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• We propose to adopt the group fused lasso to estimate regression models with endogeneity and an unknown number of breaks.
• We propose an information criterion to determine the number of breaks correctly with probability approaching one.
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• Simulations are done in comparison with some existing tests.
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a b s t r a c t

We propose to apply the group fused Lasso to estimate time series models with endogenous regressors
and an unknown number of breaks. It can correctly determine the number of breaks and estimate the
break dates asymptotically. Simulations and applications are given.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following time series regression with an unknown
number of breaks in parameters,

yt = x′

tβt + ut , t = 1, . . . , T , (1.1)
where xt is a p × 1 vector of regressors with at least one element
being endogenous. We assume that the coefficients {βt} are time-
varying but subject to the restriction that the sequential changes
in βt are sparse:
βt = αj for t = Tj−1, . . . , Tj − 1 and j = 1, . . . ,m + 1,

∗ Correspondence to: School of Economics, Singapore Management University,
90 Stamford Road, 178903, Singapore. Tel.: +65 6828 0386.

E-mail address: ljsu@smu.edu.sg (L. Su).

where m ≪ T and we adopt the convention that T0 = 1 and
Tm+1 = T + 1. Here, m denotes the number of break dates that is
typically unknown and


αj
m+1
j=1 denotes the set of regime-specific

parameters. Let zt be a q × 1 vector of instrumental variables
(IVs) for xt such that q ≥ p. Andrews (1993) proposes three tests
under the GMM framework for a one-time break and Andrews
and Ploberger (1994) consider optimal tests of one-time structural
change in nonlinear models with stationary observations. In
principle, one can extend Andrews’ tests to deal with multiple
breaks by repeatedly applying them to sub-samples. However, as
substantial trimming (e.g., 15%) is a common practice to enhance
power, the approach can easily miss true break points not only at
the boundaries but also in themiddle of the sample. Recently, tests
formultiple breaks based on 2sls are proposed by Hall et al. (2012),
Boldea et al. (2012), and Perron and Yamamoto (2013, 2014). All

http://dx.doi.org/10.1016/j.econlet.2014.10.021
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these papers assume that the number of breaks is known and their
procedures also require trimming.

To the best of our knowledge, no method is available to directly
estimate an unknown number of breaks with the presence of
endogeneity in the regression. In this paper we apply the group
fused Lasso (GFL) developed in Qian and Su (2014, QS hereafter)
to the above model.1 QS’s GFL procedure is penalized-least-
squares based and developed for linear regression models without
endogeneity. Interestingly, we find that it also works for models
with endogenous regressors under suitable conditions despite the
fact that it does not utilize any IVs. Perron and Yamamoto (2013)
similarly find that least-squares-based tests work for regressions
with endogeneity and that sometimes even outperform tests
based on 2sls. With a BIC-type model selection procedure, GFL
can correctly determine the unknown number of breaks with
probability approaching one (w.p.a.1) and estimate the break dates
accurately as in Bai and Perron (1998). After obtaining the break
dates, one can apply the usual GMM method to estimate the
regime-specific parameters for each estimated regime and conduct
statistical inference as usual. Simulations indicate such a procedure
is comparable in terms of finite sample performance with the
testing procedures of Andrews (1993) and Andrews and Ploberger
(1994) when there is no break or a single break in the regression
but our procedure can also correctly identify multiple breaks with
highprobability.Weapply ourGFLprocedure to study the forward-
lookingmonetary policy rule of theUS from1960Q1 to 2012Q4 and
identify three regimes for this period.

The rest of the paper is organized as follows. We present the
GFL procedure in Section 2 and report the asymptotic properties of
the procedure in Section 3. We report the Monte Carlo evidence
in Section 4 and apply our method to the estimation of the US
monetary policy rule from 1960 to 2012 in Section 5.

2. Estimation

When xt is endogenous but can be instrumented with zt , one
may be tempted to solve a penalized GMM (PGMM) problem for
{βt}:

min
{βt }


1
T

T
t=1

zt(yt − β ′

txt)

′

WT


1
T

T
t=1

zt(yt − β ′

txt)



+ λ

T
t=2

∥βt − βt−1∥, (2.1)

where WT is a q × q symmetric weighting matrix that is positive
definite asymptotically, λ = λT → 0+ is a tuning parameter, and
∥ · ∥ denotes the Frobenius norm. However, this formulation only
works for the over-identification case. In the exact identification
case, the resulting PGMM estimators of {βt} are given by

β̂
gmm
t =


T

s=1

zsx′

s

−1 T
s=1

zsys for t = 1, . . . , T ,

which ensures the objective function in (2.1) to always take the
value zero, regardless of the choices of WT and λ. That is, the
PGMM estimators of {βt} remain as a constant no matter whether
there is a break in the data or not. So we cannot apply PGMM to
estimate the number of breaks in the exact identification case. In
the over-identification case, one might attempt to follow QS and
derive the asymptotic properties of the PGMM estimators. But we

1 In related works, Kolar et al. (2009) adopts the fused Lasso to study piecewise
constant varying-coefficient models and Bleakley and Vert (2011) apply the GFL to
detect change points in a multidimensional signal.

find that the proof strategy in QS for penalized least squares (PLS)
regressions cannot be extended to the PGMM framework because
of the difference in the two types of objective functions and it
remains unknown how to derive the asymptotic properties of the
PGMM estimators in the over-identification case.

Given the above disadvantage and difficulty of applying the
PGMM method to regression models with an unknown number of
breaks, we follow QS and consider the following PLS estimation of
{βt}:

min
{βt }

1
T

T
t=1

(yt − β ′

txt)
2
+ λ

T
t=2

∥βt − βt−1∥, (2.2)

where λ is defined as above. Let {β̂t} denote the solution to the
above PLSproblem.Despite the fact that β̂t ’s are generally inconsis-
tent forβt ’s, wewill argue that such estimates can help identify the
unknownnumber of breaks and estimate the unknownbreak dates
under some suitable conditions. After obtaining such estimates, we
can apply the usual post-Lasso GMMestimation for each estimated
regime to obtain consistent estimates of the regime-specific struc-
tural parameters


αj

.

Given the solution {β̂t} to (2.2), we obtain estimates of the break
dates, T̂1, . . . , T̂m̂λ

, such that

β̂t = β̂s for all t, s ∈


T̂j−1, T̂j − 1


and

β̂T̂j
≠ β̂T̂j−1, j = 1, . . . , m̂λ + 1,

where T̂0 = 1 and T̂m̂λ+1 = T + 1. That is, m̂λ and T̂m̂λ
≡ (T̂1,

. . . , T̂m̂λ
) denote the estimated number of breaks and estimated

set of break points, respectively. Let α̂j = β̂T̂j−1 for j = 1, . . . ,

m̂λ +1. Note that we have suppressed the dependence of β̂t and α̂j
on λ.

3. Asymptotic properties

We first introduce a set of assumptions and then study the
asymptotic properties of the PLS estimators {T̂j} and {α̂j}.

3.1. Assumptions

We denote the true value of a parameter with a superscript 0. In
particular,m0, β0

t , α0
j , and T 0

j denote the true values ofm, βt , αj,
and Tj, respectively. Let I0j = T 0

j −T 0
j−1 for j = 1, . . . ,m0

+1. Define

Imin = min
1≤j≤m0+1

I0j  , Jmin = min
1≤j≤m0

α0
j+1 − α0

j

 , and

Jmax = max
1≤j≤m0

α0
j+1 − α0

j

 .

For simplicity, we assume that m0 is a fixed constant, Imin is
proportional to T , Jmax = O (1), and J−1

min = O (1). These conditions
can be relaxed as in QS at the cost of more complicated proofs and
less transparent assumptions than specified below.

Let β∗
t =


E

xtx′

t

−1 E (xtyt) and u∗
t = yt − β∗′

t xt . To study
the consistency of the GFL procedure, we follow QS and make the
following assumptions.

Assumption A1. (i) {(xt , ut) , t = 1, 2, . . .} is a strong mixing
process with mixing coefficients α (·) satisfying α (τ) ≤ cαρτ

for some cα > 0 and ρ ∈ (0, 1).
(ii) Either one of the following two conditions is satisfied: (a)

supt≥1 E ∥xt∥4q < ∞ and supt≥1 E
u∗

t

4q < ∞ for some
q > 1; (b) there exist some constants cxx and cxu such that
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supt≥1 E[exp(cxx
xt2γ )] ≤ Cxx < ∞ and supt≥1 E


exp


cxuxtu∗

t

γ 
≤ Cxu < ∞ for some γ ∈ (0, ∞].

(iii) bt ≡

E

xtx′

t

−1 E (xtut) = b0 for some finite vector b0 for
t = 1, . . . , T .

Assumption A2. (i) There exist two positive constants cxx and c̄xx
and a positive sequence {δT } declining to zero as T → ∞ such
that

cxx ≤ inf
1≤s<r≤T+1,r−s≥TδT

µmin


1

r − s

r−1
t=s

E

xtx′

t



≤ sup
1≤s<r≤T+1,r−s≥TδT

µmax


1

r − s

r−1
t=s

E

xtx′

t


≤ c̄xx.

(ii) TδT satisfies one of the following two conditions: (a) TδT ≥

cvT 1/q for some cv > 0 if A1(ii.a) is satisfied; (b) TδT ≥

cv (log T )(2+γ )/γ for some cv > 0 if A1(ii.b) is satisfied.

Assumption A3. As T → ∞, δT → 0, TδT/(log T )cδ → ∞, and
λ/δT → 0.

Assumptions A1–A3 parallel A1, A2 and A3∗∗ in QS. The
only difference is that QS require that E (xtut) = 0 in their
AssumptionA1(i) andhence rule out endogeneity. Here,we require
that


E

xtx′

t

−1 E (xtut) remains a constant over time in our
A1(iii), which includes QS’s exogenous case as a special case.
Apparently, β∗

t = β0
t + bt and bt represents the bias term by

using the OLS method to estimate the structural parameter β0
t .

The time-invariance of bt can be satisfied under various cases, e.g.,
when {xt , ut} is a covariance stationary process (in contrast with
the strict stationarity assumption inAndrews and Ploberger, 1994).
It can be relaxed along at least two directions. One is to allow for
locally covariance-stationary process {xt , ut} by requiring the local
deviation of bt from themean value to bewell controlled. The other
is to restrict the variation of bt directly such that it does not change
the piecewise constancy of


β0
t


, i.e., β0

t = β0
t−1 if and only if

β∗
t = β∗

t−1 for t = 2, . . . , T . For simplicity and clarification, we
maintain A1(iii) below. We refer readers to QS for the discussion
on the other assumptions.

3.2. The consistency of T̂j

With A1–A3, we can establish the consistency of {T̂j} and

α̂j


conditional on the event m̂λ = m0.

Theorem 3.1. Suppose that Assumptions A1–A3 hold. If m̂λ = m0,
then

(i) P

max1≤j≤m0

T̂j − T 0
j

 ≤ TδT


→ 1 as T → ∞,

(ii) α̂j − (α0
j +b0) = OP


T−1/2

+ λ + δT

for each j = 1, . . . ,m0

+

1.

Proof. The proof follows essentially from that of Theorem 3.1 in
QS. Let θ̂1 = β̂1 and θ̂t = β̂t − β̂t−1 for t = 2, . . . , T . The
Karush–Kuhn–Tucker optimality conditions for the PLS problem
imply that

(a) 1
T

T
r=T̂j

xr(yr − x′
r β̂r) =

λ
2 θ̂T̂j/

θ̂T̂j for j = 1, . . . , m̂;

(b) 1
T

T
r=t xr(yr − x′

r β̂r)

 ≤
λ
2 for t = 1, . . . , T .

In addition, Lemma A.3 in QS continues to hold under our
Assumptions A1 and A2 and Lemma A.4 in QS holds with ut
replaced by u∗

t . By using these results repeatedly and following the
proof of Theorem 3.1 in QS, we can readily prove (i)–(ii). �

Let κ0
j = T 0

j /T and κ̂j = T̂j/T for j = 1, . . . ,m0. Theorem 3.1(i)
suggests that max1≤j≤m0

κ̂j − κ0
j

 = Op(δT ), i.e., the break ratios
κ0
j , 1 ≤ j ≤ m0, can be estimated at rate δT provided that m̂λ =

m0. Theorem 3.1(ii) indicates that α̂j is a consistent estimator of
α0
j +b0 and its convergence rate depends on the choice of λ and the

convergence rate of κ̂j. Below we propose a BIC-type information
criterion (IC) that helps to determine the tuning parameter to
ensure m̂λ to be equal tom0 w.p.a.1.

Given the break date estimators, one can apply the GMM
method to each estimated regime to obtain the post-Lasso GMM
estimators of regime-specific parameters. To ensure δT = o(T−1/2)
so that the estimation of break dates has no effect on the first
order asymptotic distribution of these regime-specific estimators,
we need q > 2 in Assumption A1(ii.a) so that both xt and u∗

t have
finite eight plus moments. In this case, we can set δT ∝ T (1−q)/q

and λ = δT/ log T so that all conditions in Assumption A3 can
also be satisfied. If Assumption A1(ii.b) is satisfied, then by setting
δT ∝ (log T )(2+γ )/γ /T and λ = log T/T , we can ensure that
Assumptions A2(ii) and A3 are simultaneously satisfied.

3.3. Selection of the tuning parameter λ

Given T̂m̂λ
, we can obtain the post-Lasso OLS estimators of the

{αj} by solving

min
{αj}

m̂λ+1
j=1

T̂j−1
t=T̂j−1

(yt − α′

jxt)
2.

We denote the estimators as α̂
p
j (λ) , j = 1, . . . , m̂λ + 1, which

are generally inconsistent with the structural parameters

αj

. We

propose to minimize the following BIC-type information criterion
to determine λ

IC(λ) = log(σ̂ 2
λ ) + ρTp(m̂λ + 1), (3.1)

where σ̂ 2
λ =

1
T

m̂λ+1
j=1

T̂j−1

t=T̂j−1
(yt − α̂

p
j (λ)′xt)2. Let λ̂ =

argminλ∈Λ IC (λ) where Λ is a properly chosen set of tuning
parameters. In practice, onemay conduct grid search in an interval
Λ = [λmin, λmax

], where λmin and λmax are selected by trials so that
λmax would lead to zero break and λmin would lead tomany breaks.

Assumption A4. ρT → 0 and δ−1
T ρT → ∞ as T → ∞.

We can prove the following result.

Theorem 3.2. Suppose that Assumptions A1–A2 and the first two
parts of Assumption A3 hold. Suppose λ in Λ satisfies the last con-
dition on λ in Assumption A3. Then P


m̂λ̂ = m0


→ 1 as T → ∞.

Proof. It suffices to prove the theoremby showing (i) P

m̂λ̂ < m0


→ 0 as T → ∞ and (ii) P


m̂λ̂ > m0


→ 0 as T → ∞. The proofs

of (i) and (ii) are analogous to those of Theorems 3.3 and 3.4 in QS
and thus omitted. �

Theorem 3.2 ensures the GFL to yield the correct number of
breaks w.p.a.1. Note that with the data-driven choice of the tuning
parameter, λ̂, the results in Theorem 3.1 continue to hold. Given
the accurate estimates of the break dates, we then apply the post-
Lasso GMMprocedure to estimate the regime-specific parameters.
As remarked above, as long as the condition δT = o(T−1/2) is
ensured, these post-Lasso GMM estimators of the regime-specific
parameters are asymptotically equivalent to the corresponding
GMM estimators obtained in the case of known true break dates.
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Table 1
Simulation results for the no-break case: % of falsely detecting breaks whenm = 0.

b σ T GFL supLM avgLM expLM
a = 0.8 0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2

0

0.5
100 8.6 1 0 2 0.6 0.6 3.2 1 2.2 2.6 1.4 1.8
200 1.8 0 0 2.2 3.2 3.2 2.6 5.6 4.8 2.8 5.4 4.6
500 0.4 0 0 4.6 4.8 4.6 5.8 5.2 4.6 5.8 6.2 4.2

1
100 8 0.6 0.6 2.2 0.8 1.4 3.4 3.4 4.6 2 2.2 3
200 2.6 0 0 2.6 2.8 2.8 3.2 5.4 4.2 2.4 4 4.2
500 0 0 0 2.8 3.8 4.2 4.2 4.8 6.6 4.4 4.4 5.2

0.5

0.5
100 16.2 3.4 1.6 1.8 1.8 2.6 4 5.4 4.8 2.6 4.2 4
200 5.8 0.4 0 2.8 2.8 1.6 3.6 4.6 4.6 4.4 5.6 4.4
500 0.2 0 0 3.6 5.2 3.2 6.2 5.2 4.6 5.4 6.4 4

1
100 16.6 2.8 1.8 1 0.2 1.4 5 2.6 4.4 3.2 1.2 3.6
200 6 0.8 0.8 3 2.4 2.2 4.4 5.4 6.2 2.8 4.6 5.6
500 0.2 0.2 0 2.6 5.4 4.2 4.2 5.8 6.8 3.2 5.8 6.8

0.8

0.5
100 16.8 5 2 1.8 0.8 0.4 5.8 3.6 4.4 4 1.8 3
200 6.2 0.6 0 3 3.4 3.2 5.6 5 5.8 4.4 5.4 6
500 0.4 0 0 4.6 3.6 4 5.4 4.2 4.2 5.8 3.6 4.6

1
100 16.8 6 2 1.6 2.2 2 3.6 7.4 5 2.2 5.2 3.8
200 4.6 1.2 1 1.8 2.8 4.2 5 5.2 7.2 4.2 4.2 6.2
500 0.4 0 0 3.8 5.8 3.6 4.6 7 5.4 4.4 7 5.2

4. Simulations

In this section we conduct a small set of Monte Carlo simula-
tions. We generate the data {yt , xt , t = 1, . . . , T } as follows

yt = βt + βtxt + σut ,

xt =
1

(1 + ρ2)1/2
(ρut + ξt),

ut = vt + bvt−1, with vt ∼ i.i.d. N(0, 1/(1 + b2)),
ξt = aξt−1 + ϵt , with ϵt ∼ i.i.d. N(0, 1 − a2),

zt = (ξt + ηt)/
√
2, with ηt ∼ i.i.d. N(0, 1),

where yt is the dependent variable, (1, xt)′ is the regressor vector,
and σut is the error term, {vt} , {ϵt} and {ηt} are mutually inde-
pendent. Apparently, ut is a moving average of order one (MA (1))
process with the MA coefficient b, and the constant ρ controls the
correlation between xt and ut . zt is a valid IV for xt , which is only
used in the post Lasso GMM estimation and Andrews’ GMM-based
tests, to which we compare our GFL procedure.

For the no-break case, we let βt = 1. For a one-time break, we
let βt = 1{t ≤ T/2}, where 1{·} is an indicator function. For the
case of two breaks, we letβt = 1−1{⌊T/3⌋ < t ≤ ⌊2T/3⌋}, where
⌊·⌋ denotes the integer part of ·. For the GMM-based tests, we
consider supLM in Andrews (1993), avgLM and expLM in Andrews
and Ploberger (1994), all of which test for an unknown one-time
break in the alternative hypothesis. We use a trimming size of 15%
in the calculation of each statistic and the 5% asymptotic critical
value for each test. If the no-break null hypothesis is rejected,
the break date that maximizes the LM statistic is taken to be
the estimated break date. We set ρ = 1/2, corresponding to
corr(xt , ut) ≈ 0.45. And we let T = 100, 200, or 500, and σ =

0.5 or 1, corresponding to a signal-to-noise ratio (in the no-break
case) of 4 or 1, respectively. We follow QS and choose the tuning
parameter λ to minimize the IC in (3.1) with ρT = T−1/2. The
number of repetitions is 500.

Table 1 shows the percentages of falsely detecting breaks when
no break exists (m0

= 0) for GFL and the empirical size of the
supLM, avgLM, and expLM tests. GFL enjoys small probabilities
of false detection of breaks when the persistence level of xt is
low or moderate (a = 0.2 or 0.5), even when the sample size is
relatively small. When xt is highly persistent (a = 0.8), however,
we see relatively large probability of false detection when the

sample size is small. As the sample size increases, the probability
of false detection declines rapidly to nearly zero. When the error is
serially correlated (b = 0.5 or 0.8), we witness a larger probability
of false detection, especially when at the same time xt is highly
persistent. In large samples (say, T = 500), the performance of
GFL does not appear sensitive to serial correlation in the error.
In comparison, the GMM-based tests generally have good size
performances, especially in large samples.

Table 2 tabulates the probabilities of correctly identifying one
break when it indeed exists, and Table 3 reports the mean abso-
lute error of the estimated break ratio multiplied by 100, condi-
tional on detecting one break. Note that we do not report results
on parameter estimation, since once break dates are determined,
one can apply standard GMM to estimate the regime-specific pa-
rameters. The behavior of parameter estimators depends crucially
on the accuracy of break-date estimation as well as the quality of
IVs. For a better comparison between our approach and the GMM-
based tests, the empirical powers for the latter are size-corrected.
We may conclude from the results: (i) GFL generally enjoys a high
probability of correctly detecting the break. Its performance is only
slightly affected by the increased persistence in xt or the increased
serial correlation in the error. (ii)When the sample size is relatively
small, GFL substantially outperformsGMM-based tests. The empir-
ical powers of the latter are sensitive to the persistence level of xt in
small samples. avgLM and expLM generally have better power per-
formance than supLM. (iii) Once a break is detected, GFL also yields
more accurate estimation of break-dates, as shown in Table 3.

A distinguishing characteristic of ourmethod is that we directly
allow more than one breaks. This is born out in Table 4, which
shows results for the case where two breaks exist in the DGP. The
left half of the table gives the percentages of correctly detecting
two breaks, and the right half shows the average Hausdorff
distance2between the estimated and the true sets of break dates in
the percentages of T (i.e., HD (T̂ , T )/T ·100). Note that the average
Hausdorff errors are comparable to the mean absolute error in
Table 3, since the Hausdorff distance between two singleton sets
reduces to the absolute error. Here we set b = 0.5 and experiment
on different values of ρ, which controls the correlation between
xt and ut , in addition to variation in the noise level (σ ) and

2 The Hausdorff distance between any two sets A and B is defined as HD (A, B) =

max{D (A, B) , D (B, A)}, where D (A, B) ≡ supb∈B infa∈A |a − b|.
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Table 2
Simulation results for the one-break case: % of correctly detecting one break.

b σ T GFL supLM avgLM expLM
a = 0.8 0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2

0

0.5
100 96.4 99.4 100 79.8 98.2 99.8 91.6 99 99.6 91.2 99.2 99.8
200 98.2 100 100 100 100 100 99.8 100 100 100 100 100
500 99.2 99.8 100 100 100 100 100 100 100 100 100 100

1
100 89 94.6 95.8 64 79.6 87.8 71.8 87.2 89.4 74.8 89.6 91.8
200 94.8 97 99 99.2 99.4 99.8 99.4 98.8 100 99.4 99.4 100
500 96.2 97.6 99.4 100 100 100 100 100 100 100 100 100

0.5

0.5
100 95.6 98.6 99.4 76 87.4 97.4 83.4 90.8 98.4 82 96 99.4
200 97.8 99.8 100 99.4 100 100 99.4 100 100 99.6 100 100
500 99 100 99.6 100 100 100 100 100 100 100 100 100

1
100 84 92.8 93.6 45.6 65 71 55.8 75.2 81.6 57 76.4 80.8
200 93 96.2 97.6 91.2 98 98.2 94.6 99 98.4 95.2 99 98.8
500 95.4 97.2 97.6 100 100 100 100 100 100 100 100 100

0.8

0.5
100 94.2 98.4 99.8 69.2 90.6 98.6 79 95.6 97.4 82.6 95.8 99
200 97.8 99.6 100 99.4 100 100 99.4 100 100 100 100 100
500 99.4 99.8 100 100 100 100 100 100 100 100 100 100

1
100 86.8 91.4 95.2 45.6 50.4 67 62.6 57 76.8 60.6 57.8 77.4
200 89.8 96.4 96.6 91.4 95.8 97.4 92 97.2 97.2 94 97.4 98
500 95.8 97.8 97.4 100 100 100 100 100 100 100 100 100

Table 3
Simulation results for the one-break case: mean absolute errors of estimated break ratios ×100, conditional on m̂λ = 1.

b σ T GFL supW
a = 0.8 0.5 0.2 0.8 0.5 0.2

0

0.5
100 1.1286 0.6439 0.592 5.5639 3.6069 2.1483
200 0.5316 0.296 0.295 2.634 1.195 0.825
500 0.1802 0.1134 0.1124 1.0536 0.4108 0.3096

1
100 3.2292 1.9514 1.4489 8.5188 5.9799 5.0023
200 1.9599 0.9979 0.798 4.373 2.6207 1.983
500 0.6491 0.3947 0.3247 1.44 0.8144 0.7096

0.5

0.5
100 1.2427 0.7627 0.5674 5.7132 3.6682 3.1663
200 0.5706 0.3858 0.305 2.993 1.441 0.988
500 0.2311 0.1416 0.1133 1.03 0.564 0.3624

1
100 3.8119 2.4159 2.0513 9.114 8.3692 6.8028
200 2.1441 1.1164 0.9426 5.9901 3.7469 3.4582
500 0.7962 0.5103 0.3643 2.1796 1.0752 0.9908

0.8

0.5
100 1.293 0.7805 0.6232 5.8613 3.6336 2.6673
200 0.5818 0.3303 0.302 3.4688 1.675 1.025
500 0.2016 0.1343 0.1208 1.1836 0.4768 0.3904

1
100 3.7327 2.5689 2.3298 10.7368 6.6746 6.991
200 2.3196 1.2604 0.9617 5.895 3.9593 3.3419
500 0.8526 0.4953 0.4296 2.062 1.2272 1.0712

Table 4
Simulation results for the two-break case: % of detecting two breaks (m̂λ = 2) and break-date estimation error in terms normalized Hausdorff distance (conditional on
m̂λ = 2).

σ T % of m̂ = 2 HD(T̂ , T )/T · 100
ρ = 1/2 ρ = 1 ρ = 1/2 ρ = 1
a = 0.8 0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2

0.5
100 88.6 98.6 99 91.2 99.8 99.8 2.10 1.41 1.14 1.19 0.92 0.83
200 96.6 99 99.8 97.6 99.8 100 1.12 0.66 0.51 0.57 0.45 0.41
500 99.2 99.6 99.6 99.4 100 100 0.31 0.22 0.19 0.21 0.15 0.16

1
100 49 53.8 52.4 71 80.4 85.2 4.36 3.03 2.52 4.05 2.30 2.08
200 70 77.6 81.6 85 94.6 95.2 2.81 1.71 1.52 1.99 1.30 1.06
500 89 94.2 94.8 95.4 96.2 98.4 1.12 0.63 0.59 0.88 0.54 0.47

the persistence level of xt . We find that as in the one-break
case, the probability of correctly estimating the number of breaks
approaches one as T increases. At the lower noise level, GFL
performs well even when the sample size is small. Finally, in this
particular DGP, the increased correlation between xt and ut leads to
better performance in small samples, in terms of higher percentage
of correctly estimating the number of breaks and accuracy of
break-date estimation.

5. Empirical application to regime shifts in themonetary policy
rule

In monetary economics, the celebrated ‘‘Taylor’s rule’’ (Taylor,
1993) may be formulated as follows,
rt = r̄ + β(πt − π∗) + γ yt + εt ,

where rt is the policy rate (e.g., federal funds rate), πt is the rate of
inflation, π∗ is the inflation target rate, yt is the GDP gap, r̄ is the
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Table 5
Summary statistics (sample size =215).

Variables GDP gap Fed funds rate Inflation Inflation in PPI M2 growth Spread

Mean −0.8925 5.5179 3.3836 3.4483 6.6566 1.4859
Std 2.826 3.4987 2.3448 7.0203 3.3776 1.2554
Min −8.063 0.07 −0.668 −47.612 −1.205 −2.65
Max 6.202 17.78 11.61 27.7 21.441 4.42

Table 6
Empirical results: estimated regimes of the US monetary policy rule.

m̂λ Regime α β γ r̄ p value IC

2
1960Q3–1979Q2 0.9095* 0.9419*** 0.2458*** 2.7933***

0.4168 1.45081979Q3–1991Q4 4.8625*** 1.0275***
−0.1875** 6.9175***

1992Q1–2012Q3 5.0775***
−0.3042 0.6953*** 4.4691***

Note: r̄ is calculated assuming π∗
= 2.

* Denote significance at 10% level.
** Denote significance at 5% level.
*** Denote significance at 1% level.

‘‘natural’’ policy rate, and εt is a random error. It is now a widely
accepted principle that the central bank can stabilize the economy
by adjusting the policy interest rate more than one-to-one with
inflation (β > 1). Many authors including Taylor (1999) and
Clarida et al. (2000) have argued that the violation of this principle
can be blamed for themacroeconomic instabilities in the 1960s and
1970s and that the ‘‘Great Moderation’’ since 1980s is partly due to
the ‘‘good’’ monetary policy that satisfies the principle.

It is thus a plausible conjecture that there are structural changes
in the evolution of the US monetary policy rule, assuming that
the simplified rule is an acceptable characterization of the US
monetary policy history. In this empirical exercise we study the
period from 1960Q1 to 2012Q4. We assume that the US monetary
policy follows a time-varying forward-looking rule,

rt = r̄t + βt(Etπt+1 − π∗

t ) + γtEtyt+1 + εt , (5.1)

where Et represents expectation conditional on information
available at time t , andwhere the coefficients (βt and γt ), the target
inflation (π∗

t ), and the ‘‘natural’’ policy rate (r̄t ) are all allowed to
be time-varying, but only in the form of sparse breaks. Breaks may
occur because of the appointment of a new Fed chairman or the
change in political and economic conditions. We assume that the
policy rule is stable between two consecutive break points and
that breaks are sparse relative to the time period we consider.
This is in contrast to Kim and Nelson (2006), who assume that
the coefficients behave as a random walk. Furthermore, we take
an agnostic view on how one regime may switch to another or
how many ‘‘states’’ there are in the evolution of monetary history.
This is in contrast to Sims and Zha (2006), who use the Bayesian
VAR framework and assume the Markov switching among a finite
number of states.

We may rewrite (5.1) as the following regression,

rt = αt + βtπt+1 + γtyt+1 + ut , (5.2)

where αt =

r̄t − βtπ

∗
t


and ut = εt − βt(πt+1 − Etπt+1) −

γt(yt+1 − Etyt+1). It is clear that both regressors in (5.2) may be
correlatedwith the error ut . This justifies the use of IV’s in the post-
lasso GMM estimation.

5.1. Data

The data are quarterly time series spanning the period 1960Q1–
2012Q4. We obtain the potential GDP data from the Congressional
Budget Office (CBO) and the remaining data from the Federal Re-
serve Economic Data (FRED), whose mnemonics we follow. The
policy rate is taken to be the US federal funds rate (FEDFUNDS).
The rate of inflation is measured by the annualized rate of change

of theGDPdeflator (GDPDEF) between two subsequent quarters, as
in Taylor (1993) and Clarida et al. (2000). The GDP gap is calculated
by y = 100(Actual GDP/Potential GDP − 1). We use as IV’s the
lagged observations of inflation, GDP gap, inflation in producer’s
price index (PPIACO), M2 growth (M2SL), and the ‘‘spread’’ be-
tween the 10-year bond rate (GS10) and the 3-month Treasury Bill
rate (TB3MS). The federal funds rate, inflation, inflation in PPI, and
M2 growth are all taken to be the quarterly averages. The interest
rate spread is taken to be the end-of-period observations. All num-
bers are in percentage terms. Table 5 shows the summary statistics
of the data.

5.2. Empirical results

Table 6 summarizes the empirical results based on Hansen’s
(1982) optimal GMM estimation for the estimated three regimes.
Note that the time span starts from 1960Q3, since at most two
lags are used in IV, and ends at 2012Q3, since regressors are one-
quarter-ahead. In addition to the estimated parameters in (5.2), we
also calculate the ‘‘natural’’ policy rate r̄t in (5.1), assuming that π∗

t
is a constant π∗

= 2 for identification.
We identify two breaks, or three regimes, in the evolution of the

US monetary policy since 1960. The first break occurs in 1979Q3,
obviously relating to the appointment of Paul Volcker as the FR
chairman in August 1979. The second break occurs in 1992Q1,
five years into Alan Greenspan’s tenure as the FR chairman. The
post-Lasso over-identification test points to a p-value of 0.4168,
indicating that the moment conditions (i.e., the choice of IV’s) are
valid.

The regime shift of monetary policy at 1979 is well studied
in the literature (e.g., Taylor, 1999 and Clarida et al., 2000). In
contrast to the receivedwisdom that the success of the new regime
is solely due to a more than one-to-one response of policy rate
to inflation, our results suggest that the dramatic change in the
monetary authority’s stance on the ‘‘natural’’ policy rate should
be credited. While the results do confirm that βt < 1 in the pre-
Volcker regime and βt > 1 after the break, the change in βt is far
less dramatic than the change in r̄t , which is from 2.7933 to 6.9175,
or from0.7933 to 4.9175 in real terms. The second break at 1992Q1
is much less documented in the literature. It may be connected
with the dramatic transformation of the US banking industry after
the financial deregulation in the 1980s or the end of 12-year
Republican rule in the White House. Compared with the second
regime (1979Q3–1991Q4), the third regime (1992Q1–2012Q3) is
less hawkish to inflation and much more sensitive to GDP gap.
What is also evident is the loosening of the monetary authority’s
stance on the ‘‘natural’’ policy rate during this last period.
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