
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Economics School of Economics

8-2014

A flexible and automated likelihood based framework for A flexible and automated likelihood based framework for

inference in stochastic volatility models inference in stochastic volatility models

Hans J. SKAUG
University of Bergen

Jun YU
Singapore Management University, yujun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research

 Part of the Econometrics Commons

Citation Citation
SKAUG, Hans J. and YU, Jun. A flexible and automated likelihood based framework for inference in
stochastic volatility models. (2014). Computational Statistics and Data Analysis. 76, 642-654.
Available at:Available at: https://ink.library.smu.edu.sg/soe_research/1615

This Journal Article is brought to you for free and open access by the School of Economics at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For
more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1615&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Computational Statistics and Data Analysis 76 (2014) 642–654

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

A flexible and automated likelihood based framework for
inference in stochastic volatility models
Hans J. Skaug a,∗, Jun Yu b

a Department of Mathematics, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
b Sim Kee Boon Institute for Financial Economics, School of Economics, Lee Kong Chian School of Business, Singapore Management
University, 90 Stamford Road, Singapore 178903, Singapore

a r t i c l e i n f o

Article history:
Received 10 November 2012
Received in revised form 30 September
2013
Accepted 6 October 2013
Available online 15 October 2013

Keywords:
Empirical Bayes
Laplace approximation
Automatic differentiation
AD Model Builder
Simulated maximum likelihood
Importance sampling

a b s t r a c t

The Laplace approximation is used to perform maximum likelihood estimation of
univariate and multivariate stochastic volatility (SV) models. It is shown that the
implementation of the Laplace approximation is greatly simplified by the use of a numerical
technique known as automatic differentiation (AD). Several algorithms are proposed and
comparedwith some existingmaximum likelihoodmethods using both simulated data and
actual data. It is found that the newmethods match the statistical efficiency of the existing
methods while significantly reducing the coding effort. Also proposed are simple methods
for obtaining the filtered, smoothed and predictive values for the latent variable. The new
methods are implemented using the open source software AD Model Builder, which with
its latent variable module (ADMB-RE) facilitates the formulation and fitting of SV models.
To illustrate the flexibility of the new algorithms, several univariate and multivariate SV
models are fitted using exchange rate and equity data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Maximum likelihood (ML) estimation of nonlinear and non-Gaussian state space models has recently received a great
deal of attention in the statistics literature as well as in the econometrics literature. A leading example of nonlinear and
non-Gaussian state space models in financial econometrics is the class of stochastic volatility (SV) models for which the
likelihood function is expressed by a high dimensional integral that cannot be evaluated analytically due to the presence
of a latent volatility process. As a result, ML estimation is computationally demanding. While in the earlier literature some
statistically inefficient but numerically simple methods have been proposed (e.g. Andersen and Sorensen, 1996; Harvey
et al., 1994), ML remains appealing partly because of its statistical efficiency and partly because computing power is rapidly
improving.

Various ML methods have been proposed in the literature. Contributions include Shephard and Pitt (1997), Durbin and
Koopman (1997), Sandmann and Koopman (1998), Liesenfeld and Richard (2003, 2006), Durham (2006) and Kleppe and
Skaug (2012). The idea in these papers is to evaluate the likelihood function numerically by integrating out the latent
volatility process via the Laplace approximation or importance sampling techniques, followed by numerical maximization
of the approximate likelihood function.

Many of the algorithms for these ML methods have been implemented in low level programming languages such as
C++ or FORTRAN in order to increase the computational speed. For example, the importance sampler of Durham (2006) was
implemented using FORTRAN. While these specially tailored packages are numerically efficient, the effort required towrite,
debug and modify the code is usually large. In addition, to use the method of Durham (2006), one has to find the analytical

∗ Corresponding author. Tel.: +47 55 58 48 61; fax: +47 55589672.
E-mail addresses: skaug@math.uib.no (H.J. Skaug), yujun@smu.edu.sg (J. Yu).

0167-9473/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.csda.2013.10.005

Published in Computational Statistics & Data Analysis, August 2014, Volume 76, Pages 642–654.
http://dx.doi.org/10.1016/j.csda.2013.10.005

http://dx.doi.org/10.1016/j.csda.2013.10.005
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2013.10.005&domain=pdf
mailto:skaug@math.uib.no
mailto:yujun@smu.edu.sg
http://dx.doi.org/10.1016/j.csda.2013.10.005

H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654 643

expressions for the first and second order derivatives of the joint log density of returns (observations) and volatilities (latent
random variables), which are required for the Laplace approximation.

One purpose of this paper is to illustrate several algorithms for performing ML estimation of SV models using automatic
differentiation (AD), combined with the Laplace approximation and importance sampling. We also present a simple
empirical Bayes approach to estimation of volatilities, conditionally on the returns (observations), both as a filter and as
a smoother, as well as a predictor. We then demonstrate the ease by which univariate and multivariate SV models can be
explored using the latent variable module of the open source software package AD Model Builder (Fournier et al., 2011),
referred to as ADMB in short. The ADMB software is available from http://admb-project.org. Historically, the latent variable
module of ADMB was a separate program, but is today fully integrated with the rest of ADMB. It nevertheless has its own
user manual, and we shall refer to it here as ADMB-RE. AD is a technique for calculating the exact numerical derivatives
of functions defined as computer algorithms (Gallant, 1991), and should not be confused with symbolic differentiation
as performed by for instance MATHEMATICA and MAPLE. As both the Laplace approximation and numerical likelihood
optimization require derivatives, ADMB-RE facilitates parameter estimation and is an ideal software to do ML estimation
for nonlinear and non-Gaussian state-space models.

Our paper is related to Meyer et al. (2003) where the likelihood function of the basic SV model was approximated by the
Laplace approximation via AD. The focus of their paper was, however, to develop an efficient MCMC algorithm. Moreover,
our method for approximating the likelihood function is different from theirs. Meyer et al. (2003) used a Kalman filter
approach, where a sequence of one-dimensional Laplace approximations was used to perform the one-step updates of the
Kalman filter. We apply a single multivariate Laplace approximation jointly with respect to all volatilities. While it is trivial
to generalize our joint Laplace approximation to multivariate SV models, the same does not seem to be the case for the
sequential univariate normal approximation of Meyer et al. Our work is also related to Liesenfeld and Richard (2006) where
efficient importance samplingwas used to performbothML analysis and Bayesian analysis of SVmodels. Themain difference
between our algorithms and theirs is the different importance sampling techniques used. Finally, papers that are similar to
ours in the use of a joint Laplace approximation are Durham (2006) and Martino et al. (2011), but neither of these papers
use AD, and hence lack the ease and flexibility of implementation of our approach.

The rest of the paper is organized as follows. Section 2 introduces the Laplace approximation and discusses how to use
it to perform classical maximum likelihood (ML) estimation. Section 3 explains how the Laplace approximation facilitates
smoothing, filtering and predicting the latent variable. Section 4 describes AD and the software ADMB-RE. In Section 5
we examine the relative performance of ADMB-RE using both simulated data and actual data and demonstrate how more
flexible univariate and multivariate SV models can be fitted under ADMB-RE. Section 6 concludes. Information about how
to obtain the ADMB-RE code for the model developed in this paper is provided in Appendix A.

2. Maximum likelihood estimation

For illustrative purposes, we focus on the so-called basic SV model which is defined by
Xt = σXeht/2ϵt , t = 1, . . . , T ,
ht+1 = φht + σηt , t = 1, . . . , T − 1, (1)

where Xt is the return of an asset, ϵt
i.i.d.
∼ N(0, 1), ηt

i.i.d.
∼ N(0, 1), corr(ϵt , ηt) = 0, and h1 ∼ N(0, σ 2/(1−φ2)). The parameters

of interest are θ = (σX , φ, σ)′.
Let X = (X1, . . . , XT)

′ and h = (h1, . . . , hT)
′. The likelihood function of the basic SV model is given by

p(X; θ) =

p(X,h; θ)dh =

p(X|h; θ)p(h; θ)dh. (2)

This is a high-dimensional integral which does not have a closed form expression due to the non-linear dependence of Xt
on ht , and hence must be approximated.

Following Skaug (2002), our first algorithm (termed LA-ML) employs the Laplace approximation, that is, we match
p(X,h; θ) and a multivariate normal distribution for h as closely as possible (up to a constant proportion). More precisely,
the Laplace approximation to the integral (2) is

p(X; θ) ≈ | det(Ω)|−1/2p(X,h∗
; θ), (3)

where

h∗
= argmax

h
ln p(X,h; θ) and Ω =

∂2 ln p(X,h∗
; θ)

∂h∂h′
. (4)

The Laplace approximation is exact when p(X,h; θ) is Gaussian in h. It typically works well when p(h; θ) is Gaussian
or nearly Gaussian and p(h; θ) is more informative about h than p(X|h) is, in the sense of observed Fisher information.
This is indeed the case for almost all the SV models used in practice. From an empirical viewpoint, the normality of h is
documented as one of the stylized facts about volatility in Andersen et al. (2001). Theoretical results about the accuracy of

http://admb-project.org

644 H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654

the Laplace approximation, easily applicable in the present context, are lacking in the literature. It is worth noting that the
accuracy of the approximation may vary with the value of the parameter θ . It is interesting to investigate the accuracy of
the approximation for the problem at hand and this will be done in Section 5.

For SVmodels h∗ does not have a closed form expression. To find h∗, a numerical optimizationmethod, such as Newton’s
method, is needed. While Ω may have a closed form expression, it is typically tedious and error prone to derive this
expression by hand. Durham (2006) suggests using symbolic programs to calculate Ω . We will evaluate Ω using AD.

In the case where the Laplace approximation does not work satisfactorily, one can improve the approximation by using
importance sampling, which is a Monte Carlo approach to high-dimensional numerical integration. The likelihood can be
written as

p(X; θ) =

p(X,h; θ)dh =

p(X,h; θ)

q(h)
q(h)dh, (5)

where q(h) is the importance density. The idea of importance sampling is to draw samples h(1), . . . ,h(S) from q(h) so that
we can approximate p(X; θ) by

1
S

S
i=1

p(X,h(i)
; θ)

q(h(i))
. (6)

In general, q(·) depends on both X and θ . The law of large numbers ensures the convergence of (6) to p(X; θ) as S → ∞.
For themethod to be computationally efficient, we shouldmatch p(X,h; θ) and q(h) as closely as possiblewhile ensuring

that it is still easy to sample from q(h). To do that, following Shephard and Pitt (1997) and Durbin and Koopman (1997), we
choose q to be the Laplace approximation to p(X,h; θ). That is h(s)

∼ N(h∗, −Ω−1) where h∗ and Ω are from (4). It should
be noted that q(h) depends on θ through h∗ and Ω . When maximizing the likelihood approximation (6), smoothness of the
θ-surface is ensured by using ‘‘common random numbers’’, i.e. h(i)

= h∗
+

−Ω−1

1/2
ϵ(i), where

−Ω−1

1/2 is the matrix
square root (Cholesky decomposition) and ϵ(i) is a vector of independent standard normal variables (common to all values
of θ). Skaug and Fournier (2006) provide a formula for the gradient of the likelihood approximation (6) in the case that the
importance density is the Laplace approximation.

While the importance sampling procedure used in the present paper is based on the Laplace approximation, other
important sampling techniques exist in the literature. For example, the importance sampler developed by Liesenfeld and
Richard (2003, 2006) and others is based on a particular factorization of the importance density. The importance sampling
densities used in Liesenfeld and Richard (2003, 2006) differ from those of Shephard and Pitt (1997) andDurbin and Koopman
(1997) in the sense that they are based on ‘‘global’’ (as opposed to ‘‘local’’) approximations to the integrand. Lee and
Koopman (2004) compared the performance of these two approaches in the context of univariate SV models and found
the two methods to perform equally well. In this paper, the method that maximizes the likelihood function obtained from
simulations is called simulated ML (SML).

3. Smoothing, filtering and predicting latent variables

In this section, we develop several algorithms for obtaining the filtered, smoothed and forecasted values of the
latent variable, all based on the Laplace approximation. A major advantage of the proposed algorithms is the ease of
implementation, requiring little programming effort, and low computational cost. This is in sharp contrast to other filtration
methods available in the literature, including the unscented Kalman filter of Li (2013).

We first propose the algorithm for obtaining the smoothed estimate of the latent variable, with and without taking into
account the two sources of error discussed above. Denote by θ̂ theML estimate of θ . A natural smoother of h is the empirical
Bayes estimator

ĥs
= argmax

h
ln p(X,h; θ̂). (7)

That is, we use the mode of the conditional density p(h|X) to estimate h, conditionally on X. This is because ln p(X,h) =

ln p(h|X) + ln p(X), and the latter quantity does not depend on h. It should be pointed out that the smoother (7) comes as
a by-product of the Laplace approximation.

By ignoring errors in parameter estimation, we get the approximate covariance matrix of the smoothed estimates of the
latent variable,

−

∂2 ln p(X, ĥs

; θ̂)

∂h∂h′

−1

. (8)

A variance formula that takes the uncertainty in θ̂ into account is

−

∂2 ln p(X, ĥs

; θ̂)

∂h∂h′

−1

+
∂ĥs

∂θ
Σθ̂

∂ĥs

∂θ

′

, (9)

H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654 645

where the expression for the Jacobian matrix ∂ĥs/∂θ is given in Skaug and Fournier (2006). This formula may be derived in
different ways. In a Bayesian context a similar formula was given in Kass and Steffey (1989), but the particular version (9)
was independently discovered by D. Fournier, and this is also the version that is implemented in ADMB-RE.

The smoothed estimate of h can be used to generate model diagnostics. For example, an estimate of ηt is given as
(ĥs

t+1 − φ̂ĥs
t)/σ̂ . Some care is needed in the interpretation of the estimated ηt , because although the ηt are independent, the

smoothed values will not be (Harvey and Koopman, 1992). Similarly, one can estimate ϵt by yt exp(−0.5ĥs
t)/(σ̂X).

Prediction of future values of the latent variable can easily be donewithin this framework by extending the h vector with
asmany time periods as needed. If wewant a K -step prediction, let h = (h1, . . . , hT , hT+1, . . . , hT+K)′. For the augmented h
vector, the optimization problem (7) yields both the smoothed values ĥs

1, . . . , ĥ
s
T and the predicted values ĥs

T+1, . . . , ĥ
s
T+K .

Under the AR(1) structure for the latent variable, it is clear that ĥs
T+K = φK ĥs

T , K > 0, but for more general latent processes
an explicit expression may not exist.

It seems natural that θ is estimated using an un-augmented h, and that prediction is conducted after the model has been
fitted. However, we point out that from a practical perspective it is convenient to use the augmented h also during the
estimation phase. The reason is that no extra programming is required in order to obtain the prediction of (hT+1, . . . , hT+K)
and its covariancematrix, which is given by (9). As long asK is small compared to T the computational overhead is negligible.
But we need to argue that augmenting h does not change the Laplace approximation (3) of the likelihood, and hence not
the estimate of θ . This follows from general properties of the Laplace approximation. To see why, consider the following
re-parametrization of the latent variables: u = (h1, . . . , hT , ηT , . . . , ηT+K−1)

′, where ηt = ht+1 − φht for t = T , . . . , T +

K − 1. This is a linear transformation, and it can be proved that the Laplace approximation (3) is invariant under a one-to-
one linear transformation of the latent variables. Further, u1 = (h1, . . . , hT)

′ and u2 = (ηT , . . . , ηT+K−1)
′ are independent,

also when we condition on X. For a conditional distribution with the property that p(u|X) = p1(u1|X)p2(u2|X) we have
a corresponding factorization of the Laplace approximation (3). But, since p2(u2|X) = p(ηT , . . . , ηT+K−1) is Gaussian the
Laplace approximation of

p2(u2)du2 = 1 exactly, and it follows that inclusion of ηT , . . . , ηT+K−1 does not affect the

likelihood of θ .
Another important quantity is the filtered estimate of the latent variable, that is the estimate of ht conditional on

X1, . . . , Xt , given the parameter value θ . Numerous nonlinear filtering algorithms have been proposed. We propose an
alternative filtered estimate of ht based on the Laplace approximation. In particular, we define

(ĥf
1, . . . , ĥ

f
t)

′
= arg max

h1,...,ht
ln p(X1, . . . , Xt , h1, . . . , ht; θ̂), (10)

where θ̂ is the estimate of θ obtained from the entire sample {Xt}
T
t=1. The filtered estimate of ht is ĥ

f
t . Obviously, it involves

the repeated evaluation of the Laplace approximation but is straightforward to program after the estimation based on the
full sample is completed.

4. Automatic differentiation and ADMB-RE

The need for calculating derivatives arises in two places in the proposed algorithms. First, the numerical solution of the
optimization problem (4) is greatly simplified if the exact gradient of the objective function is available. Second, as noted
above, the Hessian matrix (4) occurring in the Laplace approximation is typically too complicated to be evaluated by hand.

Automatic differentiation (AD) is a technique to numerically evaluate the derivatives of a function specified by a computer
program (Gallant, 1991). It exploits the fact that every computer program, nomatter how complicated, executes a sequence
of elementary arithmetic operations such as additions or elementary functions. By applying the chain rule repeatedly to these
operations, derivatives of arbitrary order can in principle be computed automatically, and accurate to computer precision.

Two classical ways of evaluating derivatives are symbolic differentiation and themethod of finite differences.While both
AD and symbolic differentiation utilize the chain rule, it is important to emphasize differences between the two methods.
The result of symbolic differentiation is a mathematical formula, while AD is aimed at producing numerical derivatives.
Clearly, themathematical derivative formulamay be evaluated numerically, so there does not seem to bemuch to be gained.
However, the real distinction is that ADmay be applied to entire computer programs. Application of symbolic differentiation
here is possible at a sub-expression level, butwould involve quite a bit ofmanual labor. Two important drawbackswith finite
differences are round-off errors in the discretization process, and cancellation. These problems multiply when calculating
higher order derivatives. Automatic differentiation calculates exact (to machine precision) numerical derivatives and hence
is not subject to the same problems.

Two different approaches to AD exist, the forwardmode and the reversemode. They differ in how the chain rule is used to
propagate derivatives through the computation. The forward mode propagates derivatives of intermediate variables with
respect to the independent variables. In contrast, the reverse mode of AD propagates derivatives of the final result with
respect to all intermediate variables in the program. The program is first evaluated without derivative calculations, and
subsequently derivatives are calculated in reverse order of the original program flow. During the latter phase the program
must keep track of the values of all intermediate variables that impact the final result, and thus the reverse algorithm may
be very memory consuming (Gallant, 1991).

646 H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654

Fig. 1. ADMB code for the basic SVmodel (1). Appendix B gives details about how to compile and run the program. At the end of the PARAMETER_SECTION
the objective function holds the value g = − log [p(X|h, θ)p(h|θ)]. The ADMB code that can be found in a link provided in Appendix A includes some
additional directives, omitted for presentation purposes here, but which are needed to achieve the CPU times reported in the present paper.

AD Model Builder (ADMB) is an open source statistical modeling framework based on C++ that combines AD with a
quasi-Newton functionminimizer (Fournier et al., 2011). An example of an ADMB program is given in Fig. 1, and Appendix B
provides details about how to compile and run this program. When compiled and executed, the program will minimize the
objective function (the negative log-likelihood) with respect to the independent parameters, i.e. those variables defined in
the first part of the PARAMETER_SECTION. The use of AD to calculate the gradient of the objective function makes ADMB
fast and numerically stable.

The latent variablemoduleADMB-RE, usually referred to as the randomeffectsmodule, allows the Laplace approximation
(3) to be calculated automatically, i.e. with the Hessian matrix in (4) calculated by automatic differentiation. The keyword
random_effects_vector (see Fig. 1) instructs the compiler that the vector h should be the target for the Laplace approx-
imation. The objective function in the program must be taken to be g(h, θ) = − log [p(X|h, θ)p(h|θ)]. In order to facilitate
the numerical optimization of the log-likelihood based on (3), ADMB-RE calculates the third order mixed derivatives of
g(h, θ) by automatic differentiation (Skaug and Fournier, 2006). Optionally, ADMB-RE employs the importance sampling
approximation (6) with the density q chosen as explained at the end of Section 2. Appendix A provides some ADMB com-
mands, the file structure and the sample ADMB code for the basic SV model.

5. Performance of the proposed algorithms

5.1. Fitting the basic SV model to real data

For the purposes of illustration and comparison, we first fit the basic SVmodel to a widely used exchange rate data series
and then to an equity data series. The exchange rate series consists of 945 observations on daily return of pound/dollar
exchange rate from 01/10/1981 to 28/06/1985 (Fig. 2) while the equity data series consists of 1598 observations on daily
return of S&P500 index from 02/01/2007 to 10/05/2013. The same exchange rate data were also used in Harvey et al. (1994),
Shephard and Pitt (1997), Meyer and Yu (2000) and Meyer et al. (2003).

H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654 647

Fig. 2. Basic SVmodel fit to pound/dollar exchange rate data (t in days since 01/10/1981). Left: raw data Xt . Right: smoothed (hs), filtered (hf) and predicted
(hp) volatility process obtained using the Laplace approximation for the exchange rate data (see Table 1). The prediction is made at t = 500 using data up
to t = 500 both in the estimation of parameters and in the prediction of h.

Table 1
The basic SV model fitted to the daily returns of pound/dollar exchange rate data with
different likelihood approximations (method).

Method Parameter Estimate SE CPU(s) Log-Likelihood

LA-ML φ 0.9743 0.0122 9.78 −918.791
σ 0.1697 0.0363
σX 0.6330 0.0688

SML φ 0.9748 0.0122 14.53 −918.669
(S = 64) σ 0.1687 0.0355

σX 0.6337 0.0697

SML φ 0.9737 0.0120 15.98 −918.363
(S = 128) σ 0.1738 0.0360

σX 0.6311 0.0694

SML φ 0.9741 0.0120 19.71 −918.594
(S = 256) σ 0.1719 0.0370

σX 0.6315 0.0680

For the exchange rate data, the estimates and asymptotic standard errors based on the observed Fisher informationmatrix
for φ, σ , σX , the log-likelihood values for the LA-ML method and the SML method with different values of S, are reported in
Table 1. Also reported in Table 1 is the CPU time in seconds, on a Pentium IV 3.2 GHz PC running onWINDOWS XP, which is
the time-to-convergence of the optimizer.

It can be seen that the ML methods can obtain parameter estimates within seconds and the two sets of estimates,
standard errors and log-likelihood values are very close to each others, indicating that the error associated with the Laplace
approximation is very small in this case. Since LA-ML is not simulation-based, not surprisingly it is the fastestmethod, taking
less than 10 s of CPU time.

To assess the performance of the SML methods, we have tried two approaches. Firstly, we increase the number of the
importance samples from 64 to 128 and then to 256. Table 1 reports the results when S = 128 and S = 256. While large
values of S increase the computational cost, the CPU time is still within seconds. Importantly, the two sets of estimates,
standard errors and log-likelihood values are very close to those when S = 64, suggesting that the SML method is reliable.

Secondly, for the SML method with the different values of S, we calculate the Monte Carlo standard errors (MCSE) of the
SML estimates by repeating the estimation for 100 different sets of common random numbers in the importance sampling.
Table 2 reports the empirical mean and standard deviation across the resulting 100 sets of parameter estimates and log-
likelihood values. Note that MCSE includes Monte Carlo variation only, and not the sampling variation in the parameter
estimates. Hence, if the approximation error of a SML method is small, we expect the MCSEs to be much smaller than
the asymptotic standard errors. This is indeed the case as the MCSE ranges between 0.0008 and 0.0052 for the parameter
estimates and between 0.1701 and 0.3442 for the log-likelihood value. In accordance with the basic properties of averages
it appears that MCSE for the log-likelihood goes down at a rate S−1/2.

Smoothed (hs), filtered (hf) and predicted (hp) values of the volatility process are shown in Fig. 2. Although apparently
similar, the filtered and smoothed solutions differ on average by 21% at an exponential scale, i.e. {exp(hs)−exp(hf)}/ exp(hs).

648 H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654

Table 2
Evaluation of Monte Carlo standard error (MCSE) of the various SML estimators of Table 1. Average point
estimates (Estimate) and MCSE are calculated across 100 different sets of common random numbers.

Method Estimate MCSE

SML φ 0.9742 0.0014
(S = 64) σ 0.1713 0.0052

σX 0.6316 0.0011
Log-Lik −918.612 0.3442

SML φ 0.9742 0.0008
(S = 128) σ 0.1709 0.0038

σX 0.6317 0.0010
Log-Lik −918.647 0.2660

SML φ 0.9740 0.0008
(S = 256) σ 0.1721 0.0035

σX 0.6313 0.0008
Log-Lik −918.623 0.1701

Table 3
The basic SV model fitted to the daily returns of S&P500.

Method Parameter Estimate SE MCSE CPU (s) Log-Likelihood

LA-ML φ 0.9836 0.0058 38.82 −2504.13
σ 0.1932 0.0235
σX 1.0458 0.1519

SML φ 0.9835 0.0058 0.00030 43.28 −2503.74
(S = 128) σ 0.1949 0.0235 0.00227

σX 1.0458 0.1524 0.00034

Further, the prediction, which is that of an autoregressive process of order 1 is unable to predict the dip in h values that occur
around t = 550.

For S&P500 index, the estimates, asymptotic standard errors and MCSEs for σX , φ, σ , the log-likelihood values, and the
CPU time, for the LA-MLmethod and the SMLmethodwith S = 128, are reported in Table 3. The results for SML are calculated
from 100 different sets of common random numbers. Both LA-ML and SML take less than one minute of CPU time. The two
sets of estimates, asymptotic standard errors and log-likelihood values are very close to each other. The MCSEs for SML
estimates are very small.

5.2. Flexible modeling

A major difficulty in most existing algorithms and computing softwares is that any change in the model specification
entails a substantial effort in careful algebraic derivations (such as finding the full-conditional distributions and finding the
expressions of the first two derivatives) followed by a serious effort in coding and debugging. One exception is BUGS, as
demonstrated inMeyer and Yu (2000) and Yu andMeyer (2006) in the context of SVmodels. As in BUGS, modification of the
model is straightforward in ADMB-RE and usually only involves changing a few lines of code. To illustrate the strength and
flexibility of ADMB-RE, we consider some variations over the basic SV model and one multivariate SV model. Appendix C
provides details about the modifications of the ADMB-RE code.

First, we consider two univariate SV models, namely, t-SV model, and SV model with the leverage effect. We fit both
models to the S&P500 series using LA-ML and SML. The so-called t-SV model is obtained by assuming that ϵt in the basic SV
model (1) has a Student-t distribution with ν > 2 degrees of freedom (also to be estimated). To introduce a leverage effect
into the basic SV model (1), we assume that ϵt and ηt are N(0, 1) with corr(ϵt , ηt) = ρ. A reparameterization of the model
(similarly to Yu, 2005) yields

Xt = σXeht/2
ρ

σ
(ht+1 − φht) +

1 − ρ2wt

,

ht+1 = φht + σηt ,
(11)

where wt is N(0, 1) and corr(ηt , wt) = 0. Note that ϵt = ρηt +

1 − ρ2wt .

Table 4 reports the estimates, asymptotic standard errors, MCSEs for all parameters, the CPU time and the log-likelihood
values for the two univariate models, obtained from the two ML methods. For SML, we choose S = 128. The results for the
basic SV model are also reported for the purpose of comparison. First, it can be seen that both models can be quickly fitted
by LA-ML, with the resulting estimates and log-likelihood being almost identical to those resulting from SML. The CPU time
increases when the model specification becomes more complicated, as expected. However, the computational cost remains
low. Second, both estimation procedures suggest that the model extensions improve the fit over the basic model, judged

H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654 649

Table 4
Parameter estimates for LA-ML, SML andMCMC (WinBUGS) for three univariate SVmodels fitted to the S&P500
series. The numbers given in parentheses are standard errors for ML and posterior standard errors for MCMC.
The numbers in square brackets are MCSEs.

Basic Leverage-SV t-SV

LA-ML

φ 0.9836(0.0058) 0.9695(0.0058) 0.9872(0.0050)
σ 0.1932(0.0235) 0.2450(0.0252) 0.1706(0.0225)
σX 1.0458(0.1519) 1.1245(0.074) 0.9369(0.1527)
ρ −0.7846(0.048)
ν 9.1969(2.736)
CPU (s) 38.82 89.02 55.81
Log-lik −2504.13 −2465.320 −2497.37

SML (S = 128)

φ 0.9835(0.0058)[0.00030] 0.9695(0.0058)[0.00037] 0.9869(0.0051)[0.00012]
σ 0.1949(0.0235)[0.00227] 0.2449(0.0252)[0.00229] 0.1738(0.0231)[0.00095]
σX 1.0458(0.1524)[0.00034] 1.1247(0.075)[0.00047] 0.9382(0.1518)[0.00014]
ρ −0.7825(0.049)[0.00359]
ν 9.2617(2.753)[0.0952]
CPU (s) 43.28 743.23 125.03
Log-lik −2503.737[0.3937] −2465.236[0.4102] −2496.95[0.1319]

MCMC

φ 0.9845(0.0057)[0.00017] 0.9702(0.0058)[0.00022] 0.9883(0.0050)[0.00016]
σ 0.1921(0.0232)[0.00113] 0.242(0.0255)[0.00126] 0.1661(0.0232)[0.00118]
σX 1.055(0.6162)[0.00235] 1.127(0.0804)[0.00112] 0.9636(1.064)[0.00427]
ρ −0.7605(0.055)[0.00261]
ν 10.39(2.898)[0.1249]
CPU (s) 3013 3814 4681

by the increase in the log-likelihood value, which is larger than 3.32, the 1% critical value for the χ2 test. Also note that
the difference in the log-likelihood values is large compared to the MC uncertainty associated with the SML log-likelihood
values (square brackets). This is especially true for the SV model with the leverage effect, with the estimated ρ being nearly
−0.8. In the t-SV model, the estimated degrees of freedom is ν ≈ 9, providing some evidence of fat-tails in ϵt .

Table 4 reports Bayesian MCMC results obtained from WinBUGS (Spiegelhalter et al., 2003) which is one of the most
popular implementations of BUGS. Unlike ML methods, Bayesian procedures require prior distributions to be specified for
all parameters. For the basic SVmodel these priorswere taken fromMeyer and Yu (2000). Priormean and standard deviation
(in parenthesis) are φ: 0.86(0.11), σ : 0.12(0.050) and σX : 1 · 105 (3 · 106). For the leverage model we use a prior with ρ:
0(0.58) and for the t-SV model we use a prior with ν: 63(36.37). These are, with the exception of σX , slightly informative
priors, relative to the information content in the data. Following Meyer and Yu (2000) we let WinBUGS generate 100,000
MCMC iterations fromeachmodel, after having discarded the initial 10,000 iterations to ensure that the chain has reached its
equilibrium distribution. The remaining 100,000 samples pass the Geweke convergence test.When comparing the posterior
means in Table 4 produced by WinBUGS to our ML estimates, the main conclusion is that both sets of point estimates and
standard deviations correspond well. It is not clear whether the differences in the point estimates are due to skewness in
the posterior distribution or influence from the prior. The exception is σX for the t-SV, for which the SE exceeds that of the
ML estimates seven times. The explanation is that the posterior for σX is highly skewed, but also that there is considerable
MC error in the SE value reported in Table 4 for WinBUGS.

The CPU times for WinBUGS in Table 4 are in the range 40–80 times longer than those for ADMB-RE. Note, however,
that no attempt has been made to find the minimum number of iterations required for WinBUGS to satisfy the Geweke
convergence criterion. However, the fact that the MCSE of parameter estimates are comparable between ADMB-RE and
WinBUGS indicates that our choice of 100,000 MCMC iterations may be reasonable. The rationale being that, although the
two methods return different quantities (ML estimates for ADMB-RE and posterior means for WinBUGS) it is reasonable to
require that the Monte Carlo error around the target value be the same in order for the comparison to be ‘‘fair’’. The MCSE
for WinBUGS is calculated within a single MCMC chain, taking serial correlation into account.

To further illustrate the flexibility of our proposed algorithms and ADMB-RE, we fit a multivariate SV model to a dataset
that has been used in the literature using LA-ML and SML with S = 128. It consists of 945 daily observations on three
exchange rates from 01/10/1981 to 28/06/1985: Pound/Dollar, Deutschmark/Dollar and Yen/Dollar. The same data were
used in Harvey et al. (1994) and Liesenfeld and Richard (2006). As in BUGS, multivariate SV models can be fit with a dozen
lines on code in ADMB-RE. The multivariate model used here is taken from Harvey et al. (1994)

Xt = exp(0.5diag(ht))ϵt , ϵt ∼ N(0, Σ),
ht+1 = µ + Φ(ht − µ) + ηt , ηt ∼ N(0, Ση),

(12)

650 H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654

Table 5
Parameter estimates (Est.), asymptotic standard errors (SE) and MCSE for the multivariate SV model (12) fit with ADMB-RE to three exchange rate series:
Pound/Dollar (P), Deutschmark/Dollar (D) and Yen/Dollar (Y).

Σ µ Φ Ση

P D Y P D Y P D Y

LA-ML

P 1 −0.807 −0.675 −0.945 0.948 0 0 0.055 0 0
Est. D −0.807 1 0.813 −0.876 0 0.938 0 0 0.038 0

Y −0.675 0.813 1 −1.314 0 0 0.938 0 0 0.072

P 0 0.013 0.02 0.155 0.018 0 0 0.018 0 0
SE D 0.013 0 0.012 0.112 0 0.019 0 0 0.011 0

Y 0.02 0.012 0 0.147 0 0 0.02 0 0 0.021

CPU (s) 1421 Log-lik: −1771.13

SML (S = 128)

P 1 −0.807 −0.675 −0.943 0.949 0 0 0.055 0 0
Est. D −0.807 1 0.813 −0.874 0 0.94 0 0 0.038 0

Y −0.675 0.813 1 −1.312 0 0 0.942 0 0 0.067

P 0 0.013 0.019 0.157 0.018 0 0 0.017 0 0
SE D 0.013 0 0.012 0.115 0 0.019 0 0 0.01 0

Y 0.019 0.012 0 0.152 0 0 0.019 0 0 0.019

P 0 6e−04 8e−04 0.0039 0.0027 0 0 0.0037 0 0
MCSE D 6e−04 0 7e−04 0.0016 0 0.002 0 0 0.0017 0

Y 8e−04 7e−04 0 0.0018 0 0 0.0037 0 0 0.0055

CPU (s) 5510 Log-lik: −1770.07

where Xt = (X1,t , X2,t , X3,t)
′, ht = (h1,t , h2,t , h3,t)

′, Ση = diag{σ 2
η,1, σ

2
η,2, σ

2
η,3}, µ = (µ1, µ2, µ3)

′, Φ = diag{φ1, φ2, φ3},
and

Σ =

 1 σ12 σ13
σ12 1 σ23
σ13 σ23 1

,

is a correlation matrix. Table 5 shows the results for our two ML methods. The two sets of parameter estimates are close to
each other and appear reasonable. The estimated covariances in Σ are all statistically significantly different from zero, with
the correlations between Pound and Deutschmark and between Pound and Yen being negative and the correlation between
Deutschmark and Yen being positive. Indeed the importance of the correlations is also manifested in the log-likelihood
value of the multivariate model which substantially improves upon the sum of the likelihood values obtained under the
basic univariate SV model (not reported).

Note that thematricesΦ andΣη have been assumed to be diagonal, whichmeans that the components of ht are (a priori)
independent. From a technical point of view, there would be no problem to allow the non-zero off-diagonal terms in Φ

and Ση .

5.3. Fitting SV models to simulated data

To investigate the statistical efficiency of the proposed algorithms, we design two experiments. In the first experiment,
we generate 500 datasets, each with T = 500 observations, from the basic SV model (1) where we set (σ , φ, α) = (0.363,
0.9, −0.736) with α = 2(1 − φ) log σX . This parameter setting has been widely used in the literature to compare the
performance of alternative estimationmethods; see, for example Andersen and Sorensen (1996), Fridman andHarris (1998),
Sandmann and Koopman (1998), Andersen et al. (1999) and Bates (2006).We adopt this parameter setting to avoid the need
to compute these alternative estimates. Instead we only fit the basic SV model to each simulated sequence using LA-ML
and SML (with S = 128). The use of 500 simulation replica allows the bias and the root mean square error (RMSE) of the
estimators to be assessed. The simulation experiment is also conducted for the larger sample size T = 2000. Table 6 reports
the results and appends to Andersen et al.’s Table 7 and Bates’ Table 9.

Several conclusions may be drawn from Table 6. First, our LA-ML provides accurate estimates. In the case where the
sample size is T = 500, it is clearly more efficient than QML. Also it appears more efficient than GMM and EMM in terms
of σ . In the case where the sample size is T = 2000, it outperforms QML, GMM and EMM and performs nearly as well as
AML. Second, our SML stands out as one of the most efficient estimation procedures in both cases. When the sample size is
T = 2000, it provides the most efficient estimate for α and φ. We also experiment with larger values for S and the results
remain qualitatively unchanged.

Next, we conduct a similar simulation experiment (T = 2000 and 500 simulation replica) where we include the lever-
age model and t-SV model in addition to the basic SV model. This experiment is limited to our methods (LA-ML and SML
with S = 128). The parameter setting used is σX = 1, φ = 0.95, σ = 0.2, ρ = −0.6, ν = 8, which is close to the actual

H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654 651

Table 6
Comparison of different estimationmethodswith respect to bias and RMSE under the basic SVmodel (1) using simulated data. QML is the quasi MLmethod
of Harvey et al. (1994). GMM is the generalized method of moments of Andersen and Sorensen (1996). EMM is the efficient method of moments of Gallant
and Tauchen (1996) and implemented by Andersen et al. (1999). AML is the approximateMLmethod of Bates (2006). N-ML is the numerical ML of Fridman
and Harris (1998). MCL is the Monte Carlo likelihood method of Sandmann and Koopman (1998). LA-ML is our Laplace approximation based ML method
while SML is our simulated ML method.

T = 500 T = 2000
α φ σ α φ σ

True value −0.736 0.90 0.363 −0.736 0.90 0.363

Bias

QML −0.70 −0.09 0.09 −0.117 −0.02 0.20
GMM 0.12 0.02 −0.12 0.15 0.02 −0.08
EMM −0.17 −0.02 0.02 −0.57 −0.07 −0.004
AML −0.15 −0.02 0.02 −0.039 0.005 0.005
N-ML −0.13 −0.02 0.01 NA NA NA
MCL 0.14 0.0 0.01 NA NA NA
LA-ML −0.248 −0.033 0.025 −0.058 −0.008 0.0018
SML −0.130 −0.020 0.012 0.024 0.003 −0.016

RMSE

QML 1.60 0.22 0.27 0.46 0.06 0.11
GMM 0.59 0.08 0.17 0.31 0.04 0.12
EMM 0.60 0.08 0.20 0.224 0.030 0.049
AML 0.42 0.06 0.08 0.173 0.023 0.043
N-ML 0.43 0.05 0.08 NA NA NA
MCL 0.27 0.04 0.08 NA NA NA
LA-ML 0.632 0.085 0.099 0.195 0.026 0.043
SML 0.439 0.057 0.081 0.144 0.019 0.038

Table 7
Bias and RMSE (parenthesis) of estimators under three different SVmodels evaluated using simulated data
(500 simulation replica each of length T = 2000), for true parameter σX = 1, φ = 0.95, σ = 0.2,
ρ = −0.6, ν = 8. CPU times are averages across the 500 simulation replica.

Parameter Basic SV Leverage SV t-SV

LA-ML

σX 0.0038(0.0443) 0.0026(0.0378) 0.0055(0.0462)
σ 0.0102(0.0333) 0.0088(0.0257) 0.0116(0.0473)
φ 0.0070(0.0203) 0.0042(0.0133) 0.0070(0.0225)
ρ 0.0104(0.0717)
ν 0.3889(2.0770)

CPU (s) 57.12 103.55 66.43

SML (S = 128)

σX 0.0024(0.0445) 0.0023(0.0378) 0.0009(0.0464)
σ 0.0165(0.0336) 0.0095(0.0255) 0.0337(0.0620)
φ 0.0073(0.0188) 0.0038(0.0136) 0.0136(0.0282)
ρ 0.0062(0.0713)
ν 0.2056(2.0718)

CPU (s) 67.20 309.92 178.24

estimates obtained from daily financial returns. Table 7 reports the average bias and RMSE of each estimator, and the mean
of the CPU time in seconds.

Several conclusions may be drawn from Table 7. First, both methods continue to provide accurate estimates in the new
parameter setting. Second, both methods can estimate all the parameters in the SV model with the leverage effect and the
t-SV model. Third, the computational cost in all cases is not high.

6. Conclusion

This paper explores the use of AD and the Laplace approximation as a basis for obtaining numerical and simulated
ML estimation for univariate and multivariate SV models. Also based on the Laplace approximation, we develop simple
algorithms for obtaining the filtered, smoothed and forecasted latent variable. We show how the software ADMB-RE
facilitates the automatic implementation of these algorithms. The proposed techniques are flexible, robust, computationally
efficient, and statistically efficient. Applications of the proposed techniques using both simulated and actual data highlight
these advantages.

652 H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654

The present paper focuses on SV models, but the flexibility of the approach means that it could also be applied to the
conditional intensity processes (Bauwens andGalli, 2009),multinomial-multi-period probitmodels (Liesenfeld and Richard,
2010) and dynamic factor models for multivariate count data (Jung et al., 2010). However, for the purpose of illustrating the
various features of ADMB-RE the class of SV models is rich enough. Further, not all models contain latent variables, or in
some cases it may be possible to do the integration analytically. AD is nevertheless useful for obtaining the gradient of the
likelihood function (Bastani and Guerrieri, 2008).

While AD and the Laplace approximation facilitate the ML estimation of nonlinear and non-Gaussian state space models,
they can be employed to perform a Bayesian analysis aswell, in the spirit similar toMeyer et al. (2003). The idea is as follows.
First, we can approximate the likelihood function p(X|θ) by the Laplace approximation (3), making the augmentation of the
parameter vector redundant. Second, we can use a tailored MH algorithm to obtain a MCMC sample from the posterior of θ .
For a general survey of tailored MH approaches, see Chib (2001). To use a tailored MH algorithm we can first fit the model
by maximizing the approximated marginal likelihood (3). Denote by θ̂ the resulting estimate of θ , and by Σ̂θ̂ its covariance
matrix based on the observed Fisher information. TheMH-proposal density is taken to be amultivariate normal, centered at
the current parameter value, with covariancematrix Σ̂θ̂ . Note further that for each value of θ proposed by theMH-algorithm
the Laplace approximation is invoked via Eq. (3). This algorithm, which has been implemented in ADMB-RE (Fournier et al.,
2011), differs from that of Meyer et al. (2003) who used a sequential Laplace approximation.

Many efficientMCMCalgorithmshave beenproposed to estimate SVmodels in the econometrics literature (see e.g. Omori
et al., 2007). Chib et al. (2009) provided an interesting survey of the literature. We do not necessarily expect Bayesian
methods based on AD and the Laplace approximation to perform better than these efficient MCMC methods.

The programming effort required to build SV models in ADMB-RE and WinBUGS is comparable in the sense that both
languages require only that the user provides a probabilistic description of the model. All algorithmic and computational
details are hidden.We found (Table 4) that the time taken to obtain point estimates with associated standard errors is much
lower with ADMB-RE than with WinBUGS. It is, however, important to point out that after having run WinBUGS the full
posterior distribution is available. Bolker et al. (2013) provides a more detailed comparison of ADMB and BUGS in the field
of ecology, although that paper did not look at state-space models in particular.

Judging convergence can be very difficult in MCMC samplers, while for methods that calculate the MLE, the gradient
of the log likelihood function provides an explicit convergence measure. Since ADMB calculates the gradient by automatic
differentiation, to machine precision, this convergence measure is an important part of our proposed method. Further, our
method allows classical frequentist inference about the parameters (but not the volatilities)which is preferred over Bayesian
analysis by some researchers.

Acknowledgments

We would like to thank an Associate Editor, two referees, David Fournier, Tore Kleppe, Vita Petersone and Magne
Solheim. Skaug thanks his hosts at Singapore Management University for support and hospitality in a visit. Yu gratefully
acknowledges the financial support from Singapore Ministry of Education Academic Research Fund Tier 2 under the grant
number MOE2011-T2-2-096.

Appendix A. Supplementary material

The computer code used in the paper, both raw and compiled, can be found at http://www.mysmu.edu/faculty/yujun/
research.html.

Appendix B. ADMB commands, file structure, sample code

ADMB exists for the WINDOWS, LINUX and MAC platforms as a set of C++ libraries and a preprocessor that converts
the ADMB code (e.g. Fig. 1) into C++. The C++ compiler is not part of ADMB, and must be installed separately. A model
implemented inADMB consists of three separate files that share the base name (here taken to be basicSV), butwith different
extensions:

.tpl is known as the ‘‘template file’’, and specifies the likelihood function in terms of θ and h using a language that resembles
C++. An example is given in Fig. 1.

.dat contains the data needed by the model, including dimensions of arrays.

.pin contains initial values of θ used in the numerical optimization of the integrated likelihood.

The template file basicSV.tpl is compiled by the command

admb -r basicSV

into an executable file basicSV.exe (underWINDOWS) using a C++ compiler, where -r is a command line option invoking the
latent variable module. When executed to perform ML estimation, basicSV.exe produces several output files. We here only
discuss basicSV.stdwhich contains point estimates and standard errors for θ and h (smoothed values). In additionADMB-RE
has the ability to calculate the standard error of any user specified function w(θ,h), using the delta-method.

http://www.mysmu.edu/faculty/yujun/research.html
http://www.mysmu.edu/faculty/yujun/research.html
http://www.mysmu.edu/faculty/yujun/research.html
http://www.mysmu.edu/faculty/yujun/research.html
http://www.mysmu.edu/faculty/yujun/research.html
http://www.mysmu.edu/faculty/yujun/research.html
http://www.mysmu.edu/faculty/yujun/research.html
http://www.mysmu.edu/faculty/yujun/research.html

H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654 653

Fig. 1 shows the template file which implements the basic SV model (1). Taking the logarithm (and changing the sign) of
the joint likelihood function p(X, θ |h)p(h|θ) we obtain the objective function

− [log {p(h1; σ , φ)}] −

T

t=2

log {p(ht |ht−1; φ, σ)}

−

T

t=1

log {p(Xt |ht; σX)}

. (B.1)

The three terms in square brackets are specified separately in the template file. It should be noted that the Hessian matrix
Ω is banded under this model, i.e. Ωij = 0, whenever |i − j| > 1. This special structure can be exploited by ADMB-RE both
in the manipulation of the matrix Ω and in the derivative calculations involved in the evaluation of Ω itself. (In order for
ADMB-RE to recognize this structure, some directives must be added to the code in Fig. 1.)

An ADMB program is compiled and run from a command line prompt, but an IDE (Integrated Developer Interface)
exists (Fournier et al., 2011). To do the maximum likelihood estimation based on the Laplace approximation one gives the
command:

basicSV -ilmn 5

where the option -ilmn 5 invokes a limited-memory Newtonmethod for the optimization problem (4). For high dimensional
problems this optimization algorithm is more efficient than the quasi-Newton method used as the default in ADMB-RE. To
perform the simulated maximum likelihood estimation, we use the command

basicSV -ilmn 5 -is 64

where -is 64 specifies S = 64 in the simulated maximum likelihood method.

Appendix C. ADMB code to estimate flexible SV models

To fit the t-SVmodel, the only required change is in the conditional distribution Xt |ht . Hence, the only change we need to
make in the code in Fig. 1 is to introduce a new parameter nu in the PARAMETER_SECTION, and to replace the last for-loop
with

for (i=1;i<=n;i++)
{

dvariable sigma_X = sigma_X*exp(0.5*h(i));
dvariable t = X(i)/sigma_X;
g -= gammln(0.5*(nu+1.0)) - gammln(0.5*nu) - 0.5*log(nu) - 0.5723649429;
g -= -log(sigma_X) - (nu+1.0)/2*log(1+square(t)/nu);

}

Here, gammln is the log-gamma function.
To fit the leverage SV model, the first line in (11) is coded in ADMB-RE as:

g -= -0.5*log_2pi - 0.5*log(1-square(rho))
- 0.5*rho*(rho*square(X(i))*exp(h(i))/sigma_X)
+ rho*square((h(i+1)-phi*h(i))/sigma)
- 2*X(i)*(h(i+1)-phi*h(i))*(1-square(rho))/(sigma*sigma_X*exp(0.5*h(i)))
- 0.5*h(i) -log(sigma_X) - 0.5*square(X(i)/sigma_X)/exp(h(i));

References

Andersen, T.G., Bollerslev, T., Diebold, F.X., Ebens, H., 2001. The distribution of realized stock return volatility. Journal of Financial Economics 61, 43–76.
Andersen, T., Chung, H., Sorensen, B., 1999. Efficient method of moments estimation of a stochastic volatility model: a Monte Carlo study. Journal of

Econometrics 91, 61–87.
Andersen, T., Sorensen, B., 1996. GMM estimation of a stochastic volatility model: a Monte Carlo study. Journal of Business and Economic Statistics 14,

329–352.
Bastani, H., Guerrieri, L., 2008. On the application of automatic differentiation to the likelihood function for dynamic general equilibrium models.

In: Bischof, C.H., Bucker, H.M., Hovland, P., Naumann, U., Utke, J. (Eds.), Advances in Automatic Differentiation. In: Lecture Notes in Computational
Science and Engineering, vol. 64. Springer, Berlin, Heidelberg, pp. 303–313.

Bates, D., 2006. Maximum likelihood estimation of latent affine processes. Review of Financial Studies 19, 909–965.
Bauwens, L., Galli, F., 2009. Efficient importance sampling for ML estimation of SCD models. Computational Statistics and Data Analysis 53, 1974–1992.
Bolker, B.M., Gardner, B., Maunder, M., Berg, C.W., Brooks, M., Comita, L., Crone, E., Cubaynes, S., Davies, T., Valpine, P., Ford, J., Gimenez, O., Kery, M., Kim,

E.J., Lennert-Cody, C., Magnusson, A., Martell, S., Nash, J., Nielsen, A., Regetz, J., Skaug, H.J., Zipkin, E.F., 2013. Strategies for fitting nonlinear ecological
models in R, AD Model Builder, and BUGS. Methods in Ecology and Evolution 4, 501–512.

Chib, S., 2001. Markov chain Monte Carlo methods: computation and inference. In: Heckman, J.J., Leamer, E. (Eds.), Handbook of Econometrics, vol. 5.
North-Holland, Amsterdam, pp. 3569–3649.

Chib, S., Omori, Y., Asai, M., 2009. Multivariate stochastic volatility. In: Andersen, T.G., Davis, R.A., Kreiss, Jens-Peter, Mikosch., T. (Eds.), Handbook of
Financial Time Series. Springer-Verlag, Berlin, pp. 365–400.

Durbin, J., Koopman, S.J., 1997. Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika 84, 669–684.
Durham, G.S., 2006. Monte Carlo methods for estimating, smoothing, and filtering one and two-factor stochastic volatility models. Journal of Econometrics

133, 273–305.

http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref1
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref2
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref3
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref4
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref5
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref6
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref7
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref8
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref9
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref10
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref11

654 H.J. Skaug, J. Yu / Computational Statistics and Data Analysis 76 (2014) 642–654

Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder,M.N., Nielsen, A., Sibert, J., 2011. ADModel Builder: using automatic differentiation
for statistical inference of highly parameterized complex nonlinear models. Optimization Methods & Software 27, 233–249.

Fridman, M., Harris, L., 1998. A maximum likelihood approach for non-Gaussian stochastic volatility models. Journal of Business and Economic Statistics
16, 284–291.

Gallant, A., Tauchen, G., 1996. Which moments to match? Econometric Theory 12, 657–681.
Griewank, A., Corliss, G. (Eds.), 1991. Differentiation of Algorithms. SIAM, Philadelphia.
Harvey, A.C., Koopman, S.J., 1992. Diagnostic checking of unobserved components time series models. Journal of Business and Economic Statistics 10,

377–389.
Harvey, A.C., Ruiz, E., Shephard, N., 1994. Multivariate stochastic variance models. Review of Economic Studies 61, 247–264.
Jung, R.C., Liesenfeld, R., Richard, J.F., 2010. Dynamic factor models for multivariate count data: an application to stock-market trading activity. Journal of

Business and Economic Statistics 29 (1), 73–85.
Kass, R.E., Steffey, D., 1989. Approximate Bayesian inference in conditionally independent hierarchicalmodels (parametric empirical Bayesmodels). Journal

of the American Statistical Association 84, 717–726.
Kleppe, T., Skaug, H., 2012. Fitting general stochastic volatility models using laplace accelerated sequential importance sampling. Computational Statistics

and Data Analysis 56 (11), 3105–3119.
Lee, K.M., Koopman, S.J., 2004. Estimating stochastic volatility models: a comparison of two importance samplers. Studies in Nonlinear Dynamics and

Econometrics 8, 1–15.
Li, J., 2013. An unscented Kalman smoother for volatility extraction: evidence from stock prices and options. Computational Statistics and Data Analysis

58, 15–26.
Liesenfeld, R., Richard, J.F., 2003. Univariate and multivariate stochastic volatility models: estimation and diagnostics. Journal of Empirical Finance 10,

505–531.
Liesenfeld, R., Richard, J.F., 2006. Classical and Bayesian analysis of univariate and multivariate stochastic volatility models. Econometric Reviews 25,

335–360.
Liesenfeld, R., Richard, J.F., 2010. Efficient estimation of probit models with correlated errors. Journal of Econometrics 156 (2), 367–376.
Martino, S., Aas, K., Lindqvist, O., Neef, L.R., Rue, H., 2011. Estimating stochastic volatilitymodels using integrated nested Laplace approximations. European

Journal of Finance 17 (7), 487–503.
Meyer, R., Fournier, D.A., Berg, A., 2003. Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter.

Econometrics Journal 6, 408–420.
Meyer, R., Yu, J., 2000. BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal 3, 198–215.
Omori, Y., Chib, S., Shephard, N., Nakajima, J., 2007. Stochastic volatility with leverage: fast likelihood inference. Journal of Econometrics 140, 425–449.
Sandmann, G., Koopman, S.J., 1998. Maximum likelihood estimation of stochastic volatility models. Journal of Econometrics 63, 289–306.
Shephard, N., Pitt, M.K., 1997. Likelihood analysis of non-Gaussian measurement time series. Biometrika 84, 653–667.
Spiegelhalter, D.J., Thomas, A., Best, N.G., Gilks, W.R., 2003. WinBUGS User Manual (Version 1.4). MRC Biostatistics Unit, Cambridge, UK.
Skaug, H.J., 2002. Automatic differentiation to facilitatemaximum likelihood estimation in nonlinear random effects models. Journal of Computational and

Graphical Statistics 11, 458–470.
Skaug, H.J., Fournier, D., 2006. Automatic approximation of themarginal likelihood in non-Gaussian hierarchical models. Computational Statistics and Data

Analysis 51, 699–709.
Yu, J., 2005. On leverage in a stochastic volatility model. Journal of Econometrics 127, 165–178.
Yu, J., Meyer, R., 2006. Multivariate stochastic volatility models: Bayesian estimation and model comparison. Econometric Reviews 25, 361–384.

http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref12
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref13
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref14
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref15
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref16
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref17
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref18
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref19
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref20
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref21
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref22
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref23
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref24
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref25
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref26
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref27
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref28
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref29
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref30
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref31
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref33
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref34
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref35
http://refhub.elsevier.com/S0167-9473(13)00358-7/sbref36

	A flexible and automated likelihood based framework for inference in stochastic volatility models
	Citation

	A flexible and automated likelihood based framework for inference in stochastic volatility models
	Introduction
	Maximum likelihood estimation
	Smoothing, filtering and predicting latent variables
	Automatic differentiation and ADMB-RE
	Performance of the proposed algorithms
	Fitting the basic SV model to real data
	Flexible modeling
	Fitting SV models to simulated data

	Conclusion
	Acknowledgments
	Supplementary material
	ADMB commands, file structure, sample code
	ADMB code to estimate flexible SV models
	References

