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Abstract

In the presence of heteroskedasticity, Lin and Lee (2010) show that the quasi maximum
likelihood (QML) estimators of spatial autoregressive models (SAR) can be inconsistent
as a ‘necessary’ condition for consistency can be violated, and thus propose robust GMM
estimators for the model. In this paper, we first show that this condition may hold in
many practical situations and when it does the regular QML estimators can be consistent.
In cases where this condition is violated, we propose a modified QML estimation method
robust against heteroskedasticity of unknown form. In both cases, asymptotic distributions
of the estimators are derived, and methods for estimating robust variances are given, leading
to robust inferences for the model. Extensive Monte Carlo results show that the modified
QML estimator outperforms the GMM estimators, and the regular QML estimator even

when it is consistent. The proposed robust inference methods can also be easily applied.

Key Words: Spatial dependence; Unknown heteroskedasticity; Nonnormality; Modified
QML estimator; Robust standard error.

JEL Classification: C10, C13, C15, C21

1. Introduction

Spatial dependence is increasingly becoming an integral part in empirical works in economics
as a means of modelling the effects of ‘neighbours’ (see, e.g., Cliff and Ord (1972, 1973, 1981),
Ord (1975), Anselin (1988, 2003), Anselin and Bera (1998), LeSage and Pace (2009) for some
early and comprehensive works). Spatial interaction in general can occur in many forms. For
instance peer interaction can cause stratified behaviour in the sample such as herd behaviour
in stock markets, innovation spillover effects, localized purchase decisions, etc., while spatial
relationships can also occur more naturally due to structural differences in space/cross-section
such as geographic proximity, trade agreements, demographic characteristics, etc. See Case
(1991), Pinkse and Slade (1998), Pinkse et al. (2002), Hanushek et al. (2003), Baltagi et
al. (2007) to name a few. Among the various spatial econometrics models that have been

extensively treated, the most popular one may be the spatial autoregressive (SAR) model.

*The authors are grateful to School of Economics, Singapore Management University, for research support,
and to the participants of the VIII world conference of the Spatial Econometrics Association, Ziirich 2014, for
helpful comments.
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While heteroskedasticity is common in regular cross-section studies, it may be more so for
a spatial econometrics model due to aggregation, clustering, etc. Anselin (1988) identifies that
heteroskedasticity can broadly occur due to “idiosyncrasies in model specification and affect
the statistical validity of the estimated model”. This may be due to the misspecification of
the model that feeds to the disturbance term or may occur more naturally in the presence
of peer interactions. Data related heteroskedasticity may also occur for example if the model
deals with a mix of aggregate and non aggregate data, the aggregation may cause errors to be
heteroskedastic. See, e.g., Glaeser et al. (1996), LeSage and Pace (2009), Lin and Lee (2010) for
more discussions. As such, the assumption of homoskedastic disturbances is likely to be invalid
in a spatial context in general. However, much of the present spatial econometrics literature has
focused on estimators developed under the assumption that the errors follow a homoskedastic
structure. This is in a clear contrast to the standard cross-section econometrics literature where
the use of heteroskedasticity robust estimators is the standard practice.

Although Anselin raised the issue of heteroskedasticity in spatial models as early as in 1988,
and made an attempt to provide tests of spatial effects robust to unknown heteroskedasticity,
comprehensive treatments of estimation related issues were not considered until recent years by,
e.g., Kelejian and Prucha (2007, 2010), LeSage (1997), Lin and Lee (2010), Jin and Lee (2012),
and Arraiz et al. (2010). Lin and Lee (2010) formally illustrate that the traditional quasi maxi-
mum likelihood (QML) and generalized method of moments (GMM) estimators are inconsistent
in general when the spatial model suffers from heteroskedasticity, and provide heteroskedasticity
robust GMM estimators by modifying the usual quadratic moment conditions.

Inspired by Lin and Lee (2010), we introduce a modified QML estimator by modifying the
concentrated score function for the spatial parameter. It is well known that QML estimation, as
opposed to GMM estimation, is an effective tool to exploit the characteristics of the distribution
of the true innovation process even if the exact distribution is unknown. Hence, the efficiency
of QML estimates almost always supersedes other forms of estimators which does not consider
the shape of the distribution. This gives an incentive to explore the possibility of a consistent
likelihood estimate in the presence of heteroskedasticity.! The theory given herein is developed
using the SAR model although the method can be extended to other spatial models such as
linear regression with spatial error dependence (SED) or linear regression with both SAR and
SED structures. As expected, this modified QML estimator generally outperforms its GMM
counter parts in terms of efficiency and sensitivity to the magnitude of model parameters in par-
ticular the regression coefficients, as evidenced by the extensive Monte Carlo results. Standard
error estimate of the modified QML estimator, robust against unknown heteroskedasticity, is
provided. We also study the cases under which the regular QML estimators are robust against
unknown heteroskedasticity and provide a set of robust inference methods. It is interesting to
note that the modified QML estimator is computationally as simple as the regular QML esti-

mator, and it also outperforms the regular QML estimator when the latter is heteroskedasticity

!The computational complexity may be the key factor that hinders the application of the QML-type estimation
method, as it requires the calculation of the determinant of an n x n matrix. However, with the modern computing
technologies, this should no longer be considered as an issue of major concern, unless n is super large.



robust. This is because the modified QML estimator captures the extra variability inherent in
the estimation of the spatial parameter accrued by the estimation of the regression coefficients
and the average variance of the errors. In summary, the proposed set of QML-based robust
inference methods for the SAR model are simple and can be easily used by applied researchers.

The rest of the paper is organized as follows. Section 2 examines the cases where the
regular QML estimator of the SAR model is consistent under unknown heteroskedasticity, and
provides the method for robust inference. Section 3 introduces the modified QML estimator
that is generally robust against unknown heteroskedasticity, and presents methods for robust
inferences. Section 4 presents the Monte Carlo results. Section 5 concludes the paper. All

technical details are given in the Appendices.

2. QML Estimation of Spatial Autoregressive Models

In this section, we first outline the QML estimation of the SAR model under the assump-
tions that the errors are independent and identically distributed (iid). Then, we examine the
properties of the QML estimator (QMLE) of the SAR model when the errors are independent
but not identically distributed (inid). We provide conditions under which the regular QMLE is
robust against heteroskedasticity of unknown form, and derive asymptotic distribution of this
robust QMLE. All proofs are relegated to Appendix B.

2.1 The model and the QML estimation

Consider the spatial autoregressive or SAR model of the form:

where X, is an n x k matrix of exogenous variables, W), is a known n x n spatial weight matrix,
€n is an n x 1 vector of iid elements with mean zero and variance o2, 3 is a k x 1 vector of

regression coefficients and A is the spatial parameter. The Gaussian loglikelihood is,
n n 9 1,
0,(0) = -5 In(27) — 5 In(c”) +1In|A,(N)| — Tﬂen(ﬁ’ Nen(B, A), (2)

where § = (3,02, \), A,(\) = I, — A\W,,, I, is an n x n identity matrix, and ,(3,\) =
An(N)Y, — X, 3. Given X, £,,(0) is maximized at (,(\) = (X! X,) ' X/ A,(\)Y;, and 62(\) =
Ly AL (N M, Ay (MY, where M, = I, — X, (X} X,) ' X}. By substituting 3,()\) and 62(\)

into ¢,,(0), we arrive at the concentrated log likelihood function for X as,

n

£, = =5 [In(@m) + 1] = ZIn(52 (V) + In [ A, ()], (3)

where |-| denotes the determinant of a square matrix. Maximizing ¢S (\) gives the unconstrained

QMLE A, of ), and thus the QMLEs of 8 and 02 as 3, = #(An) and 62 = 62(\,). Denote
0, = (8,,62,\), the QMLE of 0.



Under regularity conditions, Lee (2004) establishes the consistency and asymptotic normality
of the QMLE 0,. In particular, he shows that An and Bn may have a slower than /n-rate of
convergence if the degree of spatial dependence (or the number of neighbours each spatial unit
has) grows with the sample size n. The QMLE and its asymptotic distribution developed
by Lee is robust against nonnormality of the error distribution. However, some important
issues need to be further considered: (i) conditions under which the regular QMLE 0,, remains
consistent when errors are heteroskedastic, (i) methods to modify the regular QMLE 0, so
that it becomes generally consistent under unknown heteroskedasticity, and (ii7) methods for

estimating the variance of the (modified) QMLE robust against unknown heteroskedasticity.

2.2 Robustness of QMLE against unknown heteroskedasticity

It is well accepted that the regular QMLE of the usual linear regression model without
spatial dependence, developed under homoskedastic errors, is still consistent when the errors
are in fact heteroskedastic, however, for correct inferences the standard error of the estimator
has to be adjusted to account for this unknown heteroskedasticity (White, 1980). Suppose now
we have a linear regression model with spatial dependence as given in (1) with disturbances that
are independent but not identically distributed (inid), i.e., €,; ~ inid(0,0%hy,;), i =1,...,n,
where %ZLI hpi =1 and hy; > 0.2 Consider the score function derived from (2),

50-(0 0_12X7/z€n(57 A),
n(8) = S5 = 3 el 5, V(5 ) — o, @)
0_12Y7;W7/L6n(57 A) = tr[Gr(N)],

where G,(\) = W, A71()\) and ‘tr’ denotes the trace of a square matrix. It is well known that
for an extremum estimator, such as the QMLE én we consider, to be consistent, a necessary
condition is that plimn_,%z/}n(ﬁg) = 0 at the true parameter p (Amemiya, 1985). This is always
the case for the 8 and ¢ components ¢, (fy) whether or not the errors are homoskedastic.
However, it may not be the case for the A component of v,,(6p). Let hy, = (hp1,...,hnp)
and let ‘diag(-)’ denote a diagonal matrix formed by the elements of a vector or the diagonal
elements of a square matrix, and ‘diagv(-)’ denote a column vector formed by the diagonal

elements of a square matrix. We have, similarly to Lin and Lee (2010),

L90,(00) = Ltr(H,Gp— Gy)+op(1)
= % Z?:l(hn,i - 1><gn,i - gn) + Op(1> (5>
= Cov(gn, hn) + 0p(1),

where g, = (gn.1,- - -, gnn) = diagv(Gy), H, = diag(hy,), gn denotes the sample mean of {hy, ;},

and Cov(gy, hy,) denotes the sample covariance between {g, ;} and {hy,;}.

2Note that o2 is the average of Var(e, ;). Under homoskedasticity, hn,; = 1,Vi. For generality, we allow h., ;
to depend on n, for each ¢. This parameterization, a nonparametric version of Breusch and Pagan (1979), is
useful as it allows the estimation of the average scale parameter. See Section 3 for more details.



Therefore, when limy, o Cov(gn, hn) # 0, 0, cannot be consistent. As Lin and Lee (2010)
noted, this condition is satisfied if almost all the diagonal elements of the matrix G,, are equal.?
In fact, much more can be said about this condition. First, by Cauchy-Schwartz inequality, this
condition is satisfied if Var(g,) — 0, which boils down to Var(k,) — 0, where k,, is the vector of
number of neighbours for each unit. This is because (i) Gy, = W, +AW2 + X N2W3 4. . [ if [N < 1
and wy;; < 1, and (4i) the diagonal elements of W), r > 2 inversely relate to ky, see Anselin
(2003). In fact, when W, is row-normalized and symmetric, diag(W?) = {k;i} Var(k,) =
o(1) can be seen to be true for many popular spatial layouts such as Rook, Queen, group
interactions, etc, see Yang (2010). Second, if heteroskedasticity occur due to reasons unrelated
to the number of neighbours, for example, due to the nature of the exogenous regressors X,,, then
the required condition will still be satisfied. In this case QML estimate of A, will be consistent
even under heteroskedasticity, if in addition lim,, o Cov(gy, hy,) = 0, where ¢, = diagv(G,,Gy,)
(see Theorem 1 and its proof). These discussions show that it should be useful to provide
inference methods for the SAR model when the QMLEs are robust. Formal results in this
context can be constructed under the following regularity conditions. A quantity at the true

parameter is denoted by suppressing the variable notation, e.g., 4,, = A,,(A\) and G,, = G, (\o).

Assumption 1: The true parameter \q is in the interior of a compact parameter set A.*
Assumption 2: €, ~ (0,02H,,), where H, = diag(hn1,. .., hnn), such that % Yo hpi=1
and hy,; > 0,Vi and E\em\“‘s < ¢ for some 6 > 0 and constant ¢ for all n and 1.

Assumption 3: The elements of the n X k regressor matriz X, are uniformly bounded for

all n, X,, has the full rank k, and lim,,_, %X;LX” exists and is nonsingular.

Assumption 4: The spatial weights matrix W, is uniformly bounded in absolute value in

both row and column sums and its diagonal elements are zero.

Assumption 5: The matriz A, is non-singular and A, ' is uniformly bounded in absolute
value in both row and column sums. Further, A;1()\) is uniformly bounded in either row or
column sums, uniformly in A € A.

Assumption 6: The limy, oo 2(Xp,, GnXnB0) M (Xn, GnXnBo) = k with 0 < k < oo. If
k =0 then lim, %ln\agAglA;;l\ — 1 02N ATV AT (N)| # 0, whenever X # \o, where
o2(N) = Lodtr(H, A AT (ALY (V) ALY.

n n n

Assumptions 2 and 3 are similar to those of Lin and Lee (2010). Assumption 2 implies that

{hn,i} as well as the third and fourth moments of €, ; are uniformly bounded for all n and .

3For example, G,, will have constant diagonals for the case of circular neighbours, where each neighbour is
given equal weight or group interaction scheme with equal group sizes and hence identical weights. The condition
will also be satisfied asymptotically for a very sparse weight matrix.

4For QML-type estimation, the parameter space A must be such that A,()) is non-singular YA € A. If the
eigenvalues of W,, are all real, then A = (w;iln, Wiex) Where Wmin and wmax are, respectively, the smallest and the
largest eigenvalues of W,; if, W, is row normalized, then wmax = 1 and w{, < —1, and A = (w_},,1) (Anselin,
1988). In general, the eigenvalues of W, may not be all real as W,, can be asymmetric. LeSage and Pace (2009,
p. 88-89) argue that only the purely real eigenvalues can affect the singularity of A, (\). Consequently, for W,
with complex eigenvalues, the interval of X that guarantees non-singular A, (\) is (w3 ', 1) where ws is the most
negative real eigenvalue of W,,. Kelejian and Prucha (2010) suggest A be (=7, ', 7, ') where 7, is the spectral

radius of Wy, or (—1,1) after normalization.



Assumptions 2 and 3 imply that lim,, %X;Han exists and is nonsingular. Assumptions 4
and 5 are standard for the SAR model, which limit the spatial dependence to a manageable level
(Kelejian and Prucha, 1999). Assumption 6 is the heteroskedastic version of the identification
condition introduced by Lee (2004) for the homoskedastic SAR model.

For the loglikelihood and score functions given in (2) and (4), let I,, = —%E[%{;yén(ﬁg)]
and ¥, = %E[%én(ﬁg)%én(ﬁg)], with their exact expressions deferred to the next subsection
in connection with the issue on the robust variance covariance (VC) matrix estimation. We

have the following results (recall g, = diagv(G,,) and ¢, = diagv(G,,G,)).
Theorem 1: Under Assumptions 1-6 and further assuming that Cov(gy, hy) = o(1) and
Cov(qn, hn) = o(1), we have as n — oo, 0,, -2 0y, and
Vil —60) == N(O, IS 1), (6)

where I = limy,—o0 I, and X = limy,,— . Xy, both assumed to exist and I is nonsingular.

2.3 Robust VC standard errors of the QML estimators

Asymptotically valid inference for 6 based on the QMLEs 6, requires a consistent estimator
of the asymptotic variance given in Theorem 1. This is fairly simple under homoskedasticity as
the sample analogue of I, and ¥,, can directly be used to give consistent estimators of I and X.

Under the unknown heteroskedasticity designated by H,, we have after some algebra:

2 XnXn 0 7 X
I, = .~ - tr(H,G) ,

where 1, = G, X,09. This shows that a consistent estimator of I,, can still be obtained by
‘plugging’ 6, for 6, Gn(én) for G, and H,, = %diag(éfm, .. .,éfm) for H,, in line with the idea

of White (1980), where {€,;} are the QML residuals. However, this approach fails in estimating

the variance of the score, ¥, as its Ug—element:

Zn,0202 = m Z?:l (thm + Hnﬂ)?

cannot be consistently estimated unless the kurtosis measures {«,;} are all zero or {e,;} are
normally distributed. This means that the robust inference method for o3 is not available.
Obviously, o2 is typically not the main parameter that inferences concern, although the con-
sistency of its QMLE (shown in Theorem 1) is crucial. Thus, to get around of this problem,
we focus on X\ and (3 as those are the main parameters that inferences concern. First, based
on the concentrated score function for ), obtained from (4) by concentrating out 3 and o (see
(7) below), we obtain the robust variance of An, and then based on the relationship between 3,
and ;\n we obtain the robust variance of Bn As these developments fall into the main results

presented in next section, we give details at the end of Section 3.



3. Modified QML Estimation under Heteroskedasticity

As argued in Lin and Lee (2010) and further discussed in Section 2 of this paper, the nec-
essary condition for the consistency of the regular QMLE, lim,, o, Cov(gp, h,) = 0, can be
violated when h,, is proportional to the number of neighbours k, for each spatial unit and
lim,, oo Var(k,) # 0.°> To solve this problem, Lin and Lee (2010) propose robust GMM esti-
mators and optimal robust GMM estimators. While the proposed robust GMM estimators are
consistent under unknown heteroskedasticity, their finite sample performance may be sensitive
to the relevance of the exogenous regressors since the GMM estimator makes explicit use of
instruments based on X,,. In contrast, ML-type estimation is known to be efficient, and thus if
a modification on the regular QML estimator can be found so that it becomes robust against
unknown heteroskedasticity, it should be expected to outperform the robust GMM estimators.
Inspired by the work of Lin and Lee, we propose a modified QML estimator of the SAR model,

and introduce a method for estimating its robust standard error.

3.1 The modified QML Estimator

Given the problems associated with the A-element of 1,,(6y) in (4), in asymptotically at-
taining the limit desired to ensure consistency of the related extremum estimator under het-
eroskedasticity, one can look at a modification to the score function that allows it to reach a
probability limit of zero by brute force. This method is in line with Lin and Lee (2010)’s treat-
ment to the quadratic moments of the form E(e), P,e,) = 0, where tr(P,) = 0 is modified such
that diag(P,) = 0 to attain a consistent GMM estimator under unknown heteroskedasticity.

Following this idea, if we modify the last component of ¥, (6p) as,
U()_2[Y7;W7/L€n - G;Ldiag<Gn>€n]u

we immediately see that plim%[YAW/Len —e) diag(Gp)e,] = 0, in light of (5). This modification
is asymptotically valid in the sense that it will make the estimators consistent under the unknown
heteroskedasticity. However, the finite sample performance of the estimators is not guaranteed
as the variations from the estimation of # and o2 are completely ignored.

Now consider the average concentrated score function derived by concentrating out 8 and
o2, i.e., replacing 3 and o? by Bn(/\) and 62()) in the last component of (4), or taking the

derivative of (3), and then dividing the resulting concentrated score function by n,

)= VA, (M AL VY, ' )

The average concentrated score z/;n(/\) captures the variability coming from estimating 3 and
o2. Under the regular QML estimation framework (see, e.g., Amemiya, 1985), the QMLE of
A is equivalently defined as A, = arg{1,(\) = 0}. Solving ¢, (A) = 0 is equivalent to solving

For example, when W, corresponds to group interactions (circular world spatial layout can be a special case),
and the group sizes are generated from a fixed discrete distribution, we have lim, .o Var(ky) # 0.



V)AL (A My [Gr(A) — 2t1(G (X)) 1] An(N)Y,, = 0, and for the solution An to remain consistent
under unknown heteroskedasticity, it is necessary that %E[YAA;LMn(Gn — %tr(Gn)In)AnYn]
equals or tends to zero, see van der Vaart (1998, ch. 5). This is not true if there exists unknown
heteroskedasticity and the conditions stated in Theorem 1 are violated.

Our idea is to modify the numerator of (7) so that its expectation at the true parameter Ag is
zero even under unknown heteroskedasticity.® Since E(Y,/A! M,G,A,Y,) = Ugtr(HnMnGn) =
ogtr(Hydiag(M,Gy)), this suggests that one should replace 1tr(G,)I, in the numerator of
(7) by diag(M,G,). However, E(Y,) Al M,diag(M,G,)A,Y,) = oitr(H,M,diag(M,G,)) #
E(Y, Al M, G,A,Y,). Thus, in order to cancel the effect of the additional M,,, one should
instead replace tr(Gy)I, in the numerator of (7) by diag(M,) diag(M,G). Hence, Yn(N) is
modified by replacing G, (X) — 2tr(Gy(A))1,, by,

G?L(/\> - Gn(/\> - diag<Mn>_1diag<MnGn(/\>>' (8>

This gives a modified concentrated score function,

o VA MG ) ALY
SN A A, ©)

and hence a modified QML estimator of A\ as,
An = arg{¢y(A) = 0}, (10)

Once a heteroskedasticity-robust estimator of A is obtained, the heteroskedasticity-robust esti-
mators of 3 and o2 are, 3, = Bn(:\n) and 62 = &%(:\n), respectively, as the estimating functions
(first two components of 9,,(6)) leading to £,(\) and 62()\), defined below (2), are robust to
unknown heteroskedasticity. More discussions on this will follow.

Recently, Jin and Lee (2012) proposed a heteroskedasticity-robust root estimator of A by
solving the quadratic (in \) equation: Y, A} (\)M,, P, A,,(\)Y,, = 0, where P, is an n X n matrix
such that M, P, has a zero diagonal. As there are two roots and only one is consistent, they
gave criteria to choose the consistent root. In case where the P, matrix is parameter dependent,
they suggested using some initial consistent estimates to come up with an estimate, say ﬁn, of
P,, and then solve Y/ A! (\)M,P,A,(\)Y, = 0. Clearly, G3()) defined above is a choice for
P, although an initial estimate of A, say ;\g, is needed to obtain ﬁn = G%(;\g) Jin and Lee
also suggest this. This approach is attractive as the root estimator has a closed-form expression
and thus can handle a super large data. However, it can be ambiguous in practice in choosing
a consistent root as the selection criterion is parameter dependent. Furthermore, our Monte
Carlo simulation shows that Y A’,(\)M, P, A, (\)Y, = 0 tends to give non-real roots when |A|

is not small, say > 0.5, in particular when X is negative, and when n is not very large. In

5Making the expectation of an estimating function to be zero leads potentially to a finite sample bias corrected
estimation. This is in line with Baltagi and Yang (2013a,b) in constructing standardized or heteroskedasticity-
robust LM tests with finite sample improvements. See also Kelejian and Prucha (2001, 2010) and Lin and Lee
(2010) for some useful methods in handling the linear-quadratic forms of heteroskedastic random vectors.



contrast, this problem does not occur to the modified QML estimator \, given above. Thus,
the modified QML estimator A proposed in this paper complements Jin and Lee’s (2012) root
estimator. More discussions along this line are given in the following sections. Some remarks

follow before moving into the asymptotic properties of the modified QML estimators.

Remark 1: It turns out that the modified QMLEs of the SAR model are computation-
ally as simple as the original QMLESs, but the former are generally consistent under unknown

heteroskedasticity while preserving the nature of being robust against non-normality.

Remark 2: The method of modifying the concentrated score to achieve heteroskedasticity
robustness applied in this paper can be easily extended to more advanced models (spatial or
non-spatial). For example, in the so-called SARAR(1,1) model where the errors in the SAR
model follows another SAR process, the concentrated score consists of two components and each
of them can be modified in a similar manner so that their numerators have zero expectation
under unknown heteroskedasticity. In contrast, the root estimator of Jin and Lee (2012) may
run into difficulty as there will be two quadratic functions of two unknowns which makes it
more difficult to choose a pair of estimators that are consistent.

Remark 3: The correction G2()\) = G,,()\) — diag(M,,) ~'diag(M, G, ()\)) as opposed to the
more intuitively appealing correction G,,(\) —diag(G,,(\)) has better finite sample performance
since the modification is made directly on the concentrated score function which contains the

variability accruing from the estimation of 3 and o?.

3.2 Asymptotic distribution of the modified QML estimators

To ensure that the modified estimation function given in (9) uniquely identifies Ao, the
Assumption 6 needs to be modified as follows. Let §,(X) = A}, (A\)[Gn(N) — diag(Gr(N))]An(N).

Assumption 6*: lim 1[8)X/ A1, (A A, X Bo+odtr(Hy Al 1Q, (A A )] # 0, VA # Ao

The central limit theorem for linear quadratic forms of Kelejian and Prucha (2001) allows
for heteroskedasticity and can be used to prove the asymptotic normality of the modified QML
estimator. First, it is easy to show that the normalized and modified concentrated score function

has the fOHOWing representation at /\0,
\/ﬁl/;n* = ﬁl[)é(/\g) =1 3 (6/77 ann Clﬂen) Op(1>, (11)
T 2 + +

where B, = G M,, and ¢, = M, G° X3, because 62(\g) = L Mye, = LE(e, Mye,)+op(1) =
2
20 tr(Hp M) + 0p(1) = 03 4 0p(1), and it follows that 6, %(Ao) = oy 2+ 0p(1).

Let 7,,(-) denote the first-order standard deviation and 72(-) the first-order variance of a
normalized quantity, e.g., 72(¢*) is the first-order term of Var(y/ni)*), and 72(X,) is the first-
order term of Var(\/ﬁ:\n). By the representation (11) and Lemma A.3, we have,

T2(r) =130 82 k2 ki + Le0[H, B, (H,B, + H,B.)| + %%Hnnn, (12)

i=1 “n,i "n,i

where by, ;; are the diagonal elements of B,,, x; is the ith element of x, which together with



H,, are defined in Section 2.3. Now by the central limit theorem for linear-quadratic forms of
Kelejian and Prucha (2001), we have,

% L, N(0,1). (13)

This result quickly leads to the following theorem regarding the asymptotic properties of the
modified QML estimator ), of the spatial parameter A.

Theorem 2: Under Assumptions 1-5 and 6*, the modified QML estimator An is consistent

and asymptotically normal, i.e., as n — oo, A, Ag, and
V(A = X0) == N (0, limy, 0 72(An)),

where T2(A) = B 272(41), n = Str[Hp(G5Gn+ G5 G — G5+ o e, and G, = -Gs, =
0

G (A) — diag(M,,) "' diag(M,G}(N)).
Now consider the modified QML estimators 3, and 62 of By and Ug defined in (10). Using

the relation A4,,(\,) = A, + (Ao — A\p) Wy, we can write,

Bn = BulXo)+ (Ao — M) (XL X,) X G, ALY, and (14)
G2 = 62(No) +2(Xo — Nn) YW M, ALYy + (Ao — o) 2 LYW M, W, Y, (15)

n

The asymptotic properties of Bn and &% are summarized in the following corollary.

Theorem 3: Under Assumptions 1-5 and 6*, the modified QMLEs B, and &2 are consistent,

i.e., as N — 0Q, Bn 2, By and &% 2, Ug, and further Bn 1s asymptotically normal, i.e.,
~ D . _ _
V(B — Bo) — N[O, limy, o0 (X X)) LX) AL X (XD X ) 1],

where A, = T2(An) il +nos Hy, + 28, (00 S,diag(Bn) + Hucnnly), Sp = diag(s,) and s, is the

n-vector of skewness measures of {en;}."

3.3 Robust standard errors of the modified QML estimators

Following the discussions in Section 2.3 and Footnote 7, we focus on A and S for robust
inferences. In order to carry out inference for model parameters using the modified QML
procedure, we need a consistent estimate of 72(),,). Given this, consistent estimates of 72(3,) =
(X! X)X A, X, (X X,) 7! immediately follow. The first-order variance of the modified score
as given in (12) contains second and fourth moments of ¢; which vary across i, and hence a simple
White-type estimator (White, 1980) may not be suitable, which in turn makes Tg(:\n) infeasible.
To overcome this difficulty, we follow the idea of Baltagi and Yang (2013b) to decompose the

"Similarly, \/n(62 — o3) LN (0,limy, oo 75(67)), where the first-order variance of \/nég;, 7:(55) =
% > Var(efu-) + R%UST,%()\”)tr2(HnGn) + n%agtr(HnGn)@;lc;sn = O(1), suggesting that &2 is root-n consis-
tent. However, similar to the regular QMLE, this result cannot be used for inference for o2 as the key element

in the variance formula £ 3" | Var(ep ;) = £ 37" (kn + 2k, ;) cannot be consistently estimated.
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numerator of the modified score into a sum of uncorrelated terms, and then use the outer
product of gradients (OPG) method to estimate the variance of this score function which in

turn leads to an estimate of 72(\,). Denote the numerator of (11) by,

Qnl€n) = €,Bpen + chen. (16)

Clearly, @, is not a sum of uncorrelated components, but can be made to be so by the technique

of Baltagi and Yang (2013b). Decompose the non-stochastic matrix B, as,
B, = B!+ B!, + BY, (17)

where BY, B! and B¢ are, respectively, the upper triangular, the lower triangular and the
diagonal matrices of B,,. Let ¢, = (BY + B')e,. Then, Q,(¢,) can be written as,

Qn(@b) = Zzlzl fn,i(Cn,i + bn,izfn,i + Cn,i)u (18>

where €, ;, (,; and ¢, ; are, respectively, the elements of €,, ¢, and ¢,. Equation (18) expresses
Qn(€n) as a sum of n uncorrelated terms {€y ;(Cn i + bnii€ni + cni)}, and hence its OPG gives
a consistent estimate of the variance of @, (€,), which in turn leads to a consistent estimate of
72(4p*), the first-order variance of \/ni)* as:
- 1 & - - 9
Ta(Un) = Y > (Eni(Gni + briiéngi + Eni)) (19)
noi=1
where €, ; are the residuals computed from the modified QML estimators.
Let 6, = (N;L 52 :\n)’ and H, = %diag(é%n, o€ ). Let ®,, be ®,, evaluated at 6,, and

) n? ‘Y nn

H,, fin = GpXpfn, and G, = Gn(\,). Define the estimators of 72(\,,) and 72(3,) as,

7o) = &.°7(47), and (20)

%7%(57» = (X;LXn>_1X7/LAan(X7ILXn>_17 (21)
where A, = %g(:\n)ﬁnﬁ% + nH, + 2@51(&n§n]§g + ﬁnén%) and S, = diag{%fm,i =1,...,n}.
Note that ®,, can be estimated by —ﬁd}m/\o:;\n as @, is the 1st-order term of —E(&z]};).

Corollary 1: If Assumptions 1-5 and 6* hold, then we have as n — oo,
2(0) = 12(\n) 25 0; and  72(B,) — 72(Bn) = 0.

n

Finally, when the conditions of Theorem 1 are satisfied so the regular QMLEs are also
consistent, the robust variances of ;\n and Bn can easily be obtained from the results of Theorems
2 and 3, and Corollary 1. Some details are as follows. Starting with the concentrated score
4, given in (7), replacing G by G,, — Ltr(G,)1, in (12) and in ®,, defined in Theorem 2, one
obtains 72(;\n). Similarly, by replacing G, by G, — %tr(Gn)In in Tg(Bn) given in Theorem 3
leads to 72(8,). The estimates of 72(A,) and 72(3,) are obtained in the same way as those of

72(\,) and 72(5,), and their consistency can be proved similarly to the results of Corollary 1.

11



4. Monte Carlo Study

Extensive Monte Carlo experiments were conducted to (i) investigate the behaviour of the
original QMLE A, and the modified QMLE (MQMLE) A, proposed in this paper, and their
impacts on the estimators of 3 and o2, with respect to the changes in the sample size, spatial
layouts, error distributions and the model parameters when the models are heteroskedastic; and
(74) compare the QMLE and the MQMLE with the non-robust generalized method of moments
estimator (GMME) of Lee (2001), the robust GMME (RGMME) and the optimal RGMME
(ORGMME) of Lin and Lee (2010), two stage least squares estimator (2SLSE) of Kelejian and
Prucha (1998), and the root estimator (RE) of Jin and Lee (2012). We consider cases where
the original QMLE are robust against heteroskedasticity and the cases it is not.

The simulations are carried out based on the following data generation process (DGP):

Y, = anYn + LnBO + Xlnﬁl + X2n62 + €n,

where ¢, is an n x 1 vector of ones corresponding to the intercept term, Xy, and X5, are the nx 1
vectors containing the values of two fixed regressors, and €, = o Hpe,,. The regression coefficients
B is set to either (3,1,1) or (.3,.1,.1)’, o is set to 1, A takes values form {—0.5, —0.25,0,0.25, 0.5}
and n take values from {100, 250, 500,1000}. The ways of generating the values for (X1, Xo,),
the spatial weight matrix W,,, the heteroskedasticity measure H,, and the idiosyncratic errors

en are described below. Each set of Monte Carlo results is based on 1,000 Monte Carlo samples.

Spatial Weight Matrix: We use three different spatial layouts: (i) Circular Neighbours,
(79) Group Interaction and (iii) Queen Contiguity. In (i), neighbours occur in the positions
immediately ahead and behind a particular spatial unit. For example, for the ith spatial unit
with 6 neighbours, the ith row of W, matrix has non-zero elements in the positions: ¢ — 3,7 —
2,9 —1,14+ 1,74+ 2, and i + 3. The weight matrix we consider has 2, 4, 6, 8 and 10 neighbours
with equal proportion. In (i7), neighbours occur in groups where each group member is spatially
related to one another resulting in a symmetric W,, matrix. In (ii7), neighbours could occur
in the eight cardinal and ordinal positions of each unit. To ensure the heteroskedasticity effect
does not fade as n increases (so that the regular QMLE is inconsistent), the degree of spatial
dependence is fixed with respect to n. This is attained by fixing the possible group sizes in
the Group Interaction scheme, and fixing the number of neighbours behind and ahead in the
Circular Neighbours scheme. The degree of spatial dependence is naturally bounded in the
Queen Contiguity weight matrix. To analyse the performance of the original QMLE when it is
robust against heteroskedasticity, we use Queen Contiguity scheme and the Balanced Circular

Neighbours scheme where all spatial units have 6 peers each.

Heteroskedasticity: For the unbalanced Circular Neighbour scheme, h,,; is generated as
the ratio of the total number of neighbours to the average number of neighbours for each 4
while for the Group Interaction scheme h,, ; is generated as the ratio of the group size to mean
group size. For the balanced Circular Neighbour and the Queen Contiguity schemes, we use
hng = 03270 (1 Xl + 1 X2nal)] 7 (1 Xl + [ X2ngl)-

12



Regressors: The regressors are generated according to REG1: {x1;, x2;} id N(0,1)/v2.
For the Group Interaction scheme, the regressors can also be generated according to REG2:
{@1ir, 2ir } ud (22, + 2ir)/V/10, where (2, 2 ud N(0,1), for the ith observation in the rth
group, to give a case of non-iid regressors taking into account the impact of group sizes on the

regressors. Both schemes give a signal-to-noise ratio of 1 when 81 = G, =0 = 1.

Error Distribution: To generate the e, component of the disturbance term, three DGPs
are considered: DGP1: {e,;} are iid standard normal, DGP2: {e,;} are iid standardized normal
mixture with 10% of values from N (0, 4) and the remaining from N (0, 1) and DGP3: {e, ;} iid
standardized log-normal with parameters 0 and 1. Thus, the error distribution from DGP2 is
leptokurtic, and that of DGP3 is both skewed and leptokurtic.

The GMM-type estimators are implemented by closely following Lin & Lee (2010). A GMM
estimator is in general defined as a solution to the minimisation problem: mingeg g,,(0)a,,angn ()
where g,(0) = (Qn, Pinen(0), .. .,Pmnen(ﬁ))/en(ﬁ) represents the linear and quadratic moment
conditions, @, = (X,, W,X,,) is the matrix of instrumental variables (IVs), and a},a,, is the
weighting matrix related to the distance function of the minimisation problem. The GMME
(Kelejian & Prucha, 1999; Lee, 2001) under homoskedastic disturbances can be defined using the
usual moment condition, P, = (Gn — %In) and the IVs, (G, X5, X,). For the RGMME,
the P, matrix in the moment conditions changes to G, — diag(G,,). A first step GMME using
P, = W, is used to evaluate G,,. The weighting matrices of the distance functions are computed
using the variance formula of the iid case using residual estimates given by the first step GMM
estimate. The ORGMME is a variant of the RGMME in which the weighting matrix is robust to
unknown heteroskedasticity. The ORGMME results given in the tables are computed using the
RGMME as the initial estimate to compute the standard error estimates and the instruments.
Finally, the 2SLSE uses the same IV matrix @),,. Lin and Lee (2010) gives a detailed comparison
of the finite sample performance of MLE, GMME, RGMME, ORGMME and 2SLSE for models
with both homoskedastic and heteroskedastic errors. Our Monte Carlo experiments expand
theirs by giving a detailed investigation on the effects of nonnormality, spatial layouts as well
as negative values for the spatial parameter. The RE of Jin and Lee (2012) is also included.

To conserve space, only the partial results of QMLE, MQMLE, RGMME and ORGMME
are reported. The full set of results are available from the authors upon request. The GMME
and 2SLSE can perform very poorly. The root estimator performs equally well as the MQMLE
when |A| is not large and n is not small but tends to give non-real roots otherwise. Tables 1-3
summarise the estimation results for A and Tables 4-6 for (3, where in each table, the Monte
Carlo means, root mean square errors (rmse) and the standard errors (se) of the estimators
are reported. To analyse the finite sample performance of the proposed OPG based robust
standard error estimators, we also report the averaged se of the regular QMLE when it is
heteroskedasticity-robust and the averaged se of the MQMLE based on Corollary 1. The exper-
iments with 3 = (0.3,0.1,0.1) represent cases where the stochastic component is relatively more
dominant than the deterministic component of the model. This allows a comparison between

the QML-type estimators and the GMM-type estimators when the model suffers from relatively
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more severe heteroskedasticity and the IVs are weaker. The main observations made from the

Monte Carlo results are summarized as follows:

(1)

(i)

(iii)

5.

MQMLE of A performs well in all cases considered, and it generally outperforms all

other estimators in terms of bias and rmse. Further, in cases where QMLE is consis-
tent, MQMLE can be significantly less biased than QMLE, and is as efficient as QMLE.

RGMME and ORGMME of A perform reasonably well when 8 = (3,1, 1)’, but deteriorates
significantly when 8 = (.3,.1,.1)" and in this case GMME and 2SLSE can be very erratic.
In contrast, MQMLE is unaffected by the magnitude of 8. This can be explained as follows.
When the regression model is characterized by a smaller signal and a larger noise, the
effect of heteroskedasticity can be much more severe and the IVs become weaker, leading
to a poorer performance of IV-dependent estimators. In contrast, MQMLE continues
to maintain convergence and efficiency properties as it is IV-free and explores the error

structure fully in the estimation process.

RE of A performs equally well when |A| is not big and n is not small, but otherwise tends
to give imaginary roots. Thus, when one encounters a super large dataset and the QMLE
or MQMLE run into computational difficulty, one may turn to RE and use its closed-form

expression.

The GMM-type estimators can perform quite differently when the errors are normal as
opposed to non-normal errors, especially when 3 = (.3,.1,.1)". It is interesting to note
that RGMME often outperforms the ORGMME.

The OPG-based estimate of the robust standard errors of MQMLE of A\ performs well in

general with their values very close to their Monte Carlo counter parts.

Finally, the relative performance of various estimators of § is much less contrasting than
that of A, although it can be seen that MQMLE is slightly more efficient than RGMME
and ORGMME.

Conclusion

This paper looks at heteroskedasticity-robust QML-type estimation for spatial autoregres-

sive models. We provide clear conditions for the regular QMLE to be consistent even when

the disturbances suffer from heteroskedasticity of unknown form. When these conditions are

violated, the regular QMLE becomes inconsistent and in this case we suggest a modified QMLE

by making a simple adjustment to the score function so that it becomes robust to unknown het-

eroskedasticity. This method is proven to work well in the simulation studies and was shown to

be robust to many situations including, deteriorated signal strength as well as non-normal errors

(besides the unknown heteroskedasticity). To provide inference methods robust to heteroskedas-
ticity and non-normality, OPG-based estimators of the variances of QMLE and MQMLE are

introduced, and Monte Carlo results show that they work very well in finite samples.
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Appendix A: Some Useful Lemmas

The following lemmas are extended versions of selected lemmas from Lee (2004), Kelejian

and Prucha (2001) and Lin and Lee (2010), which are required in the proofs of the main results.

Lemma A.1: Suppose the matrix of independent variables X, has uniformly bounded el-
ements, then the projection matrices P, = Xn(X;LXn)_lX;L and M, = I, — P, are uniformly

bounded in both row and column sums.

Lemma A.2: Let A, be an n xn matriz, uniformly bounded in both row and column sums.
Then for M, defined in Lemma A.1,

(i) tr(A) =O(n) form > 1,

(i) tr(ALAn) = O(n),

(1) tr((M,Ap)™) = tr(A") + O(1) form > 1 and

(iv) tr((A,M,A,)™) = tr((ALA,)™) 4+ O(1) form > 1.
Let B, be another n x n matriz, uniformly bounded in both row and column sums. Then,

(tv) Ay By, is uniformly bounded in both row and column sums,

(v) tr(4,B,) = tr(B,A,) = O(n) uniformly.

Lemma A.3 (Moments and Limiting Distribution of Quadratic Forms): For a
given process of innovations {€n;}, let €n; ~ inid(0,08hy;), where hyp; > 0 fori=1,...,n
such that %Z?Zl hn; = 1. Further, let H, = diag(hp 1, ..., hnyn) and A, be an n x n matriz
with elements denoted by ay ;;. For Qn = €, Ape,

(1) E(Qn) = odtr(H,A,) and

(i1) Var(Qn) = 3211, a’?z,ii [E<€;Lm> = 30gh7] + ogtr{ Hy An(Hp Ay + AL Hy)).

Now, if A, is uniformly bounded in either row or column sums then,

(iii) E(Qn) = O(n),

(iv) Var(Qn)=0O(n),

(v)  @n = Op(n),

(v) 3Qn = FE(Qn) = Op(n"7) and

(vit) Var(%Qn) =0(n™Y).

Further, if A, is uniformly bounded in both row and column sums and Assumption 4 holds then,
9 B@Qu) D, o, 1).

(viid) N,
Appendix B: Proofs of Theorems and Corollaries

Proof of Theorem 1: We only prove the consistency of A, as the consistency of Bn and 62
immediately follows from identities similar to (14) and (15). Define £5()) = maxg 2 E[¢,,(6)].
By Theorem 5.7 of van der Vaart (1998), it amounts to show, (a) identification uniqueness
condition: supy.gx x)>e L102(X) = €5(X)] < O for any € > 0 and a distance measure d(X, Ag)
and (b) uniform convergence: L[£5(\) — €5 ()] 2, 0 uniformly in A € A.

It is easy to see that £5(A\) = —Z(In(27) 4+ 1) — 21n(62()\)) + In|A,(A)|, where 62(\) =
LT = M), My, + Ugtr[HnA;L_lA;L(/\)An(/\)Agl]]. Recall £ () defined in (3).
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Condition (a): Observe that 52()\g) = o3, then,

limy, oo 2 [05(A) = €5 (Ao)]
= limyoe [ (108 |4, () Au(V)] — log [ AL Au]) + 24 (log oy 2(A) Il — log o L))
% 0 for XA # Xy, by Assumption 6.

Next, note that p,(0y) = exp[l,(6p)] is the quasi joint pdf of ,, which is N(0,0?I,). Let
PV (0) be the true joint pdf of €, ~ (0,02H,). Let E? denote the expectation with respect to
pn(6o), to differentiate from the usual notation E that corresponds to pl(6y).

Now consider €,(3,\) = A,(\)Y,, — X,,8 = By(Nen + bn(B, A), where B, (A) = A,(\) A"
and b, (3,\) = A, (M)A, X, 80 — X, 8. Then, with £,(0) given in (2), we have

El,(00)] = —2In(270%) +1In|4,| -2,

E[(,(60)] = —2In(2m0?)+1n|A,| —%, as + ZZ 1hei=1

Efln(0)] = —%Wn(210%) +In|An(N)] = 5oz [ogtr(B,(A) Ba(N) + b7,(8, \)ba(53, N,
E[ta(0)] = —%In(2m0%) +In|A,(N)| = gz [0§tr(Hp Bl (X) Ba(N)) + b7,(8, \)ba(53, N,

where we have used the identities, B,,(Ag) = I, and b, (5o, Ag) = 0. Now using the identities
A,(N) = A, + (Ao — N)W,, and B, (A) = I, + (Ao — )Gy, we have,

E[((0)] — E1[¢,(0)]
= 2(Xo — N [tr(HoG) — tr(Gn)] + (Mo — N2[tr(H,GLGy) — tr(GLG)] = o(1),

where the last equality holds by assumptions Cov(gy, h,) = o(1) and Cov(gyn, h,) = o(1).

Now by Jensen’s inequality, 0 = log Eq(;?(—%?)) > E4] log ( ; :L((g? ) )], and the above results, we
conclude that E[log (;:L((e?))] < 0 or Ellogp,(0)] < E[logpn(6o)]. Thus,

En(/\> = maxg 52 E[logpn(9>] < maxg »2 E[logpn(90>] [logpn(90>] - en(/\())u for A # Ao.

The identification uniqueness condition thus follows.

Condition (b): Note that 2[¢5(\) — £5(\)] = —3[log(62())) — log(52(A))]. By the mean
value theorem, log(62(\)) —log(62()\)) = 2(/\)[ 7%(/\) —&2()\)], where 62()\) lies between 62(\)
and 62 (\). Using M, A, (\) Yy, = (Ao — A) My, + My Ay (M)A, e, we can write,

&721(/\> = </\0 - /\>2 1772Mn77n + 2</\0 - /\>T1n(/\> + T2n(/\>u (B'l)

where T1,(X) = L0, M, A, (V) A, e and To, () = Lel, ATAL (M) M AL (M) AL ey

Using A, (X) = A, + (Ao — \)W,, we have, T1,(X) = op(1) uniformly. Further, T5,()\) =
Lel ALTAL (N An(N) A, Lento0,(1), since, 2el, AnLAL (A Py Ay (M) Ay ten, = L[el, Puet2€, Gl Poey+
e, G, P,Grep] = 0p(1) uniformly, using the condition Cov(hy,gn) = o(1). Now, Lemmas A.1
- A.3 imply, #Var(e;LA;IA;L(/\)An(/\)Aglen) = o(1). Then, together with the Chebyshev’s

inequality, Ton(\) — Ug%tr[HnA;L_lA;L(/\)An(/\)A_l] = 0p(1), uniformly for A € A.

n
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It left to show o2(\) (defined in Assumption 6 and the main part of 52()\)) is uniformly
bounded away from zero. Suppose ¢2(\) is not uniformly bounded away from zero. Then
3{An} C A such that 02(\,) — 0. Consider the model with 3y = 0. The Gaussian log-likelihood
is Uy (0) = —2 log(2m0?) +1log |An(A)| = 2z Yy A7 (A) An(A) Yy, and £ 5, (A) = max,2 E[¢; ,(6)]. By
Jensen’s inequality, we have £;,,(\) < max,2 E[l;,(00)] = €:.n(Ao). Then together with Lemma
A.2, we have 2[0;,(A) — € n(Xo)] < 0, and —%log(02(N)) < —%log(o3) + (log|An(Xo)| —
log |[An(A)]) = O(1). That is, —%log(c2())) is bounded from above which is a contradiction.
Hence, 02()) is bounded away from zero uniformly, and 2 log(c2())) is well defined VA € A.

Collecting all these results we have, supyc 2[5 (A) — €5 (A)]| = 0p(1), completing the proof

of consistency part.

To prove the asymptotic normality, first note that tr(H,,) = n. By the mean value theorem,

\/ﬁ(én —6y) = — [%%{;én@)]_lﬁ%én(eg), where 6, lies elementwise between 6, and 6y. By
Assumptions 1-6 and the central limit theorem for vector linear-quadratic forms of Kelejian

and Prucha (2010, p. 63), we have -=20,(6)) - N(0,%), where £ = lim %, and 5, =
V/n 00
1 0 B) " n—o00

Let Hp(0) = 527:6n(6). Tt left to show (i) 1H,,(6,) — H,, = 0,p(1) and (ii) H, — L, = 0p(1).

Condition (i): By Assumptions 3-5 and the assumption that Cov(h,, g,) = o(1) stated in
the theorem, Lemma A.2-A.3, 6,, — 6, = op(1), en(Bn, :\n) = X, (6o — Bn) + (Ao — :\n)WnYn +en
and %eﬁl(ﬁn, :\n)en(Bn, /N\n) =Llde, + op(1), we have,

Hngp(0n) = Hnps = (Jz = 72) s X0 Xn = 0p(1),

Hn,o2,8(9~n> —Hpozg = #G;LXW/ - %an(Xn(BO - Bn) + (Ao — :\n>WnYn +€n) Xn = Op(1>a

Hno202 (én> —Hno202 = %(0'_186{'71677' - %25%(5”)5”(5”)) - %(% - &%) = op(1),

Hnas(0n) = Hurs = (57 = 32) 5 YaWiXn = 0p(1),

k] 0’2 6’2
~ 0 n ~ ~
Hn,/\a2(9n> _Hn,Ao2 = JinYr;”éfn_ 5inY7€”7/L(Xn(ﬂO_Bn>+</\O_ n)”?LYn +€n> = Op(1>u
Hoan(On) = Huan = (2 — 22) LYIWEWLY, + 160(G2) — (G2 (0n) = 0p(1),
0 n

where the last equality holds since tr(G2) — tr(G2(An)) = 2tr(G2(An)) (Ao — Ay) by the mean
value theorem for some \,, between Ao and \,,.

Condition (ii): Given E(e,e,) = oftr(H,), E(e,Gnen) = optr(H,Gr), E(e,GLGnen) =
ogtr(H,G,G,) and Lemma A.1-A.3, we have, Var(te,e,) = n—g(E(ef”) — ogtr(H2)) = o(1),
Var(Le,Gpe,) = # Yo gi“[E(ef”) — 304h?] + #Ualtr[HnGn(G;LHn + H,G,)] = o(1) and
similarly Var(le,G],Gpe,) = 0,(1). Collecting these results and the Chebyshev inequality, we

have,

Hnps —Inps =0,

Moo2p = Inozg = Op( ) = 0p(1),
Hp o202 = Ino2or = o5 (5™ — 05) = 0p(

Hurg —Inps = 3 X5Gnen = Op(J) = 0p(1),

Horo? —Ipro2 = Ua%ne%(}’nen — —tr(H,Gp) + Op(%) = 0p(1) and




Hoor — Iy = 26,GhGre, — 2tr(H,GLGy) + Op(ﬁ) = op(1).

Proof of Theorem 2: Let E(¢%()\)) = ¢*(\). By Theorem 5.9 of van der Vaart (1998),
the proof of consistency of A, requires (a) Convergence: supye x|t (A) —4*(A)| = 0,(1) and (b)
Identification uniqueness: for € > 0, infy.gx rg)>e|¥*(A)] > 0 = [¢*(Ag)].

The proof of Theorem 1 implies that 52(\) is bounded away from 0 with probability one for
large enough n. Thus, the modified QML estimator \,, = arg{t*(\) = 0} is equivalently defined
as A, = arg{Y; Al (\)M,GS(A\)A,(\)Y, = 0}, suggesting that we can work purely with the
numerator Tj,(A) = Y A" (\) M, G%(A) An(N)Y, of 9(A) to establish consistency. Note Tj,(\) =
YAA;L(/\>MnGn(/\>An(/\>Yn_Y7;A;L(/\>Mndiag<Mn>_ldiag<MnGn(/\>>An(/\>Yn = Tin(A) —T2n(A).

);

Condition (a): By M, X,, =0, A,(\) = A, + (Ao— MW, and G, A, = W,, = G, (M) An(A

= YA M,GrAnYy + (Mo — MY/ AL Gl MpGnA,Y,

= & MyGn(XnBo+ en) + (Ao — M) (Xnfo + €n) G MyGr(Xnflo + €n).  (B-2)
Then, E(T1,(N) = (Ao — N) By Xn Gl MG X B0 + optr(Hy M, Gr) + 03 (Mo — ANtr(H, Gl M, G).
By Lemma A.3 and Assumptions 5 and 6, we have £[T1,(A) — E(T1,()))] = 0,(1). Now, as M,

appeared in Ty, is a projection matrix, by Lemma A.2, similar arguments as for 77, (\) lead to
#[T2n(N) = E(T2n(N))] = 0p(1). Thus, :{Tw(A) = E[T,(A)]} = 0p(1).

Condition (b): First, we have E[T,,(\o)] = 0, as tr[H,M,diag(M) ‘'diag(M,G,)] =
tr[diag( H, M, diag(M)~1)diag(M,,G,,)] = tr(H,M,G,,). Now,

E[T,(N)] = By X5 A AL (V) MG (N An(N) A X fo+ g tr(Hu Ay AL (V) MG (A An (M) AL

n

By Assumption 6* and Lemma A.2, E[T,,(\)] # 0, for any A # Ao. It follows that the conditions
of Theorem 5.9 of van der Vaart (1998) hold, and thus the consistency of A,, follows.

To prove asymptotic normality, we have, by the mean value theorem,

0 = i (An) = Vi (Mo) + g (An)vi(An = Xo), (B-3)

where ), lies between ), and Ag. It suffices to show that () %z/;;;(/_\n) — %z/;;(/\g) = op(1), (1)

%z/;;(/\g) — E(%ZE;(A())) = op(1), and (ii) E(%z/;;;(/\g)) # 0 for large enough n. Note,
K00 = oy AL G ()Mo VY —

Y/ AL (NG () MW, Y, +

AT VWG (V)M Ay(A)Y,

2 Y AL (NG (A MpAn(N)Yy, - YW My An(N) Yo,

n02 2(N\) n204 E(N)

where G5 (\) = £GS(\) = G2()\) — diag(M,) "'diag(M,G2(\)).

Condition (i): 2Y/W/M,A,(A\)Y, = LYW!M,A,Y, + (Ao — X)) Y, W, M, W,.Y,, =
%YAW/LMnAnYn + 0p(1). Next, by Assumptions 4 and 5 and continuous mapping theorem,
GS(A) = Go+0p(1) and G5 (An) = GS+0,(1). These lead to 2Y; AL (M) GS (M) My Ay (M) Yy, =
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Ly AL G M, ALYy +o0p(1), and 1Y/ AL (X,) G2 (A ) My Ay (W)Ys = 1Y) AL G M, ALYy, + 0p(1),
after some algebra. Similarly, %Y’W’GO (An) My Ap(Ap) Yy, = 1Y’Y/V’G’O M,A,Y, + 0,(1), and
%YéA;L(;\n)G%/(;\n)ManYn = %YAA;LGO M, W, Y +0p(1). Collecting these results and observ-
ing 7 (An) = 67 (Xo) + 0p(1), we have ﬁwn( n) = d,\wn( 0) = op(1).

Condition (ii): Note that,

Lpr(N) = %Y;A;G;{Mn%m - ﬁYnWJLGSL/MnAnYn - éYnA;LG;{ManYn
2203 (YéA;LG%/MnAnYn) (Y Wi MpAnYs) + op(1) = Z?:l Tin + 0p(1).

Using M, A,Y, = Mye, and the result %aﬁlen = 0p(1) for a vector a, of uniformly bounded
elements, we can readily verify that Ty, = %eg(}'ﬁ;en +0p(1), Toy, = —%egG%Gnen + 0p(1),
T3, = ——( i + €,G Gren) + 0p(1), and Ty, = 0,(1), by Lemma A.2. It follows that

~E[fon ()] = 1tr[Ha(GRGn + G5 G = G + sz ¢ + 0(1) = @+ 0(1),

and that (o) — E[ (M) = op(1).
Condition (iii): By Assumptions 3-6 and Lemmas A.2 and A.3, it is easy to see that
®,, # 0 for large enough n, and thus E(%ZZJ;;(A())) = 0 for large enough n.

Proof of Theorem 3: Recall 8, = (X' X,)) ' X/ A, (\,)Y,. We have,
V(B = Bo) = (X0 Xn) T T Xnen — Vi(hn = A0) (3 X0 X0) T 5 X0 + Op (). (B-4)

Cramer-Wold device leads to the asymptotic normality of \/ﬁ(Bn —fp). Clearly, the asymptotic
mean of \/ﬁ(Bn — fo) is zero and the asymptotic variance of it can be easily found using the
results in Theorem 2 and in its proof. In particular, the covariance between the two terms in
(B-4) is —2&, (X! X)) 1 X/ (005, BE + Hyconlh) Xn (X)) X,,) 7L, where BE = diag(B,,).

The limiting distribution of v/n(62 — 03) can be found in a similar manner from

Vi(a, = og) = VaRYIAL (M) M An(An)Ys — o]

= ﬁ(dﬁn —nod) + 2vn(A, — Xo)Lodtr(H,Gr) + op(1),

which has a limiting mean of zero and first-order variance:

77%(57%) = %Z?:l Var(%,i) + %U(%Tg(:\n>tr2(HnGn> 200tr<H Gn)®, n3n~

Proof of Corollary 1: To prove the consistency of 72()\,) as an estimator of 72(\,), we
need to prove (a) ®,, — @, = 0,(1), and (b) 72(v%) — 72(4b%) = 0,(1). First, (a) follows from
the proof of Theorem 2 (the asymptotic normality part). To prove (b), as 62 = 03 + 0,(1) by
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Theorem 3, it suffices to show that, by the consistency of 6,, and referring to (18) and (19),

% Dict (fgu 7211 - Var(fnvifnﬂ) = op(1),

where &, ; = (ni + b ii€ni + Cpn - This follows immediately by the Theorem Al and the poof of
Theorem 1 of Baltagi and Yang (2013b).

The consistency of 72(f3,,) follows that of 72(),) and the consistency of 6,,.

Finally, the same procedure proves the same set of the results for the regular QMLEs Bn

52
and o;,.
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Table 1: Empirical Mean(rmse)[sd]{sd} of Estimators of A for SAR Model
Cases when Regular QMLE is Consistent

n | QMLE | MQMLE |  RGMM | ORGMM
DGP 1: Constant Circular Neighbours (REG-1), [y =(3,1,1)
100 | .464 (.105)[.098]{.002} | .473(.117)[.114]{.099} | .469(.121)[.117] | .479(.132)[.130]
250 | .488(.061)[.060]{.064} | .492(.063)[.063]{.059} | .489(.064)[.063] | .494(.071)[.071]
500 | .494(.043)[.043]{.046} | .497(.043)[.043]{.042} | .495(.043)[.043] | .498(.048)[.048]
1000 | .497(.030)[.030]{.032} | .498(.030)[.030]{.029} | .498(.030)[.030] | .498(.033)[.033)]
100 | .212(.133)[.127){.115} | .230(.128)[.127){.123} | .221(.132)[.129] | .232(.146)[.145]
250 | .233(.080)[.078]{.078} | .246(.081)[.081]{.079} | .242(.082)[.081] | .247(.090)[.090]
500 | .245(.052)[.052]{.054} | .245(.054)[.054]{.054} | .243(.054)[.054] | .244(.060)[.059]
1000 | .246(.041)[.041]{.040} | .247(.039)[.039]{.038} | .246(.039)[.039] | .247(.043)[.043)]
100 | -.033(.153)[.149]{.142} | -.014(.150)[.149]{.142} | -.024(.156)[.154] | -.009(.172)[.172]
250 | -.017 (.090)[.089]{.089} | -.007(.091)[.091]{.089} | -.011(.092)[.092] | -.005(.102)[.102]
500 | -.006 (.063)[.063]{.062} | -.002(.061)[.061]{.064} | -.004(.061)[.061] | -.002(.069)[.069]
1000 | -.006(.046)[.046]{.046} | -.003(.043)[.043]{.045} | -.005(.043)[.043] | -.003(.047)[.047]
100 | -.285(.155)[.151){.149} | -.272(.171)[.169]{.167} | -.286(.176)[.173] | -.275(.200)[.198]
250 | -.266(.101)[.100]{.100} | -.258(.100)[.100]{.099} | -.264(.101)[.100] | -.260(.112)[.112]
500 | -.259(.070)[.070]{.072} | -.255(.070)[.070]{.070} | -.258(.070)[.070] | -.256(.077)[.076]
1000 | -.253(.050)[.050]{.050} | -.250(.050)[.050]{.049} | -.252(.050)[.050] | -.250(.055)[.055]
100 | - 524( 172)[.170]{.179} | -.506(.172)[.172]{.162} | -.521(.175)[.174] | -.513(.195)[.194]
250 | -.515(.108)[.107]{.112} | -.505(.104)[.104]{.101} -.511(.104)[.104] -.507(.117)[.116]
500 | - 01( 75)[.075]{.080} | -.497(.075)[.075]{.073} | -.501(.075)[.075] | -.497(.084)[.084]
1000 | -.500(.054)[.054]{.058} | -.499(.051)[.051]{.051} | -.500(.051)[.051] | -.500(.057)[.057]
DGP 2: Constant Circular Neighbours (REG-1), [y =(3,1,1)
100 | .465(.098)[.091]{.093} | .481(.107)[.105]{.009} | .475(.118)[.115] | .488(.142)[.141]
250 | .487(.062)[.061]{.063} | .494(.061)[.060]{.059} | .491(.061)[.061] | .495(.084)[.084]
500 | .494(.041)[.041){.042} | .499(.042)[.042]{.040} | .497(.042)[.042] | .500(.059)[.059]
1000 | .498(.028)[.028]{.028} | .500(.028)[.028]{.029} | .499(.029)[.029] | .499(.041)[.041]
100 | .219(.129)[.126]{.124} | .238(.125)[.125){.124} | .230(.128)[.127] | .251(.168)[.168]
250 | .236(.081)[.080]{.080} | .243(.080)[.079]{.079} | .239(.081)[.080] | .245(.108).108]
500 | .246(.056)[.056]{.059} | .250(.056)[.056]{.053} | .248(.056)[.056] | .251(.080)[.080]
1000 | .249(.039)[.039]{.041} | .251(.039)[.039]{.037} | .250(.039)[.039] | .250(.052)[.052]
100 | -.029(.146)[.143]{.139} | -.010(.143)[.143]{.139} | -.020(.150)[.148] | -.005(.209)[.209]
250 | -.011(.088)[.088]{.087} | -.003(.088)[.088]{.085} | -.008(.089)[.088] | .003(.122)[.122]
500 | -.005(.063)[.063]{.061} | -.008(.064)[.064]{.062} | -.010(.064)[.064] | -.004(.092)[.092]
1000 | -.003(.045)[.045]{.045} | -.001(.043)[.043]{.044} | -.003(.043)[.043] | .000(.060)[.060]
100 | -.276(.158)[.155]{.145} | -.257(.156)[.156]{.153} | -.271(.160)[.159] | -.249(.223)[.223]
250 | -.268(.100)[.099]{.106} | -.261(.099)[.099]{.093} | -.266(.100)[.099] | -.260(.136)[.136]
500 | -.256(.073)[.073]{.077} | -.252(.073)[.073]{.069} | -.255(.074)[.073] | -.254(.102)[.102]
1000 | -.254(.050)[.050]{.050} | -.252(.049)[.049]{.048} -.253(.050)[049] ~.252(.068)[.068]
100 | -.527(.155)[.153]{.163} | -.505(.154)[.154]{.154} | -.519(.158)[.157] | -.511(.221)[.221]
250 | -.505(.101)[.101]{.103} | -.500(.099)[.099]{.097} | -.506(.100)[.100] | -.502(.138)[.138]
500 | -.507(.075)[.075]{.077} | -.502(.072)[.072]{.072} | -.505(.072)[.072] | -.501(.103)[.103]
1000 | -.505(.050)[.049]{.049} | -.503(.050)[.049]{.050} | -.504(.050)[.050] | -.505(.071)[.071]
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Table 1: Cont’d

Ao n | QMLE | MQMLE |  RGMM | ORGMM
DGP 3: Constant Circular Neighbours (REG-1), [y =(3,1,1)
50 100 | .474(.086)[.082]{.004} | .484(.096)[.095]{.089} | .476(.100)[.098] | .480(.149)[.148]
250 | .491(.057)[.056]{.054} | .497(.056)[.056]{.052} | .495(.076)[.076] | .499(.088)[.088]
500 | .493(.040)[.039]{.038} | .496(.040)[.039]{.038} | .494(.040)[.039] | .494(.067)[.067]
1000 | .496(.030)[.030]{.020} | .497(.029)[.028]{.027} | .497(.029)[.029] | .498(.045)[.045]
25 100 | .213(124)[119]{.110} | .231(.119)[.117]{.115} | .221(.125)[.122] | .233(.185)[.184]
250 | .240(.072)[.071]{.079} | .247(.071)[.070]{.067} | .242(.072)[.072] | .244(.116)[.116]
500 | .245(.050)[.050]{.052} | .247(.054)[.054]{.050} | .245(.055)[.054] | .245(.087)[.087]
1000 | .248(.037)[.037]{.038} | .250(.037)[.037]{.035} | .249(.037)[.037] | .250(.057)[.057]
00 100 | -.024(.124)[.122]{.116} | -.015(.140)[.140]{.143} | -.027(.148)[.145] | -.018(.221)[.220]
250 | -.010(.085)[.085]{.082} | -.002(.084)[.084]{.088} | -.007(.086)[.086] | -.002(.133)[.133]
500 | -.006(.059)[.058]{.060} | -.002(.058)[.058]{.058} | -.005(.059)[.059] | -.007(.101)[.101]
1000 | -.004(.045)[.044]{.044} | -.002(.042)[.042]{.041} | -.003(.043)[.043] | .000(.069)[.069]
~25 100 | -.276(.148)[.146]{.156} | -.258(.146)[.146]{.142} | -.272(.152)[.150] | -.261(.236)[.236]
250 | -.260(.093)[.092]{.101} | -.252(.093)[.093]{.096} | -.259(.094)[.093] | -.253(.153)[.153]
500 | -.256(.063)[.063]{.065} | -.254(.065)[.065]{.064} | -.256(.066)[.066] | -.251(.111)[.111]
1000 | -.254(.049)[.049]{.047} | -.250(.049)[.049]{.046} | -.252(.050)[.050] | -.251(.076)[.076]
“50 100 | -.514(.141)[.140]{.153} | -.508(.161)[.161]{.167} | -.526(.165)[.163] | -.513(.246)[.245]
250 -511( 92)[.091]{.098} | -.506(.097)[.097]{.091} | -.512(.099)[.098] | -.514(.155)[.154]
500 | -.503(.069)[.069]{.069} | -.499(.069)[.069]{.067} | -.503(.069)[.069] | -.498(.111)[.111]
1000 | -.503(.051)[.051]{.051} | -.501(.051)[.051]{.049} | -.503(.051)[.051] | -.505(.081)[.081]
DGP 1: Queen Contiguity (REG-1), [y = (.3,.1,.1)
50 100 | .447(.156)[.146]{.136} | .471(.147)[.144]{.148} | .463(. 58)[154] 501(.207)[.207]
250 | .482(.081)[.079]{.088} | .495(.079)[.079]{.079} | .488(.081)[.080] | .499(.085)[.085]
500 | .489(.061)[.059]{.063} | .494(.056)[.056]{.056} | .491(.070)[.069] | .497(.071)[.071]
1000 | .496(.041)[.041){.045} | .497(.042)[.042]{.040} | .495(.042)[.042] | .498(.043)[.043]
25 100 | .207(.170)[.165]{.155} | .231(.167)[.166]{.155} | .219(.172)[.169] | .240(.186)[.186]
250 | .232(.103)[.101){.101} | .241(.102)[.102]{.099} | .234(.104)[.102] | .242(.106)[.106]
500 | .242(.072)[.072]{.072} | .249(.072)[.072]{.070} | .245(.072)[.072] | .250(.074)[.074]
1000 | .244(.050)[.050]{.052} | .247(.050)[.050]{.050} | .245(.050)[.050] | .247(.051)[.051]
00 100 | -.046(.192)[.186]{.173} | -.021(.188)[.187]{.174} | -.036(.195)[.192] | -.021(.205)[.204]
250 | -.019(.117)[.115]{.112} | -.008(.115)[.115]{.112} | -.017(.117)[.116] | -.010(.120)[.120]
500 | -.008(.080)[.080]{.079} | -.001(.080)[.080]{.080} | -.005(.080)[.080] | -.001(.082)[.082]
1000 | -.005(.058)[.058]{.057} | -.002(.058)[.058]{.057} | -.004(.058)[.058] | -.002(.059)[.059]
~25 100 | -.286(.199)[.195]{.192} | -.258(.198)[.198]{.193} | -.277(.205)[.204] | -.264(.218)[.217]
250 | -.272(.122)[.120]{.125} | -.258(.121)[.120]{.120} | -.268(.122)[.121] | -.265(.126)[.125]
500 | -.260(.089)[.088]{.089} | -.253(.089)[.089]{.086} | -.258(.089)[.089] | -.256(.090)[.090]
1000 | -.256(.063)[-063]{.064} | -.252(.063)[.063]{.061} | -.255(.063)[.063] | -.254(.064)[.064]
~50 100 | -.526(.194)[.192]{.201} | -.502(.194)[.194]{.187} | -.521(.197)[.196] -.521( 14)[.213]
250 | -.513(.122)[.121]{.128} | -.501(.122)[.122]{.122} | -.513(.124)[.123] | -.514(.128)[.127]
500 | -.504(.087)[.087]{.088} | -.498(.088)[.088]{.087} | -.503(.088)[.088] | -.503(.089)[.089]
1000 | -.503(.063)[.063]{.061} | -.500(.063)[.063]{.063} | -.502(.063)[.063] | -.502(.064)[.064]
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Table 1: Cont’d

Ao n | QMLE | MQMLE |  RGMM | ORGMM
DGP 2: Queen Contiguity (REG-1), [y = (.3,.1,.1)
50 100 | .455(.136)[.129]{.137} | .481(.129)[.128]{.123} | .470(.135)[.132] | .581(.354)[.345]
250 | .480(.087)[.083]{.100} | .493(.078)[.078]{.076} | .487(.080)[.079] | .533(.160)[.157]
500 | .490(.057)[.056]{.057} | .497(.056)[.056]{.054} | .495(.068)[.068] | .518(.088)[.086]
1000 | .496(.042)[.042]{.047} | .499(.042)[.042]{.039} | .498(.042)[.042] | .510(.053)[.052]
25 100 | .206(.171)[.166]{.155} | .233(.166)[.165]{.161} | .224(.180)[.178] | .308(.366)[.361]
250 | .222(.108)[.104]{.105} | .240(.097)[.096]{.004} | .232(.099)[.098] | .272(.139)[.137]
500 | .239(.072)[.071]{.076} | .246(.071)[.071]{.068} | .242(.072)[.071] | .259(.089)[.089]
1000 | .246(.050)[.050]{.050} | .245(.052)[.052]{.050} | .244(.053)[.052] | .257(.070)[.070]
00 100 | -.035(.177)[.174]{.165} | -.023(.184)[.182]{.188} | -.039(.191)[.187] | .002(.243)[.243]
250 | -.019(.116)[.115]{.109} | -.005(.115)[.114]{.106} | -.014(.117)[.116] | .016(.153)[.152]
500 | -.009(.081)[.080]{.078} | -.004(.081)[.081]{.077} | -.008(.082)[.081] | .012(.105)[.105]
1000 | -.004(.057)[.057]{.057} | -.002(.057)[.057]{.056} | -.005(.057)[.057] | .007(.069)[.069]
~25 100 | -.283(.185)[.182]{.190} | -.268(.186)[.185]{.186} | -.285(.192)[.189] | -.254(.251)[.251]
250 | -.270(.122)[.120]{.125} | -.256(.121)[.120]{.114} | -.267(.123)[.122] | -.253(.161)[.161]
500 | -.256(.085)[.084]{.085} | -.250(.085)[.085]{.082} | -.254(.085)[.085] | -.242(.106)[.106]
1000 | -.252(.063)[.063]{.060} | -.249(.063)[.063]{.060} | -.251(.063)[.063] | -.245(.078)[.078]
50 100 | -.518(.195)[.194]{.204} | -.506(.188)[.187]{.180} | -.529(.193)[.190] | -.523(.255)[.254]
250 | -.513(.127)[.126]{.128} | -.501(.127)[.127]{.125} | -.512(.128)[.128] | -.513(.168)[.167]
500 | -.505(.088)[.088]{.084} | -.500(.089)[.089]{.085} | -.505(.089)[.088] | -.500(.110)[.110]
1000 | -.503(.063)[.063]{.060} | -.500(.063)[.063]{.061} | -.503(.063)[.063] | -.501(.077)[.077]
DGP 3: Queen Contiguity (REG-1), [y = (.3,.1,.1)
50 100 | .453(.128)[119]{.126} | .479(.120)[.118]{.109} | .470(.144)[.141] | .631(.463)[.444]
250 | .479(.079)[.076]{.072} | .492(.076)[.075]{.069} | .487(.079)[.077] | .583(.287)[.275]
500 | .486(.056)[.054]{.057} | .492(.054)[.054]{.049} | .489(.055)[.054] | .554(.206)[.198]
1000 | .494(.039)[.038]{.031} | .497(.039)[.038]{.037} | .496(.039)[.039] | .530(.107)[.103]
25 100 | .205(.151)[144]{.146} | .232(.145)[.144]{.148} | .220(.154)[.151] | .354(.469)[.458]
250 | .231(.100)[.098]{.100} | .245(.098)[.098]{.095} | .237(.100)[.099] | .307(.277)[.271]
500 | .237(.071)[.070]{.072} | .244(.070)[.070]{.069} | .240(.071)[.070] | .306(.250)[.244]
1000 | .246(.049)[.049]{.055} | .248(.050)[.050]{.049} | .246(.051)[.050] | .271(.126)[.124]
00 100 | -.048(.164)[.157){.159} | -.015(.169)[.168]{.164} | -.029(.175)[.172] | .057(.327)[.321]
250 | -.018(.106)[.104]{.104} | -.004(.104)[.104]{.099} | -.013(.107)[.106] | .038(.214)[.210]
500 | -.011(.077)[.076]{.075} | -.003(.077)[.076]{.071} | -.008(.077)[.077] | .032(.169)[.166]
1000 | -.004(.055)[.055]{.055} | -.001(.055)[.055]{.053} | -.003(.055)[.055] | .028(.132)[.129]
~25 100 | -.284(.170)[.167){.179} | -.263(.169)[.168]{.163} | -.284(.175)[.172] | -.245(.283)[.283]
250 | -.268(.119)[.117){.110} | -.254(.118)[.117]{.115} | -.265(.120)[.119] | -.220(.214)[.211]
500 | -.258(.081)[.081]{.083} | -.252(.081)[.081]{.079} | -.257(.081)[.081] | -.221(.176)[.174]
1000 | -.252(.059)[.059]{.054} | -.254(.059)[.059]{.056} | -.256(.059)[.059] | -.224(.151)[.148]
50 100 | -.523(.176)[.175]{.180} | -.516(.182)[.182]{.187} | -.539(.192)[.188] | -.528(.312)[.311]
250 | -.514(.120)[.119]{.113} | -.501(.119)[.119]{.118} | -.513(.120)[.119] | -.501(.215)[.215]
500 | -.503(.085)[.085]{.084} | -.500(.085)[.085]{.088} | -.505(.085)[.085] | -.491(.172)[.172]
1000 | -.503(.063)[.063]{.061} | -.500(.063)[.063]{.059} | -.502(.063)[.063] | -.496(.150)[.150]
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Table 2: Empirical Mean(rmse)[sd]{sd} of Estimators of A for SAR Model

Case I of Inconsistent QMLE: Circular Neighbours (REG-1)
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MQMLE RGMM

n | QMLE

Ao

50 = (3, 17 1)/

DGP 1:

AR bl o=l el 7o pilip i oyl ey e N = N =N Vo) ST N e T O ®m 0O w0 ™m0 0| S m —
S o 9oH oSO |IHReeHd e A S om0 go|fRoHeeaHAe e
[ N N S Tl =i Nl GO I B B BN O D R O o O N TN T D %2 R D0 | > o
—N © < MmN N~ o »[M O O (o 0 © i~ -0 N MmO 10 M| <f 0 b~ (0 D HFH(0 DN o H
S S o 9oH oS|It Rt e A e S o 9o og9o|fTRoTeeaHA e e
IR R R R = R =R B O B ERESBRIT IR RE L DS
0O DO e @ O Qo 0w 0o O O 0 DD O|NF A HFD D o I I DD D
R s =B o o o B B R B B o B B e SRS R L B S S N AR SRR =T =R o B B B B I B B R o)
° ° ° T T e e e T R e | ° ° T e e T e T N e |
e o ol el el oy e e o T I Ll ] e = oM N S N M = Nl RNl S
oo 9oH o oco|IfTeeeHde e A oo oHo ocgo|IHfeeHdee A<
M o Mmoo~ ™~ oo o ola o o|wn i ¢ < e mmla S Y vl o ol o 0|l
O 16 F N[~ M 1o »(AN 0 © DM - © N IO O W D S 0 F AN K IO »HAN 0 WO NN - O F I~ O D
oo 9H o oot Rt e A e e oo olHooco|ITeeeHFeeeA e e
N R R R N IS R = Q0S| dn e R AR o Re D0 N
I~ 0 & DN /M < F |7 @ © Q|- D 10 1D D O O M~ & O O 4 9|7 @ © Q| 10 10 FH|DD S DD
A R o B B B e e e T R e B e B B ) R T BT o o B B e e e A A A e O B
° ° L L e e (O O T (R R | ° ° L T L T e e O O Y B R |
>
—

e e ) e e N lrel L e i R aa) B el i) el e le] I N e e N )
mEm o TRl reglgagegecrendlandraeaana e valge el R
954217532763386417533785420653275327641753
S o g|HoE T ReedeeeAd eSS0 o=RISoI T eReeHd A9 Q9
{{{{{{{{{{{{{{{{{{{{:{{{{{{{{{{{{{{{{{{{{
T T el TN oo ool =T m oY o = = e o = = o T e o ol aN N =D ™S <
SIS 80D F| oD F| -0 a5 TR DR 0 b F|m oD F|m KB w
= 0o 9o oo H Lt QRIS oo oH|HoooHeeHdeeeAde Qe
Do T ol g angfo il TR bR R D RN T
S W I3 N|—= N o »(A OV O HMNW OO F— DO NN FANE D AN O W HNM OO H|— >0 N
oo 9H o oot ReTT e A e S oo oo oot eeHFTeea A e e
g P R el Pl S Wl B S-S R TR P div b= i b g g gg R S-S - ip P =
0 OO 2 @ 2O QO 00O O OO Al ol S © QOIW W O OO O
S YT Rdaaaeee el a asag g S RN R N BN R N IS B B R B O B B s SRR TR o
° ° L L L e e O O T R R | ° ° L T L T T e e O O N R |
T m R E s T e n e e TETED v m e o n TS| ag|n e
SE 2RI -CEBI=2L8D 2B ES E2LHICEETBRN b RS Db RSO F o
- oo 9H o ocQo|ITeReeHde e e S oo oS oco|IHfeeHdee e
ST o oo oY R el »n A N N A= ) R R Y o el e N o=
—N M~ 0 9 QA M~ © S| o D[~ I 0 FIO - - o —_. O 10 M| M~ S| > N[O - FIO 0 o
SO o 9oH o oot Reete e eAH e e oo o|lHo oot eeeHFeeeHA e e
e R R AR B R R I I R R XAEH| =Z oS I RNRITRINNR R
Mmoo O~~~ A QY H O oI A AN NS o MmO O I~ QY Hd O oMM N A N H o <
AR R N o A B e e e el A I B B I R RS S I B o Bl e R R I B e B N
° ° ° T T e T e T O R | ° ° ° N T O I e T T O Y R |
S O O 9O O O 9| O O 9|l O o ol o o <9 S O O 9O O O 9| O O Ol O O o o o 9
S 0 O QOO0 1H O OO0 0O O OO0 W O OO0 v O 9O S 1O O OO0 1H O OO0 0O O OO0 v O OO0 v O 9O
— AN 10 Ol N 10 Ol N 10 Ol AN 1o O~ N 1o O — AN 10 Ol N 10 Ol N 10 O+ AN 10 O~ N O
— — — — — — — — — —

=) L0 = =) L0 =

2 o S 2 o S

26



Table 2: Cont’d

Ao
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-
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)

56

-.50

100 | -.
250 | -
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1000 | -.

D e T T Lo BN

MQMLE |
DGP 3: [ =(3,1,1)
.486(.087)[.086]{.079}
495(.054)[.054]{.049}
497(.04 041]{ 039}
1499(.027)[.027]{.026}
:230(.110)[.108]{.099}
243(.069)[.068]{.063}
244(.054)[.053]{.049}
248(.03 034]{ 033}
-.008(.120)[.120]{.119} | -.
-.003(.072)[.072]{.069} | -
~.004(.057)[.057){.054} | -.
-.002(.038)[.038]{.037} | -.
-.260(.123)[.123]{.120} | -.
_.250(.077)[.077){.072} | -
-.255(.058)[.058]{.056} | -
-.250(.039)[.039]{.038} | -.
-.486(.110)[.109]{.112} | -.
-.502(.074)[.074){.070} | -
-.499(.061)[.061]{.059} | -
-.500(.038 [038]{.036} -
DGP 1: = (.3,.1,.1)
A74(.12 7. 119}
1489(.080)[.079]{.075}
494(.054)[.054]{.053}
1499(.037)[.037]{.038}
226(.155)[.153]{.149}
238(.097)[.097]{.096}
243(.069)[.069]{.068}
246(.049)[.049]{.048}
-.023(.17 68]{165} -
-.009(.114)[.113){.117} | -
~.004(.078)[.078]{.077} | -
~.002(.052)[.052]{.054} | -.
~.270(.176)[.175){.172} | -.
51(.11 110]{111} -
~.252(.079)[.079]{.079} | -
-.252(.055)[.055]{.056} | -.
-.496(.164)[.164]{.159} | -.
-.504(.103)[.103]{.102} | -
-.501(.073)[.073]{.073} | -
-.498(.05 51]{.052} -

(-0
-.535(.
-.516(.10
-.507(.074
-.501(.0

)10
213)[.21
7)[10
)[.07
)10

51
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Table 2: Cont’d

Ao n | QMLE MQMLE ORGMM
DGP 2: [y =(3,.1,.1)
50 100 | .416(.147)[.1 (.123)[.121){.119} 1592(.342)[.329]
250 | .438(.101)[.08 (.081)[.080]{.079} 528(.157)[.154]
500 | .448(.074)[.05 (.053)[.053]{.052} 511(.068)[.067]
1000 | .452(.061)[.03 (.038)[.038]{.037} 508(.047)[.047]
25 100 | .184(.152)[.13 (.154)[.154){.157} 304(.305)[.301]
250 | .203(.100)[.08 (.097)[.097){.091} 271(.149)[.147]
500 | .211(.073)[.06 (.067)[.067){.066} 264(.109)[.109]
1000 | .217(.055)]. (.048)[.048]{.047} :258(.058)[.058]
00 100 | -.040(.144)]. (.171)[.169]{.164} | -. ( .014(.262)[.262]
250 | -.016(.091)[.08 (.107)[.107){.104} | -.016(. .008(.134)[.134]
500 | -.007(.063)[.06 (.075)[.075]{.074} | -.006(. .008(.090)[.090]
1000 | -.003(.046)[.04 (.054)[.054]{.053} | -.003(.05 .006(.066)[.066]
25 100 | -.232(.133)]. (.169)[.169]{.159} | -.281(.18 -.254(.266)].266]
250 | -.216(.090)[.08 (.106)[.106){.107} | -.262(. -.249(.138)[.138]
500 | -.210(.073)[.06 (.077)[.077){.077} | -.255(. .246(.088)[.088]
1000 | -.207(.063)[.04 (.057)[.057){.055} | -.251(. 247(.067)[.067]
50 100 | -.424(.148)[.1 (.163)[.163]{.160} | -.535(. -.549(.246)[.241]
250 | -.410(.123)[.08 (.105)[.105){.099} | -.507(. 513(.151)[.151]
500 | -.409(.108)[.05 (.071)[.071){.072} | -.504(. -.507(.086)[.086]
1000 | -.409(.100)]. (.050)[050]{051} ~.506(. -.509(.063)[.062]
DGP 3: [y = (.3,
50 100 | .416(.147)]. (118)[116]{099} (.13 1652(.453)[.426]
250 | .439(.096)]. (.071)[.070){.065} (.07 572(.247)[.236]
500 | .449(.074)][. (.050)[.050]{.048} (.05 547(.189)[.184]
1000 | .453(.060)]. (.034)[.034){.035} (.03 523(.104)[.101]
25 100 | .174(.153)]. (.147)[.144){.137} (16 :335(.387)[.378]
250 | .210(.089)]. .249(.087)[.087]{.083} (.087)]. :310(.245)[.237]
500 | .211(.072)[. .244(.065)[.065]{.061} (.066)]. 283(.198)[.195]
1000 | .214(.057)]. (.046)[.046]{.044} (.0 266(.116)[.115]
00 100 | -.027(.135)]. (.161)[.160]{.153} | -. (17) 077(.422)[.414]
250 | -.014(.087)[.08 (.103)[.103]{.099} | -.013(.105)]. .052(.263)[.258]
500 | -.008(.059)]. (.070)[.070){.069} | -.008(.071)]. .026(.151)[.149]
1000 | -.003(.042)]. (.050)[.050]{.050} | -.003(.050)[.0 .025(.116)[.114]
25 100 | -.234(.131)[ (.172)[.172){.179} | -.288(.184)[.180] | -.238(.295)[.295]
250 | -.218(.090)]. (.105)[.105){.099} | -.262(.107)]. -.223(.239)][.238]
500 | -.213(.073)[.06 (.076)[.076]{.071} | -.256(.077)]. -.233(.161)[.160]
1000 | -.208(.062)]. (.055)[.055]{.053} | -.252(.055)[.055] | -.238(.128)[.127]
50 100 | -.418(.151)[.12 (.158)[.158]{.151} | -.526(.178)[. -.544(.304)[.301]
250 | -.411(.126)]. (.105)[.105){.099} | -.511(.105)]. -.508(.199)[.198)
500 | -.408(.113)]. (.073)[.073]{.069} | -.504(.072)]. -.501(.156)[.156]
1000 | -.403(.109)[.049 (.051)[.051){.049} | -.498(.051)]. 502(.129)[.129]
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Table 3: Empirical Mean(rmse)[sd]{sd} of Estimators of X for SAR Model

Case II of Inconsistent QMLE: Group Interaction (REG-2)

| ORGMM

MQMLE RGMM

n | QMLE

Ao

50 = (3, 17 1)/
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Table 3: Cont’d

n | QMLE | MQMLE | RGMM | ORGMM

DGP 3: [ =(3,1,1)

100 | .433(.115)[.094] | .484(.090)[.089]{.081} | .476(.110)[.107] | .485(.138)[.138]
250 | .469(.062)[.054] | .500(.053)[.053]{.050} | .495(.055)[.055] | .503(.076)[.076]
500 | .473(.046)[.037] | .497(.036)[.036]{.035} | .494(.037)[.037] | .496(.051)[.051]
1000 | .478(.035)[.027) | .500(.026)[.026]{.026} | .498(.027)[.027] | .502(.038)[.038]
100 | .173(.145)[.123] | .232(.125)[.124]{.114} | .221(.150)[.147] | .236(.187)[.186]
250 | .211(.086)[.077] | .243(.079)[.079]{.071} | .236(.084)[.083] | .247(.115)[.115]
500 | .225(.056)[.051] | .248(.052)[.052]{.051} | .244(.054)[.053] | .250(.078)[.078]
1000 | .228(.044)[.038] | .246(.039)[.039]{.038} | .244(.040)[.039] | .248(.056)[.056]
100 | -.078(.169)[.150] | -.026(.174)[.172]{.164} | -.044(.188)[.183] | -.019(.229)[.228]
250 | -.030(.098)[.093] | -.008(.102)[.102]{.099} -.1(107)[106] -.002(.145)[.145]
500 | -.017(.066)[.063] | -.005(.069)[.069]{.066} | -.012(.071)[.070] | -.005(.097)[.097]
1000 | -.007(.047)[.046] | -.001(.050)[.050]{.048} | -.005(.051)[.051] | -.003(.073)[.073)]
100 | -.305(.178)[.170] | -.270(.197)[.196]{.199} | -.291(.218)[.214] | -.262(.280)[.280]
250 | -.262(.104)[.103] | -.264(.123)[.122]{.119} | -.272(.124)[.122] | -.256(.173)[.173]
500 | -.248(.071)[.071] | -.259(.081)[.080]{.078} | -.265(.082)[.081] | -.256(.115)[.115]
1000 | -.234(.055)[.053] | -.251(.059)[.059]{.057} | -.255(.060)[.060] | -.249(.090)[.090]
100 | -.535(.181)[.177] | -.530(.218)[.216]{.223} | -.555(.236)[.229] | -.528(.304)[.303]
250 | -.474(.118)[.115] | -.515(.148)[.147]{.139} | -.523(.142)[.141] | -.505(.195)[.195]
500 | -.457(.091)[.080] | -.504(.094)[.093]{.092} | -.509(.091)[.090] | -.500(.125)[.125]
1000 | -.449(.081)[.063] | -.502(. 069)[069]{.067} -.505(.069)[.069] | -.498(.101)[.101]
DGP 1: fy=(.3,.1,.1)
100 | .364(.203)[.150] | .456(. 148)[141]{129} 419(.219)[.204] | .423(.234)[.220]
250 | .433(.105)[.080] | .487(.079)[.078]{.073} | .468(.095)[.090] | .469(.095)[.090]
500 | .450(.073)[.053] | .494(.053)[.053]{.051} | .482(.057)[.054] | .483(.057)[.054]
1000 | .460(.054)[.036] | .497(.036)[.036]{.036} | .491(.038)[.037] | .491(.038)[.037]
100 | .092(.246)[.188] | .193(.206)[.197]{.185} | .126(.269)[.239] | .127(.289)[.261]
250 | .178(.129)[.107] | .232(.114)[.112]{.109} | .203(.126)[.116] | .202(.127)[.117]
500 | .202(.084)[.069] | .242(.074)[.073]{.073} | .225(.079)[.075] | .225(.079)[.075]
1000 | .215(.059)[.048] | .246(.051)[.051]{.051} | .238(.053)[.051] | .238(.053)[.051]
100 | -.150(.258)[.211] | -.070(.257)[.247]{.233} | -.161(.331)[.289] | -.159(.346)[.307]
250 | -.060(.141)[.127] | -.028(.148)[.146]{.133} | -.066(.164)[.150] | -.066(.165)[.151]
500 | -.030(.090)[.085] | -.011(.097)[.097]{.093} | -.033(.104)[.099] -.032( 04)[.099]
1000 | -.016(.059)[.057] | -.007(.065)[.065]{.066} | -.018(.068)[.066] | -.018(.069)[.066]
100 | -.365(.241)[.212] | -.328(.294)[.283]{.272} | -.441(.381)[.330] | -.432(.409)[.366]
250 | -.260(.127)[.126] | -.264(.159)[.158]{.156} | -.308(.172)[.162] | -.309(.173)[.162]
500 | -.243(.093)[.093] | -.263(.116)[.115]{.110} | -.289(.123)[.117] | -.289(.123)[.117]
1000 | -.228(.071)[.068] | -.258(.084)[.084]{.088} | -.271(.087)[.085] | -.272(.088)[.085)]
100 | -.556(.216)[.209] | -.581(.312)[.301]{.299} | -.712(.409)[.350] | -.706(.404)[.347]
250 | -.464(.137)[.132] | -.526(.185)[.183]{.179} | -.576(.202)[.186] | -.579(.204)[.188]
500 | -.439(.113)[.095] | -.514(.129)[.128]{.124} | -.543(.137)[.130] | -.544(.138)[.131]
1000 | -.423(.101)[.066] | -.506(.089)[.089]{.088} | -.520(.092)[.090] | -.521(.092)[.090]
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Table 3: Cont’d

Ao n | QMLE MQMLE |  RGMM | ORGMM
DGP 2: [y =(3,.1,.1)

50 100 | .361(.206)[.152] | .453(.150)[.143]{.137} | .426(.251)[.240] | .518(.396)[.396]
250 | .435(.103)[.080] | .489(.078)[.077]{.070} | .469(.085)[.079] | .510(.185)[.185]
500 | .453(.070)[.052] | .496(.050)[.050]{.049} | .485(.053)[.051] | .502(.113)[.113]
1000 | .460(.054)[.037] | .497(.036)[.036]{.035} | .492(.038)[.037] | .494(.042)[.042]

25 100 | .098(.241)[.187] | .197(.202)[.194]{.186} | .134(.269)[.242] | .230(.459)[.459]
250 | .176(.131)[.108] | .229(.116)[.114]{.109} | .199(.128)[.117] | .231(.219)[.218]
500 | .200(.086)[.070] | .239(.075)[.074]{.071} | .222(.080)[.075] | .234(.113)[.112]
1000 | .215(.062)[.052] | .246(.055)[.055]{.051} | .238(.057)[.055] | .239(.062)[.061]

00 100 | -.144(.254)[.209] | -.064(.257)[.249]{.241} | -.154(.314)[.273] | -.029(.573)[.573]
250 | -.052(.127)[.116] | - 1( 32)[.131]{.129} | -.054(.146)[.136] | -.015(.267)[.266]
500 | -.032(.091)[.085] | -.014(.098)[.097]{.090} | -.036(.105)[.099] | -.024(.119)[.116]
1000 | -.018(.063)[.060] -009( 69)[.069]{.065} | -.020(.072)[.069] | -.014(.082)[.081]

25 100 | -.354(.235)[.211] | -.311(.283)[.276]{.265} | -.423(.348)[.302] | -.320(.534)[.529]
250 | -.264(.131)[.130] | -.268(.164)[.163]{.159} | -.312(.180)[.168] | -.278(.271)[.269]
500 | -.241(.090)[.089] | -.260(.110)[.109]{.106} | -.286(.117)[.111] | -.269(.136)[.135]
1000 | -.228(.067)[.064] | -.257(.078)[.078]{.077} | -.270(.081)[.078] | -.266(.092)[.091]

50 100 | -.543(.218)[.214] | -.559(.308)[.302]{.296} | -.696(.424)[.376] | -.621(.616)[.604]
250 | -.468(.138)[.135] | -.532(.186)[.183]{.179} | -.583(.203)[.186] | -.563(.248)[.240]
500 | -.444(.113)[.098] | -.520(.129)[.128]{.122} | -.549(.138)[.129] | -.538(.161)[.156]
1000 | -.420(.104)[.066] | -.503(. 086)[086]{.087} ~.517(.088)[.086] | -.512(.101)[.100]

DGP 3: [y =(.3,.1,.1)

50 100 | .378(.186)[.140] | .470(. 131)[127]{114} 439(.225)[.217] | .575(.428)[.421]
250 | .434(.100)[.076] | .487(.071)[.070]{.074} | .467(.080)[.073] | .536(.255)[.253]
500 | .450(.074)[.055] | .492(.052)[.051]{.049} | .481(.056)[.052] | .539(.229)[.226]
1000 | .460(.055)[.037] | .497(.035)[.035]{.033} | .491(.036)[.035] | .523(.168)[.167]

25 100 | .109(.217)[.165] | .210(.173)[.168]{.160} | .151(.252)[.232] | .286(.518)[.517]
250 | .183(.120)[.099] | .235(.103)[.102]{.099} | .207(.114)[.106] | .310(.398)[.394]
500 | .205(.081)[.067] | .243(.069)[.069]{.066} | .227(.074)[.070] | .287(.286)[.284]
1000 | .215(.058)[.046] | .246(.048)[.048]{.047} | .237(.050)[.048] | .265(.179)[.179]

00 100 | -.144(.241)[.194] | -.063(.235)[.227]{.199} | -.144(.329)[.296] | .056(.696)[.694]
250 | -.051(.123)[.112] | -.018(.130)[.129]{.119} | -.054(.144)[.133] | .094(.551)[.543)]
500 | -.027(.084)[.079] | -.008(.091)[.090]{.089} | -.030(.098)[.093] | .032(.337)][.336]
1000 | -.015(.058)[.056] | -.006(.065)[.064]{.061} | -.017(.067)[.065] | .020(.210)[.209]

25 100 | -.355(.231)[.205] | -.313(.273)[.265]{.250} | -.432(.357)[.307] | -.193(.780)[.778]
250 | -.267(.129)[.128] | -.272(.162)[.160]{.151} | -.317(.180)[.167] | -.183(.540)[.536]
500 | -.240(.087)[.086] | -.259(.106)[.106]{.100} | -.285(.114)[.108] | -.202(.376)[.373]
1000 | -.224(.068)[.063] | -.254(.075)[.075]{.073} | -.267(.078)[.076] | -.213(.253)[.251]

50 100 | -.544(.209)[.204] | -.557(.290)[.284]{.279} | -.684(.447)[.407] | -.442(.904)[.903]
250 | -.467(.139)[.135] | -.526(.179)[.177]{.168} | -.577(.196)[.180] | -.464(.523)[.522]
500 | -.433(.119)[.099] | -.506(.123)[.123]{.119} | -.535(.130)[.125] | -.412(.483)[.475]
1000 | -.423(.107)[.074] | -.504(.086)[.086]{.083} | -.519(.088)[.086] | -.466(.257)[.255]
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Table 4: Empirical Mean(rmse)[sd]{sd} of Estimators of 3 for SAR Model

Cases of Consistent QMLEs

Y QMLE | MQMLE |  RGMM | ORGMM
DGP 1: Constant Circular Neighbours (REG-1), [y =(3,1,1)

5100 3| 3.220(.644)[-606]{.592} | 3.166(.708)[.688]{.691} | 3.192(.733)[.707] | 3.129(.797)[.786]
1| 1.006(.131)[.131]{.123} | 0.992(.153)[.152]{.143} | 0.989(.152)[.152] | 0.988(.152)[.152]
1| 1.003(.201)[.201]{.203} | 0.990(.229)[.228]{.222} | 0.983(.228)[.228] | 0.981(.229)].229)]

250 3 | 3.089(.396)[.386]{.392} | 3.051(.388)[.385]{.369} | 3.069(.395)[.389] | 3.040(.437)[.435]
1 | 0.999(.096)[.096]{.093} | 0.999(.096)[.096]{.093} | 0.996(.096)[.096] | 0.996(.096)[.096]
1| 1.003(.138)[.138]{.134} | 1.004(.149)[.149]{.144} | 1.002(.149)[.149] | 1.002(.149)[.149]

500 3 | 3.039(.264)[.261]{.276} | 3.019(.261)[.260]{.253} | 3.030(.264)[.263] | 3.013(.290)[.290]
1 | 1.000(.068)[.068]{.068} | 0.996(.070)[.070]{.070} | 0.995(.070)[.070] | 0.995(.070)[.070]
1| 0.999(.106)[.106]{.104} | 0.998(.106)[.106]{.104} | 0.997(.106)[.106] | 0.997(.106)[.106]

5 100 3 | 3.047(.357)[.353]{.360} | 3.011(.356)[.355]{.339} | 3.041(.362)[.360] | 3.024(.400).399)]
1| 0.994(.130)[.130]{.123} | 0.994(.157)[.157){.149} | 0.988(.157)[.157] | 0.988(.158)[.158]
1| 0.995(.226)[.226]{.222} | 0.996(.227)[.227){.222} | 0.988(.226)[.226] | 0.987(.227)[.227]

250 3 | 3.026(.221)[.220]{.230} | 3.011(.220)[.220]{.214} | 3.024(.221)[.220] | 3.016(.246)].245]
1| 0.999(.098)[.098]{.100} | 0.995(.093)[.093]{.094} | 0.992(.094)[.093] | 0.992(.094)[.093]
1| 1.002(.130)[.130]{.135} | 0.992(.143)[.143]{.144} | 0.989(.143)[.143] | 0.990(.144)[.143)]

500 3| 3.001(.157)[-157]{.166} | 2.993(.158)[.157]{.152} | 3.000(.158)[.158] | 2.993(.174)[.174]
1 | 0.998(.067)[.067]{.068} | 0.998(.067)[.067){.070} | 0.997(.067)[.067] | 0.997(.067)[.067]
1| 0.999(.104)[.104]{.103} | 0.999(.104)[.104]{.103} | 0.997(.104)[.104] | 0.998(.104)[.104]

DGP 2: Constant Circular Neighbours (REG-1), 0y = (3,1,1)

5 100 3] 3.207(.597)[.560]{.570} | 3.117(.641)[.631]{.645} | 3.150(.706)[.690] | 3.071(.843)[.840]
1| 1.007(.154)[.154]{.148} | 1.007(.154)[.154]{.148} | 1.003(.154)[.154] | 1.003(.151)[.151]
1 | 1.000(.207)[.207]{.198} | 0.999(.220)[.220]{.211} | 0.993(.220)[.220] | 0.991(.217)[.217]

250 3 | 3.078(.380)[-372]{.345} | 3.041(.372)[.370]{.345} | 3.057(.377)[.372] | 3.029(.512)[.512]
1 | 1.004(.096)[.096]{.092} | 1.004(.096)[.096]{.092} | 1.001(.095)[.095] | 1.001(.095)[.095]
1| 0.993(.141)[.141]{.132} | 1.010(.146)[.146]{.141} | 1.007(.146)[.146] | 1.007(.145)[.145]

500 3| 3.028(.254)[.253]{.229} | 3.009(.252)[.252]{.245} | 3.020(.254)[.253] | 2.998(.357).357]
1| 1.001(.067)[.067]{.068} | 0.996(.071)[.070]{.069} | 0.995(.071)[.070] | 0.995(.070)[.070]
1 | 0.999(.100)[.100]{.097} | 1.002(.108)[.108]{.103} | 1.001(.108)[.108] | 1.000(.108)[.108]

5 100 3 | 3.044(.326)[.323]{.310} | 3.010(.324)[.324]{.316} | 3.039(.331)[.329] | 3.021(.450)[.449]
1| 0.997(.154)[.154]{.141} | 0.999(.154)[.154]{.140} | 0.992(.154)[.153] | 0.993(.153)[.153]
1| 0.999(.235)[.235]{.217} | 1.000(.235)[.235]{.218} | 0.992(.234)[.234] | 0.990(.231)[.231]

250 3 | 3.012(.205)[.205]{.201} | 2.997(.205)[.205]{.206} | 3.010(.206)[.206] | 3.002(.281)[.281]
1 | 1.000(.097)[.097]{.093} | 1.001(.097)[.097){.093} | 0.998(.097)[.097] | 0.999(.097)[.097]
1] 0.997(.147)[.147){.141} | 0.998(.147)[.147]{.142} | 0.994(.147)[.147] | 0.995(.146)[.145]

500 3| 3.010(.148)[.148]{.101} | 3.002(.148)[.148]{.150} | 3.009(.148)[.148] | 3.002(.207)[.207]
1 | 1.001(.070)[.070]{.067} | 0.995(.069)[.069]{.069} | 0.994(.069)[.069] | 0.994(.069)[.069]
1 | 1.000(.104)[.104]{.103} | 1.000(.104)[.104]{.103} | 0.998(.104)[.104] | 0.999(.103)[.103]
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Table 4: Cont’d

Noon B QMLE | MQMLE | RGMM | ORGMM
DGP 1: Queen Contiguity (REG-1), [y = (.3,.1,.1)

5 100 .3 | .338(.154)[.149]{.139} | .323(.146)[.145){.137} | .328(.154)[.151] | .306(.167)[.167]
1| .094(.163)[.163]{.159} | .094(.163)[.163]{.169} | .093(.162)[.162] | .092(.165)[.165]

1| .100(.204)[.204]{.195} | .100(.204)[.204]{.195} | .099(.202)[.202] | .100(.202)[.202]

250 .3 | .310(.082)[-081]{.082} | .303(.080)[.080]{.079} | .307(.081)[-081] | .300(.081)[.081]
1| .109(.096)[.096]{.096} | .109(.096)[.096]{.096} | .109(.096)[.095] | .108(.096)[.096]

1| .101(.139)[.139]{.134} | .096(.141)[.141]{.139} | .096(.141)[.141] | .096(.140)[.140]

500 .3 | .308(.060)[-059]{.059} | .304(.059)[.058]{.056} | .306(.064)[.064] | .302(.064)[.064]
1| .101(.067)[.067]{.068} | .101(.067)[.067]{.068} | .101(.067)[.067] | .100(.067)[.067]

1| .102(.100)[.100]{.098} | .102(.100)[.100]{.098} | .102(.100)[.100] | .101(.100)[.100]

5 100 .3 | .306(.109)[.109]{.106} | .301(.108)[.108]{.104} | .305(.110)[.109] | .304(.110)[.110]
1| .100(.167)[.167]{.157} | .100(.168)[.168]{.159} | .099(.166)[.166] | .097(.168)[.168]

1| .087(.195)[.194]{.185} | .084(.199)[.198]{.189} | .082(.196)[.195] | .082(.196)[.195]

250 .3 | .303(.069)[.069]{.069} | .303(.069)[.069]{.068} | .305(.069)[.069] | .306(.069)[.069]

1| .097(.099)[.098]{.095} | .107(.100)[.100]{.095} | .106(.100)[.100] | .106(.100)[.099]

1| .096(.138)[.138]{.134} | .106(.138)[.138]{.133} | .105(.138)[.138] | .105(.138)[.138]

500 .3 | .301(.048)[-048]{.048} | .297(.049)[.049]{.048} | .208(.049)[.049] | .298(.049)[.049]
1| .100(.069)[.069]{.067} | .101(.069)[.069]{.067} | .101(.069)[.069] | .101(.069)[.069]

1| .100(.097)[.097]{.098} | .100(.097)[.097]{.098} | .100(.097)[.097] | .100(.097)[.097]

DGP 2: Queen Contiguity (REG-1), [y = (.3,.1,.1)

5 100 .3 ] .327(.136)[.133]{.128} | .311(.129)[.129]{.120} | .318(.134)[.133] | .251(.234)[.229]
1| .103(.161)[.161]{.153} | .103(.161)[.161]{.152} | .103(.161)[.161] | .102(.161)[.161]

1| .103(.194)[.194]{.189} | .094(.194)[.194]{.180} | .092(.193)[.193] | .093(.192)[.192]

250 .3 | .311(.080)[.079]{.087} | .304(.078)[.078]{.078} | .308(.079)[.079] | .280(.111)[.110]
1| .104(.095)[.095]{.093} | .108(.097)[.097]{.093} | .107(.097)[.097] | .106(.095)[.095]

1| .096(.130)[.130]{.132} | .096(.130)[.130]{.132} | .096(.129)[.129] | .096(.129)[.129]

500 .3 | .307(.057)[-057]{.064} | .305(.058)[.058]{.056} | .306(.064)[.063] | .292(.070)[.069)]
1| .101(.069)[.069]{.067} | .101(.069)[.069]{.067} | .101(.069)[.069] | .100(.068)[.068]

1| .104(.102)[.102]{.098} | .094(.101)[.101]{.098} | .094(.101)[.101] | .092(.100)[.099]

5 100 .3 | .306(.109)[.109]{.110} | .301(.108)[.108]{.103} | .306(.109)[.109] | .304(.111)[.111]
1| .104(171)[171]{.162} | .104(.172)[.172]{.164} | .103(.170)[.170] | .103(.159)[.159]

1| .101(.194)[.194]{.181} | .089(.194)[.194]{.181} | .088(.192)[.191] | .084(.181)[.180]

250 .3 | .300(.069)[.069]{.072} | .302(.067)[.067]{.066} | .304(.067)[.067] | .303(.070)[.070]
1| .103(.095)[.095]{.093} | .103(.095)[.095]{.093} | .102(.095)[.094] | .101(.092)[.092]

1| .101(.133)[.133]{.132} | .095(.138)[.138]{.130} | .094(.138)[.138] | .093(.133)[.133]

500 .3 | .209(.048)[-048]{.051} | .298(.048)[.048]{.048} | .299(.048)[.048] | .299(.049)[.049]
1| .102(.067)[.067]{.068} | .102(.067)[.067]{.068} | .101(.067)[.067] | .100(.066)[.066]

1| .099(.099)[.099]{.096} | .103(.103)[.103]{.098} | .103(.102)[.102] | .103(.101)[.101]
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Table 5: Empirical Mean(rmse)[sd]{sd} of Estimators of 3 for SAR Model

Case I of Inconsistent QMLEs: Circular Neighbours (REG-1)

n B | QMLE MQMLE RGMM ORGMM
DGP 1: [y =(3,1,1)

100 3 | 3.398(.598)[.719] | 3.116(.596)[.607]{.594} | 3.145(.641)[.624] | 3.104(.679)[.671]
1| 1.001(.125)[.125] | 0.997(.125)[.125]{.118} | 0.993(.125)[.125] | 0.993(.126)[.126]
1| 0.999(.190)[.190] | 0.992(.189)[.189]{.188} | 0.986(.188)[.187] | 0.987(.187)[.187]

250 3 | 3.254(.346)[.429] | 3.055(.350)[.355]{.349} | 3.067(.351)[.345] | 3.048(.370)[.367]
1 | 1.001(.076)[.076] | 0.998(.076)[.076]{.073} | 0.997(.076)[.076] | 0.997(.076)[.076]
1| 1.011(.125)[.125] | 1.004(.124)[.124]{.119} | 1.002(.124)[.124] | 1.002(.124)[.124]

500 3| 3.219(.263)[.342] | 3.024(.265)[.266]{.262} | 3.030(.266)[.264] | 3.021(.281)[.280]
1 | 1.006(.054)[.055] | 1.000(.054)[.054]{.056} | 0.999(.054)[.054] | 0.999(.055)[.055]
1 | 1.008(.090)[.090] | 1.002(.089)[.089]{.089} | 1.001(.089)[.089] | 1.001(.089)[.089]

100 3 | 2.897(.206)[.231] | 2.986(.259)[.259]{.270} | 2.981(.232)[.231] | 2.993(.245)[.245]
1| 1.003(.127)[.127] | 0.999(.127)[.127]{.120} | 0.996(.127)[.127] | 0.995(.127)[.127]
1| 1.014(.191)[.191] | 1.003(.192)[.192]{.194} | 0.996(.192)[.192] | 0.993(.192)[.192]

250 3 | 2.898(.134)[.169] | 3.010(.177)[.177]{.166} | 3.000(.146)[.146] | 3.003(.154)[.154]
1 | 1.005(.072)[.073] | 0.996(.072)[.072]{.074} | 0.995(.073)[.073] | 0.995(.073)[.073]
1| 1.001(.122)[.122] | 0.996(.121)[.121]{.119} | 0.995(.121)[.121] | 0.995(.121)[.121]

500 3| 2.887(.101)[.152] | 3.011(.136)[.137]{.135} | 3.009(.115)[.115] | 3.011(.121)[.120]
1 | 1.003(.055)[.055] | 1.000(.055)[.055]{.055} | 0.999(.055)[.055] | 0.999(.055)[.055]
1 | 1.002(.089)[.089] | 0.995(.089)[.089]{.088} | 0.994(.089)[.089] | 0.993(.089)[.089]

DGP 2: [y =(3,1,1)

100 3 | 3.374(.572)[.683] | 3.104(.568)[.578]{.563} | 3.136(.623)[.607] | 3.092(.767)[.762]
1| 1.009(.122)[.122] | 1.005(.122)[.122]{.115} | 1.001(.122)[.122] | 1.001(.121)[.121]
1| 0.995(.193)[.193] | 0.988(.192)[.193]{.182} | 0.982(.192)[.191] | 0.983(.192)[.191]

250 3 | 3.229(.325)[.397] | 3.030(.327)[.328]{.330} | 3.045(.321)[.318] | 3.021(.399)[.399]
1 | 1.000(.073)[.073] | 0.997(.073)[.073]{.072} | 0.995(.074)[.073] | 0.995(.074)[.074]
1| 1.013(.118)]. 1.006(.117)[.118]{.117} | 1.004(.118)]. 1.005(.118)[.118]

500 3| 3.200(.261)[.329] | 3.003(.262)[.262]{.259} | 3.013(.265)[.264] | 3.005(.343)[.343]
1 | 1.007(.054)[.055] | 1.001(.054)[.054]{.055} | 1.000(.054)[.054] | 1.000(.054)[.054]
1 | 1.006(.089)[.089] | 1.001(.088)[.088]{.087} | 1.000(.088)[.088] | 1.000(.088)[.088]

100 3 | 2.907(.209)[.229] | 3.002(.260)[.260]{.273} | 2.992(.239)[.239] | 2.994(.265)[.265]
1| 0.997(.125)[.125] | 0.993(.124)[.124]{.119} | 0.990(.125)[.124] | 0.991(.124)[.124]
1| 1.016(.198)[.199] | 1.003(.199)[.199]{.195} | 0.997(.200)[.200] | 0.998(.199)[.199]

250 3 | 2.892(.135)]. 3.000(.168)[.168]{.161} | 2.995(.145)[.145] | 2.996(.169)[.168]
1 | 1.010(.075)[.076] | 1.001(.075)[.075]{.072} | 1.000(.076)[.076] | 1.000(.076)[.076]
1| 0.996(.122)[.122] | 0.991(.121)[.121]{.116} | 0.989(.121)[.121] | 0.990(.121)[.121]

500 3 | 2.875(.101)[.161] | 2.997(.133)[.133]{.129} | 2.994(.113)[.113] | 2.991(.137)[.137]
1 | 1.007(.056)[.057] | 1.004(.056)[.056]{.055} | 1.003(.056)[.056] | 1.003(.056)[.056]
1 | 1.010(.090)[.0 1.002(.090)[.090]{.088} | 1.001(.090)[.0 1.001(.090)[.090]
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Table 6: Empirical Mean(rmse)[sd]{sd} of Estimators of 3 for SAR Model

Case II of Inconsistent QMLEs: Group Interaction (REG-2)

o on B QMLE | MQMLE | RGMM |  ORGMM
DGP 1: [y =(3,1,1)

5 100 3 | 3.493(.795)[.623] | 3.146(.645)[.628]{.599} | 3.207(.698)[.667] | 3.196(.714)[.687]
1| 1.131(.253)[.217] | 1.036(.221)[.218]{.205} | 1.043(.237)[.233] | 1.043(.239)].235]
1| 1.096(.272)[.254] | 1.015(.245)[.244]{.247} | 1.019(.260)[.260] | 1.019(.262)[.261]

250 3 | 3.239(.423)[.348] | 3.041(.358)[.355]{.349} | 3.074(.375)[.367] | 3.054(.397)][.394]
1| 1.059(.160)[.149] | 1.008(.149)[.149]{.142} | 1.012(.151)[.151] | 1.008(.155)[.155]

1 | 1.058(.160)[.149] | 1.007(.149)[.149]{.139} | 1.011(.152)[.151] | 1.008(.155)[.155]

500 3 | 3.173(.291)[.234] | 3.017(.237)[.236]{.239} | 3.038(.245)[.242] | 3.027(.258)][.256]
1 | 1.045(.101)[.090] | 1.002(.090)[.090]{.091} | 1.006(.091)[.091] | 1.003(.093)[.093]

1 | 1.045(.106)[.096] | 1.004(.096)[.096]{.099} | 1.008(.097)[.096] | 1.005(.099)[.099]

-5 100 3| 3.070(.388)[.382] | 3.075(.489)[.483]{.480} | 3.104(.493)[.482] | 3.097(.521)[.512]
1| 1.011(.168)[.168] | 1.011(.183)[.182]{.202} | 1.009(.190)[.190] | 1.009(.194)[.194]

1| 1.019(.230)[.229] | 1.020(.247)[.246]{.245} | 1.016(.243)[.242] | 1.015(.245)][.245]

250 3 | 2.938(.251)[.243] | 3.015(.308)[.307]{.301} | 3.033(.296)[.294] | 3.025(.312)][.310]
1| 0.980(.129)[.127] | 0.997(.135)[.135]{.134} | 0.998(.136)[.136] | 0.997(.139)[.139]

1| 0.982(.127)[.125] | 1.000(.134)[.134]{.131} | 1.001(.134)[.134] | 1.001(.136)][.136]

500 3 | 2.918(.189)[.170] | 3.013(.216)[.215]{.204} | 3.023(.202)[.200] | 3.017(.212)[.212)]
1 | 0.976(.082)[.078] | 1.001(.087)[.087]{.083} | 1.002(.083)[.083] | 1.001(.085)[.085]

1 | 0.976(.086)[.083] | 1.000(.088)[.088]{.092} | 1.001(.087)[.087] | 0.999(.089)[.089]

DGP 2: [y =(3,1,1)

5 100 3 | 3.397(.746)[.631] | 3.057(.622)[.620]{.654} | 3.088(.693)[.688] | 3.027(.786)[.786]
1| 1.106(.239)[.214] | 1.012(.213)[.213]{.198} | 1.009(.234)[.234] | 0.998(.255)].255]
1| 1.084(.277)[.264] | 1.003(.252)[.252]{.239} | 0.999(.275)[.275] | 0.989(.285)].285]

250 3 | 3.211(.408)[.349] | 3.006(.349)[.349]{.333} | 3.036(.366)[.364] | 2.979(.450)].449]
1| 1.045(.152)[.146] | 0.993(.145)[.144]{.141} | 0.996(.148)[.148] | 0.984(.165)[.165]
1| 1.046(.153)[.145] | 0.993(.144)[.144]{.138} | 0.997(.148)[.148] | 0.984(.163)[.162]

500 3 | 3.172(.287)[.229] | 3.016(.230)[.230]{.235} | 3.036(.238)[.235] | 3.005(.303)[.303]
1 | 1.049(.102)[.090] | 1.005(.090)[.090]{.091} | 1.009(.091)[.091] | 1.001(.105)[.105]
1 | 1.046(.110)[.100] | 1.005(.101)[.101]{.099} | 1.008(.101)[.101] | 1.001(.112)[.112]

-5 100 3| 3.055(.397)[.394] | 3.073(.520)[.515]{.508} | 3.096(.508)[.499] | 3.031(.598)[.597]
1| 1.016(.174)[.173] | 1.020(.197)[.196]{.218} | 1.019(.197)[.196] | 1.004(.214)].214]
1| 1.004(.225)[.225] | 1.009(.246)[.246]{.260} | 1.001(.241)[.241] | 0.991(.248)].248]

250 3 | 2.939(.247)[.239] | 3.018(.301)[.300]{.392} | 3.031(.286)[.284] | 2.992(.357)].357]
1| 0.986(.128)[.127] | 1.006(.136)[.136]{.133} | 1.005(.137)[.137] | 0.997(.149)].148]
1| 0.986(.123)[.122] | 1.005(.132)[.131]{.130} | 1.006(.130)[.130] | 0.997(.140)].140]

500 3 | 2.912(.195)[.174] | 3.003(.216)[.216]{.200} | 3.015(.206)[.205] | 2.993(.253)[.253]
1 | 0.976(.081)[.078] | 1.000(.085)[.085]{.083} | 1.002(.083)[.083] | 0.996(.091)[.091]
1 | 0.982(.090)[.088] | 1.005(.093)[.093]{.092} | 1.007(.094)[.093] | 1.002(.100)][.100]
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