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Abstract

This paper provides a novel mechanism for identifying and estimating latent group struc-

tures in panel data using penalized regression techniques. We focus on linear models where

the slope parameters are heterogeneous across groups but homogenous within a group and

the group membership is unknown. Two approaches are considered — penalized least squares

(PLS) for models without endogenous regressors, and penalized GMM (PGMM) for models

with endogeneity. In both cases we develop a new variant of Lasso called classifier-Lasso

(C-Lasso) that serves to shrink individual coefficients to the unknown group-specific coeffi-

cients. C-Lasso achieves simultaneous classification and consistent estimation in a single step

and the classification exhibits the desirable property of uniform consistency. For PLS estima-

tion C-Lasso also achieves the oracle property so that group-specific parameter estimators are

asymptotically equivalent to infeasible estimators that use individual group identity informa-

tion. For PGMM estimation the oracle property of C-Lasso is preserved in some special cases.

Simulations demonstrate good finite-sample performance of the approach both in classifica-

tion and estimation. An empirical application investigating the determinants of cross-country

savings rates finds two latent groups among 56 countries, providing empirical confirmation

that higher savings rates go in hand with higher income growth.
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1 Introduction

Panel data models are widely used in empirical analysis in many disciplines across the social

and medical sciences. The capacity to store and retrieve vast electronic datasets on individual

behavior over time has made these models a particularly prominent research vehicle in economics

and finance. Such data usually cover individual units sampled from different backgrounds and

with different individual characteristics so that an abiding feature of the data is its heterogeneity,

much of which is simply unobserved. Neglecting latent heterogeneity in the data can lead to many

difficulties, including inconsistent estimation and misleading inference, as is well explained in the

literature (e.g., Hsiao, 2003, Chapter 6). It is therefore widely acknowledged that an important

feature of good empirical modeling is to control for heterogeneity in the data as well as for potential

heterogeneity in the response mechanisms that figure within the model. Since heterogeneity is a

latent feature of the data and its extent is unknown a priori, respecting the potential influence

of heterogeneity on model specification is a serious challenge in empirical research. Even in the

simplest linear panel data models the challenge is manifest and clearly stated: do we allow for

heterogeneous slope coefficients in regression as well as heterogeneous error variances?

While it may be clearly stated, this challenge to the empirical researcher is by no means

easily addressed. While allowing for cross-sectional slope heterogeneity in regression may help to

avert misspecification bias, it also sacrifices the power of cross section averaging in the estimation

of response patterns that may be common across individuals, or more subtly, certain groups of

individuals in the panel. In the absence of prior information on such grouping and with data

where every new individual to the panel may bring new idiosyncratic elements to be explained,

the challenge is demanding and almost universally relevant.

Traditional panel data models frequently deal with this challenge by avoidance. Complete

slope homogeneity is assumed for certain specified common parameters in the panel. Under

this assumption, the regression parameters are the same across individuals and unobserved het-

erogeneity is modeled through individual-specific effects which are either fixed or random and

(typically) enter the model additively. This approach is an exemplar of a convenient assumption

that facilitates estimation and inference.

The cross section homogeneity assumption has been frequently questioned and rejected in

empirical studies. The following is only a partial list of work where homogeneity has been found

to fail. Burnside (1996) rejects slope homogeneity in the production function of US manufactur-

ing firms; Hsiao and Tahmiscioglu (1997) find parameter heterogeneity in investment functions
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using the U.S. firm level panel data; Lee, Pesaran, and Smith (1997) find that the convergence

rates of per capita output to the steady state level are heterogeneous across countries; Durlauf,

Kourtellos, and Minkin (2001) find substantial country-specific heterogeneity in the parameters in

Solow growth model that is associated with differences in initial income; Phillips and Sul (2007a)

provide a new approach to testing for economic growth convergence under heterogeneous technol-

ogy and explore these differences in the Penn World Table; Browning and Carro (2007) present

a selective overview on heterogeneity in microeconometric modelling and find that there is more

heterogeneity than econometricians usually allow for; Browning and Carro (2010) document het-

erogeneity in a dynamic discrete choice panel data model for consumer milk-type choices where

heterogeneity occurs in both the levels parameter and the state dependence parameter; Browning

and Carro (2014) show that individual unemployment dynamics are heterogenous even within a

homogeneous group of Danish workers in terms of their observed characteristics; Su and Chen

(2013) reject the null of slope homogeneity in an economic growth model for OECD countries

even after they control for unobserved heterogeneity through interactive fixed effects.

Despite general agreement that slope heterogeneity is endemic in empirical work with panels,

few methods are available to allow for heterogeneity in the slope parameters when the extent

of the heterogeneity is unknown. In the following discussion we group the methods that are

available into two broad categories and consider the different approaches pursued within them.

In the first category, complete slope heterogeneity is assumed and regression coefficients are taken

as differing across individuals. Several approaches are adopted in the literature. Perhaps the most

common method is to use a random coefficient structure in which the parameters are assumed to

be independent draws from a common distribution — see Hsiao and Pesaran (2008) for an overview

of the approach. The random coefficient model allows for estimation of the mean coefficient effect

but is uninformative about responses at the disaggregate level, thereby missing what is often

the object of interest. A second approach uses Bayesian methods to shrink the individual slope

estimates towards the overall mean — see Maddala, Trost, Li, and Joutz (1997). This approach is

based on the presumption that the slope parameters, while not precisely the same, are sufficiently

similar to warrant shrinkage toward the mean — a presumption that may be questionable in some

empirical applications. A third approach is to parameterize individual slope coefficients as a

function of observed characteristics — see Durlauf, Kourtellos, and Minkin (2001) and Browning,

Ejrnæs, and Alvarez (2010). Apparently, this approach depends crucially on the specification of

the functional coefficient and is subject to potential misspecification problems. A fourth approach

is to estimate the individual slope coefficients using heterogenous time series regressions for each

individual, which is only feasible in systems where the time dimension  is large. Even in this

case, there is a considerable debate on the options: whether to pool the data and obtain a single

estimate for the whole sample, whether to estimate the equations separately for each individual,

and whether to rely on the average response from individual time series regressions — see Pesaran
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and Smith (1995), Baltagi and Griffin (1997), Hsiao, Pesaran, and Tahmiscioglu (1999), Pesaran,

Shin and Smith (1999), and the survey by Baltagi, Bresson, and Pirotte (2008).

The second category takes a totally different viewpoint on the nature of the heterogeneity

in panels. In place of complete slope homogeneity or heterogeneity an intermediate approach is

adopted in which the panel structure models individuals as belonging to a number of homogeneous

groups or clubs within a broadly heterogeneous population. In this framework, the regression

parameters are the same within each group but differ across groups. Two essential questions

remain: how to determine the unknown number of groups (dubbed convergence clubs in the

economic growth literature); and how to identify the individuals belonging to each group. These

are longstanding questions of statistical classification in panel data. No completely satisfactory

solution has yet been found, although various approaches have been adopted in empirical research.

For instance, Bester and Hansen (2013) consider a panel structure model where individuals are

grouped according to some external classification, geographic location, or observable explanatory

variables; Bai and Ando (2013) consider a multifactor asset-pricing model where there exist group-

specific pervasive factors influencing a subset of assets and the group membership is assumed to

be known. So the group structure is completely known to the researcher, an approach that is

common in practical work because of its convenience. In the economic growth literature, for

example, countries are often classified according to continental location or economic development

levels, which both lead to determinate group structures. In spite of its convenience, this approach

to panel inference is inevitably misleading when the number of groups and individual identities

are incorrectly classified.

Several approaches have been proposed to determine an unknown group structure in mod-

eling unobserved slope heterogeneity in panels. The first approach is to apply finite mixture

models that do not assume a known group structure. For example, Sun (2005) considers a para-

metric finite mixture panel data model by employing a multinomial logistic regression to model

membership probabilities. Sun’s model comprises a heterogenous linear panel regression model

that relates the response variable to explanatory variables and a logistic regression that identifies

individual memberships. In a related thematic, Kasahara and Shimotsu (2009) and Browning

and Carro (2011) study identification in discrete choice panel data models for a fixed number of

groups using nonparametric discrete mixture distributions. The second approach is based on the

K-means algorithm in statistical cluster analysis. Lin and Ng (2012) and Sarafidis and Weber

(2011) propose to modify the K-means algorithm to perform conditional clustering to estimate

linear panel structure models but no asymptotic properties of that procedure or the estimators are

derived. Bonhomme and Manresa (2014) introduce time-varying grouped patterns of heterogene-

ity in linear panel data models, propose two classification algorithms that are also closely related

to the K-means algorithm, and study the asymptotic properties of the resulting estimators. Ando

and Bai (2013) consider SCAD estimation of panel data models with unobserved group factor
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structures. Lin and Ng (2012), Bonhomme and Manresa (2014), and Ando and Bai (2013) all

assume that  and  pass to infinity jointly. Lin and Ng (2012) propose another method to

estimate a panel structure model by turning the problem of parameter heterogeneity into the

estimation of a panel threshold model with an unknown threshold value and using the individ-

ual time series estimates of the parameters to form threshold variables. Phillips and Sul (2007)

develop an algorithm for determining group clusters that relies on the estimation of evaporating

trend functions to determine convergence clusters. Again, joint limits as ( )→∞ are used in

the development of the asymptotic theory.

The present paper proposes a new method for econometric estimation and inference in panel

models when the slope parameters are heterogenous across groups, individual group membership is

unknown, and classification is to be determined empirically. Our modeling strategy therefore falls

within the second category discussed above. It is an automated data-determined procedure and

does not require the specification of any modeling mechanism for the unknown group structure.

The approach we suggest involves a new variant of Lasso (Tibshirani, 1996) technology that is

designed to classify parametric slope coefficients in a heterogeneous panel model into a group

structure in which both the groups and the elements in the groups are data-determined. Like

Lin and Ng (2012), Bonhomme and Manresa (2014) and Phillips and Sul (2007), we assume

that ( ) → ∞ jointly (Phillips and Moon, 1999). But in our asymptotic theory  can pass

to infinity at a very slow rate, even a slowly varying rate such as 
¡
(ln)1+

¢
for any   0

in the case of uniformly bounded regressors, thereby opening up empirical applications of the

method to short wide panels. The methods proposed here have several novel aspects in relation

to earlier research and they contribute to both the Lasso and econometric classification literatures

in various ways, which we outline in the following paragraphs.

First, our approach is motivated by one of the key features of Lasso technology that enables

the method to deliver simultaneous variable selection and estimation in a single step. This

advantage is particularly useful when the set of unknown parameters is potentially very large

but may also embody certain sparse features. In a typical panel model structure, the effective

number of unknown slope parameters {  = 1 } is not of order  () as it would be if
these parameters were all incidental, but rather of some order  (0)  where 0 denotes the

number of unknown groups within which the slope coefficients are homogeneous. Moreover, when

the number of groups is finite, 0 is fixed and so the order of unknown coefficients is then  (1)

as ( ) → ∞ Hence, in many empirical applications the set of unknown slope parameters in

a panel structure model surely exhibits the desirable sparsity feature, making the use of Lasso

technology highly appealing.

Second, the procedures developed in the present paper contribute to the fused Lasso literature

in which sparsity arises because some parameters take the same value. The fused Lasso was

proposed by Tibshirani, Saunders, Rosset, Zhu, and Knight (2005) and was designed for problems

5



with features that can be ordered in some meaningful way (e.g., in time series regression where

the time periods have natural ordering). The method cannot be used to classify individuals

into different groups because there is no natural ordering across individuals and so a different

algorithm to locate common individuals is required. The present paper develops a new variant of

the Lasso method that does not rely on the order of individuals in the data and which therefore

contributes to the fused Lasso technology.

Third, standard Lasso technology involves an additive penalty term to the least-squares,

GMM, or log-likelihood objective function and when multiple penalty terms are needed, they

also enter the objective function additively. To achieve simultaneous group classification and

estimation in a single step our variant of Lasso involves  additive penalty terms, each of which

takes a multiplicative form as a product of 0 penalty terms. To the best of our knowledge, this

paper is the first to propose a mixed additive-multiplicative penalty form that can serve as an

engine for simultaneous classification and estimation. The method works by using each of the

0 penalty terms in the multiplicative expression to shrink the individual-level slope parameter

vectors to a particular unknown group-level parameter vector, thereby producing a joint shrinkage

process. This process is distinct from the prototypical Lasso method that shrinks an individual

parameter to zero and the group Lasso method that shrinks a parameter vector to a vector of

zeros (see Yuan and Lin, 2006). To emphasize its role as a classifier and for future reference, we

describe our new Lasso method as the classifier-Lasso or C-Lasso.

Fourth, we develop a limit theory for the C-Lasso that demonstrates its capacity to achieve

simultaneous classification and consistent estimation in a single step. As mentioned in the Ab-

stract, the paper develops two classes of estimators for panel structure models — penalized least

squares (PLS) and penalized GMM (PGMM). The former is applicable to panel models without

endogenous regressors and with or without dynamic structures, while the latter is applicable to

panel models with endogeneity or dynamic structures. In either case, we show uniform classifi-

cation consistency in the sense that all individuals belonging to a certain group can be classified

into the same group correctly uniformly over both individuals and group identities with probabil-

ity approaching one (w.p.a.1). Conversely, all individuals that are classified into a certain group

belong to the same group uniformly over both individuals and group identities w.p.a.1. Under

some regularity conditions, such a uniform result allows us to establish an oracle property of the

PLS estimator that it is asymptotically equivalent to the corresponding infeasible estimator of

the group-specific parameter vector that is obtained by knowing all individual group identities.

Note that traditional Lasso only possesses the selection consistency and oracle property under the

so-called restrictive irrepresentable condition. This shortcoming of Lasso motivated Zou (2006)

to propose the adaptive Lasso that possesses these attractive properties.1 Unfortunately, our

1Other methods that possess the selection consistency and oracle property include the Bridge and SCAD

(smoothly clipped absolute deviation) procedures; see Knight and Fu (2000) and Fan and Li (2001).
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PGMM estimator generally does not have the oracle property despite the uniform selection con-

sistency of the C-Lasso. The uniform classification consistency also allows us to develop a limit

theory for post-C-Lasso estimators that are obtained by pooling all individuals in an estimated

group to estimate the group-specific parameters.

Fifth, C-Lasso enables empirical researchers to study panel structures without a priori knowl-

edge of the number of groups, without the need to specify any ancillary regression models to model

individual group identities, and with no need to make any distributional assumptions. When the

number 0 of groups is unknown, a BIC-type information criterion is proposed to determine

the number of groups and it is shown that this procedure selects the correct number of groups

consistently. The same information criterion can also be used to determine a data-driven tuning

parameter for the PLS or PGMM estimation.

Sixth, while the focus of the present paper is on linear panel data modeling, the methodology

developed here can be extended to nonlinear models such as discrete choice models, to semipara-

metric and nonparametric models, to models where only a subset of parameters are allowed to

be group-specific, and to models where one considers group-specific effects along the time dimen-

sion. Extension to panel data models with interactive-fixed effects is also possible and is presently

under way.

We envisage a large number of potential empirical applications of the C-Lasso approach within

economics and finance and more broadly across the social and business sciences. The following list

provides three distinct areas of application in international macroeconomics, microeconometrics,

and nonstationary panel econometrics.

1. Economic Growth Convergence: Much of the recent literature on economic growth

addresses sources of possible heterogeneity, including the occurrence of multiple steady states

and history-dependence in growth trajectories - see Deissenberg, Feichtinger, Semmler, and Wirl

(2004) and Durlauf, Johnson, and Temple (2005) and Eberhardt and Teal (2011) for overviews of

the relevant growth theory and empirics. Contingent upon historical conditions economic systems

may converge towards distinct steady states, the empirical manifestation of which are the so-called

convergence clubs that occur in cross-country growth studies. In an application to cross-country

growth, Phillips and Sul (2007a) evaluated evidence in support of panel data growth clustering,

locating three convergence clubs and one divergent group among 88 countries in the Penn World

Tables in terms of real per capita GDP over the period 1960-1996. Their methodology involved

a stepwise algorithm with multi-level decision making to isolate the convergence clubs. The

panel structure framework suggested in the present paper is a natural setting to consider growth

convergence and the C-Lasso procedure provides a one step classifier and estimation approach

with no sequential decision making. The method can also be used to isolate convergence clubs

and remaining divergent elements in the panel.

2. Subsample Studies of Stability: Much empirical research is concerned with studying
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the stability of certain regression coefficients over subsamples of the data. In this work, the whole

sample is split into multiple subsamples and regression relationships are checked for coefficient

stability. The groupings may be arbitrarily selected or may be determined by covariates or

thresholds, each of which may have a significant impact on the findings. For example, in order

to test whether financing constraints affect investment decisions, Fazzari, Hubbard, and Petersen

(1988) divided a sample of firms into multiple groups based on empirical proxies such as the

dividend-income ratio. Similarly, in testing whether liquidity constraints affect consumption

decisions in PSID data, Zeldes (1989) uses two different wealth-to-income ratios as prescribed

variables to divide the sample into subsamples. Sample splitting techniques of this type are

inevitably vulnerable to the choice of prescribed driver variables. The methodology of the present

paper does not require driver variables or thresholds to determine regression stability.

3. Panel Unit Root Grouping: Several approaches are available for testing the presence of

unit roots in panel data. Two popular tests in applications are the Levin, Lin, and Chu (2002) and

Im, Pesaran, and Shin (2003) tests. Levin, Lin, and Chu (2002) devise an adjusted -test for a unit

root for various panel data models, assuming that all individuals (countries, regions, industries,

etc.) have the same autoregressive (AR) coefficients while permitting individual specific effects

as well as dynamic heterogeneity across individuals. Im, Pesaran, and Shin (2003) propose a test

based on the average of the augmented Dickey-Fuller statistics computed for each individual series

in heterogenous panels. Both tests rule out the possibility that some individual series have a unit

root while others do not - precisely the empirical possibility that many argue is the most relevant

in practical work (e.g., Maddala and Kim, 1998). Our methodology is designed to directly address

this possibility and can be used to classify a subgroup of unit-root processes in the panel from a

wider class of stationary and nonstationary processes.

The rest of the paper is organized as follows. We study the C-Lasso PLS estimation and

inference of panel structure models in Section 2. PGMM estimation and inference is addressed in

Section 3. Section 4 reports Monte Carlo simulation findings. We apply our method to study the

determinants of cross-country savings rates in Section 5. Final remarks are contained in Section

6. Proofs of the main results in the body of the paper are given in Appendices A and B. The

supplementary Appendices C and D provide primitive conditions for some high level conditions

that are used in the body of the paper and bias correction for the C-Lasso estimates, respectively.

NOTATION. Throughout the paper we adopt the following notation. For an  ×  real

matrix  we write the transpose 0 the Frobenius norm kk (≡ [tr (0)]12) and the Moore-
Penrose inverse as +When  is symmetric, we use max () and min () to denote the largest

and smallest eigenvalues, respectively.  and 0×1 denote the  ×  identity matrix and  × 1
vector of zeros. 1{·} denotes the indicator function and “p.d.” abbreviates “positive definite”.
The operator

→ denotes convergence in probability,
→ convergence in distribution, and plim

probability limit. We use ( )→∞ to signify that  and  pass jointly to infinity.
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2 Penalized Least Squares Estimation

This section considers panel structure models without endogeneity. It is convenient to assume

first that the number of groups is known and later consider the determination of the number of

unknown groups.

2.1 Panel Structure Models

The dependent variable  is measured for individual  = 1   over time  = 1   The

generating mechanism is the panel structure model

 = 00  +  +  (2.1)

where  is a ×1 vector of exogenous or predetermined variables,  is an individual fixed effect
that may be correlated with some components of ,  is the idiosyncratic error term with zero

mean, and 0 is a × 1 vector of slope parameters such that

0 =

⎧⎪⎪⎨⎪⎪⎩
01 if  ∈ 01
...

...

00
if  ∈ 00

 (2.2)

Here 0 6= 0 for any  6= , ∪0

=1
0
 = {1 2  }  and 0 ∩ 0 = ∅ for any  6=  Let

 = #0 denote the cardinality of the set 
0
 For the moment, we assume that the number

0 of groups is known and fixed but that each individual’s group membership is unknown. In

addition, following Sun (2005) and Lin and Ng (2012), we implicitly assume that individual group

membership does not vary over time. Let

α ≡ (1  0
) and β ≡ (1   )  (2.3)

Let B denote the parameter space of 2 We assume that B are compact uniformly in  and

denote the true values of α and β as α0 and β0 respectively. We are interested in developing

econometric methods to infer each individual’s group identity and to estimate the ×0 matrix

α0 of group-specific coefficients.

2.2 Penalized Least Squares Estimation of α and β

Our starting point is to develop PLS estimation of α and β when the elements of  are either

strictly exogenous or predetermined so that least squares criteria are appropriate. We first apply

2When the ’s are group-specific, we can also regard the respective parameter spaces B to be group-specific.
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ordinary least squares (OLS) regression, minimizing the following objective function3

0 (βμ) =
1



X
=1

X
=1

¡
 − 0 − 

¢2


where μ= (1 2  )
0 Since the individual effects  are not of primary interest, we concen-

trate them out and obtain the following concentrated function

1 (β) =
1



X
=1

X
=1

¡
̃ − 0̃

¢2


giving the OLS estimates ̂


 =
³
1


P
=1 ̃̃

0


´−1 ³
1


P
=1 ̃̃

´−1
 where ̃ =  −

−1
P

=1  and ̃ =  − −1
P

=1 

Motivated by the literature on group Lasso (e.g., Yuan and Lin, 2006), we next propose to

estimate β and α by minimizing the following PLS criterion function


(0)

11
(βα) = 1 (β) +

1



X
=1

Π0

=1 k − k  (2.4)

where 1 = 1 is a tuning parameter. Minimizing the above criterion function produces

classifier-Lasso (C-Lasso) estimates β̂ and α̂ of β and α respectively. Let ̂ and ̂ denote the

th and th columns of β̂ and α̂, respectively, i.e., α̂ ≡ (̂1  ̂) and β̂ ≡(̂1  ̂ )
The penalty term in (2.4) takes a novel mixed additive-multiplication form that does not

appear in the literature. Traditionally Lasso includes an additive penalty term to the least-

squares, GMM, or log-likelihood objective function. When multiple penalty terms are needed,

they also enter the objective function additively. In contrast, the C-Lasso method has  additive

terms, each of which takes a multiplicative form as the product of 0 separate penalties. Each of

the 0 penalty terms in the multiplicative expression shrinks the individual-level slope parameter

vector  to a particular unknown group-level parameter vector  This approach differs from

the prototypical Lasso method of Tibshirani (1996) that shrinks a parameter to zero as well as

the group Lasso method of Yuan and Lin (2006) that shrinks a parameter vector to a vector of

zeros.

Note that the objective function in (2.4) is not convex in β even though it is (conditionally)

convex in  when one fixes  for  6=  In Section 4.2 we propose an iterative algorithm to

obtain the estimates α̂ and β̂

3 If ’s are identical across  the approach will yield the well known within-group (WG) estimator or least

squares dummy variable (LSDV) estimator, or fixed effects Guassian maximum likelihood estimator (MLE) in the

literature; see, e.g., Kiviet (1995), Hahn and Kuersteiner (2002), and Alvarez and Arellano (2003). As will be clear,

this appraoch can be easily extended to nonlinear panel data models.
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2.3 Preliminary Rates of Convergence for Coefficient Estimates

We first present sufficient conditions to ensure the consistency of (β̂, α̂). Let ̃ =  −
−1

P
=1  ̂̃̃ =

1


P
=1 ̃̃

0
 and ̂̃̃ =

1


P
=1 ̃̃ We make the following assump-

tion.

ASSUMPTION A1. (i) 1√


P
=1 ̃̃ =  (1) for each  = 1  

(ii) ̂̃̃
→ ̃̃  0 for each  = 1   There exists a constant ̃̃ such that lim( )→∞

min1≤≤ min(̂̃̃) ≥ ̃̃  0

(iii) 1


P
=1

°°°̂̃̃

°°°2 = 

¡
−1

¢


(iv)  →  ∈ (0 1) for each  = 1 0 as  →∞

(v) 1 → 0 as ( )→∞

Assumption A1(i) is rather weak and will be satisfied in most (stable) large dimensional linear

panel data models without endogeneity. Sufficient conditions for A1(i) to hold are 1√


P
=1 

1√


P
=1  and

1


P
=1  =  (1) for  = 1   More primitive conditions for A1(i) to

hold include E () = 0 E () = 0 and suitable moment and weak dependence conditions

on the process {( )   ≥ 1} that ensure CLT validity. Note that we do not require that

the panel model be dynamically correctly specified in the sense that E (|F−1) = 0 where

F−1 is the sigma-field generated by ( −1 −1 ). Instead, we allow both conditional

heteroskedasticity and serial correlation in {  ≥ 1} 
A1(ii) contains two parts, the first part being standard and the second part being a high-

level condition. Appendix C.1 gives primitive conditions to ensure the second part. Intuitively,

these conditions impose some restrictions on the moments of  the dependence structure on the

processes {  ≥ 1}  and the relative rates at which  and  pass to infinity. More specifically,

under suitable weak dependence conditions, if kk2 exhibits only 2-th finite moments for some
  1, then we need a stringent (lower rate) condition on the expansion of  viz.,   →
 ∈ (0∞] for some   1(2 − 1) On the other hand, if kk2 has finite exponential moments
with an index parameter  as specified in Assumption C1(iv), then only  (ln)(1+) →∞ is

required for sufficiency. In the extreme case, if  is uniformly bounded (i.e.,  =∞), it simply
suffices that  ln →∞

A1(iii) can be easily verified via the Markov inequality. A1(iv) implies that each group has an

asymptotically non-negligible membership number of individuals as →∞ This assumption can

be relaxed at the cost of more lengthy arguments, in which case the estimates of 0  = 1 0

will exhibit different convergence rates. A1(v) implies that the penalty term cannot be too large.

The following theorem establishes the consistency of the PLS estimates {̂} and {̂} 

Theorem 2.1 Suppose that Assumption A1 holds. Then

(i) ̂ − 0 = 

¡
−12 + 1

¢
for  = 1 2  

11



(ii) 1


P
=1

°°°̂ − 0

°°°2 = 

¡
−1

¢


(iii)
¡
̂(1)  ̂(0)

¢− (01  00
) = 

¡
−12

¢
where (̂(1)  ̂(0)) is a suitable permutation of (̂1  ̂0

)

REMARK 1. Parts (i) and (ii) of Theorem 2.1 establish the pointwise and mean-square con-

vergence of ̂. Part (iii) of Theorem 2.1 indicates that the group-specific parameters 01  
0


can also be estimated consistently by ̂1  ̂0
subject to permutation. As expected and con-

sonant with other Lasso limit theory, the pointwise convergence rate of ̂ depends on the rate

at which the tuning parameter 1 converges to zero. Somewhat unexpectedly, this requirement

is not the case either for mean-square convergence of ̂ or convergence of ̂. Apparently if

1 = 
¡
−12

¢
 we get the usual

√
 -convergence rate for the ̂.

For notational simplicity, hereafter we simply write ̂ for ̂() as the consistent estimator of

0, and define

̂ =
n
 ∈ {1 2  } : ̂ = ̂

o
for  = 1 0 (2.5)

2.4 Classification Consistency

This section studies classification consistency. Roughly speaking, a classification method is con-

sistent if it classifies each individual to the correct group w.p.a.1. For a rigorous statement of this

property we define the following sequences of events

̂ =
n
 ∈ ̂ |  ∈ 0

o
and ̂ =

n
 ∈ 0 |  ∈ ̂

o
 (2.6)

where  = 1  and  = 1 0 Let ̂ = ∪∈0

̂ and ̂ = ∪∈̂

̂ The

events ̂ and ̂ mimic Type I and II errors in statistical tests: ̂ denotes the error

event of not classifying an element of 0 into the estimated group ̂; and ̂ denotes the

error event of classifying an element that does not belong to 0 into the estimated group ̂

To achieve uniform consistency in estimation both error types must be controlled. We use the

following definition.

Definition 1. (Uniform consistency of classification) We say that a classification method

is individually consistent if 
³
̂

´
→ 0 as ( ) → ∞ for each  ∈ 0 and  = 1 0

and 
³
̂

´
→ 0 as ( )→∞ for each  ∈ ̂ and  = 1 0 It is uniformly consistent

if 
³
∪0

=1̂

´
→ 0 and 

³
∪0

=1̂

´
→ 0 as ( )→∞

To establish consistency of the PLS classifier we add the following assumption.

ASSUMPTION A2. (i) 1 →∞ and 41 → 0 ∈ [0∞) as ( )→∞.
(ii) For any   0  max1≤≤ 

³°°°−1P
=1 ̃̃

°°° ≥ 
√
1

´
→ 0 as ( )→∞

12



Assumption A2(i) is required for individual consistency of the PLS classifier. Assumption

A2(ii) is a high level assumption that ensures the uniform consistency of the classifier. In Ap-

pendix C, we verify this condition for strong mixing processes with geometric decay rates under

certain moment conditions. In particular, if (a) kk  ||  and kk have finite 2th moments,
then A2(ii) will be satisfied provided

1 À max{−1 ln −2( )1(ln )4(ln)2}; (2.7)

(b) if kk  ||  and kk have exponential moments with an index parameter , then A2(ii)
will be satisfied provided

1 À max{−1 ln −2[ln( )]2(1+)} (2.8)

In either case, we need 1 À ln If  ∝  1 for some 1  1( − 1) in case (a) and ∝ 2

for some 2  0 in case (b), then we can easily verify that 1 À ln would also be sufficient

to ensure A2(ii). Combining this requirement with A2(i) suggests that under certain conditions

on the moments and on the related rates at which  and  pass to infinity, it suffices to require

that

1 ∝ − for any  ∈ [14 1) (2.9)

The following theorem establishes uniform consistency for the PLS classifier.

Theorem 2.2 Suppose that Assumptions A1-A2 hold. Then

(i) 
³
∪0

=1̂

´
≤P0

=1  (̂ )→ 0 as ( )→∞

(ii) 
³
∪0

=1̂

´
≤P0

=1  (̂ )→ 0 as ( )→∞

REMARK 2. Theorem 2.2 implies that all individuals within a certain group, say 0 can

be simultaneously correctly classified into the same group (denoted ̂) w.p.a.1. Conversely, all

individuals that are classified into the same group, say ̂ simultaneously correctly belong to

the same group (0) w.p.a.1. Let ̂0 denote the group of individuals in {1 2 } that are
not classified into any of the 0 groups, i.e., ̂0 = {1 2  } \(∪0

=1̂). Define the events

̂ = { ∈ ̂0} Theorem 2.2(i) implies that  (∪1≤≤̂ ) ≤
P0

=1  (̂ )→ 0 That is,

all individuals can be classified into one of the 0 groups w.p.a.1. Nevertheless, when  is not

large, it is possible for a small percentage of individuals to be left unclassified if we stick with

the classification method defined in (2.5). To ensure that all individuals are classified into one

of the 0 groups in finite samples, one need only slightly modify the classifier to achieve it. In

particular, we classify  ∈ ̂ if ̂ = ̂ for some  = 1 0 and  ∈ ̂ for some  = 1 0

if °°°̂ − ̂

°°° = minn°°°̂ − ̂1

°°°  °°°̂ − ̂

°°°o and

0X
=1

1
n
̂ = ̂

o
= 0

13



Since the event
P0

=1 1{̂ = ̂} = 0 occurs with probability tending to zero uniformly in  we

can ignore it in large samples in subsequent theoretical analysis and restrict our attention to the

previous classification rule in (2.5) to avoid confusion. That is, ̂ = { ∈ {1  } : ̂ = ̂}
for  = 1 0

Let ̂ =
P

=1 1{ ∈ ̂} The following corollary indicates that we can estimate the number
of individuals within each group consistently.

Corollary 2.3 Suppose that Assumptions A1-A2 hold. Then ̂− =  (1) for  = 1 0

2.5 The Oracle Property and Asymptotic Properties of Post-Lasso

To establish the oracle property of the PLS estimates {̂}  we add the following assumption.
ASSUMPTION A3. (i) For each  = 1 0, Φ̄ ≡ 1



P
∈0



P
=1 ̃̃

0


→ Φ  0 as

( )→∞

(ii) For each  = 1 0,
1√


P
∈0



P
=1 ̃̃ − B

→  (0Ψ) as ( ) → ∞
where B =

1√


P
∈0



P
=1 E (̃) is either 0 or (

p
 ) depending on whether 

is strictly exogenous.

Assumption A3 is a convenient high level condition. It can be verified under various commonly

occurring primitive conditions. For example, if (a) {( )} is a stationary strong mixing process
with a geometric mixing rate along the time dimension and is independently and identically

distributed (IID) along the cross section dimension for all individuals within the same group 0,

(b)  and  have finite two-plus moments, and (c) E (̃) = 0 and E () = 0 then A3 is

satisfied with B = 0 Φ =Var()  and Ψ = lim→∞ 1


P
=1

P
=1 E (

0
) for any

 ∈ 0 Apparently, condition (c) rules out the case of dynamic panel data models. If  contains

lagged dependent variables (e.g., −1), it is well known that the fixed effects within-group (WG)

estimator has asymptotic bias of order  (1 ) in homogeneous dynamic panel data models. This

suggests that B = (
p
 ) in dynamic panel data models and bias correction is required

for statistical inference unless  passes to infinity faster than  Matters of bias correction and

some explicit formulae in this case are discussed below in Remark 5 and Appendix D.1.

The following theorem gives the oracle property of the Lasso estimator {̂}.

Theorem 2.4 Suppose that Assumptions A1-A3 hold. Then
√


¡
̂ − 0

¢ − Φ̄−1 B
→

(0 Φ−1 ΨΦ
−1
 ) for  = 1 0

REMARK 3. If each individual’s group membership is known, the WG estimator of 0

is ̄ =
³P

∈0


P
=1 ̃̃

0


´−1P
∈0



P
=1 ̃̃ and then

√


¡
̄ − 0

¢ − Φ̄−1 B
→


¡
0Φ−1 ΨΦ

−1


¢
under Assumption A3. Theorem 2.4 indicates that the PLS estimator ̂

achieves the same limit distribution as this oracle WG estimator with knowledge of the exact
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membership of each individual. In this sense, we say that the PLS estimators {̂} have the
asymptotic oracle property. In the Appendix, we prove the above theorem by inspection of

the Karush-Kuhn-Tucker (KKT) optimality conditions for minimizing the objective function in

(2.4) based on subdifferential calculus (e.g., Bertsekas, 1995, Appendix B.5). We then show that√


¡
̂ − 0

¢
=
√
 (̂̂

−0)+ (1)  where ̂̂
is the post-Lasso estimator of 0 given

by

̂
̂
=

⎛⎝X
∈̂

X
=1

̃̃
0


⎞⎠−1 X
∈̂

X
=1

̃̃ (2.10)

The following theorem reports the asymptotic distribution of ̂
̂


Theorem 2.5 Suppose that Assumptions A1-A3 hold. Then
√
 (̂̂

− 0) − Φ̄−1 B
→

(0 Φ−1 ΨΦ
−1
 ) for  = 1 0

REMARK 4. The proof of the above theorem is based on the uniform classification consistency

results in Theorem 2.2. In a totally different framework, Belloni and Chernozhukov (2013) study

post-Lasso estimators which apply OLS to the model selected by first-step penalized estimators

and show that the post-Lasso estimators perform at least as well as Lasso in terms of rate of

convergence and have the advantage of having a smaller bias. It would also be interesting to

compare the high-order asymptotic properties of ̂ and ̂
̂

given that they share the same

first-order asymptotic distribution. But that analysis goes beyond the scope of the current paper.

We do compare the performance of the post-Lasso estimators and the C-Lasso estimators in

simulations reported below.

REMARK 5. As mentioned above, B = 0 in Assumption A3(ii) under strict exogene-

ity. In the case of dynamic panel data models, we have to obtain a consistent estimate of

 ≡ Φ̄−1 B in order to perform inference. Various methods have been proposed to es-

timate  in the literature under conditions that are typically simpler than the latent structure

model considered here. These methods generally involve first stage consistent estimates that are

subsequently plugged-into analytic formulae for the asymptotic bias function to achieve the cor-

rection. For example, Kiviet (1995) and Hahn and Kuersteiner (2002) derived bias formulae for

the WG estimator of a common autoregressive coefficient in first-order autoregressive (AR(1))

panel data models with exogenous regressors and propose ways to correct the bias such as the

use of plug-in corrections. Phillips and Sul (2007b) provide explicit asymptotic bias formulae for

linear dynamic panel regression estimators where the models may or may not exhibit unit roots,

incidental trends, exogenous regressors, and cross section dependence, all of which lead to different

formulae. Lee (2012) considers bias correction for WG estimators in higher-order autoregressive

models with exogenous regressors where the lag order is possibly misspecified. Other methods,

such as median unbiased estimation, indirect inference (Gourieroux, Phillips, and Yu, 2010), and
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X-differencing (Han, Phillips, and Sul, 2014) have been used in dynamic panel data models to

avoid bias problems. To conserve space, we refer the readers directly to those papers for details

of these particular formulae and the correction procedures employed. In the present case, since

the formula for  ≡ Φ̄−1 B is known and can be explicitly represented in cases such as

the presence of lagged dependent variables in , we can also use a plug-in estimator to achieve

bias correction. The approach is similar to that proposed in Hahn and Kuersteiner (2002) and

recently reviewed in Moon, Perron, and Phillips (2014). However, in the present model the bias

term B =
1√


P
∈0



P
=1 E (̃) inevitably reflects the latent structure of the model

and thereby involves further complications. For instance, in the panel AR(1) model there is no

longer a single common AR coefficient as in Hahn and Kuersteiner (2002). Implementation there-

fore requires plug-in estimates of each of the common autoregressive coefficients that appear in

the group structures {0}0

=1 It follows that consistent group structure estimation by {̂}0

=1

is necessary for the plug-in mechanism to be feasible. To fix ideas, suppose the model (2.1) has

the panel AR(1) form

 = 0 −1 +  + 
¯̄
0
¯̄
 1 for all   ∼ 

¡
0 2

¢
(2.11)

with latent structure (2.2) giving 0 = 0 for  ∈ 0 Since E (−1−) = 21 { = + 1 + } 
we have for  ∈ 0

X
=1

E (−1̃) = −−1
X

=1

E (−1) = −−1
X

=1

∞X
=0

¡
0
¢
E (−1−)

= −2 1


X
=1

−−1X
=0

¡
0
¢
= −2 1



X
=1

1− ¡0¢−
1− 0

= − 2

1− 0
+

2

1− 0

1



X
=1

¡
0
¢−

= − 2

1− 0
+

2

1− 0

1



1− ¡0¢
1− 0



so that

B =

r
1



X
∈0



X
=1

E (−1̃) = −
r





2

1− 0
+

µ
1√


¶


Further, as (  )→∞ we have

Φ̄ ≡ 1



X
∈0



X
=1

̃2−1 → E
¡
2−11

©
 ∈ 0

ª¢
=

2

1− ¡0¢2 = Φ
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so thatp


³
̂
̂
− 0

´
− Φ̄−1 B =

p


³
̂
̂
− 0

´
+

r




1− ¡0¢2
1− 0

+

µ
1√


¶
=

p


µ
̂
̂
− 0 +

1 + 0


¶
+  (1)

→ (0 1− ¡0¢2) (2.12)

since Ψ = 4[1−¡0¢2] here. As in Hahn and Kuersteiner (2002), (2.12) suggests a simple bias
correction within ̂ viz.,

̃
̂
= ̂

̂
+
1 + ̂

̂


=

 + 1


̂
̂
+
1


  = 1 0 (2.13)

giving bias corrected estimators for the latent structure panel AR(1) model (2.11). Of course,

formula (2.13) gives appropriate bias correction only in the stationary case where
¯̄
0
¯̄
 1 for all

 For the general case, see the supplementary Appendix D.1 for the bias correction.

2.6 Determination of the Number of Groups

In practice, the exact number 0 of groups is typically unknown. We assume that the true

number of groups is bounded from above by a finite integer max and study the determination

of the number of groups via some information criterion. Consider the following PLS criterion


()

11
(βα) = 1 (β) +

1



X
=1

Π=1 k − k  (2.14)

where 1 ≤  ≤ max. By minimizing the objective function (2.14), we obtain the C-Lasso

estimates {̂ (1)  ̂ (1)} of { }  where we make the dependence of ̂ and ̂ on

(1) explicit. As above, we can classify individual  into group ̂ (1) if and only if

̂ (1) = ̂ (1), i.e.,

̂ (1) =
n
 ∈ {1 2  } : ̂ (1) = ̂ (1)

o
for  = 1  (2.15)

Let ̂ (1) = {̂1 (1)   ̂ (1)} Based on (2.15), define the post-Lasso estimate of
0 by

̂
̂(1)

=

⎛⎝ X
∈̂(1)

X
=1

̃̃
0


⎞⎠+ X
∈̂(1)

X
=1

̃̃ (2.16)

where + denotes the Moore-Penrose inverse of  Let ̂2
̂(1)

= 1


P
=1

P
∈̂(1)

P
=1

[̃ − ̂0
̂(1)

̃]
2 We propose to select the number of groups by choosing  to minimize the

following information criterion:

1 (1) = ln
h
̂2
̂(1)

i
+ 1 (2.17)
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where 1 is a tuning parameter. Similar information criteria are used to choose tuning para-

meters by Wang, Li, and Tsai (2007), Liao (2013), and Lu and Su (2013) for shrinkage estimation

in various contexts and have been found to work satisfactorily.

We proceed to describe the asymptotic properties of (2.17). First, some notation. Let K =
{1 2 max}. We divide K into three subsets K0 K− and K+ as follows

K0 = { ∈ K :  = 0}  K− = { ∈ K :   0}  and K+ = { ∈ K :   0} 

The sets K0 K− and K+ denote subsets of K in which true, under-, and over-fitted models

are produced. Let () = (1  ) be any -partition of the set of individual indices

{1 2  }  Let G denote the collection of such partitions. Let ̂2() = 1


P
=1

P
∈

P
=1

[̃ − ̂0
̃]

2 where ̂
=
³P

∈

P
=1 ̃̃

0


´+P
∈

P
=1 ̃̃. The following as-

sumptions are useful in the asymptotic development.

ASSUMPTION A4. As ( ) → ∞ min1≤0
inf()∈G ̂2

()
→ 2  20 where 20 =

plim( )→∞ 1


P
=1

P
=1 ̃

2


ASSUMPTION A5. As ( ) → ∞ 1 → 0 and 1 
2
 → ∞ where  = 12 12 if

B = 0 and min(
12 12  ) otherwise.

Assumption A4 is intuitively clear and applies under primitive conditions in a variety of

models, such as panel autoregressions. It requires that all under-fitted models yield asymptotic

mean square errors that are larger than 20, which is delivered by the true model. A5 reflects

the usual conditions for the consistency of model selection. The penalty coefficient 1 cannot

shrink to zero either too fast or too slowly.

The following theorem justifies the use of (2.17) as a selector criterion for 

Theorem 2.6 Suppose that Assumptions A1-A5 hold. Then



µ
inf

∈K−∪K+
1 (1)  1 (0 1)

¶
→ 1 as ( )→∞

REMARK 6. Let  (1) = argmin1≤≤max 1 (1)  As Theorem 2.6 indicates, as long

as 1 satisfies Assumptions A1(v) and A2, we have  ( (1) = 0) → 1 as ( ) → ∞

Consequently, the minimizer of 1 (1) with respect to  is equal to 0 w.p.a.1 for a variety

of choices of 1 In practice, it is desirable to have a data-driven method to choose the tuning

parameter 1. For this purpose, define

∗1 (1) = 1 ( (1)  1) 

The tuning parameter can then be chosen as ̂1 = argmin1∈Λ1 
∗
1 (1)  where Λ1 = {1 : 1

∝ − for any  ∈ [14 1)} provided some conditions on the moments of kk  || and kk
and on the relative rates at which  and  pass to infinity are satisfied — see the remark after

Assumption A2.
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2.7 Extensions

Several major extensions of the C-Lasso methodology to other models and contexts are worth

mentioning. We discuss four possibilities below.

1. Mixed Panel Structure Models: Consider the case where some of the parameters in

0 are common across all individuals whereas others are group-specific. Write 
0
 = (

00
(1) 

00
(2))

0

where 01 = 0(1) for all  = 1   Partition  conformably as  = (
0
(1)

 0
(2)

)0 The panel

structure becomes

 = 00(1)(1) + 00(2)(2) +  +  (2.18)

where 0(2) = 0 if  ∈ 0 where  = 1 0 and 01 
0
0
form a partition for {1 2  }.

The model (2.18) is closely related to the model studied by Pesaran, Shin, and Smith (1999)

in which long-run coefficients are constrained to be identical across individuals while short-run

coefficients may be heterogenous. In this case, the PLS objective function becomes


(0)

11

³
(1)β(2)α

´
= 1

³
(1)β(2)

´
+

1



X
=1

Π0

=1

°°°(2) − 

°°°  (2.19)

where 1 ((1)β(2)) =
1



P
=1

P
=1

³
̃ − 0(1)̃(1) − 0(2)̃(2)

´2
 β(2) = (1(2)  (2))

and ̃() = () − −1
P

=1 () for  = 1 2 Our previous analysis can now be followed to

establish uniform consistency for the classifier and the oracle property for the resulting estimators

of 0(1) and 0’s.

2. Nonlinear Panel Data Models: Bester and Hansen (2013) consider estimation of non-

linear panel data models with common and group-specific parameters where the group structure

is completely known, e.g., based on some external classification or geographic location. They

provide conditions under which their group effects estimators of the common parameter are as-

ymptotically unbiased. To fix ideas, consider minimizing the following objective function

1 (μ) =
1



X
=1

X
=1

 (  )  (2.20)

where  is a finite dimensional common parameter, μ=(1  )  = − ln  and  (  )

is the density function of  with respect to some measure. Here the  denote time invari-

ant individual-specific effects that are held constant according to an observed group structure:

0 = 0 if  ∈ 0 where  = 1 0 and
©
01  

0
0

ª
forms a partition for {1 2 }.4

Interestingly, the PLS C-Lasso method can be extended to study such nonlinear panel data mod-

els straightforwardly without the need to know each individual’s group membership. The PLS

4In traditional nonlinear panel data models, the individual effect  is a scalar, but our theory allows it to be a

vector. The 0’s are referred to as the group (fixed) effects in the literature.
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objective function here takes the form


(0)

11
(μα) = 1 (μ) +

1



X
=1

Π0

=1 k − k  (2.21)

One can readily modify our numerical algorithm to estimate both the common parameter 0 and

the group-specific parameters
©
0
ª
. The uniform consistency of the C-Lasso classifier and the

oracle properties of the parametric estimates can also be established.

3. Group Patterns of Heterogeneity: Bonhomme and Manresa (2014) consider a linear

panel data model with grouped patterns of heterogeneity that take the following form

 = 00 +  +  (2.22)

where the group membership variables  ∈ {1 0} map individual units into groups. They
propose to estimate the group membership along with the common parameter 0 in the model

based on some variants of the K-means algorithm and establish the asymptotic distributions for

the resulting estimators. In view of the fact that  has a factor structure  = 0 where

 = (1  0
)0  = (0 1 0)0 with 1 in the th position if  ∈ 0 for  = 1 0 and

zeros elsewhere, we may embed (2.22) in the more general model

 = 00 + 00 
0
 +  (2.23)

where 0 = 0 if  ∈ 0 where  = 1 0 and
©
01  

0
0

ª
forms a partition for {1 2  }.

In the economic growth literature,  represents unobserved global shocks to the economy, and

0 the marginal effects of the shocks to country ’s economic growth. It is sensible to assume

that the marginal effects are identical for countries that exhibit similar features. To estimate

(2.23) with the unknown group structure, we propose a two-step approach. In the first step, we

follow Bai (2009) and obtain the Gaussian quasi-maximum likelihood estimates ̆ ̆ and ̆ of

0 0  and 0 under the identification restrictions that 
−1P

=1 
0
 = 0 and −1P

=1 
0


is diagonal. In the second step, we consider the following regression

 = 00 + 00 ̆ +  (2.24)

by imposing the unknown group structure: 0 = 0 if  ∈ 0 where  = 1 0 The PLS

objective function is similar to that in (2.19). In this framework, we can readily show that C-

Lasso yields uniform consistency for the classification and the oracle properties of the estimators

of 0 and 0 just as if we were able to observe the exact group structure.

4. Granger-causality, Unit Roots, and Cointegration in Heterogenous Panels: The

C-Lasso methodology can also be extended to analyze Granger-causality, unit roots, and cointe-

gration in heterogenous panels. In Granger-causality analysis we may consider either completely
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homogenous or completely heterogenous relationships. The former may produce misleading con-

clusions if the causal or non-causal relationship is heterogeneous; the latter may yield imprecise

estimates and low power in hypothesis testing. An intermediate specification is to allow the re-

lationship to be group-specific. Similar remarks hold for panel unit root and cointegration tests

— see Breitung and Pesaran (2008) for an overview on this. As usual in nonstationary settings,

careful attention must be given to allow for different convergence rates for different parameters

in such systems (Phillips and Moon, 1999).

The C-Lasso approach is also well suited to testing for structural change in heterogeneous

panel data models, to nonparametric and semiparametric panel data models, and to models with

heterogeneous parametric or nonparametric time trends (e.g., Kneip, Sickles, and Song 2012,

Zhang, Su, and Phillips 2012). We can expect C-Lasso to deliver substantial efficiency gains in

some of these cases where there is only partial heterogeneity in the structure. These and other

applications of the methodology will be examined in separate studies.

3 Penalized GMM Estimation of Panel Structure Models

This section considers penalized GMM estimation of panel structure models when some regressors

are lagged dependent variables or endogenous. As before, we first assume that the number

of groups is known and then consider the determination of the number of groups when that

information is unknown.

3.1 Penalized GMM Estimation of α and β

We consider the first differenced system

∆ = 00 ∆ +∆ (3.1)

where, e.g., ∆ =  − −1 for  = 1   and  = 1   and we assume that we have

observations on 0 and 0 Let  be a × 1 vector of instruments for ∆ where  ≥  Define

∆ = (∆1 ∆ )
0  with similar definitions for ∆ and ∆

We propose to estimate β and α by minimizing the following penalized GMM (PGMM)

criterion function5


(0)

22
(βα) = 2 (β) +

2



X
=1

Π0

=1 k − k  (3.2)

5We were unable to establish asymptotic theory for the case where the criterion 2 () is replaced by the fully

pooled criterion ̃2 () =


1




=1



=1  (∆ − 0∆)
0



1




=1



=1  (∆ − 0∆)



where  is a  ×  symmetric p.d. matrix. Use of the criterion 2 () means that the PGMM estima-

tor has the oracle property only in some specical cases.
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where2 (β) =
1


P
=1

h
1


P
=1 

¡
∆ − 0∆

¢i0


h
1


P
=1 

¡
∆ − 0∆

¢i
 

is a ×  matrix that is p.d. asymptotically and 2 = 2 is a tuning parameter. Minimizing

the above criterion function produces the PGMM estimates α̃ and β̃. Let ̃ and ̃ denote the

th and th columns of β̃ and α̃, respectively, so that α̃ ≡ (̃1  ̃0
) and β̃ ≡(̃1  ̃)

As before, the objective function in (3.2) is convex in  but not in β when one fixes  for

 6=  With minor modifications, the numerical algorithm described in Section 4.2 can be used

to obtain the estimates α̃ and β̃ .

3.2 Preliminary Rates of Convergence for Coefficient Estimates

We first present sufficient conditions to ensure the consistency of (β̃, α̃). Let ̃∆ =
1


P
=1 

×(∆)0 ̃∆ =
1


P
=1 ∆ ̄∆ =

1


P
=1 E[(∆)

0] and ̄∆ =
1


P
=1 E[∆].

Let  = (∆ (∆)
0 0)

0
  ( ) = 

¡
∆ − 0∆

¢
 and ̄ () =

1√


P
=1{ ( )

−E [ ( )]} We make the following assumption.
ASSUMPTION B1. (i) E

£

¡
 

0


¢¤
= 0 for each  = 1   and  = 1  

(ii) sup∈B
°°̄ ()°° =  (1) and

1


P
=1

°°̄ ()°°2 =  (1) for any  ∈ B and
 = 1  

(iii) ̃∆ = ̄∆ +  (1) for each  = 1  and lim inf( )→∞min1≤≤ min(̄
0
∆

̄∆) = ̄  0

(iv) There exist nonrandom matrices  such that max1≤≤ k −k =  (1) and

lim inf→∞ min1≤≤ min() =   0

(v)  →  ∈ (0 1) for each  = 1 0 as  →∞

(vi) 2 → 0 as ( )→∞

Assumption B1(i) specifies moment conditions to identify 0  B1(ii) is a high level condition

because we do not specify the data structure (or instruments) along with either the cross section

or time series dimension. Its first part can generally be verified by applying Donsker’s theorem to

specific cases. For example, if there exists F a -field, such that {F} is a stationary ergodic
adapted mixingale with size −1 (e.g., White, 2001, pp. 124-125), and Var¡0̄ ()¢→ 0Σ ∈
(0∞) as  →∞ for some p.d. matrix Σ and any  ∈ R with kk = 1 then ̄ () →  (0Σ)

and the first part of B1(ii) follows. In conjunction with B1(i), B1(iii) provides a rank condition

for the identification of 0  It may also be used to establish the mean square convergence of ̃ as

it implicitly requires that ̄∆ is of full rank uniformly in . B1(iv) is automatically satisfied if

one sets =  the × identity matrix. Conditions B1(v)-(vi) parallel the earlier conditions
A1(iv)-(v).

Theorem 3.1 If Assumption B1 holds, then

(i) ̃ − 0 = 

¡
−12 + 2

¢
for  = 1 
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(ii) 1


P
=1

°°°̃ − 0

°°°2 = 

¡
−1

¢


(iii)
¡
̃(1)  ̃(0)

¢− (01  00
) = 

¡
−12

¢


where (̃(1)  ̃(0)) is a suitable permutation of (̃1  ̃0
)

REMARK 7. Parts (i) and (ii) of Theorem 3.1 establish the pointwise and mean-square con-

vergence of ̂. Part (iii) indicates that the group-specific parameters
©
01  

0


ª
can also be

estimated consistently by {̃1  ̃0
} subject to permutation. For notational simplicity, here-

after we simply write ̃ for ̃() as the consistent estimator of 
0
 and define

̃ =
n
 ∈ {1 2  } : ̃ = ̃

o
for  = 1 0 (3.3)

3.3 Classification Consistency

Define the following sequences of events:

̃ =
n
 ∈ ̃ |  ∈ 0

o
and ̃ =

n
 ∈ 0 |  ∈ ̃

o
 (3.4)

where  = 1   and  = 1 0 Let ̃ = ∪∈0

̃ and ̃ = ∪∈̃

̃ We add

the following assumption.

ASSUMPTION B2. (i) 2 →∞ and 42 → 0 ∈ [0∞) as ( )→∞

(ii) For any   0  max1≤≤ 
³°°°−1P

=1 ∆

°°° ≥ 
√
2

´
→ 0 as ( )→∞

Assumptions B2(i)-(ii) parallel A2(i)-(ii). Like the case of A2(ii), one can also verify B2(ii)

under some primitive conditions on the process {∆  ≥ 1} The required moment conditions
are now imposed on k∆k. Following the remark after Assumption A2, for a large range
of moment conditions on k∆k and the relative rates at which  and  pass to infinity, it

suffices to require that

2 ∝ − for any  ∈ [14 1) (3.5)

Uniform consistency of the classification is established in the next theorem.

Theorem 3.2 If Assumptions B1-B2 hold, then

(i) 
³
∪0

=1̃

´
≤P0

=1  (̃ )→ 0 as ( )→∞

(ii) 
³
∪0

=1̃

´
≤P0

=1  (̃ )→ 0 as ( )→∞

REMARK 8. Remark 2 also holds for the above theorem with obvious modifications. In

particular, let ̃0 denote the group of individuals in {1 2  } that are not classified into
any of the 0 groups, i.e., ̃0 = {1 2  } \(∪0

=1̃). Define the events ̃ = { ∈ ̃0}
Theorem 3.2(i) implies that  (∪1≤≤̃ ) ≤

P0

=1  (̃ )→ 0 That is, all individuals can

be classified into one of the 0 groups w.p.a.1.

Let ̃ =
P

=1 1{ ∈ ̃} Following the proof of Corollary 2.3, one can also prove that ̃

consistently estimates 
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Corollary 3.3 Suppose that Assumptions B1-B2 hold. Then ̃ − =  (1) 

3.4 Improved Convergence and Asymptotic Properties of Post-Lasso

To obtain an improved rate of convergence for {̃} we provide more specific conditions with the
following assumption.

ASSUMPTION B3. (i) For each  = 1 0,
1


P
∈0



°°°̃∆ − ̄∆

°°°2 =  (1) and


→  0 for  ∈ 0

(ii) For each  = 1 0, ̄ ≡ 1


P
∈0


̄0∆̄∆ →   0 as ( )→∞

(iii) For each  = 1 0,
1√


P
∈0


̃0∆

P
=1 ∆ − 

→  (0 ) as

( )→∞

Assumptions B3(i)-(iii) can be verified under various primitive conditions. For example, B3(i)

can be verified by the Markov inequality under (standard) conditions that (a) E k(∆)0k2+ 

0 for some   0 and (b) {(∆ ∆)   ≥ 1} is strong mixing for each  with mixing co-

efficients  () that satisfy
1


P
∈0



P∞
=1  ()

(2+)  ∞ If, in addition, (c) {(∆ )}
is also stationary along the time dimension and IID along the individual dimension for all indi-

viduals within the same group 0, and (d)  =  for all  ∈ 0 then B3(ii) is satisfied with

 = {E [(∆)0]}0E [(∆)0] for any  ∈ 0 To verify B3(iii), for simplicity we assume

that  =  and make the following decomposition

1√


X
∈0



̃0∆

X
=1

∆

=
1


12

  32

X
∈0



X
=1

X
=1

E
¡
∆

0
∆

¢

+
1


12

  32

X
∈0



X
=1

X
=1

E
¡
∆

0


¢
∆

+
1


12

  32

X
∈0



X
=1

X
=1

©£
∆

0
 − E

¡
∆

0


¢¤
∆ − E

¡
∆

0
∆

¢ª
≡  +  +  say, (3.6)

where and  contributes to the asymptotic bias and variance, respectively, and is a

term that is asymptotically negligible under suitable conditions. Then B3(iii) will be satisfied with

 =  if  =
1


12


12

P
∈0



P
=1 ̄

0
∆∆

→  (0 ) and  =  (1)  both

of which can be verified by strengthening the conditions in (a)-(c). Note that ̄−1  signifies

the asymptotic bias of ̃ which may not be vanishing asymptotically but can be corrected; see
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Appendix D.2.6

The following theorem establishes the asymptotic distribution of the C-Lasso estimators {̃}.

Theorem 3.4 Suppose that Assumptions B1-B3 hold. Then
√


¡
̃ − 0

¢ − ̄−1 
→

(0 −1 
−1
 ) for  = 1 0

REMARK 9. In contrast to the PLS case, the PGMM estimators {̃} may fail to possess

the oracle property. If the group identities were known in advance, one could obtain the GMM

estimate ̆ of 
0
 by minimizing the following objective function

̃ () =

⎡⎣ 1



X
∈0



X
=1


¡
∆ − 0∆

¢⎤⎦0 ()


⎡⎣ 1



X
∈0



X
=1


¡
∆ − 0∆

¢⎤⎦ 
(3.7)

where for each  = 1 0 
()
 is a ×  symmetric positive definite matrix. Let 

()
∆ =

1


P
∈0



P
=1  (∆)

0 and 
()
∆ =

1


P
∈0



P
=1 ∆ Then ̆ = [

()0
∆

()



()
∆ ]

−1 ()0∆
()


()
∆  We can readily show that the asymptotic distribution of ̆

is typically different from that of ̃ under some regularity conditions. See also the remark after

Theorem 3.5 below.

When the individuals have group identities that are unknown, we can replace0 by its C-Lasso

estimate ̃ in the GMM objective function (3.7) and obtain the post-Lasso GMM estimator of

0 given by

̃̃
=
h
̃
()0
∆

()
 ̃

()
∆

i−1
̃
()0
∆

()
 ̃

()
∆

where ̃
()

∆ =
1



P
∈̃

P
=1  (∆)

0 and ̃
()

∆ =
1



P
∈̃

P
=1 ∆ To study the

asymptotic normality of ̃̃
 we add the following assumption.

ASSUMPTION B4. (i) For each  = 1 0, 
()



→ ()  0 as ( )→∞

(ii) 
()
∆

→ 
()
∆ where 

()
∆ has rank 

(iii) 1√


P
∈0



P
=1 ∆

→  (0 ) 

Assumption B4 is standard in the literature on GMM estimation. The assumption can be

verified under various primitive conditions that allow for both conditional heteroskedasticity and

serial correlation in {∆}. The following theorem establishes the asymptotic normality of

{̃̃
}

6 If Conditions (a)-(b) after Assumption B3 are satisfied and  k∆k2+  0 one can simply apply Davydov’s

inequality to obtain k k = k (B )k ≤ 1


√



∈0





=1



=1 k [∆
0
∆]k = 


( )−12




which is (1) if  À  and usually not asymptocially negligible otherwise. For general choices of   it may be

difficult to verify Assumption B3(iii).
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Theorem 3.5 Suppose that Assumptions B1-B4 hold. Then
√
 (̃̃

− 0)
→  (0Ω)

where Ω =
h

()0
∆

()
()
∆

i−1

()0
∆

()
()

()
∆

h

()0
∆

()
()
∆

i−1
and  = 1 0

REMARK 10. As in the proof of Theorem 2.5, one can apply Theorem 3.2 and demonstrate

that p


³
̃̃
− 0

´
=
p


¡
̆ − 0

¢
+  (1) 

That is, the post-Lasso GMM estimator ̃̃
is asymptotically equivalent to the infeasible esti-

mate ̆ which an oracle could obtain with knowledge of each individual’s group identity. To

obtain the most efficient estimator among the class of GMM estimators based on the moment

conditions specified in Assumption B1(i), one can set 
()
 to be a consistent estimator of 

−1
 

The procedure is standard and we omit the details for brevity.

REMARK 11. If  = 
()
  ̄∆ = 

()
∆ for each  ∈ 0 in Assumptions B3(i)-(ii),

and  = 0 in Assumption B3(iii), then  = 
()0
∆

()
()
∆,  = 

()0
∆

()Ω
()

()
∆

and
√


¡
̃ − 0

¢ →  (0Ω)  That is, in this special case, the C-Lasso estimator ̃ also

has the oracle property. But as remarked before,  = 0 would typically require  À  a

condition that we do not usually want to impose. For this reason, we recommend the post-Lasso

estimator ̃̃
for the general case.7

3.5 Determination of the Number of Groups

When the true number of groups 0 is unknown, we continue to assume that it is bounded from

above by a finite integer max We consider the following PGMM criterion function


()

22
(βα) = 2 (β) +

2



X
=1

Π=1 k − k  (3.8)

where 1 ≤  ≤ max. Minimizing the above objective function, we obtain the C-Lasso estimatesn
̃ (2)  ̃ (2)

o
of { }  where we make the dependence of ̃ and ̃ on (2)

explicit. As above, we classify individual  into group ̃ (2) if and only if ̃ (2) =

̃ (2), i.e.,

̃ (2) =
n
 ∈ {1 2  } : ̃ (2) = ̃ (2)

o
for  = 1  (3.9)

Let ̃ (1) = {̃1 (1)   ̃ (1)} Based on (3.9), we define the post-Lasso GMM
estimate of 0 by

̃̃(2)
=
h
̃
()0
∆ 

()
 ̃

()
∆

i+
̃
()0
∆ 

()
 ̃

()
∆  (3.10)

7Of course one cannot choose to be group-specific (i.e.,
()

 ) because we do not know the group structure.
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where ̃
()
∆ = 1



P
∈̃(2)

P
=1  (∆)

0  ̃()
∆ = 1



P
∈̃(2)

P
=1 ∆ and


()
 is defined as before but with  = 1 2 

Let ̃2
̃(2)

= 1


P
=1

P
∈̃(2)

P
=1[∆ − ̃0

̃(1)
∆]

2 We propose to select 

to minimize the following information criterion:

2 (2) = ln
h
̃2
̃(2)

i
+ 2

where 2 is a tuning parameter. As before, for any () = (1  ) ∈ G , de-
fine ̃2

()
= 1



P
=1

P
∈

P
=1[∆ − ̃0

∆]
2 where ̃

is analogously defined

as ̃̃(2)
with ̃ (2) being replaced by 

To proceed, we add the following two assumptions.

ASSUMPTION B5. As ( )→∞ min1≤0
inf()∈G ̃2

()
→ 2∆  2∆ where 2∆ =

plim( )→∞ 1


P
=1

P
=1 (∆)

2 

ASSUMPTION B6. As ( )→∞ 2 → 0 and 2 →∞

Assumptions B5-B6 parallel earlier Assumptions A4-A5. The following theorem proves con-

sistency of this choice of  as the minimizer of 2 (2) with respect to 

Theorem 3.6 Suppose that Assumptions B1-B2 and B4-B6 hold. Then



µ
inf

∈K−∪K+
2 (2)  2 (0 2)

¶
→ 1 as ( )→∞

REMARK 12. The remark after Theorem 2.6 also holds here after obvious modifications. To

obtain a data-driven choice of the tuning parameter 2, define

 (2) = argmin


2 (2) and ∗2 (2) = 2 ( (2)  2) 

We can select the tuning parameter as ̂2 = argmin2∈Λ2 
∗
2 (2)  where Λ2 = {2 ∝ − for

some  ∈ [14 1)} provided some conditions on the moments of k∆k and on the relative
rates at which  and  pass to infinity are satisfied. See the remarks after Assumptions A2 and

B2.

4 Simulation

In this section, we evaluate the finite-sample performance of the C-Lasso and the post-Lasso

estimates.
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4.1 Data Generating Processes

We consider three data generating processes (DGPs) that cover static and dynamic panels.

Throughout these DGPs, the fixed effect  and the idiosyncratic error  follow the standard

normal distribution and are mutually independent all across  and . The observations in each

DGP are drawn from three groups with the proportion 1 : 2 : 3 = 03 : 03 : 04. We try six

combinations of the sample sizes with  = 100 200 and  = 10 20 40.

DGP 1 (Static panel with two exogenous regressors.) The observations ( ) are generated

from the panel structure model (2.1) where  = (1 2)
0 1 = 02 + 1 2 =

02 + 2 and 1 and 2 are both IID  (0 1) and mutually independent. The true

coefficients are ¡
01 

0
2 

0
3

¢
=

Ã Ã
04

16

!


Ã
1

1

!


Ã
16

04

! !


DGP 2 (Static panel with endogeneity.) We maintain the panel structure model (2.1) with two

regressors in . 2 ∼  (0 1) is independent of the idiosyncratic shock  while 1 is

generated from the following underlying reduced-form equation: 1 = 02 + 051 +

052 + 05 where 1 and 2, the two excluded instrumental variables, are each IID

 (0 1)  mutually independent, and independent of  and . Endogeneity arises since

the reduced-form error term  and the structural-equation idiosyncratic shock  follow a

bivariate normal distribution:Ã




!
∼ 

ÃÃ
0

0

!


Ã
1 03

03 1

!!


The econometrician observes (  ) with  = (1 2)
0 and  = (1 2)

0. The

true coefficients are

¡
01 

0
2 

0
3

¢
=

Ã Ã
02

18

!


Ã
1

1

!


Ã
18

02

! !


We set the gaps between the groups of the coefficients larger than those in DGP1 to com-

pensate for the weaker signal strength caused by instrumentation.

DGP 3 (Panel AR(1) with two exogenous regressors.) The model is

 = 01−1 + 022 + 033 + (1− 01) + 

where 2 and 3 are two exogenous regressors. They follow the standard normal distrib-

utions, mutually independent, and are independent of the error term. For each , the initial
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value is 0 = 0202 + 0303 +  + 0 so that the -th time series is strictly stationary

with mean . The true coefficients are

¡
01 

0
2 

0
3

¢
=

⎛⎜⎜⎝
⎛⎜⎜⎝
08

04

04

⎞⎟⎟⎠ 

⎛⎜⎜⎝
06

1

1

⎞⎟⎟⎠ 

⎛⎜⎜⎝
04

16

16

⎞⎟⎟⎠
⎞⎟⎟⎠ 

The choices of the lag term coefficients represent strong, moderate, and weak persistence,

respectively. The choices of the coefficients of the exogenous regressors balance the different

signal strength that stems from the dynamic structure.

4.2 Numerical Algorithm

The numerical operation of C-Lasso is high-dimensional. Here we propose an iterative algorithm

to obtain the PLS estimates α̂ and β̂ in Section 2. A similar algorithm applies for PGMM

estimation.

1. Start with arbitrary initial values α̂(0) = (̂
(0)
1   ̂

(0)
0
) and β̂

(0)
= (̂

(0)

1   ̂
(0)

 ) such thatP
=1 ||̂

(0)

 − ̂
(0)

 || 6= 0 for each  = 2 0
8

2. Having obtained α̂(−1) ≡ (̂(−1)1   ̂
(−1)
0

) and β̂
(−1) ≡ (̂(−1)1   ̂

(−1)
 ) in step  ≥ 1

we first choose (β 1) to minimize


(1)
0 (β 1) = 1 (β) +

1



X
=1

k − 1kΠ0

 6=1
°°°̂(−1) − ̂

(−1)


°°° 
and obtain the updated estimate (β̂

(1)
 ̂
()
1 ) of (β 1)  Next choose (β 2) to minimize


(2)
0 (β 2) = 1 (β) +

1



X
=1

k − 2k
°°°̂(1) − ̂

()
1

°°°Π0

 6=12
°°°̂(−1) − ̂

(−1)


°°°
to obtain the updated estimate (β̂

(2)
 ̂
()
2 ) of (β 2)  Repeat this procedure until (β 0

)

is chosen to minimize


(0)
0 (β 0

) = 1 (β) +
1



X
=1

k − 0
kΠ0−1

=1

°°°̂() − ̂
()



°°°
8Under the condition that  diverges to the infinity, we can obtain the preliminary consistent estimate ̂

(0)



as ̂


 . In the simulations, we always set ̂
(0)

 = ̃
(0)

 = 0 and {̂(0) }=1 or {̃(0) }=1 to be the within-group
estimates. We experimented with ̂

(0)

 = ̃
(0)

 = 1 for all  and ̂
(0)

 = ̃
(0)

 = 0 for all . The latter choice delivers

similar classification and estimation results. This suggests that the algorithm is insensitive to the initial value

under sensible choices, although the high-dimensionality hinders a straightforward visualization of the shapes of

the objective functions against the parameters.
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to obtain the updated estimate (β̂
(0)

 ̂
()
0
) of (β 0

)  Let β̂
()
= β̂

(0)
and α̂() =

(̂
()
1   ̂

()

0
)

3. Repeat step 2 until a convergence criterion is met, e.g., whenP
=1

°°°̂() − ̂
(−1)


°°°2P
=1

°°°̂(−1)

°°°2 + 00001   and

P0

=1

°°°̂() − ̂
(−1)


°°°2P0

=1

°°°̂(−1)

°°°2 + 00001  

where  is some prescribed tolerance level (e.g., 0.0001). Define the final iterative estimate

of α as α̂ = (̂
()
1   ̂

()
0
) for sufficiently large  such that the convergence criterion is

met. The final iterative estimate of β is defined as β̂ = (̂1  ̂) where

̂ =

0X
=1

̂
()

 1
n
̂
()

 = ̂
()

 for some  = 1 0

o
+̂

(0)



"
1−

0X
=1

1
n
̂
()

 = ̂
()

 for some  = 1 0

o#
(4.1)

where ̂
()

 denotes the th column of β̂
()

for  = 1 2  Intuitively, individual  is

classified to group ̂ if ̂
()

 = ̂
()

 for some  = 1 0; otherwise it is left unclassified

so that ̂ is defined as ̂
(0)

 

Obviously, each iteration step  has 0 substeps and we can use  to denote substep 

within step  Note the objective function 
()
0 (β ) is convex in (β ) in each substep 

So the above iteration procedure has fast implementation in practice. Moreover, in view of the

fact that


(0)

11
(β̂
(−1)

 α̂(−1)) ≥ 
(1)
0 (β̂

(1)
 ̂
()
1 ) ≥ · · · ≥ 

(1)
0 (β̂

(0)
 ̂
()
 ) = 

(0)

11
(β̂
()
 α̂())

the convergence of (β̂
()
 α̂()) is readily established and simulations confirm that convergence is

rapid, usually occurring after just a few iterations.

We will estimate the parameters in DGP 1 with PLS, in DGP 2 with PGMM, and in DGP

3 with both PLS and PGMM. The bias is corrected via the one-sided kernel as discussed in

Appendix D.1 and D.2 with a tuning parameter  = 2×
¥
 14

¦
 where bc denotes the integer

part of a real number . In DGP 3 PGMM uses (−2 −3∆2∆3) as the instruments

for (∆−1∆2∆3) in the first-differenced model.

4.3 Determination of the Number of Groups

Since classification consistency and the oracle property both hinge on the correct number of

groups, our first simulation exercise is designed to assess how well the proposed information
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Table 1: Frequency of selecting  = 1 2  6 groups
  1 2 3 4 5 6

DGP1 100 10 0.000 0.040 0.718 0.230 0.012 0.000
PLS 100 20 0.000 0.002 0.994 0.004 0.000 0.000

100 40 0.000 0.000 1.000 0.000 0.000 0.000
200 10 0.000 0.000 0.428 0.468 0.104 0.000
200 20 0.000 0.000 0.982 0.018 0.000 0.000
200 40 0.000 0.000 1.000 0.000 0.000 0.000

DGP2 100 10 0.000 0.448 0.518 0.032 0.002 0.000
PGMM 100 20 0.000 0.006 0.914 0.076 0.004 0.000

100 40 0.000 0.000 0.992 0.008 0.000 0.000
200 10 0.000 0.244 0.736 0.020 0.000 0.000
200 20 0.000 0.000 0.962 0.034 0.002 0.002
200 40 0.000 0.000 0.988 0.012 0.000 0.000

DGP3 100 10 0.000 0.472 0.518 0.010 0.000 0.000
PLS 100 20 0.000 0.098 0.902 0.000 0.000 0.000

100 40 0.000 0.000 1.000 0.000 0.000 0.000
200 10 0.000 0.090 0.856 0.050 0.004 0.000
200 20 0.000 0.002 0.996 0.002 0.000 0.000
200 40 0.000 0.000 1.000 0.000 0.000 0.000

DGP3 100 10 0.000 0.242 0.614 0.136 0.008 0.000
PGMM 100 20 0.000 0.008 0.908 0.076 0.008 0.000

100 40 0.000 0.000 0.996 0.004 0.000 0.000
200 10 0.000 0.078 0.754 0.150 0.018 0.000
200 20 0.000 0.000 0.908 0.090 0.002 0.000
200 40 0.000 0.000 0.998 0.002 0.000 0.000

criteria in Sections 2.6 and 3.5 perform in selecting the number of groups. Asymptotically, all

sequences 1 work if they satisfy Assumption A5, and so do the sequences 2 if these satisfy

Assumption B6. In practice, the choice of   ( = 1 2) can be crucial. Our findings indicate

that use of the Bayesian information criterion (BIC)  = ( )−1 ln( ) is too small for

group number selection. We experimented with alternatives and found that  =
2
3
( )−12

( = 1 2) works fairly well for the determination of the number of groups and this setting is used

throughout the simulations as well as the empirical application.

Based on 500 replications for each DGP, Table 1 displays the empirical probability that a

particular group size from 1 to 6 is selected according to the information criteria. Due to space

limitations, we report outcomes under the tuning parameter  = 1×2 
−12 for  = 1 2 where

2 is the sample variance of ̃ for PLS or the sample variance of ∆ for PGMM. The results

are found to be robust for a reasonable range of values of the tuning parameter, as will be seen in

the the following subsection on point estimation and in the empirical application. Recall that the

true number is 3. When  = 10 the correct choice probabilities vary across the three DGPs and

the two penalized methods. These probabilities rise to more than 90% in all cases when  = 20

and tend to unity when  = 40 Some intuitive graphics demonstrating how well the information

criteria work in these simulations can be found in the supplemental Appendix E.
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Table 2: Results of Classification
 0.2 0.4 0.8 1.6 3.2

  ̄ (̂) ̄ (̂ ) ̄ (̂) ̄ (̂ ) ̄ (̂) ̄ (̂ ) ̄ (̂) ̄ (̂ ) ̄ (̂) ̄ (̂ )
DGP1 100 10 0.1805 0.0901 0.1899 0.0954 0.2236 0.1115 0.2777 0.1305 0.4216 0.1897
PLS 100 20 0.0593 0.0289 0.0585 0.0292 0.0576 0.0290 0.0805 0.0396 0.1304 0.0598

100 40 0.0103 0.0049 0.0098 0.0046 0.0093 0.0045 0.0094 0.0048 0.0149 0.0070
200 10 0.1691 0.0848 0.1771 0.0894 0.2097 0.1054 0.2766 0.1322 0.3976 0.1746
200 20 0.0586 0.0284 0.0556 0.0275 0.0552 0.0277 0.0719 0.0362 0.1338 0.0613
200 40 0.0092 0.0044 0.0083 0.0040 0.0081 0.0039 0.0078 0.0040 0.0141 0.0066

DGP2 100 10 0.2082 0.0993 0.2001 0.0974 0.2024 0.1004 0.2145 0.1076 0.2527 0.1274
PGMM 100 20 0.1027 0.0485 0.0958 0.0462 0.0888 0.0437 0.0878 0.0440 0.0996 0.0504

100 40 0.0321 0.0152 0.0307 0.0147 0.0266 0.0130 0.0230 0.0115 0.0227 0.0116
200 10 0.2037 0.0980 0.1982 0.0971 0.1968 0.0984 0.2113 0.1071 0.2482 0.1257
200 20 0.1020 0.0483 0.0942 0.0456 0.0872 0.0432 0.0841 0.0424 0.0942 0.0480
200 40 0.0332 0.0158 0.0299 0.0144 0.0266 0.0130 0.0222 0.0111 0.0212 0.0109

DGP3 100 10 0.2063 0.1038 0.1839 0.0908 0.1913 0.0937 0.2305 0.1092 0.4058 0.1715
PLS 100 20 0.1000 0.0501 0.0826 0.0404 0.0750 0.0357 0.0800 0.0391 0.1968 0.0886

100 40 0.0277 0.0137 0.0222 0.0106 0.0183 0.0085 0.0158 0.0072 0.0373 0.0177
200 10 0.2025 0.1026 0.1714 0.0853 0.1709 0.0844 0.2079 0.0998 0.3539 0.1498
200 20 0.0983 0.0490 0.0794 0.0386 0.0703 0.0333 0.0716 0.0347 0.1451 0.0657
200 40 0.0255 0.0126 0.0209 0.0100 0.0173 0.0080 0.0151 0.0069 0.0220 0.0103

DGP3 100 10 0.3173 0.1566 0.2991 0.1482 0.2924 0.1437 0.3016 0.1471 0.3379 0.1650
PGMM 100 20 0.1688 0.0833 0.1525 0.0753 0.1405 0.0683 0.1335 0.0629 0.1422 0.0665

100 40 0.0729 0.0355 0.059 0.029 0.0495 0.0239 0.0436 0.0203 0.0421 0.0189
200 10 0.3151 0.1557 0.2919 0.1449 0.2789 0.1381 0.2876 0.1415 0.3243 0.1597
200 20 0.1714 0.0847 0.1503 0.0745 0.1345 0.0655 0.1288 0.0609 0.1363 0.0638
200 40 0.0731 0.0356 0.0575 0.0284 0.0486 0.0236 0.0426 0.0199 0.0406 0.0183

4.4 Classification and Point Estimation

The results from the previous section show that the information criteria are useful when it is now

known a priori how many groups exist in the panel. This section now focuses on classification

and estimation performance under the true number of groups. Here the tuning parameter  is

set to be 
2
 

−12 for  = 1 2 where  is a sequence of geometrically increasing constants.

Five values {02 04 08 16 32} are used for  =  

Table 2 reports the classification results from 500 replications. As discussed in Remark 2, we

classify all observations into the group whose ̂ is the closest to ̂. We summarize the pointwise

classification error using averages over  = 1     , as there is no space to report results for each

individual. The values reported in the table are the means of the average classification errors

̄ (̂) = 1


P
=1 ̂ (̂) and ̄ (̂ ) = 1



P
=1 ̂ (̂) where ̂ denotes the empirical mean

over the replications.

Table 2 shows that the classification errors quickly shrink towards 0 as  increases. The results

are not sensitive to the choice of the tuning parameter via . In particular, when  = 40 the PLS

classification errors ̄ (̂) and ̄ (̂ ) typically take on values 0.5—3%, and PGMM classification

errors are also small. In DGP 3 PLS appears to be more accurate than PGMM.
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Table 3: Estimation of 1 in DGP 1 by PLS
 0.2 0.4 0.8 1.6 3.2

  RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
100 10 C-Lasso 0.1010 0.0364 0.1116 0.0364 0.1303 0.0293 0.1780 -0.0150 0.3206 -0.0968

Post-lasso 0.0907 0.0282 0.1035 0.0293 0.1274 0.0254 0.1788 -0.0162 0.3216 -0.0984
Oracle 0.0583 -0.0033 0.0583 -0.0033 0.0583 -0.0033 0.0583 -0.0033 0.0583 -0.0033

100 20 C-Lasso 0.0590 0.0154 0.0560 0.0183 0.0507 0.0154 0.0690 0.0054 0.0856 0.0012
Post-lasso 0.0450 0.0066 0.0467 0.0092 0.0470 0.0090 0.0687 0.0038 0.0846 0.0012
Oracle 0.0399 -0.0021 0.0399 -0.0021 0.0399 -0.0021 0.0399 -0.0021 0.0399 -0.0021

100 40 C-Lasso 0.0347 0.0096 0.0348 0.0047 0.0305 0.0053 0.0301 0.0023 0.0347 0.0011
Post-lasso 0.0292 0.0012 0.0293 0.0002 0.0291 0.0010 0.0290 0.0008 0.0337 0.0010
Oracle 0.0281 -0.0010 0.0281 -0.0010 0.0281 -0.0010 0.0281 -0.0010 0.0281 -0.0010

200 10 C-Lasso 0.0767 0.0312 0.0856 0.0319 0.1017 0.0256 0.1457 -0.0004 0.3127 -0.0985
Post-lasso 0.0630 0.0225 0.0759 0.0237 0.0963 0.0210 0.1441 -0.0009 0.3137 -0.1001
Oracle 0.0410 0.0019 0.0410 0.0019 0.0410 0.0019 0.0410 0.0019 0.0410 0.0019

200 20 C-Lasso 0.0491 0.0152 0.0424 0.0151 0.0366 0.0137 0.0501 0.0102 0.0930 -0.0032
Post-lasso 0.0320 0.0056 0.0327 0.0067 0.0329 0.0077 0.0473 0.0089 0.0916 -0.0031
Oracle 0.0280 0.0007 0.0280 0.0007 0.0280 0.0007 0.0280 0.0007 0.0280 0.0007

200 40 C-Lasso 0.0276 0.0122 0.0259 0.0048 0.0222 0.0062 0.0210 0.0036 0.0233 0.0016
Post-lasso 0.0204 0.0023 0.0203 0.0012 0.0202 0.0018 0.0204 0.0021 0.0222 0.0016
Oracle 0.0193 0.0004 0.0193 0.0004 0.0193 0.0004 0.0193 0.0004 0.0193 0.0004

We next discuss point estimation. Tables 3—6 show the root-mean-squared error (RMSE) and

the bias of the estimates of the first element 1 in  in each model.
9 Since each DGP has

three groups of different coefficients, the outcomes of the coefficient estimation are not directly

comparable across groups. For brevity we weight the RMSEs and the biases by their proportion

in the population. For example, RMSE(̂1) is calculated as
1


P0

=1RMSE(̂1) with ̂1

being the first element in ̂ and so is the bias.

The findings in the tables reveal the following general pattern. First, the RMSEs and biases

of the estimators shrink toward zero when  increases and  remains fixed. Second, post-

Lasso generally outperforms C-Lasso. Third, bias correction works in the right direction. The

finite-sample performance of the post-Lasso PLS is close to that of the oracle estimator, which

demonstrates the practical relevance of the oracle property. The RMSE of post-Lasso generally

remains the smallest in comparison with C-Lasso and bias-corrected C-Lasso in PGMM, in which

the oracle property is missing. Based on these findings we recommend the post-Lasso estimator

for practical use.

5 Empirical Application

Understanding the disparate savings behavior across countries is a longstanding research interest

in development economics. Theoretical advances and empirical studies have accumulated over

9Results for estimation of the other coefficients are available upon request.

33



Table 4: Estimation of 1 in DGP 2 by PGMM
 0.2 0.4 0.8 1.6 3.2

  RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
100 10 C-Lasso 0.1906 0.1093 0.1907 0.1242 0.2018 0.1388 0.2096 0.1490 0.2220 0.1581

Post-lasso 0.1416 0.0152 0.1368 0.0251 0.1413 0.0325 0.1421 0.0381 0.1533 0.0443
C-Lasso BC 0.1603 0.0684 0.1586 0.0811 0.1679 0.0928 0.1737 0.1009 0.1858 0.1085
Oracle 0.0993 -0.0001 0.0993 -0.0001 0.0993 -0.0001 0.0993 -0.0001 0.0993 -0.0001

100 20 C-Lasso 0.1179 0.0560 0.1176 0.0683 0.1182 0.0799 0.1239 0.0898 0.1321 0.0985
Post-lasso 0.0838 0.0138 0.0815 0.0181 0.0810 0.0200 0.0826 0.0212 0.0871 0.0216
C-Lasso BC 0.0986 0.0374 0.0978 0.0464 0.0986 0.0539 0.1021 0.0600 0.1083 0.0652
Oracle 0.0680 -0.0004 0.0680 -0.0004 0.0680 -0.0004 0.0680 -0.0004 0.0680 -0.0004

100 40 C-Lasso 0.0712 0.0400 0.0754 0.0422 0.0761 0.0464 0.0753 0.0504 0.0772 0.0557
Post-lasso 0.0519 0.0136 0.0522 0.0129 0.0519 0.0122 0.0516 0.0112 0.0522 0.0108
C-Lasso BC 0.0614 0.0274 0.0632 0.0282 0.0637 0.0301 0.0634 0.0317 0.0645 0.0343
Oracle 0.0492 0.0007 0.0492 0.0007 0.0492 0.0007 0.0492 0.0007 0.0492 0.0007

200 10 C-Lasso 0.1606 0.1139 0.1726 0.1285 0.1797 0.1424 0.1897 0.1525 0.1989 0.1585
Post-lasso 0.0963 0.0230 0.1034 0.0282 0.1063 0.0371 0.1117 0.0417 0.1201 0.0436
C-Lasso BC 0.1255 0.0739 0.1355 0.0843 0.1415 0.0961 0.1497 0.1038 0.1575 0.1078
Oracle 0.0687 0.0007 0.0687 0.0007 0.0687 0.0007 0.0687 0.0007 0.0687 0.0007

200 20 C-Lasso 0.0961 0.0588 0.1000 0.0708 0.1029 0.0820 0.1071 0.0902 0.1118 0.0949
Post-lasso 0.0572 0.0169 0.0581 0.0207 0.0578 0.0225 0.0582 0.0220 0.0601 0.0197
C-Lasso BC 0.0755 0.0410 0.0784 0.0495 0.0805 0.0566 0.0829 0.0610 0.0859 0.0628
Oracle 0.0501 -0.0007 0.0501 -0.0007 0.0501 -0.0007 0.0501 -0.0007 0.0501 -0.0007

200 40 C-Lasso 0.0642 0.0386 0.0627 0.0411 0.0649 0.0443 0.0636 0.0486 0.0661 0.0539
Post-lasso 0.0411 0.0106 0.0377 0.0097 0.0374 0.0084 0.0370 0.0075 0.0373 0.0072
C-Lasso BC 0.0513 0.0250 0.0490 0.0258 0.0495 0.0269 0.0489 0.0286 0.0501 0.0313
Oracle 0.0346 0.0006 0.0346 0.0006 0.0346 0.0006 0.0346 0.0006 0.0346 0.0006
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Table 5: Estimation of 1 in DGP 3 by PLS
 0.2 0.4 0.8 1.6 3.2

  RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
100 10 C-Lasso 0.1331 -0.1216 0.1264 -0.1143 0.1189 -0.1028 0.1120 -0.0858 0.1557 -0.0561

Post-lasso 0.1011 -0.0863 0.1041 -0.0897 0.1059 -0.0866 0.1077 -0.0784 0.1573 -0.0560
C-Lasso BC 0.1220 -0.1088 0.1157 -0.1022 0.1088 -0.0909 0.1033 -0.0740 0.1532 -0.0443
Post-Lasso BC 0.0922 -0.0745 0.0949 -0.0782 0.0971 -0.0751 0.0998 -0.0667 0.1548 -0.0441
Oracle 0.0928 -0.0855 0.0928 -0.0855 0.0928 -0.0855 0.0928 -0.0855 0.0928 -0.0855

100 20 C-Lasso 0.0782 -0.0711 0.0740 -0.0670 0.0671 -0.0603 0.0580 -0.0505 0.0711 -0.0254
Post-lasso 0.0539 -0.0431 0.0558 -0.0471 0.0558 -0.0482 0.0529 -0.0444 0.0713 -0.0233
C-Lasso BC 0.0723 -0.0643 0.0682 -0.0605 0.0614 -0.0540 0.0527 -0.0443 0.0691 -0.0191
Post-Lasso BC 0.0494 -0.0368 0.0508 -0.0410 0.0507 -0.0421 0.0479 -0.0382 0.0694 -0.0170
Oracle 0.0527 -0.0469 0.0527 -0.0469 0.0527 -0.0469 0.0527 -0.0469 0.0527 -0.0469

100 40 C-Lasso 0.0428 -0.0372 0.0405 -0.0351 0.0363 -0.0310 0.0321 -0.0270 0.0315 -0.0213
Post-lasso 0.0289 -0.0224 0.0295 -0.0236 0.0297 -0.0241 0.0293 -0.0238 0.0313 -0.0204
C-Lasso BC 0.0401 -0.0339 0.0378 -0.0319 0.0336 -0.0279 0.0295 -0.0239 0.0294 -0.0182
Post-Lasso BC 0.0266 -0.0193 0.0272 -0.0206 0.0273 -0.0210 0.0269 -0.0207 0.0294 -0.0173
Oracle 0.0285 -0.0236 0.0285 -0.0236 0.0285 -0.0236 0.0285 -0.0236 0.0285 -0.0236

200 10 C-Lasso 0.1297 -0.1235 0.1218 -0.1154 0.1113 -0.1040 0.0976 -0.0855 0.1241 -0.0532
Post-lasso 0.0941 -0.0859 0.0971 -0.0900 0.0952 -0.0865 0.0899 -0.0761 0.1244 -0.0520
C-Lasso BC 0.1180 -0.1106 0.1105 -0.1032 0.1004 -0.0921 0.0874 -0.0736 0.1201 -0.0412
Post-Lasso BC 0.0847 -0.0741 0.0872 -0.0785 0.0854 -0.0751 0.0807 -0.0644 0.1206 -0.0400
Oracle 0.0898 -0.0859 0.0898 -0.0859 0.0898 -0.0859 0.0898 -0.0859 0.0898 -0.0859

200 20 C-Lasso 0.0748 -0.0703 0.0705 -0.0661 0.0634 -0.0595 0.0541 -0.0501 0.0540 -0.0331
Post-lasso 0.0491 -0.0418 0.0512 -0.0462 0.0517 -0.0474 0.0484 -0.0441 0.0538 -0.0312
C-Lasso BC 0.0687 -0.0636 0.0645 -0.0596 0.0575 -0.0532 0.0484 -0.0439 0.0507 -0.0268
Post-Lasso BC 0.0444 -0.0356 0.0460 -0.0400 0.0463 -0.0413 0.0430 -0.0379 0.0507 -0.0249
Oracle 0.0492 -0.0460 0.0492 -0.0460 0.0492 -0.0460 0.0492 -0.0460 0.0492 -0.0460

200 40 C-Lasso 0.0399 -0.0364 0.0377 -0.0346 0.0335 -0.0305 0.0295 -0.0265 0.0267 -0.0221
Post-lasso 0.0259 -0.0216 0.0266 -0.0230 0.0268 -0.0234 0.0266 -0.0233 0.0264 -0.0212
C-Lasso BC 0.0370 -0.0332 0.0348 -0.0314 0.0307 -0.0274 0.0267 -0.0234 0.0243 -0.0190
Post-Lasso BC 0.0234 -0.0185 0.0241 -0.0199 0.0242 -0.0203 0.0240 -0.0202 0.0240 -0.0181
Oracle 0.0261 -0.0231 0.0261 -0.0231 0.0261 -0.0231 0.0261 -0.0231 0.0261 -0.0231
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Table 6: Estimation of 1 in DGP 3 by PGMM
 0.2 0.4 0.8 1.6 3.2

  RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
100 10 C-Lasso 0.1823 -0.1065 0.1892 -0.1241 0.1980 -0.1417 0.2090 -0.1627 0.2271 -0.1817

Post-lasso 0.1304 -0.0352 0.1231 -0.0331 0.1161 -0.0311 0.1137 -0.0352 0.1202 -0.0427
C-Lasso BC 0.1494 -0.0698 0.1509 -0.0800 0.1516 -0.0897 0.1572 -0.1047 0.1729 -0.1206
Oracle 0.0664 -0.0013 0.0664 -0.0013 0.0664 -0.0013 0.0664 -0.0013 0.0664 -0.0013

100 20 C-Lasso 0.0808 -0.0319 0.0858 -0.0478 0.0974 -0.0687 0.1114 -0.0888 0.1247 -0.1035
Post-lasso 0.0584 -0.0010 0.0565 -0.0031 0.0546 -0.0068 0.0538 -0.0109 0.0554 -0.0138
C-Lasso BC 0.0678 -0.0175 0.0690 -0.0275 0.0739 -0.0411 0.0814 -0.0548 0.0904 -0.0648
Oracle 0.0399 -0.0027 0.0399 -0.0027 0.0399 -0.0027 0.0399 -0.0027 0.0399 -0.0027

100 40 C-Lasso 0.0442 -0.0126 0.0447 -0.0198 0.0519 -0.0329 0.0646 -0.0491 0.0742 -0.0606
Post-lasso 0.0356 0.0025 0.0334 0.0006 0.0327 -0.0018 0.0325 -0.0037 0.0320 -0.0046
C-Lasso BC 0.0395 -0.0047 0.0384 -0.0094 0.0406 -0.0173 0.0459 -0.0268 0.0507 -0.0333
Oracle 0.0274 -0.0011 0.0274 -0.0011 0.0274 -0.0011 0.0274 -0.0011 0.0274 -0.0011

200 10 C-Lasso 0.1666 -0.0979 0.1711 -0.1168 0.1788 -0.1386 0.1916 -0.1582 0.2059 -0.1783
Post-lasso 0.1062 -0.0297 0.0972 -0.0275 0.0912 -0.0276 0.0909 -0.0312 0.0915 -0.0380
C-Lasso BC 0.1324 -0.0640 0.1305 -0.0743 0.1327 -0.0879 0.1408 -0.1018 0.1497 -0.1171
Oracle 0.0476 -0.0009 0.0476 -0.0009 0.0476 -0.0009 0.0476 -0.0009 0.0476 -0.0009

200 20 C-Lasso 0.0764 -0.0326 0.0800 -0.0487 0.0910 -0.0700 0.1056 -0.0903 0.1167 -0.1039
Post-lasso 0.0463 -0.0021 0.0417 -0.0037 0.0408 -0.0075 0.0401 -0.0116 0.0401 -0.0143
C-Lasso BC 0.0612 -0.0191 0.0603 -0.0289 0.0657 -0.0428 0.0737 -0.0564 0.0809 -0.0657
Oracle 0.0287 -0.0010 0.0287 -0.0010 0.0287 -0.0010 0.0287 -0.0010 0.0287 -0.0010

200 40 C-Lasso 0.0395 -0.0138 0.0395 -0.0214 0.0466 -0.0348 0.0591 -0.0511 0.0689 -0.0621
Post-lasso 0.0269 0.0011 0.0235 -0.0007 0.0233 -0.0028 0.0231 -0.0049 0.0227 -0.0055
C-Lasso BC 0.0320 -0.0066 0.0304 -0.0114 0.0333 -0.0194 0.0392 -0.0289 0.0441 -0.0349
Oracle 0.0192 -0.0010 0.0192 -0.0010 0.0192 -0.0010 0.0192 -0.0010 0.0192 -0.0010
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Table 7: Summary statistics for the savings data set

mean median s.e. min max

Savings rate 22.099 20.790 8.833 -3.207 53.434

Inflation rate 7.724 4.853 15.342 -3.846 293.679

Real interest rate 7.422 5.927 10.062 -63.761 93.915

Per capita GDP growth rate 2.855 2.971 3.865 -17.545 14.060

many years; see Feldstein (1980), Deaton (1990), Edwards (1996) Bosworth, Collins, and Reinhart

(1999), Rodrik (2000), and Li, Zhang, and Zhang (2007), among many others. Empirical research

in this area typically employs standard panel data methods to handle heterogeneity or relies on

prior information to categorize countries into groups. Classification criteria vary from geographic

locations to the notion of developed countries versus developing countries (Loayza, Schmidt-

Hebbel and Servén, 2000). This section applies the methodology developed in the present paper

to revisit this empirical problem.

5.1 Model and Data

Following Edwards (1996), we consider the following simple regression model

 = 1−1 + 2 + 3 + 4 +  +  (5.1)

where  is the ratio of savings to GDP,  is the CPI-based inflation rate,  is the real interest

rate,  is the per capita GDP growth rate,  is a fixed effect, and  is an idiosyncratic error

term. Inflation characterizes the degree of the macroeconomic stability and the real interest rate

reflects the price of money. The relationship between the savings rate and GDP growth rate is

well documented, with the latter being found to Granger-cause the former (Carroll and Weil,

1994). A lagged dependent variable is added to the specification to capture persistence of the

savings rate.

Data are obtained from the widely used World Development Indicators, a comprehensive

dataset compiled by the World Bank.10 We extract all countries for which there is complete

information for all the variables in (5.1). For many countries the time series of real interest rates

are often short in comparison with the other variables. Using the time span 1995—2010, we were

able to construct a balanced panel of 57 countries, each consisting of 15 time series observations.

After removing one outlier,11 in Table 7 we report the basic descriptive statistics for the remaining

56 countries. As is apparent, there is substantial heterogeneity across countries in all these major

macroeconomic indicators. Finding supporting evidence of within group homogeneity is therefore

particularly important in supporting the use of panel data pooling techniques.

10See http://data.worldbank.org/data-catalog/world-development-indicators.
11Bulgaria’s 1997 economic collapse produced hyperinflation in the CPI that significantly pulls up the overall

mean and the standard deviation. We therefore removed Bulgaria as an outlier from the sample.
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Figure 1: Information criterion as a function of the number of groups under different tuning

parameters

Unlike standard FE estimation, the coefficients estimated by PLS as in (2.4) are scale-invariant

to neither the dependent variable nor the explanatory variables, due to the presence of the penalty

term. For this real data problem, we therefore normalized the data and modified the penalty

to enforce scale-invariance. First, after demeaning we standardize each explanatory variable,

dividing by the within-country standard deviation so that the standard deviation is unity for

each transformed explanatory variable in each country. The transformation makes the coefficients

comparable: they can be interpreted as the ceteris paribus effect of a one-standard-deviation

change of that explanatory variable on the dependent variable. Second, we modify (2.4) to be

1 (β) +
1



X
=1

(̂)
2−0 Π0

=1k − k (5.2)

where ̂ =
³
−1

P
=1 ̃

2


´12
 The estimate from the above criterion function is scale-invariant

to the dependent variable. It is easy to show that the asymptotic theory established earlier

continues to hold under these modifications.
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Table 8: Estimation results

Slope coefficients Common Group 1 Group 2

FE C-Lasso post-Lasso C-Lasso post-Lasso

1 06203∗∗∗ 05746∗∗∗ 05652∗∗∗ 05715∗∗∗ 05813∗∗∗

(01330) (01059) (01080) (01090) (01051)

2 00303 −01166∗∗ −01392∗∗ 02437∗∗∗ 02874∗∗∗

(00484) (00541) (00517) (00553) (00545)

3 00068 −01039∗∗ −00832∗ 01182∗∗ 01398∗∗∗

(00432) (00491) (00492) (00459) (00444)

4 01880∗∗∗ 02834∗∗∗ 02685∗∗∗ 00767 00898∗

(00450) (00479) (00459) (00477) (00465)

Note: *** 1% significant; ** 5% significant; * 10% significant.

5.2 Estimation

Following the practice in Section 5.3 we set 1 = 2
3
( )−12 and 1 = 1 in the tuning

parameter 1 = 1
−12 in (5.2). We also tried other settings (1 = 064 08 125 and 15625)

to examine sensitivity of the results to this scaling parameter. Figure 1 plots the information

criterion as a function of the number of groups under these tuning parameters. The information

criterion suggests two groups for all the tuning parameters under investigation, and it achieves

the minimal value when 1 = 1 Based on this choice of tuning parameter, the members in each

group are:

• Group 1 (36 countries): Armenia, Australia, Bangladesh, Bolivia, Botswana, Cape Verde,
China, Costa Rica, Czech, Guatemala, Honduras, Hungary, Indonesia, Israel, Italy, Japan,

Jordan, Latvia, Malawi, Malaysia, Mauritius, Mexico, Mongolia, Panama, Paraguay, Philip-

pines, Romania, Russian, South Africa, Sri Lanka, Switzerland, Syrian, Thailand, Uganda,

Ukraine, United Kingdom;

• Group 2 (20 countries): Bahamas, Belarus, Canada, Dominican, Egypt, Guyana, Iceland,
India, Kenya, South Korea, Lithuania, Malta, Netherlands, Papua New Guinea, Peru, Sin-

gapore, Swaziland, Tanzania, United States, Uruguay.

Here the data determine the group identities. Interestingly, some geographic features are

still salient. For example, we observe the dominance of Asian countries in Group 1. Group 1

accommodates 13 Asian countries whereas Group 2 contains only 3. Except South Korea and the

city state Singapore, Group 1 includes all Eastern Asian and Southeastern Asian countries in our

sample (China, Japan, Indonesia, Malaysia, Philippines, and Thailand).

Table 8 reports the results for the PLS-based C-Lasso and post-Lasso estimation, in com-

parison with those for the single-group FE estimation. The estimates are bias-corrected and

the standard errors (in parentheses) are calculated based on the asymptotic variance-covariance
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Figure 2: Empirical distribution functions of the time series estimates of regression coefficients

for the two estimated groups (thin line: Group 1; thick line: Group 2)

formula. Compared with Edwards (1996), the FE results re-confirm the significance of lagged

savings and GDP growth rate as well as the insignificance of inflation and interest rates in the

determination of savings rate. This result also lends support to the conventional wisdom that

across countries higher saving rates tend to go hand in hand with higher income growth (e.g.,

Loayza, Schmidt-Hebbel and Servén, 2000). The C-Lasso and post-Lasso estimates deliver some

interesting findings. First, the coefficients of the inflation rate and the real interest rate become

significant in both groups but have opposite signs, which lead to insignificant effects in pooled

FE estimation. Second, the coefficient of the GDP growth rate is significant in Group 1 at the

1% level and in Group 2 at the 10% level, which suggests that conventional wisdom is universally

relevant and applies both within and across groups.
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Figure 2 plots the empirical distribution functions (EDFs) for the time series estimates of the

four slope coefficients based on the two estimated groups. The thin and thick lines associate with

Groups 1 and 2, respectively. Whilst the time series regression estimates are not precise with

only 15 observations for each country, the general pattern in Figure 2 is clearly evident. In the

top-left panel for the coefficients of the lagged savings rate, almost all countries exhibit positive

coefficient estimates, and the two EDFs are close to each other. Similar remarks also hold for

the real interest rate. On the other hand, empirical outcomes for both the inflation rate and

GDP growth rates are different. The top-right panel shows that roughly 2/3 of the countries in

Group 1 have negative estimates for the inflation rate coefficient in comparison with only 10%

of the countries in Group 2; moreover, the Group 2 estimates appear to first-order stochastically

dominate those of Group 1. In addition, the bottom-right panel reveals that the GDP growth

rate for countries in Group 1 tends to have a larger effect on the savings rate on average than

that for countries in Group 2. In sum, the EDF graphics shown in Figure 2 suggest that inflation

and GDP growth are the main variables separating the two groups.

6 Conclusion

This paper’s main contribution is a novel approach to identifying and estimating latent group

structures in panel data. Our work has focussed on linear panel data models where the slope pa-

rameters are heterogenous across groups but homogenous within a group and the group identity

is unknown, a setting that encompasses many different empirical applications. We have developed

panel PLS and PGMM classification and estimation methods. Both these classification methods

enjoy the desirable property of uniform consistency. The PLS method has the advantage of pos-

sessing the oracle property whereas the PGMM method typically does not. Post-Lasso estimates

are also studied and a BIC-type information criterion is proposed to determine the number of

groups. These techniques combine to provide a systematic approach to classifying and estimating

panel models with unknown homogeneous groups and heterogeneity across groups. Simulations

show that the approach has good finite sample performance and can be readily implemented

in practical work. Our empirical work on the determinants of cross-country savings rates finds

strong evidence that the slope coefficients are heterogeneous and can be conveniently classified

into two distinct groups, reinforcing conventional wisdom that higher saving rates go in hand

with higher income growth.
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APPENDIX

A Proof of the Results in Section 2

Proof of Theorem 2.1. Let1 () =
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Proof of Theorem 2.2. (i) Fix  ∈ {1 0}  By the consistency of ̂ and ̂ we have
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where the second and fourth inequalities follow from the Cauchy-Schwarz and triangle inequal-

ities, and Cauchy-Schwarz inequality, respectively, and the last convergence result follows from
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Assumptions A1(ii) and A2(i) and the fact that ̂
→ 0 for  ∈ 0 Consequently, we may con-
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This completes the proof of (i).
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Proof of Theorem 2.4. To study the oracle property of the Lasso estimator, we utilize condi-

tions from subdifferential calculus (e.g., Bersekas (1995, Appendix B.5)). In particular, necessary

and sufficient conditions for {̂} and {̂} to minimize the objective function in (2.4) is that
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Then by (A.11) we have 2


P
∈̂

P
=1 ̃

¡
̃ − ̂0̃

¢
+ 1



P
∈̂0 ̂Π

0

=1 6=
°°°̂ − ̂

°°° =

0×1 It follows that
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X
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⎞⎠−1 1
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X
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⎛⎝ 1



X
∈̂

X
=1

̃̃
0


⎞⎠−1 1

2

X
∈̂0

̂Π
0

=1 6=
°°°̂ − ̂

°°° ≡ ̂
̂
+ R̂ say.

In view of the fact that, ̂Π
0

=1 6=
°°°̂ − ̂

°°° 6= 0 only if  ∈ ̂0 we have for any   0


³√


°°°R̂

°°° ≥ 
´
≤

0X
=1

X
∈0




³
 ∈ ̂0| ∈ 0

´
≤

0X
=1

X
∈0




³
 ∈ ̂| ∈ 0

´
=  (1) by (A.9).

So
°°°R̂

°°° = 

³
( )−12

´
 Then the limit distribution result follows from Theorem 2.5 below.

¥

Proof of Theorem 2.5. Noting that ̃ = ̃0
0
 + ̃0

¡
0 − 0

¢
+ ̃ we have

p


³
̂
̂
− 0

´
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X
=1

̃̃
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⎞⎠−1 1√
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̃̃
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X
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X
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̃̃
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¡
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By Assumption A3 and Slutsky theorem, it suffices to prove the theorem by showing that (i)

1 ≡ 1


P
∈̂

P
=1 ̃̃

0
 =

1


P
∈0



P
=1 ̃̃

0
+ (1)  (ii) 2 ≡ 1√



P
∈̂

P
=1

̃̃ =
1√


P
∈0



P
=1 ̃̃ +  (1)  (iii) 3 ≡ 1√



P
∈̂

P
=1 ̃̃

0


¡
0 − 0

¢
=  (1)  and (iv) 4 ≡ (−11 − Φ̄−1 )B =  (1) 

Using the fact that 1{ ∈ ̂} = 1{ ∈ 0}+ 1{ ∈ ̂\0}− 1{ ∈ 0\̂} we have

1− 1



X
∈0



X
=1

̃̃
0
 =

1



X
∈̂\0

X
=1

̃̃
0
−

1



X
∈0


\̂

X
=1

̃̃
0
 ≡ 11−12

Let   0 By Theorem 2.2,  (k11k ≥ ) ≤  (̂ ) → 0 and  (k12k ≥ ) ≤
 (̂ ) → 0 Then (i) follows. Analogously, writing 2 − 1√



P
∈0



P
=1 ̃̃ =

1√


P
∈̂\0

P
=1 ̃̃ − 1√



P
∈0


\̂

P
=1 ̃̃ ≡ 21−22 we have  (k21k

≥ ) ≤  (̂ ) → 0 and  (k22k ≥ ) ≤  (̂ ) → 0 Then (ii) follows. Noting

that 0 − 0 = 0 if  ∈ 0  (k3k ≥ ) ≤  (̂ ) + (̂ ) → 0 + 0 = 0 Lastly,

 (k4k ≥ ) ≤  (̂ ) +  (̂ ) → 0 + 0 = 0 ¥
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Proof of Theorem 2.6. Using Theorems 2.2 and 2.5 and Assumption A5, we can readily show

that

1 (0 1) = ln
h
̂2
̂(01)

i
+ 10

= ln

⎡⎣ 1



0X
=1

X
∈̂(01)

X
=1

³
̃ − ̃0

̂(01)
̃

´2⎤⎦+  (1)
→ ln

¡
20
¢


We consider the cases of under- and over-fitted models separately.

Case 1: Under-fitted model. In this case, we have   0 Noting that

̂2
̂(1)

=
1



X
=1

X
∈̂(1)

X
=1

³
̃ − ̃0

̂(1)
̃

´2

≥ min
1≤0

inf
()∈G

1



X
=1

X
∈

X
=1

³
̃ − ̃0

̃

´2
= min
1≤0

inf
()∈G

̂2
()



we have by Assumptions A4-A5 and the Slutsky Lemma

min
1≤0

1 (1) ≥ min
1≤0

inf
()∈G

ln(̂2
()

) + 1
→ ln(2)  ln(20)

It follows that 
¡
min∈Ω− 1 (1)  1 (0 1)

¢→ 1

Case 2: Over-fitted model. Let  ∈ Ω+. By Lemma A.1 below and the fact that 21 →
∞ under Assumption A5, we have



µ
min
∈Ω+

1 (1)  1 (0 1)

¶
= 

µ
min
∈Ω+

h
2 ln

³
̂2
̂(1)

̂2
̂(01)

´
+ 21 ( −0)

i
 0

¶
= 

µ
min
∈Ω+

2

³
̂2
̂(1)

− ̂2
̂(01)

´
̂2

̂(01)
+ 21 ( −0) +  (1)  0

¶
→ 1 as ( )→∞ ¥

Lemma A.1 Suppose that the conditions in Theorem 2.6 hold. Let ̄2
0
= 1



P
=1

P
=1 ̃

2


Then max0≤≤max

¯̄̄
̂2
̂(1)

− ̄2
0

¯̄̄
= 

¡
−2

¢


Proof. When  ≥ 0 following the proof of Theorem 2.1, we can show that

°°°̂ − 0

°°° =  (
−12 + 1) for each  and

1



X
=1

Π=1
°°0 − ̂

°° =  (
−12)

Noting that 0   = 1   only take 0 distinct values, the latter implies that the collection

{̂  = 1 } contains at least 0 distinct vectors, say, ̂(1)  ̂(0) such that ̂() −
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0 =  (
−12) for  = 1 0 For notational simplicity, we rename the other vectors in

the above collection as ̂(0+1)  ̂() As before, we classify  ∈ ̂ (1) if
°°°̂ − ̂()

°°° = 0
for  = 1  and  ∈ ̂0 (1) otherwise. Using arguments like those used in the proof of

Theorem 2.2, we can show thatX
∈0




³
̂

´
=  (1) for  = 1 0 and

X
∈̂(1)


³
̂

´
=  (1) for  = 1 0

The first part implies that
P

=1 
³
 ∈ ̂0 (1) ∪ ̂0+1 (1) ∪ · · · ∪ ̂ (1)

´
=  (1) 

Using the fact that 1{ ∈ ̂} = 1{ ∈ 0} + 1{ ∈ ̂\0} − 1{ ∈ 0\̂} we have
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̂(1)

= 1


P
=1

P
∈̂(1)

P
=1 [̂ ()]
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̃ 1 =

1
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P
∈0



P
=1 [̂ ()]

2  2 =
1



P0

=1

P
∈̂(1)\0

P
=1

[̂ ()]
2  3 =

1


P0

=1

P
∈0


\̂(1)

P
=1 [̂ ()]

2  and4 =
1



P
=0+1

P
∈̂(1)P

=1 [̂ ()]
2  Following the proof of Theorem 2.5, we can show that ̂

̂(1)
−0 = 

¡
−1

¢
for  = 1 0 In addition, we can readily show that 1 = ̄2

0
+ 

¡
−2

¢
 For 2 

3  and 4  we have that for any   0 
¡
2 ≥ −2 

¢ ≤ P0

=1  (̂ ) → 0


¡
3 ≥ −2 

¢ ≤P0

=1  (̂ )→ 0 and 
¡
4 ≥ −2 

¢ ≤P
=1  ( ∈ ∪0+1≤≤̂ (1))

→ 0 It follows that ̂2
̂(1)

= ̄2
0
+

¡
−2

¢
for all 0 ≤  ≤ max

B Proof of the Results in Section 3

We start by proving a useful technical result and then proceed to prove the main results.

Let  () ≡ [ 1
P

=1  ( )]
0 [

1


P
=1  ( )] and ̄ () ≡ { 1

P
=1 E[ ( )]}0


1


P
=1 E [ ( )]  Let  () = [

1


P
=1{ ( )−E [ ( )]}]0 [

1


P
=1{ ( )−

E [ ( )]}]

Lemma B.1 Suppose Assumption B1(iv) hold. Then 
£
1
2
̄ ()− ()

¤ ≤  () ≤
̄[2̄ () +2 ()] for all  ∈ B w.p.a.1, where  and ̄ are some generic positive constants

that do not depend on  with 0    1  ̄ ∞

Proof. Noting that  =  +  (1) uniformly in  under Assumption B1(iv), we have

w.p.a.1



"
1



X
=1

 ( )

#0


"
1



X
=1

 ( )

#
≤  () ≤ ̄

"
1



X
=1

 ( )

#0


"
1



X
=1

 ( )

#
(B.1)

for all  ∈ B By the positive definiteness of  and the matrix version of the Cauchy-Schwarz

inequality, we can readily show that

(− )0 (− ) ≥ 1
2
0− 0 and (− )0 (− ) ≤ 20+ 2

0
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for any conformable vectors  and  Taking  = 1


P
=1 E [ ( )] and  =

1


P
=1{ ( )−

E [ ( )]} we have"
1



X
=1

 ( )

#0


"
1



X
=1

 ( )

#
≥ 1

2
̄ ()− ()  and (B.2)

"
1



X
=1

 ( )

#0


"
1



X
=1

 ( )

#
≤ 2̄ () + 2 ()  (B.3)

Combining (B.1)-(B.3) yields the desired results.

Proof of Theorem 3.1. (i) Let 
(0)

22
(α) =  () + 2Π

0

=1 k − k  By the
definition of β̃ and α̃ and the fact that 

(0)

22
(βα) = 1



P
=1

(0)

22
(α)  we have

22(̃ α̃)−22

¡
0  α̃

¢
=  (̃)− 

¡
0
¢
+ 2

n
Π=1

°°°̃ − ̃

°°°−Π=1 °°0 − ̃
°°o ≤ 0 (B.4)

By Lemma B.1 and Assumptions B1(i) and (iv), we have that  (̃) ≥ [1
2
̄(̃)− ̃ ] and



¡
0
¢ ≤ ̄

h
2̄

¡
0
¢
+ 20

i
= 2̄0 w.p.a.1, where ̃ =  (̃) and 0 =  (

0
 ).

It follows that [1
2
̄(̃) − ̃ ] − 2̄0 + 2

n
Π=1

°°°̃ − ̃

°°°−Π=1 °°0 − ̃
°°o ≤ 0 which

can be rewritten as

̄

³
̃

´
≤ 2



h
2̄0 + ̃ − 2

³
Π=1

°°°̃ − ̃

°°°−Π=1 °°0 − ̃
°°´i  (B.5)

Using arguments like those applied to obtain (A.2) and (A.4), we have¯̄̄
Π=1

°°°̃ − 

°°°−Π=1 °°0 − 
°°¯̄̄ ≤ 0 (α)

µ°°°̃ − 0

°°°+ 2°°°̃ − 0

°°°2¶  (B.6)

Noting that 1


P
=1 E [ ( )] = −̄∆

¡
 − 0

¢
 we have
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1≤≤

̄(̃) = max
1≤≤

³
̃ − 0

´0
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³
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´
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1≤≤
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where 1 ≡ min1≤≤ min

³
̄0∆̄∆

´
satisfies that lim inf( )→∞ 1 ≥  ̄  0

by Assumptions B1(iii)-(iv). Combining (B.5)-(B.7) yields

1
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h
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where 2 ≡ −12 + 2 Further, noting that
1


P
=1 ̃

2
 =  (1) and

1


P
=1(

0
 )

2 =

 (1) under Assumptions B1(ii) and (iv), we can readily show that 1


P
=1

°°°̃ − 0

°°°2 =


¡
22

¢
As in the proof of Theorem 2.1(ii), we can further demonstrate that 1



P
=1

°°°̃ − 0

°°°2
= 

¡
−1

¢


The proof of (iii) is completely analogous to that of Theorem 2.1(iii), now using the facts that¯̄̄
 (β̃α)− 

¡
β0α

¢¯̄̄
= 

¡
−1

¢
and that 0 ≥  (β̃ α̃)−  (β̃α

0) ¥

Proof of Theorem 3.2. (i) Fix  ∈ {1 0}  By the consistency of ̃ and ̃ with 0 for

 ∈ 0 we have ̃ − ̃
→ 0 − 0 6= 0 for all  6=  It follows that w.p.a.1

°°°̃ − ̃

°°° 6= 0 for
all  ∈ 0 and  6=  Now, suppose that

°°°̃ − ̃

°°° 6= 0 for some  ∈ 0 Then the first order

condition (with respect to ) for the minimization problem in (3.2) implies that
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0
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=1 6=
°°0 − 0

°°  0 for any  ∈ 0 by Theorem 3.1.

As in the proof of Theorem 2.2, we can readily show that ̃1 =  (1), ̃3 =  (1) 
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√
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=  (1) for each  ∈ 0 and  = 1 0 Let ̃ = ̃3 +P0

=1 6= ̃4 and ̃1 ≡ min(̃
0
∆ ̃∆)Noting that

³
̃ − ̃

´0
̃2 ≥ 2̃1

√

°°°̃ − ̃

°°°2
+
√
2̃ and

¯̄̄̄³
̃ − ̃

´0
̃

¯̄̄̄
=  (2), we have

³
̃ − ̃

´0
̃2−

¯̄̄̄³
̃ − ̃

´0
̃

¯̄̄̄
≥
³
̃ − ̃

´0
̃22

as ( )→∞ It follows that by Assumption B2(i)

 (̃) = 
³
 ∈ ̃ |  ∈ 0

´
= 

³
̃1 = ̃2 + ̃

´
≤ 

µ¯̄̄̄³
̃ − ̃

´0
̃1

¯̄̄̄
≥
¯̄̄̄³
̃ − ̃

´0
̃2 +

³
̃ − ̃

´0
̃

¯̄̄̄¶
≤ 

µ°°°̃ − ̃

°°°°°°̃1

°°° ≥ ³̃ − ̃

´0
̃22

¶

≤ 

⎛⎝°°°̃1

°°° ≥ ̃1
√

°°°̃ − ̃

°°°+ √
2̃

2
°°°̃ − ̃

°°°
⎞⎠

51



≤ 
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where we use the fact that ̃
→ 0 for  ∈ 0 and ̃1

→ min(̄
0
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0
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sumption B1(iii)-(iv). Consequently, we have shown (i).

(ii) The proof of (i) is almost identical to that of Theorem 2.2(ii) and is omitted. ¥

Proof of Theorem 3.4. The proof follows closely from that of Theorem 2.4 and we only sketch

it. Based on the subdifferential calculus, the KKT conditions for the minimization of (3.2) are

that for each  = 1   and  = 1 0
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By Theorem 3.2, we can readily show that 
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´
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Under Assumptions B1(iv) and B3(i)-(ii), we have 1
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1


P
∈0


̄0∆

̄∆ + (1) =  +  (1)  Then the result follows from Assumption B3(iii) and Slutsky

theorem. ¥

Proof of Theorem 3.5. Following the proof of Theorem 2.5, we can readily show thatp
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´
=

h
̃
()0
∆
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()
∆
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̃
()0
∆
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p
̃

()
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=
h

()0
∆
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()
∆

i−1

()0
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p


()
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where ̃
()
∆ =

1


P
∈̃

P
=1 ∆ and 

()
∆ = 1



P
∈0



P
=1 ∆ The results

then follow from analogous arguments as used in the proof of Theorem 2.5, Assumption B3, and

Slutsky theorem. ¥

Proof of Theorem 3.6. The proof is analogous to that of Theorem 2.6 and is omitted. ¥
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THIS APPENDIX PROVIDES SOME ADDITIONAL RESULTS FOR THE ABOVE PAPER.

C Some Primitive Assumptions and Technical Lemmas

This appendix presents some primitive assumptions that ensure the high level conditions in As-

sumptions A1(ii) and A2(ii) hold for non-dynamic panel data models. We then discuss primitive

conditions to ensure that they hold for dynamic panels. The verification of Assumption B2(ii) is

similar.

ASSUMPTION C1 (i) For each  = 1   {( ) :  = 1 2 } is strong mixing with mixing
coefficients { (·)}.  (·) ≡ max1≤≤  (·) satisfies  () ≤ 

 for some  =  (1) and

 ∈ (0 1). E () = 0 for each  and 

(ii) There exists a constant ̃̃ such that 0  ̃̃ ≤ min1≤≤ min(̃̃)

(iii) Either one of the following two conditions is satisfied: (a) sup≥1 sup≥1 E kk4 ≤ 

and sup≥1 sup≥1 E kk2 ≤  for some   1 and   ∞; (b) There exist three constants
 and  such that sup≥1 sup≥1 E[exp( kk2)] ≤   sup≥1 sup≥1 E [exp( kk)]
≤   and sup≥1 sup≥1 E [exp( kk)] ≤  for some  ∞ and  ∈ (0∞]

(iv)  satisfies one of the following two conditions: (a)   → (0∞] for   1(2 − 1) if
C1(iii.a) is satisfied; (b) (ln)(1+) →∞ if C1(iii.b) is satisfied.

(v)  satisfies one of the following two conditions: (a) 1{(ln)−1+ ( )−1(ln )−4(ln)−2]}
→∞ if C1(iii.a) is satisfied; (b) 1{(ln)−1 +  [ln( )]−2(1+)}→∞ if C1(iii.b) is satis-

fied.

C1(i) requires that each individual time series { :  = 1 2 } be strong-mixing with geo-
metric mixing rate. If {} are identically distributed for all individuals within the same group,
then the sup max1≤≤ is effectively taken with respect to the 0 groups. C1(ii) requires that

the matrices ̃̃ be positive definite uniformly in  and the uniformity is required only over the

0 groups in the case of group-wise identical distributions. The conditions stated in Assumption

C1(iii) pertain to two specific cases related to the moments of kk2 and  : part (a) only

requires finite 2-th moments whereas part (b) requires the existence of exponential moments.

By the Markov inequality, part (b) implies that


³
kk2 ≥ 

´
≤ exp

µ
1−

µ




¶¶


where  = max (1 ln)  That is, the distribution of kk2 has to decay exponentially fast. The
case  =∞ in part (b) corresponds to the case where kk is uniformly bounded. Similar remarks
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hold for kk and kk When combined with C1(i), the conditions in C2(iii) allow us to apply
some exponential inequalities for strong mixing processes; see, e.g., Merlevède, Peilgrad, and Rio

(2009, 2011). C1(iv) and (v) are needed to verify Assumption A1(ii) and A2(ii), respectively.

Lemma C.1 Let {  = 1 2 } be a zero-mean strong mixing process, not necessarily station-
ary, with the mixing coefficients satisfying  () ≤ 

 for some   0 and  ∈ (0 1) 
(i) If sup1≤≤ || ≤   then there exists a constant 0 depending on  and  such that

for any  ≥ 2 and   0



Ã¯̄̄̄
¯
X
=1



¯̄̄̄
¯  

!
≤ exp

Ã
− 0

2

20 +2
 +  (ln )

2

!


where 20 = sup≥1
£
Var () + 2

P∞
=+1 |Cov ( )|

¤


(ii) If sup≥1  (||  ) ≤ exp (1− ()) for some  ∈ (0∞) and  ∈ (0∞] then there
exist constants 1 and 2 depending only on    and  such that for any  ≥ 4 and

 ≥ 0(ln )
0 with 0 0  0,

D

Ã¯̄̄̄
¯
X
=1



¯̄̄̄
¯  

!
≤ ( + 1) exp

Ã
−


1+

1

!
+ exp

µ
− 2

2

¶


Proof. (i) Merlevède, Peilgrad, and Rio (2009, Theorem 2) prove (i) under the condition

 () ≤ exp (−2) for some   0 If  = 1 we can take  = exp (−2) and apply the theorem
to obtain the claim in (i). Other values of  do not alter the conclusion.

(ii) Merlevède, Peilgrad, and Rio (2011, Theorem 1) prove a result that is more general than

that in (ii) under the condition  () ≤ exp (−11) for some 1 1  0 If  = 1 and 1 = 1

we can take  = exp (−21) and apply the theorem to obtain the claim in (ii). Other values of 
do not alter the conclusion.

Lemma C.2 Let ̂̃̃ ≡ −1
P

=1 ̃̃
0
 Suppose that Assumptions C1(i)-(iii) hold.

(i) If C1(iv) holds, then min1≤≤ min(̂̃̃) ≥ min1≤≤ min (̃̃)−  (1) ;

(ii) If C1(v) holds, then  max1≤≤ 
³°°° 1 P

=1 ̃̃

°°° ≥ 
√
1

´
→ 0 as ( )→∞

Proof. (i) By the Weyl inequality and the fact that |max ()| ≤ kk for any symmetric
matrix  we have

min(̂̃̃) ≥ min (̃̃)−
°°°̂̃̃ −̃̃

°°° 
We are left to show thatmax1≤≤

°°°̂̃̃ −̃̃

°°° =  (1) Noting that ̂̃̃ = −1
P

=1 ̃̃
0
 =

−1
P

=1 
0
 −̄·̄0 it suffices to show that (i1) max1≤≤

°°°−1P
=1[

0
 − E (0)]

°°° =
 (1) and (i2) max1≤≤

°°°−1P
=1[ − E ()]

°°° =  (1)  We only prove (i1) as the proof of

(i2) is analogous.

We first consider the case where Assumption C1(iii.a) hold. Let  = ( )1(2)  Let 
be an arbitrary  × 1 vector with kk = 1 for  = 1 2 Let  ≡ 01 [

0
 − E (0)] 2

1 ≡ 01 [
0
1 − E (01)] 2 and 2 ≡ 01 [

0
1̄ − E (01̄)] 2 where 1 ≡

2



1{kk2 ≤ } and 1̄ = 1 − 1 Note that  = 1 + 2 Let 
2
 = sup≥1[Var(1) +

2
P∞

=+1Cov(1 1)] and ̄2 = sup≥1max1≤≤ 2  The moment conditions in C1(iii.a) and

Davydov inequality ensure that ̄2 =  (1)  By the Boole inequality and Lemma C.1(i), for any

  0



Ã
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¯−1

X
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1
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̄2 + 4 ( )1 + 2 ( )1(2) (ln )2
+ ln

!
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By Assumption C1(iii.a), the Boole and Markov inequalities, and the dominated convergence

theorem,



Ã
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1≤≤

¯̄̄̄
¯ 1

X
=1

2
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!
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1≤≤
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¶
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³
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´
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oi
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Noting that 1 and 2 are arbitrary unit vectors, we infer thatmax1≤≤
°°° 1 P

=1 [
0
 − E (0)]

°°°
=  (1)  Then (i) follows.

Next consider the case where Assumption C1(iii.b) holds. By the Boole inequality and Lemma

C.1(ii), for any   0



Ã
max
1≤≤

¯̄̄̄
¯−1

X
=1
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!
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¯
X
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¶
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provided  À (ln)(1+) . It follows that max1≤≤
°°° 1 P

=1 [
0
 − E (0)]

°°° =  (1) 

(ii) Noting that −1
P

=1 ̃̃ = −1
P

=1 − ̄·̄· we prove (ii) by showing that (ii1)
 max1≤≤  (||−1P

=1 || ≥ 
√
1) → 0 (ii2)  max1≤≤  (||−1P

=1[ − E ()]||
≥ 
√
1) → 0 and (ii3)  max1≤≤  (||−1P

=1 || ≥ 
√
1)→ 0 We only outline the proof

of (ii1) as the other two claims can be proved analogously. If Assumption C1(iii.a) holds, by letting

 ≡ 01[− E ()] 1 ≡ 01[1−E (1)] and 2 ≡ 01[1̄−E (1̄)]
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where now 1 ≡ 1 {kk ≤ } and 1̄ = 1− 1 we have
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and 
³
max1≤≤

¯̄̄
1


P
=1 2

¯̄̄
≥ 
√
1

´
≤  max1≤≤ max1≤≤  (kk ≥  ) → 0 as

 → ∞ Here 2 = sup≥1max1≤≤ sup≥1[Var(1) + 2
P∞

=+1Cov(1 1)] =  (1) under

Assumption C1(iii.a). Similarly, if Assumption C1(iii.b) holds, then
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X
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!
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≤ exp
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!
+ exp
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21
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¶
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provided 1{(ln)−1 +  [ln( )]−2(1+)}→∞

Evidently Lemma C.2(i) ensures the second part of Assumption A1(ii) and Lemma C.2(ii)

ensures Assumption A2(ii). These results rely on the use of Bernstein-type inequalities for strong

mixing processes that are not necessarily stationary.

To verify Assumptions A1(ii) and A2(ii) for dynamic panel data models, we need to distinguish

two cases based on whether we treat the fixed effects  in (2.1) as random or not. If we follow

Hahn and Kuersteiner (2011) and assume that the individual fixed effects are nonrandom and

uniformly bounded, then we can assume that {(∆)   ≥ 1} is strong mixing for each  and

verify the assumptions as above. On the other hand, if we assume that ’s are random fixed

effects, then the notion of strong mixing is generally no longer appropriate for dynamic models.

To appreciate the point, take the simple panel AR(1) model as an example:

 = 0−1 +  +   = 1    = 1      (C.1)

where  = −1 and an example of the IV for ∆−1 would be  = −2. Even if {  ≥ 1}
is a strong mixing process, {  ≥ 1} is generally not so if  is stochastic as the dependence
between  and  is not asymptotically vanishing as |− | passes to infinity. In this case, as
Hahn and Kuersteiner (2011) suggest, it is natural to adopt the concept of conditional strong

mixing (see, e.g., Prakasa Rao, 2009) where the mixing coefficient is defined by conditioning on

the fixed effects. Su and Chen (2013) adopt the latter approach in their study of panel data

4



models with interactive fixed effects and show that the well known Davydov and Bernstein-type

inequalities that hold for strong mixing processes also hold for conditional strong mixing processes.

A conditional version of the results in Lemma C.1 are also satisfied where all probabilities are

defined by conditioning on the -field generated by (1   ) Then one can verify Assumptions

A1(ii) and A2(ii) by following analogous arguments as used in the proof of Lemma C.2(ii).

D Bias Correction

D.1 Bias Correction for the PLS C-Lasso Estimator

Recall from Theorems 2.4 and 2.5 that the bias takes the form

 = Φ̄
−1
 B 

where Φ̄ ≡ 1


P
∈0



P
=1 ̃̃

0
 and B =

1


12


 12

P
∈0



P
=1 E (̃) = − 1


12


 32

P
∈0

P
=1

P
=1 E () as E () = 0 Let ̂ = −0̂̂

− ̂ and ̂ =
1


P
=1(−0̂̂

)

for all  ∈ ̂
12 We propose to estimate  by

̂ = Φ̂
−1
 B̂

where Φ̂ =
1

̂

P
∈̂

P
=1 ̃̃

0
 and B̂ = − 1


12


 32

P
∈̂

P
=1

P
=1 

( )̂

Here 
( ) = 0

(|− |) and 0
() denotes the Bartlett kernel:

0
() = (1− ||  )1 {|| ≤ } 

Note that we allow dynamic misspecification here. If one is sure that the model is dynamically

correctly specified in the sense that E (|F−1) = 0 where F−1 = (−1 −2 ; 
−1 ) one can use the one-sided kernel: 

( ) = 1
(− )  where

1
() = (1−  )1 {0 ≤  ≤} 

Other choices of kernels are possible. So the bias-corrected PLS C-Lasso estimator is given by

̂
()

 = ̂ − 1q
̂

Φ̂−1 B̂ 

Similarly, we can obtain the bias-corrected estimator for the post-Lasso estimator ̂
̂


Let kk = {E kk}1 for any  ≥ 1 Let  denote a generic positive constant that does

not depend on  and  We add the following assumption.

ASSUMPTION D1. (i) For each  = 1   {( ) :  = 1 2 } is strong mixing with mixing
coefficients { (·)} such that  () ≤ 

 for some  ∞ and  ∈ (0 1)  1


P
∈0



(2−1)(2)


=  (1) 

12Observing that ̂ − 0 = 


( )

−12 + −1

and ̂̂ − 0 = 


( )

−12 + −1

 one can use

either estimator in the definition of the residuals. We recommend using the post-Lasso estimator ̂̂ because of

its better finite sample performance.
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(ii) Let  ≡ (1   )
0 and  ≡ (1   )

0  ( ) are independent across  ∈ 0
where  = 1 0

(iii) max E kk4   ∞ and max E kk4   ∞ for some  ≥ 1
(iv) As ( )→∞  →∞ 2

 → 0 2


3 → 0 and 
−12
  12

P
∈0


 ( )

2−1
2

→ 0 for each  = 1 0

Assumption D1(i) assumes the usual mixing condition. D1(ii) assumes cross sectional inde-

pendence to simplify the proof which can be relaxed at the cost of lengthy arguments. D1(iii)

assumes moment conditions. The last condition in D1(iv) can be easily ensured under D1(i)

because for any  À − 2
(2−1) ln  ln(

12 12) (e.g.,  =
¡
ln(12 12)

¢1+
for some   0),

we have


−12
  12

X
∈0



 ( )
(2−1)(2) ≤

⎛⎝−1


X
∈0




(2−1)(2)


⎞⎠
12

  12 (2−1)(2)

=  (1) exp

µ
ln
³

12

  12
´
+
(2 − 1)

2
ln 

¶
→ 0

The first three requirements in D1(iv) can be easily satisfied too. For example, if  ∝   for

some   3 it suffices to set  ∝  1 for some   max{2 2 (3− )}

Proposition D.1 Suppose that the conditions in Theorem 2.4 hold. Suppose Assumption D1

holds. Then Φ̂−1 B̂ − Φ̄−1 B =  (1) 

Proof. Noting that Φ̂−1 B̂ − Φ̄−1 B = (Φ̂
−1
 − Φ̄−1 )B +(Φ̂

−1
 − Φ̄−1 )(B̂ −B )

+Φ̄−1 (B̂ − B ) Φ̄
−1
 = (1) and B = 

³p


´
 it suffices to show that (i) Φ̂ −

Φ̄ =  ( ) and (ii) B̂ − B =  (1)  where  = min(1
p
)

We first prove (i). Note that

Φ̂ − Φ̄ =
1

̂

X
∈̂

X
=1

̃̃
0
 −

1



X
∈0



X
=1

̃̃
0


=
1

̂

⎛⎝X
∈̂

−
X
∈0



⎞⎠ X
=1

̃̃
0
 +

 − ̂

̂

X
∈0



X
=1

̃̃
0


≡ Φ1 +Φ2 say.

By Corollary 2.3, we can readily show that Φ2 =  (
−1
 ) =  ( )  For any   0 we have

by the proof of Theorem 2.2,  (kΦ1k ≥  ) ≤  (̂ ) +  (̂ ) =  (1)  It follows that

Φ̂ − Φ̄ =  ( ) 
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We now prove (ii). We first make the following decomposition:

B − B̂ =
1

̂
12

  32

X
∈̂

X
=1

X
=1


( )̂ − 1


12

  32

X
∈0



X
=1

X
=1

E ()

=
1

̂
12

  32

X
∈0



X
=1

X
=1


( )̂ − 1


12

  32

X
∈0



X
=1

X
=1

E ()

+ (1)

=
1

̂
12

  32

X
∈0



X
=1

X
=1


( ) (̂ − )

+
1

̂
12

  32

X
∈0



X
=1

X
=1


( ) [ − E ()]

+

−12
 − ̂

−12


 32

X
∈0



X
=1

X
=1


( )E ()

+
1


12

  32

X
∈0



X
=1

X
=1

[1− 
( )]E () +  (1)

≡ ̂1 + ̂2 + ̂3 + ̂4 +  (1)  say,

where the  (1) term arises due to the replacement of ̂ by 
0
 and this can be easily justified by

using the uniform classification consistency result and arguments as used in the proof of Theorem

2.5. We prove (ii) by demonstrating that ̂ =  (1) for  = 1 2 3 and 4

We first study ̂1 Noting that ̂ = −0̂̂
−̂ = −0̂̂

− 1


P
=1(−0̂̂

)

and  = 0
0
 +  +  for  ∈ 0 we have that for  ∈ 0

̂ −  =  − 0̂̂
− 1



X
=1

( − 0̂̂
)−  = ̃0(

0
 − ̂

̂
)− ̄

where ̄ =
1


P
=1  Then

̂1 =
1

̂
12

  32

X
∈0



X
=1

X
=1


( )̃

0
(

0
 − ̂

̂
)

− 1

̂
12

  32

X
∈0



X
=1

X
=1


( )̄

≡ 1 (1)−1 (2)  say.
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In view of the fact that ̂
̂
− 0 = 

¡
( )

−12 + −1
¢
and ̂ =  (1 +  (1))  we have

k1 (1)k =
1

̂
12

  32

°°°°°°
X
∈0



X
=1

X
=1


( )̃

0
(

0
 − ̂

̂
)

°°°°°°
≤ 

12

̂
12



°°°0 − ̂
̂

°°° 1

 2

X
∈0



X
|−|≤

°°̃0°°
= 

12

  12

³
( )

−12 + −1
´
 (  )

= 

³
1 +

12

 −12
´
 ( ) =  (1)

where we use the fact that 1
2

P
∈0



P
|−|≤

k̃0k =  ( ) by moment calculation

and Markov inequality. Let ̄1 (2) ≡ 1


12


 32

P
∈0



P
=1

P
=1 

( )0̄ where 

is any × 1 nonrandom vector such that kk = 1 Then by Assumptions D1(i), (iii) and (iv),

¯̄
E
£
̄1 (2)

¤¯̄ ≤ 1


12

  52

X
∈0



X
=1

X
=1

X
=1


( )

¯̄
E
¡
0

¢¯̄

≤ 8


12

  52

X
∈0



X
=1

X
=1

X
=1


( )

°°0°°4 kk4  (| − |)(2−1)(2)

≤ 
12



 32

⎧⎨⎩ 1



X
∈0




(2−1)(2)


⎫⎬⎭
⎧⎨⎩ 1 X

: |−|≤

|−|(2−1)(2)

⎫⎬⎭
= 

12

 −32 (1) ( ) = 
³


12

 −32
´
=  (1) 

Similarly, by Assumptions D1(i)-(iv),

Var
¡
̄1 (2)

¢
=

1

 5

X
∈0



Var

Ã
X
=1

X
=1

X
=1


( )0

!

≤ 1

 5

X
∈0



E

⎡⎣Ã X
=1

X
=1

X
=1


( )0

!2⎤⎦
=

1

 5

X
∈0



X
1≤126≤


(1 2) 

(4 5)E
¡
023 

056
¢

≤ 1

 5

X
∈0



X
1≤126≤

|1−2|≤ |4−5|≤

¯̄
E
¡
023 

056
¢¯̄

= 
¡
2


¢
=  (1) 

Consequently, ̄1 (2) =  (1)  This, in conjunction with Corollary 2.3, implies that1 (2)

=  (1) as  is arbitrary. Thus we have shown that ̂1 =  (1) 
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For ̂2 note that ̂2 = ̄2
12

 ̃
12

 = ̄2 (1 +  (1))  where ̄2 =
1


12


 32

P
∈0



P
=1

P
=1 

( ) [ − E ()] By construction E(̄2) = 0 By

Assumptions D1(ii)-(iii) and Jensen inequality,

Var
¡
0̄2

¢
=

1

 3

X
∈0



Var

"
X
=1

X
=1


( )0 [ − E (∆)]

#

≤ 1

 3

X
∈0



X
=1

X
=1

X
=1

X
=1


( ) 

( )E
¡
0

¢
≤ 1

 3

X
∈0



X
|−|≤

X
|−|≤

¯̄
E
¡
0

¢¯̄
= 

¡
2


¢
=  (1) 

where the last equality follows from the fact that kE (0)k ≤ max kk22
≤ max kk24 ×max kk24    ∞ by Assumption D1(iii). Then ̄2 =  (1) by

Chebyshev inequality and thus ̂2 =  (1) 

By Corollary 2.3 and Davydov inequality,

°°°̂3

°°° =

¯̄̄
−1
 − ̂−1



¯̄̄
 32(

−12
 + ̃

−12
 )

°°°°°°
X
∈0



X
=1

X
=1


( )E ()

°°°°°°
≤

¯̄̄
̂ −

¯̄̄
 12̂(

−12
 + ̂

−12
 )

⎧⎨⎩ 1



X
∈0



X
|−|≤

kE ()k
⎫⎬⎭

=  (
−12
 −12) (1) =  (1) 

By Assumptions D1(i)-(iv) and the Davydov inequality,

°°°̂4

°°° =
1


12

  32

X
∈0



X
=1

X
=1

[1− 
( )]E ()

=

°°°°°° 1


12

  32

X
∈0



X
=1

X
=1

[1− 
( )]E ()

°°°°°°
≤ 8


12

  32

X
∈0



X
|−|

 (|− |)(2−1)(2) kk4 kk4

≤ 
−12
  12

X
∈0



 ( )
(2−1)(2) =  (1) 

This completes the proof of the proposition.
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With the above result in hand, we can readily show thatp


³
̂
()

 − 0

´
=

hp


¡
̂ − 0

¢− Φ̄−1 B

i
+
³
̂

´12 h
Φ̄−1 B − Φ̂−1 B̂

i
+

∙
1−

³
̂

´12¸
Φ̄−1 B

=
hp


¡
̂ − 0

¢− Φ̄−1 B

i
+  (1) + 

¡
−1


¢

³
( )

12
´

=
hp


¡
̂ − 0

¢− Φ̄−1 B

i
+  (1) 

That is,
√
 (̂

()

 − 0) has the desired limiting distribution centered on the origin.

D.2 Bias Correction for the PGMM C-Lasso Estimator

Bias correction for the PGMM C-Lasso estimator in dynamic panel data models can be done

analogously. For simplicity we focus on the case where  =  for all  Recall from Theorem

3.4 and the remark regarding Assumption B3(iii) (see (3.6) in particular) thatp


¡
̃ − 0

¢− ̄−1 
→ (0 −1 

−1
 ) for  = 1 0

where ̄ ≡ 1


P
∈0


̄0∆̄∆ and  =

1


12


 32

P
∈0



P
=1

P
=1 E (∆

0
∆) 

Based on (3.6), in order to verify Assumption B3(iii) we also need to show

 =
1


12

  12

X
∈0



X
=1

̄0∆∆
→  (0 )  and (D.1)

 =
1


12

  32

X
∈0



X
=1

X
=1

©£
∆

0
 − E

¡
∆

0


¢¤
∆ − E

¡
∆

0
∆

¢ª
=  (1)  (D.2)

The first part is assured by a version of the CLT. Below we first propose an estimate of the bias

̄−1  and then demonstrate (D.2).

To correct the bias, we propose to obtain consistent estimates of ̄ and  respectively

by

̃ =
1

̃

X
∈̃

̃0∆̃∆ and ̃ =
1

̃
12

  32

X
∈̃

X
=1

X
=1


( )∆

0
∆̃

where ∆̃ = ∆ − ̃0
̃
∆ for all  ∈ ̃

13 
( ) is as defined above: 

( ) =

0
(|− |) and 0

() denotes the Bartlett kernel: 0
() = (1− ||  )1 {|| ≤} 

Note that we also allow dynamic misspecification here. If one is sure that the model is dy-

namically correctly specified in the sense that E (∆|F−1) = 0 where F−1 = (∆−1

13Observe that ̃ −0 = 


( )

−12 + −1

and ̃̃ −0 = 


( )

−12

 We recommend using the

post-Lasso estimator ̃̃ 
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∆−1 ;∆−2 ∆−2 −1; ) one can use the one-sided kernel: 
( ) = 1

(− ) 

where 1
() = (1−  )1 {0 ≤  ≤}  The bias-corrected C-Lasso estimator of 0 would

be

̃
()

 = ̃ − 1p
̃

̃−1 ̃ 

Note that Theorem 3.4 indicates that there is no need to consider bias correction for the post

Lasso estimator ̃̃


We add the following assumption.

ASSUMPTION D2. (i) For each  = 1   {(∆ ∆) :  = 1 2 } is strong mixing with
mixing coefficients { (·)}. In addition,  () ≤ 

 for some  ∞ and  ∈ (0 1) where
1


P
∈0



(2−1)(2)
 =  (1) and 1



P
∈0



(−1)
 =  (1) 

(ii) Let  ≡ (1   )
0 and  ≡ (1   )

0  ( ) are independent across  ∈ 0
where  = 1 0

(iii) max E k∆0k4   ∞ and max E k∆k4   ∞ for some   1

(iv) As ( )→∞  →∞ 2
 → 0 and 

−12
  12

P
∈0


 ( )

(2−1)(2) → 0 for

each  = 1 0

Assumptions D2(i)-(iv) parallel D1(i)-(iv). The major difference is that we do not need

2


3 → 0 in D2(iv) but require   1 in D2(iii).

Proposition D.2 Suppose that the conditions of Theorem 3.4 hold. Suppose Assumption D2

holds. Then ̃−1 ̃ − ̄−1  =  (1) 

Proof. Noting that ̃−1 ̃ −̄−1  = (̃
−1
 −̄−1 ) +(̃

−1
 −̄−1 )(̃ − )

+̄−1 (̃− ) ̄
−1
 = (1) and  = (

p
 ) it suffices to show that (i) ̃−̄ =

 ( ) and (ii) ̃ − =  (1)  where  = min(1
p
)

We first prove (i). Note that

̃ − ̄ =
1

̃

X
∈̃

̃0∆̃∆ − 1



X
∈0



̃0∆̃∆

=
1

̃

⎛⎝X
∈̃

−
X
∈0



⎞⎠ ̃0∆̃∆ +
 − ̃

̃

X
∈0



̃0∆̃∆

≡ 1 +2 say.

By Corollary 3.3, 2 =  (
−1
 ) =  ( ))  For any   0 we have by the proof of Theorem

3.2,  (k1k ≥  ) ≤  (̃ ) +  (̃ ) =  (1)  It follows that ̃ − ̄ =  ( ) 
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Now we prove (ii). We make the following decomposition:

̃ −

=
1

̃
12

  32

X
∈̃

X
=1

X
=1


( )∆

0
∆̃ −

1


12

  32

X
∈0



X
=1

X
=1

E
¡
∆

0
∆

¢

=
1

̃
12

  32

X
∈0



X
=1

X
=1


( )∆

0
∆̃ −

1


12

  32

X
∈0



X
=1

X
=1

E
¡
∆

0
∆

¢
+ (1)

=
1

̃
12

  32

X
∈0



X
=1

X
=1


( )∆

0
 (∆̃ −∆)

+
1

̃
12

  32

X
∈0



X
=1

X
=1


( )

£
∆

0
∆ − E

¡
∆

0
∆

¢¤

+

−12
 − ̃

−12


 32

X
∈0



X
=1

X
=1


( )E

¡
∆

0
∆

¢

+
1


12

  32

X
∈0



X
=1

X
=1

[1− 
( )]E

¡
∆

0
∆

¢
+  (1)

≡ 1 +2 +3 +4 +  (1)  say,

where the  (1) term arises due to the replacement of ̃ by 
0
 and this can be easily justified by

using the uniform classification consistency result and arguments as used in the proof of Theorems

2.5. We prove (ii) by demonstrating that  =  (1) for  = 1 2 3 4

First, noting that ∆̃ − ∆ = (0 − ̃̃
)0∆ ̃̃

− 0 = 

¡
( )

−12¢  and that
̃ = 1 +  (1) by Corollary 3.3, we have

k1k =
1

̃
12

  32

°°°°°°
X
∈0



X
=1

X
=1


( )∆

0
(∆)

0(0 − ̃̃
)

°°°°°°
≤ (̃ )

12
°°°0 − ̃̃

°°° 

̃

1

 2

X
∈0



X
|−|≤

°°∆0(∆)0°°
=  (1) 1

where 1 =
1


2

P
∈0



P
|−|≤

k∆0(∆)0k  By Markov inequality, 1 =

 (  )  It follows that k1k =  (  ) =  (1) under Assumption D2(iv).

For 2 note that 2 = 2
12

 ̃
12

 = 2 (1 +  (1))  where

2 =
1


12

  32

X
∈0



X
=1

X
=1


( )

£
∆

0
∆ − E

¡
∆

0
∆

¢¤

12



Let  be any ×1 nonrandom vector such that kk = 1 Then E (02) = 0 By Assumptions

D2(ii)-(iv) and Jensen inequality,

Var
¡
02

¢
=

1

 3

X
∈0



Var

"
X
=1

X
=1


( )0

©
∆

0
∆ − E

¡
∆

0
∆

¢ª#

≤ 1

 3

X
∈0



X
=1

X
=1

X
=1

X
=1


( ) 

( )0E
£
∆

0
∆∆

0
∆

¤


≤ 1

 3

X
∈0



X
|−|≤

X
|−|≤

°°E £0∆0∆∆0∆¤°°
= 

¡
2


¢
=  (1) 

where the last equality follows from the fact that kE [0∆0∆∆0∆]k ≤ maxn
E k∆0k4

o12
×max

n
E k∆k4

o12
   ∞ by Assumption D2(iii). It follows that

2 =  (1) 

By Corollary 3.3 and Davydov inequality,

k3k =

¯̄̄
−1
 − ̃−1



¯̄̄
 32(

−12
 + ̃

−12
 )

°°°°°°
X
∈0



X
=1

X
=1


( )E

¡
∆

0
∆

¢°°°°°°
≤

¯̄̄
̃ −

¯̄̄
 12̃(

−12
 + ̃

−12
 )

⎧⎨⎩ 1



X
∈0



X
|−|≤

°°E ¡∆0∆¢°°
⎫⎬⎭

=  (
−12
 −12) (1) =  (1) 

By Assumptions D2(i)-(iii) and Davydov inequality,

k4k =

°°°°°° 1


12

  32

X
∈0



X
=1

X
=1

[1− 
( )]E

¡
∆

0
∆

¢°°°°°°
≤ 8


12

  32

X
∈0



X
|−|

 (|− |)(2−1)(2)
°°∆0°°4 k∆k4

≤ 
−12
  12

X
∈0



 ( )
(2−1)(2) =  (1) 

This completes the proof of the proposition.
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With the above result in hand, we can readily show thatp


³
̃
()

 − 0

´
=

hp


¡
̃ − 0

¢− ̄−1 

i
+
³
̃

´12 h
̄−1  − ̃−1 ̃

i
+

∙
1−

³
̃

´12¸
̄−1 

=
hp


¡
̃ − 0

¢− ̄−1 

i
+  (1) + 

¡
−1


¢

³
( )

12
´

=
hp


¡
̃ − 0

¢− ̄−1 

i
+  (1) 

That is,
√
 (̃

()

 − 0) has the desired limiting distribution centered on the origin.

Now, we demonstrate (D.2). Let  = ∆
0
 − E (∆0) and  = ∆ Noting that

 () = 0 and  () = 0 we have

 =
1


12

  32

X
∈0



X
=1

X
=1

[ − E ()]

=
1


12

  32

X
∈0



X
=1

[ − E ()] +
1


12

  32

X
∈0



X
1≤≤

[ − E ()]

+
1


12

  32

X
∈0



X
1≤≤

[ − E ()]

≡ 1 +2 +3 say.

It is trivial to show that 1 = 

¡
−1

¢
by Chebyshev and Davydov inequalities. For 2

we have E (2) = 0 by construction, and by Assumption D2(ii) and Jensen inequality

E
¡
22

¢
=

1

 3

X
∈0



Var

⎛⎝ X
1≤12≤

£
12 − E

¡
12

¢¤⎞⎠
≤ 1

 3

X
∈0



X
1≤12≤

X
1≤34≤

E
¡
1234

¢ ≡   say.

To bound   we can consider three subcases: (a) #{1 2 3 4} = 4 (b) #{1 2 3 4} = 3
and (c) #{1 2 3 4} = 2 and use   and  to denote the last summation

when the time indices are restricted to these three cases in order. Apparently,  =  (1 )

under Assumption D2(iii). In case (a), without loss of generality (wlog) assume that 1 ≤ 1 

2  3  4 ≤  and denote 
(1)

 as  when the time indices are restricted to this subcase.

[Note that the other subcases can be analyzed analogously.] Let  be the -th largest difference

among +1 −  for  = 1 2 3 Then


(1)

 =
1

 3

X
∈0



⎧⎨⎩ X
1≤1234≤2−1=1

+
X

1≤1234≤3−2=1
+

X
1≤1234≤4−3=1

⎫⎬⎭
×E ¡1234¢

≡ 
(1)

1 + 
(1)

2 + 
(1)

3 say.
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By the Davydov inequality and Assumptions D2(i) and (iii),


(1)
1 ≤

1

 3

X
∈0



−3X
1=1

−2X
2=1+max≥3{−−1}

−1X
3=2+1

X
4=3+1

°°1°°4 °°234°°43  (2 − 1)
(−1)

≤ 

 3

X
=1

−3X
1=1

−2X
2=1+1

(2 − 1)
2  (2 − 1)

(−1)

≤ 1



X
=1

∞X
=1

 ()
(−1) = (−1)

Similarly, we can show that 
(1)

 =  (1 ) for  = 2 3 It follows that 
(1)

 =  (1 ) and


(1)

 =  (1 ) = (1) In case (b), wlog assume that 4 = 2 and 1 ≤ 1  2  3 ≤  and we

use 
(1)

 to  when the time indices are restricted to this subcase. Then by the Davydov

inequality and Assumptions D2(i) and (iii)¯̄̄

(1)



¯̄̄
=

1

 3

X
∈0



X
1≤123≤

¯̄
E
¡
1

2
2
3
¢¯̄

≤ 8

 3

X
=1

X
1≤123≤

°°122°°43 °°3°°4  (3 − 2)
(−1)

≤ 8



X
=1

∞X
=1

 ()
(−1) = (−1)

So  = (−1) Consequently,  = (−1) and 2 =  (
−12) by Cheby-

shev inequality. By the same token, 3 =  (
−12) Thus we have shown that  =

 (
−12) =  (1) 

E Additional Simulation Results

Figures 3- 6 graph the first 50 replications of the information criteria curves, showing how the IC

value reacts to changing group number. Each figure provides six panels of ( ) combinations

with the vertical axis giving the IC value and the horizontal axis the trial group number . As

described in Section 4.3, we use  =
2
3
( )−12 and  = 1 for ( = 1 2). The true group

number is 3 for each DGP. Examination of the figures shows that in all panel combinations, the

IC value falls rapidly as  increases from 1 to 3When   3 , the IC value typically rises, due to

the impact of the penalty, although in many cases the rise in value is slight. Similar phenomena

tend to occur in other uses of information criteria, such as lag order determination in time series

regression. When  = 10 the U-shape in the graphics is clear with the valley lying close to

 = 3When  = 40  almost all the IC curves have minima at  = 3. These outcomes echo the

frequency values reported in Table 1.
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Figure 3: Information criterion of DGP 1 under PLS
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Figure 4: Information criterion of DGP 2 under PGMM
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Figure 5: Information criterion of DGP 3 under PLS
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Figure 6: Information criterion of DGP 3 under PGMM
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