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Abstract

In this paper we present an oracle efficient estimator for a structural equation model under full

additivity constraint. We propose estimators for both the conditional mean and the gradients and

they allow us to take care of both curse of dimensionality and oracle efficiency. We show that

our estimators are consistent, asymptotically normal and oracle efficient. Monte Carlo simulations

support the asymptotic developments.

In the second part of our paper, we apply our model to the question of effects of childcare use

on children’s cognitive outcomes, to test our estimators in a real life example. With the help of our

model we take care of the endogeneity problem using high number of instruments.
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1 Introduction

In this paper we consider nonparametric estimation of structural equations. There are various examples

in the literature of those who consider endogeneity within the context of nonparametric regression (e.g.,

Newey and Powell 2003; Newey et al., 1999; Roehing, 1988; Su and Ullah, 2008; Vella, 1991). Differ-

ent from the aforementioned papers, we are interested in imposing a full additivity constraint on the

conditional mean of each equation while at the same time employing kernel methods.

Our work is most similar to the models in Newey et al. (1999) and Su and Ullah (2008). While the

assumptions of their models are relatively restrictive as compared to other examples in the literature,

their estimators are typically much easier to implement, which is useful for applied work. Newey et al.

(1999) discuss the identification strategy as well as propose a series estimator. Su and Ullah (2008) take

their general framework and employ fully nonparametric kernel regression via a three-step procedure.

While we prefer kernel methods in practice (especially in the presence of discrete covariates), the fully

nonparametric estimator suffers from the curse of dimensionality.

Here, differently, we impose additivity constraint on all our stages and we propose a three step

estimation procedure for our additively separable nonparametric structural equation model. We employ

series estimators for our first two stages where we take the consistent estimates of the partial residuals

and replace those to our second stage regression and finally turn to kernel regression in our final step via

one stage backfitting. This process gives us an estimator which is free of curse of dimensionality.

In addition to avoiding the curse of dimensionality, our additively separable estimator achieves a

high efficiency level compared to the listed nonparametric examples in the literature. We show that

our proposed estimators for additive components have the oracle property, in other words they can be

estimated at the high efficiency level as if the rest of the smooth functions were known.

In addition to conditional mean estimates, we also provide the gradient estimates as these are of

great interest to economists. We show that our gradients are consistent and asymptotically normal.

Furthermore, we propose a partially linear extension of our estimators and discuss the related asymptotic

properties as well. Finite sample results are also analyzed via a set of Monte Carlo simulations and their

results support the asymptotic developments.

In the final part of our paper we aim to analyze the real life data performance of our estimators.

We analyze the effects of childcare use on cognitive outcomes of children, taking care of the endogeneity

problem. By the help of our model, which is free of curse of dimensionality and which is also oracle

efficient, we solve the endogeneity issue using an extensive set of instrumental variables those we adopt

from Bernal and Keane (2011). This way we can answer this empirical question via a strong instrument

list and use a flexible estimator that will give us more insights regarding the underlying heterogeneity

amongst the conditional mean and the partial effect estimates.

Rest of our paper is structured as following. Section 2 describes our methodology, i.e. our model and

proposed estimators. Section 3 presents the main asymptotic results those describe asymptotic properties

for the listed estimators, and a partially linear extension of these estimators as well. Section 4 describes

our application and the data that we use. Section 5 presents and discusses our main estimation results.

And Section 6 concludes.
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2 Methodology

To proceed, we adopt the following notation. For a real matrix A, we denote its transpose as A′, its

Frobenius norm as ‖A‖ (≡ [tr(AA′)]1/2), its spectral norm as ‖A‖sp (≡
√
λmax(A′A)), where tr(·) is the

trace operator, ≡ means “is defined as”, and λmax (·) denotes the largest eigenvalue of a real symmetric

matrix. Note that the two norms are equal when A is a vector and they can be used interchangeably. We

use λmin (·) to denote the smallest eigenvalue of a real symmetric matrix. For any function q (·) defined

on the real line, we use q̇ (·) and q̈ (·) to denote its first and second derivatives, respectively. We use
D→

and
P→ to denote convergence in distribution and probability, respectively.

2.1 Model

We start with the basic set-up of Newey et al. (1999). They consider a triangular system of the following

form {
Y = g (X,Z1) + ε,

X = m (Z1,Z2) + U, E (U|Z1,Z2) = 0, E (ε|Z1,Z2,U) = E (ε|U) ,
(2.1)

where X is a dx× 1 vector of endogenous regressors, Z1 = (Z11, ..., Z1d1)
′

is a d1× 1 vector of “included”

exogenous regressors, Z2 ≡ (Z21, ..., Z2d2)
′

is a d2 × 1 vector of “excluded” exogenous regressors, g (·, ·)
denotes the true unknown structural function of interest, m ≡ (m1, ...mdx)

′
is a dx × 1 vector of smooth

functions of the instruments Z1 and Z2, and ε and U ≡ (U1, ..., Udx)
′
are error terms. Newey et al. (1999)

are interested in estimating g consistently.

Newey et al. (1999) show that g can be identified up to an additive constant under the key iden-

tification conditions that E (U|Z1,Z2) = 0 and E (ε|Z1,Z2,U) = E (ε|U). If these conditions hold,

then

E (Y |X,Z1,Z2,U) = g (X,Z1) + E (ε|X,Z1,Z2,U)

= g (X,Z1) + E (ε|Z1,Z2,U)

= g (X,Z1) + E (ε|U) . (2.2)

If U is observed, this is a standard additive nonparametric regression model. However, in practice,

U is not observed and one needs to replace it by a consistent estimate. This motivates Su and Ullah

(2008) to consider a three-stage procedure to obtain consistent estimates of g via the technique of local

polynomial regression. In the first stage, they regress X on (Z1,Z2) via local polynomial regression and

obtain the residuals Û from this first-stage reduced-form regression. In the second stage, they estimate

E (Y |X,Z,U) via another local polynomial regression by regressing Y on X, Z1, and Û. In the third

stage, they obtain the estimates of g(x, z1) via the method of marginal integration. Unlike previous works

in the literature including Newey et al. (1999), Pinkse (2000), and Newey and Powell (2003) that are

based upon two-stage series approximations and only establish mean square and uniform convergence,

they establish the asymptotic distribution for their three-step local polynomial estimator.

There are two drawbacks associated with the estimate of Su and Ullah (2008). First, it is subject

to the notorious “curse of dimensionality” problem in the nonparametric literature. Without any extra

restriction, the convergence rate of their second- and third-stage estimators depend on 2dx + d1 and
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dx + d1, respectively, which can be quite slow if either dx or d1 is not small. As a result, their estimates

may perform badly even for moderately large sample sizes when dx+d1 ≥ 3. Second, their estimator does

not have the oracle property which an optimal estimator of the additive component in a nonparametric

regression model should exhibit. In this paper we try to address both issues.

To alleviate the curse of dimensionality problem, we propose to impose some structure on g (X,Z1) ,

E (ε|U) , and ml (Z1,Z2) , where l = 1, ..., dx. Specifically, we assume that E (ε) = 0 and the above

nonparametric objects have additive forms:

g (X,Z1) = µg + g1 (X1) + ...+ gdx (Xdx) + gdx+1 (Z11) + ...+ gdx+d1 (Z1d1) ,

E (ε|U) = µε + gdx+d1+1 (U1) + ...+ g2dx+d1 (Udx) , and

ml (Z1,Z2) = µl +ml,1 (Z11) + ...+ml,d1 (Z1d1) +ml,d1+1 (Z21) + ...+ml,d (Z2d2) , l = 1, ..., dx,

where d = d1 + d2. Consequently, we have

E (Y |X,Z1,Z2,U) = µ+ g1 (X1) + ...+ gdx (Xdx) + gdx+1 (Z11) + ...+ gdx+d1 (Z1d1)

+gdx+d1+1 (U1) + ...+ g2dx+d1 (Udx) ≡ ḡ (X,Z1,U) , (2.3)

where µ = µg + µε. Note that the gj ’s are not fully identified without further restriction. Depending on

the method that is used to estimate the additive components, different identification conditions can be

imposed. 1

Horowitz (2013) reviews methods for estimating nonparametric additive models, including the back-

fitting method, the marginal integration method, the series method, and the mixture of a series method

and a backfitting method to obtain oracle efficiency. It is well known that it is more difficult to study

the asymptotic property of the backfitting estimator than the marginal integration estimator, but the

latter has a curse of dimensionality problem if one does not impose additivity at the outset of estimation

as in conventional kernel methods. Other problems that are associated with the marginal integration

estimator include its lack of oracle property and its heavy computational burden. Kim et al. (1999) try

to address the latter two problems by proposing a fast instrumental variable (IV) pilot estimator. But

they cannot avoid the curse of dimensionality problem at all. In fact, their IV pilot estimator depends

on the estimation of the density function of the regressors at all data points. In addition, their paper to-

tally ignores the notorious boundary bias problem for kernel density estimates and because their IV pilot

estimate is not uniformly consistent on the full support, they have to use a trimming scheme to obtain

the second-stage oracle estimator. To fully overcome the curse of dimensionality problem, Horowitz and

Mammen (2004) propose a two-step estimation procedure with series estimation of the nonparametric

additive components followed by a backfitting step that turns the series estimates into kernel estimates

that are both oracle efficient and free of the curse of dimensionality.

Below we follow the lead of Horowitz and Mammen (2004) and propose a three-stage estimation pro-

cedure that is computationally efficient, oracle efficient, and fully overcomes the curse of dimensionality.

We shall adopt the following identification restrictions

gl (0) = gl (xl)|xl=0 = 0 for l = 1, ..., 2dx + d1, and

ml,k (0) = 0 for l = 1, ..., dx and k = 1, 2, ..., d.

1For example, for the method of marginal integration, a convenient set of identification conditions would be E [gl (Xl)] = 0

for l = 1, ..., dx, E [gdx+k (Z1k)] = 0 for k = 1, ..., d1, E
[
gdx+d1+l (U1l)

]
= 0 for l = 1, ..., dx, E

[
ml,k (Z1k)

]
= 0 for

k = 1, ..., d1 and l = 1, ...., dx, E
[
ml,d1+j (Z2j)

]
= 0 for j = 1, ..., d2 and l = 1, ...., dx.
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Similar identification conditions are also adopted in Li (2000).

2.2 Estimation

Given a random sample of n observations {Yi,Xi,Z1i,Z2i}ni=1 where Xi = (X1i, ..., Xdxi)
′, Z1i =

(Z11,i, ..., Z1d1,i)
′, and Z2i = (Z21,i, ..., Z2d2,i)

′, we propose the following three-stage estimation proce-

dure:

1. For l = 1, ..., dx, let µ̃l, {m̃l,k (Z1k,i) , k = 1, ..., d1}, and {m̃l,d1+j (Z2j,i) , j = 1, ..., d2}, denote

the sieve estimates of µ̃l, {ml,k (Z1k,i) , k = 1, ..., d1}, and {ml,d1+j (Z2j,i) , j = 1, ..., d2} in the

nonparametric additive regression

Xli = µl +ml,1 (Z11,i) + ...+ml,d1 (Z1d1,i) +ml,d1+1 (Z21,i) + ...+ml,d (Z2d2,i) + U1i.

Let Ũli ≡ Xli−µ̃l−m̃l,1 (Z11,i)−...−m̃l,d1 (Z1d1,i)−m̃l,d1+1 (Z21,i)−...−m̃l,d (Z2d2,i) for l = 1, ..., dx

and i = 1, ..., n.

2. Estimate µ, {gl (Xli) , l = 1, ..., dx}, {gdx+j (Z1j,i) , j = 1, ..., d1}, {gdx+d1+k(Ũki), k = 1, ..., dx}, in

the following additive regression model

Yi = µ+ g1 (X1i) + ...+ gdx (Xdxi) + gdx+1 (Z11,i) + ...+ gdx+d1 (Z1d1,i)

+gdx+d1+1(Ũ1i) + ...+ g2dx+d1(Ũdxi) + εi

by the series method. Here εi = εi + gdx+d1+1(U1i) + ... + g2dx+d1(Udxi) − gdx+d1+1(Ũ1i) − ... −
g2dx+d1(Ũdxi) denotes the new error term. Denote the estimates as µ̃, {g̃l (Xli) , l = 1, ..., dx},
{g̃dx+j (Z1j,i) , j = 1, ..., d1}, {g̃dx+d1+k(Ũki), k = 1, ..., dx}.

3. Estimate g1 (x1) and its first order derivative by the local linear regression of Ỹ1i = Yi−µ̃−g̃2 (X2i)−
... − g̃dx (Xdxi) −g̃dx+1 (Z11,i) − ... − g̃dx+d1 (Z1d1,i) − g̃dx+d1+1(Ũ1i) − ... − g̃2dx+d1(Ũdxi) on X1i.

Analogously, one obtains estimates of the other additive components in (2.3) and their first order

derivatives.

In comparison with Horowitz and Mammen (2004), the above first stage is new as we have to replace

the unobservable Uli by their consistent estimates in the second stage. In addition, Horowitz and Mammen

(2004) are only interested in the estimation of the nonparametric additive components themselves, while

we are also interested in estimating the first order derivatives (gradients).

Alternatively one could follow Kim et al. (1999) and use the kernel estimator in the first two stages.

The oracle estimator of Kim et al. (1999) has gained popularity in recent years. For example, Ozabaci

and Henderson (2012) obtain the gradients of their estimator for the local-constant case and Martins-

Filho and Yang (2007) consider the local-linear version of the oracle estimator, both assuming strictly

exogenous regressors. But as mentioned above, using the kernel estimators in the first two stage here

have several disadvantages and does not avoid the curse of dimensionality problem at all.

For notational simplicity, let W = (X′,Z′1,U
′)
′

and w = (x′, z′1,u)
′
, where, e.g., u = (u1, ..., udx)′

denotes a realization of U. We shall use Z ≡ Z1×Z2 and W ≡ X × Z1 × U to denote the support of

(Z1,Z2) and W, respectively. Let {pl (·) , l = 1, 2, ...} denote a sequence of basis functions that can
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approximate any square-integrable function very well (to be precise later). Let κ1 = κ1 (n) and κ = κ (n)

be some integers such that κ1, κ→∞ as n→∞. Let pκ1 (v) ≡ [p1 (v) , ....pκ1 (v)]′. Define

Pκ1 (z1, z2) ≡
[
1, pκ1 (z11)

′
, ..., pκ1 (z1d1)

′
, pκ1 (z21)

′
, ..., pκ1 (z2d2)

′]′
,

Φκ (w) ≡
[
1, pκ (x1)

′
, ..., pκ (xdx)

′
, pκ (z11)

′
, ..., pκ1 (z1d1)

′
, pκ (u1)

′
, ..., pκ (udx)

′]′
.

For each (z1, z2) ∈ Z, we approximate ml (z1, z2) and ḡ (w) by Pκ1 (z1, z2)
′
αl and Φκ (w)

′
β, respectively,

for l = 1, ..., dx, where αl ≡ (µl, α
′
l,1, ..., α

′
l,d)
′ and β = (µ, β′1, ..., β

′
2dx+d1

)′ are (1 + dκ1) × 1 and (1 +

(2dx + d1)κ) × 1 vectors of unknown parameters to be estimated. Here, each αl,k, k = 1, ..., d, is a

κ1 × 1 vector; each βj , j = 1, ..., 2dx + d1, is a κ × 1 vector. Let S1k and Sk denote κ1 × (1 + dκ1) and

κ× (1 + (2dx + d1)κ) selection matrices, respectively, such that S1kαl = αl,k and Skβl = βl.

To obtain the first stage estimators of the ml’s, let α̃l ≡ (µ̃l, α̃
′
l,1, ..., α̃

′
l,d)
′ be the solution to minαl

n−1

×
∑n
i=1

[
Xli − Pκ1 (Z1i,Z2i)

′
αl
]2
. The series estimator of ml (z) is given by

m̃l (z1, z2) = Pκ1 (z1, z2)
′
α̃l

= Pκ1 (z1, z2)

[
n−1

n∑
i=1

Pκ1 (Z1i,Z2i)P
κ1 (Z1i,Z2i)

′

]−
n−1

n∑
i=1

Pκ1 (Z1i,Z2i)Xli

= µ̃l +

d1∑
k=1

m̃l,k (z1k) +

d2∑
j=1

m̃l,d1+j (z2j)

where A− denotes the Moore-Penrose generalized inverse of A, m̃l,k (z1k) = pκ1 (z1k)
′
α̃l,k is a series

estimator of ml,k (z1k) for k = 1, ..., d1, and m̃l,d1+j (z2j) = pκ1 (z2j)
′
α̃l,d1+j is a series estimator of

ml,d1+j (z2j) for j = 1, ..., d2.

To obtain the second stage estimators of the gl’s, let β̃ ≡ (µ̃, β̃′1, ..., β̃
′
2dx+d1

)′ be a solution to

minβ n
−1
∑n
i=1

[
Yi − Pκ

(
W̃i

)′
β

]2

, where W̃i =
(
X′i,Z

′
1i, Ũ

′
i

)′
and Ũi = (Ũ1i, ..., Ũdxi)

′. The series

estimator of ḡ (w) is given by

˜̄g (w) = Pκ (w)
′
β̃ = µ̃+

dx∑
l=1

g̃l (xl) +

d1∑
k=1

g̃dx+k (z1k) +

dx∑
j=1

g̃dx+d1+k(uj).

Let β1 (x1) ≡ [g1 (x1) , ġ1 (x1)]′. We use β̂1 (x1) ≡ [ĝ1 (x1) , ̂̇g1 (x1)]′ to denote the local linear estimate

of β1 (x1) in the third stage by using the kernel function K (·) and bandwidth h. Let Ỹ1 ≡ (Ỹ11, ..., Ỹ1n)′,

X∗1i (x1) ≡ [1, X1i − x1], X1 (x1) ≡ [X∗11 (x1) , ..., X∗1n (x1)]′, and Kx1
≡diag(K1x1

, ...,Knx1
) where Kix1

≡
Kh (X1i − x1) and Kh (u) ≡ K (u/h) /h. Then

β̂1 (x1) =
[
X1 (x1)

′Kx1X1 (x1)
]−1 X1 (x1)

′Kx1X1 (x1) Ỹ1.

Below we will study the asymptotic properties of β̂1 (x1) via the study of asymptotic expansion for β̃.

3 Main Asymptotic Results

In this section we first provide assumptions that are used to prove the main results and then study the

asymptotic properties of the proposed estimators. We also discuss the possible extension to partially

linear additive models.
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3.1 Assumptions

A real-valued function q on the real line is said to satisfy a Hölder condition with exponent r ∈ [0, 1] if

there is cq such that |q(v)−q(ṽ)| ≤ cq|v− ṽ|r for all v and ṽ on the support of q. q is said to be γ-smooth,

γ = r + m, if it is m-times continuously differentiable on U and its mth derivative, ∂mq, satisfies a

Hölder condition with exponent r. The γ-smooth class of functions are popular in econometrics because

a γ-smooth function can be approximated well by various linear sieves; see, e.g., Chen (2007). For any

scalar function q on the real line that has r derivatives and support S, let |q|r ≡ maxs≤r supv∈S |∂sq (v)| .
Let Xl and Ul denote the support of Xl and Ul, respectively, for l = 1, ..., dx. Let Zsk denote the

support of Zsk for k = 1, ..., ds and s = 1, 2. We shall use Yi, Wi ≡ (X′i,Z1i,U
′
i)
′
, Z2i, and Uli to denote

the ith random observation of Y, W, Z2, and Ul, respectively. Let QPP ≡ E[Pκ1 (Z1,Z2)Pκ1 (Z1,Z2)
′
],

QΦΦ ≡ E[Φκ (W) Φκ (W)
′
], and QPP,Ul

= E[Pκ1 (Z1,Z2)Pκ1 (Z1,Z2)
′
U2
l ] for l = 1, ..., dx. We make the

following set of basic assumptions.

Assumption A1. (i) {(Yi,Xi,Z1i,Z2i) , i = 1, ..., n} are an IID random sample.

(ii) The supports W and Z of Wi and (Z1i,Z2i) are compact.

(iii) The distributions of Wi and (Z1i,Z2i) are absolutely continuous with respect to the Lebesgue

measure.

Assumption A2.(i) For every κ1 that is sufficiently large, there exist c1 and c̄1 such that 0 < c1 ≤
λmin (QPP ) ≤ λmax (QPP ) ≤ c̄1 <∞, and λmax (QPP,Ul

) ≤ c̄1 <∞ for l = 1, ..., dx.

(ii) For every κ that is sufficiently large, there exist c2 and c̄2 such that 0 < c2 ≤ λmin (QΦΦ) ≤
λmax (QΦΦ) ≤ c̄2 <∞.

(iii) The functions {ml,k(·), l = 1, ..., d, k = 1, ..., d} and {gj(·), j = 2dx + d1} belong to the class of

γ-smooth functions with γ ≥ 2.

(iv) There exist αl,k’s such that supz∈Z1k
|ml,k(z) − pκ1(z)′αl,k| = O(κ−γ1 ) for l = 1, ..., dx and k =

1, ..., d1, supz∈Z2k
|ml,d1+k(z)− pκ1(z)′αl,d1+k| = O(κ−γ1 ) for l = 1, ..., dx and k = 1, ..., d2.

(v) There exist βl’s such that supx∈Xl
|gl(x)− pκ(x)′βl| = O(κ−γ) for l = 1, ..., dx, supz∈Z1l

|gdz+k(·)−
pκ(z)′βdz+k| = O(κ−γ) for k = 1, ..., d1, and |gdx+d1+l(·)− pκ(·)′βdx+d1+l|1 = O(κ−γ) for l = 1, ..., dx.

(vi) The set of basis functions, {pj (·) , j = 1, 2, ...}, are twice continuously differentiable everywhere

on the support of Uli for l = 1, ..., dx. max1≤l≤dx max0≤s≤r supul∈Ul ‖∂
spκ (ul)‖ ≤ ςrκ for r = 0, 1, 2.

Assumption A3. (i) The probability density functions (PDF) of any two elements in Wi are bounded,

bounded away from zero, and twice continuously differentiable.

(ii) Let ei ≡ Yi− ḡ (Xi,Z1i,Ui) and σ2
i ≡ σ2 (Xi,Z1i,Z2i,Ui) ≡ E

(
e2
i |Xi,Z1i,Z2i,Ui

)
. Let Qsk,pp ≡

E[pκ1 (Zsk,i) p
κ1 (Zsk,i)

′
σ2
i ] for k = 1, ..., ds and s = 1, 2. The largest eigenvalue of Qsk,pp is bounded

uniformly in κ1.

Assumption A4. The kernel function K (·) is a PDF that is symmetric, bounded, and has compact

support [−cK , cK ]. It satisfies the Lipschitz condition |K (v1)−K (v2)| ≤ CK |v1 − v2| for all v1, v2 ∈
[−cK , cK ] .

Assumption A5.

(i) κ1 ≤ κ. As n → ∞, κ1 → ∞, κ3/n → 0, and τn → c1 ∈ [0,∞), where τn ≡
(
κ1/2ς0κ + ς1κ

)
ν1n +

ς0κς2κν
2
1n, ν1n ≡ κ1/2

1 /n1/2 + κ−γ1 and νn ≡ κ1/2/n1/2 + κ−γ .
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(ii) As n→∞, h→ 0, nh3 log n→∞, nhκ−2γ → 0, τnν1n = o(n−1/2h−1/2), and [h1/2ς1κ(1+n1/2κ−γ1 )

+ς2κn
1/2h1/2ν2

1n](νn + ν1n)→ 0.

Assumptions A1(i)-(ii) impose IID sampling and compactness on the support of the exogenous inde-

pendent variables. Either assumption can be relaxed at lengthy arguments; see, e.g., Su and Jin (2012)

who allow for both weakly dependent data and infinite support for their regressors. A1(iii) requires that

the variables in Wi and (Z1i,Z2i) be continuously valued, which is standard in the literature on sieve

estimation. The extension to allow for both continuous and discrete variables is possible but will not be

pursued in this paper.

Assumption A2(i)-(ii) ensure the existence and nonsingularity of the covariance matrix of the asymp-

totic form of the first two stage estimators. They are standard in the literature; see, e.g., Newey (1997),

Li (2000), and Horowitz and Mammen (2004). Note that all of these authors assume that the condi-

tional variances of the error terms given the exogenous regressors are uniformly bounded, in which case

the second part of A1(i) becomes redundant. A2(iii) imposes smoothness conditions on the relevant

functions and A2(iv)-(v) quantifies the approximation error for γ-smooth functions. These conditions

are satisfied, for example, for polynomials, splines, and wavelets. A2(vi) is needed for the application

of Taylor expansions. It is well known that ςrκ = O
(
κr+1/2

)
and O

(
κ2r+1

)
for B-splines and power

series, respectively; see Newey (1997). The rate at which splines uniformly approximate a function is

the same as that for power series, so that the uniform convergence rate for splines is faster than power

series. In addition, the low multicollinearity of B-splines and recursive formula for calculation also leads

to computational advantages; see Powell (1981, Chapter 19) and Schumaker (2007, Chapter 4). For these

reasons, B-splines are widely used in the literature.

Assumptions A3(i)-(ii) and A4 are needed for the establishment of the asymptotic property of the

third stage estimator. A3(ii) is redundant under Assumption A2(i) if one assumes that the conditional

variances of ei’s given (Xi,Z1i,Z2i,Ui) are uniformly bounded. A4 is standard for local linear regression;

see Fan and Gijbels (1996) and Masry (1996). The compact support condition is convenient for the

demonstration of the uniform convergence rate in Theorem 3.2 below. It can be removed at the cost

of some lengthy arguments; see, e.g., Hansen (2008). In particular, the Gaussian kernel can be applied.

Assumptions A5(i)-(ii) specify conditions on κ1, κ, and h. Note that we allow the use of different series

approximation terms in the first and second stage estimation, which allows us to see clearly the effect of

the first stage estimates on the second stage estimates. The first condition (namely, κ1 ≤ κ) in A5(i) is

needed for the proof of a technical lemma (see Lemma A.5(iii)) in the appendix, and it can be removed

at the cost of some additional assumption on the basis functions. The terms that are associated with

ν1n arise because of the use of the nonparametrically generated regressors in the second stage series

estimation. The appearance of log n is due to the goal to establish some uniform consistency result in

Theorem 3.2 below and it can be replaced by 1 if one is only interested in the pointwise result. In the case

where ςrκ = O
(
κr+1/2

)
in Assumption A2(vi), τn = O

(
κ3/2ν1n + κ3ν2

1n

)
. In practice, we recommend

setting κ1 = κ. These restrictions, in conjunction with the condition γ ≥ 2, imply that the conditions in

Assumption A5 can be greatly simplified as follows:

Assumption A5∗.

(i) As n→∞, κ→∞, κ4/n→ c1 ∈ [0,∞).

(ii) As n→∞, h→ 0, nh3 log n→∞, nhκ−2γ → 0, and n−1hκ5 → 0.
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3.2 Asymptotic properties

In this section we state two theorems that given the main results of the paper. Even though several

results are available in the literature on nonparametric or semiparametric regressions with nonparamet-

rically generated regressors [see, e.g., Mammen et al. (2012) and Hahn and Ridder (2013) for recent

contributions], none of them can be directly applied to our framework. In particular, Hahn and Ridder

(2013) study the asymptotic distribution of three-step estimators of a finite-dimensional parameter vec-

tor where the second step consists of one or more nonparametric generated regressions on a regressor

that is estimated in the first step. In sharp contrast, our third-stage estimator is also a nonparametric

estimator. Under fairly general conditions, Mammen et al. (2012) focus on two-stage nonparametric

regression where the first stage can be kernel or series estimation while the second stage is a local linear

estimation. In principle, one can treat our second and third stage estimation as their first and second

stage estimation, respectively, and then apply their results to our case. But their results are built upon

high-level assumptions and are usually not optimal. For this reason, we derive the asymptotic properties

of our three-stage estimators under some primitive conditions specified in the preceding section.

The asymptotic properties of the second stage series estimator β̃ are reported in the following theorem.

Theorem 3.1 Suppose that Assumptions A.1-A.5(i) hold. Then

(i) β̃ − β = Q−1
ΦΦn

−1
∑n
i=1 Φiei + Q−1

ΦΦn
−1
∑n
i=1 Φi [ḡ (Xi, Z1i, Ui)− Φ′iβ] − Q−1

ΦΦn
−1
∑n
i=1 Φi

∑dx
l=1

ġdx+d1+l (Uli) (Ũli − Uli) + Rn,β ;

(ii)
∥∥∥β̃ − β∥∥∥ = OP (νn + ν1n) ;

(iii) supw∈W
∣∣˜̄g (w)− ḡ (w)

∣∣ = OP [ς0κ (νn + ν1n)] ;

where ‖Rn,β‖ = τnOP (νn + ν1n) , and ν1n, νn, and τn are defined in Assumption A.5(i) .

To appreciate the effect of the first stage series estimation on the second stage series estimation, let

β̄ denote a series estimator of β by using Ui together as (Xi,Z1i) as the regressors. Then it is standard

to show that

β̄ − β = Q−1
ΦΦn

−1
n∑
i=1

Φiei +Q−1
ΦΦn

−1
n∑
i=1

Φi [ḡ (Xi, Z1i, Ui)− Φ′iβ] + R̄n,β , and∥∥β̄ − β∥∥ = OP (νn)

where
∥∥R̄n,β

∥∥ = OP (κn−1/2νn) = o (νn). The third term on the right hand side of the expression in

Theorem 3.1(i) signifies the asymptotically non-negligible dominant effect of the first stage estimation on

the second stage estimation.

With Theorem 3.1, it is straightforward to show the asymptotic distribution of our three-stage esti-

mator of g1 (x1) and its gradient.

Theorem 3.2 Let H ≡diag(1, h) . Suppose that Assumptions A.1-A.5 hold. Then

(i) (Normality) √
nhH

[
β̂1 (x1)− β1 (x1)− b1 (x1)

]
D→ N (0,Ω1 (x1)) ,

where b1 (x1) ≡

(
υ21
2 h2g̈1 (x1)

0

)
, Ω1 (x1) ≡

(
σ2(x1)/fX1 (x1) 0

0 υ22σ
2(x1)/

[
υ2

21fX1 (x1)
] ) , σ2(x1)

≡ E
(
e2
i |X11,i = x1

)
, and υij ≡

∫
vik(v)jdv, i, j = 0, 1, 2.
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(ii) (Uniform consistency) Suppose that QΦΦ,e ≡ E
(
ΦiΦ

′
ie

2
i

)
has bounded maximum eigenvalue. Then

sup
x1∈X1

∥∥∥H [β̂1 (x1)− β1 (x1)
]∥∥∥ = OP

(
(nh log n)

−1/2
+ h2

)
.

Theorem 3.2(i) indicates that our three-step estimator of β1 (x1) = [g1 (x1) , ġ1 (x1)]′ has the asymp-

totic oracle property. Asymptotically, the asymptotic distribution of local linear estimator of β1 (x1) is

not affected by random sampling errors in the first two-stage estimators. In fact, the three-step estimator

of β1 (x1) has the same asymptotic distribution that one could have if the other components in ḡ (x, z1, u)

were known and a local linear procedure were used to estimate β1 (x1) . Theorem 3.2(ii) gives the uni-

form convergence rate for β̂1 (x1) . Similar properties can be established for the local linear estimators of

other components of ḡ (x, z1, u) . In addition, following the standard exercise in the nonparametric kernel

literature, one can also demonstrate that these estimators are asymptotically independently distributed.

3.3 Extension to partially linear additive models

In this section we consider a slight extension of the model in (2.1) to the following partially linear

functional coefficient model{
Y = g (X,Z1) + θ′V + ε,

X = m (Z1,Z2) + ΨV + U, E (U|Z1,Z2,V) = 0, E (ε|Z1,Z2,U,V) = E (ε|U) , E (ε) = 0,
(3.1)

where Y, X, Z1, Z2, Z, and ε are defined as above, V is a k × 1 vector of exogenous variables, θ is a

k × 1 parameter vector, and Ψ = [ψ′1, ..., ψ
′
dx

]′ is a dx × k matrix of parameters in the reduced form

regression for X. To avoid the curse of dimensionality, we continue to assume that m (Z1,Z2) , g (X,Z1) ,

and E (ε|U) have the additive forms given in Section 2.1.

We remark that the results developed in previous sections extend straightforwardly to the model

specified in (3.1). Note that

E (Y |X,Z1,Z2,U,V) = g (X,Z1) + E (ε|U) + θ′V = ḡ(X,Z1,U) + θ′V, and (3.2)

E (X|Z1,Z2,V) = m (Z1,Z2) + ΨV. (3.3)

Given a random sample {(Yi,Xi,Z1i,Z2i,Vi) , i = 1, ..., n}, we can continue to adopt the three-step pro-

cedure outlined in Section 2.2 to estimate the above model. First, we choose (αl, ψl) to minimize

n−1
∑n
i=1

[
Xli − Pκ1 (Z1i,Z2i)

′
αl −V′iψl

]2
. Let (α̃l, ψ̃l) denote the solution. The series estimator of

ml (z1, z2) is given by m̃l (z1, z2) = Pκ1 (z1, z2)
′
α̃l. Define the residuals Ũli = Xli− m̃l (Z1i,Z2i)− ψ̃′lVi.

Let Ũi = (Ũ1i, ..., Ũdxi)
′, W̃i =

(
X′i,Z

′
1i, Ũ

′
i

)′
, and Pκ

(
W̃i

)
be defined as before. Second, we choose

(β, θ) to minimize n−1
∑n
i=1

[
Yi − Pκ

(
W̃i

)′
β −V′iθ

]2

. Let β̃ ≡ (µ̃, β̃′1, ..., β̃
′
2dx+d1

)′ and θ̃ denote the

solution. Define Ỹ1i = Yi− β̃′(−1)P
κ
(
W̃i

)
− θ̃′Vi where β̃(−1) is defined as β̃ with its component β̃1 being

replaced by a κ× 1 vector of zeros. Third, we estimate g1 (x1) and its first order derivative by regressing

Ỹ1i on X1i via the local linear procedure. Let β̂1 (x1) denote the estimate of β1 (x1) and via the local

linear fitting.

It is well known that the finite dimensional parameter vectors ψl’s and θ can be estimated at the

parametric
√
n-rate and the appearance of the linear components in (3.1) won’t affect the asymptotic

properties of β̃ and β̂1 (x1) . To conserve space, we do not repeat the arguments here.
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Appendix

A Proof of the Results in Section 3

For notational simplicity, let Zi ≡ (Z′1i,Z
′
2i)
′, Pi ≡ Pκ1 (Zi) , Φi = Φκ (Wi) , and Φ̃i = Φκ(W̃i). Then

QPP ≡ E (PiP
′
i ) and QΦΦ ≡ E (ΦiΦ

′
i) . Let Qn,PP ≡ n−1

∑n
i=1 PiP

′
i , Qn,ΦΦ ≡ n−1

∑n
i=1 ΦiΦ

′
i, and

Q̃n,ΦΦ ≡ n−1
∑n
i=1 Φ̃iΦ̃

′
i. By Lemmas A.1(ii) and(v) and Lemma A.4(iv) below, Qn,PP , Qn,ΦΦ and

Q̃n,ΦΦ are invertible with probability approaching 1 (w.p.a.1) so that in large samples we can replace

the generalized inverse Q−n,PP , Q
−
n,ΦΦ and Q̃−n,ΦΦ by Q−1

n,PP , Q
−1
n,ΦΦ and Q̃−1

n,ΦΦ, respectively. Recall

ν1n ≡ κ1/2
1 /n1/2 + κ−γ1 and νn ≡ κ1/2/n1/2 + κ−γ .

Lemma A.1 Suppose that Assumptions A1 and A2(i)-(ii) and (vi) hold. Then

(i) ‖Qn,PP −QPP ‖2 = OP
(
κ2

1/n
)

;

(ii) λmin (Qn,pp) = λmin (QPP ) + oP (1) and λmax (Qn,pp) = λmax (QPP ) + oP (1) ;

(iii)
∥∥∥Q−1

n,PP −Q
−1
PP

∥∥∥
sp

= OP
(
κ1/n

1/2
)

;

(iv) ‖Qn,ΦΦ −QΦΦ‖2 = OP
(
κ2/n

)
;

(v) λmin (Qn,ΦΦ) = λmin (QΦΦ) + oP (1) and λmax (Qn,ΦΦ) = λmax (QΦΦ) + oP (1) .

Proof. By straightforward moment calculations, we can show that E ‖Qn,PP −QPP ‖2 = O
(
κ2

1/n
)

under Assumption A1(i)-(ii) and A2(vi) . Then (i) follows from Markov inequality. By Weyl inequality

[e.g., Bernstein (2005, Theorem 8.4.11)] and the fact that λmax (A) ≤ ‖A‖ for any symmetric matrix A

(as |λmax (A)|2 = λmax (AA) ≤ ‖A‖2), we have

λmin (Qn,PP ) ≤ λmin (QPP ) + λmax (Qn,PP −QPP )

≤ λmin (QPP ) + ‖Qn,PP −QPP ‖ = λmin (QPP ) + oP (1) .

Similarly,

λmin (Qn,PP ) ≥ λmin (QPP ) + λmin (Qn,PP −QPP )

≥ λmin (QPP )− ‖Qn,PP −QPP ‖ = λmin (Qκ1
)− oP (1) .

Analogously, we can prove the second part of (ii) . Thus (ii) follows. By the submultiplicative property

of the spectral norm, (i)-(ii) , and Assumption A2(i)∥∥∥Q−1
n,PP −Q

−1
PP

∥∥∥
sp

=
∥∥∥Q−1

n,PP (QPP −Qn,PP )Q−1
PP

∥∥∥
sp
≤
∥∥∥Q−1

n,PP

∥∥∥
sp
‖QPP −Qn,PP ‖sp

∥∥Q−1
PP

∥∥
sp

= OP (1)OP

(
κ1/n

1/2
)
OP (1) = OP

(
κ1/n

1/2
)
,

where we use the fact that
∥∥∥Q−1

n,PP

∥∥∥
sp

= [λmin (Qn,PP )]
−1

= [λmin (QPP ) + oP (1)]−1 = OP (1) by (ii)

and Assumption A2(i) . Then (iii) follows. The proof of (iv)-(v) is analogous to that of (i)-(ii) and thus

omitted.

Lemma A.2 Let ξnl ≡ n−1
∑n
i=1 PiUli and ζnl ≡ n−1

∑n
i=1 Pi [ml (Zi)− P ′iαl] for l = 1, ..., dx. Suppose

that Assumptions A1-A2 hold. Then

(i) ‖ξnl‖2 = OP (κ1/n);

(iii) ‖ζnl‖2 = OP (κ−2γ
1 );

(iii) α̃l−αl = Q−1
κ1
n−1

∑n
i=1 PiUli +Q−1

κ1
n−1

∑n
i=1 Pi [ml (Zi)− P ′iαl] + rnl;

where ‖rnl‖ = OP (κ1/n+ κ
−γ+1/2
1 /n1/2) and l = 1, ..., dx.
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Proof. (i) By Assumption A1(i) and A2(i) , E ‖ξnl‖2 = n−2tr{
∑n
i=1E(PiP

′
iU

2
li)} ≤ n−1 (1 + dκ1)

λmax (QPP,Ul
) = O(κ1/n). Then ‖ξnl‖2 = OP (κ1/n) by Markov inequality.

(ii) By the facts that ‖a‖2sp = ‖a‖2 for any vector a, |a′b| ≤ ‖a‖ ‖b‖ for any two conformable vectors

a and b, and that κ′Aκ ≤ λmax (A) ‖κ‖2 for any p.s.d. matrix A and conformable vector κ, Cauchy-

Schwarz inequality, Lemma A.1(ii) and Assumptions A2(iv), we have

‖ζnl‖2 = ‖ζnl‖2sp = λmax (ζnlζ
′
nl) = max

‖κ‖=1
n−2

n∑
i=1

n∑
j=1

κ′PiP ′jκ [ml (Zi)− P ′iαl]
[
ml (Zj)− P ′jαl

]
≤ max

‖κ‖=1

{
n−1

n∑
i=1

{
κ′PiP ′iκ [ml (Zi)− P ′iαl]

2
}1/2

}2

≤ OP (κ−2γ
1 ) max

‖κ‖=1

{
n−1

n∑
i=1

κ′PiP ′iκ

}
≤ OP (κ−2γ

1 )λmax (Qn,PP ) = OP (κ−2γ
1 ).

(iii) Noting that Xli = ml (Zi) + Uli = P ′iαl + Uli + [ml (Zi)− P ′iαl] , by Lemma A.1(ii), w.p.a.1 we

have

α̃l−αl =

(
n∑
i=1

PiP
′
i

)− n∑
i=1

PiXli − αl

= Q−1
n,PPn

−1
n∑
i=1

PiUli +Q−1
n,PPn

−1
n∑
i=1

Pi [ml (Zi)− P ′iαl]

= Q−1
n,PP ξnl +Q−1

n,PP ζnl ≡ a1l + a2l, say. (A.1)

Note that a1l = Q−1
κ1
ξnl + r1nl where r1nl =

(
Q−1
n,PP −Q

−1
PP

)
ξnl satisfies that

‖r1l‖ ≤ =
{

tr
[(
Q−1
n,PP −Q

−1
PP

)
ξnlξ

′
nl

(
Q−1
n,PP −Q

−1
PP

)]}1/2

≤ ‖ξnl‖sp
∥∥∥Q−1

n,PP −Q
−1
PP

∥∥∥ = OP (κ
1/2
1 /n1/2)OP (κ

1/2
1 /n1/2) = OP (κ1/n)

by Lemmas A.1(iii) and A.2(i). For a2l, we have a2l = Q−1
κ1
ζnl + r2nl where r2nl =

(
Q−1
nκ1
−Q−1

nκ1

)
ζnl

satisfies that

‖r2l‖ ≤ ‖ζnl‖sp
∥∥∥Q−1

n,PP −Q
−1
PP

∥∥∥ = OP (κ−γ1 )OP (κ
1/2
1 /n1/2) = OP (κ

−γ+1/2
1 /n1/2)

by Lemmas A.1(iii) and A.2(ii). The result follows.

Lemma A.3 Suppose that Assumptions A1-A3 hold. Then for l = 1, ..., dx,

(i) n−1
∑n
i=1

(
Ũli − Uli

)2 [
σ2
i

]r
= OP

(
ν2

1n

)
for r = 0, 1;

(ii) n−1
∑n
i=1

(
Ũli − Uli

)2

‖Φi‖r = OP
(
ςr0κν

2
1n

)
for r = 1, 2;

(iii) n−1
∑n
i=1

∥∥∥pκ (Ũli)− pκ (Uli)
∥∥∥2

= OP
(
ς21κν

2
1n

)
;

(iv)
∥∥∥n−1

∑n
i=1

[
pκ
(
Ũli

)
− pκ (Uli)

]
Φ′i

∥∥∥ = OP
(
κ1/2ς0κν1n + ς0κς2κν

2
1n

)
;

(v)
∥∥∥n−1

∑n
i=1

[
pκ
(
Ũli

)
− pκ (Uli)

]
ei

∥∥∥ = OP
(
n−1/2ς1κν1n

)
.
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Proof. (i) We only prove the r = 1 case as the proof of the other case is almost identical. By the

definition of Ũli and (A.1), we can decompose Ũli − Uli = [Xli − m̃l (Zi)]− Uli as follows

Ũli − Uli = (µl − µ̃l) +

d1∑
k=1

[ml,k (Z1k,i)− m̃l,k (Z1k,i)] +

d2∑
k=1

[ml,d1+k (Z2k,i)− m̃l,d1+k (Z2k,i)]

= − (µ̃l − µl)−
d1∑
k=1

pκ1 (Z1k,i)
′ S1ka1l −

d2∑
k=1

pκ1 (Z2k,i)
′ S1,d1+ka1l

−
d1∑
k=1

pκ1 (Z1k,i)
′ S1ka2l −

d2∑
k=1

pκ1 (Z2k,i)
′ S1,d1+ka2l

≡ −u1l,i − u2l,i − u3l,i − u4l,i − u5l,i, say. (A.2)

Then by Cauchy-Schwarz inequality, n−1
∑n
i=1(Ũli − Uli)2σ2

i ≤ 5
∑5
s=1 n

−1
∑n
i=1 u

2
sl,iσ

2
i ≡ 5

∑5
s=1 Vnl,s,

say. Apparently, Vnl,1 = OP
(
n−1

)
as µ̃l − µl = OP

(
n−1/2

)
.

Vnl,2 = n−1
n∑
i=1

(
d1∑
k=1

pκ1 (Z1k,i)
′ S1ka1l

)2

σ2
i

≤ d1

d1∑
k=1

n−1
n∑
i=1

(
pκ1 (Z1k,i)

′ S1ka1l

)2
σ2
i = d1

d1∑
k=1

tr (S1ka1la
′
1lS′1kQn1k,pp)

≤ d1

d1∑
k=1

λmax (Qn1k,pp) tr (a1la
′
1lS′1kS1k) ≤ d1

d1∑
k=1

λmax (Qn1k,pp) ‖S1k‖2sp ‖a1l‖2 .

where Qn1k,pp = n−1
∑n
i=1 p

κ1 (Z1k,i) p
κ1 (Z1k,i)

′
σ2
i such that λmax(Qn1k,pp) = OP (1) by Assumption

A3(ii) and arguments analogous to those used in the proof of Lemma A.1(ii). In addition, ‖S1k‖2sp =

λmax (S1kS′1k) = 1, and ‖a1l‖2 ≤
∥∥∥Q−1

n,PP

∥∥∥2

sp
‖ξnl‖2 = OP (1)OP (κ1/n) = OP (κ1/n) by Lemma A.1(iii)

and A.2(i) and Assumption A2(i). It follows that Vnl,2 = OP (1)×1×OP (κ1/n) = OP (κ1/n) . Similarly,

using the fact that ‖a2l‖2 ≤
∥∥∥Q−1

n,PP

∥∥∥2

sp
‖ζnl‖2 = OP (1)OP (κ−2γ

1 ), we have

Vnl,4 = n−1
n∑
i=1

(
d1∑
k=1

pκ1 (Z1k,i)
′ S1ka2l

)2

σ2
i ≤ d1

d1∑
k=1

λmax (Qn1k,pp) ‖S1k‖2sp tr (a2la
′
2l)

= OP (1)× 1×OP (κ−2γ
1 ) = OP (κ−2γ

1 ).

By the same token, Vnl,3 = OP (κ1n
−1) and Vnl,5 = OP (κ−2γ

1 ).

(ii) The result follows from (i) and the fact that max1≤i≤n ‖Φi‖ = OP (ς0κ) under Assumption A2(vi) .

(iii) By Assumption A2(vi) , Taylor expansion, and (i) ,

n−1
n∑
i=1

∥∥∥pκ (Ũli)− pκ (Uli)
∥∥∥2

= n−1
n∑
i=1

∥∥∥ṗκ (U†li)(Ũli − Uli)∥∥∥2

≤ O
(
ς21κ
)
n−1

n∑
i=1

(
Ũli − Uli

)2

= OP
(
ς21κν

2
1n

)
,

where U†li lies between Ũli and Uli.

(iv) By Assumption A2(vi) , Taylor expansion, and triangle inequality,
∥∥∥n−1

∑n
i=1

[
pκ
(
Ũli

)
− pκ (Uli)

]
Φ′i

∥∥∥
sp

is bounded by∥∥∥∥∥n−1
n∑
i=1

ṗκ (Uli) Φ′i

(
Ũli − Uli

)∥∥∥∥∥
sp

+
1

2

∥∥∥∥∥n−1
n∑
i=1

p̈κ
(
U‡li

)
Φ′i

(
Ũli − Uli

)2
∥∥∥∥∥

sp

≡ Tnl,1 + Tnl,2,
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where U‡li lies between Ũli and Uli. By triangle and Cauchy-Schwarz inequalities and (ii) ,

Tnl,1 ≤ n−1
n∑
i=1

‖ṗκ (Uli)‖sp
∥∥∥Φ′i

(
Ũli − Uli

)∥∥∥
sp

≤

{
n−1

n∑
i=1

‖ṗκ (Uli)‖2
}1/2{

n−1
n∑
i=1

‖Φi‖2
∣∣∣Ũli − Uli∣∣∣2}1/2

= OP

(
κ1/2

)
OP (ς0κν1n) = OP

(
κ1/2ς0κν1n

)
.

By triangle inequality and (i) , Tnl,2 ≤ O (ς0κς2κ)n−1
∑n
i=1(Ũli − Uli)

2 = OP (ς0κς2κν
2
1n). Then (iv)

follows.

(v) Let Γnl ≡ [pκ(Ũl1) − pκ (Ul1) , ..., [pκ(Ũln) − pκ (Uln)]]′ and e = (e1, ..., en)′. Then we can write

n−1
∑n
i=1[pκ(Ũli) − pκ (Uli)]ei as n−1Γ′nle. Let Dn ≡ {(Xi,Zi,Ui)}ni=1 . By the law of iterated expecta-

tions, Taylor expansion, Assumptions A1(i) , A3(ii) and A2(vi), and (i)

E
{∥∥n−1Γ′nle

∥∥2 |Dn
}

= n−2E [tr (Γ′nee′Γn)] = n−2E [tr (Γ′nE (ee′|Dn) Γn)]

= n−2
n∑
i=1

[pκ(Ũli)− pκ (Uli)]
2σ2
i

≤ OP (ς1κ)n−2
n∑
i=1

(
Ũli − Uli

)2

σ2
i = OP

(
n−1ς21κν

2
1n

)
.

It follows that
∥∥n−1Γ′nle

∥∥ = OP
(
n−1/2ς1κν1n

)
by the conditional Chebyshev inequality.

Lemma A.4 Suppose Assumptions A1-A3 hold. Then

(i) n−1
∑n
i=1

∥∥∥Φ̃i − Φi

∥∥∥2

= OP
(
ς21κν

2
1n

)
;

(ii)
∥∥∥n−1

∑n
i=1

(
Φ̃i − Φi

)
Φ′i

∥∥∥
sp

= OP
(
κ1/2ς1κν1n

)
;

(iii)
∥∥∥Q̃n,ΦΦ −Qn,ΦΦ

∥∥∥
sp

= OP
(
κ1/2ς0κν1n + ς0κς2κν

2
1n

)
;

(iv)
∥∥∥Q̃−1

n,ΦΦ −Q
−1
ΦΦ

∥∥∥
sp

= OP
(
κ1/2ς0κν1n + ς0κς2κν

2
1n

)
;

(v)
∥∥∥n−1

∑n
i=1

(
Φ̃i − Φi

)
ei

∥∥∥ = OP
(
n−1/2ς1κν1n

)
;

(vi) n−1
∑n
i=1

(
Φ̃i − Φi

)
[ḡ (Xi, Z1i, Ui)− Φ′iβ] = OP

(
κ−γ1 ς1κν1n

)
.

Proof. (i) Noting that n−1
∑n
i=1

∥∥∥Φ̃i − Φi

∥∥∥2

=
∑dx
l=1 n

−1
∑n
i=1

∥∥∥pκ (Ũli)− pκ (Uli)
∥∥∥2

, the result

follows from Lemma A.3(iii).

(ii) Noting that
∥∥∥n−1

∑n
i=1

(
Φ̃i − Φi

)
Φ′i

∥∥∥2

=
∑dx
l=1

∥∥∥n−1
∑n
i=1

[
pκ
(
Ũli

)
− pκ (Uli)

]
Φ′i

∥∥∥2

, the result

follows from Lemma A.3(iv).

(iii) Noting that Q̃n,ΦΦ−Qn,ΦΦ = n−1
∑n
i=1(Φ̃iΦ̃

′
i−ΦiΦ

′
i) = n−1

∑n
i=1(Φ̃i−Φi)(Φ̃i−Φi)

′ +n−1
∑n
i=1(Φ̃i

−Φi)Φ
′
i + n−1

∑n
i=1 Φi(Φ̃i − Φi)

′, the result follows from (i)-(ii) and the triangle inequality.

(iv) By the triangle inequality
∥∥∥Q̃−1

n,ΦΦ −Q
−1
ΦΦ

∥∥∥
sp
≤
∥∥∥Q̃−1

n,ΦΦ −Q
−1
n,ΦΦ

∥∥∥
sp

+
∥∥∥Q−1

n,ΦΦ −Q
−1
ΦΦ

∥∥∥
sp
. Ar-

guments like those used in the proof of Lemma A.1(ii) show that
∥∥∥Q̃−1

n,ΦΦ

∥∥∥
sp

=
[
λmin

(
Q̃n,ΦΦ

)]−1

=

[λmin (QΦΦ) + oP (1)]
−1

= OP (1) where the second equality follows from (iii) and Lemma A.1(ii). By
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the submultiplicative property of the spectral norm and (iii),∥∥∥Q̃−1
n,ΦΦ −Q

−1
n,ΦΦ

∥∥∥
sp

=
∥∥∥Q̃−1

n,ΦΦ

(
Q̃n,ΦΦ − Q̃n,ΦΦ

)
Q−1
n,ΦΦ

∥∥∥
sp

≤
∥∥∥Q̃−1

n,ΦΦ

∥∥∥
sp

∥∥∥Q̃n,ΦΦ − Q̃n,ΦΦ

∥∥∥
sp

∥∥∥Q−1
n,ΦΦ

∥∥∥
sp

= OP

(
κ1/2ς0κν1n + ς0κς2κν

2
1n

)
.

Similarly,
∥∥∥Q−1

n,ΦΦ −Q
−1
ΦΦ

∥∥∥
sp

= OP
(
κ/n1/2

)
by Lemma A.1(iii) . It follows that

∥∥∥Q̃−1
n,ΦΦ −Q

−1
ΦΦ

∥∥∥
sp

=

OP
(
κ1/2ς0κν1n + ς0κς2κν

2
1n

)
.

(v) Noting that
∥∥∥n−1

∑n
i=1

(
Φ̃i − Φi

)
ei

∥∥∥2

=
∑dx
l=1

∥∥∥n−1
∑n
i=1

[
pκ
(
Ũli

)
− pκ (Uli)

]
ei

∥∥∥2

, the result

follows from Lemma A.3(v).

(vi) Let δi ≡ ḡ (Xi, Z1i, Ui) − Φ′iβ. By triangle inequality, Assumption A2(v), Jensen inequality

and (i) , we have
∥∥∥n−1

∑n
i=1

(
Φ̃i − Φi

)
δi

∥∥∥ ≤ OP (κ−γ)n−1
∑n
i=1

∥∥∥Φ̃i − Φi

∥∥∥ = OP (κ−γ)OP (ς1κν1n)

= OP (κ−γς1κν1n) .

Lemma A.5 Let ξn ≡ n−1
∑n
i=1 Φiei and ζn ≡ n−1

∑n
i=1 Φi [ḡ (Xi, Z1i, Ui)− Φ′iβ] . Suppose Assump-

tions A1-A3 hold. Then

(i) ‖ξn‖ = OP (κ1/2/n1/2);

(iii) ‖ζn‖ = OP (κ−γ);

(iii)
∥∥∥Q−1

ΦΦn
−1
∑n
i=1 Φi

∑dx
l=1 ṗ

κ (Uli)
′
βdx+d1+l

(
Ũli − Uli

)∥∥∥ = OP (ν1n) for l = 1, ..., dx.

Proof. The proof of (i)-(ii) is analogous to that of Lemma A.2 (i)-(ii) , respectively. Noting that∥∥Q−1
ΦΦ

∥∥
sp

= O (1) by Assumption A2(ii), we can prove (iii) by showing that ‖Tnl‖ = OP (ν1n), where

Tnl = n−1
∑n
i=1 Φiδli(Ũli − Uli) where δli = ṗκ (Uli)

′
βdx+d1+l. By triangle inequality and Assumptions

A1(ii) and A2(iii) and (v)

cδl ≡ max
1≤i≤n

‖δli‖ ≤ sup
ul∈Ul

∥∥ġdx+d1+l (ul)− ṗκ (ul)
′
βdx+d1+l

∥∥+ sup
ul∈Ul

‖ġdx+d1+l (ul)‖

= O
(
κ−γ

)
+O (1) = O (1) .

By (A.2), Tnl = n−1
∑n
i=1 Φiδli(Ũli − Uli) =

∑5
s=1 n

−1
∑n
i=1 Φiδliusl,i =

∑5
s=1 Tnl,s, say.

Let ηnlk ≡ n−1
∑n
i=1 δliΦip

κ1 (Z1k,i)
′

and η̄lk = E (ηnlk) . Then ‖ηnlk − η̄lk‖ = OP ((κκ1/n)
1/2

) by

Chebyshev inequality and

‖η̄k‖2sp =
∥∥E [δliΦipκ1 (Z1k,i)

′]∥∥2

sp
≤ c2δλmax (M) = O (1) ,

where M ≡ E
[
Φip

κ1 (Z1k,i)
′]
E [pκ1 (Z1k,i) Φ′i] , and we use the fact that M has bounded largest eigen-

value. To see the last point, first note that for κ1 ≤ κ, E
[
Φip

κ1 (Z1k,i)
′]

is a submatrix of A ≡ E (ΦiΦ
′
i)

which has bounded largest eigenvalue. Partition A as follows

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


where Aij = A′ji for i, j = 1, 2, 3, and E

[
Φip

κ1 (Z1k,i)
′]

=
[
A′12 A22 A′32

]′
. Then

M =

 A12A
′
12 A12A22 A12A

′
32

A22A
′
12 A22A22 A22A

′
32

A32A
′
12 A32A22 A32A

′
32

 .
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By Thompson and Freede (1970, Theorem 2), λmax (M) ≤ λmax (A12A
′
12)+λmax (A22A

′
22)+λmax (A32A

′
32) .

By Fact 8.9.3 in Bernstein (2005), the positive definiteness of A ensures that both A12A
′
12 and A32A

′
32

have finite maximum eigenvalues as both

[
A11 A12

A21 A22

]
and

[
A22 A23

A32 A33

]
are also positive definite. In

addition, λmax (A22A22) = [λmax (A22)]
2

is finite as A has bounded maximum eigenvalue. It follows that

λmax (M) = O (1) . Consequently, ‖ηnlk‖ = OP (1 + (κκ1/n)
1/2

) = OP (1) .

Analogously, noting that 1 is the first element of Φi, we can show that
∥∥n−1

∑n
i=1 Φiδi

∥∥
sp

= OP (1 +

(κ/n)
1/2

) = OP (1) . It follows that

‖Tnl,1‖ =

∥∥∥∥∥n−1
n∑
i=1

Φiδli

∥∥∥∥∥
sp

|µ̃l − µl| = OP (1)OP

(
n−1/2

)
= OP

(
n−1/2

)
,

‖Tnl,2 + Tnl,4‖ ≤
d1∑
k=1

‖ηnlk‖ ‖S1k‖sp (‖a1l‖+ ‖a2l‖) = OP (1)O (1)O(ν1n) = O(ν1n),

and ‖Tnl,3 + Tnl,5‖ = O(ν1n) by the same token. Thus we have shown that ‖Tnl‖ = OP (ν1n).

Lemma A.6 Let c ≡ (c1, c2)
′

be an arbitrary 2 × 1 nonrandom vector such that ‖c‖ = 1. Suppose that

Assumptions A1-A5 hold. Then for l = 2, ..., dx
(i) S2nl (x1) ≡ n−1/2h1/2

∑n
i=1Kix1

c′H−1X∗1i (x1) (Ũli − Uli)ṗκ (Uli) = h1/2ς1κOP (1 + n1/2κ−γ1 ) uni-

formly in x1;

(ii) S2nl (x1) ≡ n−1/2h1/2
∑n
i=1Kix1

∣∣c′H−1X∗1i (x1)
∣∣ (Ũli−Uki)2 = n1/2h1/2OP (ν2

1n) uniformly in x1.

Proof. (i) Let ηnl (x1) ≡ n−1
∑n
i=1Kixc

′H−1X∗1i (x1) pκ (Xli) and η̄l (x1) ≡ E [ηnl (x1)] . By straight-

forward moment calculations and Chebyshev inequality, we have ηnl (x1) = η̄l (x1) + rηl (x1) where

‖rηl (x1)‖ = OP (κ1/2n−1/2h−1/2). In fact, supx1∈X1
‖rηl (x1)‖ = OP (κ1/2(nh/ log n)−1/2) with a simple

application of Bernstein inequality for independent observations [see, e.g., Serfling (1980, p. 95)].2 Note

that for l = 2, ..., dx,

η̄l (x1) = E
[
Kh (X1i − x1) c′H−1X∗1i (x1) pκ (Xli)

]
=

∫
K (v) (c1 + c2v) pκ (xl) f1l

(
x1 + h1/2v, xl

)
dvdxl

= c1

∫
f1l (x1, xl) p

κ (xl) dxl + c1

∫
K (v) [f1l (x1 + hv, xl)− f1l (x1, xl)] p

κ (xl) dxl

+c2

∫
K (v) v [f1l (x1 + hv, xl)− f1l (x1, xl)] dvp

κ (xl) dxl

≡ c1η̄1l (x1) + c1η̄2l (x1) + c2η̄3l (x1) .

As in Horowitz and Mammen (2004, p. 2435), in view of the fact that the components of η̄1l (x1) are

the Fourier coefficients of a function that is bounded uniformly over X1, we have supx1∈X1
‖η̄1l (x1)‖2 =

O (1) . In addition, using Assumptions A2(v) and A3(i), we can readily show that supx1∈X1
‖η̄2l (x1)‖ =

OP
(
κ1/2h2

)
and supx1∈X1

‖η̄3l (x1)‖ = OP
(
κ1/2h

)
. It follows that supx1∈X1

‖η̄l (x1)‖ = OP
(
1 + κ1/2h

)
=

OP (1) under Assumption A5(ii) and supx1∈X1
‖ηnl (x1)‖ = OP (1) .

By (A.2), S1nl (x1) = −
∑5
s=1 n

−1/2h1/2
∑n
i=1Kix1

c′H−1X∗1i (x1) ṗκ (Uli)usl,i ≡ −
∑5
s=1 S1nl,s (x1) ,

say. Noting that S1nl,1 (x1) = n1/2h1/2ηnl (x1) (µ̃l − µl) , we have

sup
x1∈X1

‖S1nl,1 (x1)‖ ≤ n1/2h1/2 sup
x1∈X1

‖ηnl (x1)‖ |µ̃l − µl| = n1/2h1/2OP (1)OP

(
n−1/2

)
= oP (1) .

2The proof of Lemma 7 in Horowitz and Mammen (2004) contains various errors as they ignore the fact that κ is

diverging to infinity as n→∞.
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Next, note that S1nl,2 (x1) =
∑d1
k=1 S1nl,2k (x1) where S1nl,2k (x1) = n−1/2h1/2

∑n
i=1Kix1

c′H−1X∗1i (x1)

ṗκ (Uli) p
κ1 (Z1k,i)

′ S1ka1l. We decompose S1nl,2k as follows:

S1nl,2k (x1) = n−1/2h1/2
n∑
i=1

Kix1
c′H−1X∗1iṗ

κ (Uli) p
κ1 (Z1k,i)

′ S1kQ
−1
n,PP ξnl

= n1/2h1/2ψnkl (x1)S1kQ
−1
PP ξnl + n1/2h1/2ψnkl (x1)S1k

(
Q−1
n,PP −Q

−1
PP

)
ξnl

≡ S1nl,2k1 (x1) + S1nl,2k2 (x1) , say.

where ψnkl (x1) ≡ n−1
∑n
i=1Kix1

c′H−1X∗1i (x1) ṗκ (Uli) p
κ1 (Z1k,i)

′
. Let ψ̄kl (x1) ≡ E [ψnkl (x1)] . As in

the analysis of ηnl (x1), we can show that supx1∈X1

∥∥ψ̄kl (x1)
∥∥

sp
= OP (ς1κ) and supx1∈X1

∥∥ψnkl (x1)− ψ̄kl (x1)
∥∥

sp

≡ OP ((κ1κ log n/n)−1/2). It follows that supx1∈X1
‖ψnkl (x1)‖sp = OP (ς1κ+(κ1κ log n/n)−1/2) = OP (ς1κ)

under Assumption A5(i) . Then following the analysis of Bnl,1 (x1) in the proof of Theorem 3.2, we can

show that ‖S1nl,2k1 (x1)‖ = OP
(
h1/2ς1κ

)
uniformly in x1. In addition,

sup
x1∈X1

‖S1nl,2k2 (x1)‖ ≤ n1/2h1/2 sup
x1∈X1

‖ψnkl (x1)‖sp ‖S1k‖sp
∥∥∥Q−1

n,PP −Q
−1
PP

∥∥∥
sp
‖ξnl‖

= n1/2h1/2OP (ς1κ)O (1)OP (κ1n
−1/2)OP (κ

1/2
1 n−1/2) = OP (ς1κκ

3/2
1 n−1/2h1/2).

It follows that supx1∈X1
‖S1nl,2k (x1)‖ = OP (h1/2ς1κ) + OP (ς1κκ

3/2
1 n−1/2h1/2) = OP (h1/2ς1κ) under As-

sumption A5(i). Analogously,

sup
x1∈X1

‖S1nl,4 (x1)‖ ≤
d1∑
k=1

n1/2h1/2 sup
x1∈X1

‖ψnkl (x1)‖ ‖S1k‖sp ‖a2l‖

= n1/2h1/2OP (ς1κ)OP (κ−γ1 ) = OP (n1/2h1/2ς1κκ
−γ
1 ).

By the same token, we can show that supx1∈X1
‖S1nl,3 (x1)‖ = OP

(
h1/2ς1κ

)
and supx1∈X1

‖S1nl,5 (x1)‖ =

OP (n1/2h1/2ς1κκ
−γ
1 ). It follows that supx1∈X1

‖S1n (x1)‖ = h1/2ς1κOP (1 + n1/2κ−γ1 ).

(ii) By (A.2) and Cauchy-Schwarz inequality

S2nl (x1) ≤ 5

5∑
s=1

n−1/2h1/2
n∑
i=1

Kix1

∣∣c′H−1X∗1i (x1)
∣∣u2

sl,i ≡ 5

5∑
s=1

S2nl,s, say.

It is easy to show that supx1∈X1
S2nl,1 (x1) = OP (n−1/2h1/2).Note that S2nl,2 (x1) = n−1/2h1/2

∑n
i=1Kix1

×
∣∣c′H−1X∗1i (x1)

∣∣u2
2l,i ≤ d1

∑d1
k=1 S2nl,2k (x1) , where

S2nl,2k (x1) = n−1/2h1/2
n∑
i=1

Kix1

∣∣c′H−1X∗1i (x1)
∣∣ pκ1 (Z1k,i)

′ S1ka1la
′
1lS′1kpκ1 (Z1k,i)

= n1/2h1/2tr (S1ka1la
′
1lS′1kvnlk (x1))

and vnlk (x1) ≡ n−1
∑n
i=1Kix1

∣∣c′H−1X∗1i
∣∣ pκ1 (Z1k,i) p

κ1 (Z1k,i)
′
. As in the analysis of ηnl (x1), we can

show that supx1∈X1
‖vnlk (x1)‖sp = OP (1) . By the fact tr(AB) ≤ λmax (A)tr(B) and ‖B‖sp = λmax (B)

for any symmetric matrix A and conformable positive-semidefinite matrix B.

S2nl,2k (x1) ≤ n1/2h1/2tr (S1ka1la
′
1lS′1k) ‖vnlk (x1)‖sp = n1/2h1/2 ‖S1ka1l‖2sp ‖vnlk (x1)‖sp

≤ n1/2h1/2 ‖S1k‖2sp ‖a1l‖2sp ‖vnlk (x1)‖sp
= n1/2h1/2O (1)OP

(
κ1n

−1
)
OP (1) = OP

(
κ1n

−1/2h1/2
)

uniformly in x1.
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It follows that supx1∈X1
S2nl,2 (x1) = OP

(
κ1n

−1/2h1/2
)
. Similarly, uniformly in x1

S2nl,4 (x1) ≤ n1/2h1/2 ‖S1k‖2sp ‖a2l‖2sp ‖vnlk (x1)‖sp
= n1/2h1/2O (1)OP (κ−2γ

1 )OP (1) = OP

(
n1/2κ−2γ

1 h1/2
)
.

By the same token, S2nl,3 (x1) = OP (κ1n
−1/2h1/2) and S2nl,5 (x1) = OP (n1/2κ−2γ

1 h1/2) uniformly in x1.

Consequently, supx1∈X1
S2nl (x1) = n1/2h1/2OP (ν2

1n).

Proof of Theorem 3.1. (i) Noting that Yi = ḡ (Xi, Z1i, Ui) + ei = Φ̃′iβ + ei +
[
ḡ (Xi, Z1i, Ui)− Φ̃′iβ

]
,

we have

β̃ − β = Q̃−1
n,ΦΦn

−1
n∑
i=1

Φ̃iYi − β = Q̃−1
n,ΦΦn

−1
n∑
i=1

Φ̃iei + Q̃−1
n,ΦΦn

−1
n∑
i=1

Φ̃i

[
ḡ (Xi, Z1i, Ui)− Φ̃′iβ

]
= Q̃−1

n,ΦΦξn + Q̃−1
n,ΦΦζn + Q̃−1

n,ΦΦn
−1

n∑
i=1

Φi

(
Φi − Φ̃i

)′
β + Q̃−1

n,ΦΦn
−1

n∑
i=1

(
Φ̃i − Φi

)
ei

+Q̃−1
n,ΦΦn

−1
n∑
i=1

(
Φ̃i − Φi

)
[ḡ (Xi, Z1i, Ui)− Φ′iβ]− Q̃−1

n,ΦΦn
−1

n∑
i=1

(
Φ̃i − Φi

)(
Φ̃i − Φi

)′
β

≡ b1n + b2n + b3n + b4n + b5n − b6n, say.

Note that b1n = Q−1
ΦΦξn+r1n, where r1n =

(
Q̃−1
n,ΦΦ −Q

−1
ΦΦ

)
ξn satisfies ‖r1n‖ ≤

∥∥∥Q̃−1
n,ΦΦ −Q

−1
ΦΦ

∥∥∥
sp
‖ξn‖sp =

OP
[
(κ1/2ς0κν1n + ς0κς2κν

2
1n)κ1/2n−1/2

]
by Lemmas A.4(iv) and A.5(i). Similarly, b2n = Q−1

ΦΦζn + r2n,

where r2n =
(
Q̃−1
n,ΦΦ −Q

−1
ΦΦ

)
ζn satisfies ‖r2n‖ ≤

∥∥∥Q̃−1
n,ΦΦ −Q

−1
ΦΦ

∥∥∥ ‖ζn‖sp = OP
[
(κ1/2ς0κν1n + ς0κς2κν

2
1n)κ−γ

]
by Lemmas A.4(iv) and A.5(ii). Next, we decompose b3n as follows:

b3n = Q−1
ΦΦn

−1
n∑
i=1

Φi

(
Φi − Φ̃i

)′
β+
(
Q̃−1
n,ΦΦ −Q

−1
ΦΦ

)
n−1

n∑
i=1

Φi

(
Φi − Φ̃i

)′
β ≡ b3n,1 + b3n,2, say.

We further decompose b3n,1 as follows:

b3n,1 = −Q−1
ΦΦn

−1
n∑
i=1

Φi

dx∑
l=1

[
pκ
(
Ũli

)
− pκ (Uli)

]′
βdx+d1+l

=

dx∑
l=1

Q−1
ΦΦn

−1
n∑
i=1

Φiṗ
κ
(
U†li

)′
βdx+d1+l

(
Uli − Ũli

)
=

dx∑
l=1

Q−1
ΦΦn

−1
n∑
i=1

Φiġdx+d1+l (Uli)
(
Uli − Ũli

)
+

dx∑
l=1

Q−1
ΦΦn

−1
n∑
i=1

Φi

[
ġdx+d1+l

(
U†li

)
− ġdx+d1+l (Uli)

] (
Uli − Ũli

)
+

dx∑
l=1

Q−1
ΦΦn

−1
n∑
i=1

Φi

[
ṗκ
(
U†li

)′
βdx+d1+l − ġdx+d1+l

(
U†li

)](
Uli − Ũli

)
≡

dx∑
l=1

b3n,11l +

dx∑
l=1

b3n,12l +

dx∑
l=1

b3n,13l, say,
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where U†li lies between Ũli and Uli. Noting that |ġdx+d1+l

(
U†li

)
− ġdx+d1+l (Uli) | ≤ cġ|Ũli − Uli| where

cġ = max1≤l≤dx maxul∈Ul |ġdx+d1+l (ul)| = O (1) by Assumptions A1(ii) and A2(iii) ,

‖b3n,12l‖ ≤ cġn−1
n∑
i=1

‖Φi‖
(
Uli − Ũli

)2

= ς0κOP
(
ν2

1n

)
by Lemma A.3(i) . By Assumption A2(ii), Cauchy-Schwarz inequality, and Lemma A.3(i)

‖b3n,13l‖ ≤ O
(
κ−γ

) ∥∥Q−1
ΦΦ

∥∥
sp
n−1

n∑
i=1

‖Φi‖
∣∣∣Uli − Ũli∣∣∣

≤ O
(
κ−γ

) ∥∥Q−1
ΦΦ

∥∥
sp

{
n−1

n∑
i=1

‖Φi‖2
}1/2{

n−1
n∑
i=1

(
Uli − Ũli

)2
}1/2

= O
(
κ−γ

)
O (1)O

(
κ1/2

)
OP (ν1n) = κ−γ+1/2OP (ν1n) .

By Lemma A.5(iii) , ‖b3n,11l‖ = OP (ν1n) which dominates both ‖b3n,12l‖ and ‖b3n,13l‖ . Thus ‖b3n,2‖ ≤∥∥∥Q̃−1
n,ΦΦ −Q

−1
ΦΦ

∥∥∥
sp
OP (ν1n) = OP [(κ1/2ς0κν1n+ς0κς2κν

2
1n)ν1n]. It follows that b3n =

∑dx
l=1Q

−1
ΦΦn

−1
∑n
i=1 Φi

×ġdx+d1+l (Uli) (Uli − Ũli) + b̄3n, where
∥∥b̄3n∥∥ = OP [(κ1/2ς0κν1n + ς0κς2κν

2
1n)ν1n]. By Lemmas A.4(v)-

(vi) , ‖b4n‖ = OP
(
n−1/2ς1κν1n

)
, and

‖b5n‖ ≤
∥∥∥Q̃−1

n,ΦΦ

∥∥∥
sp

∥∥∥∥∥n−1
n∑
i=1

(
Φ̃i − Φi

)
[ḡ (Xi, Z1i, Ui)− Φ′iβ]

∥∥∥∥∥ = OP
(
κ−γς1κν1n

)
,

where we use the fact that
∥∥∥Q̃−1

n,ΦΦ

∥∥∥
sp
≤
∥∥∥Q̃−1

n,ΦΦ −Q
−1
ΦΦ

∥∥∥
sp

+
∥∥Q−1

ΦΦ

∥∥
sp

= oP (1) + O (1) = OP (1) . For

b6n, we have by Taylor expansion and triangle inequality that

‖b6n‖ ≤
dx∑
l=1

∥∥∥∥∥Q̃−1
n,ΦΦn

−1
n∑
i=1

(
Φ̃i − Φi

) [
pκ
(
Ũli

)
− pκ (Uli)

]′
βdx+d1+l

∥∥∥∥∥
=

dx∑
l=1

∥∥∥∥∥Q̃−1
n,ΦΦn

−1
n∑
i=1

(
Φ̃i − Φi

)
pκ
(
U†li

)′
βdx+d1+l

(
Ũli − Uli

)∥∥∥∥∥
≤

dx∑
l=1

∥∥∥Q̃−1
n,ΦΦ

∥∥∥
sp

∥∥∥∥∥n−1
n∑
i=1

(
Φ̃i − Φi

)
ġdx+d1+l

(
U†li

)(
Ũli − Uli

)∥∥∥∥∥
+

dx∑
l=1

∥∥∥Q̃−1
n,ΦΦ

∥∥∥
sp

∥∥∥∥∥n−1
n∑
i=1

(
Φ̃i − Φi

)[
pκ
(
U†li

)′
βdx+d1+l − ġdx+d1+l

(
U†li

)](
Ũli − Uli

)∥∥∥∥∥
≡

dx∑
l=1

b6nl,1 +

dx∑
l=1

b6nl,2, say.

By the triangle inequality, Lemmas A.3(i) and A.4(i) ,

b6nl,1 ≤ cġ

∥∥∥Q̃−1
n,ΦΦ

∥∥∥
sp

{
n−1

n∑
i=1

∥∥∥Φ̃i − Φi

∥∥∥2
}1/2{

n−1
n∑
i=1

(
Ũli − Uli

)2
}1/2

= OP (1)OP (ς1κν1n)OP (ν1n) = OP
(
ς1κν

2
1n

)
.

Similarly, we can show that b6nl,2 = κ−γOP
(
ς1κν

2
1n

)
by Assumption A2(v) and Lemmas A.3(i) and

A.4(i) . It follows that ‖b6n‖ = OP
(
ς1κν

2
1n

)
. Combining the above results yield the conclusion in (i) .
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(ii) Noting that
∥∥Q−1

ΦΦξn
∥∥ ≤ ∥∥Q−1

ΦΦ

∥∥
sp
‖ξn‖ = OP

(
κ1/2/n1/2

)
and ||Q−1

ΦΦζn|| ≤
∥∥Q−1

ΦΦ

∥∥
sp
‖ζn‖ =

OP (κ−γ) by Lemmas A.5(i)-(ii) , the result in part (ii) follows from part (i), Lemma A.4, and the fact

that ‖Rn,β‖ = OP (ν1n) under Assumption A5(i)

(iii) By (ii) and Assumptions A2(v) , supw∈W
∣∣˜̄g (w)− ḡ (w)

∣∣ = supw∈W |Φ (w)
′
(β̃ − β) + [β′Φ (w)

−ḡ (w)]| ≤ supw∈W ‖Φ (w)‖
∥∥∥β̃ − β∥∥∥ + supw∈W |β′Φ (w)− ḡ (w)| = OP [ς0κ (νn + ν1n)] as the second

term is O (νn) . �

Proof of Theorem 3.2.

Let Y1i ≡ Yi − µ − g2 (X2i) − ... − gdx (Xdxi) −gdx+1 (Z11,i) − ... − gdx+d1 (Z1d1,i) − gdx+d1+1(U1i) −
...− g2dx+d1(Udxi), and Y1 ≡ (Y11, ..., Y1n)′. Using the notation defined at the end of section 2.2, we have

Hβ̂1 (x1) =
[
H−1X1 (x1)

′Kx1
X1 (x1)H−1

]−1
H−1X1 (x1)

′Kx1
X1 (x1) Y1

+
[
H−1X1 (x1)

′Kx1X1 (x1)H−1
]−1

H−1X1 (x1)Kx1(Ỹ1 −Y1)

≡ J1n (x1) + J2n (x1) , say.

By standard results in local linear regressions [e.g., Masry (1996) and Hansen (2008)], n−1H−1X1 (x1)
′

Kx1X1 (x1)H−1 = fX1 (x1)

(
1 0

0
∫
u2K (u) du

)
+oP (1) uniformly in x1, n

1/2h1/2 [J1n (x1)− b1 (x1)]
D→

N (0,Ω1 (x1)) , and supx1∈X1
‖J1n (x1)‖ = OP

(
(nh log n)

−1/2
+ h2

)
, where b1 (x1) and Ω1 (x1) are de-

fined in Theorem 3.2. It suffices to prove the theorem by showing that n−1/2h1/2H−1X1 (x1)
′Kx1

(Ỹ1 −
Y1) = oP (1) uniformly in x1.

3

We make the following decomposition:

(n/h)−1/2H−1X1 (x1)Kx1
(Y1 − Ỹ1) = n−1/2h1/2

n∑
i=1

Kix1
H−1X∗1i (x1)

(
Y1i − Ỹ1i

)
=
√
n (µ̃− µ)n−1h1/2

n∑
i=1

Kix1
H−1X∗1i (x1)

+

dx∑
l=2

n−1/2h1/2
n∑
i=1

Kix1
H−1X∗1i (x1) [g̃l (Xli)− gl (Xli)]

+

d1∑
j=1

n−1/2h1/2
n∑
i=1

Kix1H
−1X∗1i (x1) [g̃dx+j (Z1j,i)− gdx+j (Z1j,i)]

+

dx∑
l=1

n−1/2h1/2
n∑
i=1

Kix1H
−1X∗1i (x1)

[
g̃dx+d1+l(Ũli)− gdx+d1+l(Uli)

]
≡ An (x1) +

dx∑
l=2

Bnl (x1) +

d1∑
j=1

Cnj (x1) +

dx∑
l=1

Dnl (x1) .

We prove the first part of the theorem by showing that (i1) An (x1) = oP (1) , (i2) Bnl (x1) = oP (1)

for l = 2, ..., dx, (i3) Cnj (x1) = oP (1) for j = 1, ..., d1, and (i4) Dnl (x1) = oP (1) for l = 1, ..., dx, all

uniformly in x1.

(i1) holds by noticing that
√
n (µ̃− µ) = OP (1) and n−1

∑n
i=1Kix1

H−1X∗1i (x1) = OP (1) uniformly

in x1. Let c ≡ (c1, c2)
′

be an arbitrary 2× 1 nonrandom vector such that ‖c‖ = 1. Recall that ηnl (x1) ≡
3For part (i) of Theorem 3.2 we only need the pointwise result to hold.
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n−1
∑n
i=1Kixc

′H−1X∗1i (x1) pκ (Xli) . For (i2) , we make the following decomposition

c′Bnl (x1) = n−1/2h1/2
n∑
i=1

Kix1
c′H−1X∗1i (x1) pκ (Xli)

′ Sl
(
β̃ − β

)
+n−1/2h1/2

n∑
i=1

Kix1
c′H−1X∗1i (x1)

[
pκ (Xli)

′ Slβ − gl (Xli)
]

= n1/2h1/2ηnl (x1)
′ SlQ−1

ΦΦξn + n1/2h1/2ηnl (x1)SlQ−1
ΦΦζn

−n−1/2h1/2ηnl (x1)
′ SlQ−1

ΦΦ

n∑
j=1

Φj

dx∑
k=1

δkj

(
Ũkj − Ukj

)
+ n−1/2h1/2ηnl (x1)

′ SlRn,β

+n−1/2h1/2
n∑
i=1

Kix1
c′H−1X∗1i (x1)

[
pκ (Xli)

′ Slβ − gl (Xli)
]

≡ Bnl,1 (x1) +Bnl,2 (x1)−Bnl,3 (x1) +Bnl,4 (x1) +Bnl,5 (x1) ,

where recall δkj ≡ ṗκ (Ukj)
′
βdx+d1+k, ξn ≡ n−1

∑n
j=1 Φjej , and ζn ≡ n−1

∑n
j=1 Φj [ḡ (Xj , Z1j , Uj)− β′Φj ] .

Let η̄l (x1) ≡ E [ηnl (x1)] and rηl (x1) = ηnl (x1) − η̄l (x1) . By the proof of Lemma A.6(i) , ‖rηl (x1)‖ =

OP (κ1/2(nh/ log n)−1/2), ‖η̄l (x1)‖ = OP
(
1 + κ1/2h

)
, and ‖ηnl (x1)‖ = OP (1) uniformly in x1. Note

that

Bnl,1 (x1) = n1/2h1/2η̄l (x1)
′ SlQ−1

ΦΦξn + n1/2h1/2rηl (x1)
′ SlQ−1

ΦΦξn ≡ Bnl,11 (x1) +Bnl,12 (x1) , say.

Noting that

E
[
B2
nl,11 (x1)

]
= hη̄l (x1)

′ SlQ−1
ΦΦE

(
ΦjΦ

′
je

2
j

)
P−1

ΦΦS
′
lη̄l (x1)

≤ hλmax

(
E
(
ΦjΦ

′
je

2
j

))
[λmin (PΦΦ)]

−2
λmax (SlS′l) ‖η̄l (x1)‖2

= hO (1)OP (1)OP (1) = OP (h) ,

we have |Bnl,11 (x1)| = OP
(
h1/2

)
for each x1 ∈ X1. Let η̆l (x1) ≡ Q−1

ΦΦS′lη̄l (x1). Then we can write

η̄l (x1)
′ SlQ−1

ΦΦξn as n−1
∑n
i=1 η̆l (x1)

′
Φiei. Noting that E[η̆l (x1)

′
Φiei] = 0 and E

[
η̆l (x1)

′
Φiei

]2
=

η̆l (x1)
′
E
(
ΦiΦ

′
ie

2
i

)
η̆l (x1) ≤ λmax (QΦΦ,e)

∥∥Q−1
ΦΦ

∥∥2

sp
supx1∈X1

‖η̄l (x1)‖ = O (1) , we can readily divide Xl
into intervals of appropriate length and apply Bernstein inequality to show that η̄l (x1)

′ SlQ−1
ΦΦξn =

OP
(
(n/ log n)−1/2

)
. Consequently,

sup
x1∈X1

|Bnl,11 (x1)| = n1/2h1/2OP

(
(n/ log n)−1/2

)
= OP

(
(h/ log n)−1/2

)
= oP (1) .

For Bnl,12 (x1) , we have by Lemma A.5(i)

sup
x1∈X1

‖Bnl,12 (x1)‖ ≤ n1/2h1/2 sup
x1∈X1

‖rηl (x1)‖ ‖Sl‖sp
∥∥Q−1

ΦΦ

∥∥
sp
‖ξn‖

= n1/2h1/2OP (κ1/2(nh/ log n)−1/2)O (1)OP (1)OP (κ1/2n−1/2)

= OP (κ(n/ log n)−1/2) = oP (1) .

It follows that supx1∈X1
|Bnl,1 (x1)| = oP (1) . By Lemma A.5(ii) and Assumptions A2(ii) and (v) and

A5,

sup
x1∈X1

|Bnl,2 (x1)| = sup
x1∈X1

n1/2h1/2
∣∣ηnl (x1)

′ SlQ−1
ΦΦζn

∣∣ ≤ n1/2h1/2 sup
x1∈X1

‖ηnl (x1)‖
∥∥Q−1

ΦΦ

∥∥
sp
‖Sl‖sp ‖ζn‖

= n1/2h1/2OP (1)O (1)O(1)OP (κ−γ) = oP (1) ,

sup
x1∈X1

|Bnl,4 (x1)| = sup
x1∈X1

n1/2h1/2
∣∣ηnl (x1)

′ SlRn,β

∣∣ ≤ n1/2h1/2 sup
x1∈X1

‖ηnl (x1)‖ ‖Sl‖sp ‖Rn,β‖

= n1/2h1/2OP (1)O (1) oP

(
n−1/2h−1/2

)
= oP (1) ,
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and

sup
x1∈X1

|Bnl,5 (x1)| ≤ O
(
κ−γ

)
n1/2h1/2

{
sup
x1∈X1

n−1
n∑
i=1

Kix1

∣∣c′H−1X∗1i (x1)
∣∣} = OP

(
n1/2h1/2κ−γ

)
= oP (1) .

ForBnl,3 (x1) , we haveBnl,3 (x1) =
∑dx
k=1Bnl,3k (x1) whereBnl,3k (x1) = n−1/2h1/2ηnl (x1)

′ SlQ−1
ΦΦ

∑n
j=1

Φjδkj(Ũkj − Ukj). Using (A.2), we make the following decomposition

Bnl,3k (x1) = −
5∑
s=1

n−1/2h1/2ηnl (x1)
′ SlQ−1

ΦΦ

n∑
j=1

Φjδkjusk,j ≡ −
5∑
s=1

Bnl,3ks (x1) , say.

First, noting that δkj is uniformly bounded, we can show
∥∥∥n−1

∑n
j=1 Φjδkj

∥∥∥
sp

= OP (1) using arguments

similar to those used in the proof of Lemma A.5(iii) . It follows that

sup
x1∈X1

|Bnl,3k1 (x1)| ≤ h1/2 sup
x1∈X1

‖ηnl (x1)‖ ‖Sl‖sp
∥∥Q−1

ΦΦ

∥∥
sp

∥∥∥∥∥∥n−1
n∑
j=1

Φjδkj

∥∥∥∥∥∥
sp

n1/2 |µk − µ̃k|

= h1/2OP (1)O (1)O (1)OP (1)O (1)OP (1) = oP (1) .

Now we decompose Bnl,3k2 (x1) as follows:

Bnl,3k2 (x1) =

d1∑
m=1

n−1/2h1/2η̄l (x1)
′ SlQ−1

ΦΦ

n∑
j=1

δkjΦjp
κ1 (Z1m,j)

′ S1ma1k

+

d1∑
m=1

n−1/2h1/2rηl (x1)
′ SlQ−1

ΦΦ

n∑
j=1

δkjΦjp
κ1 (Z1m,j)

′ S1ma1k

≡ B
(1)
nl,3k2 (x1) +B

(2)
nl,3k2 (x1) , say.

Let ϕnlkm (x1) = η̄l (x1)
′ SlQ−1

ΦΦn
−1
∑n
j=1 δkjΦjp

κ1 (Z1m,j) and ϕ̄lkm (x1) = E [ϕnlkm (x1)] . Arguments

like those used to study ηnl (x1) in the proof of Lemma A.6(i) show that ‖ϕ̄lkm (x1)‖ = O (‖η̄l (x1)‖) =

O
(
1 + κ1/2h

)
= O (1) under Assumption A5(ii) and ‖ϕnlkm (x1)− E [ϕnlkm (x1)]‖ = ‖η̄l (x1)‖OP ((κ1/2

log n/n)−1/2) = OP ((κ1/2 log n/n)−1/2) uniformly in x1. We further decompose B
(1)
nl,3k2 (x1) as follows

B
(1)
nl,3k2 (x1) =

d1∑
m=1

n−1/2h1/2η̄l (x1)
′ SlQ−1

ΦΦ

n∑
j=1

δkjΦjp
κ1 (Z1m,j)

′ S1mQ
−1
n,PP ξnk

=

d1∑
m=1

n1/2h1/2ϕ̄lkm (x1)
′ S1mQ

−1
PP ξnk +

d1∑
m=1

n1/2h1/2ϕ̄lkm (x1)
′ S1m(Q−1

n,PP −Q
−1
PP )ξnk

+

d1∑
m=1

n1/2h1/2rnlkm (x1)
′ S1mQ

−1
n,PP ξnk

≡ B
(1,1)
nl,3k2 (x1) +B

(1,2)
nl,3k2 (x1) +B

(1,3)
nl,3k2 (x1) .

Following the analysis of Bnl,11 (x1) , we can show that supx1∈X1

∣∣∣B(1,1)
nl,3k2 (x1)

∣∣∣ = OP
(
(h/ log n)1/2

)
. In

addition,

sup
x1∈X1

∣∣∣B(1,2)
nl,3k2 (x1)

∣∣∣ ≤ n1/2h1/2 sup
x1∈X1

d1∑
m=1

‖ϕ̄lkm (x1)‖ ‖S1m‖sp
∥∥∥Q−1

n,PP −Q
−1
PP

∥∥∥
sp
‖ξnk‖

= n1/2h1/2OP (1)O (1)OP

(
κ1n

−1/2
)
OP (κ

1/2
1 n−1/2) = oP (1) ,
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and

sup
x1∈X1

∣∣∣B(1,3)
nl,3k2 (x1)

∣∣∣ ≤ n1/2h1/2 sup
x1∈X1

d1∑
m=1

‖rnlkm (x1)‖ ‖S1m‖sp
∥∥∥Q−1

n,PP

∥∥∥
sp
‖ξnk‖sp

= n1/2h1/2OP ((κ1/2 log n/n)−1/2)O (1)OP (1)OP

(
κ

1/2
1 n−1/2

)
= oP (1) .

It follows that supx1∈X1

∣∣∣B(1)
nl,3k2 (x1)

∣∣∣ = oP (1) . For B
(2)
nl,3k2 (x1) , we have

sup
x1∈X1

∣∣∣B(2)
nl,3k2 (x1)

∣∣∣ ≤ n1/2h1/2 sup
x1∈X1

‖rηl (x1)‖ ‖Sl‖sp
∥∥Q−1

ΦΦ

∥∥
sp

d1∑
m=1

‖tnkm‖sp ‖S1m‖sp ‖a1k‖

= n1/2h1/2OP

(
(κ1/2 log n/n)−1/2

)
O (1)OP (1)O (1)OP

(
κ

1/2
1 n−1/2

)
= oP (1) ,

where tnkm ≡ n−1
∑n
j=1 δkjΦjp

κ1 (Z1m,j)
′
, we use the fact that ‖tnkm‖sp = OP (1) by following similar

arguments to those used in the proof of Lemma A.5(iii) and noticing that δkj is uniformly bounded.

Consequently we have shown that supx1∈X1
|Bnl,3k2 (x1) | = oP (1) . Analogously,

sup
x1∈X1

|Bnl,3k4 (x1)| ≤ n1/2h1/2 sup
x1∈X1

‖ηnl (x1)‖sp ‖Sl‖sp
∥∥Q−1

ΦΦ

∥∥
sp

d1∑
m=1

‖tnkm‖sp ‖S1m‖sp ‖a2k‖

= n1/2h1/2OP (1)O (1)OP (1)OP (1)O (1)OP
(
κ−γ1

)
= oP (1) .

By the same token, we can show that Bnl,3k3 (x1) = oP (1) and Bnl,3k (x1) = oP (1) uniformly in x1.

It follows that supx1∈X1
‖Bnl,3k (x1)‖ = oP (1) for k = 1, ..., dx. Analogously, we can show that (i3) :

supx1∈X1
‖Cnj (x1)‖ = oP (1) for j = 1, ..., d1.

Now we show (i4) . We make the following decomposition

c′Dnl (x1) = n−1/2h1/2
n∑
i=1

Kix1c
′H−1X∗1i (x1)

[
g̃dx+d1+l(Ũli)− gdx+d1+l(Ũli)

]
+n−1/2h1/2

n∑
i=1

Kix1c
′H−1X∗1i (x1)

[
gdx+d1+l(Ũli)− gdx+d1+k(Uli)

]
≡ Dnl,1 (x1) +Dnl,2 (x1) , say.

In view of the fact that g̃dx+d1+l(Ũli)−gdx+d1+l(Ũli) = pκ(Ũli)
′Sdx+d1+k(β̃ − β)+

[
pκ(Ũli)

′βl − gdx+d1+l(Ũli)
]
,

we continue to decompose Dnl,1 (x1) as follows:

Dnl,1 (x1) = n−1/2h1/2
n∑
i=1

Kix1c
′H−1X∗1i (x1) pκ (Uli)

′ Sdx+d1+l

(
β̃ − β

)
+n−1/2h1/2

n∑
i=1

Kix1c
′H−1X∗1i (x1)

[
pκ(Ũli)− pκ (Uli)

]′
Sdx+d1+l

(
β̃ − β

)
−n−1/2h1/2

n∑
i=1

Kix1c
′H−1X∗1i (x1)

[
gdx+d1+l(Ũli)− pκ(Ũli)

′βl

]
≡ Dnl,11 (x1) +Dnl,12 (x1) +Dnl,13 (x1) , say.
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Analogous to the analysis of Bnl,1 (x1) , we can readily show that supx1∈X1
|Dnl,11 (x1)| = oP (1) . For

Dnl,12 (x1) , by Taylor expansion,

Dnl,12 (x1) = n−1/2h1/2
n∑
i=1

Kix1c
′H−1X∗1i (x1) (Ũli − Uli)ṗκ (Uli)

′
(
β̃l−βl

)
+

1

2
n−1/2h1/2

n∑
i=1

Kix1
c′H−1X∗1i (x1) (Ũli − Uli)2p̈κ

(
U‡li

)′ (
β̃l−βl

)
≡ Dnl,121 (x1) +

1

2
Dnl,122 (x1) , say,

where U‡li lies between Ũli and Uli. By Theorem 3.1 and Lemmas A.6(i)-(ii), supx1∈X1
|Dnl,121 (x1)| =

h1/2ς1κ OP (1 + n1/2κ−γ1 )OP (νn + ν1n) = oP (1) , and

sup
x1∈X1

|Dnl,122 (x1)| ≤ ς2κ sup
x1∈X1

{
n−1/2h1/2

n∑
i=1

Kix1
c′H−1X∗1i (x1) (Ũli − Uli)2

}∥∥∥β̃l−βl∥∥∥
= ς2κn

1/2h1/2OP (κ1n
−1 + κ−2γ

1 )OP (νn + ν1n) = oP (1) .

In addition, supx1∈X1
‖Dnl,13 (x1)‖ ≤ n1/2h1/2O (κ−γ) supx1∈X1

n−1
∑n
i=1Kix1

∥∥H−1X∗1i (x1)
∥∥ = OP (n1/2

h1/2κ−γ) = oP (1) . It follows that supx1∈X1
|Dnl,1 (x1)| = oP (1) .

By Taylor expansion,

Dnl,2 (x1) = n−1/2h1/2
n∑
i=1

Kix1
c′H−1X∗1i (x1) ġ (Uli)

(
Ũli − Uli

)
+n−1/2h1/2

n∑
i=1

Kix1
c′H−1X∗1i (x1) g̈dx+d1+l

(
U‡li

)(
Ũli − Uli

)2

≡ Dnl,21 (x1) +Dnl,22 (x1) .

Arguments like those used to study Bnl,3 (x1) show that supx1∈X1
|Dnl,21 (x1)| = oP (1) . By Lemma

A.6(ii), supx1∈X1
|Dnl,22 (x2)| ≤ cg̈ supx1∈X1

{n−1/2h1/2
∑n
i=1Kix1

∣∣c′H−1X∗1i (x1)
∣∣ (Ũli−Uki)2}= n1/2h1/2

OP (ν2
1n) = oP (1) , where cg̈ = supul∈Ul g̈dx+d1+l (ul) = O (1) . �
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