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• Establish large sample properties for AR(1) with an intercept and an explosive root.
• Show that the LS estimate of intercept and its t-statistic are asymptotically normal.
• Show that no invariance principle applies to autoregressive coefficient estimate.
• Show that tests have better power for the zero intercept in the explosive case.
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a b s t r a c t

Large sample properties are studied for a first-order autoregression (AR(1)) with a root greater than unity.
It is shown that, contrary to the AR coefficient, the least-squares (LS) estimator of the intercept and its
t-statistic are asymptotically normal without requiring the Gaussian error distribution, and hence an
invariance principle applies. The coefficient based test and the t test have better power for testing the
hypothesis of zero intercept in the explosive process than in the stationary process.

© 2014 Published by Elsevier B.V.

1. Introduction

Consider a first-order autoregression defined by

xt = d + αxt−1 + ut , x0 ∼ Op(1), (1.1)

where ut is a sequence of independent and identically distributed
(i.i.d.) random errors with E(ut) = 0, E


u2
t


= σ 2

∈ (0, ∞)

(i.e., ut
iid
∼(0, σ 2)). The available sample is {xt}Tt=1. Let


denoteT

t=1. If d is known a priori and assumed zero without loss of
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generality, based on the available sample, the least-squares (LS)
estimator of α is,

α =


xtxt−1
x2t−1

. (1.2)

If the value of d is unknown a priori, the LS estimators of α and d
are, respectively,

α =


xt − X

 
xt−1 − X−


xt−1 − X−

2 and d = X −αX−, (1.3)

where X =


xt/T , X− =


xt−1/T .
The limiting distributions ofα andd and their t-statistics have

been developed in the literature in several special cases of Model
(1.1), including the stationary case (|α| < 1), the unit root case
(α = 1), and the explosive case (|α| > 1). Hamilton (1994) pro-
vides the textbook treatment of the unit root case in the page range
490–494 and the stationary case in page 216.

http://dx.doi.org/10.1016/j.econlet.2014.12.004
0165-1765/© 2014 Published by Elsevier B.V.
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If |α| > 1, x0 = 0, ut
iid
∼N(0, σ 2), and d = 0 and is known a

priori, White (1958) showed that

αT

α2−1 (α − α) ⇒ Cauchy.

When ut
iid
∼(0, σ 2) but is not necessarily normally distributed,

Anderson (1959) showed that

αT

a2 − 1
(α − α) ⇒ y/z,

where y and z are the limits of yT and zT defined by

yT =

T
t=1

α−(T−t)ut and zT = α

T−1
t=1

α−tut + αx0. (1.4)

Obviously the limiting distributions of yT and zT , and hence ofα,
depend on the distribution of u’s, so no central limit theorem (CLT)
or invariance principle is applicable. The role played by the initial
condition in the limiting distribution could be found in z. In this
case the rate of the convergence depends on both T and α.

In this paper, we extend the literature by establishing the lim-
iting distributions of α andd and their t-statistics for the explo-
sive AR(1) process with an unknown intercept. We show that the
asymptotic normality and, hence, an invariance principle hold true
ford and its t-statistic without assuming the Gaussian error distri-
bution. The motivation for our study comes from a recent litera-
ture on econometric analysis of bubbles; see for example, Phillips
et al. (2011, 2014, 2015a, forthcoming, 2015b, forthcoming). All
proofs are in the Appendix.

2. The model

We now focus our attention on Model (1.1) with |α| > 1. An
equivalent representation of xt is

xt =
1 − αt

1 − α
d + αtx0 +

t−1
j=0

αjut−j. (2.1)

Obviously,

1 − αt


d/ (1 − α) and αtx0 have the same order of

Op

αt

if d ≠ 0. It becomes clear later that

t−1
j=0 αjut−j has the

order of Op

αt

too. This is the reason why both the intercept

and the initial condition play an important role in the asymptotic
theory for the explosive process. The model can also be expressed
as

xt =
1 − αt

1 − α
d + x0t , (2.2)

where x0t is an explosive AR(1) process with no intercept.
Denote

wT =
1

√
T

T
t=1

ut . (2.3)

Following the Lindeberg–Feller CLT, the limiting distribution of
wT is N


0, σ 2


. Following Anderson (1959), we define yT and

zT as in Eq. (1.4). In the following lemma whose proof is in the
Appendix, we give the limits of wT , yT , and zT , and show that they
are independent from each other.

Lemma 2.1. Define wT , yT , and zT as in Eqs. (1.4) and (2.3). Then we
have (a) yT ⇒ y, zT ⇒ z, and y and z are independent; (b) wT ⇒

w
d
=N


0, σ 2


and w is independent of (y, z).

To obtain the limiting distribution of the LS estimator ofα in the
explosive AR(1) model without intercept, Anderson (1959) proved

that
α−(T−2)


x0t−1ut ,


α2

− 1

α−2(T−1)


x0t−1

2
⇒

yz, z2


. (2.4)

Using this result together with the independence of w, y, z, we
obtain the following results.

Theorem 2.2. For Model (1.1) with |α| > 1, we have, as T → ∞,

(a) α−(T−1)xT ⇒ z + αd/ (α − 1);
(b) α−(T−2) xt−1ut ⇒ y [z + αd/ (α − 1)];
(c) (α − 1) α−(T−1) xt−1 ⇒ z + αd/ (α − 1);
(d)


α2

− 1

α−2(T−1) x2t−1 ⇒ [z + αd/ (α − 1)]2.

Since zT = α
T−1

t=1 α−tut + αx0, not surprisingly, the initial
condition αx0 appears in the limit, z. According to Theorem 2.2,
the intercept term d appears in all the asymptotic distributions.
In particular, the intercept and the initial condition affect the
asymptotic distributions in the same manner. This observation is
consistent with the one in Eq. (2.1) where the three terms on the
right hand side have the same order of magnitude.

The centered LS estimators of d and α and their t-statistics are
given byd − dα − α


=


T


xt−1

xt−1


x2t−1

−1  
ut

xt−1ut


,

and

td =

d − d
 

T


x2t−1 −


xt−1
21/2

x2t−1 × σ̂ 2
1/2 ,

tα =

(α − α)

T


x2t−1 −


xt−1
21/2

T × σ̂ 2
1/2 ,

where σ̂ 2
= T−1

xt − d̂ − α̂xt−1

2
.

Since


xt−1ut and


xt−1 have the same rate of convergence,
α−T , we have√

T
d − d


αT (α − α)


=


1 T−1/2α−T


xt−1

T−1/2α−T


xt−1 α−2T


x2t−1

−1

×


T−1/2


ut

α−T


xt−1ut



=


1 op (1)

op (1) α−2T


x2t−1

−1

×


T−1/2


ut

α−T


xt−1ut


.

Consequently, we have the following theorem which extends
Anderson’s results to the explosive AR(1) model with intercept.

Theorem 2.3. ForModel (1.1)with |α| > 1, if Pr{z+αd/ (α − 1) =

0} = 0, the following limits apply as T → ∞:

(a)
√
T
d − d


= T−1/2


ut + op (1) ⇒ w

d
=N


0, σ 2 , (2.5)
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(b)

αT

α2 − 1
(α − α) =

α−(T−2) xt−1ut
α2 − 1


α−2(T−1)


x2t−1

+ op (1)

⇒
y

z + αd/ (α − 1)
, (2.6)

(c)

σ̂ 2
= T−1


xt − d̂ − α̂xt−1

2 p
−→ σ 2, (2.7)

(d)

td =

√
T
d − d


σ̂ 2
1/2 + op (1) ⇒

w

σ

d
=N (0, 1) , (2.8)

(e)

tα ⇒
y

z + αd/ (α − 1)
×

z +
αd

α − 1

× 
α2

− 1
α2σ 2

1/2

. (2.9)

Remark 2.4. An invariance principle exists ford and its t-statistic
as Eqs. (2.5) and (2.8) hold true even when ut is not normally
distributed.

Remark 2.5. In Eq. (2.6), if d = 0, the limiting distribution be-
comes y/z which is the same as that derived by Anderson (1959)
for the model without intercept and the intercept is not esti-
mated. It implies that when d = 0 the limiting distribution is
the same regardless of whether or not d is estimated. This is not
surprising as xt = x0t when d = 0. Hence, α−(T−2) xt−1ut =

α−(T−2) x0t−1ut ,

α2

− 1

α−2(T−1) x2t−1 =


α2

− 1

α−2(T−1)

x0t−1

2, suggesting that the middle term in Eq. (2.6) is the same
as the ratio of the two terms in Eq. (2.4). This result is in sharp con-
trast to the unit root model.

Remark 2.6. With the same intuition as before, the distributions of
both z and y depend on the distribution of ut . Hence, no invariance
principle applies toα and its t-statistic.

Remark 2.7. The independence of w, y and z suggests
√
T
d − d


and αT (α − α) /


α2

− 1

are asymptotically independent. Simi-

larly, td and tα are asymptotically independent.

Remark 2.8. As apparent in Theorem 2.3 (a) and (d), neither the
initial condition (x0) nor the intercept (d) can be found in the
limiting distributions of

√
T
d − d


and td. In sharp contrast,

both the initial condition and the intercept appear in the limiting
distributions of αT

α2−1 (α − α) and tα . In fact, they play the same role
in the limiting distributions. It is worth noting that what matters
in the limiting distributions is not x0 or d, but x0/σ and d/σ . This
point can be seen more clearly by studying a special case where

ut
iid
∼N(0, σ 2). In this case, we get

y = N(0, α2σ 2/

α2

− 1

) and

z = N(0, α2σ 2/

α2

− 1

) + αx0,

which are independently distributed. Let

ξ :=


α2

− 1
α2σ 2

1/2

y, and

η :=


α2

− 1
α2σ 2

1/2

z −


α2

− 1
α2σ 2

1/2

αx0,

be two independent N (0, 1) random variables. Then, Theorem 2.3
(b) becomes

αT

α2 − 1
(α − α) ⇒

ξ

η +


α2 − 1


/α2 [αx0/σ + αd/σ (α − 1)]

.

It can be seen that both x0/σ and d/σ , but not x0 and d, determine
the limiting distribution ofα. When x0 = d = 0, we obtain the
standard Cauchy limiting distribution. The dependence on the ratio
of x0/σ and d/σ was also found in the unit root and local-to-unity
literature. See, for example, Phillips (1987) and Perron (1991).

Remark 2.9. While in general the limiting distribution of tα de-
pends on both the initial value and the intercept as shown in Eq.

(2.9), the result is remarkably different when ut
iid
∼N(0, σ 2). In this

case, we have

tα ⇒
ξ

z + αd/ (α − 1)
|z + αd/ (α − 1)| .

Let P+ = Pr {z + αd/ (α − 1) > 0} and P− = Pr{z+αd/(α−1) <
0}. Then, from the independence of ξ and z, we obtain themoment
generating function for the limit of tα ,

P+ · E (exp {tξ}) + P− · E (exp {−tξ})

= P+ · exp

t2/2


+ P− · exp


t2/2


= exp


t2/2


.

Therefore, tα ⇒ N (0, 1)which does not depend on the initial con-
dition nor the intercept.

3. Comparison with other models

The limit theory for the explosive model and that for the unit
root model are distinctively different. First, for a unit root model,
we have

xt = x0 +

t−1
j=0

ut−j = Op

√
t


, when d = 0,

xt = dt + x0 +

t−1
j=0

ut−j = Op (t) , when d ≠ 0.

Obviously, the presence of a nonzero intercept changes the asymp-
totic property of xt , and consequently, leads to a change in the
limiting distributions ofα andd and their t-statistics. The discon-
tinuity of the limiting distributions ofd and td at d = 0 makes it
hard to analyze the local power behaviorwhen they are used to test
d = 0. To analyze the local power, we often use the limit theory for
the unit root model with an intercept dependent on T :

xt = dT + αxt−1 + ut with dT = d/
√
T , α = 1.

In contrast, for the explosive process, the limiting distributions ofα andd and their t-statistics become continuous at the point d = 0
as we have shown in Theorem 2.3. Hence, the local power can be
obtained directly.

Second, for the explosive process,d and α are asymptotically
independent, and td and tα are also asymptotically independent,
regardless of the value of d. In contrast, when a unit root process
is considered, the asymptotic distributions ofd andα (as well as td
and tα) are always correlated, and the strength of the correlation
varies as the value of d changes.

For the explosive process, the comparison of the limit theory
between Anderson (1959) and Theorem 2.3 reveals that, when
the intercept is zero, the limiting distribution of α is the same
regardless of whether or not the intercept is estimated. On the
other hand, for unit root process, the estimation of the intercept
changes the limiting distribution ofα.
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The differences between the explosive process and the sta-
tionary model are more subtle and have important implications.
First, for the stationary AR(1) process, the limiting distribution of
√
T
d − d


is a linear combination of the limiting distribution of

T−1/2 ut and that of T−1/2 xt−1ut . As a result, the asymptotic
variance of

√
T
d − d


is σ 2

+d2 (1 + α) / (1 − α)which depends
on d. For the explosive AR(1) process, the limiting distribution of
√
T
d − d


is dominated by T−1/2 ut , the asymptotic distribu-

tion of which, as shown in Eq. (2.5), is N

0, σ 2


whose variance is

independent of d. This distinction sheds insights on the differences
in the finite sample power behavior of the test of the null hypoth-
esis H0 : d = 0 in the context of the explosive process and the
stationary AR(1) process. Under the null,

√
Td ⇒ w

d
=N


0, σ 2


,

for both the explosive and the stationary models. Under the alter-
native hypothesis H1 : d ≠ 0, the finite sample distribution of
√
Td can be approximated by

√
Td d

≈
√
Td + w

d
=N

√
Td, σ 2


, if |α| > 1,

and by

√
Td d

≈
√
Td + N


0, σ 2

+
d2 (1 + α)

1 − α


d
= N


√
Td, σ 2

+
d2 (1 + α)

1 − α


, if |α| < 1.

Note that the shift of the mean is the same in both cases. However,
when |α| < 1, the variance of the finite sample distribution in-
creases with |d| whereas when |α| > 1, the variance of the finite
sample distribution remains unchanged. Therefore, we expect the
test to have a better power for the explosive model than for the
stationary model.

A similar observation applies to the t test. Under the null hy-
pothesis H0 : d = 0, for both the explosive process and the sta-
tionary process, we have

t̃d =

d T x2t−1 −


xt−1
21/2

x2t−1 × σ̂ 2
1/2 ⇒ N (0, 1) .

Under the alternative hypothesis that H1 : d ≠ 0, Theorem 2.3 (d)
gives us an approximation of the finite sample distribution of t̃d for
the explosive case:

t̃d = td +

√
Td


x2t−1 − T−1


xt−1
21/2

x2t−1 × σ̂ 2
1/2

=

√
T
d − d


σ̂ 2
1/2 +

√
Td

σ̂ 2
1/2 + op (1)

d
≈

w

σ
+

√
Td
σ

d
=N

√
Td
σ

, 1


.

For the stationary case, the approximation of the finite sample dis-
tribution of t̃d is given by

t̃d = td +

√
Td


x2t−1 − T−1


xt−1
21/2

x2t−1 × σ̂ 2
1/2

d
≈ N


√
Td


1

σ 2 + d2 (1 + α) / (1 − α)
, 1


.

Note that in both cases, the variance of the approximate finite
sample distribution is the same but the means are different. Since

σ 2
+ d2 (1 + α) / (1 − α) > σ 2 when |α| < 1, we have

√
Td


1

σ 2 + d2 (1 + α) / (1 − α)
<

√
Td
σ

,

the shift of themean of t̃d fromH0 toH1 under the explosivemodel
is greater than that under the stationarymodel. Therefore, the t test
is expected to have better power for the explosive process than for
the stationary process.

Second, for the explosive process, the results in Theorem 2.3
suggest that, regardless of the value of d,d andα are asymptotically
independent, and td and tα are also asymptotically independent.
On the contrary, for the stationary process, the asymptotic
independence betweend andα and that between td and tα can only
be guaranteed by the condition of d = 0.

Third, for the explosive process with intercept, the value of
d affects the limiting distributions of


xt−1ut and


x2t−1, and,

hence, the limiting distribution of α, as shown in Theorem 2.3.
The value of d has no impact on the limiting distribution of d
because it is decided by the unique dominating term, T−1/2 ut .
On the contrary, for the stationary process with an intercept, the
magnitude of d does not change the limiting distribution ofα, but
only affect the limiting distribution ofd.
4. Conclusions

In this paper the asymptotic theory is developed for the explo-
sive AR(1) process with intercept. The results extend the literature
in several directions. First, it is proved that an invariance princi-
ple applies to the intercept and its t-statistic while it continues to
fail to apply to the AR coefficient. Second, the asymptotic indepen-
dence between LS estimators of the intercept and the AR coeffi-
cient and the asymptotic independence between their t-statistics
are established. Third, the comparison conducted in the paper re-
veals that the coefficient based test and the t test have better power
for testing H0 : d = 0 under the explosive process than under the
stationary process. However, our theory does not cover the model
with a time trend. How to include a time trend into a model with
explosive behavior and how to establish the asymptotic theory for
the new model are beyond the scope of the present paper.

Appendix

Proof of Lemma 2.1. (a) has been proved by Anderson (1959).
(b): The fact of wT ⇒ w

d
=N


0, σ 2


simply follows the

Lindeberg–Feller CLT. To prove the independence between w and
z, let

z∗

T = αx0 + α

√
T


s=1

α−sus, z̃T = α

T−1
s=
√

T

+1

α−sus,

and

w∗

T =
1

√
T

T−1
s=
√

T

+1

us, w̃T =
1

√
T

√
T


s=1

us,

where
√

T

is the largest integer not greater than

√
T . Then z∗

T

andw∗

T are independently distributedbecause they involve disjoint
sets of u’s. As T goes to infinity, we have

E

zT − z∗

T

2
= E


z̃T
2

=

α2
T−1

s=
√

T

+1

α−2s

 σ 2
→ 0,
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and

E

wT − w∗

T

2
= E (w̃T )

2
=

√
T


T
σ 2

→ 0.

Then, zT − z∗

T and wT − w∗

T converge with probability 1 to
0, therefore, the asymptotic independence between zT and wT
follows. The independence between w and y can be proved in a
similar way. �

Proof of Theorem 2.2. (a): Starting from Eq. (2.2), we have

α−(T−1)xT = α−(T−1)

1 − αT

1 − α
d + x0T


= α−(T−1)


1 − αT

1 − α
d + αx0T−1 + uT


=

αd
α − 1

+ α−(T−2)x0T−1 + op (1)

=
αd

α − 1
+ zT + op (1) ⇒ z +

αd
α − 1

,

where the fourth equality comes from the definition of zT in (1.4),
and the final limit is a result of Lemma 2.1.

(b): Again, starting from Eq. (2.2), it can be obtained that

α−(T−2)


xt−1ut

= α−(T−2)


x0t−1ut + α−(T−2)
 

1 − αt−1

d

1 − α
ut

= α−(T−2)


x0t−1ut −
αd

1 − α


α−(T−t)ut

+
d

1 − α
α−(T−2)


ut

= α−(T−2)


x0t−1ut +
αd

α − 1
yT + op (1)

⇒ yz +
αd

α − 1
y = y


z +

αd
α − 1


,

where the third equality comes from the definition of yT in (1.4),
and the combination of the results in Lemma 2.1 and Eq. (2.4) leads
to the final limit.

(c): From Model (1.1) it is easy to get xt − xt−1 = d +

(α − 1) xt−1 + ut . Then,

(α − 1)


xt−1 = xT − x0 − Td −


ut .

Hence, based on the limiting distribution derived in (a), we have

(α − 1) α−(T−1)


xt−1 = α−(T−1) (xT − x0)

− α−(T−1)Td − α−(T−1)


ut

= α−(T−1)xT + op (1) ⇒ z +
αd

α − 1
.

(d): Squaring both sides of Model (1.1), we get

x2t = α2x2t−1 + 2αdxt−1 + 2αxt−1ut + d2 + u2
t + 2dut .

Therefore, x2t − x2t−1 =

α2

− 1

x2t−1 +2αdxt−1 +2αxt−1ut +d2 +

u2
t + 2dut , which leads to
α2

− 1


x2t−1 = x2T − x20 − 2αd


xt−1 − 2α


xt−1ut

− Td2 −


u2
t − 2d


ut .

Based on the results reported in (a)–(c) and the assumption that
x0 = Op (1), it is straightforward to get
α2

− 1

α−2(T−1)


x2t−1 = α−2(T−1)x2T + op (1)

⇒


z +

αd
α − 1

2

. �

Proof of Theorem 2.3. The results come immediately from
Lemma 2.1 and Theorem 2.2, hence the proofs are omitted. �
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