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Junhui Qian
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Liangjun Su
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July 21, 2014

Abstract

In this paper we consider the problem of determining the number of structural changes in multiple

linear regression models via group fused Lasso (least absolute shrinkage and selection operator). We

show that with probability tending to one our method can correctly determine the unknown number

of breaks and the estimated break dates are sufficiently close to the true break dates. We obtain

estimates of the regression coefficients via post Lasso and establish the asymptotic distributions of

the estimates of both break ratios and regression coefficients. We also propose and validate a data-

driven method to determine the tuning parameter. Monte Carlo simulations demonstrate that the

proposed method works well in finite samples. We illustrate the use of our method with a predictive

regression of the equity premium on fundamental information.

JEL Classification: C13, C22

Key Words: Change point; Fused Lasso; Group Lasso; Penalized least squares; Structural change

1 Introduction

Since the 1950s a voluminous literature on issues related to structural changes has been developed. As

Perron (2006) remarks, early works were mostly designed for the specific case of a single change. Andrews

(1993) proposes supremum-type (sup-type) test for a one-time break in the GMM framework. Andrews
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School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903; E-mail: ljsu@smu.edu.sg,

Phone: +65 6828 0386.
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and Ploberger (1994) consider the exponential-type (exp-type) and average-type (avg-type) tests for a

one-time break in linear regression models and investigate their optimality properties under Pitman local

alternatives. Bai (1995) and Bai (1998) consider the median estimation of a regression model with a single

break and multiple breaks, respectively. Bai (1997a) and Bai (1997b) study the least squares estimation

of a regression model with a single break and with multiple breaks, respectively. Bai and Perron (1998)

extend the sup-type test to models with multiple changes and propose a double maximum test against

the alternative under which only the maximum number of breaks is prescribed. They also consider a

sequential test for the null hypothesis of  breaks against the alternative of +1 breaks. Bai et al. (1998)

consider a sup Wald test for a single change in a multivariate system, Qu and Perron (2007) extend the

analysis to the context of multiple structural changes in multivariate regressions, and Kurozumi and Arai

(2006) study inferential problems for multivariate time series with change points, all allowing stationary

or integrated regressors as well as trends. Su and White (2010) consider tests of structural changes

in semiparametric models. As Bai and Perron (2006) show, the multiple structural change tests tend

to be more powerful than the single structural change tests when multiple breaks are present. For a

comprehensive survey on structural changes, see Perron (2006).

Despite the satisfactory power properties of multiple structural change tests, they are subject to

some practical problems. First, one major practical difficulty is that one needs to consider all permissible

partitions of the sample in order to construct the avg- and exp-type test statistics, the number of which is

proportional to  with  and  being the total number of observations in the sample and the number

of breaks under the alternative. When  ≥ 3 the computational burden can be prohibitively heavy.

For this reason, Bai and Perron (2003a) propose an efficient dynamic-programming-based algorithm to

compute the sup-type test statistic, which requires only 
¡
 2
¢
computations for any fixed number of

breaks. Andrews (1993) and Bai and Perron (1998, 2003b) tabulate the critical values for the sup-type

test for a one-time break and multiple breaks, respectively. Andrews and Ploberger (1994) tabulate

critical values for the exp- and ave-type tests for a one-time break. The critical values for the last two

types of tests in the case of multiple breaks have not been available until Kurozumi (2012) who tabulate

the critical values for the exp-type test for at most three breaks and those for the sup- and ave-type

tests for up to five breaks because the computation for the former test is prohibitively expensive in the

case of  ≥ 3 whereas the latter two tests only require 
¡
 2
¢
operations for any given number of

breaks under the alternative. Second, for all tests for structural changes in the literature one has to

apply some trimming parameter, say, by trimming 100 percentage of tail observations, and by requiring

the minimum length of a segment be  , where  typically take values from 0.05 to 0.25. Not only the

asymptotic distribution but also the finite sample performance of the test statistics heavily depend on

the choice of  One may draw different conclusions for different choices of  and the desirable choice of 

heavily depends on the underlying data generating process (DGP). See Bai and Perron (2003a, 2006) for

discussions on the importance of the choice of  for the size and power of the test. Third, the asymptotic

distributions of the test statistics depend on the number of regressors in the model. It remains unknown

how the presence of irrelevant regressors affects the performance of the tests. Another undesirable feature

of the test of no break versus a fixed number of breaks is that one has to pick a number of breaks under
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the alternative, as practitioners often do not wish to pre-specify a particular number of breaks before

making inferences.

In this paper we explore a different approach to the study of issues related to structural changes in

regression models. For clarity, we focus on structural changes in a linear regression framework. But our

methodology can be easily extended to the GMM framework, quantile regression, and system of equations.

Unlike the early literature which tries to test the number of breaks first and then conduct estimation

and inference subsequently, we focus on the simultaneous estimation of the number of breaks and model

parameters via the method of group fused Lasso (least absolute shrinkage and selection operator). See

Tibshirani (1996) for the introduction of Lasso and Knight and Fu (2000) for the first systematic study

of the asymptotic properties of Lasso-type estimators. Tibshirani et al. (2005) propose a total-variation-

based shrinkage technique, namely, the fused Lasso, a generalization of the Lasso designed for problems

with features that can be ordered in some meaningful way. It penalizes the 1-norm of both the coefficients

and their successive differences and encourages sparsity of both the coefficients and their differences.

Friedman et al. (2007) propose a pathwise coordinatewise optimization algorithm to solve the fused

Lasso problem. Rinaldo (2009) considers three interrelated least squares procedures for the fused Lasso

and study their asymptotic properties in the context of estimating an unknown blocky and sparse signal.

Harchaoui and Lévy-Leduc (2010) apply the idea of fused Lasso to study the change point problem in

one-dimensional piecewise constant signals. Bleakley and Vert (2011) propose fast algorithms to solve

the group fused Lasso (hereafter GFL) problem to detect change points in a signal, and Angelosante and

Giannakis (2012) develop an efficient block-coordinate descent algorithm to estimate piecewise-constants

in time-varying autoregressive models. But they do not study the asymptotic properties of the resulting

estimators of break points or regression coefficients.

We show that under suitable conditions on the tuning parameter, minimum regime length, minimum

break size, and the underlying data generating process (DGP), the GFL procedure can not under-estimate

the number of breaks in the DGP, and when the number of estimated breaks coincides with the true

number of breaks, all break points can be “consistently” estimated as in Bai and Perron (1998). We

further propose a BIC-type information criterion to determine a data-driven tuning parameter that can

yield the correct number of breaks with probability approaching one (w.p.a.1). The limiting distributions

of the break date estimates, the regression coefficients estimates and their post-Lasso versions are also

derived. We emphasize that we derive all asymptotic results under a set of fairly general conditions. In

particular, the number of observations within each regime may not be proportional to the sample size,

the break magnitudes may differ across different break points, and the number of breaks may diverge to

infinity as the sample size passes to infinity. Simulations demonstrate that our procedure works reasonably

well in finite samples in comparison of the commonly used approach by Bai and Perron (1998, 2003a).

To proceed, it is worth mentioning that our paper contributes to the recent literature on the applica-

tions of Lasso-type shrinkage techniques in econometrics. These include Caner (2009) and Fan and Liao

(2011) who consider covariate selection in GMM estimation; Belloni et al. (2012), Caner and Fan (2011),

García (2011), and Liao (2013) who consider instruments or moment conditions selection in the GMM

framework. In addition, Caner and Knight (2013) and Kock (2013) apply bridge estimators to differ-
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entiate a unit root from a stationary alternative and to study oracle efficient estimation of linear panel

data models with fixed or random effects, respectively; Liao and Phillips (2014) apply adaptive shrinkage

techniques to cointegrated systems; Lu and Su (2013) apply adaptive group Lasso to select both relevant

regressors and the number of unobserved factors in panel data models with interactive fixed effects.

The rest of the paper is organized as follows. Section 2 introduces our GFL procedure. Section

3 analyzes its asymptotic properties. Section 4 reports the Monte Carlo simulation results. Section 5

provides an empirical application and Section 6 concludes. All proofs are relegated to the appendix.

NOTATION. Throughout the paper we adopt the following notation. For an × real matrix  we

denote its transpose as 0 its Frobenius norm as kk (≡ [tr (0)]12) and its Moore-Penrose generalized
inverse as + When  is symmetric, we use max () and min () to denote its largest and smallest

eigenvalues, respectively. I denotes a ×  identity matrix and 0× an ×  matrix of zeros. Let 1{·}
denote the usual indicator function. The operator

→ denotes convergence in probability,
→ convergence

in distribution, ⇒ weak convergence, and plim probability limit.

2 Penalized Estimation of Linear Regression Models with Mul-

tiple Breaks

In this section we consider a linear regression model with an unknown number of breaks, which we

estimate via the GFL.

2.1 The model

Consider the following linear regression model

 = 0 +   = 1      (2.1)

where  is a  × 1 vector of regressors,  is the error term, and  is a  × 1 vector of unknown
coefficients. We assume that the {1  } exhibit certain sparse nature such that the total number of
distinct vectors in the set is given by +1 which is unknown but assumed to be much smaller than the

sample size  More specifically, we assume that

 =  for  = −1   − 1 and  = 1 + 1

where we adopt the convention that 0 = 1 and +1 =  + 1 The indices 1   indicate the

unobserved  break points/dates and the number  + 1 denotes the total number of regimes. We are

interested in estimating the unknown number  of unknown break dates and the regression coefficients.

Let α = (
0
1  

0
+1)

0 and T = (1  ) 
Throughout, we denote the true value of a parameter with a superscript 0. In particular, we use 0

α00 =
¡
001   

00
0+1

¢0
and T 00 =

¡
 01   

0
0

¢
to denote the true number of breaks, the true vector of

regression coefficients, and the true vector of break dates, respectively. Hence the data generating process
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is assumed to be

 = 00  +   = 1      (2.2)

where 0 = 0 for  =  0−1  
0
 − 1 and  = 1 0 + 1;  00 = 1 and  00+1 =  + 1

2.2 Penalized least squares estimation of {}
Since neither  nor the break dates are known and  is typically much smaller than  this motivates us

to consider the estimation of ’s and T via a variant of fused Lasso a la Tibshirani et al. (2005). We

propose to estimate {} by minimizing the following penalized least squares (PLS) objective function

 ({}) =
1



X
=1

¡
 − 0

¢2
+ 

X
=2

°° − −1
°° (2.3)

where  =  is a positive tuning parameter and k·k denotes the Frobenius norm. Harchaoui and Lévy-
Leduc (2010) consider a special case where  = 1 and  = 1 so that the penalty term

P
=2

°° − −1
°°

becomes
P

=2

¯̄
 − −1

¯̄
 the total variation of {}  Note that the objective function in (2.3) is convex

in {}  The solution to the convex problem can be computed very fast. Let {̂ = ̂ ()} denote the
solution to the above minimization problem. We frequently suppress the dependence of ̂ on  as long

as no confusion arises. Below we will propose a data-driven method to choose 

To see the connection of (2.3) with the group Lasso of Yuan and Lin (2006), we can rewrite (2.1) in an

alternative format. Let 1 = 1 and  = −−1 for  = 2   Let β =
¡
01  

0


¢0
 θ =

¡
01  

0


¢0


 = (1   )
0
and  = (1   )

0
 Define


×

=

⎡⎢⎢⎢⎢⎢⎣
01

02
. . .

0

⎤⎥⎥⎥⎥⎥⎦  ∗
×

=

⎡⎢⎢⎢⎢⎢⎣
I
I I

· · · · · · . . .

I I I I

⎤⎥⎥⎥⎥⎥⎦  and ∗
×

= ∗

Then (2.1) can be rewritten as  = β+ = ∗θ+ and minimizing (2.3) is equivalent to minimizing

the following group Lasso criterion function

̄ ({}) = 1


k −∗θk2 + 

X
=2

kk = 1



X
=1

Ã
 − 0

X
=1



!2
+ 

X
=2

kk  (2.4)

For a given solution {̂} to (2.3), there exists a block partition {̂1  ̂̂+1} of {1 2  } such
that

̂ = ̂ for all   ∈ ̂ =
h
̂−1 ̂ − 1

i
and ̂̂ 6= ̂̂−1  = 1  ̂+ 1

where ̂0 = 1 and ̂̂+1 =  +1 That is, ̂ and T̂̂=(̂1  ̂̂) denote the estimated number of breaks
and estimated set of break points, respectively. Given the above block partition, we define ̂ = ̂(T̂̂) =
̂̂−1 as the estimate of  for  = 1  ̂+1 Frequently we suppress the dependence of ̂ on T̂̂ (and
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) unless necessary. Let α̂̂ = α̂̂(T̂̂) = (̂1(T̂̂)0  ̂̂+1(T̂̂)0)0 For any α =
¡
01  

0
+1

¢0
and

T = {1  } with 1  1  · · ·     we can define

 (α; T) = 1



+1X
=1

−1X
=−1

¡
 − 0

¢2
+ 

X
=1

k+1 − k  (2.5)

Then (α̂̂; T̂) = ({̂})
As we shall show in Theorem 3.3 below, under some weak conditions 

¡
̂ ≥ 0

¢ → 1 as  → ∞

That is, the estimated number of breaks based on the GFL will be no less than the true number of

breaks w.p.a.1. Without further conditions, it is not guaranteed that the GFL will produce the correct

number of breaks w.p.a.1. For this reason, we also propose an information criterion that chooses the

tuning parameter  in a set of candidate tuning parameters satisfying some basic requirements such that

the true number of breaks can be estimated w.p.a.1.

3 Asymptotic Properties

In this section we address the statistical properties of the estimation procedure presented in the previous

section.

3.1 Consistency of the GFL

Let 0 =  0 −  0−1 for  = 1 
0 + 1 Define

min = min
1≤≤0+1

¯̄
0
¯̄
 min = min

1≤≤0

°°0+1 − 0
°°  and max = max

1≤≤0

°°0+1 − 0
°° 

Apparently, min denotes the minimum interval length among the 0 + 1 regimes, and min and max

denote the minimum and maximum jump sizes, respectively.

To study the consistency of the GFL, we make the following assumptions.

Assumption A1. (i){( )   = 1 2 } is a strong mixing process with mixing coefficients  (·)
satisfying  () ≤ 

 for some   0 and  ∈ (0 1)   () = 0 for each 

(ii) Either one of the following two conditions is satisfied: (a) sup≥1 kk4 ∞ and sup≥1 ||4 
∞ for some   1; (b) There exist some constants  and  such that sup≥1[exp( kk2)] ≤
 ∞ and sup≥1 [exp ( kk)] ≤  ∞ for some  ∈ (0∞]

Assumption A2. (i) There exist two positive constants  and ̄ and a positive sequence { }
declining to zero as  →∞ such that

 ≤ inf
1≤≤+1−≥

min

Ã
1

 − 

−1X
=

 (
0
)

!
≤ sup

1≤≤+1−≥
max

Ã
1

 − 

−1X
=

 (
0
)

!
≤ ̄

(ii)  satisfies one of the following two conditions: (a)  ≥ 
1 for some   0 if A1(ii.a) is

satisfied; (b)  ≥  (log  )
(2+)

for some   0 if A1(ii.b) is satisfied.
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Assumption A3. (i) 0 =  (log  ) and min( )→∞ as  →∞

(ii) max =  (1) and 
2
min(log  )

 → ∞ as  → ∞ where  = 6 if A1(ii.a) is satisfied and

 = 1 if A1(ii.b) is satisfied.

(iii) The tuning parameter  =  satisfies (min )→ 0 as  →∞

(iv)
0{(−12(log0)2+ )[(+ )

−1
min+

−12
min ]+−12+}

min
2
min

→ 0 as  →∞

Assumption A1(i) requires that {( )} be a strong mixing process with geometric decay rate. It is
satisfied by many well-known processes such as linear autoregressive moving average (ARMA) processes

and a large class of processes implied by numerous nonlinear models, including bilinear, nonlinear au-

toregressive, and autoregressive conditional heteroskedastic (ARCH) type of models. Note that we do

not require the error process {} to be a martingale difference sequence (m.d.s.) with respect to certain
filtration. Let F = -field{+1   −1 }  Bai and Perron (1998) specify two sets of conditions
for the process {( )} : one requires that it be an -mixingale sequence for some   4 but imposes

independence between  and  for all  and  and thus rules out lagged dependent variables in ; the

other requires that {} be an m.d.s. relative to F, allowing the presence of lagged dependent variables
in  but ruling out serial correlation in {}  In stark contrast, A1(i) allows both lagged dependent
variables in  and serial correlation and heteroskedasticity in  This is important as the model can be

dynamically misspecified.

The conditions stated in Assumption A1(ii) pertain to two specific cases related to the moments of 

and  Part (a) in A1(ii) only requires finite moments for them whereas part (b) requires the existence

of exponential moments. By Markov inequality, part (b) implies that


³
kk2 ≥ 

´
≤ exp

µ
1−

µ




¶¶
where  = max (1 log)  That is, the distribution of kk2 has to decay exponentially fast. Similar
remarks hold for kk   =∞ in part (b) corresponds to the case where kk and kk are uniformly
bounded. When combined with A1(i), the conditions in A2(ii) allow us to apply some exponential

inequalities for strong mixing processes; see, e.g., Merlevède et al. (2009, 2011).

Assumption A2(i) requires that the sequence { (0)} be well behaved. It is automatically satisfied
if the process {} is covariance-stationary with positive definite covariance matrix. Nevertheless, we
do not want to make such a strong assumption because the presence of lagged dependent variables in

 generally invalidates it when a structural change occurs. In sharp contrast, Assumption A3 in Bai

and Perron (1998) requires that the matrix  ≡
P−1

= 
0
 be invertible for all  −  ≥  A similar

assumption is made in Bai (1998) and Kurozumi (2012), among others. It seems difficult to verify this

condition if possible at all. Nevertheless, one can verify that 1
− is invertible w.p.a.1 under our

Assumptions A1-A2 by assuming  −  passes to infinity sufficiently fast. A2(ii) restricts the speed at

which  shrinks to zero. If  and  only exhibit finite 4-th moments for some   1, then the fastest

speed at which  → 0 is given by  ∝  (1−) On the other hand, if A1(ii.b) is satisfied, the fastest

speed at which  → 0 is given by  ∝ (log  )(2+)  which is further simplified to (log  )  if both
 and  are uniformly bounded.
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Assumption A3 mainly specifies conditions on 0   min min and  Note that we allow the

number of breaks to diverge to infinity slowly and the time intervals in different regimes to diverge to

infinity at different rates as  → ∞. This is in sharp contrast with Bai (1998), Bai and Perron (1998),
and Kurozumi (2012), who assume that the fixed number of multiple break points are asymptotically

distinct in the sense that  0 = b0c where 0  01  · · ·  00  1 and b·c denotes the integer part of
· As we shall see,  will control the rate at which ̂ converges to 

0
  when the number of break

points are correctly estimated. If one only cares the convergence rate of ̂ to 
0
  as in Theorem 3.1

below, A3(i) specifies the slowest rate at which  is allowed to converge to zero:  ¿ min ; A3(ii)-

(iii) specifies the fastest rate at which  is allowed to converge to zero: max
³
(log  )

2min
 
min

´
¿  

Here  ¿  indicates that  =  () as  → ∞ If one also wants to ensure the number of breaks is not

underestimated, then the slowest rate for  to converge to zero, as required by A3(iv), gets reduced:  ¿
min(min ̄  

34
minmin

−1(0)−12) where ̄ = 
32
min

2
min(

20)−1min(−1  12(log0)−2) In

addition, Assumptions A3(i)-(ii) imply that and min
2
min(log  )

 →∞ as  →∞ and A3(i) and (iii)

imply that  (minmin) → 0 as  → ∞ which will be frequently used in the proofs of the theorems

below.

Admittedly, the conditions in A3 do not appear intuitive due to the generality of our model. In the

special case where min ∝  (so that 0 =  (1)), the conditions in A3 are reduced to

Assumption A3∗ As  → ∞  → 0  
2
min(log  )

 → ∞ (min ) → 0, and (−12 +  +

2 )
−2
min → 0

If in addition min does not shrink to zero as  → ∞ (so that −1min =  (1)), the conditions in

A3(i)-(iii) are reduced to

Assumption A3∗∗ As  →∞  → 0   (log  )
 →∞, and  → 0

In this case, A3(iv) becomes redundant given A3(i)-(iii) and we have max
³
(log  )


 
´
¿  ¿ 1 i.e.,

 has to converge to zero but at a rate not faster than either
(log  )


or 

The following theorem establishes the consistency of {̂} and {̂} conditional on the event ̂ = 0

Theorem 3.1 Suppose that Assumptions A1-A2 and A3(i)-(iii) hold. If ̂ = 0 then

(i) 
³
max1≤≤0

¯̄̄
̂ −  0

¯̄̄
≤ 

´
→ 1 as  →∞

(ii) ̂ − 0 = 

¡
(0 )

−12 + 0 + 
0


¢
for each  = 1 0 + 1

The proof of Theorem 3.1(i) is quite involved. It builds upon some techniques that have been recently

developed by Harchaoui and Lévy-Leduc (2010). The latter authors aim at estimating multiple location

shifts by assuming independent and identically distributed (IID) errors that have exponential moments.

Like Harchaoui and Lévy-Leduc (2010), our analysis is based on a careful inspection of the Karush-Kuhn-

Tucker (KKT) optimality conditions for the solutions to the PLS problem in (2.4). Using these optimality

conditions and some exponential inequalities for strong mixing processes, we prove Theorem 3.1(i) by

contradiction. That is, if
¯̄̄
̂ −  0

¯̄̄
≥  for some  = 1 0 we show that w.p.a.1 the solutions

will not satisfy all the KKT conditions and therefore cannot be optimal. Extra technicality appears here
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because of the presence of regressors that may contain lagged dependent variables, the allowance of only

finite 4-th moments for  and  and the allowance of serial dependence and heteroskedasticity in

the error process. The proof of part (ii) in Theorem 3.1 simply relies on the result in part (i) and the

inspection of the KKT optimality conditions.

Theorem 3.1 suggests that max1≤≤0

¯̄̄
̂ −  0

¯̄̄
 =  ( )  where max

³
(log )

2min
 
min

´
¿  as

explained above. On the one hand, because  =  (1)  we have
¯̄̄
̂ −  0

¯̄̄
 = (1) implying that the

break ratio  0  can be consistently estimated. On the other hand, max
³
(log  )

2min
 
min

´
¿  implies

that the fastest convergence rate for the break ratio estimator depends on 
min

and
(log )

2min
 Here, the

first term signifies the effect of the penalty term in the GFL that interacts the minimal break size min;

the second term signifies the effect of moment conditions ( = 6 if the moment condition in Assumption

A1(ii.a) is satisfied and 1 if that in Assumption A1(ii.b) is satisfied) and minimal break size. Generally

speaking, the smaller the minimal break size is, the slower convergence rate we can achieve for the break

ratio estimator; the stronger moment conditions we have, the faster convergence rate the break ratio

estimator can have. The result in Theorem 3.1(ii) is intuitive. The first term ((0 )
−12) results from the

standard sample convergence as there are essentially 0 observations in use for the estimation of 
0
 ; the

second term (0 ) is derived from the penalty term in the GFL; the third term (
0
 ) is derived

from the estimation error of  0  If one knows the break dates { 0   = 1 0} in advance, then the
third term vanishes.

To compare with existing results in the literature, we restrict our attention to the case where −1min =

 (1) and min ∝  so that Assumption A3∗∗ is in effect. We further consider two specific cases that

correspond to Assumption A1(ii.a) and A1(ii.b), respectively. In the case where Assumption A1(ii.a)

is satisfied, both A2(ii) and A3∗∗ are satisfied if one chooses  ∝  (1−) and  =  log  For

small values of   may converge to zero at a slower rate than the usual parametric rate 
−12 To

ensure  = (−12) so that the estimation of break dates has no effect on the first order asymptotic

distribution of the regression coefficient estimators, we would require that   2 that is, both  and

 exhibit finite eighth plus moments. In the case where Assumption A1(ii.b) is satisfied, by choosing

 = (log  )
(2+)

 and  = (log  )  we can ensure that both A2(ii) and A3∗∗ are satisfied. Then

we can obtain an almost optimal rate for the estimation of  0  for  = 1 0 up to a logarithmic

factor since the optimal rate obtained in the literature is of order −1; see, e.g., Bai and Perron (1998).

The appearance of the logarithmic factor is due to the application of certain exponential inequality for

strong mixing processes. Note that Bai and Perron (1998) make high level assumptions on  which

are not directly verifiable and their proof does not rely on any exponential inequality. In the following

we show that as long as ̂ = 0 in large samples, the above convergence rates for the estimates of break

dates can be improved. See the last paragraph in Section 3.3.

Unfortunately, the correct number 0 of break points may be unknown. However, if we follow the

literature (e.g., Bai and Perron (1998)) and assume that the true number of breaks is bounded by a number

max with max ≤  log  for a large number  then we can show that for any single true break date

 0 ∈ T 0, there exists an estimated break date in T̂̂ that is sufficiently close to  0 as long as ̂ ≥ 0

9



In addition, under the extra conditions on 0 , min min and  detailed in Assumption A3(iv), we

can ensure that the last condition is satisfied w.p.a.1. That is, the probability of under-estimating the

number of true break points converges to zero as  →∞

To proceed, let D () ≡ sup∈ inf∈ |− | for any two sets  and  Note that max{D () 
D ()} denotes the Hausdorff distance between  and . The following theorem indicates all true

break points in T 0 can be “consistently” estimated by some points in T̂̂ under the assumption that the

estimated number of breaks is no less than the true number of breaks.

Theorem 3.2 Suppose that Assumptions A1-A2 and A3(i)-(iii) hold. If0 ≤ ̂ ≤ max then  (D(T̂ ̂

T 0) ≤  ) → 1 as  →∞

The proof of the above theorem is also done by contradiction and by the repeated utilization of the

KKT optimality conditions under the same set of Assumptions required for Theorem 3.1. Theorem 3.2

assures us that even if the number of breaks is overestimated, there will be an estimated break date close

to each unknown true break date.

The next theorem shows that ̂ cannot be smaller than 0 in large samples provided Assumption

A3(iv) is also satisfied.

Theorem 3.3 Suppose that Assumptions A1-A3 hold. Then 
¡
̂  0

¢→ 0 as  →∞

Theorem 3.3 implies that the probability of under-estimating the number of break points is asymp-

totically negligible.

3.2 Choosing the tuning parameter 

Let α̂T̂̂

() = (̂1T̂̂

()
0
  ̂̂+1T̂̂

()
0
)0 denote the set of post-Lasso OLS estimates of the

regression coefficients based on the break dates in T̂̂
= T̂̂

()  where we make the dependence of

various estimates on  explicit. Let ̂2T̂̂

≡ 1(α̂T̂̂

()  T̂̂
) where

1 (α; T) ≡ 1



+1X
=1

−1X
=−1

¡
 − 0

¢2
 (3.1)

is the first term in the definition of  (α;T) in (2.5). We propose to select the tuning parameter 
by minimizing the following information criterion:

 () = log(̂2T̂̂

) +   (̂ + 1)  (3.2)

Without any condition on  we are unable to study the asymptotic properties of ̂ T̂̂
 and ̂ for

 = 1  1 + ̂ For this reason, we restrict our attention to the class of tuning parameters such that

Assumptions A3(iii)-(iv) are satisfied.

To state the next result, we add the following assumption.

Assumption A4. (i) 0(
−12
min +  )

£
1 + −12(log0)2−1

¤
=  (1) and  min → ̄ ∈ (0∞] as

 →∞
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(ii)
³
1 + 

min
2
min

´


0 → 0 and −1  →∞ as  →∞

Assumption A4(i) imposes an extra condition on  and it becomes redundant under Assumption

A2 if min ∝  Assumption A4(ii) reflects the usual conditions for the consistency of model selection,

that is, the penalty coefficient  cannot shrink to zero either too fast or too slowly. If min ∝  and

−1min =  (1)  the first part of A4(ii) requires that  → 0 which is standard for an information-criterion

function.  indicates the probability order of the distance between the first term in the criterion function

for an over-parametrized model and that for the true model.

Theorem 3.4 Suppose that Assumptions A1-A4 hold. Let ̂ = argmin  ()  Then 
¡
̂
̂
= 0

¢→ 1

as  →∞

The proof of Theorem 3.4 in Appendix E suggests that the ’s that yield the over-estimated or

under-estimated number of breaks fail to minimize the information criterion w.p.a.1 provided that the

minimization is restricted for a class of tuning parameters that satisfy some basic requirements stated

in Assumptions A3(iii)-(iv). Consequently, the minimizer of  () can only be the one that produces

the correct number of estimated breaks in large samples. Conditional on ̂ = 0 we will study the

asymptotic distributions of the Lasso estimates of regression coefficients and break dates below.

3.3 Limiting distributions of the Lasso estimates of regression coefficients

and break dates

In this subsection we analyze the consistency of the regression coefficient estimates and break fraction es-

timates. We let ̂ = (̂1  ̂0) = (̂1  ̂0 ) with corresponding true values 0 = (01  
0
0) =

( 01   
0
0 ) Note that we allow 0−0−1 = 0 for some  = 1 0+1, which occurs if min = ( )

It is well known that the limiting distributions of the break date estimators obtained by specifying

fixed magnitude of changes are dependent on the exact distribution of { }  It is useful to consider
asymptotic distributions under shrinking magnitude of changes. Now, 0 ’s is  -dependent and we fre-

quently write 0 for 
0
 when we want to emphasize the dependence of 

0
 ’s on  Let 

0
 = 0+1−0

for  = 1 0 The required conditions are stated in the next assumption.

Assumption A5. (i) For  = 1 0 0 = ̄∆ for some ∆ independent of  and ̄  0 is a

scalar satisfying ̄ → 0 and  (12)− ̄ →∞ for some  ∈ (0 12).
(ii) For  = 1 0+1 as 0 →∞ (0 )

−1P0−1+b0 c
=0−1

 (
0
)→ Ψ and (

0
 )
−1P 0−1+b0 c

=0−1

P0−1+b0 c
= 0−1

 (
0
)→ Φ uniformly in 

Assumption A6. 0
−12
min → 0 as  →∞

Assumption A5(i) specifies the magnitude of each break size: the smaller value of   the smaller

magnitude of the break size could be. Note that we allow different breaks to shrink to zero at dif-

ferent speeds. A5(ii) specifies the asymptotic average behavior of  (
0
) and  (

0
) within

each regime. In conjunction with Assumption A1, the first and second parts of A5(ii) ensure that

(0 )
−1P0−1+b0 c

=0−1


0


→ Ψ and (
0
 )
−1P0−1+b0 c

=0−1
 ⇒  ()  respectively, by the uniform law
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of large numbers and invariance principle for heterogeneous strong mixing processes, where  (·) is a
multivariate Gaussian process on [0 1] with mean 0 and covariance kernel [()()] = min( )Φ .

See White (2001). A6 imposes some side condition on  to ensure the penalty term in the Lasso procedure

does not affect the usual (0 )
12-consistency of the Lasso estimator of 0 

Let0 =diag((01 )
12I  (00+1)

12I)  = (1   )
0  = (1   )0 and X =diag(X1 X0+1)

where X = ( 0−1    0 −1)
0 for  = 1 0+1 LetΨ≡ plim−1

0X0X−10 andΦ≡ plim−1
0X0 0X−10 .

Note that both Ψ and Φ are well behaved under Assumptions A1 and A5(ii). For  = 1 0 define  =

∆0Ψ+1∆∆
0
Ψ∆  1 = {∆0Φ∆∆

0
Ψ∆}12 2 = {∆0Φ+1∆∆

0
Ψ+1∆}12 and let 1 ()

and2 () be independent Wiener processes that are defined on [0∞) with1 (0) =2 (0) = 0 and

independent across  Define

 () =

(
11 (−)− || 2 if   0p
22 ()−  || 2 if   0

for  = 1 0

The following theorem reports the asymptotic distributions of the Lasso estimators.

Theorem 3.5 Suppose that Assumptions A1-A6 hold. Let  denote an × (0 + 1) selection matrix

such that kk is finite, where  ∈ [1 (0 + 1)] is a fixed integer. Then

(i) 0(α̂0 −α0) → 
¡
0 Ψ−1ΦΨ−10

¢
;

(ii) (∆0

Ψ∆

)̄2
¡
̂ − 0

¢ → argmax  () for  = 1 
0 and ̂’s are asymptotically mutu-

ally independent of each other.

The above theorem lays down the foundation for inferences on the unknown regression coefficients and

break fractions based on the GFL. Note that we specify a selection matrix  in Theorem 3.5(i) that is not

needed if 0 is fixed. Intuitively, we allow the number of breaks, 0 to diverge to infinity as the sample

size  passes to infinity. For this reason, the dimension of α̂0 is also divergent to infinity at the rate 0

and we cannot derive the asymptotic normality of α̂0 . Instead, we follow the literature on inferences

with a diverging number of parameters (see, e.g., Fan and Peng (2004), Lam and Fan (2008), Lu and

Su (2014)) and prove the asymptotic normality for any arbitrary linear combinations of elements of α̂0

after adapting to different convergence rates for different subvectors of α̂0(≡ (̂01  ̂00+1)
0) In the

special case where 0 is fixed, we can take  = I(0+1) and obtain the usual joint asymptotic normality

of ̂ ’s. Alternatively, if we assume that {} is an m.d.s., then likeΨ Φ is also block diagonal and ̂’s
are asymptotically mutually independent of each other. In this case, it suffices to report the asymptotic

normality of ̂ for  = 1 
0 + 1 Interestingly, Theorem 3.5(ii) suggests that ̂’s are asymptotically

mutually independent of each other even in the absence of any m.d.s. condition for {} 
A close examination of the proof of the above theorem suggests that the GFL estimators of the

regression coefficients and break dates are closely tied with Bai and Perron’s (1998) OLS estimators. If

the number of breaks 0 were known, one could obtain the GFL estimator by minimizing the following

PLS objective function

(α T) = 1



0+1X
=1

−1X
=−1

( − 0)
2
+ 

0X
=1

k+1 − k 
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where the first term is the usual OLS objective function with 0 unknown breaks and the second term

is a penalty term. As expected, for sufficiently small  the solution to the above problem will share the

same asymptotic distribution as that of Bai and Perron’s estimator. When 0 is unknown but can be

estimated correctly by ̂ w.p.a.1, we can treat ̂ as 0 to infer the above asymptotic result.

Given the result in Theorem 3.5(i), it is standard to estimate the asymptotic variance-covariance

matrix and make inference on 0 In particular, one can obtain a HAC estimator for Φ to allow for both

heteroskedasticity and serial correlation. Let ̂0 =diag(̂
12
1 I  ̂

12
0+1I) where ̂ = ̂ − ̂−1 for

 = 1 0 + 1 ̂0 = 1 and ̂0+1 =  + 1 One can replace 0 by ̂0 in the above theorem.

Theorem 3.5(ii) indicates that the limiting distribution of the break fraction estimates is the same as

that occurring in a single break model. As Bai and Perron (1998) remark, if Ψ and Φ are the same

for adjacent ’s and are given by Ψ and Φ respectively, then we have the standard asymptotic pivotal

limiting distribution for ̂ after normalization:

(∆0

Ψ∆


)2

∆0

Φ∆



̄2
¡
̂− 0

¢ → argmax

{ ()− || 2}

where  () = 1 (−) for  ≤ 0 and  () = 2 () for   0. One can apply this result to

construct confidence intervals for 0 or equivalently, 
0
  See, e.g., Bai (1997a) and Su et al. (2013). We

omit the details for brevity.

Theorem 3.5(ii), in conjunction with Assumption A3(ii), indicates that in the case of small breaks

̂ −  0 = 

³
̄−2

´
=  (

−2
min) =  ( )

which suggests an improved rate than that obtained in Theorem 3.1. For the fixed magnitude of breaks,

although there is no way to obtain any asymptotic pivotal distribution for the break fraction estimates

even after normalization, we can obtain ̂ −  0 =  (1) =  ( ) using similar arguments in the

proof of Theorem 3.5. In either case, we can obtain the optimal rate of convergence for the estimation of

the break dates provided that ̂ = 0 is ensured by a proper choice of the tuning parameter .

3.4 Limiting distribution of post-Lasso estimate of regression coefficients

In this subsection we study the asymptotic distribution of the post-Lasso estimate ̂̂0
. Let X̂ =diag(X̂1

 X̂0+1) where X̂ = (̂−1   ̂−1)
0 We can write the DGP in matrix form

 = X0 +  (3.3)

The model used for the post-Lasso estimation of 0 is given by

 = X̂α̂T̂0
+ ̂  (3.4)

where α̂T̂0
= (X̂0X̂)−1X̂0 and ̂ is a  ×1 vector of the post-Lasso residuals. The following assumption

is needed for the analysis of the limiting distribution of α̂T̂0


Assumption A7. 0 
−12
min → 0 as  →∞
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Assumption A7 ensures that the estimation of the break dates has asymptotically negligible effect on

the asymptotic distribution of the post-Lasso estimate of the regression coefficients. In the special case

min ∝  Assumption A7 is satisfied as long as  = (−12). In this case, Assumption A2(ii) indicates

that we only need  and  to exhibit finite eighth plus moments. In the general case, the minimum

interval length has crucial effect on the rate at which  shrinks to zero. For example, if min ∝  12

 has to converge to zero at a rate faster than −34 which, according to Assumption A2(ii), would in

turn require that  and  exhibit finite sixteenth plus moments.

The following theorem reports the limiting distribution of α̂T̂0


Theorem 3.6 Suppose that Assumptions A1-A4 and A7 hold. Let  be defined as in Theorem 3.5. Then

̂0(α̂T̂0
−α0) → 

¡
0 Ψ−1ΦΨ−10

¢


Note that Assumptions A5-A6 are not required for the above theorem. Define the infeasible estimator

α̂T 0
0

= (X0X)−1X0 We can prove the theorem by showing that ̂0(α̂T̂0
− α0) shares the same

asymptotic distribution as 0(α̂T 0
0
− α0) Similar idea was used by Bai (1997a) for the case of a

single structural break. Extra care is needed as we allow the interval length to be different across different

regimes and 0 to be divergent. Given the above result, it is standard to make inference on α0 based on

the post Lasso estimate α̂T̂0


As a referee kindly points out, the asymptotic distribution of the post-Lasso estimator is only valid

pointwise and it does not provide uniformly valid inference for the regression coefficients; see Pötscher

and Leeb (2009) and Pötscher and Schneider (2009). In particular, this limiting distribution ignores the

randomness of the estimated number of breaks in finite samples. As a result, a robust inference procedure

with correct asymptotic size is an important issue for the post-Lasso estimator; see, e.g., Belloni et al.

(2014). This is closely related to the post model selection inference problem investigated by Leeb and

Pötscher (2005, 2008), among others. Robust inference on the parameter of interest is beyond the scope

of this paper.

4 Monte Carlo Simulations

In this section we conduct a set of Monte Carlo experiments to evaluate the finite sample performance

of our GFL method. Throughout we use the block-coordinate descent algorithm (Angelosante and Gian-

nakis, 2012) to solve the minimization problem in (2.3).1 We select the penalty term  that minimizes

the information criterion  () by setting  = 1
√
 (c.f. Bai (1998)).2 It is well known that there

exists a max such that any  ≥ max will produce constant coefficients (i.e., no break) (Ohlsson et

al., 2010). We thus search for a minimal IC on 20 evenly-distributed logarithmic grids on the interval

[001max  max ]. Finally, to purge unwanted breaks, we employ a post-processing procedure similar to

that used by Harchaoui and Lévy-Leduc (2010).

The main competitor of our approach is Bai and Perron (1998, 2003a, BP hereafter). We consider

different trimming proportions (tr) for BP, namely, tr = 0.05, 0.1, 0.15, and 0.2. It should be noted

that the comparison presented here is inevitably inconclusive. As shown in Bai and Perron (2006) and

14



in this section, the performance of BP is crucially dependent on the choice of trimming. For some of the

data generate processes (DGPs) experimented here, which have either no break or only a small number

of breaks in the middle range of the data, BP’s tests with large trimmings generally give satisfactory

performance. However, large trimming is an implicit assumption on the nature of the DGP. For example,

a trimming of 0.2 implicitly assumes that the maximum number of breaks is 4 and that the break cannot

happen in partitions at the beginning or in the end (each with a length of 20% of the sample). The

assumption may be too restrictive for some applications. Small trimming can afford more breaks in the

DGP but tend to overestimate the number of breaks. The size of trimming, indeed, plays a similar role

as the penalty term in our approach.

4.1 The Case of No Break

We first evaluate the probability of falsely detecting breaks when no break exists. We consider the

following DGPs

 = 1 +  + 

with

• DGP-1:  ∼  (0 1),  ∼  (0 2).

• DGP-2:  ∼ AR(1),  ∼  (0 2).

• GDP-3:  ∼  (0 1),  = ,  = 05−1 + ,  ∼  (0 075).

• DGP-4:  ∼ AR(1),  = 
√
,  = 005 + 005

2
−1 + 09−1,  ∼  (0 1).

• DGP-5:  ∼ AR(1),  ∼  (0 21) for  ∈ {1 2     2} and  ∼  (0 22) for

 ∈ {2 2 + 1     }.

• DGP-6:  = −1 + ,  = −1,  ∼  (0 1− 2).

DGP-1 is the basic benchmark. DGP-2 introduces serial correlation in . Specifically, we generate 

by an AR(1) dynamics:  = 05−1+ where  ∼  (0 075), so that  has unit variance. DGP-3

introduces serial correlation in . DGP-4 introduces conditional heteroscedasticity (volatility clustering)

in the error. DGP-5 considers heterogeneity in variance in the error. Finally, DGP-6 is an AR regression

where  is the lagged value of . To evaluate the performance under different noise levels, we select

the parameter  in DGP-1, DGP-2, DGP-3, and GDP-4 to be 0.5, 1, and 1.5. For the benchmark case,

 = 1 corresponds to a unit signal-to-noise ratio. In DGP-5, we set 1 = 01 and 2 = 02 03, or 05.

In essence, there is a regime shift in the variance of the residual. In DGP-6, the autoregressive coefficient

 is chosen from {02 05 09}. We compare our approach (GFL) with weighted double maximum tests

(WDMax) and its robust version developed in BP with a theoretical size of 5%.3 The robust version

allows for heteroscedasticity and autocorrelation in the error. The results are summarized in Table 1,

where we report proportions of false detections among 500 repetitions for each method.
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In the benchmark case of DGP-1, our method (GFL) produces negligible percentages of false detection

of breaks for all noise levels. The same is true for DGP-2 and DGP-4, where  is endowed with serial

correlation and severe conditional heteroscedasticity, respectively. However, when serial correlation is

introduced in  (DGP-3), there are sizable proportions of false detections when  = 100. As  gets

larger, the percentages of false detections quickly decline to nearly zero. When there is a moderate

regime shift in the variance of the error process (DGP-5), the performance of our method is close to the

benchmark case. So is true for the case of autoregression (DGP-6). Overall, we may conclude that GFL

enjoys a low probability of falsely detecting breaks when none exists.

In comparison, the performance of WDMax and its robust version depends crucially on the choice

of trimming. In most cases, the empirical sizes corresponding to tr=0.05 are substantially higher than

5%, the theoretical size we set. Except for DGP-3, DGP-4 in the case of  = 05 and DGP-5 in the

case of 2 = 02, empirical sizes of WDMax corresponding to tr=0.15 or 0.2 are reasonably close to 5%,

especially when  is large. In DGP-3, where the error is serially correlated, WDMax breaks down as

expected, while the robust WDMax produces reasonable empirical sizes only when both trimming and

sample size are large, as is true for other DGP’s. The general under-performance of the robust WDMax

may be understood by noting that the sample covariances for the robust correction need to be estimated

from very small samples (say ten observations for the case where tr = 0.1 and  = 100).

Table 1: Proportions of False Detection When  = 0 (All figures are

percentages (%) of false detection of breaks when there are none. )

WDMax robust WDMax
DGP   GFL

tr=.05 .10 .15 .20 .05 .10 .15 .20

100 0.0 56.0 15.8 7.4 5.2 100.0 70.2 30.0 16.2

0.5 200 0.0 15.8 4.6 3.6 4.2 84.2 25.4 10.8 7.0

500 0.0 4.8 2.6 2.6 3.6 29.4 9.0 6.8 5.0

100 0.0 57.4 12.4 6.4 5.2 100.0 65.6 32.0 16.8

1 1.0 200 0.0 23.2 5.8 4.4 3.4 88.0 29.4 17.0 10.4

500 0.0 6.4 4.2 5.0 4.8 29.2 9.8 8.2 6.0

100 0.2 60.2 13.6 5.4 4.6 100.0 67.6 30.8 16.2

1.5 200 0.0 17.2 4.8 4.4 3.6 82.4 27.8 12.6 8.8

500 0.0 7.0 4.0 4.8 4.8 30.2 12.0 7.2 6.2

100 0.0 58.6 14.0 6.2 4.2 100.0 75.8 35.0 18.6

0.5 200 0.0 20.4 4.6 3.8 2.8 86.0 29.0 13.8 8.0

500 0.0 7.6 4.8 4.6 5.0 34.0 12.4 9.4 6.8

100 0.0 59.4 12.6 6.8 5.4 99.6 74.6 38.6 18.0

2 1.0 200 0.0 20.6 6.2 4.0 3.0 86.4 29.2 15.4 9.0

500 0.0 6.2 3.0 3.2 3.4 35.8 10.8 8.4 7.2

100 0.2 63.0 14.0 7.4 5.8 100.0 77.0 35.2 18.8

1.5 200 0.2 20.0 6.4 5.4 3.6 87.0 31.6 15.8 9.0

500 0.0 5.4 3.6 3.6 4.2 32.2 11.2 7.0 6.0

100 12.2 97.2 75.0 59.6 49.4 100.0 88.6 48.4 25.6

Continued on next page
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Table 1: Continued

WDMax robust WDMax
DGP   GFL

tr=.05 .10 .15 .20 .05 .10 .15 .20

0.5 200 3.2 90.8 67.8 54.4 45.2 94.4 39.6 16.6 10.2

500 0.0 85.6 64.2 54.4 47.8 38.4 11.2 7.8 6.2

100 11.6 97.4 73.4 55.6 45.2 100.0 88.6 44.2 23.6

3 1.0 200 2.4 91.0 66.4 49.6 41.8 94.4 38.6 18.2 10.8

500 0.2 87.8 61.8 51.8 45.6 38.6 12.0 8.8 7.0

100 11.8 98.0 78.2 61.8 49.4 100.0 87.4 46.6 27.6

1.5 200 2.8 92.8 68.2 53.8 45.0 95.0 38.2 17.4 10.8

500 0.2 84.6 60.8 52.6 42.8 38.8 10.6 9.0 5.8

100 0.2 86.2 43.0 27.0 19.6 100.0 99.4 75.2 43.2

0.5 200 0.0 60.2 27.8 21.4 17.0 99.8 81.6 46.2 28.2

500 0.0 29.6 16.0 12.2 11.0 86.2 41.0 21.2 14.0

100 1.4 55.8 11.2 6.6 5.2 100.0 74.2 40.8 23.4

4 1.0 200 0.2 14.4 5.4 4.0 3.2 87.0 29.4 13.2 8.8

500 0.0 5.0 3.2 3.8 4.2 26.0 7.8 4.8 4.0

100 0.4 53.0 10.6 4.4 3.4 100.0 79.4 39.0 18.6

1.5 200 0.0 18.0 5.2 4.4 3.2 89.4 29.4 13.0 9.0

500 0.0 5.6 2.6 3.4 4.0 31.6 8.6 4.6 4.0

100 0.2 86.2 43.0 27.0 19.6 100.0 99.4 75.2 43.2

2 = 2 200 0.0 60.2 27.8 21.4 17.0 99.8 81.6 46.2 28.2

500 0.0 29.6 16.0 12.2 11.0 86.2 41.0 21.2 14.0

100 0.0 60.6 17.4 7.2 5.4 100.0 85.6 42.4 24.0

5 2 = 3 200 0.0 27.0 9.6 6.0 5.6 93.6 40.2 22.0 13.6

500 0.0 10.8 6.0 5.4 5.0 51.2 13.2 7.2 5.4

100 0.6 44.0 10.6 6.0 3.2 100.0 70.6 32.0 18.2

2 = 5 200 0.0 23.8 7.0 5.6 5.2 89.2 32.0 17.4 13.6

500 0.0 6.4 3.0 2.6 2.8 37.6 11.4 6.2 4.6

100 0.0 60.0 15.2 7.6 6.8 100.0 75.0 32.8 18.0

 = 02 200 0.0 15.2 4.4 3.0 3.0 86.4 28.4 12.2 8.0

500 0.0 6.8 3.2 3.6 3.4 32.4 10.6 7.2 5.0

100 0.2 61.8 11.8 5.2 3.6 99.8 77.6 38.6 19.8

6  = 05 200 0.0 19.2 5.8 3.6 3.8 89.6 29.0 14.2 8.6

500 0.0 6.4 3.6 5.6 4.4 37.2 12.6 9.2 6.8

100 0.2 56.4 12.6 5.8 5.0 100.0 75.6 33.6 17.8

 = 09 200 0.0 19.0 7.2 5.4 5.2 88.4 31.4 17.6 12.6

500 0.0 7.0 3.0 4.0 3.8 33.2 10.6 7.6 7.0
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4.2 The Case of One Break

In the following we evaluate the probability of correctly detecting the number of structural changes and

the accuracy of change-point estimation when the true number of breaks is small. We generate data from

 =  + 

with

• DGP-1:  = 1 {2   ≤ },  ∼  (0 1),  ∼  (0 2).

• DGP-2:  = 1 {2   ≤ },  ∼  (0 1),  =  with  = 05−1+,  ∼ (0 075).

• DGP-3:  = 1 {2   ≤ },  ∼ AR(1),  ∼  (0 2).

• DGP-4:  = 1 {2   ≤ },  ∼ AR(1),  = 
√
,  = 005 + 0052−1 + 09−1,

 ∼  (0 1).

• DGP-5:  = 1 {2   ≤ },  ∼ AR(1),  =  with  =  + 05−1,  ∼  (0 08).

• DGP-6:  = 021 {1 ≤  ≤ 2}+ 081 {2   ≤ },  = −1,  ∼  (0 2).

In all the above DGP’s, the coefficient on  has a break at 2 and the intercept is a constant

zero.4 DGP-1 is the benchmark case where both  and  are i.i.d. DGP-2 and DGP-3 introduce AR(1)

structure to  and , respectively. As in the case of no breaks, we generate AR(1) processes with an AR

coefficient of 0.5 and make sure that the processes have unit variances. DGP-4 considers GARCH(1,1)

error along with an AR(1) regressor. DGP-5 considers MA(1) error along with an AR(1) regressor. And

DGP-6 considers an auto-regression with a break in the AR coefficient. Again we set  = 05 1, and

15. We compare our approach with the sequential procedure in BP, which first looks at the UDMax or

WDMax test to see if a break exists and then examines the sup ( + 1|) statistics sequentially. This
procedure (BP) is the preferred strategy by Bai and Perron (2006). Here we only consider the nonrobust

version of BP, since as shown above, the robust version gives poor size performance in general. Table 2

summarizes the proportions of correct estimation (pce) of  (number of breaks) for each method and,

conditional on correct estimation of  (̂ = 1), the accuracy of break date estimation, which we measure

by average Hausdorff distance divided by  (hd/ ). All figures in the table are in percentages (%).

In the benchmark case of DGP-1, GFL gives satisfactory results in terms of both pce and hd/ at

low and medium noise levels. At the high noise level ( = 15), pce’s also rise quickly as  increases. In

comparison, BP outperforms GFL in terms of pce at the high noise level but underperforms at the low

noise level ( = 05). When  = 1, the comparison is mixed. Comparing the accuracy of break-date

estimation, GFL almost uniformly outperforms BP, especially when the latter takes small trimming sizes.

Similar patterns emerge in the results from DGP-2 to DGP-5. In DGP-6, the pce of GFL appears to

converge faster than BP to 100% as  increases. BP, however, slightly outperforms GFL in terms of the

accuracy of the break-date estimation, especially if BP takes a bigger trimming parameter.
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Table 2: Detecting One Break (Under pce are proportions of correctly es-

timating the number of breaks. Under hd/ are average Hausdorff distance

between estimated and true sets of break dates in percentages of  , given that

the estimated number of breaks is correct.)

GFL BP

tr=.05 .10 .15 tr=.20
DGP   pce hd

 pce hd/ pce hd/ pce hd/ pce hd/

100 100.0 1.1 58.6 1.1 87.6 1.1 93.2 1.1 95.0 1.2

0.5 200 100.0 0.6 80.0 0.6 89.8 0.6 91.6 0.6 94.2 0.6

500 100.0 0.2 87.4 0.2 92.8 0.2 93.0 0.2 95.6 0.2

100 71.8 3.0 54.4 4.1 80.8 3.8 88.0 3.8 90.6 3.7

1 1.0 200 92.0 1.7 79.0 2.0 89.8 2.0 91.0 2.0 94.0 1.9

500 99.8 0.7 89.4 0.7 92.0 0.7 93.4 0.7 95.6 0.7

100 19.4 5.0 48.8 11.9 52.8 9.1 55.6 7.8 56.8 6.9

1.5 200 31.4 2.8 73.6 4.9 82.2 4.6 85.6 4.4 87.8 4.4

500 73.6 1.2 91.0 1.5 94.6 1.5 93.4 1.5 95.0 1.5

100 98.2 1.1 10.6 0.9 35.2 1.0 52.2 1.0 67.8 1.1

0.5 200 99.6 0.6 14.2 0.6 32.0 0.7 46.0 0.6 59.6 0.6

500 100.0 0.2 19.4 0.3 37.4 0.2 51.8 0.2 65.6 0.2

100 74.8 3.9 13.4 6.1 35.0 5.1 49.4 5.2 62.2 4.5

2 1.0 200 90.2 1.9 20.0 2.3 38.8 2.6 55.2 2.4 69.4 2.4

500 98.0 0.7 18.0 0.8 35.8 0.7 50.0 0.8 61.6 0.7

100 30.2 6.5 12.2 11.8 29.0 10.0 45.8 9.7 57.8 8.8

1.5 200 42.8 3.7 15.2 3.8 37.2 4.6 52.2 4.9 65.8 5.0

500 77.8 1.6 21.0 1.7 37.6 1.8 49.0 1.8 62.2 1.8

100 99.8 1.5 57.2 1.3 86.6 1.4 92.2 1.4 94.0 1.4

0.5 200 100.0 0.6 80.2 0.6 91.4 0.6 94.6 0.6 95.2 0.6

500 100.0 0.2 90.8 0.2 91.2 0.2 93.4 0.2 95.2 0.2

100 64.4 3.3 58.2 4.6 82.0 4.3 87.0 4.1 90.8 4.1

3 1.0 200 91.2 1.8 83.2 2.0 92.0 2.1 94.8 2.1 96.4 2.1

500 98.6 0.8 88.6 0.8 91.0 0.8 91.8 0.8 95.6 0.8

100 17.4 5.1 44.6 12.3 52.0 8.8 57.0 7.9 61.6 7.4

1.5 200 25.2 3.1 72.2 5.3 83.4 5.1 87.2 5.2 90.6 4.9

500 76.6 1.5 88.6 1.8 92.0 1.7 93.4 1.8 95.0 1.7

100 99.8 1.5 51.0 1.4 82.6 1.5 90.8 1.5 93.2 1.5

0.5 200 100.0 0.7 81.6 0.6 92.6 0.6 94.0 0.6 94.6 0.6

500 100.0 0.2 88.8 0.2 91.2 0.2 91.4 0.2 93.6 0.2

100 62.0 3.4 57.6 4.5 79.6 4.5 87.6 4.5 90.0 4.4

4 1.0 200 89.6 1.9 79.6 2.2 90.8 2.2 94.6 2.2 96.4 2.2

500 98.8 0.8 89.0 0.8 93.0 0.8 94.2 0.9 95.0 0.8

100 22.8 5.5 43.6 9.9 52.0 7.6 55.4 7.3 59.4 6.5

Continued on next page
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Table 2: Continued

GFL BP

tr=.05 .10 .15 tr=.20
DGP   pce hd

 pce hd/ pce hd/ pce hd/ pce hd/

1.5 200 31.4 3.3 72.6 4.5 81.6 4.5 87.2 4.3 90.2 4.2

500 73.4 1.3 90.4 1.6 94.4 1.6 94.8 1.6 97.0 1.6

100 98.8 1.6 22.0 1.5 55.2 1.6 70.2 1.7 80.8 1.6

0.5 200 100.0 0.8 39.8 0.7 59.0 0.7 69.2 0.7 79.2 0.7

500 100.0 0.3 45.8 0.3 59.2 0.3 68.0 0.3 78.2 0.3

100 66.2 4.4 22.0 7.7 52.0 6.6 65.6 5.9 76.2 5.5

5 1.0 200 92.4 2.2 37.4 2.7 61.6 2.5 71.2 2.5 78.6 2.5

500 98.8 1.0 46.4 0.9 60.4 1.0 70.6 1.1 79.4 1.1

100 28.0 6.6 24.4 16.3 46.4 13.3 51.4 11.2 57.2 9.5

1.5 200 42.6 3.5 36.8 8.0 54.2 5.9 65.6 5.3 76.2 5.3

500 72.6 1.7 49.2 2.3 68.2 2.3 73.8 2.3 80.8 2.3

100 65.0 8.6 63.0 8.4 68.2 8.2 72.6 7.7 76.2 7.5

0.5 200 87.8 5.4 88.6 5.0 92.6 4.7 92.8 4.6 94.8 4.5

500 98.0 2.5 93.8 1.7 93.8 1.7 95.8 1.7 97.8 1.7

100 65.8 7.6 62.2 8.2 67.8 7.8 71.4 7.1 76.6 6.8

6 1.0 200 88.2 5.0 90.2 4.6 94.2 4.6 95.6 4.5 97.0 4.3

500 98.0 2.6 91.8 1.6 93.2 1.6 95.0 1.6 96.4 1.6

100 66.8 8.4 63.6 7.4 69.6 7.3 72.8 7.0 77.8 6.5

1.5 200 87.0 5.0 90.2 4.4 94.2 4.4 95.0 4.3 96.6 4.2

500 98.4 2.5 91.0 1.6 94.2 1.6 95.2 1.6 96.4 1.6

4.3 The Case of Many Breaks

To evaluate the finite-sample performance for the case of many breaks, we consider two setups. First we

set constant regime length and let the number of regimes increase. In the second setup the number of

breaks is fixed and regime lengths increases proportional to sample size. Specifically, let  = , where

 is an even number of regimes (+ 1) that divides  with no remainder. We generate data from the

following equation,

 =  + 

where  ∼  (0 1),  ∼  (0 2), and

 =

(
0 (2) + 1 ≤   (2+ 1)

1 (2+ 1) + 1 ≤   (2+ 2)
  = 0 1     2

We specify

• DGP-1: Fix  = 30 and vary  = 6 10 20.
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Table 3: Detecting Many Breaks

DGP 1 DGP 2

GFL BP GFL BP

  pce hd/T pce hd/T T pce hd/T pce hd/T

6 99 1 95 0.7 150 98 1.3 52.2 1

0.2 10 99.8 0.7 99.4 0.5 300 100 0.7 98.8 0.5

20 99.4 0.4 0 NaN 600 100 0.4 99.6 0.3

6 92.4 2 71 1.9 150 53.8 2.4 0.8 2.8

0.5 10 84.8 1.5 38.8 1.4 300 83.2 1.5 38.8 1.4

20 36.4 1.2 0 NaN 600 93 0.7 99.4 0.7

Note: In DGP-1 (fixed regime length),  = 30. In DGP-2 (fixed number of regimes),  = 10. Under pce are proportions of

correctly estimating the number of breaks. Under hd/ are average Hausdorff distance between estimated and true sets of

break dates in percentages of  , given that the estimated number of breaks is correct.

• DGP-2: Fix  = 10 and vary  = 150 300 600.

For the BP approach, we set trimming size of 0.05, allowing the maximum number of breaks to be

18. The results are summarized in Table 3.

In the case of DGP-1, GFL correctly estimates the number of breaks in most repetitions (close to

100%) at the low noise level. At the high noise level, pce drops significantly, especially when at the same

time the true number of breaks is high. However, the performance of BP seems even more sensitive to

noise. Notice that when  = 20, pce for BP is zero at both noise levels, since the number of breaks exceeds

the maximum allowed by the trimming size. For both approaches, we witness a declining performance as

the sample size increases along with the true number of breaks. In the case of DGP-2,  is fixed at 10

and  increases proportionally with the sample size  . We do see improving performance as  increases.

GFL dominates BP in terms of pce. In terms of the accuracy of break-date estimation, both approaches

give satisfactory performances.

5 An Empirical Illustration

In this section we present an empirical illustration of our method. We consider the problem of predicting

equity premium using fundamental information. We use a subset of the quarterly data of Welch and

Goyal (2008), which has been updated to 2011. The equity premium () is the return on the stock

market minus the prevailing risk-free rate. We use the return on S&P 500 index as the proxy of the stock

market return and take the short-term T-bill rate as the risk-free rate. The fundamental information we

consider includes earning price ratio () and dividend price ratio (). We refer to Welch and Goyal
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Table 4: Summary Statistics

Num Mean S.D. Min Max Median Skew. Kurt.

 363 0.0053 0.1050 -0.5023 0.6226 0.0206 0.0683 10.7594

 363 0.0407 0.0178 0.0112 0.1490 0.0377 1.0800 6.4649

 363 0.0730 0.0291 0.0082 0.1695 0.0637 0.7299 3.1455

Note:  is equity premium,  is dividend to price ratio, and  is earning price ratio.

(2008) for detailed description of the data and sources. Table 4 summarizes the data we use. We estimate

the following predictive regression with structural breaks,

+1 = 0 + 1 + 2 + +1

The parameter  = (0 1 2)
0 may contain multiple breaks in the calendar range from 1921Q2 to

2011Q4, reflecting discrete changes in the way how equities are priced overall.

The main results are summarized in Table 5. The estimation contains two steps. First we estimate

break dates, then we perform the usual OLS estimation in each regime. For each OLS regression, coef-

ficient estimates and standard errors are tabulated along with 2 and F statistics for model significance

tests. Our approach (GFL) detects two breaks at 1932Q3 and 1942Q3. Possible reasons for the first

break include the bottoming out of the stock market, election of FDR into presidency, and the passage

of the Securities Act of 1933, which comprehensively regulated the securities industry. The second break

may be attributed to the deepening US involvement in the World War II. Linear regressions in all three

regimes are statistically significant at the 5% level. Before the first break, the slope on  is significantly

negative and that on  significantly positive. This is reversed in the second regime, although the negative

slope of  fails to be statistically significant at the 5% level. In the third regime, the effect of  remains

significantly positive but weakens substantially and the effect of  remains insignificant.

For the purpose of comparison, we also estimate the model using Bai and Perron’s approach (WDMax

coupled with sup ( + 1|)) with different trimming sizes. If trimming equals 15%, BP fails to detect
any break. Under 10% trimming, one break is detected at 1932Q3, which coincides with the first break

detected by our method. If trimming equals 5%, two breaks are detected at 1928Q2 and 1933Q2. These

results once again show the importance of choosing a correct trimming size for Bai and Perron’s approach.

A large trimming implicitly imposes restrictive assumptions that may preclude detection of true breaks,

but a small trimming like 5% tends to produce false structural breaks, as shown in simulations. Using

our approach, in contrast, practitioners do not have to face such choices. The continuous nature of the

tuning parameter  offers an even richer trade-offs between goodness of fit and model simplicity. And

as shown in Theorem 3.4, our IC-based procedure to choose  naturally rules out the possibility of over-

and under-fitting, at least asymptotically.
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Table 5: Empirical Results

Regime Range ̂0 ̂1 () ̂2 () 2 F

GFL:

1921Q2-1932Q2 0.027 (0.776) -3.6747 (0.008) 2.0546 (0.040) 0.205 4.998 (0.007)

1932Q3-1942Q2 -0.1501 (0.080) 5.8416 (0.002) -2.259 (0.109) 0.263 6.411 (0.002)

1942Q3-2011Q4 -0.0194 (0.126) 1.5207 (0.021) -0.3831 (0.221) 0.0369 3.982 (0.020)

BP, trim=0.05:

1921Q2-1928Q1 0.1072 (0.285) -0.6536 (0.000) -0.4801 (0.416) 0.214 0.453 (0.636)

1928Q2-1933Q1 -1.0497 (0.666) -7.0342 (0.008) 21.8756 (0.000) 0.585 10.528 (0.000)

1933Q2-2011Q4 -0.0198 (0.416) 1.6299 (0.000) -0.4759 (0.106) 0.0383 5.079 (0.007)

BP, trim=0.10:

1921Q2-1932Q2 0.027 (0.776) -3.6747 (0.008) 2.0546 (0.040) 0.205 4.998 (0.007)

1932Q3-2011Q4 -0.0301 (0.037) 2.1835 (0.000) -0.6301 (0.024) 0.0758 11.655 (0.000)

BP, trim=0.15:

1921Q2-2011Q4 -0.0261 (0.090) 0.4584 (0.293) 0.174 (0.513) 0.0161 2.492 (0.084)

Note: p-value’s for significance tests (t and F) are given in parentheses.

6 Conclusion

We propose a shrinkage procedure for the determination of the number of structural changes in a multiple

linear regression model via GFL. We show that our method consistently determines the number of breaks

and the estimated break dates are sufficiently close to the true break dates. Simulation results suggest

that our new method performs well in finite samples in comparison with Bai and Perron (1998).

There are several interesting topics for further research. First, we consider the estimation and inference

in OLS regression models with an unknown number of breaks in this paper. It is straightforward to

extend to the GMM framework without essential changes. Second, following the lead of Andews (2003)

who consider end-of-sample stability test, it is also possible to allow a break to occur at the end of a

random sample. Third, it is also possible to extend our method to the panel data framework. The last

decade has seen a growing literature on estimation and testing of common breaks in panel data models;

see, De Watcher and Tzavalis (2005, 2012), Chan et al. (2008), Bai (2010), Kim (2011, 2014), Hsu and

Lin (2012), Liao and Wang (2012), Baltagi et al. (2014), among others. We are exploring some of these

topics in ongoing work.
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Notes

1Since the minimization in (2.6) is a convex problem, we may use a general-purpose convex solver

system such as CVX (Grant et al., 2009). However, the general solver does not exploit the special

structure of our problem, hence computationally inefficient.

2We also conduct a robustness check by considering  = 1
−2 for 1 = 09 1 and 1.1 and 2 = 04

0.5, and 0.6. The results are available upon request.

3We also experimented with UDMax in BP and found differences between UDMax and WDMax

negligible.

4The experiments for DGPs with two breaks yield similar results.
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APPENDIX

A Some Technical Lemmas

In this section we prove some technical lemmas that are used in the proof of the main results in the

paper.

Lemma A.1 Consider the PLS problem in (2.3) or equivalently (2.4). Let {̂  = 1 2 } and {̂

 = 2  } denote the respective solutions. Then

(i) 1


P

=̂


³
 − 0̂

´
= 

2 ̂̂
°°°̂̂°°° for  = 1  ̂;

(ii) 1


°°°P
= 

³
 − 0̂

´°°° ≤ 
2 for  = 1  

Proof. To prove the above lemma, we invoke subdifferential calculus (e.g., Bertsekas (1995, Appendix

B.5)). We first rewrite the PLS criterion function as

̄ ({}) = 1



X
=1

Ã
 − 0

X
=1



!2
+ 

X
=2

kk  (A.1)

A necessary and sufficient condition for {̂} to minimize (A.1) is that for each  = 1   0×1 belongs

to the subdifferential of (A.1) with respect to  evaluated at {̂} That is,

− 2


X
=



Ã
 − 0

X
=1

̂

!
+  = 0×1 (A.2)

where for  = 2  

 =
̂°°°̂°°° if

°°°̂°°° 6= 0 and kk ≤ 1 if °°°̂°°° = 0 (A.3)

and 1 = 0×1 If  = ̂ for some  ∈ {1  ̂}  i.e.,  is one of the estimated break dates, then
̂ = ̂ − ̂−1 6= 0×1 and we obtain (i) as the breaks cannot occur at  = 1 and

P
=1 ̂ = ̂ In

general, (A.2) and (A.3) imply that (ii) holds for all  ≥ 2 When  = 1 the first order condition with

respect to 1 yields
P

=1 
0


³
 − 0

P
=1 ̂

´
= 0×1 so that (ii) is also satisfied for  = 1

Lemma A.2 Let {  = 1 2 } be a zero-mean strong mixing process, not necessarily stationary, with
the mixing coefficients satisfying  () ≤ 

 for some   0 and  ∈ (0 1) 
(i) If sup1≤≤ || ≤   then there exists a constant 0 depending on  and  such that for any

 ≥ 2 and   0



Ã¯̄̄̄
¯
X
=1



¯̄̄̄
¯  

!
≤ exp

Ã
− 0

2

20 +2
 +  (log  )

2

!


where 20 = sup≥1
£
Var () + 2

P∞
=+1 |Cov ( )|

¤


(ii) If sup≥1  (||  ) ≤ exp (1− ()) for some  ∈ (0∞) and  ∈ (0∞] then there exist
constants 1 and 2 depending only on    and  such that for any  ≥ 4 and  ≥ 0(log  )

0 with

0 0  0,



Ã¯̄̄̄
¯
X
=1



¯̄̄̄
¯  

!
≤ ( + 1) exp

Ã
−


1+

1

!
+ exp

µ
− 2

2

¶
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Proof. (i) Merlevède et al. (2009, Theorem 2) prove (i) under the condition  () ≤ exp (−2) for
some   0 If  = 1 we can take  = exp (−2) and apply the theorem to obtain the claim in (i). Other
values of  do not alter the conclusion.

(ii) Merlevède et al. (2011, Theorem 1) prove a result that is more general than that in (ii) under the

condition  () ≤ exp (−11) for some 1 1  0 If  = 1 and 1 = 1 we can take  = exp (−21)
and apply the theorem to obtain the claim in (ii) Other values of  do not alter the conclusion.

Lemma A.3 Suppose Assumptions A1 and A2 hold. Let  =   Then

(i) sup
1≤≤+1
−≥

max

³
1

−
P−1

= 
0


´
≤ ̄ +  (1) ;

(ii) inf
1≤≤+1
−≥

min

³
1

−
P−1

= 
0


´
≥  +  (1) 

Proof. (i) By Weyl inequality, the fact that |max ()| ≤ kk for any symmetric matrix  and

Assumption A2,

max

Ã
1

 − 

−1X
=


0


!
≤ max

Ã
1

 − 

−1X
=

 (
0
)

!
+

°°°°° 1

 − 

−1X
=

[
0
 − (

0
)]

°°°°°
≤ ̄ +

°°°°° 1

 − 

−1X
=

[
0
 − (

0
)]

°°°°° 
It suffices to prove the theorem by showing that max

1≤≤+1
−≥

°°° 1
−

P−1
= [

0
 −  (

0
)]
°°° =  (1) 

We first consider the case where Assumption A1(ii.a) holds so that  ≥ 
1 Let  =  1(2)

Let  be an arbitrary ×1 unit vector such that kk = 1 for  = 1 2 Let  ≡ 01 [
0
 − (

0
)] 2

1 ≡ 01 [
0
1 −  (

0
1)] 2 and 2 ≡ 01 [

0
1̄ − (

0
1̄)] 2 where 1 ≡ 1{kk2 ≤  } and

1̄ = 1− 1 Note that  = 1 + 2 By Boole inequality and Lemma A.2(i)
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 (log  )3 [log  ]

2 + 2 log 

!
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By Assumption A1(ii.a), Boole and Markov inequalities, and the dominated convergence theorem,
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Noting that 1 and 2 are arbitrary unit vectors, we infer thatmax1≤≤+1
−≥

°°° 1
−

P−1
= [

0
 − (

0
)]
°°°

= 

³

−12
 (log  )3

´
=  (1)  Then (i) follows.

Now we consider the case where Assumption A1(ii.b) holds where  ≥  (log  )
(2+)

 By Boole

inequality and Lemma A.2(ii) for any sufficiently large 
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as ( log  )
[2(1+)] ∝ log  by construction. It follows thatmax
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°°° 1
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0
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−12
 (log  )12
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(ii) The proof of (ii) is analogous and thus omitted.

Lemma A.4 Suppose Assumptions A1(i) and A2 hold. Let  =  

(i) If Assumption A1(ii.a) holds, then sup
1≤≤+1
−≥

¯̄̄
1√
−

P−1
= 

¯̄̄
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¡
(log  )3

¢
;
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Proof. (i) In this case,  ≥ 
1 Let  =  1(2) and 1 be as defined in the proof of Lemma

A.3(i) Let  ≡ 01 [ − ()]  1 ≡ 01 [1 − (1)] and 2 ≡ 01 [1̄ − (1̄)] 

where now 1 ≡ 1 {kk ≤  } and 1̄ = 1−1 Note that  = 1+ 2 Arguments like those used the

proof of Lemma A.3(i) show that for any sufficiently large  
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¯̄̄
≥ (log  )3

!
→ 0 as  →∞ for  = 1 2 Then (i) follows.

(ii) In this case,  ≥  (log  )
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and arguments like those used the proof of Lemma A.3(i) show

that for any sufficiently large , 

Ã
max

1≤≤+1
−≥

¯̄̄
1√
−

P−1
= 

¯̄̄
≥ (log  )12

!
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Then (ii) holds.

Remark. If in addition, {} is an m.d.s. with respect to F in Lemma A.4(ii) then for any  →∞
and   0 we can apply Theorem 1.1 in Liu and Watbled (2009) to obtain
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where 3 is a constant that does not depend on  .
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B Proof of Theorem 3.1

(i) Our proof strategy follows closely from that of Proposition 3 in Harchaoui and Lévy-Leduc (2010).

Define

 =
n¯̄̄
̂ −  0

¯̄̄
≥ 

o
and  =

½
max

1≤≤0
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̂ −  0

¯̄̄
 min2

¾
 (B.1)
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´
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=1  () and 0  ∞ it suffices to show that (i1)P0

=1  (∩  ) → 0 and (i2)
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 denotes the complement of  

We first prove (i1) by showing that
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By (2.2) and Lemma A.1, we have −1
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where the equality follows from the fact that ̂ = ̂+1 and 0 = 0 for  ∈ [̂   0 − 1] by (B.2).
Define the event ̄ () =
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 ≥ 1

31

ª ∪ ©2 ≥ 1
31

ª ∪ ©3 ≥ 1
31

ª
 It is easy to show

that 
¡
̄ ()

¢
= 1 It follows that


³
+ ∩

´
≤ 

µ
+ ∩ ∩

½
 ≥ 1

3
1

¾¶
+ 

µ
+ ∩ ∩

½
2 ≥ 1

3
1

¾¶
+

µ
+ ∩ ∩

½
3 ≥ 1

3
1

¾¶
≡ 1 +2 +3 say.

We first bound
P0

=11 Noting that kk = [tr(00)]12 ≥ min (
0)12 kk  we have

0X
=1

1 ≤
0X
=1



µ
+ ∩

½
 ≥ 1

3
1

¾¶

=
0X
=1



⎛⎝°°°°°° 1

 0 − ̂

0 −1X
=̂


0


¡
0+1 − 0

¢°°°°°° ≤ 3

 0 − ̂
;  0 − ̂ ≥ 

⎞⎠
≤

0X
=1


³
1 ≤ 3(min );  0 − ̂ ≥ 

´
→ 0

31



where 1 ≡ min

µ
1

0 −̂
P0 −1

=̂


0


¶
≥ 2  0 w.p.a.1 by Lemma A.3(ii) and (min )→ 0 by

Assumption A3(iii). Next, we bound
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The first term converges to zero because (minmin) → 0 under Assumptions A3(i) and (iii). The

second term is bounded from above by
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Here, the last convergence is obtained by strengthening the results in Lemma A.4 through the squeezing

of log0( log  ) into the exponent when applying the exponential inequality in Lemma A.3. So we

have shown that
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To bound the first term on the right-hand side of (B.4), we apply Lemma A.1 with  = ̂ and
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Similarly, applying Lemma A.1 with  = ̂+1 and  =  0 yields
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By the triangle inequality, (B.5) and (B.6) imply that  occurs with probability one. It follows that
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The first term in (B.8) converges to zero because (min ) =  (1) and (minmin) =  (1) by As-

sumptions A3(i) and (iii). The second and third terms in (B.8) converge to zero because
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Consider the last term on the right-hand side of (B.9). Applying  = 0 in (B.7) suggests that the event
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It follows that
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To show (ii) holds for  = 1 we apply Lemma A.1 with  = ̂1 and  = 1 and the triangle inequality
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C Proof of Theorem 3.2
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Arguments like those used in the study of (B.8) show that 1 (1) and 3 (1) converge to 0. For
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which converges to zero by arguments analogous to those used in the study of (B.8). For 
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which converges to zero by arguments analogous to those used in the study of (B.8). For 
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D Proof of Theorem 3.3

To avoid confusion of notation, let ̆ T̆̆=(̆1  ̆̆) and α̂̆(T̆̆) = (̂1(T̆̆)0  ̂̆+1(T̆̆)0)0 be the
hypothesized GFL estimates of the number of breaks, the set of break points, and the set of regression

coefficient estimates, respectively. Let α̂T̆̆ be the corresponding set of post-Lasso OLS estimates. Let

 (·; ·) and 1 (·; ·) be as defined in (2.5) and 3.1, respectively. Let α̂T = (̂01T   ̂
0
+1T)

0 ≡
argmin 1 (α;T) denote the post-Lasso OLS estimate of α =

¡
01  

0
+1

¢0
for the given set

of break dates specified in T We want to show that for any ̆  0 we have  ((α̂̆(T̆̆); T̆̆)
 (α̂0(T̂0); T̂0))→ 1 Noting that under Assumption A3(iv)



min
2
min

h


³
α̂̆

³
T̆̆
´
; T̆̆

´
−

³
α̂0

³
T̂0

´
; T̂0

´i
=



min
2
min

⎧⎨⎩ 1
̆+1X
=1

̆−1X
=̆−1

∙
 − ̂

³
T̆̆
´0


¸2
− 1



0+1X
=1

̂−1X
=̂−1

∙
 − ̂

³
T̂0

´0


¸2⎫⎬⎭
+



min
2
min

⎧⎨⎩
̆X
=1

°°°̂+1 ³T̆̆´− ̂

³
T̆̆
´°°°− 0X

=1

°°°̂+1 ³T̂0

´
− ̂

³
T̂0

´°°°
⎫⎬⎭

≥ 

min
2
min

h
1

³
α̂T̆̆ ; T̆̆

´
−1

³
α̂0

³
T̂0

´
; T̂0

´i
+  (1)

it suffices to show that for some   0



µ
inf

0≤0
inf
T



min
2
min

h
1 (α̂T ; T)−1

³
α̂0

³
T̂0

´
; T̂0

´i
 +  (1)

¶
→ 1, (D.1)

where T = (1  ) with 1  1       denotes an arbitrary -dimensional set of potential

break dates. We prove (D.1) by showing that (i) 
min

2
min

h
1

³
α̂0

³
T̂0

´
; T̂0

´
− ̄2

i
=  (1) 

and (ii) 
³
inf0≤0 infT


min

2
min

£
1 (α̂T ; T)− ̄2

¤ ≥ +  (1)
´
→ 1 as  → ∞ where ̄2 ≡

1


P0+1
=1

P0 −1
=0−1

¡
 − 00 

¢2
= 1



P
=1 

2
 

We first show (i) We make the following decomposition:

1

³
α̂0

³
T̂0

´
; T̂0

´
− ̄2 =

0+1X
=1

1



̂−1X
=̂−1

h¡
 − ̂0

¢2 − 2

i
≡

0+1X
=1

1  say.

To study 1  we consider four subcases: (i1) ̂−1   0−1 and ̂   0  (i2) ̂−1   0−1 and ̂ ≥  0 

(i3) ̂−1 ≥  0−1 and ̂   0  and (i4) ̂−1 ≥  0−1 and ̂ ≥  0  In subcase (i1), we have

1 =
1



0 −1X
= 0−1

h¡
 − ̂0

¢2 − 2

i
+
1



 0−1−1X
=̂−1

h¡
 − ̂0

¢2 − 2

i
− 1



 0 −1X
=̂

h¡
 − ̂0

¢2 − 2

i
≡ 1 (1) +1 (2)−1 (3)  say.

By the fact that 1
0

P0 −1
=0−1

 = 

¡
(0 (log

0))−12
¢
and 1

0

P0 −1
=0−1


0
 =  (1) uniformly
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in  we have

1 (1) = −2 ¡̂ − 0
¢0 1


0 −1X
=0−1

 +
¡
̂ − 0

¢0 1


0 −1X
= 0−1


0


¡
̂ − 0

¢
= −

°°̂ − 0
°°

³
((log0) )12

´
+
°°̂ − 0

°°2 (1) uniformly in 

For1 (2)  we have1 (2) = −2
¡
̂ − 0

¢0 1


P0 −1
=̂−1

+
¡
̂ − 0

¢0 1


P0 −1
=̂−1


0


¡
̂ − 0

¢ ≡
−21 (2 1) + 1 (2 2)  say. By Theorem 3.1(i) and Markov inequality, w.p.a.1 we have that uni-

formly in 

1 (2 1) ≤
°°̂ − 0

°° 1


0 −1X
=̂−1

kk ≤ 
°°̂ − 0

°° 1



0 −1X
=0 −

kk = 
°°̂ − 0

°° (1) 

1 (2 2) ≤ 
°°̂ − 0

°°2 max
⎛⎝ 1



0 −1X
=0 −


0


⎞⎠ = 
°°̂ − 0

°°2 (1) 

It follows that 1 (2) =  (
°°̂ − 0

°°+°°̂ − 0
°°2) (1) uniformly in  Similarly, we can show that

1 (3) =  (
°°̂ − 0

°°+ °°̂ − 0
°°2) (1) uniformly in  Consequently, we have

1 =  (1)
n
(−12(log0)2 +  )

°°̂ − 0
°°+ 

°°̂ − 0
°°2o in subcase (i1).

Analogously, we can show that this result also holds in subcases (i2)-(i4). Using the bounds for
°°̂ − 0

°°
in the proof of Theorem 3.1(ii), we can readily show that



min
2
min

0+1X
=1

1 =


min
2
min

⎧⎨⎩ ((log
0)2−12 +  )

0+1X
=1

°°̂ − 0
°°+ 

0+1X
=1

°°̂ − 0
°°2⎫⎬⎭

=
0

min
2
min

((log0)2−12 +  )

³
(+  )min + 

−12
min

´
=  (1)

under Assumption A3(iv) in subcase (i1). It follows that 
min

2
min

h
1

³
α̂0

³
T̂0

´
; T̂0

´
− ̄2

i
=

 (1) 

We now show (ii) For brevity we assume that 0 = 1 and ̂1   01 below as the other cases can be

studied analogously. In this case,  = 0 and T0 is empty. Then α̂T0 reduces to the OLS estimate of 
on  using all  observations and we have α̂T0 = ̂ ≡

³
1


P
=1 

0


´−1
1


P
=1  Using (2.2)

with 0 = 1 yields

̂ =

Ã
1



X
=1


0


!−1
1



 01−1X
=1


0

0
1 +

Ã
1



X
=1


0


!−1
1



X
= 01


0

0
2 +

Ã
1



X
=1


0


!−1
1



X
=1



= ∗ +

³
−12

´
 say

where ∗ ≡ 01

−11

0
1 +

02

−12

0
2 =  (1)   =

1


P
=1 

0
 1 =

1
01

P01−1
=1 

0
 and

2 =
1
02

P
=01


0
 Note that  1 and 2 are all asymptotically nonsingular by Lemma
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A.3. Let 01 ≡ 02 − 01 Then ∗ − 01 =
02

−12

0
1 and ∗ − 02 = − 01


−11

0
1 Using this we

can readily show that

1 (α̂T0)− ̄2 =
1



X
=1

h¡
 − ̂0

¢2 − 2

i

=
¡
01 − ̂

¢0 1


01−1X
=1


0


¡
01 − ̂

¢
+ 2

¡
01 − ̂

¢0 1


01−1X
=1



+
¡
02 − ̂

¢0 1


X
=01


0


¡
02 − ̂

¢
+ 2

¡
02 − ̂

¢0 1


X
=01



=  +

³
−12

³
−12 +

°°01°°´´ =  +

³
−12

´


where the leading term is given by

 ≡ 01


¡
∗ − 01

¢0
1

¡
∗ − 01

¢
+

02


¡
∗ − 02

¢0
2

¡
∗ − 02

¢
=

01
0
2

 2

∙
02

001 2

−1
1

−1
2

0
1 +

01

001 1

−1
2

−1
1

0
1

¸
≥ min

2
min for some   0

It follows that 
min

2
min

£
1 (α̂T ; T)− ̄2

¤ ≥  + 
min

2
min



¡
−12

¢
=  +  (1) by Assumption

A3(iv). This completes the proof of (ii) for the case 0 = 1 Analogous but more tedious arguments

show that (ii) also holds for the general case where 0 ≥ 2 ¥

E Proof of Theorem 3.4

Denote Ω = [0 max]  a bounded interval in R+. We divide Ω into three subsets Ω0 Ω− and Ω+ as follows

Ω0 =
©
 ∈ Ω : ̂ = 0

ª
 Ω− =

©
 ∈ Ω : ̂  0

ª
 and Ω+ =

©
 ∈ Ω : ̂  0

ª


Clearly, Ω0Ω− and Ω+ denote the three subsets of Ω in which the correct-, under- and over-number of

breaks are selected by the GFL, respectively. Recall α̂T̂̂

= (̂0
1T̂̂

  ̂0
̂+1T̂̂

)0 denotes the set of

post-Lasso OLS estimates of the regression coefficients based on the break dates in T̂̂
= T̂̂

() =

(̂1 ()   ̂̂
()) where we make the dependence of various estimates on  explicit when necessary.

Let ̂2T̂̂

≡ 1(α̂T̂̂

; T̂̂
) Let 0 denote an element in Ω0 that also satisfies the conditions on

 in Assumptions A3(iii)-(iv). For any 0 ∈ Ω0 we have ̂0

= 0 and

¯̄̄
̂
¡
0
¢−  0

¯̄̄
≤  for

 = 1 0 by Theorem 3.1 as 0 also satisfies Assumptions A3(iii)-(iv). By the proof of Theorem

3.3, ̂2T̂0
= ̄2 + (log

0)2−12 +  ) ((+  )min + 
−12
min ) where ̄2 ≡ 1



P
=1 

2


→
20 ≡ lim→∞ 1



P
=1

¡
2
¢
under Assumption A1. Then by Assumption A4 and Slutsky lemma,


¡
0
¢
= log(̂2T̂0

) + 
0 = log(̂2T 0

0
) +  (1)

→ log
¡
20
¢
. We consider the case of under- and

over-fitted models separately.

Case 1: Under-fitted model. In this case, ̂  0 and by the proof of Theorem 3.3



min
2
min

inf
∈Ω−

h
̂2T̂̂

− ̂2T̂0

i
=



min
2
min

inf
∈Ω−

h
1

³
α̂T̂̂

; T̂̂

´
−1

³
α̂0

³
T̂0

´
; T̂0

´i
≥ + (1)
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for some   0 It follows that



µ
inf

∈Ω−
 ()  

¡
0
¢¶

= 

µ


min
2
min

h
log
³
̂2T̂̂

̂2T̂0

´
+  (̂ −)

i
 0

¶
= 

µ


min
2
min

log
³
̂2T̂̂

̂2T̂0

´
+  (1)  0

¶
→ 1 (E.1)

Case 2: Over-fitted model. Let  ∈ Ω+. By the fact that log (1 + ) =  + 
¡
2
¢
for  in the

neighborhood of 0, and Lemma E.1,

−1
£
 ()− 

¡
0
¢¤

= −1 log
³
̂2T̂̂

̂2T̂0

´
+ −1 

¡
̂ −0

¢
=

³
̂2T̂0

´−1
−1

³
̂2T̂̂

− ̂2T̂0

´
+ −1  

¡
̂ −0

¢
+  (1) 

Noting that −1 (̂2T̂̃

− ̂2T̂0
) =  (1) by Lemma E.1, ̂

2
T̂0

= 20 +  (1)  and −1  → ∞ by

Assumption A4(ii), we have



µ
inf

∈Ω+
 ()  

¡
0
¢¶

≥ 

Ã¡
20
¢−1

min
0≤max

inf
T:D(TT 0

0)≤

h
−1

³
̂2T − ̂2T̂0

´
+ −1  

¡
−0

¢i
+  (1)  0

!
→ 1 as  →∞ (E.2)

Combining (E.1) with (E.2) yields



µ
inf

∈Ω−∪Ω+
 ()  

¡
0
¢¶→ 1 as  →∞ (E.3)

This implies that the minimizer ̂ of  () cannot belong to either Ω− or Ω+ Consequently, we have

 (̂ ∈ Ω0) =  (̂
̂
= 0)→ 1 as  →∞ ¥

Lemma E.1 max0≤max
supT∈T −1

¯̄̄
̂2T − ̂2T̂0

¯̄̄
=  (1)  where T = {T = (1  ) :

1  1       D ¡T T 00

¢ ≤ }

Proof. Noting that |̂2T − ̂2T̂0
| ≤ |̂2T − ̄2 | + |̂2T̂0

− ̄2 | and D(T̂0  T 00) ≤  w.p.a.1 by

Theorem 3.1(i), it suffices to show that max0≤≤max
supT∈T −1

¯̄
̂2T − ̄2

¯̄
=  (1) 

Let ∈ ©0 max

ª
Given T = (1  ) ∈ T let α̂T =

¡
̂01T   ̂

0
+1T

¢0
= argmin

1 (α; T) denote the post-Lasso estimate of α = (1  +1). Let ̂
2
T ≡ 1 (α̂T ; T). Note

that we do not impose the condition that min0≤≤(+1 − ) ≥ min → ∞ It is possible to have

+1 −    for some  in which case the solution {̂T   = 1 + 1} is not unique despite its
existence. We can treat T and T 00 = ( 01   

0
0) as two sets with  and 0 break dates, respec-

tively. Let T̄+0 = (̄1 ̄2  ̄+0) denote the union of T and T 00 with elements ordered in

non-descending order: 1  ̄1 ≤ ̄2 ≤ · · · ≤ ̄+0   In view of the fact that ̂2T 0
0
≥ ̂2T̄+0

and

̂2T 0
0
= ̄2 + (

−1) we have

0 ≤ ̂2T 0
0
− ̂2T̄+0

= ̄2 − ̂2T̄+0
+

¡
−1

¢ ≤ ¡+0 + 1
¢
 +

¡
−1

¢
 (E.4)
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where

 ≡ sup
1≤≤+1(−1) does not contain any break points

−1
¯̄̄̄
¯inf

−1X
=

( − 0)
2 − 2

¯̄̄̄
¯ 

Let  = (  −1)0  = (  −1)0 and  = (  −1)0 By standard least squares regres-

sion results, if the time interval ( −1) does not contain any break points, then
¯̄̄
inf

P−1
= ( − 0)

2 − 2

¯̄̄
=  0

 where 
=  (

0
)

+
 0
 and 

+ denotes the Moore-Penrose generalized inverse

of  Let  =   Then

 ≤ sup
1≤≤+1

−1 0


= sup
1≤≤+1−≥

−1 0
 + sup

1≤≤ −
−1 0

 ≡ 1 + 2 say.

For 1 by Lemmas A.3 and A.4 and Assumption A3(ii) we have that w.p.a.1

1 = sup
1≤≤+1−≥

−1 0 (
0
)

−1
 0


≤ −1
∙

sup
1≤≤+1−≥

max

µ
1

 − 
 0


¶¸−1
sup

1≤≤+1−≥

°°°° 1√
 − 

 0


°°°°2
= −1 (1) ((log  )

) =  ( )

For 2 noting that max (
) = 1 we have by analogous arguments as used in the proof of Lemma

A.4 and Assumption A3(ii)

2 ≤ sup
1≤≤ −

−1
−1X
=

2 ≤ −1 sup
1≤≤−

+−1X
=

£
2 −

¡
2
¢¤
+ −1 sup

1≤≤−

+−1X
=


¡
2
¢

≤ −1

³p
 (log  )


´
+ −1 ( ) = 

¡
−1

¢
=  ( ) 

It follows that  =  ( )  This, in conjunction with (E.4), implies that − ( ) ≤ ̂2T̄+0
− ̄2 ≤



¡
−1

¢
 which holds for all  and T = (1  )  It follows that uniformly in  and T we have

−1 (̂2T − ̄2 ) ≥ −1 (̂2T̄+0
− ̄2 ) ≥ − (1)  (E.5)

Next, we want to show

max
0+1≤≤max

sup
T∈T

−1 (̂2T − ̄2 ) ≤  (1)  (E.6)

Since T = (1  ) ∈ T for each  0 ∈ T 0 there exists  ∗ ∈ T such that
¯̄
 ∗ −  0

¯̄
≤   This,

in conjunction with Assumption A3(i), also ensures that  ∗   ∗+1 for  = 0 1 
0 where by default

 ∗0 = 1 and  ∗0+1 =  + 1 Let T ∗0 =
¡
 ∗1   

∗
0

¢
 Note that

̂2T − ̄2 ≤ 1

³
α̂T ∗

0
; T ∗0

´
− ̄2 =

0+1X
=1

̄1 

where ̄1 ≡ 1


P∗ −1
=∗−1

[( − ̂0T ∗
0

)
2 − 2 ] In addition, min1≤≤0

¯̄
 ∗ −  0

¯̄
≤  , min0≤≤0¯̄

 0+1 −  0
¯̄
= min and the fact that  =  (min) ensure that 

∗
 − ∗−1 = 0 +( ) = 0 + (min)
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for  = 1 0 + 1 As a result, ̂T ∗
0

is uniquely defined in large samples and given by ̂T ∗
0

=

( 0
∗−1

∗

∗−1

∗

)−1 0

∗−1
∗

∗−1

∗

 It is straightforward to show that ̂T ∗

0
−0 = 

£
(0 )

−12 + 
¤

and
0+1X
=1

°°°̂T ∗
0
− 0

°°° = 0 (
−2
min +  ) for  = 1 2 (E.7)

To study ̄1  we consider four subcases: (i1) 
∗
−1   0−1 and  ∗   0  (i2) 

∗
−1   0−1 and

 ∗ ≥  0  (i3) 
∗
−1 ≥  0−1 and  ∗   0  and (i4) 

∗
−1 ≥  0−1 and  ∗ ≥  0  In subcase (i1), we have

̄1 =
1



0 −1X
=0−1

[( − ̂0T ∗
0

)
2 − 2 ] +

1



 0−1−1X
=∗−1

[( − ̂0T ∗
0

)
2 − 2 ]−

1



0 −1X
=∗

[( − ̂0T ∗
0

)
2 − 2 ]

≡ ̄1 (1) + ̄1 (2)− ̄1 (3)  say.

By Theorem 3.2(ii) and the fact that 1
0

P 0 −1
= 0−1

 = 

¡
(0 (log

0))−12
¢
and 1
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P0 −1
=0−1


0
 =

 (1) uniformly in  we have
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°°°2 uniformly in 

For ̄1 (2)  we have ̄1 (2) = −2(̂T ∗
0
−0 )0 1

P 0−1−1
=∗−1

+(̂T ∗
0
−0)0 1

P 0−1−1
=∗−1


0
(̂T ∗

0

−0) ≡ −2̄1 (2 1) +̄1 (2 2)  say. Noting that uniformly in 

̄1 (2 1) ≤ 

°°°̂T ∗
0
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°°° 1
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=0 −
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0
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°°° (1)  and

̄1 (2 2) ≤ 
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°°°2 max
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 0 −1X
=0 −


0


⎞⎠ = 

°°°̂T ∗
0
− 0

°°°2 (1) 

we have ̄1 (2) =  ( )

µ°°°̂T ∗
0
− 0

°°°+ °°°̂T ∗
0
− 0

°°°2¶ uniformly in  Analogously, we can

show that ̄1 (3) =  ( )

µ°°°̂T ∗
0
− 0

°°°+ °°°̂T ∗
0
− 0

°°°2¶ uniformly in  It follows that ̄1 =



¡
 + −12(log0)2

¢ °°°̂T ∗
0
− 0

°°°+ (1)
°°°̂T ∗

0
− 0

°°°2 uniformly in  in subcase (i1). The

same probability order holds in subcases (i2)-(i4). Then by (E.7), we have

−1
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³
1 + −12(log0)2−1

´0+1X
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°°°̂T ∗
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°°°+

¡
−1
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°°°̂T ∗
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− 0

°°°2
=
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1 + −12(log0)2−1

´
0 (

−12
min +  ) + −1 0 (

−1
min + 2 )

=  (1) 

and (E.6) follows. Combining (E.5) with (E.6) yields max0+1≤≤max
supT∈T −1

¯̄
̂2T − ̄2

¯̄
=

 (1) 
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F Proof of Theorem 3.5

Despite the presence of the Lasso penalty term, the proof follows from the same idea as used in the

literature on break estimation; see, e.g., Bai (1995, Theorem 1), Bai (1997a, Proposition 3), and Su et al.

(2013, Theorem 4.4). The main difference is that these early papers focus on the case of a single break

whereas we allow the number of breaks (0) to diverge to infinity. [Bai and Perron (1998) stated that

the limiting distribution in the (fixed) multiple break case is the same as the single break case, but did

not give a formal proof.] By Theorem 3.4, 0 = ̂ w.p.a.1 so that we can treat 
0 as if it were known

in large samples. We reformulate the GFL objective function as

(α) =
1



0+1X
=1

−1X
=−1

( − 0)
2
+ 

0X
=1

k+1 − −1k (F.1)

where α = (01 
0
2  

0
0+1)

0 and  = (1  0) Let α̂ () ≡ argmin (α ) ̂ ≡ (̂1  ̂0)

= argmin  (α̂ () )  and α̂ = α̂ (̂) = (̂01 ̂
0
2  ̂

0
0+1)

0 Let 0 = ( 01   
0
0) To study the

asymptotic distributions of the Lasso estimators α̂ and ̂ we can evaluate the global behavior of (α

) over the whole parameter space for α and  via reparametrization. Define

 (a) = 
£
(α

0 +−1
0a ())− 

¡
α00

¢¤
(F.2)

where  () = (1 (1)   0 (0)) with  () = b 0 + c,  = (̄−2)  = (1  0) ∈
R

0

, a = (01 
0
2  

0
0+1)

0
is a 

¡
0 + 1

¢ × 1 vector, and 0 is as defined in Section 3.3. Assume

that  () = 1 if  () ≤ 1 and  () =  if  () ≥  Apparently, the reparametrization in

(F.2) conforms with the anticipated rates of pointwise convergence for α̂ and ̂ Let â and ̂ minimize

 (a)  Then â =
−1
0(α̂−α0) and b ̂c = ̂ −  0 for  = 1 

0

For notational simplicity, we focus on the case where  ≤ 0 ∀ ∈ {1 0} as the other 20 − 1
cases can be analyzed analogously. Noting that 0+1 − 0 = 0  we have

 (a) =
0X
=1

()−1X
= 0−1

½h
 − (0 )−120

i2
− 2

¾

+
0X
=1

0 −1X
=()

½h
 − (0+1)−120+1 − 00

i2
− 2

¾

+
X

=0
0

½h
 − (00+1)

−1200+1

i2
− 2

¾

+
0X
=1

n°°°(0+1)−12+1 − (0 )−12 + 0

°°°− °°0°°o
≡ 1 (a) + 2 (a) + 3 (a) + 4 (a)  say.

We shall prove the weak convergence of  (a) on the compact set S ≡ {(a) : kak ≤
√
0

kk ≤
√
0} where  is fixed positive constant. By the triangle inequality and Assumption A6,
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|4 (a)| ≤ 
P0

=1

°°(0+1)−12+1 − (0 )−12°° = (0
−12
min ) =  (1) uniformly in a It is

straightforward to show that uniformly in (a) ∈ S

1 (a) = −2
0X
=1

(0 )
−120

0 −1X
= 0−1

 +
0X
=1

(0 )
−10

0 −1X
=0−1


0
 +  (1) 

and

2 (a) = −2
0X
=1

00

0 −1X
=b0 +c

 +
0X
=1

00

 0 −1X
=b0 +c


0

0
 +  (1) 

In addition, 3 (a) = −2(00+1)
−1200+1

P
=0

0
 + (

0
0+1)

−100+1

P
= 0

0


0
0+1 It fol-

lows that uniformly in (a ) ∈ S we have

 (a) = ̄1 (a) + ̄2 ()+ (1)

where ̄1 (a) = −2a0−10X0 + a0−10X0X−10a and ̄2 () =
P0

=1[−200
P 0 −1

=b 0 +c
 +

00
P 0 −1

=b 0 +c


0

0
 ]Noting that ̄1 (a) converges weakly on a compact set to ̄

(0)
1 (a) = −2a0Φ12+

a0Ψa where Φ and Ψ are as defined in Section 3.3, and  is a 
¡
0 + 1

¢ × 1 vector of independent
standard normal variables. By the continuous mapping theorem (CMT),

â =−1(α̂−α0) →  argmin
a

̄
(0)
1 (a) = 

¡
0 Ψ−1ΦΨ−10

¢


This proves part (i) in Theorem 3.5.

Let  = (̄0Ψ ̄)
−1 for  = 1 0 By the invariance principle for heterogenous mixing

processes (e.g., White (2001, Theorem 7.18)), 00
P0 −1

=b0 +c
 =

1√


P0 −1
=b0 +c


12


00


⇒ 11 (−)  Because  →∞, we have 00
P 0 −1

=b 0 +c


0

0
 =

−
− 

00


P0 −1
=b0 +c


0

0


→ | | by Assumptions A1 and A5(ii). It follows that ̄2 () ⇒
P0

=1[−211 (−)
+ | |] when   0 ∀ ∈ {1 0} For the case   0 ∀ ∈ {1 0} the counter part of ̄2 ()
is ̄ ∗2 () =

P0

=1[−200
Pb0 +c

=0
 +

00


Pb0 +c
=0


0

0
 ] which converges weakly toP0

=1[−2
p
22 () +  ] The cases where elements of  have different signs can be derived

analogously by discussing the signs of ( −  0 )’s as in the proof of Theorem 3.4. The independence

between 1 (·) and 2 (·) arises because by a simple application of Davydov’s inequality for strong
mixing processes (see, e.g., Hall and Heyde (1980, Corollary A.2)) and Assumptions A1 and A6(i), for

any   0 ̄  0 and small   0¯̄̄̄
¯̄
⎡⎣00 0 −1X

=b 0 +c


b 0 + ̄cX
=0


0

0


⎤⎦¯̄̄̄¯̄ ≤ 8°°0°°2 sup
≥1


h
kk2+

i ∞X
=1

 ()
(2+)

=  (1) 

By the same reason,  and  are independent for all  6=  and   = 1 2 Consequently, we

have ̄2 () ⇒
P0

=1−2 ()  (∆0Ψ∆)̄
2
(̂ −  0 )

→ argmax  () by CMT, and ̂ −  0 are

asymptotically independent of ̂ −  0 for all  6=  This completes the proof of part (ii). ¥
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G Proof of Theorem 3.6

We prove the theorem by showing that α̂T̂0
shares the same asymptotic distribution as α̂T 0

0
and

the asymptotic distribution of α̂T 0
0

is as given in the theorem. The latter can be verified easily

under our assumptions by a simple application of the central limit theorem for heterogenous strong

mixing processes; see, e.g., White (2001, Theorem 5.2). For notational simplicity, we shall suppress

the dependence of 0 and ̂0 on 0 and write them as  and ̂ respectively. Noting that

̂(α̂T̂0
−α0) = (̂−1X̂0X̂̂−1)−1̂−1X̂0[(X− X̂)α0+ ] and (α̂T 0

0
−α0) = (−1X0X−1)−1−1X0

by (3.3)-(3.4), we have

[̂(α̂T̂0
−α0)−(α̂T 0

0
−α0)] = (̂−1̂ −−1) + ̂−1̂

= ̂−1(̂ −) + (̂−1 −−1) + ̂−1̂,

where ̂ = ̂−1X̂0X̂̂−1  = −1X0X−1 ̂ = ̂−1X̂0  = −1X0 and ̂ = ̂−1X̂0(X− X̂)α0We
prove the theorem by showing that (i) 1 ≡ −1(̂−) =  (1)  (ii) 2 ≡ (̂−1−−1)̂ =  (1) 

and (iii) 3 ≡ ̂−1̂ =  (1) 

To proceed, we first show that: (a) min () ≥ 2 and max () ≤ 2̄ w.p.a.1, (b)
°°°̂−

°°°2 =

¡
10

¢
 and (c) min(̂) ≥ 4 and max(̂) ≤ 4̄ w.p.a.1. By Weyl inequality, min () ≥

min ( ())−max (− ())≥ min ( ())− k− ()k Assumption A2(i) ensures that min ( ())
≥  By Assumption A1 and Davydov inequality, we can readily verify that k− ()k2 = 

¡
0min

¢
=  (1)  Thus k− ()k =  (1) by Chebyshev inequality and the first part of (a) follows. Analo-

gously, we can prove the second part of (a). For (b), we have

̂− = ̂−1(X̂−X)0X̂̂−1 + ̂−1X0(X̂−X)̂−1 +−1X0X(̂−1 −−1) + (̂−1 −−1)X0X̂−1

≡ 1 +2 +3 +4 say.

Write 1 as a partitioned matrix: 1 = (1)
0+1
=1 where 1 ’s are  ×  matrices. Note that

X̂0X̂ =diag(X̂01X̂1  X̂
0
0+1X̂0+1) and X0X̂ is a block tridiagonal matrix w.p.a.1:

X0X̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P01∧̂1−1
=1 

P 01−1
=̂1

 0 · · · 0 0P̂1−1
= 01


P02∧̂2−1

=01∨̂1


P02−1
=̂2

 · · · 0 0

0
P̂2−1

= 02


P03∧̂3−1
=02∨̂2

 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · P0
0∧̂0−1

=0
0−1∨̂0−1


P0−1

=̂0


0 0 0 · · · P̂0−1
=0

0


P

= 0
0∨̂0



⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where  = 

0
 and

P
=  = 0 if    and we use the fact that when  ( 0−1  ̂   0+1) → 1

because w.p.a.1
¯̄̄
̂ −  0

¯̄̄
≤  = (min) by Theorem 3.1(i) and Assumption A3(i). We can analyze

1 for   = 1 
0 + 1 For example, if  01 ≥ ̂1 then 111 = 0 121 = 0 and

k112k = ̂
−12
1 ̂

−12
2

°°°°°°
01−1X
=̂1


0


°°°°°° ≤  ̂
−12
1 ̂

−12
2

1



01−1X
=1−

k0k = 

¡
 

−1
min

¢
;
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and if  01  ̂1 then 112 = 0 k111k = ̂−11
°°°P̂1−1

=01


0


°°° ≤  ̂
−1
1

1


P01+−1
= 01

k0k =


¡
 

−1
min

¢
 and analogously, k121k = ̂

−12
1 ̂

−12
2

°°°P̂1−1
=01


0


°°° = 

¡
 

−1
min

¢
 By the same to-

ken, we can show that for those 1 ’s that are nonzero, their Frobenius norm are uniformly bounded from

above by 

¡
 

−1
min

¢
 Consequently, k1k2 =

P0+1
=1

P0+1
=1|−|≤1 kk2 =  (

0
¡
 

−1
min

¢2
) =


¡
10

¢
 For 3 we have

k3k2 = tr
³
−1X0X−1(̂−1 −−1)(̂−1 −−1)−1X0X−1

´
≤ max

1≤≤0+1
0

³
̂
−12
 − 

0−12


´2
tr
¡
−1X0X−1−1X0X−1

¢
≤ max

1≤≤0+1
0

³
̂
−12
 − 

0−12


´2
max () tr ()

= 

¡
 22 

−2
min

¢
 (1)

¡
0
¢
= 

³
0
¡
 

−1
min

¢2´
= 

¡
10

¢


where we use the fact that 0

³
̂
−12
 − 

0−12


´2
=

(̂−0 )2

̂


̂
12
 +(0 )

12
2 = 

¡
 22 

−2
min

¢
uniformly in  by

Theorem 3.1(i). Analogously, we can show that kk = 
¡
10

¢
for  = 2 4 Thus we have shown

that
°°°̂−

°°°2 = 
¡
10

¢
 For part (c), we apply Weyl inequality to obtain w.p.a.1, min(̂) ≥

min() − max(− ̂) ≥ min() −
°°°− ̂

°°° ≥ 2−  (1) ≥ 4 Analogously, we can show the

second part of (c) holds.

To show (i), we first make the following decomposition 1 = ̂−1̂−1(X̂ − X)0 + ̂−1(̂−1 −
−1)X0 ≡ 11 + 12 By Theorem 3.1(i) and Assumption A3(i),

¯̄̄
̂ −  0

¯̄̄
≤  =  (min) 

This ensures that w.p.a.1 ̂ lies between  0−1 and  0+1 for  = 1 0 Let ̄11 ≡ ̂−1(X̂ − X)0
Write ̄11 = (̄0111  ̄

0
110+1)

0 where 1 ’s are  × 1 vectors. ̄111 = 0 if  01 ≥ ̂1 and

̄111 = ̂
−12


P̂1−1
=01

 if 
0
1  ̂1, we have w.p.a.1,

°°̄111°° ≤  ̂
−12
1

1


P 01+−1
= 01

kk =
 ( 

−12
min ) (1) = 

¡
(0)−12

¢
 Analogously, we can show that

°°̄10+1

°° = 
¡
(0)−12

¢
for

 = 2 0 0 + 1 and
°°̄11°°2 =P0+1

=1

°°̄11°°2 =  (1)  Consequently, we have

k11k2 ≤
°°°̂−1°°°2 °°̄11°°2 = tr³̂−1̂−10´°°̄11°°2 ≤ hmin(̂)i−2 kk2 °°̄11°°2 =  (1) 

Noting that
°°−1X0°°2 = 

¡
0
¢
by Markov inequality and tr(̂−1̂−10) ≤ [min(̂)]−2 kk2 =

 (1)  we have

k12k2 ≤
°°°̂−1̂−1(̂ −)

°°°2 °°−1X°°2
= tr

³
̂−1̂−1(̂ −)(̂ −)̂−1̂−10

´°°−1X°°2
≤ max

1≤≤0+1
̂−1

³
̂
12
 − 

012


´2
tr
³
̂−1̂−10

´°°−1X°°2
=  (

22 
−2
min) (1)

¡
0
¢
=  (

0
¡
 

−1
min

¢2
) =  (1)

where we use the fact that ̂−1

³
̂
12
 − 

012


´2
≤ (̂−0 )

2

̂


̂
12
 +

012


2 = 

¡
 22 

−2
min

¢
uniformly in  by

Theorem 3.1(i). Thus, we have 1 =  (1) 
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To show (ii), we apply the above results in (a)-(c) and the fact that kk2 = 

¡
0
¢
to obtain

k2 k2 =
°°°̂−1(− ̂)−1

°°°2 ≤ °°°̂−1(− ̂)−1
°°°2 kk2

= tr
³
̂−1(− ̂)−1−1(− ̂)0

´
kk2

≤ [min ()]
−2
h
min(̂)

i−2 °°°̂−
°°°2 kk2 kk2

=  (1) (1) 
¡
10

¢
 (1)

¡
0
¢
=  (1) 

We now show (iii). We write ̂ = (̂01  ̂
0
0+1)

0 where ̂ ’s are × 1 vectors. For ̂1 we have

̂1 =

(
0 if  01 ≥ ̂1

̂
−12


P̂1−1
= 01


0


¡
02 − 01

¢
if  01  ̂1

w.p.a.1,

where we use the fact that when ̂1   01   (̂1   02 )→ 1 because w.p.a.1 ̂1− 01 ≤  = ( 02 − 01 )

by Theorem 3.1(i) and Assumption A3(i). It follows that

°°°̂1°°° ≤  ̂
−12
1

1



 01+−1X
=01

kk2
°°02 − 01

°° = 

³
 

−12
min

´


Analogously, we can show that
°°°̂0+1

°°° =  ( 
−12
min ) For the ̂ with  = 2 0 we can

discuss four subcases according to the signs of ̂−1 −  0−1 and ̂ −  0 as in the proof of Theorem

3.4, and show that
°°°̂

°°° =  ( 
−12
min ) uniformly in  for each subcase. Consequently, we have°°°̂°°°2 =P0+1

=1

°°°̂

°°°2 = 0

¡
 22 

−1
min

¢
=  (1) and

k3 k2 ≤ tr
³
̂−1̂−10

´°°°̂°°°2 ≤ hmin(̂)i−2 kk2 °°°̂°°°2 =  (1) (1)  (1) =  (1) 

This completes the proof of the theorem. ¥
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