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A Characterization of Single-Peaked

Preferences via Random Social Choice

Functions∗

Shurojit Chatterji†, Arunava Sen‡ and Huaxia Zeng†

September 16, 2014

Abstract

The paper proves the following result: every path-connected domain of preferences

that admits a strategy-proof, unanimous, tops-only random social choice function satis-

fying a compromise property, is single-peaked. Conversely, every single-peaked domain

admits a random social choice function satisfying these properties. Single-peakedness

is defined with respect to arbitrary trees. We also show that a maximal domain that

admits a strategy-proof, unanimous, tops-only random social choice function satisfying

a stronger version of the compromise property, is single-peaked on a line. A converse to

this result also holds. The paper provides justification of the salience of single-peaked

preferences and evidence in favour of the Gul conjecture (Barberà (2010)).

Keywords: Random Social Choice Functions; Strategy-proofness; Compromise; Single-

peaked Preferences.

JEL Classification: D71.

1 Introduction

Single-peaked preferences are the cornerstone of several models in political economy and

social choice theory. They were proposed initially by Black (1948) and Inada (1964) and

can be informally described as follows. The set of alternatives is endowed with a structure

that enables one to say for some triples of alternatives, say a, b and c that b is “closer” to

∗We would like to thank the participants of the Workshop on Distributive Justice, Institutions and

Behavior, Seoul National University, the 35th Bosphorus Workshop on Economic Design and the 12th Meeting

of the Society for Social Choice and Welfare, Boston College for helpful comments.
†Singapore Management University, Singapore.
‡Indian Statistical Institute, New Delhi, India.
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a than c. On a preference order that is single-peaked, if an alternative b is closer to the

maximal element in the preference than another alternative c, it must be the case that b

is ranked above c in the preference. A domain of preferences is single-peaked if there is a

common structure on alternatives such that all preference orders in the domain are single-

peaked with respect to that structure. Single-peaked preferences arise naturally in various

settings. However, their main attraction is that they allow successful preference aggregation

both in the Arrovian and the strategic sense (Moulin (1980), Barberà (2010)), for instance,

by the median voter aggregator/social choice function. Our goal in this paper is to provide

a converse result with the following flavour: any “rich” preference domain that admits a

suitably “well-behaved” solution to the strategic voting problem must be a single-peaked

domain.1

Our model consists of a finite number of voters and alternatives.2 We consider random

social choice functions or RSCFs defined on a suitably rich but arbitrary domain of preference

orders. A RSCF associates a probability distribution over alternatives with every profile of

voters’ preference orders in the domain. Following Gibbard (1977), a RSCF is strategy-proof

if truth-telling by a voter results in a probability distribution that first-order stochastically

dominates the probability distribution that arises from any misrepresentation by the voter.

Moreover, this holds for every possible profile of other voters so that truth-telling is a (weakly)

dominant strategy in the revelation game. In addition to strategy-proofness, we impose

three other requirements on RSCFs under consideration. Two of these, unanimity and

tops-onlyness, are standard in the literature on voting. The third assumption requires the

RSCF to put a strictly positive probability on some element in the compromise set whenever

it exists. The compromise set picks alternatives not top-ranked by any voter but which

are ranked higher by every voter relative to the top-ranked alternative of any other voter.

According to our main result, any rich domain that admits a strategy-proof, tops-only RSCF

satisfying unanimity and the compromise property, must be single-peaked. Conversely, any

single-peaked domain admits a strategy-proof, tops-only RSCF satisfying ex-post efficiency

(a stronger version of unanimity) and the compromise property.

The single-peaked domain characterized by our result is more general than the usual

one (for example, in Moulin (1980)). These preferences were introduced in Demange (1982)

and Danilov (1994) and are defined on arbitrary trees. The more familiar notion of single-

peakedness is the special case where the tree in the general definition is a line. We establish

a second result according to which any rich and maximal domain that admits a strategy-

proof, tops-only RSCF satisfying unanimity and a strong version of the compromise property,

must be single-peaked on a line. Conversely, any single-peaked domain on a line admits a

1Claims of this nature have been referred to as the Gul Conjecture in Barberà (2010) and attributed to

Faruk Gul. The precise formulation of the conjecture can take several forms. Our result can be regarded as

further evidence in favour of the conjecture.
2The number of alternatives is assumed to be at least three.
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strategy-proof, tops-only RSCF satisfying ex-post efficiency and the stronger version of the

compromise property.

A consequence of considering RSCFs is that the anonymity requirement (anonymity

implies that the names of voters do not matter and reshuffling preferences across voters does

not affect the social outcome) imposed on deterministic social choice functions or DSCFs to

rule out dictatorship must be replaced, because it is always possible to design a strategy-

proof RSCF which satisfies anonymity. To see this, consider an arbitrary domain and the

RSCF that picks the top-ranked alternative of voter i with probability 1
N

at each profile

(N is the number of voters). This RSCF is a particular instance of a random dictatorship

(Gibbard (1977)) and is strategy-proof, anonymous, ex-post efficient and tops-only. However,

it suffers from a well-recognized defect; it does not permit society to put positive probability

on an alternative unless it is top-ranked for some voter, even though the alternative may be

highly ranked (say second-ranked) for all voters. The present paper introduces the axiom

of compromise which is a natural and systematic way of ensuring that social decisions give

positive probability to the set of highly ranked alternatives when it exists, and asks what

sort of domains allow the design of strategy-proof compromising RSCFs. In conjunction

with the other assumptions on the RSCF, we find that it implies that the domain must be

single-peaked.

A paper closely related to ours, is Chatterji et al. (2013). That paper investigated prefer-

ence domains that admits well-behaved and strategy-proof DSCFs. In particular, it showed

that every rich domain that admitted a strategy-proof, unanimous, anonymous and tops-only

DSCF with an even number of voters, is semi-single-peaked.3 These preferences are also de-

fined on trees but are significantly less restrictive than single-peaked preferences. Our paper

demonstrates that two important objectives can be met by considering RSCFs rather than

DSCFs. The first is that a characterization of single-peaked rather than semi-single-peaked

preferences can be obtained naturally. The second is that the awkward assumption regarding

the even number of voters in Chatterji et al. (2013) can be removed.

An obvious question is whether the compromise axiom can be used in the context of

DSCFs to obtain a single-peakedness result. We show that this is not possible. In particular,

if there are at least four alternatives, domains of single-peaked preferences admit strategy-

proof DCSFs satisfying the compromise property only in “exceptional circumstances”. Con-

sideration of RSCFs is therefore crucial for our results. It is of course, natural to allow for

randomization whenever there are conflicts of interest among agents. Randomization also fa-

cilitates truth-telling because the evaluation of lotteries using the expected utility hypothesis

imposes preference restrictions. Recently Chatterji et al. (2014) have shown that randomiza-

tion can significantly enlarge the class of strategy-proof and unanimous rules in dictatorial

domains. Results characterizing the class of strategy-proof and unanimous RSCFs for single-

3The notion of richness is exactly the same as that in our paper.
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peaked domains (on the line) have been obtained in Ehlers et al. (2002), Peters et al. (2014)

and Pycia and Unver (2014).

The paper is organized as follows. Section 2 and various subsections present the model,

definitions and axioms. Sections 3 and 4 contain the characterization results for general

single-peaked domains and single-peaked domains on a line respectively. Section 5 discusses

the need for considering randomized social choice functions and Section 6 concludes.

2 Model and Notation

Let A = {a1, a2, . . . , am} be a finite set of alternatives with m ≥ 3. Let ∆(A) denote the

lottery space induced by A. An element of ∆(A) is a lottery or probability distribution over

the elements of A. For every aj ∈ A, let ej ∈ ∆(A) denote the degenerate lottery where

alternative aj gets probability one.

Let I = {1, . . . , N} be a finite set of voters with |I| = N ≥ 2. Each voter i has a

(strict preference) order Pi over A which is antisymmetric, complete and transitive, i.e.,

a linear order. For any aj, ak ∈ A, ajPiak is interpreted as “aj is strictly preferred to ak
according to Pi”. Let P denote the set containing all linear orders over A. The set of all

admissible orders is a set D ⊆ P, referred to as the preference domain. A preference profile

P ≡ (P1, P2, . . . , PN) ∈ DN is an N -tuple of orders.

For any Pi ∈ D, rk(Pi) denotes the kth ranked alternative in Pi, k = 1, . . . ,m. For any

P ∈ DN , r1(P ) = ∪i∈I{r1(Pi)} denotes the set of voters’ peaks or first-ranked alternatives.

2.1 Random Social Choice Functions and Their Properties

A Random Social Choice Function (or RSCF) is a map ϕ : DN → ∆(A). At every profile P ,

ϕ(P ) is the “socially desirable” lottery. For any aj ∈ A, ϕj(P ) is the probability with which

aj will be chosen in the lottery ϕ(P ). Thus, ϕj(P ) ≥ 0 and
∑m

j=1 ϕj(P ) = 1.

A Deterministic Social Choice Function (or DSCF) is a RSCF ϕ : DN → ∆(A) where the

outcome at every preference profile is a degenerated probability distribution, i.e., ϕ(P ) = ej
for some j at each P .

An RSCF satisfies unanimity if it assigns probability one to any alternative that is ranked

first by all voters, i.e., RSCF ϕ : DN → ∆(A) satisfies unanimity if [r1(Pi) = aj for all

i ∈ I]⇒ [ϕ(P ) = ej] for all aj ∈ A and P ∈ DN .

An axiom stronger than unanimity is ex-post efficiency. It requires all Pareto-dominated

outcomes to never be chosen. Formally, the RSCF ϕ : DN → ∆(A) is ex-post efficient if for

all aj, ak ∈ A and P ∈ DN , [ajPiak for all i ∈ I]⇒ [ϕk(P ) = 0].

Voters’ preferences are assumed to be private information. It is important therefore

for voters to have appropriate incentives for revealing their private information truthfully.
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An RSCF is strategy-proof if truth-telling is a dominant strategy for every voter, i.e., the

truth-telling lottery first-order stochastically dominates the lotteries arising from misrepre-

sentation. Formally, the RSCF ϕ : DN → ∆(A) is strategy-proof if,
∑t

k=1 ϕrk(Pi)(Pi, P−i) ≥∑t
k=1 ϕrk(Pi)(P

′
i , P−i), t = 1, . . . ,m, holds for all i ∈ I; Pi, P

′
i ∈ D and P−i ∈ DN−1. This

notion of strategy-proofness was first formulated in Gibbard (1977). It is equivalent to re-

quiring a voter’s expected utility from truth-telling to be no less than her expected utility

from misrepresentation for any cardinal respresentation of her true preferences. We omit

these details which may be found in Gibbard (1977).

A prominent class of RSCFs is the class of tops-only RSCFs. The value of these RSCFs

at any profile depends only on voter peaks at that profile. The RSCF ϕ : DN → ∆(A)

satisfies the tops-only property if [r1(Pi) = r1(P
′
i ) for all i ∈ I] ⇒ [ϕ(P ) = ϕ(P ′)] for all

P, P ′ ∈ DN . Tops-only RSCFs have obvious informational and computational advantages -

for this reason, they (more accurately, DSCFs) have received a great deal of attention in the

literature (see Weymark (2008); Chatterji and Sen (2011)).

The notions of unanimity, ex-post efficiency, strategy-proofness and tops-onlyness are

standard axioms in the literature on mechanism design in voting environments. Below, we

introduce an axiom that is relatively novel.

Consider the RSCF known as random dictatorship. Each voter is assigned a non-negative

weight with the sum of weights across voters being one. At any profile, the probability with

which an arbitrary alternative aj is chosen is sum of the probability weights of voters for

whom aj is the first-ranked alternative. Random dictatorships satisfy all the properties dis-

cussed above - they are ex-post efficient, strategy-proof and tops-only. If the weights are
1
N

, they also satisfy the property of anonymity , i.e., they do not depend on the “names” of

voters.4 Yet they suffer from an important and well-known infirmity - they do not admit

compromise. Imagine a two-voter world with several alternatives (say, a thousand). Con-

sider a profile where voter 1’s first-ranked and thousandth-ranked alternatives are aj and ak
respectively. On the other hand, voter 2’s first-ranked and thousandth-ranked alternative are

ak and aj respectively. Suppose, in addition that there is an alternative say ar that is highly-

ranked by both voters - for instance, ranked second by both. Any reasonable RSCF should

put at least some probability weight on ar. However, no random dictatorship would. The

property introduced below ensures that ar would indeed receive strictly positive probability.

Let P be a preference profile. The Compromise Set at P denoted by C(P ) is the set of all

alternatives that every voter i strictly prefers to every other alternative that is first-ranked

by some other voter i′, i.e., C(P ) = {ar ∈ A|arPias for all i ∈ I and all as ∈ r1(P ) \ ri(P )}.
It is clear that C(P ) = ∅ is possible, for instance, [|r1(P )| = 1]⇒ [C(P ) = ∅].

The RSCF ϕ : DN → ∆(A) satisfies the weak compromise property if for all P ∈ DN ,

4A RSCF ϕ : DN → ∆(A) is anonymous if for every permutation function σ : I → I and P ∈ DN ,

ϕ(P1, . . . , PN ) = ϕ(Pσ(1), . . . , Pσ(N)).
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[C(P ) 6= ∅] ⇒ [ϕj(P ) > 0 for some aj ∈ C(P )]. Similarly, ϕ : DN → ∆(A) satisfies the

strong compromise property if for all P ∈ DN , [C(P ) 6= ∅]⇒ [ϕj(P ) > 0 for all aj ∈ C(P )].

In the context of our earlier example and discussion, the set of all alternatives other

than aj and ak constitutes the compromise set. The strong compromise property would re-

quire that all such alternatives receive strictly positive probability and the weak compromise

property would require the same for at least one such alternative.

We investigate domains that admit RSCFs that are strategy-proof, tops-only, unanimous

and satisfy various versions of the compromise property. A subtle point is that it may not be

desirable to impose only a subset of these requirements. Suppose for instance, we imposed

only tops-onlyness and the strong compromise property. Consider a profile where all voters

have a common second-ranked alternative aj but their first ranked alternatives are all distinct.

By the strong compromise property, the RSCF must put a strictly positive probability on aj.

Now consider another profile where all the first-ranked alternatives are the same as earlier

but aj is bottom-ranked for all voters’ preferences. The tops-only property would require

the RSCF to put the same probability on aj again. This would be clearly unsatisfactory.

However, this RSCF would not be strategy-proof, i.e. these preferences cannot be admissible

if all four axioms are to be satisfied.

2.2 Domains

Our goal in this paper is to characterize preference domains that admit RSCFs satisfying

the properties described in the previous subsection. However, we need to restrict attention

to domains that satisfy a regularity condition which we call path-connectedness.

The path-connectedness condition was introduced in Chatterji et al. (2013).5 Fix a

domain D. A pair of distinct alternatives aj, ak ∈ A satisfies the Free Pair at the Top (or

FPT) property denoted by aj ≈ ak, if there exist Pi, P
′
i ∈ D such that (i) r1(Pi) = aj and

r2(Pi) = ak (ii) r1(P
′
i ) = ak and r2(P

′
i ) = aj and (iii) rk(Pi) = rk(P

′
i ), k = 3, . . . ,m. In

other words, two alternatives satisfy the FPT property if there exists a pair of admissible

orders where the alternatives are at the top of both orders and are locally switched, i.e., all

alternatives other than the specified pair are ranked in the same way in both orders. Let

FPT (D) denote the set of alternative pairs that satisfy the FPT property. The domain D is

path-connected if for every pair of alternatives aj, ak ∈ A, there exists a sequence {xt}Tt=1 ⊂ A,

T ≥ 2, such that x1 = aj, xT = ak and (xt, xt+1) ∈ FPT (D), t = 1, . . . , T − 1.

The path-connectedness assumption imposes structure on the domain. It allows the

construction of paths between admissible orders by switching preferences at the top of the

orders. Very similar conditions have been identified in Carroll (2012) and Sato (2013) as being

5Slightly different names were used in Chatterji et al. (2013) for the Free Pair at the Top property and

path-connectedness. We believe that the new names are more apposite.
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critical for the purpose of identifying domains where local incentive-compatibility ensures

strategy-proofness.6

Chatterji et al. (2013) provides extensive discussion of well-known domains that satisfy

the path-connectedness assumption. The complete domain and the single-peaked domain

are path-connected. Maximal single-crossing domains (Saporiti (2009)) are path-connected

provided that every alternative is first-ranked in some order in the domain. A generalized

single-peaked domain (Nehring and Puppe (2007)) may or may not be path-connected. On

the other hand, the separable domain (Barberà et al. (1991), Le Breton and Sen (1999)) and

the multi-dimensional single-peaked domain (Barberà et al. (1993)) are not path-connected.

For details the reader is referred to Examples 1, 2 and 3 in Chatterji et al. (2013).

A domain of central importance in collective choice theory is the single-peaked domain. It

was originally introduced in Black (1948) and Inada (1964). Here we consider a generalization

due to Demange (1982) and Danilov (1994).

An undirected graph G = 〈V,E〉 is a set of vertices V and a set of edges E. The set

E consists of pairs vertices, i.e., E ⊆ {(u, v)|u, v ∈ V and u 6= v}. If (u, v) ∈ E, we say

that (u, v) is an edge in G.7 A path in G is a sequence {vk}sk=1 ⊆ V where s ≥ 2 and

(vk, vk+1) ∈ E, k = 1, . . . , s − 1. The graph G is connected if there exists a path between

every pair of vertices, i.e., for all u, v ∈ V with u 6= v, there exists a path {vk}sk=1 such that

u = v1 and v = vs. The connected graph G is a tree if the path between every pair of vertices

is unique. Let G be a tree and u, v ∈ V be a pair of vertices. We denote the unique path

between them by 〈u, v〉.8
In what follows, we shall consider graphs G of the kind G = 〈A,E〉, i.e., whose vertex

set is the set of alternatives.

Definition 1 Let G = 〈A,E〉 be a tree. The order Pi is single-peaked on G if for all

aj, ak ∈ A, [
aj ∈ 〈r1(Pi), ak〉\{ak}

]
⇒ [ajPiak].

Pick a preference Pi and an arbitrary alternative ak. Since the graph is a tree, there is a

unique path between r1(Pi) and ak. The order Pi is single-peaked if every alternative aj on

this path, distinct from ak is strictly preferred to ak according to Pi.

A domain D is single-peaked if there exists a tree G such that Pi ∈ D implies Pi is

single-peaked on G.

A case of special interest is the one where the graph G = 〈A,E〉 is a line. For-

mally, G is a line if there exists a permutation σ : {1, . . . ,m} → {1, . . . ,m} such that

6Assume that every alternative is first-ranked in some preference. Then domains of ordinal preferences

studied in both Carroll (2012) and Sato (2013) are path-connected.
7In an undirected graph, (u, v) and (v, u) represent a same edge.
8In particular, if u = v, 〈u, v〉 = {u} is a singleton set.
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E = {(aσ(k), aσ(k+1)), k = 1, . . . ,m − 1}. The standard definition of a single-peaked domain

is one where the underlying graph is a line.

We illustrate these notions with some examples.

Example 1 Let A = {a1, a2, a3, a4}. The domain D̄ is described below:

P1 P2 P3 P4 P5 P6 P7 P8 P9

a1 a1 a2 a2 a2 a3 a3 a4 a4
a2 a2 a1 a4 a3 a2 a2 a2 a2
a4 a3 a4 a3 a4 a4 a1 a3 a1
a3 a4 a3 a1 a1 a1 a4 a1 a3

Table 1: Domain D̄

The domain D̄ is single-peaked on the tree GT shown in Figure 1 below.

r r r
r

a1 a2 a3

a4

Figure 1: Tree GT

Note that there are orders that are single-peaked on GT but not included in D̄ - for

instance, a2P10a1P10a3P10a4. The largest single-peaked domain on D̄ contains 12 orders. �

Example 2 Let A = {a1, a2, a3, a4}. The domain D̂ is described below

P1 P2 P3 P4 P5 P6 P7 P8

a1 a2 a2 a2 a3 a3 a3 a4
a2 a1 a3 a3 a2 a2 a4 a3
a3 a3 a4 a1 a1 a4 a2 a2
a4 a4 a1 a4 a4 a1 a1 a1

Table 2: Domain D̂

The domain D̂ is single-peaked on the line GL shown in Figure 2 below.

r r r r
a1 a2 a3 a4

Figure 2: Line GL
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In contrast to D̄, domain D̂ includes all orders that are single-peaked on GL. Observe

also that D̄ is not single-peaked on a line, nor is D̂ single-peaked on GT . In order to verify

the former claim, observe that any domain that is single-peaked on a line must have at least

two alternatives which have unique orders where these alternatives are peaks (these are the

alternatives at either end of the line) - there are no alternatives with this property in D̂. On

the other hand, the maximal number of alternatives that can be second-ranked to a given

alternative on any domain that is single-peaked on a line, is two; on any domain that is

single-peaked on a tree such as GT , there must exist an alternative that has three distinct

second-ranked ranked alternatives. �

3 Main Result: Single-Peakedness

Our main result characterizes single-peaked domains.

Theorem 1 Every path-connected domain that admits a unanimous, tops-only and strategy-

proof RSCF satisfying the weak compromise property, is single-peaked. Conversely, every

single-peaked domain admits an ex-post efficient, tops-only and strategy-proof RSCF satisfy-

ing the weak compromise property.

Proof : We first prove necessity. Assume that D is path-connected. In addition, there exists

a RSCF ϕ : DN → ∆(A) which is tops-only, strategy-proof, unanimous and satisfies the weak

compromise property. We will show that there exists a tree G such that D is single-peaked

on G.

The first four lemmas establish critical properties of the RSCF ϕ.

Lemma 1 Let aj, ak ∈ A with aj ≈ ak. Let Pi, P
′
i ∈ D be such that (i) r1(Pi) = r2(P

′
i ) = aj

(ii) r2(Pi) = r1(P
′
i ) = ak and (iii) rt(Pi) = rt(P

′
i ), t = 3, . . . ,m. Then, for all P−i ∈ DN−1,

ϕj(Pi, P−i) + ϕk(Pi, P−i) = ϕj(P
′
i , P−i) + ϕk(P

′
i , P−i) and ϕt(Pi, P−i) = ϕt(P

′
i , P−i) for all

at ∈ A\{aj, ak}.

Suppose voter i switches her order from Pi to P ′i , a move that involves the reshuffling

of the top two alternatives, say aj and ak, while leaving all other alternatives unaffected.

According to Lemma 1, the switch leaves the probabilities of alternatives other than aj and

ak and the sum of probabilities of aj and ak, unchanged. The Lemma is a special case of the

preliminary Lemma 2 in Gibbard (1977). It is a consequence of strategy-proofness and we

omit its elementary proof.

Lemma 2 If domain D admits a unanimous, tops-only and strategy-proof RSCF satisfying

the weak compromise property, then it admits a two-voter unanimous, tops-only and strategy-

proof RSCF satisfying the weak compromise property.

9



Proof : Construct a two-voter RSCF φ : D2 → ∆(A) as follows: φ(P1, P2) = ϕ(P1, P2, . . . , P2)

for all P1, P2 ∈ D. In other words, φ is constructed by“merging”voters 2 through N in ϕ. Ev-

idently, φ is a RSCF satisfying unanimity and the tops-only property. It is also strategy-proof

(see the proof of Lemma 3 in Sen (2011)). We show that φ satisfies the weak compromise

property.

For all P ≡ (P1, P2) ∈ D2, it is clear that C(P1, P2, . . . , P2) = C(P ). Pick P ∈ D2 such

that C(P ) 6= ∅. Therefore C(P1, P2, . . . , P2) 6= ∅. Since ϕ satisfies the weak compromise

property, there exists aj ∈ C(P1, P2, . . . , P2) such that ϕj(P1, P2, . . . , P2) > 0. It follows

that φj(P ) = ϕj(P1, P2, . . . , P2) > 0. Hence φ satisfies the weak compromise property. This

completes the proof of the Lemma. �

In view of Lemma 2, we can assume without loss of generality that the set of voters is

{1, 2} and ϕ is an RSCF ϕ : D2 → ∆(A) that is strategy-proof, tops-only, unanimous and

satisfies the weak compromise property. We make a further simplification in notation. Since

ϕ is tops-only, we can represent a profile P ∈ D2 by a pair of alternatives aj and ak where

r1(P1) = aj and r1(P2) = ak. We also mix the notation of alternative and preference, for

instance, (aj, P2) denotes a profile of preferences where r1(P1) = aj.

Lemma 3 Let aj, ak ∈ A with aj ≈ ak. There exists β ∈ [0, 1] such that ϕ(aj, ak) =

βej + (1− β)ek.

Proof : Let Pi, P
′
i ∈ D be such that r1(Pi) = r2(P

′
i ) = aj and (ii) r2(Pi) = r1(P

′
i ) = ak (such

two preferences exist since aj ≈ ak). We then have

ϕj(aj, ak) + ϕk(aj, ak) = ϕj(Pi, ak) + ϕk(Pi, ak) (by the tops-only property)

= ϕj(P
′
i , ak) + ϕk(P

′
i , ak) (by Lemma 1)

= ϕk(ak, ak) = 1 (by unanimity).

Let ϕj(aj, ak) = β. Thus, ϕ(aj, ak) = βej + (1− β)ek as required. �

The next lemma considers situations more general than those considered in the previous

one. We illustrate it with an example. Suppose a1 ≈ a2 and a2 ≈ a3. We know from Lemma

3 that there exists β1, β2 ∈ [0, 1] such that ϕ(a1, a2) = β1e1+(1−β1)e2 and ϕ(a2, a3) = β2e2+

(1−β2)e3. The next lemma shows that β2 > β1 and ϕ(a1, a3) = β1e1+(β2−β1)e2+(1−β2)e3.

Lemma 4 Let {ak}sk=1 ⊆ A, s ≥ 3, be such that ak ≈ ak+1, k = 1, . . . , s − 1. Let βk =

ϕk(ak, ak+1), k = 1, . . . , s− 1. Then, the following two conditions hold.

(i) 0 ≤ βk < βk+1 ≤ 1, k = 1, . . . , s− 2.

(ii) for all 1 ≤ i < j ≤ s, ϕ(ai, aj) = βiei +
∑j−1

k=i+1(βk − βk−1)ek + (1− βj−1)ej.
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Proof : We know from Lemma 3 that ϕ(ak, ak+1) = βkek + (1 − βk)ek+1, k = 1, . . . , s −
1. Pick k with 1 ≤ k ≤ s − 2. Since ak+1 ≈ ak+2 and ak /∈ {ak+1, ak+2}, Lemma 1

implies ϕk+1(ak, ak+2) + ϕk+2(ak, ak+2) = ϕk+1(ak, ak+1) + ϕk+2(ak, ak+1) = ϕk+1(ak, ak+1) =

1 − βk and ϕk(ak, ak+2) = ϕk(ak, ak+1) = βk. Also, since ak ≈ ak+1, Lemma 1 implies

ϕk(ak, ak+2) + ϕk+1(ak, ak+2) = ϕk(ak+1, ak+2) + ϕk+1(ak+1, ak+2) = ϕk+1(ak+1, ak+2) = βk+1.

Therefore, ϕk+1(ak, ak+2) = βk+1 − ϕk(ak, ak+2) = βk+1 − βk and ϕk+2(ak, ak+2) = 1 − βk −
ϕk+1(ak, ak+2) = 1−βk+1. Therefore, ϕk(ak, ak+2) +ϕk+1(ak, ak+2) +ϕk+2(ak, ak+2) = 1, and

ϕ(ak, ak+2) = βkek + (βk+1 − βk)ek+1 + (1 − βk+1)ek+2. Therefore βk+1 ≥ βk. We conclude

the argument by showing that the inequality must be strict.

Pick P1, P2 ∈ D such that r1(P1) = ak, r1(P2) = ak+2 and r2(P1) = r2(P2) = ak+1 (such

two preferences exist since ak ≈ ak+1 and ak+1 ≈ ak+2). Observe that ak+1 ∈ C(P1, P2). Since

ϕ satisfies the weak compromise property, there exists ar ∈ C(P1, P2) such that ϕr(P1, P2) >

0. However, we have shown ϕ(P1, P2) = ϕ(ak, ak+2) = βkek+(βk+1−βk)ek+1+(1−βk+1)ek+2.

Consequently, it must be the case that ar = ak+1 and ϕr(P1, P2) = βk+1−βk > 0 as required.

This completes the verification of part (i) of the lemma.

Pick ai, aj in the sequence {ak}sk=1 such that i < j. We will prove part (ii) by induction

on the value of l = j − i. Observe that part (ii) has already been proved for the cases l = 1

(Lemma 3) and l = 2 (in the proof of part (i)). Assume therefore that 3 ≤ l ≤ s − 1. We

impose the following induction hypothesis: for all 1 ≤ i < j ≤ s,[
j − i < l

]
⇒
[
ϕ(xi, xj) = βiexi +

∑j−1
k=i+1(βk − βk−1)exk + (1− βj−1)exj

]
.

We complete the proof by showing that part (ii) holds for all i, j with 1 ≤ i < j ≤ s and

j − i = l.

Since j − i = l ≥ 3, we know that i < i + 1 < j − 1 < j. Also (j − 1) − i = l − 1 < l

and j − (i + 1) = l − 1 < l. The induction hypothesis can then be applied to the profiles

(ai, aj−1) and (ai+1, aj). Hence

ϕ(ai, aj−1) = βiei +

j−2∑
k=i+1

(βk − βk−1)ek + (1− βj−2)ej−1 and

ϕ(ai+1, aj) = βi+1ei+1 +

j−1∑
k=i+2

(βk − βk−1)ek + (1− βj−1)ej

Since aj ≈ aj−1 and ai, . . . , aj−2 are distinct from aj−1 and aj, Lemma 1 implies ϕi(ai, aj) =

ϕi(ai, aj−1) = βi and ϕk(ai, aj) = ϕk(ai, aj−1) = βk − βk−1, k = i + 1, . . . , j − 2. Similarly,

since ai ≈ ai+1, aj−1 and aj are distinct from ai and ai+1, Lemma 1 implies ϕj−1(ai, aj) =

ϕj−1(ai+1, aj) = βj−1−βj−2 and ϕj(ai, aj) = ϕj(ai+1, aj) = 1−βj−1. Thus,
∑j

k=i ϕk(ai, aj) =

1 and ϕ(ai, aj) = βiei +
∑j−1

k=i+1(βk − βk−1)ek + (1− βj−1)ej as required. �

In order to demonstrate that D is single-peaked, we need to construct a tree G = 〈A,E〉
and show that Pi ∈ D implies Pi is single-peaked on G.
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Let G(D) = 〈A,FPT (D)〉 be a graph, i.e., aj, ak ∈ A constitute an edge in G(D) only if

they satisfy the FPT property. Since D is path-connected, graph G(D) is connected. The

following lemma shows that G(D) is a tree.

Lemma 5 G(D) is a tree.

Proof : Suppose not, i.e., there exists a sequence {ak}sk=1 ⊆ A, s ≥ 3, such that ak ≈ ak+1,

k = 1, . . . , s, where as+1 = a1. Let βk = ϕk(ak, ak+1), k = 1, . . . , s − 1. Since a1 ≈ a2,

a2 ≈ a3, . . . ,as−1 ≈ as, Lemma 4 implies ϕ(a1, as) = β1e1 +
∑s−1

k=2(βk−βk−1)ek + (1−βs−1)es
where 0 ≤ βk < βk+1 ≤ 1, k = 1, . . . , s − 2. However, since a1 ≈ as, Lemma 3 implies

ϕk(a1, as) = 0 for all ak 6= a1, as. We have a contradiction. �

Lemma 6 Pi ∈ D⇒ Pi is single-peaked on G(D).

Proof : Suppose at, aj, ak ∈ A are such that r1(Pi) = at and aj ∈ 〈at, ak〉\{ak}. Let

〈at, ak〉 = {xr}Tr=1 where x1 = at, xT = ak and aj = xl for some 1 ≤ l < T . If aj = at, ajPiak
follows trivially. Assume therefore that aj 6= at. Thus, T ≥ 3. Suppose akPiaj. Consider

the profile P = (at, ak) and ϕ(P ). According to Lemma 4, all alternatives in the sequence

{xr}T−1r=2 get strictly positive probability. Hence ϕj(at, ak) > 0. Since ϕ satisfies unanimity,

ϕ(ak, ak) = 1. Then voter i can obtain a strictly higher probability on the set of alternatives

at least as preferred to aj under Pi (this set includes ak by hypothesis) by putting ak on top

of her order. This contradicts the strategy-proofness of ϕ. Therefore, ajPiak as required. �

This completes the verification of the necessity part of Theorem.

In order to demonstrate sufficiency, let D be a single-peaked domain on a tree G = 〈A,E〉.
We construct a RSCF ϕ : DN → ∆(A) that is strategy-proof, tops-only, ex-post efficient and

satisfies the weak compromise property. We proceed as follows: in the first step, we use the

idea in Chatterji et al. (2013) to construct a specific DSCF (see the proof of the sufficiency

part of the Theorem in Chatterji et al. (2013)); in the second step, we consider randomization

over such DSCFs.

For any set B ⊆ A, let G(B) be the minimal subgraph of G that contains B as vertices.

More formally, G(B) is the unique graph that satisfies the following properties.

1. The set of vertices in G(B) contains B.

2. Let aj, ak ∈ B. Graph G(B) has an edge (aj, ak) only if (aj, ak) is an edge in G.

3. G(B) is connected.

4. ak ∈ G(B) if and only if ak ∈ 〈ar, aj〉 where ar, aj ∈ B.

12



Fix a profile P ∈ DN and an alternative ak ∈ A. Consider the graph G(r1(P )). Suppose

ak /∈ G(r1(P )). Since G is a tree and contains no cycles, there exists a unique alternative in

G(r1(P )) that belongs to every path from ak to any vertex in G(r1(P )). Let this alternative

be denoted by aβ(ak,P ).
9 Then, define the alternative aπ(ak,P ) as follows:

aπ(ak,P ) =

{
ak if ak ∈ G(r1(P ))

aβ(ak,P ) if ak /∈ G(r1(P ))

Consider Example 1. Suppose N = {1, 2, 3}. Let ak be the alternative a4 and let P

be a profile such that r1(P ) = {a1, a2, a3}. Then G(r1(P )) is the graph consisting of the

vertices {a1, a2, a3} and the edges (a1, a2) and (a2, a3). Then aπ(ak,P ) = aβ(a4,P ) = a2. Further

examples can be found in Chatterji et al. (2013).

For every ak ∈ A, the RSCF φak : DN → ∆(A) is defined as follows: for all P ∈ DN ,

φak(P ) = eπ(ak,P ). Evidently, φak is a DSCF. Its outcome at profile P is the “projection” of

ak on the minimal subgraph of G generated by the set of the first-ranked alternatives in P .

In the next step, we construct the RSCF ϕ : DN → ∆(A) as follows: for all P ∈ DN ,

ϕ(P ) =
∑

ak∈A λ
akφak(P ), where λak > 0 for all ak ∈ A and

∑
ak∈A λ

ak = 1. The RSCF

is obtained by choosing over the DSCFs φak , k = 1, . . . ,m, according to a fixed probability

distribution where the probability of choosing each such DSCF is strictly positive. We claim

that the ϕ satisfies all the required properties.

Lemma 7 The RSCF ϕ is strategy-proof, tops-only and satisfies unanimity.

Proof : According to Proposition 1 in Chatterji et al. (2013), a single-peaked domain is

semi-single-peaked where every alternative can be taken to be a threshold in the definition

of semi-single-peakedness. The sufficiency part of the Theorem in Chatterji et al. (2013)

shows that for any threshold ak ∈ A, φak is strategy-proof, tops-only and satisfies unanimity

over a semi-single-peaked domain. Consequently, each φak is strategy-proof, tops-only and

satisfies unanimity. Therefore, ϕ which is a convex combination of distinct unanimous, tops-

only and strategy-proof RSCFs is also a unanimous, tops-only and strategy-proof RSCF.10

�

Lemma 8 The RSCF ϕ is ex-post efficient.

Proof : Suppose the Lemma is false, i.e., there exists P ∈ DN and aj, ak ∈ A such that

ajPiak for all i ∈ I and ϕk(P ) > 0. Evidently, ak /∈ r1(P ). Since ϕ satisfies unanimity,

ϕk(P ) > 0 implies that |r1(P )| > 1. Observe that aπ(at,P ) ∈ G(r1(P )) for all at ∈ A.

9It would have been more appropriate to write aβ(ak,G(r1(P )) but we choose to suppress the dependence

of this alternative on G for notational convenience.
10These arguments are routine and therefore omitted.

13



Hence, by construction of ϕ, if ar is not included in the vertex set of G(r1(P )), ϕr(P ) = 0 .

Therefore, ak belongs to the vertex set of G(r1(P )).

Let Ext
(
G(r1(P ))

)
denote the set of vertices in G(r1(P )) with degree one, i.e., at ∈

Ext
(
G(r1(P ))

)
if there exists a unique as ∈ A such that (at, as) is an edge in G(r1(P )).

Observe that Ext
(
G(r1(P ))

)
⊆ r1(P ). (Suppose at ∈ Ext

(
G(r1(P ))

)
but at /∈ r1(P ). Then

at can be deleted as a vertex in G(r1(P )) contradicting the assumption that G(r1(P )) is

minimal). In other words, the vertices at the ends of every maximal path in G(r1(P )) must

be some elements of r1(P ).

It follows from the arguments in the two previous paragraphs that ak ∈ G(r1(P ))\Ext
(
G(r1(P ))

)
.

Consequently, there exist i, i′ ∈ I such that r1(Pi) 6= r1(P
′
i ), ak ∈ 〈r1(Pi), r1(Pi′)〉 and

ak 6= r1(Pi), r1(Pi′). Let at be the projection of aj on the interval 〈r1(Pi), r1(Pi′)〉. By as-

sumption, at ∈ 〈r1(Pi), r1(Pi′)〉. Hence, either ak ∈ 〈r1(Pi), at〉 or ak ∈ 〈r1(Pi′), ak〉 must

hold. Therefore either ak ∈ 〈r1(Pi), aj〉 or ak ∈ 〈r1(Pi′), aj〉 must hold, i.e., either akPiaj or

akPi′aj must hold by single-peakedness of D. We have a contradiction to our initial hypoth-

esis that ajPiak for all i ∈ I. Therefore, ϕ is ex-post efficient. �

Lemma 9 The RSCF ϕ satisfies the weak compromise property.

Proof : Pick an arbitrary P ∈ DN such that C(P ) 6= ∅. Clearly |r1(P )| ≥ 2. For notational

convenience, let Ā = r1(P ) and Ḡ = G
(
r1(P )

)
. Pick ak ∈ C(P ) - note that by definition,

ak /∈ Ā. We proceed via several claims.

Claim 1 : Ā = Ext(Ḡ).

We have shown in the proof of the previous lemma that Ext(Ḡ) ⊆ Ā. Suppose that Ext(Ḡ)

is a strict subset of Ā. In particular, suppose at /∈ Ext(Ḡ) but at = r1(Pi′′) for some i′′ ∈ I.

Since at /∈ Ext(Ḡ) ⊂ Ā, there exists i, i′ ∈ I such that at ∈ 〈r1(Pi), r1(Pi′)〉 and at 6=
r1(Pi), r1(Pi′). It must therefore be the case that either at ∈ 〈r1(Pi), ak〉 or at ∈ 〈r1(Pi′), ak〉,
holds. The single-peakedness of Pi and Pi′ implies that either atPiak or atPi′ak holds. Since

at = r1(Pi′′), we have a contradiction to the assumption that ak ∈ C(P ). This completes the

verification of the claim.

Let aπ(ak,P ) = ar. Evidently, ar is contained in the vertex set of Ḡ. The construction of

ϕ makes it clear that ϕr(P ) > 0. In order to show that ϕ satisfies the weak compromise

property, it will therefore suffice to show that ar ∈ C(P ). If ar = ak, this follows immediately.

Assume therefore that ar 6= ak.

Claim 2 : ar /∈ Ext(Ḡ).

Suppose not, i.e., ar ∈ Ext(Ḡ). By Claim 1, there exists i ∈ I such that r1(Pi) = ar. Since

|Ā| ≥ 2, there exists another voter say i′ such that r1(Pi′) = as 6= ar. Note that ar ∈ 〈as, ak〉
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by the definition of ar. The single-peakedness of Pi′ implies arPi′ak which contradicts the

assumption that ak ∈ C(P ). This completes the verification of the claim.

Claim 3 : ar ∈ C(P ).

By the definition of ar, we must have ar ∈ 〈aj, ak〉 for all aj ∈ Ā. Using Claims 1 and 2, it

follows that ar /∈ Ā. The single-peakedness of Pi implies arPiak for all i ∈ I. Since ak ∈ C(P )

by assumption, it must be the case that ar ∈ C(P ). This completes the verification of the

claim and completes the proof of the Lemma. �

This completes the proof of the sufficiency part of the Theorem. �

3.1 Discussion: The Compromise Property

A natural question is whether the weak compromise property can be strengthened to its

strong counterpart. We claim that doing so has implications for the underlying tree with

respect to which single-peakedness is defined.

Consider domain D̄ in Example 1 and suppose we look for a strategy-proof, unanimous,

tops-only RSCF satisfying the strong compromise property in a two-voter society. Since a4 ∈
C(P1, P6), we must have ϕ4(P1, P6) >0. Strategy-proofness implies ϕ4(P1, P6) = ϕ4(P3, P6) =

ϕ4(P3, P5) (referring to Lemma 1). Hence ϕ4(P3, P5) > 0 which contradicts the assumption

that ϕ satisfies unanimity. Hence D̄ (or any of it’s supersets) does not admit a strategy-proof,

unanimous and tops-only RSCF that also satisfies the strong unanimity property. Note that

the weak compromise property can be satisfied in the same domains in conjunction with the

other axioms because a2 ∈ C(P1, P6). Requiring ϕ2(P1, P6) > 0 is consistent with the other

axioms.

On the other hand, consider domain D̂ in Example 2. We claim that this domain does

admit strategy-proof, unanimous, tops-only RSCFs satisfying the strong compromise prop-

erty. For instance, in profile (P1, P8), both alternatives a2 and a3 are compromises. Both a2
and a3 lie on the path 〈a1, a4〉 so that Lemma 4 implies that a strategy-proof, unanimous,

tops-only RSCF ϕ on this domain must satisfy ϕ2(P1, P8), ϕ3(P1, P8) > 0.11

These considerations suggest that the line structure of the underlying tree may be im-

portant if the strong compromise property has to be satisfied. The next section shows that

a richness condition of preferences together with the strong compromise property (and the

other axioms) characterizes single-peakedness on a line.

We conclude this section by the following remark. One might be concerned that some

alternative which is not a peak of any voter in a profile P ∈ DN and gets positive probability

by the weak compromise property is unanimously ranked poorly in another tops-equivalent

11A formal argument will be provided in the next section.
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profile P ′ ∈ DN , i.e., r1(P
′
i ) = r1(Pi) for all i ∈ I. Our axioms on RSCFs as specified

in Theorem 1 rule out this concern by ensuring that every alternative that belongs to the

support of ϕ(P ) and is not the peak of some voter, either belongs to C(P ′), or is ranked

relatively high by every voter in P ′ in the following sense: if aj /∈ r1(P ) and ϕj(P ) > 0,

then for each i ∈ I, ajP
′
iak for some ak ∈ r1(P ′).12 In particular, if |r1(P )| = |r1(P ′)| = 2,

aj ∈ C(P ′).

4 Single-Peakedness on A Line

We say that the domain D is c-maximal if there does not exist a superset of D that ad-

mits a strategy-proof, unanimous, tops-only RSCF satisfying the weak compromise prop-

erty. Observe that c-maximality is defined with reference to the weak rather than the strong

compromise property.

Theorem 2 Every path-connected domain that admits a unanimous, tops-only, strategy-

proof RSCF satisfying the strong compromise property and is c-maximal, is single-peaked on

a line. Conversely, a single-peaked domain on a line admits an ex-post efficient, tops-only

and strategy-proof RSCF satisfying the strong compromise property.

Proof : We first show necessity. Let D be a path-connected domain. In addition, D admits

a strategy-proof, tops-only and unanimous RSCF satisfying the strong compromise property.

Finally, D is c-maximal, i.e., there does not exist a domain D̄ ⊃ D that admits a strategy-

proof, tops-only, unanimous RSCF satisfying the weak compromise property.

Since the strong compromise property implies the weak compromise property, Lemmas

1 - 6 continue to hold.13 Therefore there exists a two-voter RSCF ϕ : D2 → ∆(A) that

is strategy-proof unanimous, tops-only, strategy-proof and satisfies the strong compromise

property. Moreover, Theorem 1 implies that domain D is single-peaked on a tree G. The

proof is going to be completed by showing that G is in fact, a line.

Suppose G not a line. Therefore there must exist a vertex with degree three, i.e., there

exist aj, ak, ar, at ∈ A such that (aj, at), (ak, at) and (ar, at) are edges in G. By the con-

struction of G, aj ≈ at, ak ≈ at, and ar ≈ at. Therefore aj /∈ 〈ak, ar〉, ak /∈ 〈ar, aj〉 and

ar /∈ 〈aj, ak〉. Consequently, Lemma 4 implies ϕj(ak, ar) = ϕk(ar, aj) = ϕr(aj, ak) = 0.

Since ar /∈ 〈aj, ak〉, there exists a single-peaked order P̄i on G such that r1(P̄i) = ak
and arP̄iaj. Similarly, since aj /∈ 〈ar, ak〉, there exists a single-peaked order P ′i on G such

12The necessity part of Theorem 1 shows that the domain D is single-peaked on a tree G. Then, it is true

that for every P ∈ DN and aj ∈ A, if aj /∈ r1(P ) and aj is included in the vertex set of G(r1(P )), then for

each i ∈ I, ajPiak for some ak ∈ r1(P ). Consider an arbitrary RSCF ϕ : DN → ∆(A) satisfying axioms

specified in Theorem 1. It is easy to verify that the support of ϕ(P ) is included in the vertex set of G(r1(P ))

for all P ∈ DN , i.e., for all aj ∈ A, if the vertex set of G(r1(P )) does not contain it, then φj(P ) = 0.
13Applying the same verification, it is easy to extend the argument in Lemma 2 from the weak compromise

property to the strong compromise property.
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that r1(P
′
i ) = ar and akP

′
iaj. The sufficiency part of Theorem 1 shows that any single-

peaked domain on G admits a strategy-proof, tops-only, unanimous RSCF satisfying the

weak compromise property. Since D is c-maximal, we must have P̄i, P
′
i ∈ D.

Pick an arbitrary Pi ∈ D with r1(Pi) = aj. Either arPiak or akPiar must hold. Suppose

arPiak. Since ar ∈ C(Pi, P̄i), the strong compromise property requires ϕr(Pi, P̄i) > 0, i.e.,

ϕr(aj, ak) > 0. However, this contradicts our earlier conclusion that ϕr(aj, ak) = 0. If akPiar,

we have ak ∈ C(Pi, P
′
i ) and ϕk(aj, ar) > 0 by the strong compromise property. On the other

hand we have earlier shown that ϕk(aj, ar) = 0. We have another contradiction. Hence G is

a line as required.

We now establish the sufficiency part of the Theorem. Let D be a single-peaked domain

on the line GL. We employ the same construction as in the proof of the sufficiency part

of Theorem 1. Using the same arguments as before, it follows that the constructed RSCF

ϕ : DN → ∆(A) is strategy-proof, tops-only and ex-post efficient. We conclude the proof by

showing the ϕ satisfies the strong compromise property.

Let P ∈ DN be a profile such that C(P ) 6= ∅. Clearly |r1(P )| ≥ 2. Since GL is a

line, all voters’ peaks must lie on a path, i.e., there exist voters i, i′ such that r1(Pi′′) ∈
〈r1(Pi), r1(Pi′)〉 for all i′′ ∈ I. Thus, G(r1(P )) = 〈r1(Pi), r1(Pi′)〉. Denote r1(Pi) and r1(Pi′)

by aj and ak respectively. Pick an arbitrary at ∈ C(P ). We claim that at ∈ 〈aj, ak〉 and

at 6= aj, ak. The latter follows from the observation that no element of C(P ) can be a

peak of any voter by definition. Suppose at /∈ 〈aj, ak〉. Accordingly, either ak ∈ 〈aj, at〉 or

aj ∈ 〈at, ak〉 must hold. In the former case, the single-peakedness of Pi implies akPiat; in the

latter, the single-peakedness of Pi′ implies ajPi′at. In either case, we have a contradiction

to at ∈ C(P ). Therefore, at ∈ 〈aj, ak〉 = G(r1(P )) and aπ(at,P ) = at. By construction,

ϕ(P ) =
∑

ak∈A λ
akeπ(ak,P ) implies that ϕt(P ) ≥ λat > 0. Hence, ϕ satisfies the strong

compromise property as required. �

5 Is It Necessary to Consider Random Social Choice

Functions?

A natural question is whether our characterization results can be obtained by only considering

deterministic social choice functions. We show below that this is not possible.

Example 3 Let A = {a1, a2, a3, a4} and let D̂ be the domain specified in Example 2, i.e.,

it is the largest single-peaked domain on the line GL. Let I = {1, 2}. Consider a DSCF

φ : D̂2 → ∆(A). The counterpart of the weak compromise property in this setting would

require φ to pick a compromise alternative at every profile where such an alternative exists,

i.e., for every profile P , [C(P ) 6= ∅] ⇒ [φ(P ) = ej for some aj ∈ C(P )]. We claim that
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there does not exist a strategy-proof DSCF satisfying the deterministic weak compromise

property.

Let P1, P2, P̄1, P̄2 ∈ D̂ be the orders described below.

P1 P2 P̄1 P̄2

a1 a3 a2 a4
a2 a2 a3 a3
a3 a1 a4 a2
a4 a4 a1 a1

The deterministic weak compromise property requires φ(P1, P2) = e2 and φ(P̄1, P̄2) = e3.

Also, φ(P1, P2) = e2 and strategy-proofness implies φ(P̄1, P2) = e2. Similarly φ(P̄1, P̄2) = e3
and strategy-proofness implies φ(P̄1, P2) = e3, leading to a contradiction. �

The arguments in Example 3 can be generalized easily.

Proposition 1 Let G be an arbitrary tree containing a path with at least four vertices.

Let D̄G be the largest collection of single-peaked orders on G. Then there does not exist

a strategy-proof DSCF φ : [D̄G]N → ∆(A) satisfying the deterministic weak compromise

property.

We omit the proof of this Proposition. We show by means of an example that the

Proposition does not hold if the maximal path length in a tree is three.

Example 4 Let GS be a star tree with a1 as the hub (for instance, GT in Figure 1 is a

star tree and a2 is the hub accordingly). Let D̄S be the largest single-peaked domain on GS.

Define a DSCF φ : [D̄S]2 → ∆(A) as follows: for all profiles (ai, aj),

φ(ai, aj) =

{
ei if aj = ai;

e1 otherwise.

All single-peaked preferences on GS have the feature that a1 is ranked either first or

second. The compromise set is non-empty at all profiles where the voters first-ranked alter-

natives are distinct from each other and from a1. Thus, a1 must be a compromise alternative

at these profiles. Since a1 is the outcome of φ at these profiles, the deterministic weak

compromise property is satisfied. It is also strategy-proof, tops-only and unanimous. �

6 Conclusion

We have characterized domains of single-peaked preferences as the only domains that admit

“well-behaved” random social choice functions.
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