai,

R13n ≡ n−1b
d
2+2

n∑
i=1

n∑
j=1

(r̂i − ri)′ r′1iπ [r (Yi;Vj)− r (Yi)] ai.

Following the analysis of R10 and R11n, we can readily show that Rsn = oP (1) for s = 12, 13. It follows

that Γ2n,7 = oP (1) .

(d) Write Γ2n,8 = −2b
d
2+2 (r̂π0 − rπ0 ) Γ̄2n,8 where Γ̄2n,8 ≡

∑n
i=1 r

′
i (r̂1i − r1i) rπ2iai. Then Γ̄2n,8 = R14n +

R15n, where

R14n ≡ 1

n

n∑
i=1

n∑
j=1

r′i [r̂ (Yj ;Xi, Zj)− r (Yj ;Xi, Zj)] r
π
2iai,

R15n ≡ 1

n

n∑
i=1

n∑
j=1

r′i [r (Yj ;Xi, Zj)− r1 (Xi)] r
π
2iai.

By straightforward moment calculations, we can show that R15n = OP
(
n1/2

)
. By Lemma 8.3(a), we can

show that R14n = R̄14n + oP (n1/2b−(
d
2+1)), where

R̄14n ≡ 1

n

n∑
i=1

n∑
j=1

r′i

[
b−1e1S̄b (Xi, Zj)

−1
Vb (Yj ;Xi, Zj) f̄

−1
ij − f̄

−2
ij D̄xije

′
2S̄c (Xi, Zj)

−1
V(L)
c (Yj ;Xi, Zj)

]
1jr

π
2iai

=
1

n2

n∑
i=1

n∑
j=1

n∑
k=1

r′iζk (Yj ;Xi, Zj) r
π
2iai.

Noting that E
(
R̄214n

)
= O(nb−2 + (b−dx−2 + b−2dz−2 +c−dx−1 + c−2dz−2) + n−1(b−d−2−dz + c−d−2−dz )),

we have R̄14n = OP (n1/2b−1+b−dz−1 +c−dz−1). Consequently, Γ̄2n,8 = OP
(
n1/2b−1 + b−dz−1 + c−dz−1

)
+

oP (n1/2b−(
d
2+1)), and by Lemma 8.3(b),

Γ2n,8 = OP (n−1/2b
d
2+1)

[
OP

(
n1/2b−1 + b−dz−1 + c−dz−1

)
+ oP (n1/2b−(

d
2+1))

]
= OP (b

d
2 + n−1/2b

dx−dz
2 + n−1/2b

d
2+2c−dz−1) + oP (1) = oP (1) .

(e) By the Cauchy-Schwarz inequality and Lemma 8.5, |Γ2n,9| ≤ 2 (Γ2n,2Γ2n,4)
1/2

= oP (1) .
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(f) We first decompose Γ2n,10 as follows:

Γ2n,10 = 2n−2b
d
2+2

n∑
i=1

n∑
j=1

n∑
k=1

{[r̂ (Yj ;Xi, Zj)− r (Yj ;Xi, Zj)] + [r (Yj ;Xi, Zj)− r1 (Xi)]}′ r1irπ2i

×π′ ([r̂ (Yi;Xk, Zk)− r (Yi;Xk, Zk)] + [r (Yi;Xk, Zk)− r1 (Yi)]) ai,

= 2n−2b
d
2+2

n∑
i=1

n∑
j=1

n∑
k=1

[r (Yj ;Xi, Zj)− r1 (Xi)]
′
r1ir

π
2iπ
′ [r (Yi;Xk, Zk)− r1 (Yi)] ai

+2n−2b
d
2+2

n∑
i=1

n∑
j=1

n∑
k=1

[r̂ (Yj ;Xi, Zj)− r (Yj ;Xi, Zj)]
′
r1ir

π
2iπ
′ [r̂ (Yi;Xk, Zk)− r (Yi;Xk, Zk)] ai

+2n−2b
d
2+2

n∑
i=1

n∑
j=1

n∑
k=1

[r̂ (Yj ;Xi, Zj)− r (Yj ;Xi, Zj)]
′
r1ir

π
2iπ
′ [r (Yi;Xk, Zk)− r1 (Yi)] ai

+2n−2b
d
2+2

n∑
i=1

n∑
j=1

n∑
k=1

[r (Yj ;Xi, Zj)− r1 (Xi)]
′
r1ir

π
2iπ
′ [r̂ (Yi;Xk, Zk)− r (Yi;Xk, Zk)] ai

≡ 2R16n + 2R17n + 2R18n + 2R19n, say.

By moment calculations, E (R16n) = O(b
d
2+2) and E

(
R216n

)
= O(bd+4), implying that R16n = OP (b

d
2+2) =

oP (1) . For R17n, we can show that R17n = R̄17n + oP (1) , where

R̄17n = n−2b
d
2+2

n∑
i1=1

n∑
i2=1

n∑
i3=1

[b−1e1S̄b (Xi1 , Zi2)
−1

Vb (Yi2 ;Xi1 , Zi2) f
−1
i1

−Dxi1e
′
2S̄c (Xi1 , Zi2)

−1
V(L)
c (Xi1 , Zi2) f

−2
i1

]′1i2r1i1r
π
2i1π

′

×
[
b−1e1S̄b (Xi3 , Zi3)

−1
Vb (Yi1 ;Xi3 , Zi3) f

−1
i3
−Dxi3e

′
2S̄c (Xi3 , Zi3)

−1
V(L)
c (Xi3 , Zi3) f

−2
i3

]
1i1ai1

= n−4b
d
2+2

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

n∑
i5=1

ζi4 (Yi2 ;Xi1 , Zi2)
′
r1i1r

π
2i1π

′ζi5 (Yi1 ;Xi3 , Zi3) ai1

Noting that E
(
R̄217n

)
= O

(
bd+4b−4) + n−1bd+4(b−dx−4 + b−dz−4 + c−dx + c−dz )

)
= o (1) , we have R̄17n =

oP (1) . Similarly, we can show that R18n = oP (1) and R19n = oP (1) . Consequently, Γ2n,10 = oP (1) .

Proof of Theorem 3.2

The proof follows closely from that of Theorems 3.1. By (8.3) and the proof of Theorem 3.1. Now

Γ̂ = n−1b−(
d
2+2)Γ1n + n−1b−(

d
2+2)Γ4n + n−1b−(

d
2+2)Γ5n + oP (1). It is easy to show that n−1b−(

d
2+2)Γ1n =

n−1
∑n
i=1 ‖rirπ0 − r1irπ2i‖

2
ai = µA + oP (1) and n−1b−(

d
2+2)Γsn = oP (1) under HA for s = 4, 5. In ad-

dition, under HA, we have n−1b−(
d
2+2)B̂n = oP (1) and σ̂2n

p→ σ2A. It follows that n
−1b−(

d
2+2)Tn =

n−1b−(
d
2+2)[nb(

d
2+2)Γ̂− B̂n]/

√
σ̂2n = µA/σA + oP (1) and the result follows. �

Proof of Theorem 3.3

The proof follows closely from that of Theorem 3.1, now keeping the additional terms that do not vanish

under HA (γn) with γn = n−1/2b−
d
4−1. Noting that B̂n = Bn + oP (1) and σ̂2n = σ20 + oP (1) under HA (γn),

it suffi ces to show that under HA (γn) , (i) Γ1n
p→ µ0, (ii) Γ4n = op (1) and (ii) Γ5n = op (1), where Γ1n,

Γ4n, and Γ5n are defined after (8.3).
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(i) holds under HA (γn) because by the weak law of large numbers, we have

Γ1n = b
d
2+2

n∑
i=1

‖rirπ0 − r1irπ2i‖
2
ai = n−1

n∑
i=1

‖δn (Yi;Xi, Zi)‖2 ai = µ0 + oP (1) .

For (ii), we decompose Γ4n as Γ4n = Γ4n,1 + Γ4n,2 − Γ4n,3 − Γ4n,4, where

Γ4n,1 ≡ b
d
2+2

n∑
i=1

(rir
π
0 − r1irπ2i)

′
(r̂i − ri) rπ0 ai,

Γ4n,2 ≡ b
d
2+2

n∑
i=1

(rir
π
0 − r1irπ2i)

′
ri (r̂π0 − rπ0 ) ai,

Γ4n,3 ≡ b
d
2+2

n∑
i=1

(rir
π
0 − r1irπ2i)

′
(r̂1i − r1i) rπ2iai,

Γ4n,4 ≡ b
d
2+2

n∑
i=1

(rir
π
0 − r1irπ2i)

′
r1i (r̂π2i − rπ2i) ai.

It suffi ces to prove Γ4n,s = oP (1) for s = 1, 2, 3, 4. We only prove Γ4n,1 = oP (1) as the other cases are

similar. Let δni ≡ δn (Yi;Xi, Zi) . Under HA (γn) we apply Lemma 8.3(a) to obtain

Γ4n,1 = n−
1
2 b

d
4+1rπ0

n∑
i=1

δ′ni (r̂i − ri) ai = Γ̄4n,1 + n
1
2 b

d
4+1OP (νbc) = Γ̄4n,1 + oP (1) ,

where Γ̄4n,1 ≡ n−
1
2 b

d
4+1rπ0

∑n
i=1 δ

′
ni[b
−1e1S̄b (Vi)

−1
Vb (Yi;Xi) f

−1
i −Dxie

′
2S̄c (Vi)

−1
V
(L)
c (Vi) f

−2
i ]ai.Write

Γ̄4n,1 = n−
3
2 b

d
4+1rπ0

∑n
i=1

∑n
j=1 δ

′
niζj (Yi;Vi) ai. Then E(Γ̄24n,1) = O((b

d
2 + n−1b

d
2+2(b−d−2 + c−d−1) +

n−2b
d
2+2(b−2d−2 + c−2d−1)) = o (1) , implying that Γ̄4n,1 = oP (1) . It follows that Γ4n,1 = oP (1) .

We now show (iii) . Decompose Γ5n = Γ5n,1 − Γ5n,2, where Γ5n,1 = (r̂π0 − rπ0 ) Γ4n,1/r
π
0 , and Γ5n,2 =

γnb
d
2+2

∑n
i=1 δ

′
ni (r̂1i − r1i) (r̂π2i − rπ2i) ai. In view of Lemma 8.3(b) and the study of Γ4n,1, Γ5n,1 = OP (νbc+

n−1/2b−1)oP (1) = oP (1) . Analogously to the proof of Lemma 8.6(f), we can show that Γ5n,2 = oP (γn).

Thus Γ5n = oP (1) .

Consequently, P (Tn ≥ z|HA(n−1/2b−
d
4−1))→ 1−Φ(z−µ0/σ0). This concludes the proof of the theorem.

�

Proof of Proposition 5.1

We first prove the “if” part. By the definition of the hazard function, for any values (y, x, ς) on the

support of (Y,X, ξ) ,

h (y, x, ς) =
f (y|x, ς)

1− F (y|x, ς) ,

where f (y|x, ς) and F (y|x, ς) are conditional PDF and CDF of Y given (X, ξ) = (x, ς) , respectively. Then,

F (y|x, ς) = P

[
G

(
H1 (X) + ln

(
− ln (1− ε)

ξ

))
≤ y
∣∣∣∣X = x, ξ = ς

]
= P

[
− ln (1− ε)

ξ
≤ exp

[
G−1 (y)−H1 (X)

]∣∣∣∣X = x, ξ = ς

]
= P

[
ε ≤ 1− exp

{
−ς exp

[
G−1 (y)−H1 (x)

]}]
= 1− exp

{
−ς exp

[
G−1 (y)−H1 (x)

]}
.
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Thus,

f (y|x, ς) = ς exp
{
−ς exp

[
G−1 (y)−H1 (x)

]}
exp

[
G−1 (y)−H1 (x)

] d [G−1 (y)
]

dy
,

and

h (y, x, ς) =
f (y|x, ς)

1− F (y|x, ς) =

{
exp

[
G−1 (y)

]
g (G−1 (y))

}
exp [−H1 (x)] ς

= λ (y) · θ (x) · ς,

where λ (y) = exp
[
G−1 (y)

]
/g
(
G−1 (y)

)
, g (s) = dG (s) /ds, and θ (x) = exp [−H1 (x)] . This holds for all

(y, x, ς) on the support of (Y,X, ξ) , thus the “if”part is proved.

Next, we prove the “only if”part. Define the integrated hazard function H (Y,X, ξ) =
∫ Y
0
h (y,X, ξ) dy.

Then

H (Y,X, ξ) =

∫ Y

0

h (y,X, ξ) dy =

∫ Y

0

λ (y) dy · θ (X) · ξ = Λ (Y ) · θ (X) · ξ,

where Λ (Y ) =
∫ Y
0
λ (y) dy. Let F (Y | X, ξ) be the conditional CDF of Y given X and ξ. For any distrib-

ution function F , the integrated hazard function is related to its distribution function by

H (Y,X, ξ) = − ln (1− F (Y | X, ξ)) .

Therefore

Λ (Y ) θ (X) ξ = − ln (1− F (Y | X, ξ)) .

Define the random variable ε = F (Y | X, ξ). By construction ε is uniformly distributed on [0, 1] and

ε ⊥ (X, ξ) and

Λ (Y ) θ (X) ξ = − ln (1− ε) .

Thus

ln [Λ (Y )] = ln

[
− ln (1− ε)

ξ

]
+ ln

[
1

θ (X)

]
.

That is,

Y = G [H1 (X) + U ] ,

where G (·) is the inverse function of ln [Λ (·)], H1 (X) = − ln [θ (X)] and U = ln
[
− ln(1−ε)

ξ

]
. �

9 Appendix II: Bootstrap methods

In this appendix, we propose a residual-based bootstrap and a weighted bootstrap, and discuss the relative

advantages and disadvantages associated with bootstrapping in the context of our tests.

9.1 Residual-based bootstrap

Here we describe a residual-based bootstrap method.
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Step 1. Estimate the restricted model under H10 and obtain the restricted residuals ε̂i. Let M (y) =

G−1 (y) . Given H10, we can use the Chiappori et al. (2011, p.14) two-step estimator to estimate M (·) and
H1 (·) as follows: (i) Estimate M (y) using:

M̂ (y) =

∫ ∫
w (x, z)

Ŝ (y, x, z)

Ê[Ŝ(Y, x, z)]
dxdz,

where w (x, z) is a weighting function satisfying
∫ ∫

w (x, z) dxdz = 1,

Ŝ (y, x, z) =

∫ y

0

D̂xFb (y | x, z)
f̂c (y | x, z)

dy, and Ê[Ŝ(Y, x, z)] =
1

n

n∑
i=1

Ŝ (Yi, x, z) ;

(ii) Run a series regression of M̂ (Yi) on Xi and Zi to obtain an estimator of H1 (.) , say Ĥ1 (.). Then the

restricted residuals are estimated as

ε̂i = M̂ (Yi)− Ĥ1 (Xi) , i = 1, 2, . . . , n.

Step 2. Obtain the bootstrap error ε∗i = ε̂iηi for i = 1, 2, . . . , n, where ηi’s are IID N (0, 1). Then the

bootstrap sample is {Y ∗i , Xi}ni=1 where

Y ∗i = M̂−1
(
Ĥ1 (Xi) + ε∗i

)
, i = 1, 2, . . . , n. (9.1)

There are some diffi culties associated with this approach. First, estimating Ĥ1 and Ĝ−1 is complicated,

as it involves several nonparametric objects and integrals. Second, we need to evaluate the inverse function

in (9.1) at different points for each bootstrap sample. As a result, this bootstrap is time-consuming. The

estimate Ê[Ŝ(Y, x, z)] is based on marginal integration, so to justify the asymptotic validity of the above

bootstrap procedure, we would want to show uniform consistency of Ŝ (Yi, x, z) for all (Yi, x, z) . This may

be diffi cult unless one assumes that f (·|x, z) is bounded away from zero for all (x, z) on the support of

w (·, ·), which is an additional restriction that our test does not otherwise require.

9.2 Weighted bootstrap

An alternative to the residual based bootstrap is a weighted bootstrap procedure similar to those in Lewbel

(1995) and Hansen (1996). Specifically, in the proof of Theorem 3.1 in the appendix, we demonstrate that

Tn = 2n−1b
d
2+2 (rπ0 )

2
∑

1≤i<j≤n

ϕ (Wi,Wj)

σ0
+ op (1) ,

where the dominant term on the right hand side is a second-order degenerate U -statistic and asymptotically

normally distributed. To approximate the null distribution of Tn, we simulate a large number B of T ∗(k)n

(k = 1, ..., B):

T ∗(k)n = 2n−1b
d
2+2 (rπ0 )

2
∑

1≤i<j≤n

ϕ̂ (Wi,Wj)√
σ̂2n

ξ
(k)
i ζ

(k)
j ,

where {ξ(k)i }ni=1 and {ζ
(k)
j }nj=1 are IID N (0, 1) draws that are mutually independent of each other. Then

the p-value is calculated as

p = B−1
B∑
k=1

1
{
Tn < T̂ ∗(k)n

}
.
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This bootstrap procedure is easy to implement, particularly in comparison to the residual based bootstrap,

however, its finite performance crucially depends on the normal approximation of Tn. In simulations, we

found that this procedure tended to over-reject the null, presumably due to finite sample departures from

normality.
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