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Abstract

Based on the Girsanov theorem, this paper obtains the exact finite sample
distribution of the maximum likelihood estimator of structural break points in
a continuous time model. The exact finite sample theory suggests that, in em-
pirically realistic situations, there is a strong finite sample bias in the estimator
of structural break points. This property is shared by least squares estimator
of both the absolute structural break point and the fractional structural break
point in discrete time models. A simulation-based method based on the indi-
rect estimation approach is proposed to reduce the bias both in continuous time
and discrete time models. Monte Carlo studies show that the indirect estimation
method achieves substantial bias reductions. However, since the binding function
has a slope less than one, the variance of the indirect estimator is larger than
that of the original estimator.
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1 Introduction

Statistical inference of structural breaks has received a great deal of attention in both

econometrics and statistics literature over the last several decades. Bhattacharya (1994)

provides a review of the statistics literature on the problem while Perron (2006) gives a

review of the econometrics literature on the same problem. There are also several books

devoted to this topic of research, including Csörgő and Horváth (1997), Chen and Gupta

(2011). Both strands of the literature have addressed the problem in many aspects, from

estimation, testing to computation, from frequentist’s methods to Bayesian methods,

from one structural break to multiple structural breaks, from univariate settings to mul-

tivariate settings. In addition to its statistical implications, the economic and financial

implications of structural break problem have also been extensively studied; see, for

example Hansen (2001) and Andreou and Ghysels (2009) for excellent reviews.

In terms of estimating structure break points, the literature has developed asymp-

totic theory for estimating the (fractional) structural break point (i.e. the (absolute)

structural break point divided by the total sample size), including consistency, rates

of convergence, and limit distributions; see, for example, Yao (1987) and Bai (1994).

Interestingly and rather surprisingly, the finite sample theory for estimating structure

break points seems to have received little attention in the literature. Is this lack of

attention due to the good approximation of the asymptotic distribution to the finite

sample distribution in empirically realistic cases and hence there is no need to study

the finite sample theory? In particular, is there any bias in the traditional estimator of

structural break points? Simulations provided in Yao (1987) seem to suggest that the

asymptotic distribution is not necessarily close to the finite sample distribution while

simulations provided in Bai (1994) seem to suggest there is little bias in the traditional

estimator when the true break point is in the middle of the sample. Or is the lack of

attention due to the diffi culty in studying the finite sample theory and in approximating

the bias, even in the first order?

This paper systematically investigates the finite sample properties and the bias

problem in the estimation of structural break points. To the best of our knowledge, our

study is the first systematic analysis of the finite sample issues in the literature. We

develop the finite sample distribution of the maximum likelihood (ML) estimator of the

structural break point in a continuous time model and relate the continuous time model

to the discrete time models studied in the literature. We also document the bias both in

the continuous time and the discrete time models, and propose an indirect estimation

procedure to alleviate the bias via simulations.
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Our study makes several contributions to the literature on structural breaks. First,

we obtain the finite sample distribution of the ML and least squares (LS) estimators

in some simple models and then obtain the bias from the finite sample distribution.

It is shown that the bias can be substantial in the ML/LS estimators of the fractional

structural break point and the absolute structural break point. The further the frac-

tional structural break point away from 50%, the more the bias. When the fractional

structural break point is smaller (bigger) than 50%, the bias is positive (negative).

Second, we develop a novel approach to obtaining the finite sample distribution.

Since the likelihood function and the sum of squared residuals are not differentiable

with respect to break point in the discrete time models, the traditional approaches of

obtaining the finite sample theory are not feasible. By using the Girsanov theorem, we

obtain the likelihood function in a continuous time model with a structural break and

then obtain the finite sample distribution of the ML estimator.

Third, we propose to do bias reduction using the indirect estimation procedure.

One standard method for bias reduction is to obtain an analytical form to approximate

the bias and then bias-correct the original estimator via the analytic approach as in

Kendall (1954), Nickell (1981), Yu (2012) for various types of autoregressive models.

However, it is diffi cult to use the analytic approach in this context as the bias formula is

diffi cult to obtain. It is shown that the indirect estimation procedure, without knowing

the analytical form to approximate the bias, achieves substantial bias reduction. How-

ever, since the binding function has a slope less than one, the variance of the indirect

estimator is larger than that of the original estimator. The primary advantage of the

indirect estimation procedure lies in its merit in calibrating the binding function via

simulations and avoiding the need to obtain an analytic expression for the bias func-

tion. Since it is easy to simulate the model and estimate the break point parameter,

the indirect estimation is a convenient method for reducing the bias in the estimation

of the structural break points.

The rest of the paper is organized as follows. In Section 2, we first briefly review

the literature and then develop a continuous time model with a structural break and

discuss the finite sample properties of the ML estimator of the structural break point.

Section 3 connects the continuous time model to the discrete time models previously

considered in the literature. Section 4 introduces the indirect estimation technique and

applies it to both the continuous time and the discrete time models with structural

break points. In Section 5, Monte Carlo experiments are designed to obtain the bias

of traditional estimators in models with structural breaks. We also compare the finite

sample performance of the indirect estimation estimate with that of the traditional
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estimation methods. Sections 6 concludes.

2 Bias in a Continuous Time Model

2.1 A literature review and motivations

The literature on estimating structural break points is extensive. A partial list of

contributions in statistics include Chernoff and Zacks (1964), Hinkley (1969, 1970),

Bhattacharya and Brockwell (1976), Ibragimov and Has’minskii (1981), Hawkins et al.

(1986), Bhattacharya (1987), and Yao (1987). A key reference is Hinkley (1970) that

develops not only the ML method for estimating the absolute break point but also its

distributional behavior as the sample sizes before and after the change-point tend to

infinity. In econometrics, Jushan Bai and Pierre Perron have made many contributions

to the literature through their individual work as well as their collaborative work; see

for example, Perron (1989), Bai (1994, 1995, 1997a, 1997b, 2010), Bai and Perron

(1998) and Bai et al. (1998). For example, Bai (1994) extends the earlier literature by

proposing the least squares (LS) method to estimate the break point in linear processes

and develop its large sample theory. Bai and Perron (1998) uses the LS method to

estimate linear models with multiple structural breaks.

A simplified model considered in Hinkley (1970) is

Yt =

{
µ+ εt if t ≤ k0

(µ+ δ) + εt if t > k0

, (1)

where t = 1, . . . , T , εt is a sequence of independent and identically distributed (i.i.d.)

continuous random variables with zero mean, k0 is the true value of the absolute struc-

tural break point k, constant µ measures the mean of Yt before break and δ is the size of

structural break. Let the probability density function (pdf) of Yt be f(Yt, µ) for t ≤ k0

and f(Yt, µ + δ) for t > k0. And denote τ 0 the true value of the fractional structural

break point τ , i.e., τ 0 = k0/T . Under the assumption that the form of function f

and parameters µ and δ are all known and at least one observation comes from each

distribution, the ML estimator of k0 is defined as

k̂ML = arg max
k=1,...,T−1

{
k∑
t=1

log f(Yt, µ) +
T∑

t=k+1

log f(Yt, µ+ δ)

}
. (2)

The corresponding estimator of τ is τ̂ML = k̂ML/T . Hinkley (1970) showed that k̂ML−k0

converges in distribution as the sample sizes before and after the break point tend to
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infinity. He also pointed out that the distribution of k̂∞ − k0, where k̂∞ denotes k̂ML

with infinite sample, has no closed-form expression, and gave a numerical method to

compute the distribution. However, this numerical scheme is diffi cult to handle for

small δ since the distribution becomes rather dispersive when δ is small. This diffi culty

motivates Yao (1987) to develop a limit theory as δ → 0.

Letting δ → 0, Yao (1987) derived a sequential limit distribution as

δ2I (µ)
(
k̂∞ − k0

)
d→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
, (3)

where I (µ) is the Fisher information of the density function f(y, µ), W (u) is a two-

sided Brownian motion which will be defined below, and d→ denotes convergence in

distribution. Since I (µ) depends on the error’s distribution, no invariance principle

applies to the sequential limit distribution. Yao (1987) also derived the pdf of the

sequential limit distribution as

g(x) = 1.5e|x|Φ
(
−1.5|x|0.5

)
− 0.5Φ

(
−0.5|x|0.5

)
,

and its cdf as

G(x) = 1 +

√
x

2π
e−x/8 − (x+ 5)Φ

(
−0.5

√
x
)
/2 + 1.5exΦ

(
−1.5

√
x
)
, for x > 0,

G(x) = 1−G(−x) if x ≤ 0, where Φ(x) is the cdf of the standard normal distribution.

For the same model as in Equation (1), Hawkins et al. (1986) and Bai (1994) studied

the LS estimators of k and τ with unknown µ and δ. The LS estimator of k takes the

form of

k̂LS = arg min
k=1,...,T−1

S2
k = arg max

k=1,...,T−1
V 2
k , (4)

where S2
k =

k∑
t=1

(
Yt − Y k

)2
+

T∑
t=k+1

(
Yt − Y

∗
k

)2

with Y k (Y
∗
k) being the sample mean of

the first k (last T − k) observations and V 2
k = T (T−k)

T 2

(
Y
∗
k − Y k

)2

. The corresponding

estimator of τ is τ̂LS = k̂LS/T . Hawkins et al. (1986) showed that Tα (τ̂LS − τ 0)
p→

0 for any α < 1/2. Bai (1994) improved the rate of convergence by showing that

τ̂LS − τ 0 = Op

(
1
Tδ2

)
. This convergence rate also applies to τ̂ML when εt is an i.i.d.

Gaussian sequence. Because, in the case where εt ∼ i.i.d.N(0, σ2), the LS estimator are

equivalent to the ML estimator with unknown µ and δ, whose limit theory, as argued in

Hinkley (1970), is the same as that of the ML estimator when µ and δ are known as long
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as µ and δ can be consistently estimated. While τ̂LS is consistent, k̂LS is inconsistent

since k̂LS − k0 = Op

(
1
δ2

)
.

To develop the limit distribution with an invariance principle, δ has to go to zero

as T → ∞, as shown in Bai (1994). This kind of limit theory is particularly useful in
constructing conference interval when the size of the break is small. Let δT be the size

of break that depends on T . Bai showed that if εt ∼i.i.d.(0, σ2), δT → 0 and
√
TδT√
log T
→∞

as T →∞,

T (δT/σ)2 (τ̂LS − τ 0)
d→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
. (5)

When εt is normally distributed, the Fisher information I (µ) turns out to be σ−2.

Therefore, the simultaneous asymptotic distribution in Bai (1994) is the same as the

sequential asymptotic distribution in Yao (1987). Bai (1994) also derived the limit

distribution when εt is a short memory ARMA process, which is the same as shown

in Equation (5) by replacing σ2 with the long-run variance of εt. To obtain the limit

distribution, Bai (1994) examined the behavior of normalized objective function in the

small neighborhood of the true break point k0 such that k = [k0 + v (δT )−2] where v

varies in a bounded interval. This is equivalent to the local asymptotic theory of Le

Cam (1960).

A study which is closest to ours is Ibragimov and Has’minskii (1981). Ibragimov

and Has’minskii analyzed a simple continuous time model

dX(t) =
1

ε
S(t− τ 0)dt+ dB(t) (6)

where t ∈ [0, 1], S(t − τ 0) is a non-stochastic drift term with discontinuity at time τ 0

(i.e. τ 0 is the structural break point), and ε is a small parameter. Let limx→0+ S(x)−
limx→0− S(x) = δ denote the size of the break. Following the development of the local

asymptotic theory of Le Cam, Ibragimov and Has’minskii (1981), under the assumption

that a continuous record is available, examined the behavior of the normalized likelihood

ratio in the small neighborhood of the true break point τ 0 such that τ = τ 0 + ε2u and

showed that as ε→ 0,

δ2(τ̂ML − τ 0)
d→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
. (7)

Figure 1 plots the pdf of the limit distribution given in Yao (1987), Bai (1994), and

Ibragimov and Has’minskii (1981). For the purpose of comparison, we also plot the pdf

of the standard normal distribution. It can be seen that both distributions are symmet-

ric, suggesting no bias in the limit distribution when estimating the fractional break
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Figure 1: The pdfs of arg max
u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
and a standard norm distribution

point using ML/LS. However, relative to the standard normal distribution, the limit

distribution has much fatter tails and a much higher peak. The symmetric property is

a result of using the local asymptotic approach to develop the limit distribution in all

cases. This property does not help us to understand the finite sample bias in estimating

the break points.

The asymptotic arguments above do not take account of asymmetry in the sample

before and after the break. To capture the influence of asymmetric information before

and after the break, a continuous time model is a natural choice. As long as τ 0 6= 1/2,

the information contained by observations over the time interval [0, τ 0] and those over

the time interval [τ 0, 1] are different, even if the continuous records are available and

there are infinite number of observations before and after the break. This is because in

continuous time models the time span also conveys useful information.

There is another motivation to consider a continuous time model. To study the

finite sample bias for traditional estimators, a typical approach is to consider the first

order condition to an extremum problem that defines the associated estimator; see for

example, Rilstone et al. (1996) and Bao and Ullah (2007). While this approach covers

many popular models, it is not applicable to the problem of estimating the structural

break point in discrete time models, regardless if ML or LS is used. This is because the

objective functions in (2) and (4) are not differentiable and hence no first order condition

is available for developing high order expansions. Using continuous time models we can

7



avoid this diffi culty.

2.2 A continuous time model

The continuous time model considered in the paper is

dX(t) = S(t− τ 0)dt+ σdB(t), (8)

with t ∈ [0, 1], where S(t − τ 0) is a non-stochastic drift term with discontinuity at

time τ 0. Let limx→0+ S(x) − limx→0− S(x) = δ denote the size of the break. Different

from Model (6) studied in Ibragimov and Has’minskii (1981), we let ε = 1, not ε→ 0.

In addition, we have σ in the diffusion function, capturing the noise level. Hence the

signal-to-noise ratio in our model is δ/σ, which is a constant, unlike what was assumed

in Ibragimov and Has’minskii (1981).

Furthermore, in order to establish a link to the discrete time model in Yao (1987)

and Bai (1994), we consider the case in which S(t− τ 0) only takes two values such that

S(t− τ 0) =

{
µ if t ≤ τ 0

µ+ δ if t > τ 0

, (9)

with t ∈ [0, 1], where τ 0 is the unknown true break point, and τ 0 ∈ [α, β] with 0 < α <

β < 1. Consequently Model (8) can be rewritten as

dX(t) = (µ+ δ1[t>τ0])dt+ σdB(t). (10)

Following Le Cam (1960) and Ibragimov and Has’minskii (1981), we obtain the

exact log-likelihood ratio of Model (10) via the Girsanov Theorem1

log

(
dPτ
dPτ0

)
=

∫ 1

0

δ

σ

(
1[t>τ ] − 1[t>τ0]

)
dB(t)− 1

2

∫ 1

0

δ2

σ2

(
1[t>τ ] − 1[t>τ0]

)2
dt.

The ML estimator of τ 0 is

τ̂ML = arg max
τ∈(0,1)

log

(
dPτ
dPτ0

)
.

When τ ≤ τ 0, we have

log

(
dPτ
dPτ0

)
=

δ

σ

∫ 1

0

1[τ<t≤τ0]dB(t)− δ2

2σ2

∫ 1

0

1[τ<t≤τ0]dt

=
δ

σ

∫ τ0

τ

dB(t)− δ2

2σ2

∫ τ0

τ

dt

=
δ

σ
(B(τ 0)−B(τ))− δ2

2σ2
(τ 0 − τ).

1See also Phillips and Yu (2009) for a recent usage of the Girsanov Theorem in estimating continuous
time models.
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When τ > τ 0, we have

log

(
dPτ
dPτ0

)
= − δ

σ

∫ 1

0

1[τ0<t≤τ ]dB(t)− δ2

2σ2

∫ 1

0

1[τ0<t≤τ ]dt

= − δ
σ

∫ τ

τ0

dB(t)− δ2

2σ2

∫ τ

τ0

dt

=
δ

σ
(B(τ 0)−B(τ))− δ2

2σ2
(τ − τ 0).

Thus, we can write the exact log-likelihood ratio as

log

(
dPτ
dPτ0

)
=
δ

σ
(B(τ 0)−B(τ))− δ2

2σ2
|τ − τ 0|. (11)

This implies that the ML estimator of τ 0 is

τ̂ML = arg max
τ∈(0,1)

{
δ

σ
(B(τ 0)−B(τ))− δ2

2σ2
|τ − τ 0|

}
, (12)

which leads to

τ̂ML − τ 0 = arg max
u∈(−τ0,1−τ0)

{
δ

σ
(B(τ 0)−B(τ 0 + u))− δ2

2σ2
|u|
}
.

We now define a two-sided Brownian motion as

W (u) =

{
W1 (−u) = B(τ 0)−B(τ 0 − (−u)) if u ≤ 0

W2 (u) = B(τ 0)−B(τ 0 + u) if u > 0
, (13)

whereW1 (s) = B(τ 0)−B(τ 0− s) andW2 (s) = B(τ 0)−B(τ 0 + s) are two independent

Brownian motions as they are composed by increments of the Brownian motion B(·)
before and after the time τ 0 respectively with W1 (0) = W2 (0) = 0.

We then have

τ̂ML − τ 0 = arg max
u∈(−τ0,1−τ0)

{
δ

σ
W (u)− δ2

2σ2
|u|
}

d
= arg max

u∈(−τ0,1−τ0)

{
W

(
u

(
δ

σ

)2
)
− 1

2

∣∣∣∣∣u
(
δ

σ

)2
∣∣∣∣∣
}

d
=

(
δ

σ

)−2

arg max
u∈
(
−τ0( δσ )

2
,(1−τ0)( δσ )

2
)
{
W (u)− |u|

2

}
,

where d
= denotes equivalence in distribution. Consequently, we obtain(

δ

σ

)2

(τ̂ML − τ 0)
d
= arg max

u∈
(
−τ0( δσ )

2
,(1−τ0)( δσ )

2
)
{
W (u)− 1

2
|u|
}
, (14)
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the exact distribution of the ML estimator τ̂ML with a continuous record being available,

which is also called in this paper the exact finite sample distribution of τ̂ML in the sense

that it is obtained with a finite time span before and after the break, which is (0, τ 0]

and [τ 0, 1) respectively.

It seems that the finite sample distribution given in Equation (14) is similar to

the limit distributions given in Yao (1987), Bai (1994) and Ibragimov and Has’minskii

(1981) listed in (3), (5) and (7), respectively. However, there is one critical difference

between them. The limit distributions in (3), (5) and (7) correspond to the location

of the extremum of W (u) − 1
2
|u| over the interval of (−∞,∞). Since the interval

is symmetric about zero, the limit distribution is symmetric about zero. However,

the finite sample distribution in (14) corresponds to the location of the extremum of

W (u)− 1
2
|u| over the interval of

[
−τ 0

(
δ
σ

)2
, (1− τ 0)

(
δ
σ

)2
]
, therefore depends on the true

value of break point τ 0. Only when τ 0 is 50%, that is the true break point is exactly at

the middle,
[
−τ 0

(
δ
σ

)2
, (1− τ 0)

(
δ
σ

)2
]
becomes

(
δ
σ

)2
[−50%, 50%] and symmetric about

zero. In this case the finite sample distribution will be symmetric about zero. If τ 0 is

not 50% (either smaller or bigger than 50%), the interval and hence the finite sample

distribution will be asymmetric. It is easy to see that the finite sample distribution in

(14) suggests upward bias when τ 0 < 1/2 and downward bias when τ 0 > 1/2, and the

further τ 0 away from 1/2, the larger the bias.

Because of this difference in the interval to locate the extremum, we cannot obtain

the pdf or cdf of the finite sample distribution in closed-form. As a result, we obtain

the pdf by simulations as for the case of the Dickey-Fuller distributions.

Figure 2 plots the densities of τ̂ML given in Equation (14) when τ 0 = 0.4, 0.5, 0.6

(the left, middle and right panel respectively) and the signal-to-noise ratio (δ/σ) is 1.

Figure 3-6 plots the densities of τ̂ML − τ 0 when the signal-to-noise ratio is 2, 4, 6, 8.

There are several interesting observations from these plots. First and most importantly,

when τ 0 = 50%, the densities of τ̂ML − τ 0 is always symmetric about zero, no matter

what value the signal-to-noise ratio takes. As a result, there is no finite sample bias

in this case. However, when τ 0 is not 50%, the density is not symmetric any more. In

particular, if τ 0 is less (larger) than 50%, the density is positively (negatively) skewed

and there is a upward (downward) bias in τ̂ML. The smaller the signal-to-noise ratio,

the larger the bias. The further τ 0 away from 50%, the larger the bias, although this

feature does not show up in the graphs.

Second, there are tri-modality in the finite sample distribution when the signal-to-

noise ratio is low (for example when δ/σ = 1, 2, 4). The true value is one of the three

modes while the two boundary points (0 and 1) are the other two modes. For very small

10
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Figure 2: The density of τ̂ML given in Equation (14) when τ 0 = 0.4, 0.5, 0.6 (the left,
middle and right panel respectively) and the signal-to-noise ratio (δ/σ) is 1. In each
panel, the verticle line represents the true value of τ 0.
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Figure 3: The density of τ̂ML given in Equation (14) when τ 0 = 0.4, 0.5, 0.6 (the left,
middle and right panel respectively) and the signal-to-noise ratio (δ/σ) is 2. In each
panel, the verticle line represents the true value of τ 0.

signal-to-noise ratio, for example δ/σ = 1, the highest mode is not the true value, but

the two boundary points when τ 0 = 50%; it becomes the left (right) boundary point

if τ 0 is smaller (larger) than 50%. However, the highest mode moves to the true value

when the signal-to-noise ratio increases in all cases with δ/σ ≥ 2. It is also found that,

the mode on the left boundary point is always larger (smaller) than that on the right

boundary point when τ 0 is smaller (larger) than 50%. When the signal-to-noise ratio

is large enough, tri-modaility becomes unique modality. In this case, the shape of the

distribution is similar to that in Figure 1 but is more peaked at the mode.
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Figure 4: The density of τ̂ML given in Equation (14) when τ 0 = 0.4, 0.5, 0.6 (the left,
middle and right panel respectively) and the signal-to-noise ratio (δ/σ) is 4. In each
panel, the verticle line represents the true value of τ 0.
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Figure 5: The density of τ̂ML given in Equation (14) when τ 0 = 0.4, 0.5, 0.6 (the left,
middle and right panel respectively) and the signal-to-noise ratio (δ/σ) is 6. In each
panel, the verticle line represents the true value of τ 0.
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Figure 6: The density of τ̂ML given in Equation (14) when τ 0 = 0.4, 0.5, 0.6 (the left,
middle and right panel respectively) and the signal-to-noise ratio (δ/σ) is 8. In each
panel, the verticle line represents the true value of τ 0.

3 Bias in a Discrete Time Model

As reviewed in Section 2, Hinkley (1970), Yao (1987) and Bai (1994) examined the

change-in-mean model in the discrete time context.2 Since the objective functions

are not differentiable with respect to k, it is very diffi cult to obtain the finite sample

distribution in the discrete time model. Yao (1987) and Bai (1994) developed the large

sample properties under the additional assumptions about the size of the structural

break δT . In this Section, we will study the finite sample properties and the bias of

τ̂ML and k̂ML in a discrete time model.

Let us start with the continuous time model specified in Equation (10). Splitting

the interval [0, 1] into 1/h subintervals so that each interval has a size of h, we then

get T = 1/h observations of the stochastic process X (·) at T equally spaced points

{th}Tt=1, and have the following exact discrete time representation:

Xth −X(t−1)h =

{
µh+

√
hεth if t = 1, · · · , bτ 0/hc ,

(µ+ δ)h+
√
hεth if t = bτ 0/hc+ 1, · · · , T,

(15)

where εth ∼i.i.d.N(0, σ2), b·c is the integer-valued function. Considering that εth is
independent of h, we now write it as εt.

2In Bai (1994), εt can be a linear process satisfying the summability condition. So Bai’s model is
more general than Hinkley (1970) and Yao (1987)
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Letting Zt =
(
Xth −X(t−1)h

)
/
√
h, we obtain

Zt =

{
µ
√
h+ εt if t ≤ bτ 0/hc ,

(µ+ δ)
√
h+ εt if t > bτ 0/hc .

(16)

Whenever h is fixed, the model in equation (16) is the same as the one in equation (1)

with εt being assumed to follow N(0, σ2), k0 = bτ 0/hc being the absolute break point.
For the sequential limit distribution of Yao (1987) to be able to provide a good

approximation to the finite sample distribution, it is required that the sample size T

goes to infinity at a faster rate than that at which the squared structural break size

goes to zero. However, in Model (16), when h→ 0, the structural break size δ
√
h goes

to zero at the rate of 1/
√
T . Hence, the sample size T does not go to infinity at a faster

rate than that at which the squared structural break size goes to zero. As a result,

Yao’s limit distribution may not well approximate the finite sample distribution in (16)

when h is small.

The simultaneously double asymptotic distribution given in Bai (1994) is essentially

the same as the sequential limit distribution in Yao (1987). To derive the double

asymptotic distribution, Bai (1994) assumed that the magnitude of break size goes

to zero at a rate smaller than
√

log T/
√
T . However in Model (16), when h → 0,

δ
√
h = δ/

√
T = Op

(
1/
√
T
)
. This may explain why Bai’s limit distribution may not

well approximate the finite sample distribution in (16) when h is small.

On the other hand, our exact finite sample distribution in Equation (14) can be

regarded as a good approximation to the finite sample distribution of the ML estimator

of the break point in model (15) when h is small. It is easy to find that the ML estimator

of the break point in model (15) is the same as the one in Model (16). Therefore, the

finite sample distribution in Equation (14) could well approximate the finite sample

distribution of τ̂ML in the discrete time model (16) when h is small. In particular, we

expect there is no bias in τ̂ML in the discrete time model (16) when τ 0 = 50%. However,

we expect a upward (downward) bias in τ̂ML in the discrete time model (16) when τ 0 is

smaller (larger) than 50%. Since k̂ML = bτ̂MLT c, we expect the traditional estimator
of the absolute break point k in the discrete time model (16) is also asymmetric and

has the bias in finite sample. The bias in τ̂ML and k̂ML in the discrete time model will

be discussed in detail in the next section.

Consider the special case when τ 0 = 50%. Notice that the fraction of the sample

before and after the break is the same in this case. Also note that Equation (14) can
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be written as (
δ

σ

)2

(τ̂ − τ 0)
d
= arg max

u∈
[
− 1
2(

δ
σ )

2
, 1
2(

δ
σ )

2
]W (u)− 1

2
|u|. (17)

This result is similar to the limit theory given by Equation (5). Given that δ should

be replaced by δ
√
h and T should be replaced by 1/h in (5), the left hand sight in

the two equations are identical. The only difference is on the right hand side. The

finite sample theory in the continuous time model is the location of the extremum over

a finite interval which depends on the signal-to-noise ratio. The limit distribution in

the discrete time model is the location of the extremum over an infinite interval. As a

result, we expect the finite sample distribution be closer to the limit distribution when

the signal-to-noise ratio is large. This expectation can be confirmed by the middle

panels in Figures 2-6.

4 Bias Correction via Indirect Estimation

The indirect estimation is a simulation-based method, first introduced by Smith (1993),

Gourieroux et al. (1993), and Gallant and Tauchen (1996). This method is particularly

useful for estimating parameters of a model where the moments and likelihood function

of the model are diffi cult to calculate but the model is easy to simulate. It uses an

auxiliary model to capture aspects of the data upon which to base the estimation. The

parameters of the auxiliary model can be estimated using either the observed data or

data simulated from the true model. Indirect inference chooses the parameters of the

true model so that these two sets of parameter estimates of the auxiliary model are

as close as possible. Typically, one chooses the auxiliary model that is amenable to

estimate and approximate the true model well at the same time.

Gourieroux et al. (1993) and Gallant and Tauchen (1996) established the asymp-

totic properties of the indirect estimator, including consistency, asymptotic normality,

and asymptotic effi ciency. McKinnon and Smith (1997) and Gourieroux et al. (2000)

developed a particular indirect estimation procedure, where the auxiliary model is cho-

sen to be the true model in order to improve finite sample properties of the original

estimator. Arvanitis and Demos (2014) established primitive conditions for finite sam-

ple properties of the indirect estimator and also introduced an iterative procedure to

further improve the performance of the indirect estimator. The indirect estimation

obtains the bias function by simulating from the true model and hence the auxiliary

model. In this section, we apply the indirect estimation procedure to do bias correction

in estimating τ and k, the fractional and the absolute structural break point. It is
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important to obtain the bias function via simulations because, from Equations (14) and

(17), we know that the bias formula and the bias expansion are too diffi cult to deal

with explicitly. The same idea was used to estimate continuous time models in Phillips

and Yu (2009) and dynamic panel models in Gourieroux et al. (2010).

The application of the indirect estimation procedure for estimating structural break

proceeds as follows. Given a parameter θ (either τ or k), we simulate data ỹ(θ) =

{ỹh0 , ỹh1 , . . . , ỹhT} from the true model, such as, Equation (10) or (1), where h = 1, ..., H,

with H being the number of simulated paths. Note that T in ỹ(θ) should be chosen

as the same number of the actual data under analysis so that the bias of the original

estimator from the actual observations can be calibrated by simulated data.

The indirect estimation method matches the estimator from the actual observations

with the one estimated from the simulated data to obtain the indirect estimator. To

be specific, let QT (θ;y) be the objective function of the original (biased) estimation

method applied to actual data (y) for estimating the parameter θ. The corresponding

extremum estimator θ̂ obtained is then denoted as

θ̂T = arg max
θ∈Θ

QT (θ;y),

and the corresponding estimator based on the hth simulated path for some fixed θ is

θ̃
h

T (θ) = arg max
θ∈Θ

QT (θ;y(θ)),

where Θ is a compact parameter space.

The indirect estimator is then defined as

θ̂
IE

T,H = arg max
θ∈Θ

∥∥∥∥∥θ̂T − 1

H

H∑
h=1

θ̃
h

T (θ)

∥∥∥∥∥ ,
for some distance measure ‖·‖. WhenH goes to infinity, it is expected that 1

H

∑H
h=1 θ̃

h

T (θ)
p→

E(θ̃
h

T (θ)). Then the indirect estimator becomes

θ̂
IE

T = arg max
θ∈Θ

∥∥∥θ̂T − bT (θ)
∥∥∥

where bT (θ) = E(θ̃
h

T (θ) is the binding (or bias) function. If bT (θ) is invertible, then the

indirect estimator can be directly written as

θ̂
IE

T = b−1
T (θ̂T ).

To apply the indirect estimation to the observed data, we assume that the true

model is given either by the continuous time model given by (10) or the discrete time
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model given by (1). At first, we employ the LS method of Bai (1994) or the ML method

to the actual data in order to obtain k̂T . Then the corresponding estimator for the hth

simulated path is k̃hT (k) and the indirect estimation estimator is

k̂IET = arg max
k∈Θ

∥∥∥k̂T − bT (k)
∥∥∥ ,

where k̂T is the original estimator of k from the actual data that has T observations,

bT (k) is the binding function with the form

bT (k) = E(k̃hT (k)),

which, in practice, can be effectively replaced by 1
H

∑H
h=1 k̃

h
T (k) since H can be chosen

arbitrarily large. If the binding function is invertible, then

k̂IET = b−1
T

(
k̂T

)
. (18)

Based on k̂IET , we can define the indirect estimator of the fractional break point as

τ̂ IET = k̂IET /T . Let the corresponding binding function be bT (τ) = bT (k)/T . If bT (k) is

invertible, bT (τ) is also invertible. Hence,

τ̂ IET = b−1
T (τ̂T ) , (19)

where τ̂T is the original estimator of τ from the actual data.

Following the discussion of the finite sample property in Gourieroux et al. (2000)

and Phillips (2012), we impose the following assumption.

Assumption 1. The binding function bT (τ), mapping from (0, 1) to bT (0, 1), is

uniformly continuous and one-to-one.

Under Assumption 1, the binding function bT (·) is invertible. We have τ̂ IET is “bT -

mean-unbiased”, since

E
(
bT
(
τ̂ IET
))

= E (τ̂T ) = E(τ̃hT (τ 0)) = bT (τ 0),

and

b−1
T

(
E
(
bT
(
τ̂ IET
)))

= τ 0. (20)

By the same reason, k̂IET is also “bT -mean-unbiased”, i.e., b−1
T

(
E
(
bT

(
k̂IET

)))
= k0.

Moreover, when bT (·) is linear, the indirect estimator of τ and k is exactly mean-
unbiased since, in (20), we have

b−1
T

(
E
(
bT (τ̂ IET )

))
= E

(
b−1
T

(
bT (τ̂ IET )

))
= E

(
τ̂ IET
)

= τ 0,
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which is a especially appealing property in the practice when the binding function is

close to linear.

It is important to point out the indirect estimator shares the same consistency

property as the original estimator. Since only τ̂T is consistent, hence we can only

ensure the consistency of τ̂ IET but not k̂IET .

Regarding the effi ciency, from Equation (19) and by the Delta method, we have

Var(τ̂ IET ) ≈
(
∂bT (τ 0)

∂τ

)−2

Var(τ̂T ). (21)

Hence, the effi ciency loss (or gain) is measured by ∂bT (τ0)
∂τ

. If
∣∣∣∂bT (τ0)

∂τ

∣∣∣ < 1, τ̂ IET has

a bigger variance than τ̂T . However, if
∣∣∣∂bT (φ0)

∂φ

∣∣∣ > 1, τ̂ IET will have a small variance

than τ̂T . If the finite sample distribution developed in Section 2 suggests that τ is over

estimated when τ 0 < 50% and is under estimated when τ 0 > 50%, the binding function

is expected to be flatter than the 45 degrees line. As a result, we expect some effi ciency

loss from the indirect estimation as the variance of the indirect estimation will be larger

than that of the original estimator.

5 Monte Carlo Results

In this section, we design two Monte Carlo experiments to examine the bias in the LS

estimator of k in the discrete time model (1) and the ML estimator of τ in the continuous

time model (10), and to compare the finite sample performance of the indirect estimator

and the original estimators. When inverting the binding function, following Phillips and

Yu (2009), we choose a set of grid points for τ , namely, τ = [0.1, 0.11, ..., 0.89, 0.9] and

calculate bT (τ) for each τ via simulations. We then use the standard linear interpolation

and extrapolation methods to obtain the binding functions in the domain [0, 1].3

In the first experiment, data are generated from Model (10), with σ = 1, δ = 2, 4, 6,

τ 0 = 30%, 50%, 70%, dB(t) ∼ iid N(0, h), where h = 1
1000

. For each combination

of δ and τ 0, we obtain the ML estimator of τ from Equation (12) and the indirect

estimator. Our focus is to examine the finite sample properties of τ̂ , so it is assumed

that the structural break size δ and the standard deviation σ are known during the

simulation.

Table 1 reports the bias, the standard error, and the root mean squared errors

(RMSE) of the ML estimate and the indirect estimate of τ , obtained from 10,000

3However, if the indirect estimator of τ takes a value outside of the interval [0, 1] for one particular
replication, such a replication is discarded for both ML and the indirect estimation.
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Table 1: Monte Carlo comparison of the bias and RMSE of ML and Indirect Estimates.
The number of simulated path is set to be 10,000 for indirect estimation. The number
of replications is set at 10,000.

Case Bias Standard Error RMSE
δ
σ

τ 0 ML IE ML IE ML IE
2 0.3 0.1337 0.0736 0.1408 0.2688 0.1942 0.2787
2 0.5 -0.0016 -0.0025 0.1268 0.2407 0.1268 0.2407
2 0.7 -0.1323 -0.0712 0.1400 0.2669 0.1926 0.2762
4 0.3 0.0518 0.0222 0.1543 0.1870 0.1628 0.1883
4 0.5 0.0021 0.0029 0.1511 0.1820 0.1511 0.1820
4 0.7 -0.0435 -0.0137 0.1479 0.1787 0.1542 0.1792
6 0.3 0.0118 0.0037 0.1100 0.1163 0.1106 0.1164
6 0.5 0.0004 -0.0003 0.1172 0.1228 0.1172 0.1228
6 0.7 -0.0104 -0.0027 0.1092 0.1156 0.1097 0.1156

replications. Some observations can be obtained from the table. Firstly, when τ 0 =

50%, the ML estimate does not have any noticeable bias in all cases. However, when

τ 0 6= 50%, ML suffers from a bias problem. For example, when τ 0 = 30% and δ/σ = 2,

the bias is 0.1337 and about 45% of the true value. This is very substantial. In general,

the bias becomes larger when τ 0 is further away from 50%, or when the signal-to-noise

ratio gets smaller. To the best of our knowledge, such a bias has not been discussed in

the literature. Secondly, in all cases when τ 0 6= 50%, the indirect estimate substantially

reduces the bias. For example, when δ
σ

= 2 and τ 0 = 70%, the indirect estimation

method removes about half of the bias in ML. Finally, the bias reduction by the indirect

estimation method comes with a cost of a higher variance, which causes the RMSE of

the indirect estimate slightly higher than its ML counterpart.

In the second experiment, data are generated from Model (1), with σ = 1, δ = 0.5, 1,

τ 0 = 0.3, 0.5, 0.7, εt ∼ iid N(0, 1), where we choose T = 50, 80, 100, 120. For each

combination of δ, τ 0 and T , we obtain the LS estimate of k based on Equation (4)

and the indirect estimate for each replication. As in the continuous time model, it is

assumed that the structural break size δ and the standard deviation σ are known. The

reason we focus on k is because k is a practically important parameter to estimate.

Table 2 reports the bias, the standard error, and the root mean squared errors

(RMSE) of the ML estimate and the indirect estimator of k, obtained from 10,000

replications. We may draw the following conclusions from Table 2. First, when τ 0 =

50%, the LS estimate does not have any noticeable bias in all cases. However, when

τ 0 6= 50%, LS suffers from a bias problem. For example, when T = 50, τ 0 = 30%

and δ/σ = 0.5, the bias is nearly 9 while the true value of k is 15. The bias is about
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Table 2: Monte Carlo comparison of the bias and RMSE of LS and Indirect Estimates.
The number of simulated path is set to be 10,000 for indirect estimation. The number
of replications is set at 10,000.

Case Bias Standard error RMSE
T δ

σ
τ 0 k0 LS IE LS IE LS IE

50 0.5 0.3 15 8.9750 6.8050 3.7450 11.6250 9.7250 13.4703
50 0.5 0.5 25 0.0250 -0.0300 3.0950 9.3150 3.0951 9.3150
50 0.5 0.7 35 -8.8650 -6.4750 3.7400 12.0500 9.6216 13.6795
50 1 0.3 15 1.4150 -0.8200 5.0550 6.8500 5.2493 6.8989
50 1 0.5 25 -0.1050 -0.1500 4.5900 5.8700 4.5912 5.8719
50 1 0.7 35 -1.6450 0.4500 5.0950 6.9350 5.3540 6.9496
80 0.5 0.3 24 11.728 5.472 7.544 17.88 13.9448 18.6986
80 0.5 0.5 40 -0.016 -0.632 5.912 12.832 5.9120 12.8476
80 0.5 0.7 56 -12.088 -7.592 5.4432 18.256 13.2570 19.7717
80 1 0.3 24 0.936 -0.352 6.752 7.68 6.8166 7.6881
80 1 0.5 40 -0.008 -0.024 6.2 6.792 6.2000 6.7920
80 1 0.7 56 -0.944 0.208 6.976 7.976 7.0396 7.9787
100 0.5 0.3 30 12.83 4.36 10.66 23.20 16.6807 23.6061
100 0.5 0.5 50 0.35 0.26 8.02 15.13 8.0276 15.1322
100 0.5 0.7 70 -9.22 2.01 10.21 22.02 13.7569 22.1115
100 1 0.3 30 0.72 -0.11 7.28 7.79 7.3155 7.7908
100 1 0.5 50 0.06 0.02 6.49 6.80 6.4903 6.8000
100 1 0.7 70 -0.82 0.09 7.53 8.11 7.5745 8.1105
120 0.5 0.3 36 6.636 -4.724 14.724 24.3 16.1503 24.7549
120 0.5 0.5 60 -0.096 0.252 12.792 20.388 12.7924 20.3896
120 0.5 0.7 84 -6.936 3.816 14.82 24.66 16.3628 24.9535
120 1 0.3 36 0.588 -0.096 7.308 7.656 7.3316 7.6566
120 1 0.5 60 0 -0.024 6.756 6.984 6.7560 6.9840
120 1 0.7 84 -0.504 0.108 7.176 7.524 7.1937 7.5248

60% of the true value, which is very substantial. In general, the bias becomes larger

when τ 0 is further away from 0.5 or when the signal-to-noise ratio gets smaller. To the

best of our knowledge, such a bias has not been discussed in the literature. Secondly,

in all cases when τ 0 6= 50%, the indirect estimate substantially reduces the bias. For

example, when T = 80, δ
σ

= 0.5 and τ 0 = 30%, the indirect estimation method removes

more than half of the bias in ML. Finally, the bias reduction by the indirect estimation

method comes with a cost of a higher variance, which causes the RMSE of the indirect

estimate slightly higher than its ML counterpart.

To understand why the indirect estimation increases the variance, we plot the bind-

ing functions in these two models in Figure 7 and Figure 8, where we also plot the

45 degrees line for the purpose of comparison. Figure 7 corresponds to the continuous
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Figure 7: Binding function of ML for the continuous time model when h = 0.001

time model with δ = 2, 4, 6 and Figure 8 to the discrete time model with T = 100,

δ = 0.5, 1. Several conclusions can be made. Firstly, the binding functions always pass

through the 45 degrees line at the middle point of τ , suggesting no bias when τ = 50%

and that the bias becomes smaller when the true break point gets close to the middle.

Second, the binding functions monotonically increase as τ or k increases, suggesting

that the binding functions are invertible. However, in all cases, the binding functions

are flatter than the 45 degrees line, explaining why the variance of the indirect estimate

is larger than that of the ML estimate. The smaller the signal-to-noise ratio, the flatter

the binding function and hence the bigger loss in effi ciency. Third, the binding function

is not exactly a straight line. It is easy to see the nonlinearity near the two bound-

aries when δ = 0.5 in the discrete time model. Due to the presence of nonlinearity,

the indirect estimation procedure cannot completely remove the bias, although it is

“bT -mean-unbiased”.

6 Conclusions

This paper is concerned about the finite sample properties in the estimation of structural

break points. We find that the finite sample bias is substantial in many practically

relevant situations. While the literature on structural break has focused the a great deal
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Figure 8: Binding function of LS for the discrete time model when T = 100

of attention to develop asymptotic properties, the finite sample problem has received

no attention in this literature, to the best of our knowledge. We hope to fill up this

important gap in the literature.

In this paper we address the finite sample problem in several aspects. First we derive

the finite sample distribution of the structural break estimator in the continuous time

model. We then establish its connection to the discrete time models considered in the

literature. It is shown that when the true break point is at the middle of the sample,

the finite sample distribution is symmetric but can have tri-modality. However, when

the true break point occurs earlier than the middle of the sample, the finite sample

distribution is skewed to the right and there is a positive bias. When the true break

point occurs later than the middle of the sample, the finite sample distribution is skewed

to the left and there is a negative bias.

To reduce the bias in finite sample, we obtain the binding functions via simulations

and then use the indirect estimation technique to estimate the break parameter. Indirect

estimation essentially inverts the binding function at the original estimator obtained

from the actual data. It inherits the asymptotic properties of the original estimator but

reduces the finite sample bias. Monte Carlo results show that the indirect estimation

procedure is effective in reducing the bias of the traditional break point estimators.

The models considered in this paper are very simply in nature. Also, the estimators
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considered are based on the full sample. Real time (and hence subsample) estimators

tend to have more serious finite sample problems. Further studies on developing the

finite sample distribution for more realistic models and real time estimators are needed.

How to extend the indirect estimation technique in a multiple parameter settings are

also useful.
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