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Abstract
It is well known that (quasi) MLE of dynamic panel data (DPD) models with short

panels depends on the assumptions on the initial values; ignoring them or a wrong

treatment of them will result in inconsistency or serious bias. This paper introduces

a initial-condition free method for estimating the fixed-effects DPD models, through a

simple modification of the quasi-score. An outer-product-of-gradients (OPG) method

is also proposed for robust inference. The MLE of Hsiao, Pesaran and Tahmiscioglu

(2002, Journal of Econometrics), where the initial observations are modeled, is extended

to quasi MLE and an OPG method is proposed for robust inference. Consistency and

asymptotic normality for both estimation strategies are established, and the two methods

are compared through Monte Carlo simulations. The proposed method performs well in

general, whether the panel is short or not. The quasi MLE performs comparably, except

when model does not contain time-varying regressor, or the panel is not short and the

dynamic parameter is small. The proposed method is much simpler and easier to apply.

Key Words: Bias reduction; Consistency; Asymptotic normality; Dynamic
panel; Fixed effects; Modified quasi-score; Robust standard error; Short panel.

JEL classifications: C10, C13, C23, C15

1 Introduction

Fixed-effects dynamic panel data (FE-DPD) models covering short time periods have
played over the last three decades an important role in empirical microeconometric research.
Various estimation methods have been developed for the model, including maximum likeli-
hood (ML) type estimators (see, e.g., Nickell 1981; Hsiao et al. 2002; Hsiao 2003, Ch. 4;
Binder et al. 2005; Bun and Carree 2005; Phillips and Sul 2007; Gouriéroux et al. 2010; Kru-
iniger 2013), the instrumental variables (IV) estimators and generalized method-of-moments
(GMM) estimators (see, e.g., Holtz-Eakin et al. 1988; Arellano and Bond 1991; Hahn 1997;
Ahn and Schmidt 1995; Kiviet 1995; Blundell and Bond 1998; Alvarez and Arellano 2003).

∗I am grateful to Singapore Management University for financial support under Grant C244/MSS12E007.
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It is widely acknowledged that the consistent ML-type estimators of the FE-DPD model
can be much more efficient than the consistent GMM-type estimators. However, the main
difficulty in the ML estimation of the DPD models with short panels is the modeling of the
initial observations of the response vector, say y0. This is because y0 may be exogenous
in the sense that it varies autonomously, independent of other variables in the model; or
endogenous in the sense that it is generated in the same way as the other values of the
response vector y in the latter time periods. In case that y0 is endogenous, it depends on the
processes starting values and the past values of time-varying regressors, both of which are not
observable, leading to incidental parameters. The traditional way of handling this problem is
to predict these quantities using the observed values of the regressors (Anderson and Hsiao,
1980, 1981). In case of fixed effects models, the incidental parameters problem also occurs
in the model itself (the fixed effects), but this problem can be resolved by first-differencing
or some kind of orthogonal transformations.

Hsiao, Pesaran and Tahmiscioglu (2002) proposed an ML estimator (MLE) where the
initial differences are explicitly modeled, Bun and Caree (2005) proposed a bias-corrected
least squares dummy variable (LSDV) estimator, and Gouriéroux, et al. (2010) proposed an
estimator based on indirect inference. In essence, all three estimators are likelihood based,
and thus are more efficient than the GMM/IV estimators. All three estimators depend on
normality assumption for inference. Besides, Gouriéroux, et al.’s estimator depends on the
way that initial observations are generated (from a stationary process), and Bun and Ca-
ree’s estimator, though does not depend explicitly on the way the initial observations are
generated, requires either an iterative numerical root-finding process or a multi-dimensional
root-finding process. Kruiniger (2013), following Chamberlain’s (1980) formulation, showed
that the MLE of the pure FE-DPD model can still be large-N consistent when the errors
display arbitrary heterogeneity. Kruiniger called this the quasi MLE (QMLE). In our for-
mulation, the word ‘quasi’ means that the errors may be nonnormal and that the likelihood
may have ignored the initial observations.

In this paper, I propose a unified approach to estimate the PDP model with fixed effects
based on the conditional quasi-likelihood, conditional on the initial differences Δy1. Clearly,
this conditional likelihood is incorrect whether exogenous y0 is exogenous or endogenous,
and thus maximizing this conditional likelihood may produce inconsistent or asymptotically
biased estimators (see, e.g., Bhargava and Sargan, 1983). An analytical expression of the
expectation of the quasi-score function is derived, which turns out to be independent of the
unobservables and the process starting time, leading to a modified score function. Solving
the modified normal equation leads to the modified QML-type estimators that are free from
the specification of the distribution of the initial observations, and also robust against the
misspecification of the error distributions. To make inferences about the model parameters, a
robust variance-covariance (VC) matrix estimator is desired. As the modified score function
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can be written a sum of N independent terms, an outer-product-of-gradients (OPG) estima-
tor of the variance of the modified score naturally emerges. This together with the estimated
Hessian matrix gives a robust (sandwich) estimator of the VC matrix of the proposed estima-
tor. Consistency and asymptotic normality of the proposed estimators and the validity of the
robust VC matrix estimator are established. The proposed methods of model estimation and
inference are both very simple, avoid explicit modeling of the initial observations, and thus
can be easily used by applied researchers. Compared with the traditional methods where the
full likelihood is used and the initial observations are modeled, there may be only a negligible
loss in efficiency, but there a significant gain in the applicability. The proposed estimation
method remains valid when the time dimension (T ) goes large, and more importantly, it
automatically corrects the bias caused by ignoring the initial observations under the large-N
and large-T set up of, e.g, Hahn and Kuersteiner (2002).

As the proposed method is closely related to that of HPT, a comparison is necessary,.
For this, I first extend HPT’s ML estimation framework to quasi ML estimation framework,
and provide formal results on consistency, asymptotic normality, and robust standard errors.
Extensive Monte Carlo experiments are run and the results evidence an excellent finite
sample performance of the proposed method, whether the panel is short or not. The quasi
MLE performs comparably, except when model does not contain time-varying regressor, or
the panel is not short and the dynamic parameter is small. The proposed method is much
simpler and easier to apply.

Section 2 describes the model and some basic assumptions. Section 3 introduces the
initial-condition free method of estimating the FE-DPD model, and presents formal theories
on consistency, asymptotic normality and robust standard errors. Section 4 extends HPT’s
ML estimation framework, and presents a similar set of theoretical results. Section 5 presents
partial Monte Carlo results, and Section 6 concludes the paper.

2 Model and Basic Assumptions

Consider the dynamic panel data (DPD) model of the form:

yit = ρyi,t−1 + x′itβ + z′iγ + μi + vit, i = 1, . . . , N, t = . . . ,−1, 0, 1, . . . , T, (2.1)

where the scalar parameter ρ characterizes the dynamic effect, xit is a p× 1 vector of time-
varying exogenous variables, zi is a q × 1 vector of time-invariant exogenous variables that
may include the constant term, dummy variables representing individuals’ gender, race, etc.,
and β and γ are the usual regression coefficients. The {μi} are the non-observable individual
effects and {vit} are the idiosyncratic errors, assumed to be independent and identically
distributed (iid) across both i and t with mean zero and variance σ2

v .1

1The iid assumption along the time dimension can be relaxed, e.g., for each i, {vit} follows an AR process.
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Denoting yt = (y1t, . . . , yNt)′, xt = (x1t, . . . , xNt)′, and z = (z1, . . . , zN)′, the model can
be represented conveniently in vector form,

yt = ρyt−1 + x′tβ + zγ + μ+ vt, t = . . . ,−1, 0, 1, . . . , T. (2.2)

In this paper, I focus on short panels whereN → ∞ but T is fixed and small.2 The individual-
specific effects μ can be either random (uncorrelated with the time-varying regressors), or
fixed (may be correlated with some of the time-varying regressors), giving the so-called
random effects (RE) or fixed effects (FE) DPD models. I will focus on the latter. I adopt a
similar framework as Hsiao, Pesaran and Tahmiscioglu (2002), or HPT hereafter:

Assumption A: (i) Data collection starts from the 0th period; the processes start from
the −mth period, i.e., m periods before the start of data collection, m = 0, 1, . . ., and then
evolve according to the model specified by (2.2); (ii) Starting positions of the process y−m
are treated as exogenous; hence the exogenous variables (xt, z) and the errors ut start to
have impact on the response from period −m+1 onwards; and (iii) All exogenous quantities
(y−m, xt, z) are considered as random and inferences proceed by conditioning on them.

Thus, when m = 0, the initial observations, y0, are exogenous, when m ≥ 1, y0 becomes
endogenous, and when m = ∞, the processes have reached stationarity by the time the data
collection starts. Note that in reality, the exact value of m is unknown.

Clearly, the Model (2.2) can be consistently estimated by the maximum likelihood (ML)
or quasi-ML (QML) method when the vector of unobserved individual-specific effects μ is
uncorrelated with the time-varying regressors xt and is treated as a random vector of iid
elements. When μ in model (2.2) is correlated with (some of) the time-varying regressors
xt in an unknown manner as in many economic applications, μ acts as if they are N free
parameters, and with T fixed the model cannot be consistently estimated due to the inci-
dental parameters problem. A standard practice is to transform the data to eliminate the
fixed effects μ, such as first-differencing, demeaning, and orthogonal transformation.3 In this
paper, I follow HPT and eliminate the fixed effects μ by first-differencing (2.2),

Δyt = ρΔyt−1 + Δxtβ + Δvt, t = . . . ,−1, 0, 1, 2, . . . , T. (2.3)

The parameters left in Model (2.3) are ψ = {ρ, β′, σ2
v}′. Note that Model (2.3) is defined

only for t ≥ 2 as, e.g., Δy1 depends on its lag Δy0 = y0 − y−1 where y−1 is not observed.
2While the inference methodologies will be developed for short panels, they remain valid when T becomes

large, and in fact they even work better than the traditional ones developed for large N and large T panels.
3HPT show that their ML estimators are invariant to the choice of the transformation matrix. This

approach is attractive as it does not require any knowledge on μ, but the side effect is that all the time-
invariant regressors are wiped out by such a transformation. Being unable to estimate the effects of time-
invariant regressors may be one of the practical weakness of the fixed effects model although it has the
strong attraction of allowing one to use the panel data to establish causation under much weaker assumptions
(Cameron and Trivedi, 2005, Ch. 21).
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To formulate the likelihood function for ML or QML estimation of Model (2.3) when
T is fixed and small, it is essential to have the marginal distribution of Δy1. This is so
because, under the fundamental set-up in Assumption A, Δy1 is always endogenous even
when y0 is exogenous and thus contains useful and non-negligible information about the
structural parameters in the model. While the marginal distribution of Δy1 can be obtained
under Assumption A, it clearly depends on y−m and {Δxs, s = −m + 2, . . . , 0}, which
are not observed and hence induces another incidental parameters problem. HPT propose
a ‘predictive’ model for Δy1 based on the observables {Δx′1, . . . ,Δx′T}′, see Section 4 for
details. In this paper, I proceed with a different route and propose simple estimation and
inference methods that are free from the specifications of the initial conditions and are robust
against misspecifications of the error distributions.

As usual, I use | · |, ‖ · ‖ and tr(·) to denote, respectively, the determinant, the Frobenius
norm, and the trace of a matrix. I use λmax(A) and λmin(A) to denote the largest and
smallest eigenvalues of a real symmetric matrix A, and ⊗ to denote the Kronecker product.

3 Initial-Condition Free Estimation of FE-DPD Models

3.1 The modified QML estimator

The proposed method starts from the conditional Gaussian likelihood function, given
Δy1 and Δx1, . . . ,ΔxT . Let ΔY = {Δy′2,Δy′3, . . . ,Δy′T}′, ΔY−1 = {Δy′1,Δy′2, . . . ,Δy′T−1}′,
ΔX = {Δx′2,Δx′3, . . . ,Δx′T}′, and Δv = {Δv′2,Δv′3, . . . ,Δv′T}′. The model (2.3) is further
compacted in matrix form,

ΔY = ρΔY−1 + ΔXβ + Δv. (3.1)

Under normality of {vt}, the joint distribution of Δv is easily seen as

Δv ∼ N (0, σ2
vΩ), where Ω = σ−2

v Var(Δv) = (C ⊗ IN), and

C =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎠

(T−1)×(T−1)

.

The joint distribution of Δv translates directly to the conditional joint distribution of ΔY
since the Jacobian of the transformation is one, giving the conditional quasi Gaussian log-
likelihood of ψ in terms of Δy2, . . . ,ΔyT , conditional on Δy1 and Δx1, . . . ,ΔxT :

�(ψ) = −n(T − 1)
2

log(2π)− n(T − 1)
2

log(σ2
v) −

1
2

log |Ω| − 1
2σ2

v

Δv(θ)′Ω−1Δv(θ), (3.2)
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where θ = (ρ, β′)′ and v(θ) = ΔY − ρΔY−1 − ΔXβ. Clearly, maximizing (3.2) is equivalent
to running an ordinary least square (OLS) of ΔY on ΔX ≡ (ΔY−1,ΔX), resulting in the
conditional QML estimators (QMLEs) of θ and σ2

v as,

θ̂ = (ΔX
′Ω−1ΔX)−1ΔX

′Ω−1ΔY and σ̂2
v = 1

N(T−1)Δv̂
′Ω−1Δv̂, (3.3)

where Δv̂ = ΔY −ΔX θ̂, and the dependence of a quantity on N , e.g., θ̂, is suppressed. Note
that θ̂ and σ̂2

v can never be the exact ML estimators (MLEs) as the loglikelihood function
(3.2) can never be the exact loglikelihood function even if the errors are truly normal, simply
because Δy1 can never be strictly exogenous. This is not a problem when T is large and
in this case the effect of Δy1 becomes negligible, although there is an issue on the order of
finite sample bias as discussed latter.

We now investigate the consequence of treating Δy1 as exogenous when T is fixed and
small. Let ψ0 = {ρ0, β

′
0, σ

2
v0}′ be the true value of ψ = {ρ, β′, σ2

v}′. The conditional quasi
score function S(ψ) = ∂

∂ψ �(ψ) has the elements corresponding to ρ, β, and σ2:

S(ψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2

v
ΔY ′

−1Ω
−1Δv(θ),

1
σ2

v
ΔX ′Ω−1Δv(θ),

1
2σ4

v
Δv(θ)′Ω−1Δv(θ) − N(T−1)

2σ2
v

.

(3.4)

It is well known that (i) for a regular QML-type estimator to be consistent, it is necessary
that the averaged score at the true value ψ0 of the parameter vector ψ converges to zero in
probability as N tends to infinity, i.e., plimN→∞ 1

NS(ψ0) = 0; (ii) for it to be unbiased, it is
necessary that E[S(ψ0)] = 0; and (iii) for it to be asymptotically unbiased, it is necessary
that E[S(ψ0)] = o(

√
N). These are easily seen to be the cases for the last two elements of

S(ψ0), but not for the first element as shown below. Let Δv = Δv(θ0).

Lemma 3.1: Assume Models (2.2) and (2.3) satisfy Assumptions A. We have,

σ−2
v0 E(ΔY ′

−1Ω
−1Δv) = N tr[C−1D(ρ0)], (3.5)

where D(ρ) is a (T − 1) × (T − 1) matrix and has the following expression:

D(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 2 − ρ −(1− ρ)2 . . . −ρT−5(1 − ρ)2 −ρT−4(1− ρ)2

0 −1 2 − ρ . . . −ρT−6(1 − ρ)2 −ρT−5(1− ρ)2
...

...
...

. . .
...

...
0 0 0 . . . −1 2 − ρ

0 0 0 . . . 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Note that the result (3.5) only requires the existence of the second moment of vit. Clearly,
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tr[C−1D(ρ0)] 
= 0 which is independent of N . Thus, plimN→∞
1
NT σ

−2
v0 E(ΔY ′

−1Ω
−1Δv) 
= 0

for a fixed T , showing that the conditional QMLE ρ̂ defined in (3.3) is inconsistent. The result
in Lemma 3.1 immediately suggests that modifying the score element for ρ by subtracting
N tr[C−1D(ρ0)] from it would fix the inconsistency problem of ρ̂. Now, with (3.5) and the
fact that other score elements have zero expectation, the modified score function becomes

S∗(ψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S∗
ρ(ψ) = 1

σ2
v
ΔY ′

−1Ω
−1Δv(θ) −N tr(C−1D(ρ)),

S∗
β(ψ) = 1

σ2
v
ΔX ′Ω−1Δv(θ),

S∗
σ2

v
(ψ) = 1

2σ4
v
Δv(θ)′Ω−1Δv(θ) − N(T−1)

2σ2
v

.

(3.6)

Very interestingly, the modifier N tr(C−1D(ρ)) of the score function depends only on the
parameter ρ.4 Hence, the modified QML estimators based on solving S∗(ψ) = 0 is free
from (i) the unknown processes starting time designated by m, (ii) the specification of the
distribution of the initial differences Δy1, and (iii) the time-varying regressors included in
the model. These, in particular (ii), are very useful features and it stands in contrast to the
modeling strategy followed by HPT. The modified QML estimator ψ̂∗ of ψ is thus,

ψ̂∗ = arg
{
S∗(ψ) = 0

}
. (3.7)

This root-finding process can be simplified by first solving the equations for β and σ2, given
ρ, resulting in the constrained estimates of β and σ2 as

β̃∗(ρ) = (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1ΔY (ρ) and σ̃∗2v (ρ) = 1
N(T−1)Δṽ(ρ)

′Ω−1Δṽ(ρ), (3.8)

where ΔY (ρ) = ΔY − ρΔY−1 and Δṽ(ρ) = ΔY (ρ) − ΔXβ̃∗(ρ). Substituting β̃∗(ρ) and
σ̃∗2v (ρ) into the first component of S∗(ψ) for β and σ2, and solving the resulted concentrated
estimating equation gives the modified QMLE of ρ as ρ̂∗ = arg {S∗

c (ρ) = 0}, where

S∗
c (ρ) =

ΔY ′
−1Ω

−1Δṽ(ρ)
N (T − 1)σ̃∗2v (ρ)

− tr(C−1D(ρ))
T − 1

. (3.9)

The unconstrained modified QMLEs for β and σ2 are thus β̂∗ ≡ β̃∗(ρ̂∗) and σ̂∗2v ≡ σ̃∗2v (ρ̂∗).

Furthermore, tr[C−1D(ρ0)] 
= 0 even when T is not fixed as seen from the result below:

Lemma 3.2: For |ρ| < 1, we have tr[C−1D(ρ)] = − 1
1−ρ + 1−ρT

T (1−ρ)2 .

The implication of this result is as follows. If T also tends to infinity, the conditional
QMLE ρ̂, ignoring the initial conditions, can indeed have the desired asymptotic behavior
as being consistent and asymptotically normally distributed, but its finite sample behavior

4It can be intuitively explained as a factor that recovers the neglected information contained in the initial
differences Δy1.
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can be poor as ρ̂ encounters a finite sample bias of order O(T−1) instead of the desired order
O((NT )−1). This bias can be significant if T is not large relative to N . Clearly, the proposed
modification automatically eliminates such as a bias.

3.2 Asymptotic properties of the modified QMLE

To study formally the asymptotic properties (consistency and asymptotic normality) of
the modified QMLE ψ̂∗ = (ρ̂∗, β̂∗′, σ̂∗2v )′, additional regularity conditions and definitions are
needed. In general, let P be the parameter space for ρ assumed to be compact. Consistency
of ρ̂∗ follows if S∗

c (ρ) and its non-stochastic counter part, say S̄∗
c (ρ), are such that S∗

c (ρ) −
S̄∗
c (ρ) = op(1) uniformly in ρ ∈ P , |S̄∗

c (ρ)| > 0 for ρ 
= ρ0, and S̄∗
c (ρ0) = 0, see, e.g.,

van der Vaart (1998, ch. 5). This result is intuitive quite clear: as ρ̂∗ is a zero of S∗
c (ρ)

and ρ0 is a zero of S̄∗
c (ρ0), the difference between ρ̂∗ and ρ0 would vanish if the difference

between the objective functions vanishes as N tends to infinity. Obviously, S̄∗
c (ρ0) can

be defined as follows. Let
{
β̄∗(ρ), σ̄∗2v (ρ)

}
= arg

{
E[S∗

β(ψ)] = 0, E[S∗
σ2

v
(ψ)] = 0

}
. Then,

S̄∗
c (ρ0) = 1

N(T−1)
E[S∗

ρ(ψ)]|β=β̄∗(ρ),σ2
v=σ̄∗2v (ρ), i.e.,

S̄∗
c (ρ0) =

E[ΔY−1Ω−1Δv(ρ, β̄∗(ρ))]
N (T − 1)σ̄∗2v (ρ)

− tr(C−1D(ρ))
T − 1

. (3.10)

See Appendix (Proof of Theorem 3.1) for details. Once the consistency of ρ̂∗ is established,
the consistency of β̂∗ and σ̂∗2v follows almost immediately.

Although the exact distribution of the initial differences Δy−1 is not required in the
modified QML estimation, Δy−1 needs to meet some minimum requirements in order to
establish consistency and asymptotic normality of ψ̂∗. Under the general specifications given
at the end of Section 2 (Assumption A and Model (2.3)), by continuous substitutions from
the tst period back to the −mth period, we obtain

Δyt = ρm+t−1
0 Δy−m+1 + Δxt(m, ρ0)β0 + Δvt(m, ρ0), (3.11)

where Δxt(m, ρ) =
∑t

s=−m+2 ρ
t−sΔxs and Δvt(m, ρ) =

∑t
s=−m+2 ρ

t−sΔvs. We have,

Δy1 = ρm0 φ(y−m) + Δx1(m, ρ0)β0 + ρm0 [Δy−m+1 − φ(y−m)] + Δv1(m, ρ0)

= Δη1 + ρm0 v−m+1 + Δv1(m, ρ0), (3.12)

where φ(y−m) = E(Δy−m+1|y−m) and Δη1 = ρm0 φ(y−m) + Δx1(m, ρ0)β0.

Assumption B: The errors {vit}, i = 1, . . . , N, t = −m . . . ,−1, 0, 1, . . . , T , are iid with
mean zero, variance σ2

v , and finite moments E(v4+δ
it ) for some δ > 0.

Assumption C: The parameter space P is compact, and ρ0 is in its interior.
Assumption D: (i) The time-varying regressors are exogenous or weakly exogenous,

8



and their values xit, i = 1, . . . , N, t = −m . . . ,−1, 0, 1, . . . , T , are uniformly bounded, (ii)
limN→∞ 1

NΔη′1Δη1 exists, and (iii) limN→∞ 1
NTΔX ′ΔX exists and is nonsingular.

Assumption B is standard for the QML-type estimation. Assumption D(ii) imposes a
general condition on the mean of the initial differences. It implies that when m is finite
it is not necessary that |ρ| < 1, but the conditional expectations of the initial endowments
Δy−m+1 given the process starting positions y−m, φ(y−m), must have finite second moments;
when m = ∞ it is necessary that |ρ| < 1 and in this case the effect of φ(y−m) vanishes.
Assumption D(iii) ensures the identification of β and σ2

v once ρ is identified. Let g(ρ) =
− 1
T−1 tr[C−1D(ρ)]. The identification uniqueness condition for ρ0 is given as follows.

Assumption E: 1
NT (ρ0 − ρ)E(ΔY ′−1Ω

−1ΔY−1) + σ̄∗2v (ρ)g(ρ)− σ2
v0g(ρ0) 
= 0, ∀ρ 
= ρ0.

Let H∗(ψ) = ∂
∂ψ′S

∗(ψ) be the modified Hessian matrix, Σ∗(ψ0) = − 1
N(T−1)E

[
H∗(ψ0)

]
,

and Γ∗(ψ0) = Var[ 1√
N(T−1)

S∗(ψ0)]. The theorem below summarizes the asymptotic proper-

ties of the modified QMLEs defined in (3.7)-(3.9). Its proof is given in Appendix.

Theorem 3.1: Assume Model (2.3) satisfies Assumptions A-E. Then, the modified
QMLE ψ̂∗ is a consistent estimator for ψ0, i.e., ψ̂∗ p−→ ψ0 as N → ∞, and

√
N (T − 1)(ψ̂∗ − ψ0)

D−→ N
[
0, lim

N→∞
Σ∗−1(ψ0)Γ∗(ψ0)Σ∗−1(ψ0)

]
,

where Γ∗(ψ0),Σ∗(ψ0) and its inverse are assumed to exist for large enough N.

Theorem 1 shows that ψ̂∗ is
√
N -consistent for a fixed T . It is easy to see that the result of

Theorem 1 remains valid when T tends to infinity as well and in this case ψ̂∗ is
√
N (T − 1)-

consistent. It is reasonable to believe that the proposed estimators should perform better in
terms of bias than the QML estimators based on large N and large T setting as the score
function for ρ is bias corrected. This is confirmed by our Monte Carlo results.

3.3 Initial-condition free estimation of the VC matrix

To facilitate the practical applications of the proposed estimation method, a method of
estimating the variance of ψ̂∗ is desired. First, Σ∗(ψ0) can be consistently estimated by
− 1
N(T−1)H

∗(ψ̂∗), where H∗(ψ) has the typical components:

H∗
ρρ(ψ) = − 1

σ2
v
ΔY ′

−1Ω
−1ΔY−1 −N tr[C−1Ḋ(ρ)],

H∗
ρβ(ψ) = − 1

σ2
v
ΔY ′

−1Ω
−1ΔX,

H∗
ρσ2

v
(ψ) = − 1

σ4
v
ΔY ′−1Ω

−1Δv(θ),

H∗
ββ(ψ) = − 1

σ2
v
ΔX ′Ω−1ΔX,

H∗
βσ2

v
(ψ) = − 1

σ4 ΔX ′Ω−1Δv(θ),

H∗
σ2

vσ
2
v
(ψ) = − 1

σ6
v
Δv(θ)′Ω−1Δv(θ) + N(T−1)

2σ4
v

,

9



where Ḋ(ρ) = ∂
∂ρD(ρ). Note that the modified Hessian matrix H∗(ψ0) depends only on the

observables and the model parameter vector ψ0 of which consistent estimate is available.
The estimate − 1

N(T−1)H
∗(ψ̂∗) of Σ∗(ψ0) is thus free from the specification of the initial

conditions. Its consistency is given in Theorem 2 below and proved in Appendix.

The estimation of Γ∗(ψ0) is trickier as the nature of a dynamic panel data model renders
the closed-form expression of Var[S∗(ψ0)], which can be derived using (3.4), infeasible as
it contains the unobservables (y−m, xs, s = −m, . . . ,−1) and hence the traditional plug-in
method cannot be applied, unless the initial observations are modeled (approximated using
the observables) as in HPT. Note that the likelihood function used is quasi in two senses:
the exact error distribution is unknown but treated as Gaussian and the initial differences
are endogenous but treated as exogenous. Thus, Γ∗(ψ0) 
= Σ∗(ψ0) even when the errors are
exactly normal, and a consistent estimator of Γ∗(ψ0) is always needed for inference based
on the modified estimation. As our asymptotics are based on large N and fixed T and the
modified score function can be decomposed into a sum of N independent terms, an outer
product of gradients (OPG) estimator of Γ∗(ψ0) naturally emerges.

Let Δyi− = {Δyi1,Δyi2, , . . . ,Δyi,T−1}′, Δvi− = {Δvi2,Δvi3, , . . . ,Δvi,T}′, and Δxi− =
{Δxi2,Δxi3, , . . . ,Δxi,T}′. The key elements of the modified score can be written as

ΔY ′
−1Ω

−1Δv =
∑N

i=1 Δy′i−C
−1Δvi− ≡ ∑N

i=1 gρi(θ0), (3.13)

ΔX ′Ω−1Δv =
∑N

i=1 Δx′i−C
−1Δvi− ≡ ∑N

i=1 gβi(θ0), (3.14)

Δv′Ω−1Δv =
∑N

i=1 Δv′i−C
−1Δvi− ≡ ∑N

i=1 gσ2
vi

(θ0), (3.15)

which are all sums of N independent items. Define the N × (p+ 2) gradient matrix:

G∗(ψ0) =
{

1
σ2

v0
gρi(ψ0) − tr(C−1D(ρ0)), 1

σ2
v0
gβi(ψ0), 1

2σ4
v0
gσ2

vi
(ψ0) − T−1

2σ2
v0

}
. (3.16)

Thus, we have S∗(ψ0) = G∗(ψ0)′1N where 1N is an N -vector of ones. An OPG estimator of
Γ∗(ψ0) is 1

NTG
∗(ψ̂∗)′G∗(ψ̂∗). Finally, the sandwich estimator of the VC matrix of ψ̂∗ takes

the form: H∗(ψ̂∗)−1G∗(ψ̂∗)′G∗(ψ̂∗)H∗(ψ̂∗)−1. It is seen that the gradients G∗(ψ0) contains
only the observables and the model parameters ψ0, its outer product evaluated at ψ̂∗ leads
to a initial-condition free estimate of Var[S∗(ψ0)]. This together with H∗(ψ̂∗) lead to a
initial-condition free estimate of Var(ψ̂∗), of which consistency is given below.

Theorem 3.2: Assume Model (2.3) satisfies Assumptions A-E. Then, as N → ∞,

1
N(T−1)G

∗(ψ̂∗)′G∗(ψ̂∗)− Γ∗(ψ0)
p−→ 0,

and hence N (T − 1)H∗(ψ̂∗)−1G∗(ψ̂∗)′G∗(ψ̂∗)H∗(ψ̂∗)−1 − Σ∗(ψ0)−1Γ∗(ψ0)Σ∗(ψ0)−1 p−→ 0.

Obviously, the OPG approach for robust VC matrix estimation depends on the large N
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and fixed T setting. When T also tends to infinity, alternative method of robust VC matrix
estimation is desired. This is in contrast the parameter estimation problem.

4 QML Estimation Utilizing Initial Observations

The inference methods proposed in the early section capture the compound effects of the
processes from past to the initial observations through a simple modification on the score
function. The proposed methods are free from the specifications of the distributions of the
initial differences, and thus are very easy to apply. However, the initial differences contain
useful information about the structural parameters of the model, and hence it is natural to
wonder if there would be any efficiency loss if the initial observations are not fully utilized.
To address this issue, I in this section first provide some theoretical discussions alone the
lines of HPT, and then in next section present some Monte Carlo results. I extend HPT’s
discussions based on ML estimation to QML estimation framework, establish formally the
consistency and asymptotic normality of the full QML estimators, and introduce a simple
method for robust VC matrix estimation.

Rewrite the expression for Δy1 given in (3.12) as,

Δy1 = Δη0 + Δx1β0 + ρm0 v−m+1 + Δv1(m, ρ0), (4.1)

where Δη0 = ρm0 φ(y−m) + Δx0(m, ρ0)β0. Note that Δη0 together with Δx1β0 makes up the
exogenous part of Δy1. Depending the value of m, Δη0 can be very complicated, contain-
ing the process starting positions y−m and the past values of the time-varying regressors
{x−m+1, . . . , x−1} of which all are not observed. It also contains the parameters β0 and ρ0.
Thus, Δη0 acts like anN×1 vector of unknown parameters, and hence cannot be consistently
estimated due to the incidental parameters problem.

If Δη0 can be approximated linearly by the observed values of the regressors, i.e.,

Δη0 = α01n + α1Δx1 + . . . , αTΔxT + e ≡ Δx̃ α+ e,

with e being the vector of approximation errors, iid with mean zero and variance σ2
e and

independent of vt, then, we have a ‘predictive’ model for Δy1,

Δy1 = Δx̃ α+ Δx1β + Δv�1, (4.2)

where Δv�1 = e+ ρmv−m+1 + Δv1(m, ρ). HPT argued that this approximation is valid if the
regressors are generated from either of the following two processes:

xit = μi + gt+
∑∞

j=0 ajεi,t−j ,
∑∞

j=0 |aj| <∞, (4.3)

Δxit = g +
∑∞

j=0 djεi,t−j ,
∑∞

j=0 |dj| <∞, (4.4)
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where μi can either be fixed or random, and εit are iid(0, σ2
ε). It can be shown that under

(4.3) and (4.4), the Assumptions D(ii)-(iii) hold.
Letting Δv� = (Δv�′1 ,Δv

′
2, . . . ,Δv

′
T )′. It is easy to show that by construction and under

the strict exogeneity of (Δx1, . . . ,ΔxT ), E(Δv�1) = 0,

E(Δv�1Δv
�′
1 ) = σ2

eIn + σ2
vcm(ρ)In = σ2

v(φe + cm(ρ))In, and (4.5)

E(Δv�1Δv
′
t) = −σ2

vIN , for t = 2, and 0, for t = 3, . . . , T, (4.6)

where φe = σ2
e/σ

2
v and cm(ρ) = 2

1+ρ − ρ2m(1−ρ)
1+ρ . Under the normality assumptions of {vt}

and e, we have Δv� ∼ N (0, σ2
v0Ω

�
0), where Ω�

0 ≡ Ω�(ω0) = C�(ω0) ⊗ IN , and

C�(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠
T×T

,

where ω = φe + cm(ρ), treated as a free parameter, as in HPT, to be estimated jointly with
the other model parameters.5 The joint distribution of Δv� is directly converted to the joint
distribution of ΔY � = (Δy′1,Δ

′
2, . . . ,Δy

′
T )′ or the likelihood function, as the Jacobian of the

transformation is unity. Under (3.1) and (4.2)-(4.4), the full quasi-Gaussian loglikelihood of
ψ = (θ′, σ2

v, ω)′, θ = (ρ, β′, α′)′, incorporating the initial observations is written as

��(ψ) = −NT
2

log(2π)− NT

2
log(σ2

v)−
1
2

log |Ω�(ω)| − 1
2σ2

v

Δv�(θ)′Ω�(ω)−1Δv�(θ), (4.7)

where Δv�(θ) = ΔY � − ΔX� θ, and, letting r be the column rank of Δx̃,

ΔX� =

⎛
⎜⎜⎜⎝

0N×1 Δx1 Δx̃
Δy1 Δx2 0N×r
...

...
...

ΔyT−1 ΔxT 0N×r

⎞
⎟⎟⎟⎠ ,

Given ω, the constrained QML estimators of θ and σ2
v are

θ̃�(ω) = (ΔX�′Ω�(ω)−1ΔX�)−1ΔX�′Ω�(ω)−1ΔY � and (4.8)

σ̃�2v (ω) = 1
NTΔṽ�(ω)′Ω�(ω)−1Δṽ�(ω), (4.9)

5Note that cm(ρ) takes a slightly different form from HPT. However, the exact expression is not important
as cm(ρ) and φe are integrated to form a single parameter ω. The advantage of doing so is that it avoids the
issue that m is also unknown. This treatment is valid as long as the model contains at least one time-varying
regressor, due to the presence of φe. When the model does not contain any time-varying regressor, ω = cm(ρ),
which cannot be treated as a free parameter when m = ∞ or ρ = 0, as c∞(ρ) = 1

1+ρ
and cm(0) = 2.
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where Δṽ�(ω) = ΔY � −ΔX�θ̃�(ω). Substituting θ̃�(ω) and σ̃�2v (ω) back into (4.7) gives the
concentrated loglikelihood for ω:

��c(ω) = −NT
2

[log(2π) + 1]− 1
2

log |Ω�(ω)| − NT

2
log σ̂�2v (ω). (4.10)

Maximizing (4.10) gives the full QMLE ω̂� of ω. The unconstrained full QMLEs of θ and σ2
v

are thus θ̂� ≡ θ̃(ω̂�) and σ̂�2v ≡ σ̃�2v (ω̂�). The QMLE of ψ is denoted as ψ̂�.
The expressions given in (4.2), (4.5) and (4.6) show that the initial endowments Δy1 can

indeed be useful in estimating ρ and σ2
v , and ignoring them as in the original conditional QML

estimation would result in inconsistency in model estimation. The modified QML estimation
captures the compound effect of the processes on the initial observations through a simple
modification on the score function, resulting in consistent estimation of the model parameters.
In contrast, the full QML estimation is through a model for the initial observations as in
HPT. The tradeoff, however, in utilizing Δy1 through (4.2) for model estimation is that an
additional pT + 2 parameters have to be estimated. It is clear that this is beneficial only if
N is significantly larger than pT + 2. However, doing so the information about ρ contained
in Δy1 is not utilized in estimating ρ, and hence the efficiency in estimating ρ cannot be
increased by incorporating the initial observations into the model estimation.

Based on this set up, it is clear that the identification of the model parameters depends
crucially on the identification of the nuisance parameter ω and the full rank condition of
ΔX�. Let [θ̄(ω), σ̄2

v(ω)] be the solution of maxθ,σ2
v
[��(ψ)]. We need the following conditions.

Assumption C′: ω0 is in the interior of a compact parameter space W.
Assumption D′: (i) The regressors are generated by either Model (4.3) or Model (4.4);

(ii) All the elements in Δxit have finite high-than 4th moments; and (iii) 1
NTΔX�′ΔX� is

positive definite almost surely for large enough N .
Assumption E′: limN→∞ 1

NT [log |σ2
v0Ω

�
0| − log |σ̄2

v(ω)Ω�(ω)|], for any ω 
= ω0.

Let S�(ψ) and H�(ψ) be, respectively, the score vector and the Hessian matrix of the full
QML estimation. The asymptotic properties of the QMLE of ψ0 are give as follows.

Theorem 4.1: Assume Model (2.3) satisfies Assumptions A, B, and C′-E′. Then, the
full QML estimator ψ̂� is consistent, i.e., plimN→∞(ψ̂� − ψ0) = 0, and is asymptotically
normally distributed, i.e.,

√
NT (ψ̂� − ψ0)

D−→ N
[
0, lim

N→∞
Σ�(ψ0)−1Γ�(ψ0)Σ�(ψ0)−1

]
,

where Γ�(ψ0) = Var[ 1√
NT

S�(ψ0)] assumed to exist, and Σ�(ψ0) = 1
NT E[H�(ψ0)] assumed to

exist and to be nonsingular, for large enough N .

For robust inferences, a method for estimating the VC matrix of ψ̂� is desired. As in
Section 3, Σ�(ψ0) can be consistently estimated by − 1

NTH
�(ψ̂�) and Γ�(ψ0) by an OPG
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method. First, the score function of the full loglikelihood has the form

S�(ψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2

v
ΔX�′Ω�−1Δv�(θ),

1
2σ4

v
Δv�(θ)′Ω�−1Δv�(θ) − NT

2σ2
v
,

1
2σ2

v
Δv�(θ)′Ω�−1Ω̇Ω�−1Δv�(θ) − 1

2 tr(Ω�−1Ω̇),

where Ω̇ = Ċ⊗IN and Ċ is a T×T matrix of element 1 on its top-left corner and 0 elsewhere.
Similar to Section 3, let Δyi− = {0,Δyi1, . . . ,Δyi,T−1}′, Δv�i− = {Δv�i1,Δvi2, . . . ,Δvi,T}′,
and Δx�i− = {Δx�i1,Δx�i2, , . . . ,Δx�i,T}′, where Δx�′i1 is the ith row of ΔX�, Δx�′i2 is the
(N + i)th row, etc. An OPG estimator of Γ�(ψ0) is thus 1

NTG
�(ψ̂�)′G�(ψ̂�), where

G�(ψ0) =
{

1
σ2
0
g�θi(ψ0), 1

2σ4
0
g�
σ2

vi
(ψ0) − T

2σ2
0
, 1

2σ2
0
g�ωi(ψ0) − 1

2tr(C�−1Ċ)
}
N×(p+2)

,

and {g�θi(ψ0), g�σ2
vi

(ψ0), g�ωi(ψ0)} are independent and are such that

ΔX�′Ω�−1Δv� =
∑N

i=1 Δx�′i−C
�−1Δv�i− ≡ ∑N

i=1 g
�
θi(ψ0), (4.11)

Δv�′Ω�−1Δv� =
∑N

i=1 Δv�′i−C
�−1Δv�i− ≡ ∑N

i=1 g
�
σ2

vi
(ψ0), (4.12)

Δv�′Ω�−1Ω̇Ω�−1Δv� =
∑N

i=1 Δv�′i−C
�−1ĊC�−1Δv�i− ≡ ∑N

i=1 g
�
ωi(ψ0). (4.13)

The Hessian matrix H�(ψ) has the typical elements:

H�
θθ′(ψ) = − 1

σ2
v
ΔX�′Ω�−1ΔX�,

H�
θσ2

v
(ψ) = − 1

σ4
v
ΔX�′Ω�−1Δv�(θ),

H�
θω(ψ) = − 1

σ2
v
ΔX�′Ω�−1Ω̇Ω�−1Δv�(θ),

H�
σ2

vσ
2
v
(ψ) = − 1

σ6
v
Δv�(θ)′Ω�−1Δv�(θ) + NT

2σ4
v
,

H�
σ2

vω
(ψ) = − 1

2σ4
v
Δv�(θ)′Ω�−1Ω̇Ω�−1Δv�(θ),

H�
ωω(ψ) = − 1

σ2
v
Δv�(θ)′Ω�−1Ω̇Ω�−1Ω̇Ω�−1Δv�(θ) + 1

2 tr(Ω�−1Ω̇Ω�−1Ω̇).

Plugging ψ̂� for ψ in H�(ψ) leads to a consistent estimator of Σ�(ψ0). Under (4.2), one can
readily verify that E[S�(ψ0)] = 0. Consistency of 1

NTH
�(ψ̂�) for Σ�(ψ0) and the consistency

of 1
NTG

�′(ψ̂�)G�(ψ̂�) for Γ�(ψ0) can be proved in the same manner as in Section 3.

Theorem 4.2: Assume Assumptions A, C, and D′-E′ hold. Then, as N → ∞,

1
NTG

�(ψ̂�)′G�(ψ̂�) − Γ�(ψ0)
p−→ 0,

and hence NT H�(ψ̂�)−1G�(ψ̂�)′G�(ψ̂�)H�(ψ̂�)−1 − Σ�(ψ0)−1Γ�(ψ0)Σ�(ψ0)−1 p−→ 0.

Similar to the result of Theorem 3.2, the validity of the result of Theorem 4.2 depends
on the large N and fixed T set up. When T is also large, an alternative method for robust
VC matrix estimation is desired. However, in this case the results of Theorem 4.1 remain
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valid as the effect of Model (4.2) for the initial differences Δy1 becomes small.

5 Monte Carlo Results

Monte Carlo experiments are carried out to (i) investigate finite sample performance
of the proposed estimator, the modified QMLE (MQMLE), and the OPG estimator of the
standard error of the MQMLE and (ii) compare with the closely related estimators, the
QMLE based on the full likelihood (FQMLE) related to Hsiao et al. (2002), and the QMLE
based on the conditional likelihood (CQMLE), under different initial conditions, and different
error distributions. A particularly interesting question to be answered is how much more
efficient can FQMLE be than MQMLE, as the former takes use of the initial observations.
Also interested is how bad can CQMLE be when T is small and how does it improve as T
grows. Is there still a comparative advantage of MQMLE over CQMLE when T grows with
N? The following data generating process (dgp) is used in the Monte Carlo experiments:

yt = ρyt−1 + β0ιn + xtβ1 + zγ + μ+ vt,

where yt, yt−1, xt, and z are all N × 1 vectors. The elements of xt are generated in a
similar fashion as in Hsiao et al. (2002),6 and the elements of z are randomly generated
from Bernoulli(0.5). The error (vt) distributions can be (i) normal, (ii) normal mixture
(10% N (0, 4) and 90% N (0, 1)), or (iii) chi-square. The fixed effects μ are generated accord-
ing to 1

T

∑T
t=1 xt + e where e is a vector of iid random numbers. A simpler model, the pure

FE-DPD model without regressors, is given a separate consideration.
The parameters’ values are chosen to be β0 = 5, β1 = γ = σμ = σv = 1, ρ ∈ [0.9, 0.9],

T ∈ {3, 6, . . .}, N = {10, 20, 50, 100, 200}, and {m = 0, 5, 50}. Each set of Monte Carlo
results is based on 1000 samples. Due to the space constraints, only a subset of results,
corresponding to m = 50, are reported. The reported results are the Monte Carlo mean and
standard deviation (sd), the averaged standard error (ŝe) calculated based on Hessian only,
and the averaged robust standard error (r̂se) calculated based on the sandwich estimator.

The case of small T . Tables 1-6 summarize the results for T = (3, 6),N = (50, 100, 200),
and ρ = (.8, .4, 0,−.4,−.8). The results reveal the followings: (i) when T is much smaller
than N , MQMLE and FQMLE give almost identical results, (ii) the proposed the robust
variance estimator works well for both MQMLE and FQMLE, (iii) CQMLE can be very bi-
ased and the bias does not reduce as N goes large, (iv) the sds of MQMLE and FQMLE can
be slightly larger than that of CQMLE when ρ is positive and large, but otherwise are about

6The detail is: xt = μx +gt1n +ζt, (1−φ1L)ζt = vt +φ2vt−1, vt ∼ N(0, σ2
1IN), μx = e+ 1

T+m+1

PT
t=−m vt,

and e ∼ N(0, σ2
2). The reported results correspond to (g, φ1, φ2, σ1, σ2) = (0.01, 0.5, 0.5, 2, 1) similar to HPT.

Alternatively, xt can be randomly generated from N(0, 4IN ).
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the same, (v) when T increases (even from 3 to 6), the bias of CQMLE drops significantly,
and (vi) the sds or ses become smaller when N or T or both increase.

Changing the value of m does not affect much the overall performance of MQMLE and
FQMLE, but affects significantly the performance of CQMLE. As m decreases, CQMLE
improves and when m = 0 CQMLE performs quite reasonably even when T is as small as
3, though there still exists some noticeable bias. This is well expected as in this case y0 is
exogenous, and there is no cumulative impact on Δy1 from the past, which makes Δy1 much
less influential on the subsequent estimation.

The case T is not small. When T is not so small compared with N , the model for Δy1
can contain many extra parameters, which is exactly (Tp+2) of them where p is the number
of the time-varying regressors. In this case, there should be a reasonable concern on the
finite sample performance of FQMLE when |ρ| is very small as in this case the ‘predicting’
power of the model for Δy1 might not be strong enough, and the extra variability caused
by estimating these extra parameters may be too big. To address these issues, Monte Carlo
experiments are run with T not so small relative to N and |ρ| is small. The reported results in
Table 7 correspond to (N, T ) = (10, 6), (20, 16), and (30, 26), and ρ = 0.1, 0.0, and -0.1. The
results show that MQMLE still performs very well in general, but FQMLE does not perform
satisfactorily. MQMLE also outperforms CQMLE, but the latter performs reasonably well.
These results confirm our theories that the proposed estimation method works for both small
and large T . The ses and rses are not reported as they are unstable for the FQMLEs.

Pure Dynamic Model. Dropping the regressor from the data generating process gives
a pure dynamic model. As discussed in Hsiao et al. (2002), and in Section 4 (Footnote 5, in
particular), treating ω as an independent parameter is generally valid when model contains at
least one time-varying regressor, but may not be so with a pure dynamic model. When m =
50, ω = cm(ρ) ≈ c∞(ρ) = 1

1+ρ , showing that treating ω as an independent parameter and
estimating it jointly with the common parameters may generate some undesirable impacts,
dependent upon the magnitude of ρ. Table 8 presents some results that typically show that
when ρ is large, the performance of FQMLE may not be satisfactorily. In contrast, the
proposed MQMLE performs well or satisfactorily in general.

6 Conclusion and Discussion

A simple modification on the score element of dynamic parameter of the conditional quasi-
likelihood, conditional on the initial differences Δy1, of the fixed effects dynamic panel data
model is derived. This modification leads to a modified QML estimator of the fixed effects
DPD model that is free from the specification of the initial conditions. Formal theories on
consistency, asymptotic normality and robust VC matrix are presented. While the method
is developed based on short panel set up, it remains valid when the time dimension also
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grows and more importantly it automatically corrects the bias caused by ignoring the initial
observations in the usual large-N and large-T set up, i.e., using the conditional likelihood
given the initial differences. An OPG estimator of the robust VC matrix is also given.

To compare the proposed methods with those given in Hsiao et al. (2002), their ML
estimation and inference framework is first extended to the QML estimation and inference
framework, formal theories on consistency, asymptotic normality and robust VC matrix pro-
vided to suite for the situations where the errors are not exactly normally distributed. Monte
Carlo results show an excellent finite sample performance of the proposed methods. Com-
pared with the full QMLE where the initial differences are modeled, there is generally no loss
in efficiency, but there are gains in terms of reduced bias and increased versatility/stability
with respect to the changes in parameter values and structures of the model. In particular,
the proposed methods outperforms the full QMLE under the pure DPD model, and under
a general model where |ρ| is small and T is not so small relative to N . Considering the sim-
plicity and stability of the proposed methods, it is recommended to the applied researchers.

Some immediate extensions of the methods can be made by relaxing the independence
assumption across the time dimension. In particular, the constant C matrix given below
(3.1) can be replaced by an parametric matrix capturing the serial correlations. The method
may also be extended to allow the errors to be dependent in the cross-sectional direction,
e.g., the errors follow a spatial autoregressive process, or the model contains a spatial lag
of the response variable. However, doing so clearly invalidates the OPG method for the
robust VC matrix estimation, besides the complications in deriving the modification factor.
Nevertheless, the results presented in this paper shows that in tackling the initial condition
problem for dynamic panel data models with small and fixed T , modifications on the score
element for the dynamic parameter seem a promising way to go.
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Appendix: Proofs of Results

Proof of Lemma 3.1: E(ΔY ′−1Ω
−1Δv) = tr[Ω−1E(ΔvΔY ′−1)], and E(ΔvΔY ′−1) =

{E(ΔvtΔy′s)} for t = 2, 3, . . . , T and s = 1, 2, . . . , T−1. For t = 2, E(Δv2Δy′1) = E(Δv2y′1) =
E(Δv2v′1) = −σ2

v0IN , E(Δv2Δy′2) = ρ0E(Δv2Δy′1) + E(Δv2Δv′2) = (2 − ρ0)σ2
v0IN , and for

s = 3, . . . , T − 1, E(Δv2Δy′s) = −ρs−3
0 (1 − ρ0)2σ2

v0IN . Similarly, for t = 3, E(Δv3Δy′1) = 0,
E(Δv3Δy′2) = −σ2

v0IN , E(Δv3Δy′3) = (2− ρ0)σ2
v0IN , and for s = 4, . . . , T − 1, E(Δv3Δy′s) =

−ρs−4
0 (1− ρ0)2σ2

v0IN . The other elements of {E(ΔvtΔy′s)} corresponding to t = 4, . . . , T − 1
can be found in the same way, and the result of Lemma 1 thus follows.

Proof of Lemma 3.2: In connection to Hsiao, et al. (2002, p. 143), we first derive a
simplified expression for the inverse of C as: C−1 = 1

T {ats, t, s = 0, 1, . . . , T − 2}, where

ats =

⎧⎨
⎩

(T − t− 1)(s+ 1), s ≤ t,

(T − s− 1)(t+ 1), s > t.

The rest is just straightforward but tedious algebraic manipulation.

For proving Theorems 3.1 and 3.2, we need the simplified expressions for β̃∗(ρ),
σ̃∗2v (ρ), and S◦

m(ρ), defined by (3.8) and (3.9), and their population counter parts β̄∗(ρ),
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σ̄∗2v (ρ), and S̄∗
c (ρ), defined above (3.10) and in (3.10). First,

Δv(θ) = ΔY − ρΔY−1 + ΔXβ = ΔY−1(ρ0 − ρ) + ΔX(β0 − β) + Δv. (A.1)

Using (A.1), the random components of the modified score function at ψ are written as

ΔY ′
−1Ω

−1Δv(θ) = ΔY ′
−1Ω

−1ΔY−1(ρ0 − ρ) + ΔY ′
−1Ω

−1ΔX(β0 − β) + ΔY ′
−1Ω

−1Δv,
ΔX ′Ω−1Δv(θ) = ΔX ′Ω−1ΔY−1(ρ0 − ρ) + ΔX ′Ω−1ΔX(β0 − β) + ΔX ′Ω−1Δv,
Δv(θ)′Ω−1Δv(θ) = ΔY ′

−1Ω
−1ΔY−1(ρ0 − ρ)2 + (β0 − β)′ΔX ′Ω−1ΔX(β0 − β)

+Δv′Ω−1Δv + 2ΔY ′
−1Ω

−1ΔX(ρ0 − ρ)(β0 − β)
+2ΔY ′

−1Ω
−1Δv(ρ0 − ρ) + 2(β0 − β)′ΔX ′Ω−1Δv,

which are all linear or quadratic in ρ and β. Let M = I−Ω− 1
2 ΔX(ΔX ′Ω−1ΔX)−1ΔX ′Ω− 1

2 ,
where I is a N (T−1)-dimensional identity matrix, and Ω− 1

2 is the symmetric square root of
Ω. The modified QMLEs of β0 and σ2

v0, for a given ρ, defined in (3.8) can be written as,

β̃∗(ρ) = β̃∗(ρ0) − (ρ− ρ0)(ΔX ′Ω−1ΔX)−1ΔX ′ΔY−1 (A.2)

σ̃∗2v (ρ) = σ̃∗2v (ρ0) + (ρ− ρ0)2Q1 − 2(ρ− ρ0)Q2, (A.3)

where Q1 = 1
N(T−1)ΔY

′−1Ω
− 1

2MΩ− 1
2 ΔY−1 and Q2 = 1

N(T−1)ΔY
′−1Ω

− 1
2MΩ− 1

2 Δv. The mod-
ified concentrated estimating function defined in (3.9) can be written as,

S∗
c (ρ) =

(ρ0 − ρ)Q1 +Q2

σ̃∗2v (ρ)
− tr(C−1D(ρ))

T − 1
. (A.4)

Now, solving E[S∗
β(ψ)] = 0 and E[S∗

σ2
v
(ψ)] = 0, we obtain, in relation to (3.10),

β̄∗(ρ) = β0 − (ρ− ρ0)(ΔX ′Ω−1ΔX)−1ΔX ′Ω−1E(ΔY−1), and (A.5)

σ̄∗2v (ρ) = σ2
v0 + (ρ− ρ0)2[E(Q1) + E(Q3)]− 2σ2

v0
T−1(ρ− ρ0)tr(C−1D), (A.6)

where Q3 = 1
N(T−1) [(ΔY

′
−1−E(ΔY ′

−1))Ω
− 1

2 (I−M)Ω− 1
2 (ΔY ′

−1−E(ΔY ′
−1))], and D = D(ρ0).

Substituting β̄∗(ρ) and σ̄∗2v (ρ) into E[S∗
ρ(ψ)] for β and σ2

v leads to S̄∗
c (ρ) defined by (3.10) as,

S̄∗
c (ρ) =

(ρ0 − ρ)[E(Q1) + E(Q3)]
σ̄∗2v (ρ)

+
σ2
v0tr(C

−1D)
(T − 1)σ̄∗2v (ρ)

− tr(C−1D(ρ))
(T − 1)

. (A.7)

The following lemma is very useful in simplifying the proofs of the main results.

Lemma A.1: If the assumptions of Theorem 3.1 hold, we have when N is large,
(i) 1

NE(Δy′1Δy1) = O(1) and 1
N [Δy′1Δy1 − E(Δy′1Δy1)] = op(1);

(ii) 1
NT E(ΔY ′

−1Ω
−1ΔY−1) = O(1) and 1

NT [ΔY ′
−1Ω

−1ΔY−1−E(ΔY ′
−1Ω

−1ΔY−1)] = op(1);
(iii) 1

NT E(ΔY ′−1Ω
−1Δv) = O(1) and 1

NT [ΔY ′−1Ω
−1Δv − E(ΔY ′−1Ω

−1Δv)] = op(1);
(iv) (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1ΔY−1 = Op(1).
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Proof: For the first part of (i), we have by (3.12) and Assumption D(ii), 1
NE(Δy′1Δy1) =

1
N tr[Var(Δy1) + E(Δy1)E(Δy′1)] = σ2

v0cm(ρ0) + 1
NΔη′1Δη1 = O(1). For the second part of

(i), we have 1
N (Δy′1Δy1 − E(Δy′1Δy1)] = 2

NΔη′1Δv◦1 + 1
N [Δv◦′1 Δv◦1 − E(Δv◦′1 Δv◦1)] = op(1),

by Chebyshev inequality, where Δv◦1 = Δv1(m, ρ0) to differentiate from Δv1 = v1 − v0.
For the first part of (ii), similar to (3.12), under Assumption A and Model (2.3), contin-

uous substitutions from the tth period, t = 2, 3, . . . , T , back to the 2th period lead to

Δyt = ρt−1Δy1 +
t∑

s=2

ρt−sΔxsβ +
t∑

s=2

ρt−sΔvs. (A.8)

Define a−1(ρ) = (1, ρ, . . . , ρT−2)′, and the (T − 1)× (T − 1) matrices:

A(ρ) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 ρ . . . ρT−3

1 0 0 . . . 0
ρ 0 0 . . . 0
...

...
...

. . .
...

ρT−3 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

and B−1(ρ) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
1 0 . . . 0 0
ρ 1 . . . 0 0
...

...
. . .

...
...

ρT−3 ρT−4 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠
,

and denote a−1 ≡ a−1(ρ0), A ≡ A(ρ0), B−1 ≡ B−1(ρ0), and Δη = ΔXβ0. We have

ΔY−1 = a−1 ⊗ Δy1 + (B−1 ⊗ IN)(Δη + Δv), and (A.9)

Var(ΔY−1) = σ2
v0[cm(ρ0)a−1a

′
−1 + B−1CB

′
−1 +A] ⊗ IN . (A.10)

It is obvious that λmin(Ω) = λmin(C) = cmin > 0 and λmax(Ω) = λmax(C) = cmax <∞. Thus,
1
NT E(ΔY ′

−1Ω
−1ΔY−1) = 1

NT tr[Ω−1E(ΔY−1ΔY ′
−1)] ≤ 1

NT c
−1
mintr[E(ΔY−1ΔY ′

−1)] = O(1), by
(i), (A.9) and (A.10). For the second part of (ii), we have by (A.9) and Ω = C ⊗ IN ,

1
NT [ΔY ′

−1Ω
−1ΔY−1 − E(ΔY ′

−1Ω
−1ΔY−1)] =

∑5
k−1 Rk, where

R1 = 1
NT (a′−1a−1)[Δy′1Δy1 − E(Δy′1Δy1)],

R2 = 1
NT {Δv′((B′

−1C
−1B−1) ⊗ IN )Δv − E[Δv′((B′

−1C
−1B−1) ⊗ IN )Δv]},

R3 = 2
NT [(a′−1C

−1B−1) ⊗ (Δy′1 − E(Δy′1))]Δη,

R4 = 2
NT {((a′−1C

−1B−1) ⊗ Δy′1)Δv − E[((a′−1C
−1B−1) ⊗ Δy′1)Δv]}, and

R5 = 2
NTΔη′[(B′

−1C
−1B−1)⊗ IN)]Δv.

Using (3.12), (i) and Chebyshev inequality, it is straightforward to show that Rk = op(1), k =
1, . . . , 5, leading to second part of (ii). The proof of (iii) follows closely that of (ii).

For (iv), note that c−1
maxΔX

′ΔX ≤ ΔX ′Ω−1ΔX ≤ c−1
minΔX ′ΔX . It follows by Assump-

tion D(iii) that NT (ΔX ′Ω−1ΔX)−1 = O(1). It is easy to show that 1
NT (ΔX ′Ω−1ΔY−1) =

Op(1) by (A.9), the result (iv) thus follows. �
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Proof of Theorem 3.1: We first prove the consistency of ρ̂∗. By Theorem 5.9 of van
der Vaart (1998, p. 46), it amounts to show (i) supρ∈P

∣∣S∗
c (ρ) − S̄∗

c (ρ)
∣∣ p−→ 0, and (ii) for

every ε > 0, infρ: |ρ−ρ0|≥ε
∣∣S̄∗
c (ρ)

∣∣ > 0 =
∣∣S̄∗
c (ρ0)

∣∣. To show (i), we have by (A.4) and (A.7),

S∗
c (ρ)− S̄∗

c (ρ) = −(ρ− ρ0)
Q1 − E(Q1) − E(Q3)

σ̄∗2v (ρ)
+
Q2 − σ2

v0
T−1tr(C−1D)
σ̄∗2v (ρ)

+[(ρ− ρ0)Q1 +Q2]
σ̃∗2v (ρ)− σ̄∗2v (ρ)
σ̃∗2v (ρ)σ̄∗2v (ρ)

.

Thus, it suffices to show that Q1 − E(Q1) = op(1), Q2 − σ2
v0

T−1 tr(C−1D) = op(1), E(Q3) =
o(1), σ̃∗2v (ρ) − σ̄∗2v (ρ) = op(1) uniformly in ρ ∈ P , and σ̃∗2v (ρ) is bounded away from zero
with probability one uniformly in ρ ∈ P for large enough N . It is easy to show that
Q1 = 1

N(T−1)
ΔY ′

−1Ω
−1ΔY−1 + op(1) and Q2 = 1

N(T−1)
ΔY ′

−1Ω
−1Δv + op(1). Thus, the first

two results follow from Lemma A.1(i)-(ii). For the third result we have by (A.10),

E(Q3) = 1
N(T−1)E[(ΔY ′

−1 − E(ΔY ′
−1))Ω

− 1
2 (I −M)Ω− 1

2 (ΔY ′
−1 − E(ΔY ′

−1))]

= 1
N(T−1)

tr{Ω− 1
2 (I −M)Ω− 1

2 Var(ΔY−1)}
≤ 1

N(T−1)λmax[Var(ΔY−1)][λmin(Ω)]−1tr(I −M) = o(1),

where note that tr(I −M) = p. For the fourth result, we have by (A.3) and (A.6),

σ̃∗2v (ρ)− σ̄∗2v (ρ) = σ̃∗2v (ρ0) − σ2
vo + (ρ− ρ0)2[Q1 − E(Q1) − E(Q3)]

+2(ρ− ρ0)[Q2 − σ2
v0

T−1tr(D−1D)].

It is easy to show σ̃∗2v (ρ0) = 1
N(T−1)

Δv′Ω− 1
2MΩ− 1

2 Δv
p→ σ2

v0 and Q2 − σ2
v0

T−1tr(D−1D)
p→ 0.

Further, Q1−E(Q1) = op(1) and E(Q3) = o(1) as shown above. Thus, σ̃∗2v (ρ)−σ̄∗2v (ρ) = op(1)
uniformly in ρ ∈ P . To show the last result, note from (3.8),

σ̃∗2v (ρ) = 1
N(T−1)ΔY (ρ)′Ω− 1

2MΩ− 1
2 ΔY (ρ)

= 1
N(T−1)

ΔY (ρ)′Ω−1ΔY (ρ) + op(1)

≥ 1
N(T−1)c

−1
maxΔY (ρ)′ΔY (ρ) + op(1).

As c−1
max is strictly positive and 1

N(T−1)ΔY (ρ)′ΔY (ρ) is positive with probability one uni-
formly in ρ ∈ P , σ̃∗2v (ρ) is bounded away from zero with probability one uniformly in ρ ∈ P .
As σ̃∗2v (ρ)− σ̄∗2v (ρ) = op(1) uniformly in ρ ∈ P , σ̄∗2v (ρ) is bounded away from zero uniformly
in ρ ∈ P , and this finishes the proof of (i).

To show (ii), first note from (A.5)-(A.7) that β̄∗(ρ0) = β0, σ̄∗2v (ρ0) = σ2
v0 and S̄∗

c (ρ0) = 0.
To show that ρ0 is the unique zero of S̄∗

c (ρ), it is equivalent to show that ρ0 is the unique
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zero of (ρ0 − ρ)E(Q1) + σ̄∗2v (ρ)g(ρ)− σ2
v0g(ρ0), which is given by Assumption D.

Now, for the consistency of β̂∗, note β̂∗ = β̃(ρ0)−(ρ̂∗−ρ0)(ΔX ′Ω−1ΔX)−1ΔX ′Ω−1ΔY−1.
It is easy to show that (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1Δv = op(1) by Assumption D, and thus as
N → ∞, β̃(ρ0)

p→ β0. By Lemma A.1(iii), (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1ΔY−1 = Op(1). Since
ρ̂∗

p→ ρ0, it follows that β̂∗
p→ β0. Finally, σ̂∗2v = σ̃∗2v (ρ0)+(ρ̂∗−ρ0)2Q1+2(ρ̂∗−ρ0)Q2

p→ σ2
v0,

as σ̃∗2v (ρ0)
p→ σ2

v0, ρ̂
∗ p→ ρ0, and both Q1 and Q2 are Op(1) by Lemma A.1(i).

To establish the asymptotic normality for ψ̂∗, we have by the mean value theorem,

0 = 1√
N(T−1)

S∗(ψ̂∗) = 1√
N(T−1)

S∗(ψ0) + 1
N(T−1)H

∗(ψ̃)
√
N (T − 1(ψ̂∗ − ψ0)

where the elements of ψ̃ = (ρ̃, β̃, σ̃2
v)

′ lie in the segment joining the corresponding elements
of ψ̂∗ and ψ0. As ψ̂∗ p−→ ψ0, it must be that ψ̃

p−→ ψ0. Thus,

√
N (T − 1(ψ̂∗ − ψ0) =

[
1

N(T−1)H
∗(ψ̃)

]−1 1√
N(T−1)

S∗(ψ0).

We need to show: (i) 1
N(T−1) [H

∗(ψ̃)−H∗(ψ0)] = op(1), (ii) 1
N(T−1)[H

∗(ψ0)− E(H∗(ψ0))] =

op(1), and (iii) 1√
N(T−1)

S∗(ψ0)
D−→ N (0, limN→∞ Γ∗(ψ0)). The proofs of (i) and (ii) are

straightforward applications of Lemma A.1. Finally, the proof of (iii) amounts to check
the conditions of Lindeberg-Feller central limit theorem for a sum of independent random
vectors (see, e.g., van der Vaart, 1998, p. 20), applied to S∗(ψ0) = G∗(ψ0)1N defined in
(3.16). These conditions are implied by the existence of Γ∗(ψ0) for large enough N . �

Proof of Theorem 3.2: First, the convergence result, 1
N(T−1)

H∗(ψ̂∗)− Σ∗(ψ0)
p→ 0, is

proved in the proof of Theorem 3.1. To show 1
N(T−1)G

∗(ψ̂∗)′G∗(ψ̂∗)−Γ∗(ψ0)
p−→ 0, we have

from (3.13)-(3.16), Var[S∗(ψ0)] = Var[G∗(ψ0)′1N ] =
∑N

i=1 Var[g∗i (ψ0)], where

g∗i (ψ0) =
(

1
σ2

v0
g∗ρ,i − tr(C−1D), 1

σ2
v0
g∗β,i,

1
2σ4

v0
g∗
σ2

v,i
− T−1

2σ2
v0

)′
,

and g∗ρ,i ≡ g∗ρ,i(θ0), g
∗
β,i ≡ g∗β,i(θ0), and g∗σ2

v,i
≡ g∗σ2

v,i
(θ0), defined in (3.13)-(3.15). Thus,

Var[S∗(ψ0)] =

⎛
⎜⎜⎜⎝

1
σ4

v0

∑N
i=1 Var(g∗ρ,i)

2
σ4

v0

∑N
i=1 Cov(g∗ρ,i, g

∗
β,i)

1
σ6

v0

∑N
i=1 Cov(g∗ρ,i, g

∗
σ2

v,i
)

∼ 1
σ4

v0

∑N
i=1 Var(g∗β,i)

1
σ6

v0

∑N
i=1 Cov(g∗β,i, g

∗
σ2

v,i
)

∼ ∼ 1
σ8

v0

∑N
i=1 Var(g∗σ2

v,i
)

⎞
⎟⎟⎟⎠ .

Now, G∗(ψ̂∗)′G∗(ψ̂∗) =
∑N

i=1 g
∗
i (ψ̂

∗)g∗i (ψ̂
∗), which takes a similar form as Var[S∗(ψ0)], but

with ‘Var’ and ‘Cov’ replaced by their sample versions, and ψ0 by ψ̂∗. As σ̂∗,2v is consistent
for σ2

v0, and so is its power for the corresponding power of σ2
v0, it suffices to show that

(i) 1
N

∑N
i=1[g

∗2
ρ,i(θ̂

∗) − E(g∗2ρ,i(θ0))]
p−→ 0,
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(ii) 1
N

∑N
i=1[g

∗
β,i(θ̂

∗)g∗β,i(θ̂
∗)′ − E(g∗β,i(θ0))g

∗
β,i(θ0))

′] p−→ 0,
(iii) 1

N

∑N
i=1[g

∗2
σ2

v,i
(θ̂∗) − E(g∗2σ2

v,i
(θ0))]

p−→ 0,

(iv) 1
N

∑N
i=1[g

∗
ρ,i(θ̂

∗)g∗β,i(θ̂
∗)′ − E(g∗ρ,i(θ0))g

∗
β,i(θ0))

′]
p−→ 0,

(v) 1
N

∑N
i=1[g

∗
ρ,i(θ̂

∗)g∗
σ2

v,i
(θ̂∗) − E(g∗ρ,i(θ0))g

∗
σ2

v,i
(θ0))]

p−→ 0, and

(vi) 1
N

∑N
i=1[g

∗
β,i(θ̂

∗)g∗σ2
v ,i

(θ̂∗) − E(g∗β,i(θ0))g
∗
σ2

v,i
(θ0))]

p−→ 0,

where in the elements involving g∗2ρ,i(θ̂
∗) and g∗2

σ2
v,i

(θ̂∗), we have used the easily proved results
1
N

∑N
i=1 g

∗
ρ,i(θ̂

∗) p−→ σ2
v0tr(C

−1D) and 1
N

∑N
i=1 g

∗
σ2

v,i
(θ̂∗) p−→ (T − 1)σ2

v0.
We give a detailed proof of (i) as it is one of the most complicated cases due to the

involvement of Δy1 = {Δyi1, i = 1, . . . , N}′. The proofs of the rest are similar or easier.
From (3.13), g∗ρ,i(θ̂

∗) = Δy′i−C
−1Δvi−(θ̂∗), and similar to (A.1),

Δvi−(θ̂∗) = −Δyi−(ρ̂∗ − ρ0) − Δxi−(β̂∗ − β0) + Δvi−,

noting that Δvi− = Δvi−(θ0). These lead to,

1
N

∑N
i=1[g

∗2
ρ,i(θ̂

∗)− E(g∗2ρ,i(θ0))]

= 1
N

∑N
i=1[(Δy

′
i−C

−1Δvi−)2 − E((Δy′i−C
−1Δvi−)2)]

+(ρ̂∗ − ρ0)2 1
N

∑N
i=1(Δy

′
i−C

−1Δyi−)2

+(β̂∗ − β0)′ 1
N

∑N
i=1(Δx

′
i−C

−1Δyi−Δy′i−C
−1Δxi−)(β̂∗ − β0)

+(ρ̂∗ − ρ0) 2
N

∑N
i=1(Δy

′
i−C

−1Δyi−Δy′i−C
−1Δxi−)(β̂∗ − β0)

−(ρ̂∗ − ρ0) 2
N

∑N
i=1(Δy

′
i−C

−1Δyi−)(Δy′i−C
−1Δvi−)

−(β̂∗ − β0)′ 1
N

∑N
i=1(Δx

′
i−C

−1Δyi−Δy′i−C
−1Δvi−).

To show that the first term is op(1), we have by (A.9),

Δyi− = Δyi1a−1 +B−1Δηi− +B−1Δvi−,

where ηi− = (ηi2, ηi3, . . . , ηi,T )′. By (4.1), Δyi1 = Δηi1 + Δv◦i1, which are, respectively, the
elements of Δη1 = ρm0 φ(y−m) + Δx1(m, ρ0) and Δv◦1 = ρm0 v−m+1 + Δv1(m, ρ0). Thus,

Δyi− = (Δηi1a−1 + B−1Δηi−) + (Δv◦i1a−1 +B−1Δvi−) ≡ Δμi + Δεi, and

1
N

∑N
i=1(Δy

′
i−C

−1Δvi−)2 = 1
N

∑N
i=1(Δμ

′
i−C

−1Δvi−)2 + 1
N

∑N
i=1(Δε

′
i−C

−1Δvi−)2

+ 2
N

∑N
i=1(Δμ

′
i−C

−1Δvi−)(Δε′i−C
−1Δvi−).

It can shown that Var[ 1
N

∑N
i=1(Δμ

′
i−C

−1Δvi−)2] = o(1), and thus by Chebyshev inequality,
1
N

∑N
i=1[(Δμ

′
i−C

−1Δvi−)2−E((Δμ′i−C
−1Δvi−)2)] = op(1). By Kolmogorov law of large num-

ber, 1
N

∑N
i=1(Δε

′
i−C

−1Δvi−)2
p−→ c, as it is a sum of iid random variables with a finite mean,
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say c. Finally, by Cauchy-Schwartz inequality, 1
N

∑N
i=1[(Δμ

′
i−C

−1Δvi−)(Δε′i−C
−1Δvi−) −

E(Δμ′i−C
−1Δvi−)(Δε′i−C

−1Δvi−)] = op(1). These lead to

1
N

∑N
i=1[(Δy

′
i−C

−1Δvi−)2 − E((Δy′i−C
−1Δvi−)2)] = op(1).

Now, by the representation for Δyi− given above and by Assumption C, the summations in
all the other five terms are easily seen to be Op(1), and thus these five terms are all op(1) as
ρ̂∗ − ρ0 = op(1) and β̂∗ − β0 = op(1). �

Proof of Theorem 4.1: The consistency of (ρ̂�, β̂�, σ̂�v) of the structural parameters
(ρ, β, σ2

v) depends crucially on the consistency of ω̂�, and the latter is proved by applying
Theorem 5.7 of van der Vaart (1998). Let �̄�c(ω) = maxθ,σ2

v
E[�(ψ)]. It suffices to show that

(i) supω∈W |��c(ω)− �̄�c(ω)| = op(1), and (ii) for every ε > 0, sup|ω−ω0|≥ε �̄
�
c(ω) < �̄�c(ω0).

To show (i), let A(ω) = ΔX�′Ω�(ω)−1ΔX� and b(ω) = ΔX�′Ω�(ω)−1Δv�. It is easy to
show that the optimal solution to �̄�c(ω) = maxβ,σ2

v
E[��(ψ)] is: β̄�(ω) = β0 +A(ω)−1b(ω) and

σ̄�2v (ω) = σ2
v0
NT tr[Ω�(ω)−1Ω�] − 1

NT E[b(ω)′]E[A(ω)]−1E[b(ω)], leading to

�̄�c(ω) = −NT
2 [log(2π) + 1] − 1

2

∣∣σ̄�2v (ω)Ω�(ω)
∣∣.

Thus, ��c(ω)− �̄�c(ω) = −NT
2 [log σ̂�2v (ω)− log σ̄�2v (ω)]. It suffices to show that σ̂�2v (ω)− σ̄�2v (ω)

converges to zero uniformly in ω ∈ W and that σ̄�2v (ω) is bounded away from zero uniformly
in ω ∈ W . Note σ̂�2v (ω) = 1

NTΔv�′Ω�(ω)−1Δv� − 1
NT b(ω)′A(ω)−1b(ω). These lead to,

σ̂�2v (ω) − σ̄�2v (ω) = 1
NT

{
Δv�′Ω�(ω)−1Δv� − σ2

v0tr[Ω
�(ω)Ω�]

}
− 1
NT

{
b(ω)′A(ω)−1b(ω)− E[b(ω)′]E[A(ω)]−1E[b(ω)]

}
.

We have, 1
NT

∣∣Δv�′Ω�(ω)−1Δv�−σ2
v0tr[Ω

�(ω)−1Ω�]
∣∣ ≤ λ−1

min[Ω
�(ω)] 1

NT

∣∣Δv�′Δv�−σ2
v0tr(Ω

�)
∣∣.

As Ω�(ω) = C�(ω) ⊗ IN ,Ω�(ω)−1 and C�(ω) is positive definite uniformly in ω ∈ W ,
λmin[Ω�(ω) is strictly positive, and hence 1

NT

∣∣Δv�′Ω�(ω)−1Δv� − σ2
v0tr[Ω

�(ω)−1Ω�]
∣∣ = op(1)

uniformly in ω ∈ W . Now, similar to the proof of Lemma 3.2, we express the inverse of
C�(ω) simply as: C�(ω)−1 = 1

1+T (ω−1){ ats(ω) }T×T , where

ats(ω)

⎧⎨
⎩

(T − t)(sω − (s− 1)), s ≤ t,

(T − s)(tω − (t− 1)), s > t,
t, s = 0, 1, 2, . . . , T − 1.

The representation greatly facilitates the proof of uniform convergence of the second term,
i.e., 1

NT

{
b(ω)′A(ω)−1b(ω) − E[b(ω)′]E[A(ω)]−1E[b(ω)]

}
= op(1) uniformly in ω ∈ W . The

detail is tedious but straightforward, and is made available from the author upon request.
To show (ii), if Δv� were normal, i.e., Δv� ∼ N (0, σv0Ω�), then Exp[��(ψ0)] would be

the true pdf of Δv�. By Jensen inequality, we have E[��(ψ)] ≤ E[��(ψ0)]. It can be easily
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seen that E[��(ψ0)] = �̄�c(ω0). Now, if the true distribution of Δv� is not normal but has
the same first two moments as normal, i.e., Δv� ∼ (0, σv0Ω�), we see that the inequality,
E[��(ψ)] ≤ E[��(ψ0)], still holds as E[��(ψ0)] depends on only the first two moments of Δv�.
Thus, E[��(ψ)] ≤ E[��(ψ0)] = �̄�c(ω0), and hence �̄�(ω) ≤ �̄�c(ω0), as long as Δv� ∼ (0, σv0Ω�).
This and Assumption E′ lead to the result (ii).

The proof of asymptotic normality is analogous to that of Theorem 3.1. �

Proof of Theorem 4.2: The proof is analogous to that of Theorem 3.2. �
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Table 1. Empirical Mean(sd)[ŝe]{r̂se} of CMLE, MMLE and FMLE, N = 50, T = 3
dgp par CMLE MMLE FMLE
1 0.8 0.6562 (.0535) 0.8049 (.0684)[.0626]{.0644} 0.8047 (.0681)[.0657]{.0649}

1.0 0.9415 (.0571) 1.0015 (.0619)[.0585]{.0573} 1.0014 (.0619)[.0591]{.0575}
1.0 0.9196 (.1308) 0.9907 (.1550)[.1523]{.1495} 0.9907 (.1548)[.1535]{.1497}

2 0.8 0.6550 (.0652) 0.8016 (.0751)[.0620]{.0699} 0.8010 (.0731)[.0649]{.0684}
1.0 0.9404 (.0576) 0.9999 (.0620)[.0581]{.0576} 0.9997 (.0617)[.0586]{.0573}
1.0 0.9149 (.2471) 0.9883 (.2887)[.1526]{.2684} 0.9877 (.2874)[.1538]{.2669}

3 0.8 0.6571 (.0590) 0.8036 (.0735)[.0620]{.0688} 0.8029 (.0717)[.0649]{.0681}
1.0 0.9442 (.0564) 1.0032 (.0620)[.0581]{.0592} 1.0030 (.0617)[.0586]{.0590}
1.0 0.9111 (.1877) 0.9820 (.2200)[.1511]{.2060} 0.9813 (.2188)[.1521]{.2051}

1 0.4 0.2833 (.0516) 0.4004 (.0606)[.0582]{.0587} 0.4009 (.0608)[.0595]{.0589}
1.0 0.9725 (.0533) 1.0013 (.0553)[.0543]{.0530} 1.0015 (.0554)[.0544]{.0530}
1.0 0.9282 (.1377) 0.9752 (.1528)[.1455]{.1409} 0.9758 (.1529)[.1461]{.1413}

2 0.4 0.2846 (.0597) 0.4024 (.0673)[.0582]{.0619} 0.4018 (.0642)[.0594]{.0600}
1.0 0.9723 (.0537) 1.0015 (.0558)[.0542]{.0527} 1.0014 (.0557)[.0543]{.0526}
1.0 0.9343 (.2646) 0.9847 (.2931)[.1476]{.2628} 0.9844 (.2929)[.1479]{.2622}

3 0.4 0.2832 (.0556) 0.4017 (.0645)[.0585]{.0620} 0.4017 (.0631)[.0597]{.0609}
1.0 0.9718 (.0550) 1.0007 (.0564)[.0545]{.0538} 1.0007 (.0561)[.0545]{.0536}
1.0 0.9393 (.2083) 0.9888 (.2313)[.1479]{.2031} 0.9888 (.2308)[.1483]{.2030}

1 0.0 -0.0848 (.0510) 0.0023 (.0564)[.0537]{.0531} 0.0025 (.0560)[.0540]{.0530}
1.0 0.9924 (.0531) 0.9992 (.0535)[.0526]{.0514} 0.9992 (.0535)[.0526]{.0514}
1.0 0.9490 (.1393) 0.9781 (.1480)[.1429]{.1379} 0.9783 (.1482)[.1430]{.1380}

2 0.0 -0.0839 (.0547) 0.0034 (.0592)[.0535]{.0540} 0.0027 (.0572)[.0537]{.0526}
1.0 0.9923 (.0534) 0.9992 (.0544)[.0522]{.0505} 0.9991 (.0544)[.0522]{.0505}
1.0 0.9467 (.2637) 0.9774 (.2808)[.1431]{.2569} 0.9769 (.2793)[.1429]{.2563}

3 0.0 -0.0860 (.0504) 0.0021 (.0569)[.0540]{.0547} 0.0020 (.0556)[.0542]{.0537}
1.0 0.9924 (.0521) 0.9993 (.0526)[.0527]{.0510} 0.9993 (.0526)[.0527]{.0510}
1.0 0.9562 (.2034) 0.9866 (.2164)[.1443]{.1995} 0.9865 (.2159)[.1443]{.1992}

1 -0.4 -0.4558 (.0433) -0.3980 (.0469)[.0480]{.0467} -0.3980 (.0470)[.0478]{.0466}
1.0 1.0031 (.0505) 1.0001 (.0509)[.0525]{.0512} 1.0000 (.0509)[.0525]{.0512}
1.0 0.9621 (.1364) 0.9775 (.1407)[.1406]{.1367} 0.9776 (.1408)[.1406]{.1367}

2 -0.4 -0.4541 (.0449) -0.3973 (.0479)[.0473]{.0467} -0.3975 (.0476)[.0471]{.0463}
1.0 1.0010 (.0514) 0.9978 (.0518)[.0518]{.0502} 0.9978 (.0518)[.0518]{.0502}
1.0 0.9502 (.2806) 0.9660 (.2899)[.1390]{.2503} 0.9660 (.2898)[.1390]{.2502}

3 -0.4 -0.4576 (.0457) -0.4007 (.0492)[.0476]{.0468} -0.4007 (.0491)[.0474]{.0466}
1.0 1.0055 (.0495) 1.0024 (.0497)[.0523]{.0513} 1.0024 (.0497)[.0523]{.0513}
1.0 0.9602 (.2012) 0.9757 (.2074)[.1403]{.1929} 0.9757 (.2075)[.1403]{.1929}

1 -0.8 -0.8238 (.0328) -0.7993 (.0342)[.0353]{.0341} -0.7993 (.0342)[.0351]{.0341}
1.0 1.0072 (.0533) 1.0018 (.0534)[.0529]{.0519} 1.0018 (.0534)[.0529]{.0519}
1.0 0.9679 (.1396) 0.9728 (.1410)[.1383]{.1356} 0.9728 (.1410)[.1383]{.1356}

2 -0.8 -0.8250 (.0361) -0.8005 (.0372)[.0352]{.0342} -0.8004 (.0372)[.0350]{.0341}
1.0 1.0046 (.0544) 0.9991 (.0543)[.0529]{.0510} 0.9991 (.0543)[.0529]{.0510}
1.0 0.9820 (.2868) 0.9872 (.2897)[.1404]{.2579} 0.9872 (.2897)[.1404]{.2579}

3 -0.8 -0.8238 (.0335) -0.7992 (.0348)[.0354]{.0338} -0.7992 (.0348)[.0352]{.0338}
1.0 1.0060 (.0549) 1.0006 (.0549)[.0529]{.0515} 1.0006 (.0549)[.0529]{.0515}
1.0 0.9717 (.2089) 0.9767 (.2110)[.1389]{.1925} 0.9768 (.2110)[.1389]{.1925}
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Table 2. Empirical Mean(sd)[ŝe]{r̂se} of CMLE, MMLE and FMLE, N = 100, T = 3
dgp par CMLE MMLE FMLE
1 0.8 0.7005 (.0320) 0.8015 (.0371)[.0352]{.0358} 0.8015 (.0370)[.0362]{.0357}

1.0 0.9643 (.0346) 0.9999 (.0365)[.0359]{.0356} 0.9999 (.0365)[.0360]{.0356}
1.0 0.9466 (.0937) 0.9940 (.1040)[.1047]{.1032} 0.9941 (.1041)[.1051]{.1032}

2 0.8 0.6980 (.0363) 0.7981 (.0390)[.0350]{.0385} 0.7979 (.0381)[.0360]{.0377}
1.0 0.9629 (.0360) 0.9980 (.0373)[.0356]{.0353} 0.9979 (.0372)[.0358]{.0352}
1.0 0.9434 (.1915) 0.9918 (.2121)[.1047]{.1954} 0.9917 (.2118)[.1050]{.1951}

3 0.8 0.7010 (.0339) 0.8013 (.0386)[.0350]{.0372} 0.8014 (.0383)[.0361]{.0369}
1.0 0.9655 (.0352) 1.0010 (.0375)[.0357]{.0355} 1.0011 (.0374)[.0359]{.0355}
1.0 0.9425 (.1407) 0.9901 (.1555)[.1044]{.1487} 0.9902 (.1555)[.1047]{.1488}

1 0.4 0.3184 (.0314) 0.4012 (.0352)[.0339]{.0339} 0.4012 (.0351)[.0343]{.0338}
1.0 0.9892 (.0336) 1.0022 (.0344)[.0341]{.0336} 1.0022 (.0344)[.0341]{.0336}
1.0 0.9610 (.0981) 0.9944 (.1053)[.1031]{.1021} 0.9944 (.1054)[.1032]{.1021}

2 0.4 0.3176 (.0336) 0.4003 (.0355)[.0338]{.0351} 0.4003 (.0346)[.0342]{.0342}
1.0 0.9860 (.0340) 0.9988 (.0348)[.0339]{.0333} 0.9988 (.0348)[.0339]{.0333}
1.0 0.9566 (.1930) 0.9907 (.2068)[.1028]{.1949} 0.9907 (.2067)[.1029]{.1948}

3 0.4 0.3166 (.0323) 0.3996 (.0347)[.0339]{.0346} 0.3995 (.0342)[.0343]{.0341}
1.0 0.9874 (.0352) 1.0003 (.0361)[.0340]{.0337} 1.0003 (.0361)[.0340]{.0337}
1.0 0.9613 (.1446) 0.9951 (.1549)[.1032]{.1494} 0.9951 (.1549)[.1033]{.1493}

1 0.0 -0.0706 (.0316) -0.0015 (.0348)[.0335]{.0332} -0.0014 (.0348)[.0336]{.0331}
1.0 1.0000 (.0349) 0.9991 (.0354)[.0336]{.0332} 0.9991 (.0354)[.0336]{.0332}
1.0 0.9652 (.0964) 0.9882 (.1012)[.1013]{.0999} 0.9883 (.1011)[.1013]{.0999}

2 0.0 -0.0686 (.0331) 0.0012 (.0347)[.0336]{.0343} 0.0011 (.0340)[.0337]{.0336}
1.0 1.0039 (.0329) 1.0029 (.0331)[.0336]{.0331} 1.0030 (.0331)[.0336]{.0331}
1.0 0.9734 (.2017) 0.9976 (.2115)[.1024]{.1948} 0.9975 (.2114)[.1024]{.1946}

3 0.0 -0.0687 (.0322) 0.0007 (.0344)[.0336]{.0341} 0.0006 (.0341)[.0337]{.0337}
1.0 1.0020 (.0333) 1.0010 (.0336)[.0335]{.0329} 1.0010 (.0336)[.0335]{.0329}
1.0 0.9669 (.1478) 0.9903 (.1551)[.1016]{.1455} 0.9903 (.1551)[.1016]{.1454}

1 -0.4 -0.4522 (.0294) -0.3998 (.0315)[.0323]{.0318} -0.3998 (.0314)[.0322]{.0317}
1.0 1.0097 (.0345) 1.0011 (.0349)[.0340]{.0337} 1.0011 (.0349)[.0340]{.0337}
1.0 0.9775 (.1015) 0.9915 (.1043)[.1006]{.0995} 0.9914 (.1043)[.1006]{.0994}

2 -0.4 -0.4520 (.0315) -0.4005 (.0327)[.0319]{.0319} -0.4005 (.0324)[.0318]{.0316}
1.0 1.0089 (.0333) 1.0002 (.0334)[.0337]{.0330} 1.0002 (.0334)[.0336]{.0330}
1.0 0.9620 (.1904) 0.9759 (.1955)[.0991]{.1898} 0.9759 (.1954)[.0990]{.1898}

3 -0.4 -0.4503 (.0312) -0.3986 (.0331)[.0320]{.0319} -0.3986 (.0330)[.0319]{.0318}
1.0 1.0097 (.0324) 1.0011 (.0329)[.0338]{.0332} 1.0011 (.0328)[.0338]{.0331}
1.0 0.9645 (.1413) 0.9782 (.1452)[.0993]{.1422} 0.9783 (.1452)[.0993]{.1422}

1 -0.8 -0.8231 (.0230) -0.7999 (.0240)[.0244]{.0240} -0.7999 (.0240)[.0242]{.0240}
1.0 1.0082 (.0354) 1.0013 (.0355)[.0344]{.0341} 1.0013 (.0355)[.0344]{.0341}
1.0 0.9878 (.1010) 0.9925 (.1019)[.0997]{.0981} 0.9925 (.1019)[.0997]{.0981}

2 -0.8 -0.8213 (.0239) -0.7983 (.0249)[.0242]{.0238} -0.7983 (.0248)[.0241]{.0237}
1.0 1.0073 (.0349) 1.0005 (.0348)[.0342]{.0336} 1.0005 (.0348)[.0342]{.0336}
1.0 0.9841 (.2094) 0.9888 (.2114)[.0994]{.1944} 0.9888 (.2114)[.0994]{.1944}

3 -0.8 -0.8221 (.0230) -0.7991 (.0241)[.0243]{.0241} -0.7991 (.0240)[.0241]{.0241}
1.0 1.0076 (.0357) 1.0007 (.0357)[.0343]{.0338} 1.0007 (.0357)[.0343]{.0338}
1.0 0.9829 (.1519) 0.9875 (.1533)[.0992]{.1432} 0.9875 (.1533)[.0992]{.1432}

28



Table 3. Empirical Mean(sd)[ŝe]{r̂se} of CMLE, MMLE and FMLE, N = 200, T = 3
dgp par CMLE MMLE FMLE
1 0.8 0.6820 (.0232) 0.8008 (.0282)[.0274]{.0283} 0.8009 (.0282)[.0284]{.0282}

1.0 0.9495 (.0268) 0.9990 (.0285)[.0288]{.0289} 0.9991 (.0285)[.0290]{.0289}
1.0 0.9378 (.0664) 0.9933 (.0754)[.0747]{.0747} 0.9935 (.0754)[.0751]{.0748}

2 0.8 0.6817 (.0291) 0.8011 (.0322)[.0275]{.0311} 0.8009 (.0314)[.0284]{.0304}
1.0 0.9510 (.0279) 1.0009 (.0297)[.0289]{.0292} 1.0008 (.0296)[.0291]{.0291}
1.0 0.9446 (.1338) 1.0017 (.1503)[.0755]{.1446} 1.0015 (.1499)[.0758]{.1443}

3 0.8 0.6822 (.0257) 0.8013 (.0301)[.0274]{.0301} 0.8011 (.0297)[.0284]{.0298}
1.0 0.9510 (.0280) 1.0009 (.0296)[.0289]{.0290} 1.0008 (.0295)[.0291]{.0290}
1.0 0.9453 (.0971) 1.0017 (.1092)[.0754]{.1095} 1.0015 (.1090)[.0757]{.1094}

1 0.4 0.3073 (.0229) 0.3995 (.0259)[.0255]{.0259} 0.3995 (.0258)[.0258]{.0258}
1.0 0.9810 (.0253) 0.9993 (.0261)[.0270]{.0268} 0.9993 (.0261)[.0270]{.0268}
1.0 0.9592 (.0672) 0.9962 (.0728)[.0733]{.0731} 0.9962 (.0727)[.0734]{.0731}

2 0.4 0.3068 (.0262) 0.3985 (.0279)[.0254]{.0271} 0.3985 (.0271)[.0257]{.0264}
1.0 0.9820 (.0263) 1.0002 (.0270)[.0269]{.0267} 1.0002 (.0270)[.0269]{.0267}
1.0 0.9545 (.1342) 0.9916 (.1445)[.0730]{.1416} 0.9915 (.1444)[.0731]{.1415}

3 0.4 0.3081 (.0249) 0.4002 (.0267)[.0254]{.0264} 0.4000 (.0262)[.0258]{.0261}
1.0 0.9818 (.0260) 1.0002 (.0266)[.0269]{.0267} 1.0002 (.0266)[.0269]{.0267}
1.0 0.9541 (.0980) 0.9911 (.1057)[.0730]{.1064} 0.9909 (.1055)[.0730]{.1063}

1 0.0 -0.0738 (.0224) -0.0010 (.0243)[.0244]{.0245} -0.0010 (.0242)[.0245]{.0244}
1.0 1.0005 (.0269) 1.0009 (.0273)[.0265]{.0263} 1.0009 (.0273)[.0265]{.0263}
1.0 0.9704 (.0681) 0.9946 (.0716)[.0722]{.0714} 0.9947 (.0716)[.0722]{.0714}

2 0.0 -0.0716 (.0241) 0.0018 (.0256)[.0245]{.0254} 0.0017 (.0249)[.0246]{.0248}
1.0 0.9995 (.0257) 1.0001 (.0259)[.0265]{.0262} 1.0001 (.0259)[.0265]{.0262}
1.0 0.9768 (.1392) 1.0018 (.1461)[.0728]{.1436} 1.0017 (.1458)[.0728]{.1435}

3 0.0 -0.0746 (.0241) -0.0013 (.0255)[.0245]{.0248} -0.0014 (.0253)[.0246]{.0245}
1.0 1.0000 (.0272) 1.0003 (.0275)[.0265]{.0264} 1.0003 (.0275)[.0265]{.0264}
1.0 0.9759 (.1039) 1.0006 (.1090)[.0726]{.1066} 1.0005 (.1090)[.0726]{.1065}

1 -0.4 -0.4502 (.0206) -0.3994 (.0219)[.0225]{.0222} -0.3994 (.0219)[.0224]{.0222}
1.0 1.0083 (.0260) 1.0007 (.0263)[.0267]{.0266} 1.0007 (.0263)[.0267]{.0266}
1.0 0.9815 (.0694) 0.9951 (.0713)[.0714]{.0708} 0.9951 (.0713)[.0714]{.0708}

2 -0.4 -0.4513 (.0214) -0.4007 (.0225)[.0224]{.0226} -0.4006 (.0223)[.0224]{.0225}
1.0 1.0087 (.0267) 1.0008 (.0270)[.0267]{.0265} 1.0008 (.0270)[.0267]{.0265}
1.0 0.9819 (.1351) 0.9956 (.1387)[.0714]{.1417} 0.9956 (.1387)[.0714]{.1417}

3 -0.4 -0.4500 (.0217) -0.3991 (.0230)[.0225]{.0224} -0.3991 (.0230)[.0224]{.0223}
1.0 1.0067 (.0274) 0.9990 (.0276)[.0267]{.0266} 0.9990 (.0276)[.0267]{.0266}
1.0 0.9821 (.1053) 0.9958 (.1081)[.0714]{.1051} 0.9958 (.1081)[.0714]{.1051}

1 -0.8 -0.8222 (.0162) -0.8007 (.0169)[.0166]{.0164} -0.8007 (.0169)[.0165]{.0164}
1.0 1.0062 (.0262) 1.0000 (.0264)[.0269]{.0268} 1.0000 (.0264)[.0269]{.0268}
1.0 0.9908 (.0683) 0.9951 (.0689)[.0707]{.0702} 0.9951 (.0689)[.0707]{.0702}

2 -0.8 -0.8219 (.0165) -0.8006 (.0169)[.0165]{.0165} -0.8006 (.0169)[.0164]{.0165}
1.0 1.0072 (.0263) 1.0010 (.0263)[.0268]{.0264} 1.0010 (.0263)[.0268]{.0264}
1.0 0.9880 (.1381) 0.9923 (.1393)[.0705]{.1396} 0.9923 (.1393)[.0705]{.1396}

3 -0.8 -0.8207 (.0166) -0.7994 (.0172)[.0165]{.0163} -0.7994 (.0172)[.0164]{.0163}
1.0 1.0074 (.0269) 1.0012 (.0269)[.0268]{.0266} 1.0012 (.0269)[.0268]{.0266}
1.0 0.9815 (.1086) 0.9857 (.1095)[.0700]{.1040} 0.9857 (.1095)[.0700]{.1040}
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Table 4. Empirical Mean(sd)[ŝe]{r̂se} of CMLE, MMLE and FMLE, N = 50, T = 6
dgp par CMLE MMLE FMLE
1 0.8 0.7432 (.0233) 0.7992 (.0258)[.0256]{.0254} 0.7991 (.0257)[.0261]{.0255}

1.0 0.9928 (.0324) 1.0011 (.0329)[.0324]{.0317} 1.0011 (.0329)[.0324]{.0317}
1.0 0.9733 (.0925) 0.9950 (.0969)[.0912]{.0891} 0.9949 (.0969)[.0912]{.0891}

2 0.8 0.7431 (.0259) 0.7983 (.0271)[.0254]{.0253} 0.7984 (.0268)[.0258]{.0254}
1.0 0.9919 (.0313) 1.0001 (.0317)[.0322]{.0313} 1.0001 (.0317)[.0322]{.0314}
1.0 0.9653 (.1859) 0.9871 (.1941)[.0905]{.1869} 0.9871 (.1941)[.0906]{.1870}

3 0.8 0.7448 (.0244) 0.8008 (.0268)[.0256]{.0258} 0.8009 (.0268)[.0261]{.0259}
1.0 0.9927 (.0323) 1.0012 (.0328)[.0324]{.0318} 1.0013 (.0328)[.0324]{.0318}
1.0 0.9738 (.1421) 0.9959 (.1485)[.0913]{.1379} 0.9960 (.1486)[.0914]{.1380}

1 0.4 0.3567 (.0259) 0.4007 (.0273)[.0279]{.0274} 0.4007 (.0272)[.0280]{.0274}
1.0 1.0035 (.0335) 1.0002 (.0336)[.0322]{.0317} 1.0002 (.0336)[.0322]{.0317}
1.0 0.9839 (.0874) 0.9946 (.0893)[.0900]{.0876} 0.9946 (.0893)[.0900]{.0876}

2 0.4 0.3573 (.0272) 0.4015 (.0284)[.0279]{.0274} 0.4015 (.0282)[.0280]{.0274}
1.0 1.0045 (.0338) 1.0012 (.0339)[.0323]{.0316} 1.0012 (.0339)[.0323]{.0316}
1.0 0.9933 (.2014) 1.0045 (.2059)[.0909]{.1908} 1.0045 (.2059)[.0909]{.1908}

3 0.4 0.3551 (.0277) 0.3985 (.0287)[.0277]{.0270} 0.3984 (.0287)[.0278]{.0270}
1.0 1.0045 (.0315) 1.0012 (.0316)[.0321]{.0313} 1.0012 (.0316)[.0321]{.0313}
1.0 0.9754 (.1433) 0.9859 (.1463)[.0892]{.1356} 0.9859 (.1463)[.0892]{.1356}

1 0.0 -0.0358 (.0290) -0.0012 (.0301)[.0294]{.0290} -0.0012 (.0301)[.0294]{.0290}
1.0 1.0068 (.0325) 1.0000 (.0326)[.0326]{.0320} 1.0000 (.0326)[.0326]{.0320}
1.0 0.9827 (.0862) 0.9885 (.0872)[.0889]{.0869} 0.9885 (.0872)[.0889]{.0869}

2 0.0 -0.0350 (.0294) -0.0001 (.0302)[.0294]{.0285} -0.0002 (.0301)[.0294]{.0284}
1.0 1.0088 (.0336) 1.0020 (.0338)[.0326]{.0318} 1.0020 (.0338)[.0326]{.0318}
1.0 0.9940 (.1984) 1.0000 (.2006)[.0900]{.1891} 1.0000 (.2006)[.0900]{.1891}

3 0.0 -0.0362 (.0288) -0.0018 (.0298)[.0293]{.0285} -0.0018 (.0298)[.0293]{.0285}
1.0 1.0075 (.0331) 1.0008 (.0331)[.0325]{.0317} 1.0008 (.0331)[.0325]{.0317}
1.0 0.9800 (.1409) 0.9858 (.1425)[.0887]{.1358} 0.9858 (.1425)[.0887]{.1358}

1 -0.4 -0.4247 (.0281) -0.3994 (.0292)[.0286]{.0281} -0.3994 (.0292)[.0286]{.0281}
1.0 1.0057 (.0339) 0.9991 (.0340)[.0330]{.0322} 0.9991 (.0340)[.0330]{.0322}
1.0 0.9889 (.0837) 0.9921 (.0842)[.0890]{.0868} 0.9921 (.0842)[.0890]{.0868}

2 -0.4 -0.4248 (.0282) -0.3994 (.0290)[.0286]{.0277} -0.3994 (.0290)[.0286]{.0277}
1.0 1.0063 (.0330) 0.9996 (.0332)[.0330]{.0321} 0.9996 (.0332)[.0330]{.0321}
1.0 0.9962 (.2051) 0.9995 (.2063)[.0897]{.1877} 0.9995 (.2063)[.0897]{.1877}

3 -0.4 -0.4263 (.0282) -0.4009 (.0293)[.0286]{.0278} -0.4009 (.0294)[.0286]{.0278}
1.0 1.0087 (.0329) 1.0021 (.0331)[.0331]{.0325} 1.0021 (.0331)[.0331]{.0325}
1.0 0.9973 (.1465) 1.0005 (.1473)[.0898]{.1370} 1.0005 (.1474)[.0898]{.1370}

1 -0.8 -0.8111 (.0214) -0.7993 (.0219)[.0214]{.0209} -0.7993 (.0219)[.0214]{.0209}
1.0 1.0028 (.0331) 0.9995 (.0331)[.0326]{.0320} 0.9995 (.0331)[.0326]{.0320}
1.0 0.9875 (.0877) 0.9888 (.0879)[.0885]{.0868} 0.9888 (.0879)[.0885]{.0868}

2 -0.8 -0.8111 (.0212) -0.7992 (.0218)[.0214]{.0206} -0.7992 (.0218)[.0214]{.0206}
1.0 1.0014 (.0338) 0.9981 (.0339)[.0326]{.0318} 0.9981 (.0339)[.0326]{.0318}
1.0 0.9951 (.2060) 0.9964 (.2065)[.0892]{.1874} 0.9964 (.2065)[.0892]{.1874}

3 -0.8 -0.8116 (.0204) -0.8000 (.0211)[.0212]{.0206} -0.8000 (.0211)[.0212]{.0206}
1.0 1.0035 (.0332) 1.0002 (.0332)[.0325]{.0319} 1.0002 (.0332)[.0325]{.0319}
1.0 0.9801 (.1467) 0.9813 (.1471)[.0879]{.1341} 0.9813 (.1471)[.0879]{.1341}
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Table 5. Empirical Mean(sd)[ŝe]{r̂se} of CMLE, MMLE and FMLE, N = 100, T = 6
dgp par CMLE MMLE FMLE
1 0.8 0.7466 (.0154) 0.8007 (.0170)[.0178]{.0178} 0.8007 (.0170)[.0181]{.0178}

1.0 0.9820 (.0216) 1.0000 (.0217)[.0218]{.0215} 1.0000 (.0217)[.0218]{.0215}
1.0 0.9757 (.0623) 0.9966 (.0651)[.0645]{.0638} 0.9966 (.0651)[.0646]{.0638}

2 0.8 0.7462 (.0180) 0.8004 (.0187)[.0177]{.0184} 0.8004 (.0186)[.0181]{.0183}
1.0 0.9827 (.0218) 1.0008 (.0221)[.0218]{.0215} 1.0008 (.0220)[.0218]{.0215}
1.0 0.9752 (.1387) 0.9964 (.1446)[.0645]{.1385} 0.9964 (.1446)[.0646]{.1385}

3 0.8 0.7458 (.0170) 0.8000 (.0182)[.0178]{.0183} 0.8000 (.0182)[.0181]{.0183}
1.0 0.9819 (.0217) 0.9998 (.0219)[.0218]{.0217} 0.9998 (.0219)[.0218]{.0217}
1.0 0.9779 (.0976) 0.9989 (.1018)[.0647]{.1015} 0.9989 (.1017)[.0647]{.1015}

1 0.4 0.3609 (.0179) 0.3995 (.0187)[.0185]{.0183} 0.3996 (.0187)[.0185]{.0183}
1.0 1.0025 (.0207) 1.0007 (.0207)[.0210]{.0208} 1.0007 (.0207)[.0210]{.0208}
1.0 0.9863 (.0595) 0.9956 (.0606)[.0636]{.0629} 0.9956 (.0606)[.0636]{.0629}

2 0.4 0.3598 (.0183) 0.3984 (.0184)[.0184]{.0183} 0.3984 (.0184)[.0185]{.0183}
1.0 1.0016 (.0204) 0.9998 (.0204)[.0209]{.0207} 0.9998 (.0204)[.0209]{.0207}
1.0 0.9836 (.1406) 0.9930 (.1432)[.0634]{.1373} 0.9930 (.1432)[.0634]{.1373}

3 0.4 0.3610 (.0180) 0.3999 (.0183)[.0185]{.0183} 0.3999 (.0183)[.0186]{.0183}
1.0 1.0011 (.0212) 0.9993 (.0212)[.0210]{.0208} 0.9993 (.0212)[.0210]{.0208}
1.0 0.9915 (.1009) 1.0010 (.1027)[.0639]{.1003} 1.0010 (.1027)[.0639]{.1003}

1 0.0 -0.0313 (.0197) 0.0007 (.0203)[.0200]{.0199} 0.0007 (.0203)[.0200]{.0198}
1.0 1.0075 (.0224) 1.0010 (.0225)[.0214]{.0212} 1.0010 (.0225)[.0214]{.0212}
1.0 0.9943 (.0646) 0.9997 (.0653)[.0636]{.0630} 0.9997 (.0653)[.0636]{.0630}

2 0.0 -0.0324 (.0193) -0.0003 (.0197)[.0199]{.0196} -0.0004 (.0197)[.0199]{.0196}
1.0 1.0070 (.0215) 1.0005 (.0216)[.0214]{.0211} 1.0005 (.0216)[.0214]{.0211}
1.0 0.9971 (.1378) 1.0026 (.1392)[.0638]{.1386} 1.0026 (.1392)[.0638]{.1386}

3 0.0 -0.0319 (.0197) 0.0001 (.0202)[.0200]{.0197} 0.0001 (.0202)[.0200]{.0197}
1.0 1.0066 (.0206) 1.0001 (.0207)[.0214]{.0212} 1.0001 (.0207)[.0214]{.0212}
1.0 0.9952 (.1043) 1.0006 (.1054)[.0636]{.1004} 1.0006 (.1054)[.0636]{.1004}

1 -0.4 -0.4240 (.0192) -0.3992 (.0199)[.0200]{.0199} -0.3992 (.0198)[.0200]{.0199}
1.0 1.0055 (.0215) 0.9990 (.0216)[.0216]{.0215} 0.9990 (.0216)[.0216]{.0215}
1.0 0.9958 (.0589) 0.9989 (.0593)[.0634]{.0625} 0.9989 (.0593)[.0634]{.0625}

2 -0.4 -0.4247 (.0195) -0.4001 (.0201)[.0199]{.0196} -0.4001 (.0201)[.0199]{.0196}
1.0 1.0067 (.0217) 1.0003 (.0218)[.0216]{.0213} 1.0003 (.0218)[.0216]{.0213}
1.0 0.9925 (.1418) 0.9956 (.1426)[.0632]{.1368} 0.9956 (.1426)[.0632]{.1368}

3 -0.4 -0.4252 (.0197) -0.4005 (.0203)[.0200]{.0196} -0.4005 (.0203)[.0200]{.0196}
1.0 1.0064 (.0211) 0.9999 (.0212)[.0216]{.0213} 0.9999 (.0212)[.0216]{.0213}
1.0 0.9923 (.1086) 0.9954 (.1092)[.0632]{.1006} 0.9954 (.1092)[.0632]{.1006}

1 -0.8 -0.8118 (.0156) -0.7997 (.0162)[.0154]{.0152} -0.7997 (.0162)[.0154]{.0152}
1.0 1.0022 (.0212) 0.9986 (.0212)[.0215]{.0213} 0.9986 (.0212)[.0215]{.0213}
1.0 0.9976 (.0660) 0.9989 (.0661)[.0633]{.0628} 0.9989 (.0661)[.0633]{.0628}

2 -0.8 -0.8116 (.0153) -0.7996 (.0157)[.0153]{.0150} -0.7996 (.0157)[.0153]{.0150}
1.0 1.0035 (.0221) 0.9998 (.0222)[.0214]{.0212} 0.9998 (.0222)[.0214]{.0212}
1.0 0.9914 (.1423) 0.9927 (.1427)[.0629]{.1353} 0.9927 (.1427)[.0629]{.1353}

3 -0.8 -0.8119 (.0153) -0.7999 (.0158)[.0153]{.0150} -0.7999 (.0158)[.0153]{.0150}
1.0 1.0038 (.0220) 1.0002 (.0220)[.0214]{.0213} 1.0002 (.0220)[.0214]{.0213}
1.0 0.9942 (.1051) 0.9955 (.1054)[.0630]{.0993} 0.9955 (.1054)[.0630]{.0993}
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Table 6. Empirical Mean(sd)[ŝe]{r̂se} of CMLE, MMLE and FMLE, N = 200, T = 6
dgp par CMLE MMLE FMLE
1 0.8 0.7523 (.0111) 0.8001 (.0121)[.0117]{.0119} 0.8000 (.0121)[.0119]{.0119}

1.0 0.9870 (.0163) 1.0006 (.0164)[.0157]{.0156} 1.0006 (.0164)[.0157]{.0156}
1.0 0.9783 (.0432) 0.9967 (.0449)[.0455]{.0454} 0.9967 (.0449)[.0455]{.0454}

2 0.8 0.7523 (.0120) 0.7997 (.0122)[.0117]{.0121} 0.7997 (.0122)[.0119]{.0120}
1.0 0.9866 (.0150) 1.0000 (.0151)[.0156]{.0155} 1.0000 (.0151)[.0157]{.0155}
1.0 0.9749 (.0964) 0.9933 (.1000)[.0453]{.0984} 0.9933 (.1000)[.0454]{.0985}

3 0.8 0.7522 (.0115) 0.8001 (.0122)[.0117]{.0121} 0.8001 (.0122)[.0119]{.0120}
1.0 0.9865 (.0158) 1.0001 (.0159)[.0157]{.0157} 1.0001 (.0159)[.0157]{.0157}
1.0 0.9800 (.0727) 0.9985 (.0755)[.0456]{.0727} 0.9985 (.0755)[.0456]{.0727}

1 0.4 0.3617 (.0123) 0.4000 (.0128)[.0130]{.0129} 0.4000 (.0128)[.0130]{.0129}
1.0 1.0020 (.0148) 1.0013 (.0148)[.0154]{.0153} 1.0013 (.0148)[.0154]{.0153}
1.0 0.9899 (.0455) 0.9992 (.0463)[.0451]{.0449} 0.9992 (.0463)[.0451]{.0449}

2 0.4 0.3614 (.0128) 0.3998 (.0130)[.0130]{.0130} 0.3998 (.0130)[.0130]{.0129}
1.0 1.0014 (.0154) 1.0007 (.0154)[.0153]{.0152} 1.0007 (.0154)[.0153]{.0152}
1.0 0.9904 (.0987) 0.9998 (.1005)[.0452]{.0990} 0.9998 (.1005)[.0452]{.0990}

3 0.4 0.3620 (.0131) 0.4002 (.0136)[.0130]{.0130} 0.4002 (.0136)[.0130]{.0130}
1.0 1.0008 (.0154) 1.0001 (.0154)[.0153]{.0153} 1.0001 (.0154)[.0153]{.0153}
1.0 0.9863 (.0714) 0.9955 (.0726)[.0450]{.0722} 0.9955 (.0726)[.0450]{.0722}

1 0.0 -0.0326 (.0141) 0.0002 (.0146)[.0143]{.0142} 0.0002 (.0146)[.0143]{.0142}
1.0 1.0053 (.0155) 0.9994 (.0155)[.0155]{.0154} 0.9994 (.0155)[.0155]{.0154}
1.0 0.9917 (.0452) 0.9972 (.0456)[.0448]{.0446} 0.9972 (.0456)[.0448]{.0446}

2 0.0 -0.0325 (.0144) 0.0003 (.0147)[.0143]{.0142} 0.0003 (.0147)[.0143]{.0142}
1.0 1.0057 (.0150) 0.9999 (.0151)[.0155]{.0154} 0.9999 (.0151)[.0155]{.0154}
1.0 0.9902 (.1003) 0.9957 (.1014)[.0448]{.0976} 0.9957 (.1014)[.0448]{.0976}

3 0.0 -0.0322 (.0140) 0.0007 (.0144)[.0143]{.0143} 0.0007 (.0143)[.0143]{.0143}
1.0 1.0058 (.0157) 0.9999 (.0158)[.0156]{.0155} 0.9999 (.0158)[.0156]{.0155}
1.0 0.9971 (.0748) 1.0026 (.0755)[.0451]{.0728} 1.0026 (.0755)[.0451]{.0728}

1 -0.4 -0.4272 (.0144) -0.4008 (.0149)[.0147]{.0145} -0.4008 (.0149)[.0147]{.0145}
1.0 1.0073 (.0160) 1.0000 (.0161)[.0158]{.0158} 1.0000 (.0161)[.0158]{.0158}
1.0 0.9920 (.0450) 0.9954 (.0452)[.0447]{.0443} 0.9953 (.0452)[.0447]{.0443}

2 -0.4 -0.4266 (.0147) -0.4002 (.0151)[.0146]{.0145} -0.4002 (.0151)[.0146]{.0145}
1.0 1.0062 (.0158) 0.9989 (.0158)[.0158]{.0157} 0.9989 (.0158)[.0158]{.0157}
1.0 0.9923 (.1009) 0.9957 (.1015)[.0447]{.0983} 0.9957 (.1015)[.0447]{.0983}

3 -0.4 -0.4254 (.0150) -0.3988 (.0155)[.0147]{.0146} -0.3988 (.0155)[.0147]{.0146}
1.0 1.0069 (.0159) 0.9996 (.0159)[.0159]{.0158} 0.9996 (.0159)[.0159]{.0158}
1.0 0.9981 (.0729) 1.0015 (.0733)[.0449]{.0723} 1.0015 (.0733)[.0449]{.0723}

1 -0.8 -0.8130 (.0102) -0.7998 (.0106)[.0113]{.0113} -0.7998 (.0106)[.0114]{.0113}
1.0 1.0033 (.0161) 0.9989 (.0161)[.0158]{.0157} 0.9989 (.0161)[.0158]{.0157}
1.0 0.9962 (.0441) 0.9975 (.0442)[.0447]{.0445} 0.9975 (.0442)[.0447]{.0445}

2 -0.8 -0.8132 (.0109) -0.8000 (.0112)[.0113]{.0112} -0.8000 (.0112)[.0113]{.0112}
1.0 1.0048 (.0153) 1.0005 (.0153)[.0158]{.0156} 1.0005 (.0153)[.0158]{.0156}
1.0 0.9947 (.1012) 0.9960 (.1014)[.0446]{.0985} 0.9960 (.1014)[.0446]{.0985}

3 -0.8 -0.8129 (.0113) -0.7996 (.0117)[.0114]{.0113} -0.7996 (.0117)[.0114]{.0113}
1.0 1.0040 (.0161) 0.9996 (.0161)[.0158]{.0157} 0.9996 (.0161)[.0158]{.0157}
1.0 0.9959 (.0735) 0.9973 (.0736)[.0447]{.0717} 0.9973 (.0736)[.0447]{.0717}
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Table 7. Empirical Mean(sd). Panels top-down-left-right: ρ = .1, 0, -.1, . . . ; (N, T ) = (10, 6)
for first 3 panels, (20, 16) next 3, and then (30, 26); Every three rows, (ρ, β, σ2

v0)
′ = (ρ, 1, 1)′

dgp CMLE MMLE FMLE CMLE MMLE FMLE
1 .0653(.059) .0941(.060) .0655(.092) -.1124(.027) -.1002(.027) -.0978(.086)

1.0052(.066) 1.0017(.066) 1.0052(.066) 1.0052(.030) 1.0015(.030) 1.0007(.039)
.9484(.188) .9536(.190) .7994(.376) .9946(.081) .9953(.081) .9771(.142)

2 .0713(.057) .0993(.057) .0602(.099) -.1116(.028) -.0995(.028) -.1010(.073)
1.0034(.066) .9999(.066) 1.0049(.066) 1.0032(.030) .9995(.030) .9998(.035)
.9382(.452) .9440(.458) .7212(.516) .9897(.191) .9904(.191) .9627(.235)

3 .0656(.056) .0946(.057) .0589(.097) -.1130(.027) -.1008(.028) -.1012(.063)
1.0029(.069) .9994(.069) 1.0038(.069) 1.0038(.029) 1.0001(.029) 1.0002(.033)
.9592(.308) .9647(.311) .7683(.449) .9889(.139) .9896(.139) .9730(.178)

1 -.0310(.062) -.0020(.063) -.0230(.084) .0925(.015) .0995(.015) .0278(.089)
1.0058(.068) 1.0012(.069) 1.0044(.069) 1.0026(.017) 1.0004(.017) 1.0226(.032)
.9668(.204) .9717(.206) .8520(.364) 1.0010(.052) 1.0013(.052) .6027(.490)

2 -.0309(.060) -.0034(.060) -.0402(.098) .0930(.014) .1000(.014) .0181(.092)
1.0057(.067) 1.0014(.068) 1.0067(.067) 1.0019(.016) .9997(.016) 1.0251(.032)
.9320(.419) .9371(.424) .7320(.506) .9955(.120) .9958(.120) .5428(.499)

3 -.0309(.059) -.0026(.060) -.0302(.092) .0931(.015) .1001(.015) .0258(.090)
1.0097(.068) 1.0054(.068) 1.0094(.068) 1.0021(.016) .9999(.016) 1.0231(.033)
.9532(.301) .9581(.304) .7999(.434) .9973(.088) .9976(.088) .5846(.494)

1 -.1294(.061) -.1013(.063) -.1168(.084) -.0074(.015) -.0007(.015) -.0638(.084)
1.0054(.070) 1.0002(.071) 1.0031(.071) 1.0024(.017) 1.0002(.017) 1.0209(.032)
.9519(.197) .9562(.199) .8622(.335) .9965(.051) .9967(.051) .6386(.479)

2 -.1297(.059) -.1029(.060) -.1313(.104) -.0064(.016) .0003(.016) -.0742(.090)
1.0081(.067) 1.0032(.067) 1.0086(.070) 1.0023(.017) 1.0001(.017) 1.0246(.034)
.9297(.417) .9342(.421) .7691(.479) .9950(.119) .9952(.119) .5697(.494)

3 -.1294(.063) -.1015(.064) -.1214(.086) -.0075(.015) -.0008(.015) -.0667(.086)
1.0080(.069) 1.0030(.069) 1.0064(.069) 1.0019(.017) .9996(.017) 1.0212(.032)
.9566(.300) .9611(.303) .8513(.399) .9948(.088) .9951(.088) .6182(.484)

1 .0872(.025) .1003(.025) .0992(.061) -.1069(.016) -.1004(.016) -.1471(.078)
1.0077(.029) 1.0039(.029) 1.0041(.033) 1.0026(.017) 1.0003(.017) 1.0163(.031)
.9927(.082) .9936(.082) .9694(.150) .9977(.051) .9980(.051) .7236(.446)

2 .0864(.025) .0994(.026) .0940(.061) -.1071(.016) -.1005(.016) -.1557(.083)
1.0043(.028) 1.0007(.028) 1.0019(.032) 1.0021(.017) .9999(.017) 1.0188(.032)
.9873(.193) .9882(.193) .9494(.246) .9990(.121) .9993(.121) .6777(.472)

3 .0877(.027) .1007(.027) .1013(.086) -.1068(.016) -.1002(.016) -.1556(.081)
1.0046(.029) 1.0010(.029) 1.0008(.037) 1.0026(.018) 1.0003(.018) 1.0192(.033)
.9892(.139) .9901(.139) .9561(.204) 1.0007(.088) 1.0009(.088) .6734(.471)

1 -.0135(.026) -.0008(.026) -.0040(.061)
1.0047(.029) 1.0010(.029) 1.0018(.033)
.9878(.082) .9886(.082) .9601(.161)

2 -.0138(.026) -.0012(.026) -.0048(.078)
1.0049(.029) 1.0012(.029) 1.0022(.036)
.9961(.192) .9969(.193) .9536(.253)

3 -.0125(.026) .0002(.026) -.0024(.063)
1.0025(.029) .9988(.029) .9996(.034)
.9843(.134) .9851(.134) .9562(.194)
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Table 8. Empirical Mean(sd). ρ = .9, .6, .3; σ2
v0 = 1, every second row

dpg par CMLE MMLE FMLE CMLE MMLE FMLE
N = 20, T = 6 N = 20, T = 12

1 .9 .4940(.097) .8373(.142) .8012(.174) .6884(.056) .8791(.078) .8332(.113)
1 .8153(.119) .9507(.162) .8436(.265) .9213(.092) .9889(.109) .9168(.217)

2 .9 .4946(.108) .8240(.166) .7885(.180) .6895(.060) .8772(.084) .8281(.161)
1 .8177(.271) .9441(.326) .8481(.360) .9157(.197) .9813(.216) .9098(.283)

3 .9 .4961(.101) .8383(.152) .7892(.166) .6880(.058) .8795(.080) .8283(.173)
1 .8127(.189) .9460(.234) .8585(.278) .9238(.150) .9920(.167) .9092(.265)

1 .6 .2910(.096) .6074(.159) .5650(.177) .4511(.063) .6004(.079) .5798(.076)
1 .9055(.132) 1.0119(.172) .9400(.232) .9692(.091) .9974(.097) .9885(.105)

2 .6 .2881(.098) .5944(.158) .5647(.186) .4463(.064) .5966(.082) .5745(.075)
1 .8944(.300) .9936(.349) .9297(.370) .9833(.221) 1.0123(.230) 1.0046(.227)

3 .6 .2894(.102) .6033(.165) .5602(.179) .4486(.062) .5982(.081) .5741(.094)
1 .9110(.205) 1.0168(.248) .9531(.278) .9659(.160) .9943(.168) .9856(.167)

1 .3 .0708(.095) .3036(.135) .2864(.131) .1810(.064) .2922(.072) .2842(.072)
1 .9355(.134) .9893(.150) .9792(.152) .9813(.094) .9940(.096) .9924(.096)

2 .3 .0699(.100) .3121(.149) .2881(.142) .1851(.065) .2977(.074) .2871(.072)
1 .9290(.293) .9873(.320) .9677(.321) .9819(.220) .9950(.224) .9928(.223)

3 .3 .0750(.103) .3132(.148) .2908(.137) .1847(.065) .2971(.073) .2877(.073)
1 .9404(.214) .9975(.235) .9862(.231) .9792(.151) .9922(.154) .9903(.153)

N = 50, T = 6 N = 50, T = 12
1 .9 .4998(.061) .8631(.106) .8284(.126) .6932(.035) .8948(.060) .8616(.080)

1 .8235(.076) .9739(.113) .9033(.203) .9242(.059) .9993(.075) .9456(.177)
2 .9 .5045(.072) .8566(.128) .8276(.138) .6949(.038) .8919(.062) .8624(.081)

1 .8169(.165) .9588(.211) .9003(.253) .9241(.134) .9965(.151) .9454(.216)
3 .9 .5048(.065) .8640(.115) .8318(.130) .6943(.037) .8944(.060) .8602(.082)

1 .8260(.128) .9746(.168) .9054(.234) .9320(.094) 1.0066(.107) .9611(.174)
1 .6 .2942(.062) .6077(.114) .5877(.127) .4508(.040) .5985(.049) .5877(.047)

1 .9015(.084) 1.0031(.117) .9612(.173) .9746(.060) 1.0016(.063) .9979(.062)
2 .6 .2945(.066) .6097(.119) .5859(.116) .4519(.040) .6002(.049) .5898(.047)

1 .9057(.186) 1.0096(.225) .9766(.236) .9679(.132) .9951(.137) .9915(.136)
3 .6 .2956(.064) .6108(.117) .5876(.124) .4497(.040) .5969(.049) .5868(.047)

1 .9080(.140) 1.0121(.175) .9713(.207) .9724(.098) .9993(.101) .9958(.101)
N = 100, T = 6 N = 100, T = 12

1 .9 .5046(.041) .8845(.084) .8482(.090) .6959(.025) .9020(.047) .8761(.054)
1 .8281(.053) .9915(.089) .9478(.134) .9249(.041) 1.0029(.055) .9612(.150)

2 .9 .5045(.053) .8706(.105) .8422(.107) .6940(.027) .8956(.050) .8734(.057)
1 .8230(.113) .9756(.150) .9302(.189) .9240(.094) .9986(.107) .9568(.179)

3 .9 .5020(.047) .8743(.094) .8431(.101) .6971(.026) .9035(.048) .8771(.053)
1 .8258(.089) .9827(.126) .9369(.169) .9242(.065) 1.0026(.078) .9650(.147)

1 .6 .2978(.043) .6095(.081) .5936(.077) .4532(.028) .6007(.034) .5951(.033)
1 .9096(.062) 1.0088(.085) .9946(.094) .9760(.042) 1.0028(.044) 1.0009(.044)

2 .6 .2988(.047) .6141(.096) .5971(.089) .4532(.028) .6011(.034) .5955(.032)
1 .9101(.128) 1.0129(.157) .9931(.166) .9746(.097) 1.0016(.101) .9996(.100)

3 .6 .2927(.044) .6013(.085) .5838(.073) .4517(.028) .5989(.034) .5936(.033)
1 .9044(.093) 1.0015(.117) .9874(.118) .9735(.068) 1.0001(.071) .9983(.071)
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