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Abstract
In studying the asymptotic and finite-sample properties of quasi-maximum likelihood

(QML) estimators for the spatial linear regression models, much attention has been paid
to the spatial lag dependence (SLD) model; little has been given to its companion, the
spatial error dependence (SED) model. In particular, the effect of spatial dependence on
the convergence rate of the QML estimators has not been formally studied, and methods for
correcting finite-sample bias of the QML estimators have not been given. This paper fills in
these gaps. Of the two, bias correction is particularly important to the application of this
model. Contrary to the common perceptions, both the large and small sample behaviors of
the QML estimators for the SED model can be different from those for the SLD model in
terms of the rate of convergence and the magnitude of bias. Monte Carlo results show that
the bias can be severe and the proposed bias correction procedure is very effective.

Key Words: Asymptotics; Bias Correction; Bootstrap; Concentrated estimating equation;
Monte Carlo; Spatial layout; Stochastic expansion.

JEL Classification: C10, C15, C21

1. Introduction

With the fast globalisation of economic activities and the concept of ‘neighbour’ ceasing
to be merely the person next door, economists and econometricians alike have recognised the
importance of modelling the spatial interaction of economic variables. As in time series where
the concern is to alleviate the estimation problems caused by the lag in time, the analogous
case in cross sectional data gives rise to a lag in space.

The conventional way to incorporate spatial autocorrelation in a regression model is to add
a spatial lag of the dependent variable or a spatial lag of the error variable into the model,
giving rise to a regression model with spatial lag dependence (SLD), or a regression model
with spatial error dependence (SED). See, among the others, Cliff and Ord (1972, 1973), Ord
(1975), Burridge (1980), Cliff and Ord (1981), Anselin (1980, 1988), Anselin and Bera (1998),
Anselin (2001). These two models have over the years become the building blocks for spatial
econometric modelling, and many more general spatial econometric models have been developed

∗The authors wish to thank the participants of the Asian Meeting of the Econometric Society, 2013 and the
Singapore Economic Review Conference, 2013 for their useful comments and suggestions. Zhenlin Yang gratefully
acknowledges the research support from Singapore Management University.

†Corresponding author: 90 Stamford Road, Singapore 178903. Phone: +65-6828-0852; Fax: +65-6828-0833.



based on them. See, e.g., Anselin (2003), Lee (2002, 2007), Lee and Liu (2010), and Das et al.
(2003) for more general spatial regression models; Pinkse (1998) and Fleming (2004) for spatial
discrete choices models; and Lee and Yu (2010) for a survey on spatial panel data models.

Of the methods available for spatial model estimation, the maximum likelihood (ML) or
quasi-ML (QML) method remains attractive due to its efficiency. As a result of the fast increase
in computing power allowing for easier manipulation of large matrices, the initial reluctance
for the use of QML estimation as opposed to other easily implementable estimation methods
alleviated.1 As such there had been a growing interest in developing the theoretical aspects
behind QML estimation in the recent times which mainly identifies two intriguing issues related
the QML estimation of spatial models: asymptotic distribution and finite-sample bias of the
QML estimators. Of the two models, the SLD model has been extensively studied in terms of
the asymptotic distributions of the MLE or QMLE (Lee, 2004); finite-sample bias corrections
on MLE or QMLE (Bao and Ullah, 2007; Yang, 2012; Bao, 2013). A particularly interesting
phenomenon revealed by Lee (2004) for the SLD model is that the spatial dependence may
slow down the rate of convergence of QMLEs of certain model parameters, including the spatial
parameter. An equally interesting phenomenon revealed by subsequent studies is that spatial
dependence may cause QMLEs to be biased, and more so with heavier spatial dependence (Bao
and Ullah, 2007; Yang, 2012; Bao, 2013; Baltagi and Yang, 2013a).

Surprisingly, these issues have not been addressed in terms of the SED model. In particular,
the effect of the degree of spatial dependence on the convergence rate of the QML estimators has
not been formally studied, and methods for correcting finite-sample bias of the QML estimators
for the SED model have not been given. Built upon the works of Lee (2004) and Yang (2012),
this paper fills in these gaps. Of the two, bias correction is particularly important to the
application of this model. Contrary to the common perceptions, both the large and small sample
behaviours of the QML estimators for the SED model can be different from those for the SLD
model in terms of the rate of convergence and the magnitude of bias. In summary, the QMLE
of the spatial parameter for the SED model always has a convergence rate slower than

√
n-rate

of convergence whenever the degree of spatial dependence grows with the increase in sample
size n, whereas the QMLEs of regression coefficient and error variance always have

√
n-rate of

convergence whether or not the degree of spatial dependence increases with n. In contrast, the
QMLEs of all parameters in the SLD model have

√
n-rate of convergence when the spatially

generated regressor is not asymptotically multicollinear with the original regressors (Lee, 2004,
Assumption 8), and a slower than

√
n-rate of convergence occurs in some parameters for non-

regular cases where the spatially generated regressor is asymptotically multicollinear with the
original regressors and the degree of spatial dependence grows with the increase of n.2 Monte
Carlo results show that the proposed bias correction procedure works very well for the SED
model without compromising on the efficiency of the original QML estimators.

1Other estimation methods include GMM (Kelejian and Robinson, 1993; Kelejian and Prucha, 1999; Lee,
2001, 2007; Fingleton, 2008), 2SLS (Kelejian and Prucha, 1998; Lee, 2003) and IV estimation (Kelejian and
Prucha, 2004), OLS estimation (Lee, 2002).

2More recent works related to the SED model in the ML framework include Martellosio (2010), Su and Jin
(2010), Baltagi and Yang (2013a,b), and Jin and Lee (2013).
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This paper is organised as follows. Section 2 presents results for consistency and asymptotic
normality of the QML estimators for the SED model. Section 3 presents methods for finite
sample bias correction. Section 4 extends the study to an alternative SED model where the
spatial autoregressive (SAR) error is replaced by an spatial moving average (SMA) error; an
undesirable feature of such an alternative model specification is revealed. Section 5 presents
Monte Carlo results and Section 6 concludes the paper.

2. Asymptotic Properties of QMLEs for SED Model

In this section, we examine the asymptotic properties of the QML estimators (QMLEs) of
the linear regression model with spatial error dependence (SED), giving particular attention to
the effect of spatial dependence on the rate of convergence of the QMLEs. We show that the
QMLEs of the regression coefficients and the error variance always have the conventional

√
n-

rate of convergence, whereas, the QMLE of the spatial parameter has the conventional
√
n-rate

of convergence if the degree of spatial dependence does not grow with the increase in sample
size, otherwise it has a slower rate. With an adjustment on the normalisation factor for the
score component of the spatial parameter, we establish the joint asymptotic normality for the
QMLEs of the model parameters. All proofs are given in Appendix A.

2.1 The model and the QML estimation

Consider the following linear regression model with spatial error dependence (SED), where
the SED is specified as a spatial autoregressive (SAR) process:

Yn = Xnβ + un, (1)

un = ρWnun + εn, (2)

where Yn is an n×1 vector of observations on the dependent variable corresponding to n spatial
units, Xn is an n × k matrix containing the values of k exogenous regressors, Wn is an n × n

spatial weights matrix that summarises the interactions among the spatial units, εn is an n× 1
vector of independent and identically distributed (iid) disturbances with mean zero and variance
σ2, ρ is the spatial parameter, and β denotes the k × 1 vector of regression coefficients.

Let θ = (β′, σ2, ρ)′ be the vector of model parameters and θ0 be its true value. Denote
An(ρ) = In − ρWn and An = An(ρ0) where In is an n × n identity matrix. If A−1

n exists, then
Model (1) can be written as,

Yn = Xnβ0 + A−1
n εn, (3)

leading to Var(un) = Var(A−1
n εn) = σ2

0(A′
nAn)−1.

The linear regression with spatial lag dependence (SLD) model has the form: Yn = ρ0WnYn+
Xnβ0 + ε, which can be rewritten as Yn = Xnβ0 + ρ0GnXnβ0 + A−1

n εn, where Gn = WnA
−1
n .

While in both SED and SLD models, the spatial effects generate a non-spherical structure
in the disturbance term, the SLD model has an extra spatially generated regressor, GnXnβ0.

3



This spatial regressor plays an important role in the identification and estimation of the spatial
parameter in the SLD model in a maximum likelihood estimation framework (Lee, 2004).

The first comprehensive treatment of maximum likelihood estimation for the SLD and SED
models was given by Ord (1975). More formal results can be found in Anselin (1980). In
particular, Anselin (1980) pointed out that the MLE of the SED model can be carried out as
an application of the general framework of Magnus (1978) for non-spherical errors. See Anselin
(1988); and Anselin and Bera (1998) for a detailed survey on the SLD and SED models.

While the SLD and SED models have been so fundamental and pivotal to the development
of the spatial econometric models and methods, an important issue, which is perhaps unique to
spatial econometrics models, the effect of the degree of spatial dependence on the asymptotic
properties of the QMLEs, in particular the rate of convergence, was not addressed until Lee
(2004) who clearly identified the situations where the rate of convergence can be affected when
the spatial dependence increase with the number of observations. However, this issue has not
been addressed in the context of SED models. Jin and Lee (2013) studied the asymptotic
properties of the QMLEs of SARAR (linear regression with spatial autoregressive response and
error variables) model, but once again, this particular issue was not addressed. On the other
hand, as it will be seen from the following sections, the degree of spatial dependence also has a
profound impact on the finite-sample performance of the spatial parameter estimates.

The quasi Gaussian log-likelihood function for the SED model is given by,

�n(θ) = −n
2

log(2πσ2) + log |An(ρ)| − 1
2σ2

(Yn −Xnβ)′A′
n(ρ)An(ρ)(Yn −Xnβ). (4)

Maximizing �n(θ) gives the MLE, θ̂n of θ if the errors are indeed Gaussian, otherwise the QMLE.
Given ρ, the log-likelihood function �n(θ) is partially maximized at,

β̂n(ρ) = [X ′
nA

′
n(ρ)An(ρ)Xn]−1X ′

nA
′
n(ρ)An(ρ)Yn, and (5)

σ̂2
n(ρ) = 1

nY
′
nA

′
n(ρ)Mn(ρ)An(ρ)Yn, (6)

where, Mn(ρ) = In − An(ρ)Xn[X ′
nA

′
n(ρ)An(ρ)Xn]−1X ′

nA
′
n(ρ). The concentrated log-likelihood

function for ρ upon substituting the constrained QMLEs β̂n(ρ) and σ̂2
n(ρ) into (4):

�cn(ρ) =
n

2
[log(2π) + 1] + log |An(ρ)| − n

2
log(σ̂2

n(ρ)). (7)

Maximising �cn(ρ) gives the unconstrained QMLE ρ̂n of ρ, which in turn gives the unconstrained
QMLEs of β and σ2 as, β̂n = β̂n(ρ̂n) and σ̂2

n = σ̂2
n(ρ̂n).

2.2 Consistency and asymptotic normality

The asymptotic properties of the QMLEs of the SED model are built upon the following
basic regularity conditions:

Assumption 1: The true ρ0 is in the interior of the compact parameter set P .
Assumption 2: {εn,i} are iid with mean 0, variance σ2, and E|εn,i|4+δ <∞, ∀δ > 0.
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Assumption 3: Xn has full column rank k, its elements are uniformly bounded constants,
and limn→∞ 1

nX
′
nA

′
n(ρ)An(ρ)Xn exists and is non-singular for any ρ in a neighbourhood of ρ0.

Assumption 4: The elements {wij} of Wn are at most of order h−1
n uniformly for all i

and j, where hn can be bounded or divergent but subject to limn→∞ hn
n = 0; Wn is uniformly

bounded in both row and column sums and its diagonal elements are zero.
Assumption 5: An is non-singular and A−1

n is uniformly bounded in both row and column
sums. Further, A−1

n (ρ) is uniformly bounded in either row or column sums, uniformly in ρ ∈ P .

We allow for the possibility that the degree of spatial dependence, quantified by hn, grows
with the sample size n, and the possibility that the error distribution is misspecified, i.e., the
true error distribution is not normal. These conditions are similar to those in Lee (2004) to
ascertain the

√
n/hn-consistency of the QMLEs of the SLD model. All conditions but that

on hn are very general regularity conditions considered widely in the literature. Assumption
1 states that the spatial parameter ρ can only take values in a compact space such that the
Jacobian term of the likelihood function, log |An(ρ)|, is well defined.3 The full rank condition
of Assumption 3 is needed to guarantee that the model does not suffer from multicollinearity.
Assumption 4 is based on Lee (2004) where extensive discussions can be found. Assumption 5
allows us to write the model in the reduced form (3). Uniform boundedness conditions given
in Assumptions 4 and 5 are needed to limit the spatial correlation to a manageable degree.
Boundedness on the regressors is not restrictive when analysing cross-sectional units, otherwise
it can be replaced by certain finite moment conditions with stochastic regressors.

Identification of the model parameters requires that the expected log-likelihood function,
�̄n(θ) = E[�n(θ)], has identifiably unique maximisers that converge to θ0 as n → ∞. (White,
1994, Theorem 3.4; Lee, 2004). The expected log-likelihood function is,

�̄n(θ) = −n
2

log(2πσ2) + E [log |An(ρ)|]− 1
2σ2

E
[
(Yn −Xnβ)′A′

n(ρ)An(ρ)(Yn −Xnβ)
]
, (8)

which, for a given ρ, is partially maximised at,

βn(ρ) = (X ′
nA

′
n(ρ)An(ρ)Xn)−1X ′

nA
′
n(ρ)An(ρ)E(Yn) = β0, and (9)

σ2
n(ρ) = 1

nE
{
[Yn −Xnβn(ρ)]′A′

n(ρ)An(ρ)[Yn −Xnβn(ρ)]
}

= 1
nE

{
tr[εnε′nA′−1

n A′
n(ρ)An(ρ)A−1

n ]
}

= 1
nσ

2
0tr[A

′−1
n A′

n(ρ)An(ρ)A−1
n ]. (10)

The resulting concentrated expected log-likelihood function, �̄cn(ρ), takes the form,

�̄cn(ρ) = max
β,σ2

�̄n(θ) =
n

2
(log(2π) + 1) + log |An(ρ)| − n

2
log(σ2

n(ρ)). (11)

3For this it is necessary that |In − ρWn| =
Qn

i=1(1 − ρλi) > 0, where {λi} are the eigenvalues of Wn. If the
eigenvalues of Wn are all real, the parameter space P can be a closed interval contained in (λ−1

min, λ−1
max), where

λmin and λmax are, respectively, the minimum and maximum eigenvalues. If Wn is row-normalised, then λmax = 1
and −1 ≤ λmin < 0 and P can be a closed interval contained in (λ−1

min, 1), where the lower bound can be below
−1 (Anselin, 1988). In general, the eigenvalues of Wn may not be all real and in this case Kelejian and Prucha
(2010) suggested the interval (−τ−1

n , τ−1
n ), where, τn = maxi|λi| is the spectral radius of the weight matrix, and

LeSage and Pace (2009, p. 88-89) suggested interval (λ−1
s , 1) where λs is the most negative real eigenvalue of Wn

as only the real eigenvalues can affect the singularity of In − λWn.
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From Assumption 3, it is clear that β and σ2 are identified once ρ is. The latter is guaran-
teed if �̄cn(ρ) has an identifiably unique maximiser in P which converges to ρ0 as n → ∞, or
limn→∞ hn

n [�̄cn(ρ)− �̄cn(ρ0)] < 0, ∀ρ �= ρ0. The global identification condition for the SED model
thus simplifies to a condition on ρ alone.

Assumption 6: limn→∞ hn
n

[
log |σ2

0A
−1
n A

′−1
n | − log |σ2

n(ρ)A−1
n (ρ)A

′−1
n (ρ)|

]
�= 0, ∀ρ �= ρ0.

This differentiates the SED model from the SLD in the asymptotic behaviours of the QMLEs.
The spatially generated regressor GnXnβ0 of the SLD model Yn = Xnβ0 + ρ0GnXnβ0 +A−1

n εn

can help identifying ρ if it is not asymptotically multicollinear with the original regressors,
giving the conventional

√
n-rate of convergence of ρ̂n irrespective of whether hn is bounded or

unbounded. When GnXnβ0 is asymptotically collinear with Xn, the convergence rate of ρ̂n

becomes
√
n/hn. In contrast, ρ̂n for the SED model always has a

√
n/hn-rate of convergence.

Note that the variance of Yn of (1) is σ2
0A

−1
n A

′−1
n and hence the global identification condition

given above ensures the uniqueness of the variance matrix. With this global identification
condition and the uniform convergence of hn

n [�cn(ρ)− �̄cn(ρ)] to zero in P which is proved in the
Appendix, the consistency of ρ̂n follows.

Theorem 1: Under Assumptions 1-6, the QMLE ρ̂n is a consistent estimator of ρ0.

Theorem 1 and Assumption 3 lead immediately to the consistency of β̂n and σ̂2
n. However,

Theorem 1 reveals nothing about the rate of convergence of ρ̂n, and hence the rates of conver-
gence of β̂n and σ̂2

n remain unknown as well. To reveal the exact convergence rates, and at the
same time to derive the asymptotic distributions of the QMLEs, consider the score function,

Sn(θ) ≡ ∂�n(θ)
∂θ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2X

′
nA

′
n(ρ)An(ρ)un(β),

1
2σ4u

′
n(β)A′

n(ρ)An(ρ)un(β) − n
2σ2 ,

1
σ2u

′
n(β)A′

n(ρ)Wnun(β) − tr[Gn(ρ)],

(12)

where, un(β) = Yn − Xnβ and Gn(ρ) = WnA
−1
n (ρ). It is known that for likelihood-based

inferences, the normalized score 1√
n
Sn(θ0) at the true parameter value would be asymptotically

normal. Indeed, under Assumptions 1-5 one can easily show that this is true for β and σ2

components of 1√
n
Sn(θ0). However, the normalized score for ρ is Op( 1√

hn
), see Lemmas A.2 and

A.3 in Appendix. This means that when hn is divergent, the likelihood function with respect
to ρ is too flat so that its normalized score converges to a degenerated distribution. As a result
ρ̂n converges to ρ0 at a slower rate than the conventional

√
n-rate. A similar phenomenon

is observed by Lee (2004) for the spatial parameter as well as the regression coefficients in
the SLD model, in the ‘non-regular cases’ where the spatially generated regressor GnXnβ0, is
asymptotically collinear with the regular regressors. This motivate us to consider the following
modification.

To account for the effect of spatial dependence on the asymptotic behaviour of the QMLE
ρ̂n of the spatial parameter ρ, and to study jointly the asymptotic distribution of the QMLE θ̂n

6



of the model parameter vector θ, we consider the following modified score vector:

S∗
n(θ) = KnSn(θ),

where, Kn = diag(Ik, 1,
√
hn). Hence, 1√

n
S∗

n(θ) would have a proper asymptotic behaviour
whether hn is divergent or bounded. Under Assumptions 1-5, the central limit theorem (CLT)
for linear-quadratic forms of Kelejian and Prucha (2001) can be applied to prove the result,

1√
n
S∗

n(θ0)
D−→ N (0,Γ∗),

where, Γ∗ = limn→∞ 1
nΓ∗

n, Γ∗
n = Var[S∗

n(θ0)] = KnΓnK
′
n, Γn = Var[Sn(θ0)], and

Γn =

⎛
⎜⎜⎜⎝

1
σ2
0
X ′

nA
′
nAnXn

1
2σ3

0
γX ′

nA
′
nιn

1
σ0
γX ′

nA
′
ngn

1
2σ3

0
γι′nAnXn

n
4σ4

0
(κ+ 2) 1

2σ2
0
(κ+ 2)tr(Gn)

1
σ0
γg′nAnXn

1
2σ2

0
(κ+ 2)tr(Gn) κg′ngn + tr(Gs

nGn)

⎞
⎟⎟⎟⎠ ,

where, ιn is an n×1 vector of ones, γ = σ−3
0 E(v3

n,i) is the measure of skewness, κ = σ−4
0 E(v4

n,i)−3
is the measure of excess kurtosis, gn = diag(Gn), Gn = Gn(ρ0), and Gs

n = Gn +G′
n.

It is easy to see that the information matrix Σn = −E
(

∂2

∂θ∂θ′ �n(θ0)
)
, takes the form:

Σn =

⎛
⎜⎜⎜⎝

1
σ2
0
X ′

nA
′
nAnXn 0 0

0 n
2σ4

0

1
σ2
0
tr(Gn)

0 1
σ2
0
tr(Gn) tr(Gs

nGn)

⎞
⎟⎟⎟⎠ ,

which leads to the modified version of the information matrix, Σ∗
n = KnΣnK

′
n. One can show

that Γ∗ exists and its diagonal elements are non-zero and Σ∗ = limn→∞ 1
nΣ∗

n exists and is
positive definite irrespective of whether hn is bounded or unbounded. In contrast,

lim
n→∞

1
n

Γn =

⎛
⎜⎜⎝

1
σ2
0
V1

γ
2σ3

0
V2 0

γ
2σ3

0
V ′

2
1

4σ4
0
(κ+ 2) 0

0 0 0

⎞
⎟⎟⎠ and lim

n→∞
1
n

Σn =

⎛
⎜⎜⎝

1
σ2
0
V1 0 0

0 1
2σ4

0
0

0 0 0

⎞
⎟⎟⎠ ,

if hn is unbounded, where, V1 = limn→∞ 1
nX

′
nA

′
nAnXn and V2 = limn→∞ 1

nX
′
nA

′
nιn. Hence,

without the adjustment factor Kn, we cannot derive the asymptotic normality results due to
the singularity of the matrices required to compute the asymptotic variance-covariance matrix
of the QMLEs.

To see that Σ∗ is non-singular under a general hn, consider the determinant of Σ∗
n: |Σ∗

n| =
1

2σ6
0

1
n |X ′

nA
′
nAnXn|hn

n [tr(Gs
nGn)− 2

ntr2(Gn)]. If hn is bounded then by Assumptions 3, 4 and 5,

|Σ∗
n| = O(1). Now suppose hn is unbounded where limn→∞ hn = ∞ such that hn

n → 0, then
gn,ii,

1
n tr(G′

nGn), 1
ntr(G2

n), and 1
ntr(Gn) are allO(h−1

n ) and hence by Assumption 3, |Σ∗
n| = O(1).

We have the following theorem for asymptotic normality of QMLE θ̂n of θ0.

7



Theorem 2: Under Assumptions 1-6, we have,

√
nK−1

n (θ̂n − θ0)
D−→ N (0, Σ∗−1Γ∗Σ∗−1),

where, Γ∗ = limn→∞ 1
nΓ∗

n and Σ∗ = limn→∞ 1
nΣ∗

n. If errors {εn,i} are normally distributed, then
√
nK−1

n (θ̂n − θ0)
D−→ N (0, Σ∗−1).

Remark 1: For practical applications of the above result, it is important to note that hn, the
quantity characterising the degree of spatial dependence and affecting the rate of convergence
of the QMLEs, is in general not known. However, inference concerning the model parame-
ters θ does not depend on it, because Σ∗−1

n Γ∗
nΣ∗−1

n = (KnΣnKn)−1(KnΓnKn)(KnΣnKn)−1 =
K−1

n Σ−1
n ΓnΣ−1

n K−1
n . Hence, AVar(θ̂n − θ0) = n−1Σ−1

n ΓnΣ−1
n .

For the purpose of statistical inference, it might be useful to have the marginal asymptotic
distributions of the QMLEs, in particular, the marginal asymptotic distribution of ρ̂n.

Corollary 1: Under the assumptions of Theorem 2, we have,√
n(β̂n − β0)

D−→ N
(
0, σ2

0V
−1
1

)
,

√
n(σ̂2

n − σ2
0) D−→ N

[
0, 2σ4

0T1 + κσ4
0(T1 − 2T 2

2T3)
]
,√

n
hn

(ρ̂n − ρ0)
D−→ N

(
0, T4 + κT5

)
;

where, T1 = limn→∞
tr(Gs

nGn)
tr(Cs

nCn)
, T2 = lim

n→∞
tr(Gn)

tr(Cs
nCn)

, T3 = lim
n→∞

1
n [tr(Gs

nGn) − 2g′ngn], T4 =

lim
n→∞

n
hn

tr−1(Cs
nCn), T5 = lim

n→∞
n
hn

g′ngn−n−1tr2
(Gn)

tr2
(Cs

nCn)
, Cn = Gn − tr(Gn)

n In and Cs
n = C′

n + Cn.

Corollary 1 clearly reveals that only the QMLE of the spatial parameter has a slower rate of
convergence of

√
n/hn when hn is unbounded; β̂n and σ̂2

n have the traditional
√
n-convergence

rate whether hn is bounded or unbounded. Intuitively this is correct since unlike in the SLD
model where there is a lagged dependent variable (ρWnYn), in the SED model, the spatial
structure affects only the errors and hypothetically if ρ is known, the model in (1) can be
simplified to a linear regression model.

3. Finite-Sample Bias Correction for the QML Estimators

With the formal asymptotic results given in the earlier section, we are ready to study the
more important issue: the finite sample properties of the QMLEs of the SED model. The prob-
lem of estimation bias, arising from the estimation of non-linear parameters has been widely
recognized by econometricians (see, among others, Kiviet, 1995; Hahn and Kuersteiner, 2002;
Hahn and Newey, 2004; Bun and Carree, 2005; Bao and Ullah, 2007b). Spatial econometricians
too have recognized this issue in estimating spatial econometric models and have successfully
tackled this problem for the SLD model (Bao and Ullah, 2007a; Yang, 2012; , 2013). However,
no work has been done for the SED model and other spatial models. In a spatial regression con-
text, spatial parameter(s) enter the regression model in a highly non-linear manner and spatial
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dependence maybe quite strong. As a result, the bias problem in estimating spatial parame-
ter(s) may be more severe and hence all the more important is to perform bias corrections on
spatial estimator(s). Among the various methods for bias corrections, the stochastic expansion
method of Rilestone et al. (1996) has recently gained more attention. With the introduction of
the bootstrap method by Yang (2012), its applicability has been greatly expanded (See Efron,
1979, for a general introduction to the bootstrap method).

In this section, we derive the second- and third-order biases of the QMLE of the spatial
parameter in the SED model, based on the technique of stochastic expansion (Rilestone et
al., 1996) and bootstrap (Yang, 2012). As in Yang (2012), the key quantities involved in the
terms related to the bias of a non-linear estimator are the derivatives of the concentrated log-
likelihood function and their expectations. While deriving the analytical solutions of the high-
order derivatives may only be a matter of tedious algebraic manipulations, evaluation of their
expectations can be very difficult if not impossible. We follow the general method introduced
in Yang (2012) and propose a bootstrap procedure for implementing these bias corrections for
the SED model. The validity of this procedure when applied to the SED model is established.
Monte Carlo results show an excellent performance of the proposed bias-correction procedure.
We argue that once the spatial estimator is bias-corrected, the bias of the other estimators
becomes a minor issue since those are functions of the spatial parameter. All proofs are given
in Appendix B.

3.1 The general method for bias correction

In studying the finite sample properties of a parameter estimator, say θ̂n, defined as θ̂n =
arg{ψn(θ) = 0} for an estimation equation ψn(θ), based on a sample of size n, Rilstone et al.
(1996) and Bao and Ullah (2007a) developed a stochastic expansion from which a bias-correction
on θ̂n can be made. The vector of parameters θ may contain a set of linear and scale parameters,
say δ, and a non-linear parameter, say ρ, in the sense that given ρ, the constrained estimator
δ̂n(ρ) of the vector δ possesses an explicit expression and the estimation of ρ has to be done
through numerical optimization. In this case, Yang (2012) argued that it is more effective to
work with the concentrated estimating equation (CEE): ψ̃n(ρ) = ψn(δ̂n(ρ), ρ), and to perform
a stochastic expansion on this CEE and hence do the bias correction only on the non-linear
estimator defined by,

ρ̂n = arg{ψ̃n(ρ) = 0}. (13)

In doing so, a multi-dimensional problem is reduced to a single-dimensional problem, and the
additional variability from the estimation of the ‘nuisance’ parameters δ is taken into account
in bias-correcting the estimate of the non-linear parameter ρ.

Let Hrn(ρ) = dr

dρr ψ̃n(ρ), r = 1, 2, 3. Under some general smoothness conditions on ψ̃n(ρ),
Yang (2012) presented a third-order, CEE-based, stochastic expansion for ρ̂n at the true pa-
rameter value ρ0 as,

ρ̂n − ρ0 = a−1/2 + a−1 + a−3/2 +Op(n−2), (14)
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where, a−s/2 represents terms of order Op(n−s/2) for s = 1, 2, 3, and they are,

a−1/2 = Ωnψ̃n, a−1 = ΩnH
◦
1na−1/2 + 1

2ΩnE(H2n)(a2
−1/2) and

a−3/2 = ΩnH
◦
1na−1 + 1

2ΩnH
◦
2n(a2

−1/2) + ΩnE(H2n)(a−1/2a−1) + 1
6ΩnE(H3n)(a3

−1/2),

where, ψ̃n ≡ ψ̃n(ρ0), Hrn ≡ Hrn(ρ0), r = 1, 2, 3, H◦
rn = Hrn − E(Hrn) and Ωn = −[E(H1n)]−1.

The above stochastic expansion leads to a second-order bias, E(a−1/2 + a−1), and a third-
order bias, E(a−1/2 + a−1 + a−3/2), which may be used for performing bias corrections on ρ̂n,
provided that analytical expressions of the various expected quantities in the expansion can
be derived so that they can be estimated through a plug-in method. Several applications of
this plug-in method have appeared in the literature including Bao and Ullah (2007a) for a pure
spatial autoregressive process, and Bao (2013) for the SLD model. The plug-in method may
run into difficulty when the analytical expectations are not available or are difficult/impossible
to derive as in the SED model we consider. To overcome this obstacle, Yang (2012) proposed a
simple and yet very effective bootstrap method to estimate the relevant expected values.

3.2 Bias of the QMLE of the spatial parameter of the SED model

Recall the concentrated log-likelihood function, defined in (7). Define the concentrated score
function for ρ as, ψ̃n(ρ) = ∂

∂ρ
hn
n �

c
n(ρ), then,

ψ̃n(ρ) = −hnT0n(ρ) + hnR1n(ρ), (15)

where, T0n(ρ) = 1
n tr(Gn(ρ)) and

R1n(ρ) =
Y ′

nA
′
n(ρ)Mn(ρ)Gn(ρ)Mn(ρ)An(ρ)Yn

Y ′
nA

′
n(ρ)Mn(ρ)An(ρ)Yn

, (16)

leading to a CEE for ρ as ρ̂n = arg{ψ̃n(ρ) = 0}. Let Hrn(ρ) = dr

dρr ψ̃n(ρ), r = 1, 2, 3, then,

h−1
n H1n(ρ) = −T1n(ρ)− R2n(ρ) + 2R2

1n(ρ), (17)

h−1
n H2n(ρ) = −2T2n(ρ)− R3n(ρ)− 6R1n(ρ)R2n(ρ) + 8R3

1n(ρ), (18)

h−1
n H3n(ρ) = −6T3n(ρ)− R4n(ρ)− 8R1n(ρ)R3n(ρ) + 6R2

2n(ρ)

−48R2
1n(ρ)R2n(ρ) + 48R4

1n(ρ), (19)

where, Trn(ρ) = 1
n tr(G

r+1
n (ρ)), r = 1, 2, 3, and

Rjn(ρ) =
Y ′

nA
′
n(ρ)Mn(ρ)Djn(ρ)Mn(ρ)An(ρ)Yn

Y ′
nA

′
n(ρ)Mn(ρ)An(ρ)Yn

, j = 2, 3, 4. (20)

The full expressions for Djn(ρ), j = 2, 3, 4 are given in Appendix B. Clearly, D1n(ρ) = Gn(ρ) as
in R1n(ρ).

The above expressions show that the key quantities in the third-order stochastic expansion
for ρ̂n (the QMLE of the spatial parameter in the SED model), are those ratios of quadratic
forms Rjn(ρ), j = 1 . . . , 4. Note that, in what follows, a function of ρ evaluated at ρ = ρ0 is
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denoted by dropping the function argument, e.g., ψ̃n = ψ̃n(ρ0), An = An(ρ0), Gn = Gn(ρ0),
Rjn = Rjn(ρ0), Hrn = Hrn(ρ0), Trn = Trn(ρ0). Now, some case specific conditions on Rjn are
needed to regulate the limiting behaviour of Hrn so as the required quantities have finite limits
in expectation.

Assumption 7: E
(

hn
n ε

′
nMnGnMnεn

(
1

σ̄4
n
− 1

σ4
0

)
(σ̂2

n − σ2
0)

)
= O

(
(hn

n )
1
2

)
, where, σ̄2

n lies
between σ2

0 and σ̂2
n.

Assumption 8:

(i) hs
nE[(R1n − ER1n)s] = O

(
(hn

n )
1
2

)
, s = 2, 3, 4;

(ii) hs
nE[(R2n − ER2n)s] = O

(
(hn

n )
1
2

)
, s = 1, 2;

(iii) hnE(Rrn − ERrn) = O((hn
n )

1
2 ), r = 3, 4;

(iv) hs+1
n E[(R1n − ER1n)s(R2n − ER2n)] = O((hn

n )
1
2 ), s = 1, 2, and

(v) h2
nE[(R1n − ER1n)(R3n − ER3n)

]
= O((hn

n )
1
2 ).

The following Lemma shows the bounded behaviour of the expectations of the quantities in
the stochastic expansion.

Lemma 1: Under Assumptions 1-7, (i) hnRin = Op(1), (ii) E(hnRin) = O(1), and (iii)
hnRin = E(hnRin) + Op((hn

n )
1
2 ), i = 1, . . . , 4.

Given Lemma 1 and the regularity conditions, we can prove the following propositions:

Proposition 1: Suppose the SED model specified by (1) and (2) satisfies Assumptions 1-8.
Then, the third-order stochastic expansion given in (14) holds for the QMLE ρ̂n of the spatial
parameter in the model with n replaced by n/hn for the stochastic order:

ρ̂n − ρ0 = c′1nζn + c′2nζn + c′3nζn + Op((hn
n )2), (21)

where, c′snζn are of stochastic order O((hn
n )

s
2 ), s = 1, 2, 3, with,

ζn = {ψ̃n, H1nψ̃n, ψ̃
2
n, H

2
1nψ̃n, H2nψ̃

2
n, H1nψ̃

2
n, ψ

3
n}′,

c1n = {Ωn, 0′6×1}′, Ωn = −E(H1n)−1, c2n = {Ωn, Ω2
n,

1
2Ω3

nE(H2n), 0′4×1}′, and
c3n = {Ωn, 2Ω2

n, Ω3
nE(H2n), Ω3

n,
1
2Ω3

n,
3
2Ω4

nE(H2n), 1
2Ω5

nE(H2n)2 + 1
6Ω4

nE(H3n)}′.
Remark 2: Note that by letting C2n = c1n + c2n and C3n = c1n + c2n + c3n, the stochastic

expansions can be further simplified to c′1nζn (asymptotic), C′
2nζn (second-order), and C′

3nζn

(third order), which are particularly helpful in the bootstrap work introduced later.

Proposition 2: Under Assumptions 1-8 and further assuming that a quantity bounded in
probability has a finite expectation, a third-order expansion for the bias of ρ̂n is:

Bias(ρ̂n) = C′
2nE(ζn) + c′3nE(ζn) + O((hn

n )2), (22)

and the 2nd and 3rd order bias corrected QMLEs are:

ρ̂bc2
n = ρ̂n − Ĉ ′

2nÊ(ζn) and ρ̂bc3
n = ρ̂n − Ĉ ′

3nÊ(ζn), (23)

where, a quantity with a ̂ is the corresponding estimate of that quantity.
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Practical implementation of the bias corrections given in (23) depends on the availability of
the estimates Ê(ζn), and Ĉ2n or Ĉ3n. Note that ζn is defined in terms of ψ̃n and Hrn, and C2n

and C3n are defined in terms of E(Hrn), r = 1, 2, 3. Given the complicated expressions for ψ̃n

and Hrn defined in (15)-(19), the conventional method of estimation by deriving the analytical
expectations for E(ζn), and C2n or C3n would be extremely difficult if not impossible. The
method of using the sample analogue would not work either due to the fact that ψ̃(ρ̂n) = 0.
These iterate the point raised in Yang (2012), and hence, the bootstrap method given in same
is adopted for the estimation of the quantities in question.

3.3 Bootstrap method for implementing the bias-correction

From (15), and (17)-(19), we see that ψ̃n and Hrn are functions of only Rjn, j = 1, . . . , 4,
i.e., we need to individually estimate the following terms:

E(Ri
1n), i = 1, . . . , 5; E(Rj

2n), j = 1, 2; E(R3n); E(R4n);

E(Ri
1nR2n), i = 1, 2, 3; E(R1nR

2
2n); E(Ri

1nR3n), i = 1, 2.

It is easy to see that,

Rjn ≡ Rjn(en, ρ0) =
e′nΛjn(ρ0)en
e′nMn(ρ0)en

, (24)

where en = σ−1
0 εn, Λjn(ρ0) = Mn(ρ0)DjnMn(ρ0) withD1n = Gn and Djn, j = 2, 3 being defined

at the beginning of Appendix B. It follows that all the necessary quantities whose expectations
are required can be expressed in terms of en and ρ0. In particular, we can write,

Hrn ≡ Hrn(en, ρ0), and ζn ≡ ζn(en, ρ0).

Thus, Hrn and ζn, and their distributions are invariant of β0 and σ2
0 . The bootstrap procedure

for estimating the expectations of the above quantities can be described as follows:

(1) Compute the QMLEs θ̂n = (β̂′n, σ̂2
n, ρ̂n)′ based on the original data,

(2) Compute the standardized QML residuals, ên = σ̂−1
n An(ρ̂n)(Yn − Xnβ̂n).4 Denote the

empirical distribution function (EDF) of the centred ên by Fn,

(3) Draw a random sample of size n from Fn, and denote it by e∗n,b,

(4) Compute Rin(e∗n,b, ρ̂n), i = 1, . . . , 4, and hence Hin(e∗n,b, ρ̂n), i = 1, 2, 3 and ζn(e∗n,b, ρ̂n),

(5) Repeat steps (3) and (4) B times, and the bootstrap estimates of E(Hin), i = 1, 2, 3, and
E(ζn) are given by:

Ê(Hin) =
1
B

B∑
b=1

Hin(e∗n,b, ρ̂n), and Ê(ζin) =
1
B

B∑
b=1

ζin(e∗n,b, ρ̂n). (25)

4Whether to bootstrap the standardized QML residuals ên or the original QML residuals ε̂n = σ̂nên does not
make a difference as Rjn are invariant of σ0. However, use of ên makes the theoretical discussion easier.
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The proposed bootstrap procedure overcomes the difficulty of analytically evaluating the
expectations of very complicated quantities, and is very straightforward since in every bootstrap
iteration, no re-estimation of the model parameters is required. The question that remains
is its validity, particularly the validity of using Ĉ2nÊ(ξn) in the third-order bias corrections
Ĉ3nÊ(ξn) = Ĉ2nÊ(ξn) + ĉ3nÊ(ξn). We now elaborate using the quantities Rjn.

Let F0 be the CDF of en,i. The EDF Fn is thus an estimate of F0. If ρ0 and F0 were
known, then E[Rjn(en, ρ0)] =̇ 1

M

∑M
m=1 Rjn(en,m, ρ0), where en,m is a random sample of size

n drawn from F0 and M is an arbitrarily large number. If ρ is unknown but F0 is known,
E[Rjn(en, ρ0)] can be estimated by 1

M

∑M
m=1 Rjn(en,m, ρ̂n), giving the so-called Monte Carlo

(or parametric bootstrap) estimates of an expectation. In reality, however, both ρ0 and F0 are
unknown. Hence, this Monte Carlo method does not work. The bootstrap analogue of Model
(3) takes the form,

Y ∗
n,b = Xnβ̂n + σ̂nA

−1
n (λ̂n)e∗n,b,

where (β̂n, σ̂
2
n, ρ̂n) are now treated as bootstrap parameters. Based on the generated bootstrap

data (Y ∗
n,b, Wn, Xn) and the bootstrap parameter ρ̂n, one computes Rjn defined by (16) and

(20), to give bootstrap analogues of Rjn, which are Rjn(e∗n, ρ̂n), j = 1, . . . , 4. The bootstrap
estimates of E[Rjn(en, ρ0)] are thus,

E∗[Rjn(e∗n, ρ̂n)] =̇ 1
B

∑B
b=1 Rjn(e∗n,b, ρ̂n), for a large B,

which takes the same form as the Monte Carlo estimate with a known F0. These give a heuristic
justification on the validity of the bootstrap method.

Formally, denote the second- and third-order bias terms by b2(ρ0, γ0) = C′
2nE(ζn) and

b3(ρ0, γ0) = c′3nE(ζn), respectively, where γ0 = γ(F0) denotes the higher (than 2nd) order
moments of F0 that b2 and b3 may depend upon. In our QML estimation framework, γ0 is un-
known as F0 is specified up to only the first two moments. Following the arguments above, the
bootstrap estimates of b2 and b3 must take the form: b̂2 = b2(ρ̂n, γ̂n) and b̂3 = b3(ρ̂n, γ̂n) where
γ̂n = γ(F̂n). The validity of the bootstrap estimates of bias corrections is thus established.

Proposition 3: Under Assumptions of Proposition 2 and further, assuming a quantity
bounded in probability has a finite expectation, then,

E[b2(ρ̂n, γ̂n)] = b2(ρ0, γ0) +O((hn
n )2), and E[b3(ρ̂n, γ̂n)] = b3(ρ0, γ0) + op((hn

n )2).

It follows that E(ρ̂bc2
n ) = ρ0 +O((hn

n )
3
2 ) and E(ρ̂bc3

n ) = ρ0 +O((hn
n )2).

4. An Alternative Model Specification

As mentioned in Section 2, an alternative to the SED model with an SAR error process is
the SED model with a spatial moving average (SMA) error process,

Yn = Xnβ + un, un = εn − ρWnεn, (26)
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where, all the quantities are defined in a similar manner as (1). The model at the true parameters
can be written as Yn = Xnβ0 + Anεn, giving, Var(un) = σ2

0AnA
′
n, suggesting a similar non-

spherical error structure. The quasi Gaussian log-likelihood function for this model is,

�n(θ) = −n
2

log(2πσ2) − log |An(ρ)| − 1
2σ2

(Yn −Xnβ)′A
′−1
n (ρ)A−1

n (ρ)(Yn −Xnβ) (27)

Given ρ, the constrained QMLEs are,

β̂n(ρ) = (X ′
nA

′−1
n (ρ)A−1

n (ρ)Xn)−1X ′
nA

′−1
n (ρ)A−1

n (ρ)Yn, and

σ̂2
n(ρ) = 1

nY
′
nA

′−1
n (ρ)Mn(ρ)A−1

n (ρ)Yn,

where, Mn(ρ) = In−A−1
n (ρ)Xn[X ′

nA
′−1
n (ρ)A−1

n (ρ)Xn]−1X ′
nA

′−1
n (ρ). This results in the following

concentrated log-likelihood function by substituting β̂n(ρ) and σ̂2
n(ρ) into (27),

�cn(ρ) =
n

2
[log(2π) + 1]− log |An(ρ)| − n

2
log(σ̂2

n(ρ)). (28)

The unconstrained QMLE ρ̂n of ρ maximises �cn(ρ), and the unconstrained QMLEs of β and σ2

are given as β̂n ≡ β̂n(ρ̂n) and σ̂2
n ≡ σ̂2

n(ρ̂n), respectively as in Section 2.
The QMLE ρ̂n of the SMA error model is likely to perform poorer than that of the SAR

error model, because the parameter space P for ρ stays the same, but ρ̂n now becomes upward
biased by comparing (28) with (7). Thus, when ρ is positive, 0.5 say, ρ̂n may hit the upper
bound of P when n is small, causing difficulty in estimating ρ.5 Monte Carlo results given in
Section 5 confirm this point. See also Martellosio (2010) for related discussions.

Asymptotic Distribution: Consistency and asymptotic normality of θ̂n can be proved in a
similar manner as in the SED model with SAR errors, under a similar set of regularity conditions.
In particular, the Assumption 3 has to be modified as: limn→∞ 1

nX
′
nA

′−1(ρ)A−1(ρ)Xn exists
and is non-singular uniformly in ρ in a neighbourhood of ρ0; and replace Assumption 6, the
identification condition by: For any ρ �= ρ0, limn→∞ hn

n [log |σ2
0A

′
nAn|]−log |σ2

n(ρ)A′
n(ρ)An(ρ)| �=

0, where, σ2
n(ρ) = σ2

0
n tr[A′

nA
′−1
n (ρ)A−1

n (ρ)An].

Theorem 3: Under the modified Assumptions 1-6, we have,

√
nK−1

n (θ̂n − θ0)
D−→ N (0, Σ∗−1Γ∗Σ∗−1),

where, Γ∗ = limn→∞ 1
nΓ∗

n, Σ∗ = limn→∞ 1
nΣ∗

n, Γ∗
n = KnΓnK

′
n, Σ∗

n = KnΣnK
′
n,

Γn =

⎛
⎜⎜⎜⎝

1
σ2
0
X ′

nA
−1′
n A−1

n Xn
1

2σ3
0
γX ′

nA
−1′
n ιn

1
σ0
γX ′

nA
−1′
n gn

1
2σ3

0
γι′nA−1

n Xn
n

4σ4
0
(κ+ 2) 1

2σ2
0
(κ+ 2)tr(Gn)

1
σ0
γg′nA−1

n Xn
1

2σ2
0
(κ+ 2)tr(Gn) κg′ngn + tr(Gs

nGn)

⎞
⎟⎟⎟⎠ ,

5A more natural parameterization for the SMA error model may be un = εn +ρWnεn, under which P becomes
a closed interval contained in (−1,−λ−1

min), but the QMLE ρ̂n is now downward biased, and hence when ρ0 is
negative and n is small ρ̂n may hit the lower bound of P , causing the numerical instability of (In + ρ̂nWn)−1.
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Σn =

⎛
⎜⎜⎜⎝

1
σ2
0
X ′

nA
−1′
n A−1

n Xn 0 0

0 n
2σ4

0

1
σ2
0
tr(Gn)

0 1
σ2
0
tr(Gn) tr(Gs

nGn)

⎞
⎟⎟⎟⎠ , and Gn = A−1

n Wn.

Note that if the errors {εn,i} are normally distributed, then
√
nK−1

n (θ̂n−θ0) D−→ N (0, Σ∗−1).
A similar set of results as in Corollary 1 can be obtained as well. Since the arguments for the
proof Theorem 3 is very similar to that of Theorem 2, the explicit proof is omitted.

Finite-Sample Bias Correction. To simplify the exposition, we only present the neces-
sary expressions for a second-order bias correction. The third-order results are available from
the authors upon request. The derivatives of the averaged concentrated log-likelihood function
hn
n �

c
n(ρ), up to a third-order, are:

ψ̃n(ρ) = hnT0n(ρ)− hnR1n(ρ),

h−1
n H1n(ρ) = T1n(ρ)−R2n(ρ) + 2R2

1n(ρ),

h−1
n H2n(ρ) = 2T2n(ρ)− R3n(ρ) + 6R1n(ρ)R2n(ρ)− 8R3

1n(ρ),

where, Trn(ρ) = 1
n tr(Gr+1

n (ρ)), r = 0, 1, 2,

R1n(ρ) =
Y ′

nA
′−1
n (ρ)Mn(ρ)Gn(ρ)Mn(ρ)A−1

n (ρ)Yn

Y ′
nA

′−1
n (ρ)Mn(ρ)A−1

n (ρ)Yn

, and (29)

Rjn(ρ) =
Y ′

nA
′−1
n (ρ)Mn(ρ)Djn(ρ)Mn(ρ)A−1

n (ρ)Yn

Y ′
nA

′−1
n (ρ)Mn(ρ)A−1

n (ρ)Yn

, j = 2, 3, (30)

where, D2n(ρ) and D3n(ρ) are given in Appendix B.
Finally, with the clear definitions of the quantities ψ̃n(ρ), h−1

n H1n(ρ) and h−1
n H2n(ρ), the

second-order bias correction of the QMLE ρ̂n can be carried out using an identical bootstrap
procedure as described in Section 3. The validity of the bootstrap procedure applied to this
model can be proved in a similar manner. While the third-order bias correction can be carried
out in the same manner, we found from the Monte Carlo experiments that the second-order
bias corrections are more than satisfactory in all the cases considered.

5. Simulation

The objective of the Monte Carlo simulations is to investigate the finite sample behaviour
of ρ̂n and the bias-corrected ρ̂n, under various spatial layouts, error distributions and the model
parameters. The simulations are carried out based on the following data generation processes
(DGP):

Yn = ιnβ0 +X1nβ1 +X2nβ2 + un, un = ρWnun + εn,

where, ιn is an n×1 vector of ones for the intercept term and X1n and X2n are the n×1 vectors
containing the values of two fixed regressors. The parameters of the simulation are initially set
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to be as: β = (5, 1, 1)′, σ2 = 1, ρ takes values form {−0.5,−0.25, 0, 0.25, 0.5} and n take values
from {50, 100, 200, 500}. Each set of Monte Carlo results is based on M = 10, 000 Monte Carlo
samples, and B = 999 + 
n0.75� bootstrap samples within each Monte Carlo sample.

Spatial Weight Matrix: We use three different methods for generating the spatial weight
matrix Wn: (i) Rook contiguity, (ii) Queen contiguity, and (iii) Group Interaction. The
degree of spatial dependence specified by layouts (i) and (ii) are fixed while in (iii) it grows
with the increase in sample size. This is attained by allowing for the number of groups, k, for
each sample to be directly proportional to n. We have considered k = n0.5 and k = n0.65, where
k is the number of groups for each n and hence the degree of spatial dependence indicated by
the average group size is n/k. For a detailed discussion on the generation of the spatial weight
matrices, refer to Yang (2012).

Regressors: The fixed regressors are generated by REG1: {x1i, x2i} iid∼ N (0, 1)/
√

2 when
Rook or Queen contiguity is followed; and according to either REG1 or REG2: {x1,ir, x2,ir} iid∼
(2zr+zir)/

√
10, where, (zr, zir)

iid∼ N (0, 1) when group interaction scheme is followed. The REG2
scheme gives non-iid regressors where the group means of the regressors’ values are different,
see Lee (2004). Note that both schemes give a signal-to-noise ratio of 1 when β1 = β2 = σ = 1.

Error Distribution: To generate εn = σen, three DGPs are considered: DGP1: {en,i} are
iid standard normal, DGP2: {en,i} are iid standardized normal mixture with 10% of values from
N (0, 4) and the remaining from N (0, 1), and DGP3: {en,i} iid standardized log-normal with
parameters 0 and 1. Thus, the error distribution from DGP2 is leptokurtic, and that of DGP3 is
both skewed and leptokurtic.

Partial Monte Carlo results are summarised in Tables 1-8, where in each table, the Monte
Carlo means, root mean square errors (rmse) and the standard errors (se) of ρ̂n and ρ̂bc2

n are
reported. The results for ρ̂bc3

n are omitted as ρ̂bc2
n provides satisfactory bias corrections for all

the cases and the additional gain of using ρ̂bc3
n , although apparent, is quite marginal. Further,

we produce additional results for the queen contiguity case when the parameters are changed
to β = (0.5, 0.1, 0.1) and σ = 3. We also give some partial results for the case where the errors
follow a moving average process and the parameters are as given at the beginning of this section.
It is useful to the note the following general characteristics of the results:

(i) ρ̂n suffers from severe downward bias in almost all of the ρ values considered. The severity
of the bias vary according to variations in (a) the sample size, (b) the spatial layout, and
(c) the distribution of the errors considered.

(ii) ρ̂bc2
n is almost unbiased in all the cases, even at considerably small sample sizes, which

ascertains the effectiveness of the proposed bias correction procedure. These corrections
can be attained without compromising on the efficiency of the original QMLEs.

(iii) The spatial layout has a considerable impact on the finite sample performance of ρ̂n in
terms of the bias, rmse and se. A relatively sparse Wn, as in contiguity schemes, results
in lower bias, rmse and se while a relatively dense Wn, as in group interaction scheme,
results in the opposite.
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(iv) The bias of the original QMLE seems to worsen as the error distribution deviates from
normality. In contrast, ρ̂bc2

n attains a similar level of accuracy in all the cases.

(v) The performance of ρ̂n is not so sensitive to changes in the values of σ and β in terms of
bias and the bias correction works well regardless of the true values set for the parameters.

(vi) The impact of the degree of spatial dependence on the rate of convergence is clearly
revealed when comparing the results in Table 3 with those in Table 4 under the group
interaction scheme. When the degree of spatial dependence is stronger as in the case
where k = n0.5, the rate of convergence is slower than in the case where k = n0.65.

As expected, the magnitude of the bias, rmse and se are larger for small sample sizes. When
considering the efficiency variations in terms of standard errors it can be seen that the efficiency
of the estimators are sensitive to the sample size and the spatial layout. However, the different
error distributions does not seem to have a significant effect on standard errors, reiterating the
applicability of the proposed bias correction method in terms of robustness.

When the errors follow the SMA process, un = (In−Wn)εn, the Monte Carlo results given in
Tables 7 and 8 show that (i) the bias becomes positive, (ii) the QMLE ρ̂n again can be severely
biased, and (iii) the bias corrected ρ̂n is almost unbiased. As discussed in Section 4, the Monte
Carlo results indeed show that when ρ is positive (e.g., 0.5) and n is small (e.g., 50), ρ̂n can
be close to or can hit its upper bound, say 0.9999, causing numerical instability in calculating
A−1

n (ρ̂n) = (In − ρ̂nWn)−1, thus poor performance of ρ̂n and difficulty in bootstrapping the
bias. This stands in contrast to the SED model with SAR errors where ρ̂n is downward biased.
However, with a larger n(≥ 100), this problem disappears as seen from the results in Tables 7
and 8. Nevertheless, this does signal a possible poor performance of QMLE for an SMA error
model when sample size is not so large and the true spatial parameter value is positive and big.

6. Conclusions

This paper fills in some gaps in the literature by providing formal results for the asymptotic
distribution as well as finite sample bias correction of the QMLEs for the spatial error depen-
dence model. The primary concentration in the paper is a SED model with autoregressive errors
of order 1. Comparable results for moving average errors of order 1 has been illustrated as well.

Consistency and the asymptotic normality of the QMLEs has been addressed with a specific
attention given on the effect of the degree of spatial dependence on the rate of convergence
of the QMLEs of the model parameters. Specifically when the degree spatial dependence,
hn, grows with the sample size n, the QMLE of the spatial parameter will have a lower rate of
convergence (of

√
n/hn) while the other QMLEs will have a

√
n-rate of convergence irrespective

of the behaviour of hn. Of the finite sample properties of spatial models, a specific attention
has been given to the finite sample bias of the QMLE of the spatial parameter as it enters the
model in a highly nonlinear manner and thus the estimation of it constitutes the main source
of bias. Simulation studies indicate a prominent single direction bias in the estimation of the
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spatial parameter which in turn affect the maximum likelihood estimates of the other model
parameters. The severity of the bias increases as the spatial weight matrix become less sparse.

The finite sample results of the paper demonstrate again that stochastic expansions (Rile-
stone et al., 1996) coupled with bootstrap (Yang, 2012) provide a general and effective method
for finite sample bias corrections of a nonlinear estimator. The suggested theories and method-
ologies is likely to be appealing to both theorists as well as practitioners alike who are dealing
with the SED model or any other regression model that considers a spatial dependence struc-
ture in the error process (like SARAR, dynamic panel regression with spatial errors, etc). An
interesting future avenue of research is to look at a similar set of issues for a SARAR model
(linear regression with a SAR for response and a SAR for error). An added complication when
considering this model is that the concentrated likelihood function and the concentrated esti-
mation equation is no longer a single dimensional function as the model has more than one
spatial parameter. We hope to pursue this issue in future.

Appendix A: Proofs of Asymptotic Results in Section 2:

The following lemmas are extended versions of some lemmas from Lee (2004) and Kelejian
and Prucha (2001), which are needed in the proofs of the main results.

Lemma A.1: Suppose the matrix of independent variables Xn has uniformly bounded ele-
ments and that the matrix An is defined s.t. Assumptions 3 and 5 are satisfied, then the projec-
tion matrices Mn(ρ) = In − An(ρ)Xn[X ′

nA
′
n(ρ)An(ρ)Xn]−1X ′

nA
′
n(ρ) and Pn(ρ) = In −Mn(ρ)

are uniformly bounded in both row and column sums, uniformly in ρ ∈ P .

Lemma A.2: Let An be an n×n matrix, uniformly bounded in both row and column sums.
Then for Mn = Mn(ρ0) defined in Lemma A.1,

(i) tr(Am
n ) = O(n) for m ≥ 1,

(ii) tr(A′
nAn) = O(n),

(iii) tr((MnAn)m) = tr(Am
n ) + O(1) for m ≥ 1 and

(iv) tr((A′
nMnAn)m) = tr((A′

nAn)m) +O(1) for m ≥ 1.
Suppose further that Bn is an n × n matrix, uniformly bounded in both row and column sums,
and Cn is a matrix s.t. the elements are of order O(h−1

n ), then,
(iv) AnBn is uniformly bounded in both row and column sums,
(v) AnCn = CnAn = O(h−1

n ) uniformly and
(vi) tr(AnCn) = tr(CnAn) = O( n

hn
) uniformly.

Lemma A.3 (Moments and Limiting Distribution of Quadratic Forms): Suppose
the innovations {εni} satisfy Assumption 2 and let γ and κ be respectively the measures of
skewness and excess kurtosis of εni. Further, let An be an n× n matrix with elements denoted
by an,ij . Let, Qn = ε′nAnεn, then,

(i) E(Qn) = σ2
0tr(An) and

(ii) Var(Qn) = σ4
0[tr(A

′
nAn + A2

n) + κ
∑n

i=1 a
2
n,ii].
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Now, if An is uniformly bounded either in row or column sums with the elements being of
uniform order O( 1

hn
), then,

(iii) E(Qn) = O( n
hn

),
(iv) Var(Qn) = O( n

hn
),

(v) Qn = Op( n
hn

),
(vi) hn

n Qn − hn
n E(Qn) = Op

(
(hn

n )
1
2
)

= op(1) and
(vii) Var(hn

n Qn) = O(hn
n ) = o(1).

Further, if the elements of An are uniformly bounded in both row and column sums and As-
sumption 4 is satisfied, then,

(viii) Qn−E(Qn)
Var(Qn)

D−→ N(0, 1).

Proof of Theorem 1: Following Theorem 3.4 of White (1994), it is sufficient to show that
(i) the identification uniqueness condition: lim supn→∞ maxρ∈N c

ε (ρ0)
hn
n [�̄cn(ρ) − �̄cn(ρ0)] < 0 for

any ε > 0, where N c
ε (ρ0) is the compliment of an open neighborhood of ρ0 on P of radius ε,

and (ii) the uniform convergence in probability: hn
n [�cn(ρ)− �̄cn(ρ)]

p−→ 0 uniformly in ρ ∈ P .
To show (i), first observing from (10) that σ2

n(ρ0) = σ2
0, we have,

limn→∞ hn
n

[
�̄cn(ρ)− �̄cn(ρ0)

]
= limn→∞

[
hn
n (log |An(ρ)| − log |An|)− hn

2 (logσ2
n(ρ)− log σ2

0)
]

= limn→∞
[

hn
2n (log |A′

n(ρ)An(ρ)| − log |A′
nAn|) + hn

2n (log |σ−2
n (ρ)In| − log |σ−2

0 In|)
]

�= 0 for ρ �= ρ0, by Assumption 6.

Next, let pn(θ) = exp[�n(θ)] be the quasi joint pdf of un(= Yn −Xnβ0), and p0
n(θ) the true

joint pdf of un. Let Eq denote the expectation with respect to pn, to differentiate from the usual
notation E that corresponds to p0

n. By Jensen’s inequality (see Rao, 1973, p. 58), we have,

0 = logEq
( pn(θ)
pn(θ0)

)
≥ Eq

[
log

( pn(θ)
pn(θ0)

)]
= E

[
log

( pn(θ)
pn(θ0)

)]
,

where, the last equation follows from the fact that log pn(θ0) and log pn(θ) are either a quadratic
form or a linear-quadratic form of un, and hence their expectations w.r.t pn(θ0) are the same
as those w.r.t. p0

n(θ0). It follows that E[log pn(θ)] ≤ E[log pn(θ0)], and that,

�̄n(ρ) = maxβ,σ2 E[log pn(θ)] ≤ E[log pn(θ0)] = �̄n(ρ0), for ρ �= ρ0.

The identification uniqueness condition thus follows.
To show (ii), note that hn

n [�cn(ρ)− �̄cn(ρ)] = −hn
2 [log(σ̂2

n(ρ))− log(σ2
n(ρ))]. By the mean value

theorem, hn[log(σ̂2
n(ρ))− log(σ2

n(ρ))] = hn
σ̃2

n(ρ)
[σ̂2

n(ρ)−σ2
n(ρ)] where σ̃2

n(ρ) lies between σ̂2
n(ρ) and

σ2
n(ρ). Note that,

σ̂2
n(ρ) = 1

nY
′
nA

′
n(ρ)Mn(ρ)An(ρ)Yn = 1

nε
′
nA

′−1
n A′

n(ρ)Mn(ρ)An(ρ)A−1
n εn

= 1
nε

′
nA

′−1
n A′

n(ρ)An(ρ)A−1
n εn −Δn(ρ)
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where, Δn(ρ) ≡ 1
nε

′
nA

′−1
n A′

n(ρ)Pn(ρ)An(ρ)A−1
n εn.

By Assumption 3, V1n(ρ) ≡ 1
nX

′
nA

′
n(ρ)An(ρ)Xn = O(1). In addition from Lemma A.2,

1
ntr(WnA

−1
n ) ≡ 1

n tr(Gn) = O( 1
hn

) and using An(ρ) = An + (ρ0 − ρ)Wn, we have,

Δ∗
n(ρ) = 1√

n
X ′

nA
′
n(ρ)An(ρ)A−1

n εn

= 1√
n

[
X ′

nA
′
nεn + (ρ0 − ρ)X ′

n(W ′
n + A′

nGn)εn + (ρ0 − ρ)2X ′
nW

′
nGnεn

]
= Op( 1

hn
).

Hence, Δn(ρ) = 1
nΔ

∗′
n (ρ)V −1

1n (ρ)Δ∗
n(ρ) = op(1), uniformly in ρ ∈ P . It follows by Lemma A.3(vi)

that, hn[σ̂2
n(ρ) − σ2

n(ρ)] = hn
n [ε′nA

′−1
n A′

n(ρ)An(ρ)A−1
n εn − σ2

0tr[A
′−1
n A′

n(ρ)An(ρ)A−1
n ] + op(1) =

op(1), uniformly in ρ ∈ P .
It left to show that σ2

n(ρ) is uniformly bounded away from zero, which is done by a counter
argument. Suppose σ2

n(ρ) is not uniformly bounded away from zero in P . Then there exists a
sequence ρn ∈ P s.t. σ2

n(ρn) → 0 as n→ ∞. Consider a simpler model by setting β in (1) to 0.
The Gaussian log-likelihood is �t,n(θ) = −n

2 log(2πσ2)+log |An(ρ)|− 1
2σ2Y

′
nA

′
n(ρ)An(ρ)Yn. Then

�̄t,n(ρ) = maxσ2 E[�t,n(θ)] = −n
2 [log(2π)+1]− n

2 log(σ2
n(ρ))+log |An(ρ)|. By Jensen’s inequality,

�̄t,n(θ) ≤ E[�t,n(θ0)] = �̄t,n(ρ0), ∀ρ. This implies 1
n [�̄t,n(θ) − �̄t,n(θ0)] ≤ 0 and −1

2 log(σ2
n(ρ)) ≤

−1
2 log(σ2

0) + 1
n(log |An(ρ0)| − log |An(ρ)|) = O(1) using the Lemma A.2, that is, − log(σ2

n(ρ))
is bounded from above which is a contradiction. Hence, σ2

n(ρ) is bounded away from zero
uniformly in ρ ∈ P , and log(σ2

n(ρ)) is well defined ∀ρ ∈ P .
Since σ2

n(ρ) is bounded away from zero and hn[σ̂2
n(ρ) − σ2

n(ρ)] = op(1), σ̂2
n(ρ) is bounded

away from zero uniformly in probability in P as well. Collecting all these results together along
with the mean value theorem, we have hn| log(σ̂2

n(ρ))− log(σ2
n(ρ))| = op(1) uniformly in ρ ∈ P .

Hence supρ∈P
hn
n |[�cn(ρ)− �̄cn(ρ)]| = op(1).

Proof of Theorem 2: By applying the mean value theorem on the modified first order
condition, we have,

0 = 1√
n
S∗

n(θ̂n) = 1√
n
S∗

n(θ0) + 1√
n

∂
∂θ′S

∗
n(θ̃n)(θ̂n − θ0)

= 1√
n
S∗

n(θ0)− 1
nKnHn(θ̃n)Kn.

√
nK−1

n (θ̂n − θ0) (A-1)

where θ̃n lies between the line segment joining θ0 and θ̂n, thus θ̃
p−→ θ0. Here Hn(θ) is the

negative Hessian matrix and Kn is as defined in section 2.2.
Under Assumptions 1-5, the central limit theorem for linear-quadratic forms of Kelejian

and Prucha (2001) is applicable, which gives 1√
n
S∗

n(θ0) = Kn√
n

∂
∂θ�(θ0)

D−→ N (0,Γ∗), where,

Γ∗ = limn→∞ 1
nΓ∗

n and Γ∗
n = Var[S∗

n(θ0)]. The asymptotic normality of θ̂n thus follows from: (i)
1
nKnHn(θ̃n)Kn − 1

nKnHn(θ0)Kn = op(1) and (ii) 1
nKnHn(θ0)Kn − 1

nKnΣnKn = op(1), where,
Σn = E[Hn(θ0)] is the information matrix given in section 2.2. To show (i), note that Hn(θ) =

⎛
⎜⎜⎜⎝

1
σ2X

′
nA

′
n(ρ)An(ρ)Xn

1
σ4X

′
nA

′
n(ρ)εn(δ) 2

σ2X
′
nA

′
n(ρ)G′

n(ρ)εn(δ)
1
σ4 ε

′
n(δ)An(ρ)Xn

1
2σ6 (2ε′n(δ)εn(δ) − nσ2) 1

σ4 ε
′
n(δ)G′

n(ρ)εn(δ)
2
σ2 ε

′
n(δ)Gn(ρ)An(ρ)Xn

1
σ4 ε

′
n(δ)Gn(ρ)εn(δ) 1

σ2 [ε′n(δ)G′
n(ρ)Gn(ρ)εn(δ) + σ2tr(G2

n(ρ))]

⎞
⎟⎟⎟⎠

20



where δ = (β′, ρ)′. Let Ãn = An(ρ̃n). Under Assumption 3 and using θ̃n
p−→ θ0, we have,

1
n

(
∂2

∂β∂β′�n(θ̃n) − ∂2

∂β∂β′�n(θ0)
)

= 1
n

(
1
σ2
0
X ′

nA
′
nAnXn − 1

σ̃2
n
X ′

nÃ
′
nÃnXn

)
=

(
1
σ2
0
− 1

σ̃2
n

)
1
nX

′
nA

′
nAnXn + op(1) = op(1),

noticing that A′
nAn − Ã′

nÃn = (ρ̃n − ρ0)(Wn +W ′
n) − (ρ̃2

n − ρ2
0)W

′
nWn.

Similarly, it can be shown that, letting ε̃n = εn(ρ̃n),

1
n

(
∂2

∂(σ2)2
�n(θ̃n) − ∂2

∂(σ2)2
�n(θ0)

)
= 1

nσ6
0
ε′nεn − 1

nσ̃6
n
ε̃′nε̃n − 1

2

(
1
σ4
0
− 1

σ̃4
n

)
= 1

nσ6
0
(ε′nεn − ε̃′nε̃n) + op(1) = op(1),

since ε̃′nε̃n − ε′nεn = 2(ρ0 − ρ̃n)ε′nGnεn + 2ε′nAnXn(β0 − β̃0) + (ρ0 − ρ̃0)2ε′nG′
nGnεn + 2(ρ0 −

ρ̃n)ε′nWnXn(β0 − β̃n) + 2(ρ0 − ρ̃n)ε′nG′
nAnXn(β0 − β̃n) + (β0 − β̃n)′X ′

nA
′
nAnXn(β0 − β̃n) +

2(ρ0 − ρ̃n)2ε′nG′
nWnXn(β0 − β̃n) + 2(ρ0 − ρ̃n)(β − β̃n)′X ′

nA
′
nWnXn(β0 − β̃n) + (ρ0 − ρ̃n)2(β0 −

β̃n)′X ′
nW

′
nWnXn(β0 − β̃n) = op(1).

Now by the mean value theorem, tr(G2
n(ρ̃n)) = tr(G2

n) + 2tr[G3
n(ρ̄n)](ρ̃n − ρ0), where ρ̄n lies

between ρ0 and ρ̃n. By Lemma A.2, and Assumptions 4 and 5, tr[G3
n(ρ̄n)] = O

(
n
hn

)
. Hence,

hn
n [tr(G2

n(ρ̃n)) − tr(G2
n)] = op(1) since ρ̃n

p−→ ρ0.
Further, ε′nG′

nGnεn = Y ′
nW

′
nWnYn −2Y ′

nW
′
nWnXnβ0 +β′0X

′
nW

′
nWnXnβ0 = Op

(
n
hn

)
by Lem-

mas A.2(i) and A.3(v). Hence, hn
n [ε̃′nG̃′

nG̃nε̃n − ε′nG′
nGnεn] = hn

n [(β0 − β̃n)′X ′
nW

′
nWnXn(β0 −

β̃n) − 2ε′nG′
nWnXn(β0 − β̃n)] = op(1), hence,

hn
n

(
∂2

∂ρ2 �n(θ̃n) − ∂2

∂ρ2 �n(θ0)
)

= hn
n

(
1
σ2
0
ε′nG′

nGnεn − 1
σ̃2

n
ε̃′nG̃′

nG̃nε̃n + tr(G2
n)− tr(G̃2

n)
)

= hn
n

(
1
σ2
0
− 1

σ̃2
n

)
ε′nG′

nGnεn + op(1) = op(1).

Using similar arguments, the convergence in probability to zero of the rest of the terms in
the modified Hessian can be shown:

√
hn

n ( ∂2

∂β∂ρ�n(θ̃n) − ∂2

∂β∂ρ�n(θ0)) = 2
√

hn

nσ2
0

(X ′
nW

′
nεn −X ′

nW
′
nε̃n) + op(1) = op(1),

1
n( ∂2

∂β∂σ2 �n(θ̃n) − ∂2

∂β∂σ2 �n(θ0)) = 1
nσ4

0
[(X ′

nA
′
nεn) − (X ′

nÃ
′
nε̃n)] + op(1) = op(1), and

√
hn
n ( ∂2

∂σ2∂ρ�n(θ̃n) − ∂2

∂σ2∂ρ�n(θ0)) =
√

hn

nσ4 (ε′nG′
nεn − ε̃′nG̃′

nε̃n) + op(1)

=
√

hn

nσ4 [ε′nWn(Yn −Xnβn)− ε̃′nWn(Yn −Xnβ̃n)] + op(1)

=
√

hn

nσ4 [(ε′n − ε̃′n)WnYn − ε′nWnXnβn + ε̃′nWnXnβ̃n] + op(1)

= op(1).

Proof of (ii) is more straightforward, as the differences of the corresponding elements
of 1

nKnHn(θ0)Kn and 1
nKnΣnKn are, respectively, 0, 1

nσ4 (X ′
nA

′
nεn) = op(1), 1

2nσ6 (2ε′nεn −
nσ2) − 1

2σ4
0

= 1
nσ6 ε

′
nεn = op(1), 2

√
hn

nσ2
0
X ′

nA
′
nG

′
n = op(1),

√
hn

nσ4 ε
′
nGnεn −

√
hn

nσ2
0
tr(Gn) = op(1), and

hn

nσ2
0
(ε′nG′

nGnεn + σ2tr(G2
n)) − hn

n tr(Gs
nGn) = hn

nσ2
0
ε′nG′

nGnεn = op(1).
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The results (i) and (ii) give 0 = 1√
n
S∗

n − 1
nΣ∗

n.
√
nK−1

n (θ̂n − θ0) + op(1), and it follows that,

√
nK−1

n (θ̂n − θ0) = Σ∗−1
n S∗

n
D−→ N (0, Σ∗−1Γ∗Σ∗−1).

Proof of Corollary 1: By using the block diagonal nature of Σn,

Σ−1
n =

⎛
⎜⎜⎜⎝
σ2

0(X
′
nA

′
nAnXn)−1 0 0

0 2σ4
0

n T1n −2σ2
0

n T2n

0 −2σ2
0

n T2n
hn
n T4n

⎞
⎟⎟⎟⎠

where, T1n = tr(Gs
nGn)

tr(Cs
nCn)

, T2n = tr(Gn)

tr(Cs
nCn)

, T4n = n
hn

tr−1(Cs
nCn). Then deriving Σ∗−1

n Γ∗
nΣ∗−1

n =
K−1

n Σ−1
n ΓnΣ−1

n K−1
n is just a matter of matrix multiplication.

Appendix B: Proofs of Higher-Order Results in Section 3

We prove the higher-order results given in Section 3. First, we present the full expressions
for Djn(ρ), j = 2, 3, 4, which are required in the expressions for Rjn(ρ) given in (20):

D2n(ρ) = G′
n(ρ)Mn(ρ)Gn(ρ)− 2Gn(ρ)Pn(ρ)Gn(ρ)−Gn(ρ)Pn(ρ)G′

n(ρ),

D3n(ρ) = Ḋ2n(ρ) +Gn(ρ)Pn(ρ)D2n(ρ) +D2n(ρ)Pn(ρ)G′
n(ρ)

−G′
n(ρ)Mn(ρ)D2n(ρ)−D2n(ρ)Mn(ρ)Gn(ρ),

D4n(ρ) = Ḋ3n(ρ) +Gn(ρ)Pn(ρ)D3n(ρ) +D3n(ρ)Pn(ρ)G′
n(ρ)

−G′
n(ρ)Mn(ρ)D3n(ρ)−D3n(ρ)Mn(ρ)Gn(ρ),

where Pn(ρ) = In −Mn(ρ) and Ḋjn(ρ) = d
dρDjn(ρ), j = 2, 3. Note that a predictable pattern

emerges from D3n(ρ) onwards. Using the fact that d
dρG

i
n = Gi+1

n for i = 1, 2, . . ., we have,

Ḋ2n(ρ) = G
′2
n (ρ)Mn(ρ)Gn(ρ) +G′

n(ρ)Ṁn(ρ)Gn(ρ) +G′
n(ρ)Mn(ρ)G2

n(ρ)

−2G2
n(ρ)Pn(ρ)Gn(ρ) + 2Gn(ρ)Ṁn(ρ)Gn(ρ)− 2Gn(ρ)Pn(ρ)G2

n(ρ)

−G2
n(ρ)Pn(ρ)G′

n(ρ) +Gn(ρ)Ṁn(ρ)G′
n(ρ)−Gn(ρ)Pn(ρ)G

′2
n (ρ),

Ṁn(ρ) = Pn(ρ)G′
n(ρ)Mn(ρ) +Mn(ρ)Gn(ρ)Pn(ρ),

Ḋ3n(ρ) = G
′3
n (ρ)Mn(ρ)Gn(ρ) + 2G

′2
n (ρ)Ṁn(ρ)Gn(ρ) + 2G

′2
n (ρ)Mn(ρ)G2

n(ρ)

+G′
n(ρ)M̈n(ρ)Gn(ρ) + 2G′

n(ρ)Ṁn(ρ)G2
n(ρ) +G′

n(ρ)Mn(ρ)G3
n(ρ)

−2G3
n(ρ)Pn(ρ)Gn(ρ) + 4G2

n(ρ)Ṁn(ρ)Gn(ρ)− 4G2
n(ρ)Pn(ρ)G2

n(ρ)

+2Gn(ρ)M̈n(ρ)Gn(ρ) + 4Gn(ρ)Ṁn(ρ)G2
n(ρ)− 2Gn(ρ)Pn(ρ)G3

n(ρ)

−G3
n(ρ)Pn(ρ)G′

n(ρ) + 2G2(ρ)Ṁn(ρ)G′
n(ρ)− 2G2

n(ρ)Pn(ρ)G
′2
n (ρ)

+Gn(ρ)M̈n(ρ)G′
n(ρ) + 2Gn(ρ)Ṁn(ρ)G

′2
n (ρ)−Gn(ρ)Pn(ρ)G

′3
n (ρ),
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M̈n(ρ) = 2Pn(ρ)G′
n(ρ)Pn(ρ)G′

n(ρ)Mn(ρ) + 2Pn(ρ)G′
n(ρ)Mn(ρ)Gn(ρ)Pn(ρ)

+2Mn(ρ)Gn(ρ)Pn(ρ)Gn(ρ)Pn(ρ)− 2Mn(ρ)Gn(ρ)Pn(ρ)G′
n(ρ)Mn(ρ).

For the SED model with SMA errors, the additional quantities required by (30) are,

D2n(ρ) = G′
n(ρ)Mn(ρ)Gn(ρ) + 2Gn(ρ)Mn(ρ)Gn(ρ)−Gn(ρ)Pn(ρ)G′

n(ρ),

D3n(ρ) = Ḋ2n(ρ)−Gn(ρ)Pn(ρ)D2n(ρ)−D2n(ρ)Pn(ρ)G′
n(ρ)

+G′
n(ρ)Mn(ρ)D2n(ρ) +D2n(ρ)Mn(ρ)Gn(ρ),

Ḋ2n(ρ) = G
′2
n (ρ)Mn(ρ)Gn(ρ) +G′

n(ρ)Ṁn(ρ)Gn(ρ) +G′
n(ρ)Mn(ρ)G2

n(ρ)

+2G2
n(ρ)Mn(ρ)Gn(ρ) + 2Gn(ρ)Ṁn(ρ)Gn(ρ) + 2Gn(ρ)Mn(ρ)G2

n(ρ)

−G2
n(ρ)Pn(ρ)G′

n(ρ) +Gn(ρ)Ṁn(ρ)G′
n(ρ)−Gn(ρ)Pn(ρ)G

′2
n (ρ),

Ṁn(ρ) = −Pn(ρ)G′
n(ρ)Mn(ρ)−Mn(ρ)Gn(ρ)Pn(ρ), and Pn = In −Mn.

Proof of Lemma 1: Note, σ̂2
n(ρ0) ≡ σ̂2

n0 = 1
nY

′
nA

′
nMnAnYn = 1

nε
′
nMnεn. By the moments

for quadratic forms, we have, Var(σ̂2
n0) = 1

n2O(n) = O( 1
n). Now by the generalised Chebyshev’s

inequality, P(
√
n|σ̂2

n0 − σ2
0| ≥ δ) ≤ 1

δ2nVar(σ̂2
n0) = O(1). Hence, by the definition of order of

magnitudes6 for stochastic components we have, σ̂2
n0 = σ2

0 +Op( 1√
n
).

In order to prove that σ̂−2
n0 is

√
n-consistent, by the Mean Value Theorem, we have, 1

σ̂2
n0
− 1

σ2
0

=

− 1
σ̄4

n0
(σ̂2

n0−σ2
0), which can be written as, 1

σ̂2
n0

= 1
σ2
0
− 1

σ4
0
(σ̂2

n0−σ2
0)−(

1
σ̄4

n0
− 1

σ4
0

)
(σ̂2

n0−σ2
0), where

σ̄2 lies between σ̂2
n0 and σ2

0. Hence, σ̄2
n0 = σ2

0 +Op( 1√
n
), σ̄4

n0 =
(
σ2

0 +Op( 1√
n
)
)2 = σ4

0 +Op( 1√
n
),

and σ̄−4
n0 =

(
σ4

0+Op( 1√
n
)
)−1 = σ−4

0 +Op( 1√
n
). Therefore, we conclude that σ̂−2

n0 = σ−2
0 +Op( 1√

n
).

Now consider, hnR1n = hn

nσ̂2
n0
ε′nMnGnMnεn. By Lemma A.3(v), hn

n ε
′
nMnGnMnεn = Op(1).

Hence,
hnR1n = 1

σ2
0

hn
n ε

′
nMnGnMnεn + Op( 1√

n
) = Op(1). (B-1)

Using the expression for σ̂−2
n0 , E(hnR1n) = 1

σ2
0
E

(
hn
n ε

′
nMnGnMnεn

)− 1
σ4
0
E

(
hn
n ε

′
nMnGnMnεn(σ̂2

n0−
σ2

0)
) − E

(
hn
n ε

′
nMnGnMnεn

(
1

σ̄4
n0

− 1
σ4
0

)
(σ̂2

n0 − σ2
0)

)
. The first term is, hn

σ2
0n

E(ε′nεn)tr(MnGnMn) =

O(1). The third term is, O((hn
n )

1
2 ) by Assumption 7. For the second term note that, E(σ̂2

n0) =
σ2

0 + O( 1
n) and E(ε′nMnGnMnεn) = σ2

0tr(MnGnMn) = O( n
hn

). Then by Cauchy-Schwartz in-
equality,

|E(
ε′nMnGnMnεn(σ̂2

n0 − σ2
0)

)|
= |E(

[ε′nMnGnMnεn − E(ε′nMnGnMnεn) + E(ε′nMnGnMnεn)](σ̂2
n0 − σ2

0)
)|

≤ |E(
[ε′nMnGnMnεn − σ2

0tr(MnGnMn)](σ̂2
n0 − σ2

0)
)| + σ2

0|tr(MnGnMn)E
(
σ̂2

n0 − σ2
0

)|
= |Cov

(
[ε′nMnGnMnεn − σ2

0tr(MnGnMn)], (σ̂2
n0 − σ2

0)
)| + O( 1

hn
)

≤ 1
n

(
Var(ε′nMnGnMnεn)Var(ε′nMnε)

) 1
2 +O( 1

hn
) = 1

n

(
O( n

hn
)O(n)

)1
2 + O( 1

hn
) = O( 1√

hn
),

6If ∀ε > 0,∃c ≥ 0, n0 > 0 s.t. P(|xn| > cfn) < ε,∀n ≥ n0 then xn = Op(fn)
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where we have used the results for quadratic forms. Then, 1
σ4
0
E

[
hn
n ε

′
nMnGnMnεn(σ̂2

n0 − σ2
0)

]
=

O(
√

hn

n ), which implies,

E(hnR1n) = Max
{
O(1), O

(√
hn
n

)
, O

(
(hn

n )
1
2

)}
= O(1). (B-2)

By (B-1) and (B-2), hnR1n − E(hnR1n) = hn

σ2
0n
ε′nMnGnMnεn − hn

σ2
0n

E(ε′nεn)tr(MnGnMn) +

Op( 1√
n
) −O(

√
hn
n ) −O((hn

n )
1
2 ) = O((hn

n )
1
2 ).

By Lemma A.2 the remaining parts can be proved in a similar fashion noting that, Djn =
O( n

hn
), of the sandwich forms of Rjn for j = 2, 3, 4, of the higher order derivatives of the

concentrated estimating equation.

Proof of Proposition 1: We go on to prove the proposition using Lemma 1. To that effect
consider the Taylor series expansion of ψ̃n(ρ) around ρ0,

0 = ψ̃n(ρ̂n)

= ψ̃n +H1n(ρ̂n − ρ0) + 1
2H2n(ρ̂n − ρ0)2 + 1

6H3n(ρ̂n − ρ0)3 + 1
6 [H3n(ρ̄) −H3n](ρ̂n − ρ0)3,

where the last two terms sums up the mean value form of the remainder term with ρ̄ lying
between ρ0 and ρ̂n. We have already shown that ρ̂n − ρ0 →p

(
hn
n

)1
2 . Next, note that hnTrn =

O(1) for r = 0, 1, 2, 3 by Assumptions 4 and 5. Now, in order to prove the result of the
proposition, we need to establish the following conditions:

(i) ψ̃n = Op

(
(hn

n )
1
2

)
and E(ψ̃n) = O(hn

n ),
(ii) E(Hrn) = O(1) and Hrn − E(Hrn) = Op

(
(hn

n )
1
2

)
for r = 1, 2, 3,

(iii) H−1
1n = Opu(1) and E(H1n)−1 = O(1) and

(iv) H3n(ρ̄) −H3n = Op

(
(hn

n )
1
2

)
.

For (i), by Lemma A.2, ε′nMnGnMnεn − σ2
0tr(MnGnMn) = Op

(
( n

hn
)

1
2

)
and

tr(MnGnMn) = tr(Gn) +O(1) = nT0n +O(1). (B-3)

Therefore, ψ̃n = −hnT0n + hnR1n = −hnT0n + hn

σ2
0n
ε′nMnGnMnεn + Op( 1√

n
) = −hnT0n +

hn

σ2
0n

[
σ2

0tr(Gn) +Op(( n
hn

)
1
2 )

]
+Op( 1√

n
) = Op

(
(hn

n )
1
2
)

and E(ψ̃n) = −hnT0n + hn
n tr(MnGnMn) +

O
(
(hn

n )
1
2

)
= −hnT0n + hn

n (tr(Gn) +O(1)) + O
(
(hn

n )
1
2

)
= O(hn

n ).

For (ii), Lemma 1 implies, (hnR1n)s = E(hnR1n)s + Op((hn
n )

1
2 ) for s = 2, 3, 4, (hnR2n)2 =

E(hnR2n)2 + Op((hn
n )

1
2 ), (hnR1n)shnR2n = E(hnR1n)sE(hnR2n) + Op((hn

n )
1
2 ) for s = 1, 2, and

hnR1nhnR3n = E(hnR1n)E(hnR3n) +Op((hn
n )

1
2 ).

Therefore, Assumption 8 implies, E[(hnR1n)s] = E(hnR1n)s + O((hn
n )

1
2 ) for s = 2, 3, 4,

E[(hnR2n)2] = E(hnR2n)2 + O((hn
n )

1
2 ), E[(hnR1n)shnR2n] = E(hnR1n)sE(hnR2n) + O((hn

n )
1
2 )

for s = 1, 2, and E[hnR1nhnR3n] = E(hnR1n)E(hnR3n) + O((hn
n )

1
2 ). Combining these results

with (B-3) and Lemma 1, we reach to the conclusion that, Hrn − E(Hrn) = Op((hn
n )

1
2 ) and

E(Hrn) = O(1) for r = 1, 2, 3.
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For (iii), by Lemma 1 and E[(hnR1n)2] = E(hnR1n)2 + O
(
(hn

n )
1
2

)
,

E(H1n) = 2
hn

E[(hnR1n)2] − hnT1n − E(hnR2n)

= 2
hn

(
hn
n tr(MnGnMn) +O

(
(hn

n )
1
2

))2 − hnT1n − (
hn
n tr(MnD2nMn) + O

(
(hn

n )
1
2

))
= 2

hn

((
hn
n tr(MnGnMn)

)2) − hnT1n − hn
n tr(MnD2nMn) +O

(
(hn

n )
1
2

)
= 2

hn

(
hn
n tr(Gn)

)2 − hn
n tr(G2

n)− hn
n tr(G′

nGn) +O
(
(hn

n )
1
2

)
= −hn

n

(
tr(G2

n) + tr(G′
nGn)− 2T 2

0ntr(In)
)
+ O

(
(hn

n )
1
2

)
= −hn

n

(
tr(Gn − T0nIn)2 + tr(Gn − T0nIn)′(Gn − T0nIn)

)
+O

(
(hn

n )
1
2

)
.

That is, E(H1n) is negative for sufficiently large n and it is finite. Therefore, E(H1n)−1 = O(1).
Also by, H1n = E(H1n) + Op((hn

n )
1
2 ), we have, H−1

1n = Op(1).

Finally for (iv), consider equation (19) evaluated at ρ̄n. By the mean value theorem,
hnT3n(ρ̄) = hn

n tr(G4
n(ρ̄)) = hn

n tr(G4
n) + 4hn

n tr(G5
n(ρ̃))(ρ̄ − ρ0), where, ρ̃ lies between ρ̄ and

ρ0. By repeatedly applying the mean value theorem we can find a ρ̃ which is much closer to the
true value ρ0. For such ρ̃, hn

n tr(G5
n(ρ̃)) = O(1) by Assumptions 4 and 5. Combining with the

( n
hn

)1/2-convergence of ρ̄ to the true value we have, hnT3n(ρ̄) = O(1).
Now consider σ̂2

n(ρ̄) = 1
nY

′
nA

′
n(ρ̄)Mn(ρ̄)An(ρ̄)Yn and σ̂2

n0 = 1
nY

′
nA

′
nMnAnYn. Similarly, by

the mean value theorem we have, σ̂2
n(ρ̄) = σ̂2

n0− 2
n (ρ̄−ρ0)Y ′

nA
′
n(ρ̃)Mn(ρ̃)Gn(ρ̃)Mn(ρ̃)An(ρ̃)Yn =

σ̂2
n0 − 2(ρ̄− ρ0)Op(h−1

n ) = σ̂2
n0 +Op((nhn)−1/2). By continuity of σ̂−2

n0 , it can be deduced that,
σ̂−2

n (ρ̄) =
(
σ̂2

n0 + Op((nhn)−1/2)
)−1 = σ̂−2

n0 +Op((nhn)−1/2). Now,

hnR1n(ρ̄) = σ̂−2
n (ρ̄)hn

n Y
′
nA

′
n(ρ̄)Mn(ρ̄)Gn(ρ̄)Mn(ρ̄)An(ρ̄)Yn

= σ̂−2
n (ρ̄)hn

n

[
Y ′

nA
′
nMnGnMnAnYn − (ρ̄− ρ0)Y ′

nA
′
n(ρ̃)Mn(ρ̃)D2n(ρ̃)Mn(ρ̃)An(ρ̃)Yn

]
=

(
hnR1n + Op

(
( 1

nhn
)

1
2

)) −Op((hn
n )

1
2 ) = hnR1n +Op(hn

n )
1
2 (B-4)

Using a similar set of arguments it can be shown that, hnRkn(ρ̄) = hnRkn + Op((hn
n )

1
2 ) for

k = 2, 3, 4. Then it follows that, H3n(ρ̄)−H3n = Op((hn
n )

1
2 ).

Proof of Proposition 2: Arguments are similar to that of Proposition 1.

Proof of Proposition 3: Note that b2(ρ0, γ0) = O(( n
hn

)−1) and that it is differentiable. It
follows that ∂

∂(ρ0,γ0)
b2(ρ0, γ0) = O(( n

hn
)−1). As ρ̂n, the QMLE of ρ defined at the beginning of

Section 2, is
√
n/hn-consistent, it can be shown that γ̂n = γ(F̂n) is also

√
n/hn-consistent. We

have, under the additional assumptions in Proposition 3,

b2(ρ̂n, γ̂n) = b2(ρ0, γ0) + ∂
∂ρ0

b2(ρ0, γ0)(ρ̂n − ρ0) + ∂
∂γ0

b2(ρ0, γ0)(γ̂n − γ0) + Op(( n
hn

)−2).

Thus, E[b2(ρ̂n, γ̂n)] = b2(ρ0, γ0)+ ∂
∂ρ0

b2(ρ0, γ0)E(ρ̂n−ρ0)+ ∂
∂γ0

b2(ρ0, γ0)E(γ̂n−γ0)+O(( n
hn

)−2)].
As E(ρ̂n−ρ0) = O(hn

n ), it can be shown that E(γ̂n−γ0) = O(hn
n ). These lead to E[b2(ρ̂n, γ̂n)] =

b2(ρ0, γ0) + O(( n
hn

)−2). Similarly, we show that E[b3(ρ̂n, γ̂n)] = b3(ρ0, γ0) + o(( n
hn

)−2), noting
that b3(ρ0, γ0) = O(( n

hn
)−3/2).
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Clearly, our bootstrap estimate has two step approximations, one is that described above,
and the other is the bootstrap approximations to the various expectations in (25) given ρ̂n, e.g.,

Ê(H1nψ̃n) = 1
B

∑B
b=1 H1n(e∗n,b, ρ̂n)ψ̃n(e∗n,b, ρ̂n).

However, these approximations can be made arbitrarily accurate, for a given ρ̂n and Fn, by
choosing an arbitrarily large B. The result of Proposition 3 thus follows.
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Table 1
Empirical Mean[rmse](sd) of Estimators of ρ for SED Model with SAR Errors - Rook Contiguity, REG-1

Normal Errors Mixed Normal Errors Log-Normal Errors
ρ n ρ̂n ρ̂bc2

n ρ̂n ρ̂bc2
n ρ̂n ρ̂bc2

n

.50 50 .440[.175](.164) .495[.169](.169) .445[.166](.157) .499[.161](.161) .452[.152](.144) .503[.147](.147)
100 .472[.116](.112) .501[.114](.114) .471[.112](.108) .499[.110](.110) .473[.104](.101) .500[.102](.102)
200 .487[.079](.077) .501[.078](.078) .486[.077](.075) .500[.076](.076) .487[.072](.071) .500[.071](.071)
500 .495[.049](.049) .501[.049](.049) .495[.049](.048) .500[.049](.049) .495[.046](.046) .500[.046](.046)

.25 50 .202[.192](.186) .248[.195](.195) .203[.182](.176) .248[.184](.184) .207[.169](.163) .250[.170](.170)
100 .228[.130](.128) .252[.131](.131) .225[.127](.124) .248[.127](.127) .228[.119](.117) .251[.120](.120)
200 .239[.091](.090) .251[.091](.091) .239[.090](.090) .250[.090](.090) .240[.085](.084) .251[.085](.085)
500 .246[.057](.057) .250[.057](.057) .246[.057](.057) .251[.058](.058) .246[.055](.055) .251[.055](.055)

.00 50 -.032[.192](.189) .002[.201](.201) -.035[.184](.181) -.002[.191](.191) -.033[.178](.175) -.002[.184](.184)
100 -.021[.135](.133) -.004[.137](.137) -.018[.131](.130) .000[.133](.133) -.019[.124](.123) -.003[.126](.126)
200 -.010[.097](.096) -.001[.098](.098) -.008[.093](.093) .001[.094](.094) -.010[.089](.088) -.002[.089](.089)
500 -.005[.060](.060) -.001[.060](.060) -.005[.059](.059) -.001[.059](.059) -.004[.058](.058) .001[.058](.058)

-.25 50 -.270[.180](.179) -.252[.191](.191) -.273[.171](.170) -.255[.181](.181) -.274[.169](.168) -.257[.178](.178)
100 -.262[.127](.126) -.252[.130](.130) -.261[.124](.123) -.251[.127](.127) -.262[.120](.119) -.252[.123](.123)
200 -.255[.090](.090) -.250[.091](.091) -.255[.088](.088) -.250[.089](.089) -.255[.087](.087) -.250[.088](.088)
500 -.253[.057](.057) -.250[.058](.058) -.252[.057](.057) -.250[.058](.058) -.253[.056](.056) -.250[.057](.057)

-.50 50 -.503[.152](.152) -.502[.163](.163) -.503[.144](.144) -.500[.153](.153) -.509[.144](.143) -.507[.153](.153)
100 -.504[.107](.107) -.502[.111](.111) -.503[.104](.104) -.501[.108](.108) -.504[.103](.103) -.502[.106](.106)
200 -.502[.076](.076) -.501[.077](.077) -.502[.074](.074) -.501[.076](.076) -.503[.074](.074) -.502[.075](.075)
500 -.501[.048](.048) -.500[.049](.049) -.501[.047](.047) -.500[.048](.048) -.501[.046](.046) -.501[.047](.047)
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Table 2
Empirical Mean[rmse](sd) of Estimators of ρ for SED Model with SAR Errors - Queen Contiguity, REG-1

Normal Errors Mixed Normal Errors Log-Normal Errors
ρ n ρ̂n ρ̂bc2

n ρ̂n ρ̂bc2
n ρ̂n ρ̂bc2

n

.50 50 .390[.244](.218) .492[.215](.215) .395[.232](.206) .493[.204](.204) .406[.207](.184) .501[.181](.181)
100 .445[.153](.143) .499[.140](.140) .449[.145](.135) .501[.133](.133) .451[.133](.124) .501[.122](.122)
200 .474[.099](.095) .500[.095](.095) .474[.098](.095) .500[.094](.094) .476[.091](.087) .500[.087](.087)
500 .491[.059](.058) .501[.058](.058) .490[.059](.058) .500[.058](.058) .490[.056](.055) .500[.055](.055)

.25 50 .144[.270](.248) .248[.250](.250) .153[.255](.236) .254[.238](.238) .153[.239](.218) .250[.219](.219)
100 .196[.179](.171) .253[.169](.169) .194[.177](.168) .249[.166](.166) .197[.165](.156) .250[.154](.154)
200 .221[.121](.117) .248[.117](.117) .222[.118](.115) .249[.114](.114) .225[.110](.107) .250[.107](.107)
500 .240[.073](.073) .250[.073](.073) .240[.075](.074) .250[.074](.074) .241[.069](.068) .251[.068](.068)

.00 50 -.101[.294](.276) -.002[.285](.285) -.095[.277](.260) .003[.268](.268) -.095[.259](.241) -.001[.247](.247)
100 -.059[.200](.192) -.002[.192](.192) -.059[.197](.188) -.002[.189](.189) -.055[.181](.172) .001[.172](.172)
200 -.027[.135](.132) .001[.133](.133) -.026[.132](.130) .002[.130](.130) -.027[.124](.121) -.002[.121](.121)
500 -.011[.083](.082) -.001[.082](.082) -.011[.082](.081) .000[.081](.081) -.010[.079](.079) .001[.079](.079)

-.25 50 -.339[.299](.285) -.248[.300](.300) -.338[.284](.270) -.249[.283](.283) -.337[.265](.250) -.251[.261](.261)
100 -.308[.211](.203) -.252[.206](.206) -.303[.202](.195) -.248[.198](.198) -.307[.194](.185) -.254[.188](.188)
200 -.277[.142](.140) -.251[.141](.141) -.274[.140](.138) -.249[.139](.139) -.275[.132](.129) -.250[.130](.130)
500 -.262[.089](.089) -.252[.089](.089) -.260[.088](.088) -.250[.088](.088) -.261[.084](.083) -.251[.084](.084)

-.50 50 -.576[.291](.281) -.499[.301](.301) -.577[.283](.272) -.502[.290](.290) -.584[.268](.255) -.511[.271](.270)
100 -.548[.208](.203) -.498[.209](.209) -.550[.201](.195) -.501[.201](.201) -.547[.193](.188) -.499[.193](.193)
200 -.524[.144](.142) -.501[.144](.144) -.524[.141](.139) -.501[.141](.141) -.521[.136](.134) -.498[.136](.136)
500 -.511[.090](.089) -.502[.090](.089) -.510[.089](.089) -.501[.089](.089) -.509[.086](.086) -.500[.086](.086)
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Table 3
Empirical Mean[rmse](sd) of Estimators of ρ for SED Model with SAR Errors - Group Interaction, k = n0.5, REG-2

Normal Errors Mixed Normal Errors Log-Normal Errors
ρ n ρ̂n ρ̂bc2

n ρ̂n ρ̂bc2
n ρ̂n ρ̂bc2

n

.50 50 .277[.403](.335) .523[.223](.222) .287[.395](.332) .524[.223](.222) .303[.354](.294) .532[.194](.192)
100 .375[.233](.197) .512[.148](.148) .377[.233](.198) .511[.149](.149) .384[.214](.180) .515[.136](.136)
200 .424[.160](.141) .502[.116](.116) .430[.152](.134) .506[.111](.111) .432[.143](.126) .507[.104](.104)
500 .454[.106](.096) .502[.085](.085) .455[.105](.095) .502[.085](.085) .456[.100](.090) .502[.080](.080)

.25 50 -.082[.548](.437) .291[.325](.322) -.078[.541](.431) .288[.318](.315) -.061[.507](.401) .296[.296](.293)
100 .051[.345](.281) .268[.220](.219) .052[.342](.278) .265[.218](.218) .068[.309](.249) .275[.196](.194)
200 .129[.239](.206) .259[.171](.171) .127[.236](.201) .256[.168](.168) .131[.220](.184) .257[.154](.153)
500 .176[.160](.141) .254[.126](.126) .175[.161](.142) .253[.127](.127) .179[.153](.135) .255[.120](.120)

.00 50 -.433[.679](.523) .040[.419](.417) -.432[.672](.514) .034[.412](.411) -.400[.620](.474) .055[.378](.375)
100 -.270[.448](.357) .018[.288](.288) -.260[.435](.347) .020[.280](.280) -.251[.409](.324) .025[.263](.261)
200 -.172[.315](.264) .009[.223](.223) -.171[.312](.261) .008[.221](.221) -.162[.295](.246) .012[.209](.209)
500 -.107[.215](.186) .002[.167](.167) -.106[.213](.185) .002[.166](.166) -.100[.199](.173) .006[.156](.155)

-.25 50 -.758[.767](.575) -.210[.487](.485) -.746[.753](.567) -.209[.483](.481) -.723[.708](.527) -.195[.448](.445)
100 -.573[.534](.425) -.227[.354](.353) -.574[.530](.420) -.233[.350](.350) -.563[.490](.377) -.228[.314](.313)
200 -.467[.394](.329) -.242[.282](.282) -.466[.382](.315) -.242[.271](.271) -.455[.356](.291) -.236[.250](.250)
500 -.383[.263](.227) -.240[.205](.204) -.381[.263](.228) -.246[.206](.206) -.379[.250](.215) -.245[.194](.194)

-.50 50 -1.057[.828](.614) -.456[.553](.551) -1.059[.828](.611) -.467[.550](.549) -1.040[.782](.566) -.454[.505](.503)
100 -.880[.612](.480) -.481[.409](.409) -.875[.598](.465) -.482[.397](.396) -.857[.562](.434) -.472[.369](.368)
200 -.753[.451](.374) -.487[.325](.325) -.751[.445](.369) -.487[.320](.320) -.746[.422](.344) -.487[.299](.299)
500 -.655[.308](.267) -.493[.242](.242) -.659[.311](.267) -.497[.243](.243) -.652[.294](.251) -.492[.228](.228)
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Table 4
Empirical Mean[rmse](sd) of Estimators of ρ for SED Model with SAR Errors - Group Interaction, k = n0.65, REG-2

Normal Errors Mixed Normal Errors Log-Normal Errors
ρ n ρ̂n ρ̂bc2

n ρ̂n ρ̂bc2
n ρ̂n ρ̂bc2

n

.50 50 .435[.155](.140) .504[.119](.119) .440[.147](.134) .507[.114](.114) .441[.133](.119) .506[.101](.101)
100 .458[.110](.101) .502[.091](.091) .460[.105](.097) .502[.087](.087) .462[.094](.086) .503[.077](.077)
200 .477[.077](.073) .503[.069](.068) .475[.077](.073) .501[.068](.068) .478[.069](.065) .503[.061](.061)
500 .486[.053](.051) .501[.050](.050) .485[.053](.051) .500[.049](.049) .487[.050](.048) .502[.046](.046)

.25 50 .148[.213](.186) .257[.166](.166) .151[.205](.179) .257[.160](.160) .154[.189](.162) .257[.144](.144)
100 .182[.156](.140) .252[.129](.129) .183[.151](.135) .252[.124](.124) .185[.139](.123) .252[.112](.112)
200 .209[.113](.105) .252[.099](.099) .211[.109](.102) .253[.096](.096) .209[.104](.095) .250[.090](.090)
500 .228[.076](.073) .252[.070](.070) .227[.077](.073) .251[.070](.070) .227[.072](.068) .251[.066](.066)

.00 50 -.129[.253](.218) .006[.205](.205) -.127[.244](.208) .006[.195](.195) -.119[.222](.187) .011[.175](.174)
100 -.087[.191](.170) .005[.159](.159) -.088[.187](.165) .003[.155](.154) -.081[.169](.148) .007[.138](.138)
200 -.056[.144](.133) .003[.126](.126) -.056[.140](.128) .002[.122](.122) -.052[.131](.120) .005[.114](.114)
500 -.033[.101](.096) -.001[.093](.093) -.034[.100](.094) -.001[.091](.091) -.030[.093](.088) .002[.086](.086)

-.25 50 -.395[.273](.231) -.248[.227](.227) -.389[.260](.220) -.244[.216](.216) -.384[.241](.201) -.242[.196](.196)
100 -.351[.218](.193) -.244[.184](.184) -.353[.215](.189) -.247[.180](.180) -.349[.197](.170) -.246[.162](.162)
200 -.319[.170](.156) -.248[.149](.149) -.321[.169](.154) -.251[.147](.147) -.317[.155](.140) -.249[.134](.134)
500 -.290[.122](.115) -.249[.112](.112) -.291[.122](.115) -.251[.112](.112) -.289[.114](.107) -.250[.104](.104)

-.50 50 -.647[.276](.234) -.499[.241](.241) -.644[.269](.228) -.499[.236](.236) -.639[.252](.210) -.497[.215](.215)
100 -.616[.241](.212) -.497[.205](.205) -.609[.234](.207) -.492[.200](.200) -.610[.219](.189) -.495[.183](.183)
200 -.580[.193](.176) -.499[.170](.170) -.579[.191](.174) -.499[.168](.168) -.579[.179](.161) -.500[.156](.156)
500 -.547[.141](.133) -.500[.129](.129) -.545[.139](.131) -.498[.128](.128) -.544[.131](.124) -.497[.121](.121)
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Table 5
Replication of Table 2 for β = (.5, .1, .1)

Normal Errors Mixed Normal Errors Log-Normal Errors
ρ n ρ̂n ρ̂bc2

n ρ̂n ρ̂bc2
n ρ̂n ρ̂bc2

n

.50 50 .395[.242](.218) .499[.213](.213) .396[.230](.205) .497[.200](.200) .404[.210](.187) .501[.182](.182)
100 .446[.150](.140) .500[.138](.138) .447[.149](.139) .499[.137](.137) .451[.135](.125) .501[.123](.123)
200 .474[.100](.096) .500[.096](.096) .475[.096](.093) .500[.092](.092) .476[.091](.087) .500[.087](.087)
500 .490[.059](.058) .500[.058](.058) .490[.059](.058) .500[.058](.058) .491[.056](.055) .501[.055](.055)

.25 50 .137[.282](.258) .246[.258](.258) .145[.263](.241) .251[.240](.240) .152[.246](.225) .253[.224](.224)
100 .195[.182](.173) .252[.172](.172) .196[.173](.165) .252[.163](.163) .195[.162](.152) .249[.151](.151)
200 .224[.121](.118) .250[.118](.118) .224[.118](.115) .251[.115](.115) .226[.111](.108) .251[.108](.108)
500 .241[.072](.071) .251[.071](.071) .240[.072](.071) .251[.071](.071) .241[.070](.070) .251[.070](.070)

.00 50 -.104[.297](.279) .004[.286](.286) -.106[.285](.264) -.002[.270](.270) -.098[.269](.250) .004[.255](.255)
100 -.059[.201](.192) -.002[.193](.193) -.058[.196](.187) -.001[.188](.188) -.054[.181](.173) .002[.173](.173)
200 -.027[.134](.131) .001[.132](.132) -.028[.133](.131) -.002[.131](.131) -.027[.124](.121) -.001[.121](.121)
500 -.010[.082](.081) .002[.082](.082) -.012[.083](.082) -.001[.082](.082) -.011[.079](.078) -.001[.078](.078)

-.25 50 -.352[.305](.288) -.253[.302](.302) -.351[.294](.276) -.254[.289](.289) -.346[.279](.262) -.252[.273](.273)
100 -.302[.208](.202) -.247[.205](.205) -.304[.203](.196) -.249[.199](.199) -.304[.192](.185) -.251[.187](.187)
200 -.275[.142](.140) -.250[.141](.141) -.280[.139](.136) -.255[.137](.137) -.277[.134](.131) -.252[.132](.132)
500 -.261[.090](.089) -.251[.089](.089) -.261[.088](.087) -.251[.088](.088) -.259[.085](.085) -.249[.085](.085)

-.50 50 -.591[.300](.286) -.506[.307](.307) -.592[.290](.276) -.508[.294](.294) -.588[.280](.265) -.506[.282](.282)
100 -.549[.207](.201) -.500[.208](.208) -.554[.203](.195) -.506[.201](.201) -.548[.193](.187) -.500[.192](.192)
200 -.524[.144](.142) -.501[.144](.144) -.522[.141](.140) -.499[.142](.142) -.523[.136](.134) -.501[.136](.136)
500 -.509[.091](.090) -.500[.091](.091) -.508[.090](.089) -.499[.090](.090) -.510[.087](.086) -.500[.087](.087)
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Table 6
Replication of Table 2 for σ = 3

Normal Errors Mixed Normal Errors Log-Normal Errors
ρ n ρ̂n ρ̂bc2

n ρ̂n ρ̂bc2
n ρ̂n ρ̂bc2

n

.50 50 .392[.243](.217) .499[.210](.210) .396[.234](.209) .499[.202](.202) .404[.212](.189) .505[.182](.182)
100 .449[.150](.141) .501[.139](.139) .449[.147](.137) .499[.135](.135) .452[.134](.125) .501[.123](.123)
200 .474[.098](.095) .500[.094](.094) .475[.097](.094) .500[.093](.093) .474[.091](.087) .499[.087](.087)
500 .489[.060](.059) .499[.059](.059) .490[.060](.059) .500[.058](.058) .490[.056](.055) .500[.055](.055)

.25 50 .139[.282](.259) .253[.257](.257) .136[.271](.246) .247[.243](.243) .147[.249](.227) .255[.224](.223)
100 .196[.180](.172) .250[.171](.171) .195[.174](.165) .249[.165](.165) .202[.159](.152) .253[.151](.151)
200 .220[.120](.116) .247[.116](.116) .225[.119](.116) .251[.116](.116) .226[.110](.107) .251[.107](.107)
500 .240[.074](.073) .250[.073](.073) .240[.072](.071) .251[.071](.071) .240[.070](.070) .250[.070](.070)

.00 50 -.114[.307](.285) .001[.291](.291) -.111[.297](.275) .001[.280](.280) -.109[.279](.256) -.001[.259](.259)
100 -.053[.195](.188) .003[.189](.189) -.053[.192](.184) .001[.185](.185) -.051[.177](.170) .002[.171](.171)
200 -.027[.134](.131) -.001[.132](.132) -.028[.132](.129) -.002[.129](.129) -.027[.123](.120) -.002[.121](.121)
500 -.010[.083](.083) .001[.083](.083) -.011[.082](.082) -.001[.082](.082) -.011[.079](.078) -.001[.078](.078)

-.25 50 -.364[.312](.291) -.258[.306](.305) -.356[.298](.278) -.250[.291](.291) -.355[.286](.266) -.252[.276](.276)
100 -.300[.209](.203) -.248[.207](.207) -.302[.202](.195) -.252[.199](.199) -.297[.187](.181) -.248[.183](.183)
200 -.277[.143](.141) -.252[.142](.142) -.275[.139](.137) -.249[.138](.138) -.274[.134](.132) -.249[.132](.132)
500 -.259[.088](.087) -.249[.087](.087) -.262[.088](.087) -.252[.087](.087) -.260[.085](.085) -.250[.085](.085)

-.50 50 -.593[.305](.290) -.501[.312](.312) -.596[.292](.276) -.504[.296](.296) -.599[.281](.263) -.509[.280](.280)
100 -.548[.207](.201) -.503[.208](.208) -.547[.198](.193) -.502[.199](.199) -.543[.192](.187) -.499[.192](.192)
200 -.522[.145](.143) -.499[.145](.145) -.525[.142](.140) -.503[.142](.142) -.522[.136](.134) -.500[.136](.136)
500 -.509[.091](.091) -.500[.091](.091) -.511[.089](.088) -.502[.089](.089) -.510[.086](.086) -.501[.086](.086)
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Table 7
Empirical Mean[rmse](sd) of Estimators of ρ for SED Model with SMA Errors - Queen Contiguity, REG-1

Normal Errors Mixed Normal Errors Log-Normal Errors
ρ n ρ̂n ρ̂bc2

n ρ̂n ρ̂bc2
n ρ̂n ρ̂bc2

n

.50 100 .554[.154](.145) .509[.418](.418) .552[.151](.142) .509[.318](.318) .553[.149](.139) .506[.140](.140)
200 .527[.101](.097) .501[.096](.096) .528[.099](.095) .502[.095](.095) .527[.096](.093) .501[.092](.092)
500 .510[.059](.058) .500[.058](.058) .510[.059](.058) .500[.058](.058) .510[.059](.058) .500[.058](.058)

.25 100 .302[.184](.176) .256[.178](.178) .301[.180](.173) .255[.171](.171) .292[.171](.166) .247[.163](.163)
200 .275[.121](.119) .251[.117](.117) .273[.120](.118) .250[.116](.116) .274[.115](.112) .251[.111](.111)
500 .259[.074](.073) .250[.073](.073) .261[.073](.072) .252[.072](.072) .260[.071](.071) .251[.070](.070)

.00 100 .041[.204](.200) -.001[.196](.196) .040[.197](.193) -.002[.188](.188) .039[.187](.183) -.001[.179](.179)
200 .019[.136](.134) -.002[.132](.132) .022[.133](.131) .002[.129](.129) .021[.129](.127) .001[.125](.125)
500 .009[.083](.083) .001[.083](.083) .009[.082](.082) .001[.081](.081) .008[.081](.080) .000[.080](.080)

-.25 100 -.214[.217](.214) -.249[.208](.208) -.217[.210](.208) -.251[.202](.202) -.222[.197](.195) -.254[.189](.189)
200 -.234[.145](.144) -.250[.142](.142) -.233[.143](.142) -.249[.140](.140) -.235[.138](.137) -.251[.134](.134)
500 -.245[.089](.089) -.251[.089](.089) -.245[.089](.089) -.251[.089](.089) -.245[.086](.086) -.251[.086](.086)

-.50 100 -.472[.218](.216) -.498[.209](.209) -.475[.214](.212) -.500[.205](.205) -.479[.201](.200) -.502[.193](.193)
200 -.489[.149](.149) -.501[.146](.146) -.492[.146](.146) -.503[.143](.143) -.490[.139](.138) -.500[.136](.136)
500 -.495[.092](.092) -.500[.091](.091) -.495[.089](.089) -.500[.089](.089) -.496[.087](.087) -.500[.086](.086)
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Table 8
Empirical Mean[rmse](sd) of Estimators of ρ for SED Model with SMA Errors - Group Interaction, k = n0.5, REG-1

Normal Errors Mixed Normal Errors Log-Normal Errors
ρ n ρ̂n ρ̂bc2

n ρ̂n ρ̂bc2
n ρ̂n ρ̂bc2

n

.50 100 .549[.129](.120) .508[.128](.127) .548[.126](.117) .507[.124](.124) .548[.121](.111) .507[.118](.118)
200 .534[.106](.100) .503[.104](.104) .534[.104](.098) .502[.102](.102) .533[.099](.094) .502[.097](.097)
500 .519[.078](.076) .501[.078](.078) .520[.079](.077) .502[.079](.079) .519[.077](.074) .502[.076](.076)

.25 100 .309[.184](.174) .254[.183](.183) .310[.179](.169) .256[.177](.177) .306[.167](.158) .253[.165](.165)
200 .292[.148](.142) .252[.147](.147) .292[.147](.141) .252[.146](.146) .294[.140](.133) .254[.138](.138)
500 .277[.116](.113) .252[.116](.116) .276[.116](.113) .252[.116](.116) .275[.111](.108) .251[.111](.111)

.00 100 .071[.234](.223) .005[.234](.234) .069[.228](.217) .004[.227](.227) .065[.211](.200) .002[.209](.209)
200 .051[.197](.190) .001[.198](.198) .053[.192](.185) .004[.192](.192) .052[.180](.172) .004[.178](.178)
500 .032[.152](.149) -.001[.154](.154) .032[.150](.146) .001[.150](.150) .034[.145](.141) .003[.145](.145)

-.25 100 -.168[.281](.269) -.246[.282](.282) -.174[.269](.258) -.251[.270](.270) -.172[.254](.242) -.246[.253](.253)
200 -.194[.234](.227) -.253[.236](.236) -.187[.233](.225) -.245[.233](.233) -.192[.221](.214) -.249[.222](.222)
500 -.210[.188](.184) -.248[.189](.189) -.211[.188](.184) -.249[.189](.189) -.213[.178](.174) -.251[.179](.179)

-.50 100 -.411[.321](.308) -.500[.324](.324) -.408[.315](.302) -.495[.316](.316) -.417[.294](.282) -.503[.296](.296)
200 -.427[.276](.266) -.496[.276](.276) -.427[.272](.262) -.495[.273](.273) -.436[.256](.247) -.502[.257](.257)
500 -.456[.219](.215) -.501[.221](.221) -.453[.223](.218) -.498[.224](.224) -.456[.213](.208) -.501[.214](.214)
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