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Jackknife Model Averaging for Quantile Regressions∗

Xun Lu and Liangjun Su

Department of Economics, Hong Kong University of Science & Technology
School of Economics, Singapore Management University, Singapore

June 12, 2014

Abstract

In this paper we consider the problem of frequentist model averaging for quantile regression

(QR) when all the  models under investigation are potentially misspecified and the number of

parameters in some or all models is diverging with the sample size  To allow for the dependence

between the error terms and the regressors in the QR models, we propose a jackknife model averaging

(JMA) estimator which selects the weights by minimizing a leave-one-out cross-validation criterion

function and demonstrate that the jackknife selected weight vector is asymptotically optimal in

terms of minimizing the out-of-sample final prediction error among the given set of weight vectors.

We conduct Monte Carlo simulations to demonstrate the finite-sample performance of the proposed

JMA QR estimator and compare it with other model selection and averaging methods. We find that

in terms of out-of-sample forecasting, the JMA QR estimator can achieve significant efficiency gains

over the other methods, especially for extreme quantiles. We apply our JMA method to forecast

quantiles of excess stock returns and wages.

JEL Classification: C51, C52

Key Words: Final prediction error; High dimensionality; Model averaging; Model selection;

Misspecification; Quantile regression

1 Introduction

In practice researchers are often confronted with a large number of candidate models and are not sure

which model to use. Model selection helps to choose a single optimal model, ignores the information

in other models, and often produces a rather unstable estimator in applications despite the fact that it

∗The authors gratefully thank the Co-editor Han Hong, the associate editor, two anonymous referees for their many
helpful comments. They are also indebted to Peter C. B. Phillips for his constructive comments on the paper and valuable

discussions on the subject matter. Su gratefully acknowledges the Singapore Ministry of Education for Academic Research

Fund under grant number MOE2012-T2-2-021. Address correspondence to: Liangjun Su, School of Economics, Singapore

Management University, 90 Stamford Road, Singapore 178903; E-mail: ljsu@smu.edu.sg, Phone: +65 6828 0386.
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has a long history and nice theoretical properties in both statistics and econometrics literature.1 As an

alternative to model selection, model averaging, on the other hand, seeks to obtain a combined estimator

by taking the weighted average of the estimators obtained from all candidate models under investigation.

It allows researchers to diversify, account for model uncertainty, and improve out-of-sample performance.

Model averaging can be classified as Bayesian model averaging (BMA) and frequentist model aver-

aging (FMA). See Hoeting et al. (1999) for an overview on BMA and Moral-Benito (2013) for a recent

overview on both BMA and FMA. FMA has a relatively shorter history than BMA. Buckland et al.

(1997) and Burnham and Anderson (2002, ch.6) construct model averaging weights based on the values

of AIC or BIC scores. Yang (2001) and Yuan and Yang (2005) propose a model averaging method

known as adaptive regression by mixing (ARM). In a local asymptotic framework Hjort and Clasekens

(2003) and Clasekens and Hjort (2008, ch.7) study the asymptotic properties of the FMA maximum

likelihood estimator by studying perturbations around a given narrow model in certain directions. Other

works on the asymptotic property of averaging estimators include Leung and Barron (2006), Pötscher

(2006), Hansen (2009, 2010), and Liu (2012). In particular, Liu (2012) proposes a plug-in estimator of

the optimal weights by minimizing the sample analog of the asymptotic mean squared error (MSE) for

linear regression models. In a similar spirit, Liang et al. (2011) derive an exact unbiased estimator of

the MSE of the model average estimator and propose selecting the weights that minimize the trace of

the MSE estimate of focus parameters.

In a seminal article, Hansen (2007) proposes selecting the model weights in least squares model

averaging by minimizing the Mallows’ criterion over a set of discrete weights. The justification of this

method lies in the fact that the Mallows’ criterion is asymptotically equivalent to the squared error so

that the Mallows model averaging (MMA) estimator is asymptotically optimal in terms of minimizing

the MSE. Thus his approach marks a significant step toward the development of optimal weight choice

in the FMA estimator. Hansen (2008, 2009, 2010) extends his MMA method to the forecast combination

literature, to models with structural break, and to models with a near unit root, respectively. Note that

Hansen (2007) only considers nested models and his MMA estimator does not allow for (conditional)

heteroskedasticity. Wan et al. (2010) extend Hansen’s MMA estimator to allow for non-nested model

and selection of continuous weights in a unit simplex. Liu and Okui (2013) extends Hansen’s MMA

estimator to allow for heteroskedasticity and non-discrete weights. To allow for both non-nested models

and heteroskedasticity, Hansen and Racine (2012) propose jackknife model averaging (JMA) for least

squares regression when the weights are selected by minimizing a leave-one-out cross-validation criterion

function. Zhang et al. (2013) extend JMA to models with dependent data. In the case of instrument

uncertainty, Kuersteiner and Okui (2010) apply the MMA approach to the first stage of the 2SLS,

LIML and FIML estimators. In contrast, Lee and Zhou (2011) take an average over the second stage

estimators. Sueishi (2010) proposes a new simultaneous model and instrument selection method for IV

models based on 2SLS estimation when the true model is of infinite dimension.

Almost all of the above papers on FMA focus on the least squares regression and MSE criterion.

The only exceptions are Hjort and Clasekens (2003) and Clasekens and Hjort (2008) who concentrate

1 It is well known that a small perturbation of the data can result in selecting a very different model. As a consequence,

estimators of the regression function based on model selection often have larger variance than usual. See Yang (2001).
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on the likelihood framework but with the MSE criterion too. The MSE criterion seems natural in the

least squares regression framework because it balances the asymptotic bias and variance in a nice way.

Nevertheless, it is also interesting to apply the idea of FMA to different contexts where MSE may not

be the best criterion choice.

In this paper we extend the JMA of Hansen and Racine (2012) to the quantile regression (QR)

framework. QR provides much more information about the conditional distribution of a response variable

than the traditional conditional mean regression. Since the seminal paper of Koenker and Bassett (1978),

QR has attracted huge attention in the literature. Just as in the least squares regression, model selection

and model averaging can play an important role in the QR model building process. There is a growing

literature on model selection for QR models or more generally,  -estimation. For example, Hurwich

and Tsai (1990) develop a small sample criterion for the selection of LAD regression models; Machado

(1993) and Burman and Nolan (1995) consider variants of the Schwarz information criterion (SIC) and

Akaike information criterion (AIC), respectively, for  -estimation which includes the QR as a special

case; Koenker et al. (1994) consider using SIC in QR models. More recently, Wu and Liu (2009)

study variable selection in penalized QR (see Su and Zhang (2014) for an overview on this); Belloni and

Chernozhukov (2011) consider 1-penalized QR in high-dimensional sparse models. Nevertheless, to the

best of our knowledge, there still is a lack of an FMA method in the QR framework. This work seeks

to fill this gap. It is well known that quantile estimates tend to be unstable when the quantile index is

very high or very low (say, close to 0.95 or 0.05). This implies that model averaging can certainly play

an important role in this case.

To proceed, it is worth mentioning that the major motivation for model averaging is to address

the problem of model uncertainty for forecasting. Kapetanios et al. (2008) provide compelling reasons

for using model averaging for the purpose of forecasting. They consider two broad cases: one is when

the model that generates the data belongs to the class of candidate models, and the other, which is

perhaps more relevant in empirical applications, is when the true model does not belong to the class

of models under consideration. In the first case, model averaging addresses the issue that the chosen

model is not necessarily the true model, and by assigning probabilities to various models can yield an

out-of-sample forecast that is robust to model uncertainty. In the second case, it is impossible that the

chosen model could capture all the features of the true model, which makes the motivation for model

averaging even stronger because it has been well documented in the forecasting literature that forecasts

from different models can inform the overall forecast in different ways and tend to outperform individual

forecasts significantly. Admittedly, forecasting a variable of interest and discovering the true model (or

true structural/causal relation) can be quite different objectives in econometrics. As Ng (2013) puts

it in her abstract, “(i)rrespective of the model size, there is an unavoidable tension between prediction

accuracy and consistent model determination.” Consistent model selection of the true model, if existing,

does not necessarily lead to a model that yields minimum forecast error. The main purpose of this

paper is to provide a FMA method for the purpose of forecasting a variable of interest under the check

loss function but not to discover the underlying true model because it is possible in practice that none

of the models considered is the true model or even close to the truth.

Since we use the check loss function as a base for model averaging, we do not have the usual bias-
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variance decomposition for the MSE-based evaluation criterion, and it is difficult to define a Mallows-

type criterion for the QR model averaging as in Hansen (2007).2 For this reason, we focus on the

extension of Hansen and Racine’s (2012) JMA to the QR framework. Such an extension is not trivial

for several reasons. First, there is no closed form solution for QR, and the asymptotic properties of

jackknife QR estimators are not well studied in the literature. Second, since we do not adopt the local

asymptotic framework, it is possible that all the models under investigation are incorrectly specified

even asymptotically. The literature on QR under misspecification is quite limited. Third, we allow the

number of parameters in the QR models to diverge with the sample size  which also complicates the

analysis of QR estimators under model misspecification. We shall study the consistency and asymptotic

normality of QR estimators for a single potentially misspecified QR model with a diverging number of

parameters, and then study the uniform consistency of the leave-one-out QR estimators. These results

are needed in order to establish the asymptotic optimality of our JMA estimator. Fourth, we also allow

the number of the candidate models to increase with the sample size at a suitable polynomial rate.

We conduct Monte Carlo simulations to compare the finite sample performance of our JMA QR

estimators with other model averaging and model selection methods, such as those based on AIC and

BIC. We find that our JMA QR estimators clearly dominate other methods for the 0.05th conditional

quantile regression. For the conditional median regression, there is no clearly dominating method, but

JMA QR estimators perform well in most of the cases. We apply our new method to predict the

conditional quantiles of excess stock returns and wages.

The rest of the paper is structured as follows. Section 2 proposes the quantile regression model

averaging estimator. We study the asymptotic properties of the quantile regression estimators and the

asymptotic optimality of our jackknife selected weight vector in Section 3. Section 4 reports the Monte

Carlo simulation results. In Section 5 we apply the proposed method to predict conditional quantiles

of excess stock returns and wages. Section 6 concludes. The proofs of the main results in Section 3 are

relegated to Appendices A-C. Supplementary appendices D-E contain some additional theoretical and

simulation results.

NOTATION. Throughout the paper we adopt the following notation. For an  ×  real matrix

 we denote its transpose as 0 its Frobenius norm as kk (≡ [tr (0)]12) and its Moore-Penrose
generalized inverse as +When  is symmetric, we use max () and min () to denote its largest and

smallest eigenvalues, respectively.  denotes an ×  identity matrix and “p.s.d.” abbreviates “positive

semidefinite”. The operator
→ denotes convergence in probability,

→ convergence in distribution, and

plim probability limit.

2 Quantile regression model averaging

In this section we present the quantile regression model averaging estimators.

2Alternatively, one can continue to adopt the MSE as an evaluation criterion for QR estimators. It remains unknown

whether Hansen’s MMA has a straightforward extension to QR.
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2.1 Quantile regression model averaging

Let {(x)}=1 be a random sample, where  is a scalar dependent variable and x = (1 2 ) is

of countably infinite dimension. Without loss of generality, we assume that 1 = 1 As in Koenker and

Bassett (1982), we consider the following data generating process (DGP)

 =

∞X
=1

 +

⎛⎝ ∞X
=1



⎞⎠  (2.1)

where  and  are unknown parameters, 1 = 1 and  are independent and identically distributed

(IID) unobservable error terms and are independent of x. Let  () denote the th quantile of 

for some  ∈ (0 1)  Under the condition that the conditional scale function  (x) =
P∞

=1  is

nonnegative almost surely (a.s.), the th conditional quantile of  given x is given by

 (x) =

∞X
=1

£
 +  ()

¤
 =

∞X
=1

 ()  (2.2)

where  () ≡  +  ()  It follows that we have the following linear QR model

 =  +  =

∞X
=1

 +  (2.3)

where  ≡  () ≡
P∞

=1    ≡  ()  and  ≡  () ≡  −  (x) satisfies the quantile

restriction3

 ( () ≤ 0|x) =   (2.4)

We consider a sequence of approximating models  = 1 2  where the ’th model uses 

regressors belonging to x and  may go to infinity with the sample size. We write the ’th approxi-

mating model as

 = Θ
0
()x() + () +  =

X
=1

()() + () +  (2.5)

where Θ() ≡ (1()  ())0 x() = (1()  ())0 ()  = 1   are variables in x
that appear as regressors in the ’th model, () are the corresponding coefficients, and () =  −P

=1 ()() signifies the approximation error in the ’th model. Although  and consequently

x() and Θ() may depend on , we suppress their dependence on  for notational simplicity. In

particular,  is permitted to diverge to infinity with , which may be important in both practice and

theory. First, in practice allowing  to diverge with  is a way of allowing the model to become more

complicated as the sample size increases and, through the restrictions on the rate at which  can

increase as →∞ suggests restrictions on the complexity of the model for each finite  Second, in the

theory for nonparametric sieve estimation, the number of approximating terms which is  here has to

diverge with  at a certain rate in order to achieve a desirable balance between the approximating bias

and the asymptotic variance of the resulting sieve estimator.

3For notational simplicity, we frequently suppress the dependence of  ()   ()  and  () on 
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Let  () ≡  [ − 1{ ≤ 0}] where 1{·} denotes the usual indicator function. The th QR estimate
of Θ() is given by

Θ̂() ≡ arg min
Θ()

()

¡
Θ()

¢
= arg min

Θ()

X
=1



³
 −Θ0()x()

´
 (2.6)

Let ̂() ≡  − Θ̂0()x() Let w ≡ (1  )
0
be a weight vector in the unit simplex of R and

W ≡
n
w ∈ [0 1] :

P
=1 = 1

o
 For  = 1   the model average estimator of  is given by

̂ (w)=

X
=1

x
0
()Θ̂() (2.7)

Ideally, one might consider choosing w to minimize the average quantile loss

 (w) =
1



X
=1

 ( − ̂ (w))  (2.8)

or its associated conditional risk

 (w) =  [ (w) |X]  (2.9)

where X ≡ {x1 x}  Unlike the squared error loss function in Hansen (2007), it is not easy for us
to study  (w) or  (w) directly in order to establish their connection with any known information

criterion (e.g., AIC and BIC) in the quantile regression literature. Below we follow the lead of Hansen

and Racine (2012) and propose jackknife selection of w (also known as leave-one-out cross-validation).

2.2 Jackknife weighting

Here we propose jackknife selection of w. We shall show in the next section that the jackknife weight

vector is optimal in terms of minimizing final prediction error (FPE) in the sense of Akaike (1970).

For  = 1  let Θ̂() denote the jackknife estimator of Θ() in model  with the ’th obser-

vation deleted. Define the leave-one-out cross-validation criterion function as

 (w) =
1



X
=1



Ã
 −

X
=1

x
0
()Θ̂()

!
 (2.10)

The jackknife choice of weight vector ŵ = (̂1  ̂ ) is obtained by choosing w ∈W to minimize the

above criterion function, i.e.,

ŵ =argmin
w∈W

 (w)  (2.11)

Given ŵ one can obtain the jackknife model averaging (JMA) estimator of  by

̂ (ŵ)=

X
=1

̂x
0
()Θ̂() (2.12)
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Note that  (w) is convex in w and can be minimized by running the quantile regression of  on

x0
()
Θ̂() But this procedure cannot guarantee the resulting solution lies in W. Fortunately, we can

write the constrained minimization problem in (2.11) as a linear programming problem:

min
wuv

(
10u+(1− )10v

¯̄̄̄
¯
X
=1

x
0
()Θ̂() +  −  =   = 1 

)

 : 0 ≤  0 ≤  for  = 1   0 ≤  ≤ 1 for  = 1  and

X
=1

 = 1

where u ≡(1 2  ) and v ≡(1 2  ) are the positive and negative slack variables and 1 is
× 1 vector of ones. This linear programming can be implemented in standard software. For example,
one can use the algorithm of linprog in Matlab.

Let (x) be an independent copy of (x) and D ≡ {(x)}=1  Define the out-of-sample
quantile prediction error (or final prediction error, FPE) as follows

 (w) = 

"


Ã
 −

X
=1

x
0
()Θ̂()

!¯̄̄̄
¯D

#
 (2.13)

where x() ≡ (1()  ())0 and ()  = 1   are variables in x that correspond to the 

regressors in the ’th model. We will show that ŵ is asymptotically optimal in terms of minimizing

 (w) 

3 Asymptotic Optimality

In this section we first study the asymptotic properties of Θ̂() and Θ̂() for a fixed model, and then

show that jackknife weight ŵ is asymptotically optimal in terms of minimizing  (w).

3.1 Asymptotic properties of Θ̂() and Θ̂()

Since Koenker and Bassett (1978) a large literature on quantile regression (QR) has developed; see

Koenker (2005) for an excellent exposition on this. While QR estimates are as easy to compute as

OLS regression coefficients, most of the theoretical and applied work on QR postulates a correctly

specified parametric (usually linear) model for conditional quantiles. Asymptotic theory for QR under

misspecification is limited. Angrist, Chernozhukov, and Fernández-Val (2006, ACF hereafter) study QR

under misspecification and show that the QR minimizes a weighted mean-squared error loss function

for specification error and establish the asymptotic distributional result for QR estimators when the

number of parameters is fixed.

For model averaging, all the models under investigation are potentially misspecified. So the classical

distributional result for QR estimator in Koenker (2005) cannot be used. In addition, we allow diverging

number of parameters in some or all QR models. This means that the results in ACF (2006) are not

applicable either. Although there are some asymptotic results in the literature on  -estimation which

allow diverging number of parameters (see, e.g., Portnoy (1984, 1985) for smooth influence functions
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and Welsh (1989) for smooth or monotone influence functions), none of these allow the models to

be misspecified. Therefore we need to study the asymptotic properties of Θ̂() and Θ̂() when the

underlying model is potentially misspecified and the number of parameters in the model may diverge

to infinity with the sample size 

To proceed, let  (·|x) and  (·|x) denote the conditional probability density function (PDF) and
cumulative distribution function (CDF) of  given x respectively. Let |x (·|x) denote the conditional
PDF of  given x Define the pseudo-true parameter

Θ∗() ≡ arg min
Θ()


h


³
 − x0()Θ()

´i
 (3.1)

In view of the fact that the objective function in (3.1) is convex, one can readily show that Θ∗() exists

and is unique under Assumptions A.1-A.3 given below. For  = 1  define

() ≡ 
h

¡−()|x¢x()x0()i = 

h
|x(Θ

∗0
()x()|x)x()x0()

i


() ≡ 
h

¡
 + ()

¢2
x()x

0
()

i
 (3.2)

() ≡ −1
()

()
−1
()



where () ≡  − x0()Θ∗() indicates the approximation bias for the ’th QR model and  () ≡
 − 1 { ≤ 0}  Let ̄ ≡ max1≤≤ 

We make the following assumptions.

Assumption A.1. (i) (x)   = 1   are IID such that (2.3) holds.

(ii)  ( () ≤ 0|x) =  a.s.

(iii) 
¡
4
¢
∞ and sup≥1(

8
) ≤ x for some x ∞.

Assumption A.2 (i) |x (·|x) is bounded above by a finite constant  and continuous over its support
a.s.

(ii) There exist constants () and ̄() that may depend on  such that 0  () ≤ min
¡
()

¢
≤ max

¡
()

¢ ≤ max([x()x
0
()

]) ≤ ̄() ∞

(iii) There exist constants () and ̄() that may depend on  such that 0  () ≤
min

¡
()

¢ ≤ max
¡
()

¢ ≤ ̄() ∞

(iv) (̄() + ̄()) = (2())

Assumption A.3 Let  ≡ min1≤≤ ()  ≡ min1≤≤ () ̄ ≡ max1≤≤ ̄() and

̄ ≡ max1≤≤ ̄()

(i) As →∞ ̄4̄()→ 0 and ̄4 (log)
4
(2)→ 0

(ii)  −05
2̄3(̄̄) =  (1) for a sufficiently large constant 

Assumption A.1(i) specifies the data are IID. It is easy to see that the results in this paper continue

to hold for weakly dependent time series data under some mixing conditions.4 A.1(ii) specifies the

4For the weakly dependent data, our method does not take into account the dependence between the in-sample and

out-sample data. In other words, we pretend that the in-sample and out-sample data are independent, following the same

strategy taken by Hansen (2008) and Zhang et al. (2013).
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quantile restriction. A.1(iii) implies that 
°°x()°°2 ≤ x


 for  = 1  and  = 1 2 4. These

moment conditions are needed for the application of Boole’s, Bernstein’s, and Markov’s inequalities to

obtain the uniform probability orders of certain sample mean objects. The first requirement in A.1(iii)

is implied by
P∞

=1

¯̄

¯̄
 ∞ and

P∞
=1 | |  ∞ in conjunction with the last condition in A.1(iii).

Our asymptotic study mainly requires the finiteness of (4 ) so that the absolute summability of these

coefficients are not necessary.

A.2(i) is weak and it allows conditional heteroskedasticity in the QR model. A.2(ii)-(iii) are often

assumed in typical QR models when the regressors and quantile error terms are not independent of

each other. Note that we allow () ̄() () and ̄() to depend on the dimension () of the

regressors in model  In particular, it is possible that ̄() and ̄() diverge to infinity and ()

and () converge to zero, both at slow rates when  → ∞ The rates are restricted in A.2(iv) so

that the usual
p
-consistency for the parameter estimate is not affected.

A.3(i)-(ii) impose restrictions on the largest dimension of the models
¡
̄
¢
 the potential number of

models under investigation () and the constants    ̄and ̄. A.3(i) is comparable with the

conditions in the literature on inference with diverging number of parameters. For example, to obtain the

distributional result, Welsh (1989) requires 4 (log)
2
→ 0 for  -estimation with discontinuous but

monotone influence function by assuming that the regressors are nonrandom and uniformly bounded and

the error terms are homoskedastic, and Fan and Peng (2004) and Lam and Fan (2008) require 5→ 0

for their nonconcave penalized likelihood and profile-kernel likelihood estimation, respectively, where 

is the number of parameters in their models. A.3(ii) suggests that we allow  to grow at a polynomial

rate with .

The following theorem studies the asymptotic property of Θ̂() which is of interest in its own.

Theorem 3.1 Suppose Assumptions A.1-A.3 hold. Let () denote an  ×  matrix such that

0 ≡ lim→∞()
0
()

exists and is positive definite, where  ∈ [1 ] is a fixed integer. Then
(i)
°°°Θ̂() −Θ∗()°°° = 

³p


´
;

(ii)
√
()

−12
()

[Θ̂() −Θ∗()]
→  (0 0) 

The proof of the rate of convergence in Theorem 3.1(i) is standard and straightforward. But this is

not the case for the proof of asymptotic normality in Theorem 3.1(ii). Intuitively, we allow the number

of parameters  in the ’th QR model to diverge to infinity with . For this reason, we cannot

consider and derive the asymptotic normality of Θ̂() itself as in Pollard (1991), Knight (1998), or

Koenker (2005, ch.4.2) by using the convexity lemma. Instead, we prove the asymptotic normality for

any arbitrary linear combinations of elements of Θ̂() by relying on the stochastic equicontinuity of the

gradient function as argued in Ruppert and Carroll (1980) and extending the usual Euclidean norm

for a fixed dimensional vector to a weighted norm for a vector with possible diverging dimension. In

the special case where  is fixed, we can simply take () =  and obtain the usual asymptotic
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normality result as in ACF (2006). In this case, we have the usual Bahadur representation:5

√

³
Θ̂() −Θ∗()

´
= −1

()
−12

X
=1

x()

h
 − 1

n
 ≤ Θ∗0()x()

oi
+  (1)  (3.3)

where the first order condition to the minimization problem in (3.1) yields6


nh

 − 1
n
 ≤ Θ∗0()x()

oi
x()

o
= 0 (3.4)

When  → ∞ as  → ∞ the Bahadur representation for
√
[Θ̂() − Θ∗()] is quite complicated and

reported in (A.15) at the end of Appendix A.

Note that Θ̂() is asymptotically equivalent to Θ̂() and its asymptotic normality follows from

Theorem 3.1(ii). The following theorem studies the uniform convergence property of Θ̂() and Θ̂().

Theorem 3.2 Suppose Assumptions A.1-A.3 hold. Then

() max1≤≤max1≤≤
°°°Θ̂() −Θ∗()°°° = 

³p
−1̄ log

´
;

() max1≤≤
°°°Θ̂() −Θ∗()°°° = 

³p
−1̄ log

´


The above theorem establishes the uniform convergence of Θ̂() and Θ̂() to Θ
∗
()

 Under our

conditions, the uniform convergence rate depends only on the sample size  and the largest number of

parameters ̄ in all  models under investigation.

The proof of Theorem 3.2 is not technically trivial because there is no closed form expression for the

QR estimator. Fortunately, Rice (1984) demonstrates that one can choose a bandwidth in nonparametric

regression based on an unbiased estimate of the relevant mean squared error and prove the bandwidth

thus chosen is asymptotically optimal. We extend Rice’s proof strategy to prove the uniform convergence

of our QR estimators by using Shibata’s (1981, 1982) inequality for 2 distributions.

3.2 Asymptotic optimality of the jackknife model averaging

Following Li (1987), Andrews (1991) and Hansen (2007), Hansen and Racine (2012) demonstrate the

asymptotic optimality of their jackknife selected weight vector in the sense of making the average squared

error and its associated conditional risk as small as possible among all feasible weight vectors. In their

case, the conditional risk is equivalent to the out-of-sample prediction mean squared error (MSE). So

the optimally chosen weight vector also minimizes their out-of-sample prediction MSE.

Unfortunately, in our QR framework, we cannot demonstrate the asymptotic equivalence between

the conditional risk in (2.9) and the out-of-sample quantile prediction error in (2.13) under general

conditions. Nevertheless, we can show that our JMA selected weight vector ŵ is optimal in the sense

of making the FPE as small as possible among all feasible weight vectors. Specifically, we prove the

following theorem.

5A close examination of ACF (2006) indicates a negative sign is missing in their representation of the influence function.

6 If the ’th QR model is correctly specified, then 

 () |x()


= 


 − 1{ ≤ Θ∗0

()
x()}|x()


= 0 a.s.
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Theorem 3.3 Suppose Assumptions A.1-A.3 hold. Suppose that 3[̄2(log)4] → ∞ as  → ∞

Then ŵ is asymptotically optimal in the sense that

 (ŵ)

infw∈W  (w)
= 1 +  (1)  (3.5)

The optimality statement in the above theorem specifies an oracle property for the JMA selected

weight vector ŵ in the sense that ŵ is asymptotically equivalent to the infeasible best weight vector to

minimize  (w)  As in the case of least squares model averaging, the limitation of such an optimality

property is obvious: it restricts attention to the estimators which are weighted average of the original

estimators ̂() ≡ x0()Θ̂(),  = 1  If one changes the set of models under consideration, then

ŵ will also change and any JMA estimator based on the given set of models may not outperform an

estimator that is not considered by the given models. Similar remarks also hold for Hansen’s (2007)

MMA estimator and Hansen and Racine’s (2012) and Zhang et al.’s (2013) JMA estimator.

3.3 Quantile regression information criterion

Despite the asymptotic optimality of the QR jackknife model averaging, it is computationally expensive.

The speed of calculating the QR JMA estimator may slow down significantly if the number of models

() and the number of observations () are both large. For this reason, it is worthwhile to propose a

Mallows-type information criterion for QR model averaging.

Let ̂() ≡  − x0()Θ̂() and ̂ (w) ≡
P

=1̂() Define the quantile regression information

criterion (QRIC) as

 (w) =  (w) +
 (1− )

 (−1 ())

X
=1

 (3.6)

where  (w) ≡ −1
P

=1  (̂ (w)) indicates the average in-sample QR prediction error,  and 

denote the CDF and PDF of  ()  respectively, and
P

=1 signifies the number of effective

parameters in the combined estimator. To extend AIC to the least absolute deviation (LAD) regression,

Burman and Nolan (1995) consider the following information criterion for model under the assumption

of correct model specification:

 =

X
=1

¯̄̄
 − x0()Θ̂()

¯̄̄
+



2 (0)
 (3.7)

Apparently,  (w) generalizes the above information criterion to the general QR-based model

averaging information criterion. In particular, in the case of LAD regression ( = 05), if −1 (05) = 0

(i.e., the median model is correctly specified under the assumption that the error terms are independent

of the regressors) and one assigns weight 1 to model  and 0 to all other models, then  (w)

reduces to 2

In the supplementary appendix (Appendix D) we motivate the derivation of the criterion function in

(3.6) from the perspective of JMA, which is similar to the Mallows criterion in the least squares regression

framework. Interestingly, we demonstrate that the second term on the right hand side of (3.6) signifies
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the dominant term in the difference between  (w) and  (w) under certain conditions:

 (w) =  (w) +
 (1− )

 (−1 ())

X
=1

 + smaller order terms. (3.8)

One condition requires that the error term  () should be independent of the regressor x Another

condition requires that all  models should be approximately correct in the sense the model approx-

imation biases are asymptotically  (1) almost surely. The latter condition can be met in the case of

nonparametric sieve estimation where  →∞ as →∞ for = 1  Alternatively, it is also auto-

matically satisfied if one would like to consider the local asymptotic framework as in Hjort and Clasekens

(2003), Leung and Barron (2006), Pötscher (2006), Clasekens and Hjort (2008), Hansen (2009, 2010),

and Liu (2012) so that all models under consideration are asymptotically correctly specified. Note that

these two conditions are not required for our JMA estimator.

To use the above QRIC to select the weight vector w one has to estimate  () ≡ 1 ¡−1 ()¢ 
the sparsity function of  (). Following Koenker (2005, p. 77 and p. 139), we can estimate  () by

̃ () =
h
̃−1 ( + )− ̃−1 ( − )

i
 (2)

where ̃−1 is an estimate of the quantile function −1 of  () based on the quantile residual obtained

from the largest approximating model,  = −15{454 ¡Φ−1 ()¢ [2Φ−1 ()2 + 1]2}15 and  and Φ

are the standard normal PDF and CDF, respectively. Define

w̃ ≡ (̃1  ̃ )≡argmin
w∈W

̂ (w) = argmin
w∈W

"
 (w) +  (1− ) ̃ ()

X
=1



#
 (3.9)

the empirical QRIC selected weight vector. Obviously, there is no closed-form solution to (3.9) and one

has to find the optimal weight vector by linear programming as in typical quantile regressions. Given

w̃ one can obtain the QRIC-based estimator of  by

̃ (w̃)=

X
=1

̃x
0
()Θ̂() (3.10)

We will examine the performance of this estimator with that of ̂ (ŵ) in (2.12) through simulations.

4 Monte Carlo Simulations

In this section, we conduct a small set of Monte Carlo simulations to evaluate the finite sample perfor-

mance of our proposed quantile regression model averaging estimators.

4.1 Data generating processes

The first DGP is similar to that in Hansen (2007):

DGP 1:  = 

1000X
=1

−1 + 
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where 1 = 1 and   = 2 3 are each IID  (0 1) and mutually independent of each other. For

 we consider two cases: (1) homoskedasticity where  is  (0 1) and independent of    = 2 3 ;

(2) heteroskedasticity where  =
P6

=2 
2
 and  is  (0 1) and independent of    = 2 3  As

in Hansen (2007), the population 2 = [ () −  ()] () is controlled by 7 We consider

different choices of  such that 2 = 01 02  09 We consider the sample size  = 50 100 and

150 and the number of models is given by  = b313c where b·c denotes the integer part of ·. For
simplicity, we consider nested models by specifying (1) = {1} (2) = {1 2} etc.
The second DGP is

DGP 2:  = 
exp ()

1 + exp ()
+ 

where  follows IID Weibull(1,1) distribution For the homoskedastic case,  is IID  (0 1)  For the

heteroskedastic case,  = (001 + ) , where  is IID  (0 1)  We choose different ’s to control for

the population 2 such that 2 = 01 02  09We consider nonparametric sieve estimators of the th

conditional quantile function of  given  Specifically, we use Hermite polynomials to approximate

the unknown function  exp () (1 + exp ()) The th term in the Hermite polynomial is:

 = ( − ̄)
−1 · exp

"
− ( − ̄)

2

22

#
  = 1 2 

where ̄ and  are the sample mean and standard deviation of {}  respectively. We consider  =

b313c nested models: (1) = {1}  (2) = {1 2}   for  = 50 100 and 150
The third DGP is similar to DGP 1, but we consider different distributions of  ’s and different

heteroskedasticity structures, and fix the number of models for all sample sizes under investigation.

Specifically,

DGP 3:  = 

30X
=1

−1 + 

where 1 = 1;    = 2 3  50 are each IID 2 (1) and mutually independent of each other; and

 =  and  =
P30

=2 
−1 for the homoskedasticity and heteroskedasticity cases, respectively,

where  is normalized 2 (3) with mean zero and variance one and independent of  ’s. Different ’s

are chosen to control for the population 2 such that 2 = 01 02  09 The number of models () is

fixed at 20 which is relatively large for the sample sizes we consider here ( = 50, 100, and 150). Again,

only nested models are considered: (1) = {1}  (2) = {1 2}   (20) = {1 2  20} for
 = 1 2  20 respectively.

The fourth DGP is nonlinear in each term:

DGP 4:  = 

⎡⎣1 + 25X
=2

−1Φ ()

⎤⎦+ 

where 1 = 1, the remaining  ’s ( = 2  25) are each IID  (0 1) and mutually independent of

each other, and Φ (·) is the standard normal CDF function.  =  and  = (001+
P11

=2 
2
) for the

7For the ease of generating data in the simulation, here we use 2 defined in the least square sense, as in Hansen

(2007). Alternatively, one may use the 2 defined for quantile regressions, see, e.g., Koenker and Machado (1999, eq.(7)).
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homoskedasticity and heteroskedasticity cases respectively, where  is IID  (0 1) and independent of

 ’s. Different ’s are chosen to ensure that the population 2 = 01 02  09 We consider  = 20

nested linear models: (1) = {1}  (2) = {1 2}   (20) = {1 2  20} for different sample
sizes ( = 50 100 and 150) and for  = 1 2  20 respectively.

4.2 Implementation

We use the following four methods to choose the weights in the model averaging: () JMA or cross-

validation (CV) averaging, () AIC model averaging, () BIC model averaging, and () QRIC.8

JMA and QRIC are defined above. AIC and BIC model averaging are alternative ways of implementing

model averaging. They are often referred to as “smoothed” averaging (see, e.g., Buckland et al. (1997)),

which uses exponential weights of the form exp(−2)
P

=1 exp(−2) where  is an information

criterion for model . In the quantile regression context, following Machado (1993), for the th model,

the AIC and BIC are respectively defined as

 = 2 ln

"
1



X
=1



³
 − Θ̂0()x()

´#
+ 2 and

 = 2 ln

"
1



X
=1



³
 − Θ̂0()x()

´#
+  ln () 

Thus, the AIC and BIC weights for model  are respectively defined as

̂
 =

exp
¡−1

2


¢P
=1

¡
exp

¡−1
2


¢¢ and ̂
 =

exp
¡−1

2


¢P
=1

¡
exp

¡−1
2


¢¢ .
We evaluate each method using the out-of-sample quantile prediction error. For each replication, we

generate { }100=1 as out-of-sample observations. For the th replication, the final prediction error is

calculated as

 () =
1

100

100X
=1



"
 −

X
=1

̂ · Θ̂0()()
#


where ̂ is chosen by one of the four methods. Then we average the out-of-sample prediction error

over  = 200 replications:  = 1


P
=1  ()  The smaller  the better the method in

terms of the out-of-sample quantile prediction error.

4.3 Evaluations

We normalize the final quantile predication error by dividing by the prediction error of the infeasible

optimal single model, as in Hansen (2007). To save space, we only report the results for the heteroskedas-

ticity case. The results for the homoskedasticity case can be found in the supplementary appendix (see

Figures S1-S4 in Appendix E).

8We also try the corresponding model selection criteria and find that the model selection is always dominated by the

corresponding model averaging. For example, CV model selection is dominated by JMA model averaging. Thus we only

show the results of model averaging.
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Figure 1 shows the results for DGP 1 with  = 05 and  = 005 When  = 05 no method clearly

denominates the others. The performances of QRIC are slightly better than JMA when the sample size

is large. The performance of BIC seems to be the worst. When  = 005 it is clear that JMA dominates

all the other three methods. BIC seems to be the second best.

Figure 2 shows the results for DGP 2. When  = 05 JMA is the best, followed by BIC. The

performances of AIC and QRIC are worse than those of JMA and BIC. When  = 005 similar to DGP

1, JMA dominates all other three methods in all cases.

The results for DGPs 3 and 4 are reported in Figures 3 and 4, respectively. We find the same pattern

that for  = 005 JMA is clearly the dominating method. When  = 05 there is no clear dominating

method. But for most cases, both JMA and QRIC perform relatively well, especially when the sample

size is not small.

In general, the performance of QRIC is poor when  = 005 One possible explanation is that

QRIC requires the estimation of the sparsity function, which is difficult to estimate for  = 005 When

 = 05 as a referee kindly points out, the performance of QRIC is also relatively poor for DGP 2. This

could be due to the poor approximation of the sieve estimator when the number of terms is small. As

discussed in Section 3.3, one condition for QRIC to work is that all models under consideration should

be approximately correct. The relatively good performance of QRIC in DGPs 1, 3 and 4 could be due

to the design of our DGPs. In all these three DGPs, the regressors ( or Φ ()) have a coefficient

−1 which means that the additional regressors become less and less important. Thus, ignoring the

latter regressors may not lead to serious misspecification of the models.

5 Empirical Applications

5.1 Quantile forecast of excess stock returns

Forecasting quantiles of stock returns is widely used for VaR (Value-at-Risk) and essential to financial

risk management. In this subsection, we apply our JMA and QRIC estimators to predict the quantiles

of excess stock returns.9

The data is the same as in Campbell and Thompson (2008) and Jin et al. (2014). The data

is monthly from January 1950 to December 2005 with total number of observations  = 672. The

dependent variable  is the excess stock returns, which is defined as the monthly returns of S&P 500

index minus the risk-free rate. There are 12 regressors in the dataset as shown in Table 1.

The detailed explanations of these variables can be found in Jin et al. (2014). The order of the

12 regressors above is based on the absolute value of their correlation with the dependent variable.

For example, 1 has the largest absolute value of correlation with  We construct 13 candidate nested

models with regressors {1} {1 1} {1 1 2  12} respectively.
We construct one-period-ahead forecasts of the quantiles of excess stock returns using the fixed

in-sample size (1) of 48, 60, 72, 96, 120, 144 and 180. We compare different forecast methods with

9 In both empirical applications, we focus on quantile regression. The results for mean regressions are available upon

request.
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Figure 1: Out-of-sample performance: DGP 1, Heteroskedasticity
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Figure 2: Out-of-sample performance: DGP 2, Heteroskedasticity
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Figure 3: Out-of-sample performance: DGP 3, Heteroskedasticity
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Figure 4: Out-of-sample performance: DGP 4, Heteroskedasticity
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Table 1: Regressors for the stock returns data

Regressor Names Correlation with 

1 Default Yield Spread 0.075
2 Treasury Bill Rate -0.063
3 Net Equity Expansion 0.056
4 Term Spread 0.053
5 Dividend Price Ratio 0.048
6 Earnings Price Ratio 0.043
7 Long Term Yield 0.042
8 Book-to-Market Ratio -0.028
9 Inflation 0.019
10 Return on Equity -0.015
11 Lagged dependent variable 0.014
12 Smoothed Earnings Price Ratio -0.012

Table 2: Out-of-sample 2 for the stock returns data

Model Averaging Model Selection
1  JMA AIC BIC QRIC CV AIC BIC

48 0.5 0.075 -0.009 0.007 0.031 -0.023 -0.012 -0.010
60 0.5 0.075 -0.014 0.012 0.038 -0.037 -0.027 -0.007
72 0.5 0.063 -0.026 -0.003 0.019 -0.043 -0.025 -0.017
96 0.5 0.058 -0.031 -0.018 0.011 -0.031 -0.034 -0.025
120 0.5 0.012 -0.044 -0.043 -0.011 -0.060 -0.044 -0.056
144 0.5 -0.003 -0.067 -0.060 -0.026 -0.068 -0.067 -0.074
180 0.5 0.032 -0.006 0.024 0.032 -0.014 -0.010 0.011

48 0.05 -0.135 -0.629 -0.602 -0.670 -0.527 -0.683 -0.653
60 0.05 -0.142 -0.680 -0.672 -0.695 -0.634 -0.694 -0.726
72 0.05 -0.007 -0.456 -0.450 -0.487 -0.390 -0.483 -0.460
96 0.05 -0.029 -0.251 -0.247 -0.210 -0.248 -0.253 -0.263
120 0.05 0.051 -0.135 -0.147 -0.136 -0.122 -0.140 -0.151
144 0.05 0.038 -0.107 -0.116 -0.100 -0.090 -0.107 -0.128
180 0.05 0.025 -0.043 -0.045 -0.034 -0.114 -0.041 -0.045

the simple historical unconditional quantile. Following Campbell and Thompson (2008), we define the

out-of-sample 2 as 2 = 1 −
−1

=1
(+1−̂+1|)−1

=1
(+1−̄+1|)

 where ̂+1| is the one-period-ahead prediction of

the th quantile of the excess return at time  using data from the past 1 periods (period  to period

 − 1 + 1); ̄+1| is the simple historical th unconditional quantile over the past 1 periods and is

used as the benchmark prediction. The results of the out-of-sample 2 are presented in Table 2. It

is clear that JMA dominates all other model averaging and model selection methods. As discussed

in the literature, for predicting stock returns, the simple historical mean estimator cannot be easily

beaten (see, e.g., Goyal and Welch, 2008). However, our JMA estimators can outperform the historical

unconditional quantiles for many scenarios. For  = 05 JMA outperforms the benchmark for most of

the cases. For  = 005 JMA outperforms the benchmark when the in-sample size is relatively large.

Since conditional quantiles can also be interpreted as the VaR, we also define the out-of-sample

violation rate as the percentage that the out-of-sample realization is smaller than the prediction of its
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Table 3: Out-of-sample violation rate

Model Averaging Model Selection
1  JMA AIC BIC QRIC CV AIC BIC

48 0.5 0.502 0.503 0.498 0.498 0.522 0.504 0.522
60 0.5 0.487 0.482 0.489 0.482 0.489 0.478 0.498
72 0.5 0.503 0.500 0.503 0.493 0.510 0.503 0.495
96 0.5 0.474 0.460 0.463 0.451 0.472 0.460 0.469
120 0.5 0.462 0.451 0.460 0.458 0.469 0.451 0.449
144 0.5 0.445 0.434 0.443 0.441 0.430 0.434 0.428
180 0.5 0.441 0.415 0.437 0.435 0.429 0.413 0.439

48 0.05 0.139 0.251 0.248 0.253 0.186 0.256 0.255
60 0.05 0.144 0.258 0.258 0.266 0.201 0.263 0.265
72 0.05 0.128 0.212 0.203 0.217 0.168 0.213 0.210
96 0.05 0.101 0.155 0.155 0.142 0.137 0.153 0.158
120 0.05 0.082 0.130 0.132 0.130 0.121 0.130 0.132
144 0.05 0.070 0.097 0.095 0.097 0.102 0.097 0.102
180 0.05 0.049 0.053 0.053 0.051 0.083 0.051 0.053

th quantile (see, e.g., Kuester et al., 2006): ̂ = 1
−1

P−1
=1

1{+1  ̂+1|} where ̂+1| is an

estimator of the th conditional quantile of +1 given  at time . Thus, ideally, ̂ should be close

to   Table 3 presents the out-of-sample performance of various methods. The performances of all the

methods are similar when  = 05 When  = 005 JMA clearly dominates all the other methods. Also

in general, when the estimation sample size (1) increases, ̂ becomes closer to 0.05 for all methods.

5.2 Quantile forecast of wages

In this subsection, our new averaging estimators are applied to predict the quantiles of wages. This is

an important topic in labor economics, as quantiles are often used to characterize wage inequality (see,

e.g., Angrist and Pischke, 2009, Chapter 7).

The data is a random sample of the US Current Population Survey for the year 1976 fromWooldridge

(2003). It is a widely used dataset, see, e.g., Hansen and Racine (2012). The sample size is  = 526. The

dependent variable is the logarithm of average hourly earnings. There are 20 regressors in the dataset.

We order these regressors according to the absolute value of their correlation with the dependent variable

and construct 11 candidate nested models using the first 10 regressors. These 10 regressors are shown

in Table 4.

We randomly split the sample into an estimation sample of size 1 and an evaluation sample of size

2 ≡ −1We construct the out-of-sample 2 : 2 = 1−
2

=1  (−̂)2
=1  (−̄)

 where {}2=1 is the evaluation
sample, {̂}2=1 and {̄}2=1 are the th conditional quantile predictions and the unconditional quantile
estimates using the estimation sample, respectively. We repeat this sample splitting exercise for 200

times and report the average of the out-of-sample 2 We consider different estimation sample sizes

1 = 50 100 150 and 200. Table 5 presents the out-of-sample 2 For  = 05 the performances of

JMA, AIC model averaging, and QRIC are similar and better than other methods. For  = 005 JMA

clearly dominates all other methods. This again confirms the simulation results that JMA has the best
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Table 4: Regressors for the wage data

Regressor Names Explanation Correlation with 

1 Professional Occupation =1 if in professional occupation 0.442
2 Education years of education 0.406
3 Tenure years with current employer 0.347
4 Female =1 if female -0.340
5 Service Occupation =1 if in service occupation -0.253
6 Married =1 if married 0.229
7 Trade =1 if in wholesale or retail -0.190
8 SMSA =1 if live in SMSA 0.178
9 Services =1 if in services industry -0.142
10 Clerk Occupation =1 if in clerical occupation -0.141

Table 5: Out-of-sample 2 for the wage data

Model Averaging Model Selection
1  JMA AIC BIC QRIC CV AIC BIC

50 0.5 0.177 0.173 0.165 0.175 0.150 0.151 0.144
100 0.5 0.217 0.218 0.204 0.218 0.209 0.211 0.192
150 0.5 0.231 0.232 0.220 0.232 0.225 0.230 0.210
200 0.5 0.240 0.241 0.233 0.241 0.236 0.240 0.225

50 0.05 -0.071 -0.419 -0.255 -0.588 -0.139 -0.510 -0.342
100 0.05 0.036 -0.035 -0.015 -0.039 -0.036 -0.051 -0.044
150 0.05 0.064 0.033 0.032 0.036 0.012 0.026 0.019
200 0.05 0.074 0.061 0.060 0.063 0.038 0.057 0.054

performance for extreme quantiles.

6 Concluding Remarks

In this paper, we provide a new averaging quantile regression estimator, namely jackknife model aver-

aging (JMA) quantile regression estimator. The estimator uses leave-one-out cross-validation to choose

the weight. We show that the weight chosen by our method is asymptotically optimal in terms of

minimizing the out-of-sample final prediction error. The numerical algorithm is also simple using a

linear programming. Our simulations suggest that our new method outperforms the other QR model

averaging and selection methods, especially for extreme quantiles. We apply our new JMA estimator to

predict quantiles of excess stock returns and wages.

APPENDIX

In the following we will use Knight’s (1998) identity repeatedly:

 (+ )−  () =  () +

Z −
0

[1 { ≤ }− 1 { ≤ 0}] 

where  () =  − 1 {  0}  Recall that ()

¡
Θ()

¢ ≡P
=1  ( − x0()Θ())
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A Proof of Theorem 3.1

(i) Let  =
p
. Let v() ∈ R such that

°°v()°° =  where  is a large enough constant.

We want to show that for any given   0 there is a large constant  such that, for large  we have


n
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³
Θ∗() + v()

´
 ()

³
Θ∗()

´o
≥ 1 −  This implies that with probability

approaching 1 (w.p.a.1) there is a local minimum Θ̂() in the ball {Θ∗() + v() :
°°v()°° ≤ } such

that ||Θ̂() −Θ∗()|| =  ()  It is also the global minimum by the convexity of ()

Let () ≡  − x0()Θ∗() Then by Knight’s identity

()
¡
v()

¢ ≡ ()
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Θ∗() + v()

´
−()

³
Θ∗()

´
=

X
=1

h


³
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
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+ ()3
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 say, (A.1)

where () () = 1
©
 + () ≤ 

ª− 1© + () ≤ 0
ª


The first order condition for the population minimization problem (3.1) implies that


£

¡
 + ()

¢
x()

¤
= 0 (A.2)

which is analogous to the last identity on page 545 of Angrist et al. (2006). It follows that by Assumption

A.2()  
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For ()2
¡
v()

¢
 by the law of iterated expectations, Taylor expansion, Lebesgue dominated

convergence theorem, and Assumption A.2() we have w.p.a.1
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Noting that 
¡
()3|X

¢
= 0 and by Assumption A.1
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Observe that
¡
̄() + ̄()

¢
 = (2

()
) under Assumption A.2(iv). By (A.3)-(A.5) and allowing°°v()°° to be sufficiently large, both ()1 and ()3 are dominated by ()2 which is positive

w.p.a.1. This, in conjunction with (A.1), implies that ()
¡
v()

¢
 0 w.p.a.1. This proves (i).

(ii) Let ∆̂() ≡
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By the fact that tr() ≤ max ()tr() for symmetric matrix  and p.s.d. matrix  (e.g., Bernstein

(2005, Proposition 8.4.13)),
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Then for any   0
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Combining (A.10)-(A.12) yields the claim in part (ii).

Below we demonstrate (A.6)-(A.8) hold under Assumptions A.1-A.3. Since  is fixed, without loss

of generality we assume that  = 1 First, we show (A.6). Write () ≡ ()x() = +
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where  +
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(∆) are analogously defined. It suffices to show that each term on the right hand side of (A.13)

is  (1)  We only show the first term is  (1) as the second term can be treated analogously.

Let D ≡ {∆ ∈ R : k∆k ≤ √} for some   ∞ Let ||∞ denote the maximum of the

absolute values of the coordinates of  By selecting 1 =
¡
22

¢
grid points, ∆1 · · · ∆1

 we can

cover D by cubes D =
©
∆ ∈ R : |∆−∆|∞ ≤ 

ª
with sides of length  where  = 

12
 2 Let

() ≡  − x0()Θ∗() In view of the fact  (·) is monotone and by Minkowski’s inequality, we can
readily show that

sup
k∆k≤√

¯̄̄
 +
()

(∆)−  +
()

(0)− ̄ +
()

(∆) + ̄ +
()

(0)
¯̄̄

≤ max
1≤≤1

¯̄̄
 +
()

(∆)−  +
()

(0)− ̄ +
()

(∆) + ̄ +
()

(0)
¯̄̄

+ max
1≤≤1

¯̄̄̄
¯−12

X
=1


h
() () 

+
()

i
−

h
() (−) +()

i¯̄̄̄¯
+ max
1≤≤1

¯̄̄̄
¯−12

X
=1

hh
() ()− () (0)

i
+
()
−

nh
() ()− () (0)

i
+
()

oi¯̄̄̄¯
≡ 1() + 2() + 3() say,

where () () = 
¡
() − −12∆0x() + −12

°°x()°°¢  For 2() we apply Taylor expansion,
Assumption A.2(i), and the fact that +

()
≤
¯̄
x()

¯̄
≤ kk

°°x()°° to obtain
2() = max

1≤≤1

¯̄̄
12

n

³
−() + −12∆0x() + −12||x()|| |x

´
+
()

o
−

n

³
−() + −12∆0x() − −12||x()|| |x

´
+
()

o¯̄̄
≤ 2

n°°x()°° +()o ≤ 2 kk °°x()°°2
= 

³

−12
()



´
= (

−12
()

32 2) =  (1) 

For 1() note that

 +
()

(∆)−  +
()

(0)− ̄ +
()

(∆) + ̄ +
()

(0)

= −1
X
=1

()1
n
+
()
≤ 1

o
+ −1

X
=1

()1
n
+
()

 1

o
≡ 1 +2 say,

where () ≡ 12[()0 − (()0)] ()0 = [
¡
() − −12∆0x()

¢ − 
¡
()

¢
]+
()



and 1 = (
4

−4
()

)18 It suffices to prove 1() =  (1) by showing that

max
1≤≤1

kk =  (1) for  = 1 and 2 (A.14)

Note that Var
h
()1{+() ≤ 1

12}
i
≤ [

¯̄

¡
() − −12∆0x()

¢− 
¡
()

¢¯̄
(+

()
)2] ≤

1
−1
()

12 for some 1 ∞ By Boole’s and Bernstein’s inequalities (e.g., Serfling (1980, p.95)),
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we have



µ
max

1≤≤1

k1k ≥ 

¶
≤ 1 max

1≤≤1



Ã°°°°° 1
X
=1

()1{+() ≤ 1}
°°°°° ≥ 

!

≤ 21 exp

Ã
− 2

21
−1
()

12 + 41213

!
≤ 2 exp (3 log)× exp (−4 log) = 2 exp (− log) =  (1) 

because (−1
()

12) = 12() À  log and (121) = 38
−12
 

12

()
À  log

by Assumption A.3(i). Let ̄() = ()
−12
 

12

()
 Noting that [

¯̄
()x()

¯̄8
] = (4

−4
()

) by

arguments as used to obtain (A.9), 
¯̄
̄()

¯̄8
=  (1)  By Boole’s and Markov’s inequalities, Assump-

tion A.1(iii), the fact that 4
−4
()

81 = (1) by construction, and Lebesgue dominated convergence

theorem



µ
max

1≤≤1

k2k ≥ 

¶
≤ 

µ
max
1≤≤

+
()

 1

¶
≤ 

³¯̄
̄()

¯̄
 −12 

12

()
1

´
≤

4
−4
()

81

h¯̄
̄()

¯̄8
1
n¯̄
̄()

¯̄
 −12 

12

()
1

oi
=  (1) 

Thus (A.14) follows and we have shown 1() =  (1)  By the same token, we can show that 3() =

 (1)  Consequently (A.6) follows.

Next, we show (A.7). By Assumptions A.1 and A.2,

sup
k∆k≤√

°°̄() (∆)− ̄() (0) +()∆
°°
()

= sup
k∆k≤√

°°°°°−12
X
=1


nh


³
−() + −12∆0x()|x

´
− 

¡−()|x¢ix()o−()∆

°°°°°
()

= sup
k∆k≤√

°°°°°−1
X
=1



½Z 1

0

h

³³
−() + −12∆0x()

´
|x
´
− 

¡−()|x¢i  x()x0()∆¾
°°°°°
()

≤  sup
k∆k≤√

−32
X
=1


°°°∆0x()x()x0()∆°°°

()

≤ −12
−12
()

sup
k∆k≤√

n

°°∆0x()°°2o12½ °°°x()x0()∆°°°2¾12

= −12−12
()


³
̄
12

()
12

´

³
32

´
= 

³

−12
()

̄
12

()
2

12
´
= (1)

where we use the fact that 
°°∆0x()°°2 ≤ max([x()x

0
()]) k∆k2 = 

¡
̄()

¢
by Assumptions

A.2(i)-(ii).

Now we show (A.8). By the proof of Lemma A2 in Ruppert and Carroll (1980) (see, Welsh (1989,
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p. 360)) and Assumptions A.1-A.3,

||()(∆̂())||()
=

°°°°°−12
X
=1

 ( − Θ̂0()x())x()
°°°°°
()

≤ −12
X
=1

1
n
 − Θ̂0()x() = 0

o ¯̄
()x()

¯̄
≤ −12 max

1≤≤

¯̄
()x()

¯̄
=  (1)

because by Boole’s and Markov’s inequalities 
¡
max1≤≤

¯̄
()x()

¯̄
≥ 12

¢ ≤  (
¯̄
()x()

¯̄
≥

12) ≤ 8
−3[

¯̄
()x()

¯̄8
] = 8

−3(4
−4
()

) = (−312 −4
()

) =  (1) by Assumption

A.3(i). This completes the proof of part (ii). ¥
Remark. The proof of (A.10) indicates

√
()

−12
()

[Θ̂()−Θ∗()] = ()
−12
()

−1
()

−12
P

=1 x()

×
h
 − 1

n
 ≤ Θ∗0()x()

oi
+  (1)  from which we obtain the following Bahadur representation for

√
[Θ̂() −Θ∗()] :

√
[Θ̂() −Θ∗()] =

h
()

−12
()

i+
()

−12
()

−1
()

−12
X
=1

x()

h
 − 1

n
 ≤ Θ∗0()x()

oi
+ s.m.

= 

−12
()

0
()

−1
()

−12
X
=1

x()

h
 − 1

n
 ≤ Θ∗0()x()

oi
+ s.m. (A.15)

where s.m. denotes smaller order terms and  =  (0)−10.

B Proof of Theorem 3.2

We only prove (i) as the proof of (ii) is analogous. Let  ≡ 
p
−1̄ log for some large constant

 ∞ Let ̄()
¡
Θ()

¢ ≡ [ ( − x0()Θ())]. Define

 () ≡ inf
1≤≤

infΘ()−Θ∗()


h
̄()

¡
Θ()

¢− ̄()(Θ
∗
())

i
 (B.1)

and S () ≡ {Θ() : ||Θ()−Θ∗()||   ||Θ()−Θ∗()|| =  (1)} By Knight’s identity, the definition
of ()(≡  − x0()Θ∗()) and Assumption A.2(ii) for any Θ() ∈ S () we have

̄()
¡
Θ()

¢− ̄()

³
Θ∗()

´
= 

h


³
 − x0()Θ()

´
− 

³
 − x0()Θ∗()

´i
= 

h


³
 + () − x0()

h
Θ() −Θ∗()

i´
− 

¡
 + ()

¢i
= 

(Z x0()[Θ()−Θ∗()]

0

£
1
©
 + () ≤ 

ª− 1© + () ≤ 0
ª¤



)

= 

(Z x0()[Θ()−Θ∗()]

0

£

¡−() + |x

¢− 
¡−()|x¢¤ 

)

' 1

2

h
Θ() −Θ∗()

i0
()

h
Θ() −Θ∗()

i
≥ 

2


2

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Then by Boole’s inequality, (B.1), and the fact that ̄()(Θ̂())− ̄()(Θ
∗
()
) ' 1

2
[Θ̂()−Θ∗()]0()

[Θ̂() −Θ∗()] we have



µ
max
1≤≤

max
1≤≤

°°°Θ̂() −Θ∗()°°° ≥ 

¶
≤  max

1≤≤
max

1≤≤

³°°°Θ̂() −Θ∗()°°° ≥ 

´
≤  max

1≤≤
max

1≤≤

n
̄()

³
Θ̂()

´
− ̄()

³
Θ∗()

´
≥  ()

o
≈  max

1≤≤
max

1≤≤

©
W() ≥ 2 ()

ª
 (B.2)

where W() ≡ [Θ̂() −Θ∗()]0()[Θ̂() −Θ∗()] The key is to bound 
©
W() ≥ 2 ()

ª


Following the proof of Theorem 3.1(ii), we can also show that 12()
−12
()

[Θ̂() − Θ∗()]
→

 (0 0)  which implies that

̃() ≡ 12
h
()

0
()

i−12
()

−12
()

[Θ̂() −Θ∗()]
→  (0 )  (B.3)

Rewriting 12[Θ̂()−Θ∗()] in terms of ̃() yields 12[Θ̂()−Θ∗()] = {[() 0()]−12()
−12
()

}+̃()
It follows that

W() = 
h
Θ̂() −Θ∗()

i0
()

h
Θ̂() −Θ∗()

i
= ̃

0
()

"½h
()

0
()

i−12
()

−12
()

¾+#0
()

½h
()

0
()

i−12
()

−12
()

¾+
̃()

≤ max
¡
()

¢
̃
0
()

"½h
()

0
()

i−12
()

−12
()

¾+#0½h
()

0
()

i−12
()

−12
()

¾+
̃()

= max
¡
()

¢
̃
0
()

½h
()

0
()

i−12
()

−1
()

0()
h
()

0
()

i−12¾−1
̃()

= max
¡
()

¢
̃
0
()

½h
()

0
()

i12 ³
()

−1
()

 0()
´−1 h

()
0
()

i12¾
̃()

≤ max
¡
()

¢
max

¡
()

¢
̃
0
()̃() ≤

¡
̄̄

2


¢ °°°̃()°°°2 by Assumptions A.2 () - ()
where we have used the fact that 0 ≤ max ()

0 for any real symmetric matrix  and con-

formable matrix  and that +0+ = (0)+ (see, e.g., Bernstein (2005, Proposition 6.1.6xvii )). Let

 ≡ ̄̄
2
 and ̄ = max1≤≤  Then by Lemma 2.1 of Shibata (1981)

 max
1≤≤

max
1≤≤


©
W() ≥ 2 ()

ª
≤  max

1≤≤
max

1≤≤


½°°°̃()°°°2 ≥ 2 () ¾
≤ lim sup

→∞
 max

1≤≤

©
2 () ≥ 2 () 

ª
≤ lim sup

→∞
 

©
2
¡
̄
¢ ≥ 2 () ª

≤ lim sup
→∞

 
©
2
¡
̄
¢ ≥ ̄ + [2 − ̄]

ª
= lim sup

→∞
 exp

µ
− [

2
 − ̄]

2

©
1− log ¡2̄¢ [2̄ − 1]ª¶ = 0 (B.4)
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because  exp
¡−052¢ =  −05

2̄3(̄̄) =  (1) for sufficiently large  and log
¡
2̄

¢
[2̄ − 1] =  (1) under our assumptions. Combining (B.2)-(B.4), we have shown that lim sup

→∞

³
max1≤≤max1≤≤

°°°Θ̂() −Θ∗()°°° ≥ 

´
= 0 and thus () follows. ¥

C Proof of Theorem 3.3

Following the proof of Theorem 2.1 in Li (1987), if we can show that the difference  (w)− (w)

is negligible compared with  (w) uniformly for any w ∈W, then the optimality property (3.5) is
established for ŵ More precisely, it suffices to show that

sup
w∈W

¯̄̄̄
 (w)−  (w)

 (w)

¯̄̄̄
=  (1)  (C.1)

Let x (·) denote expectation with respect to x By Knight’s identity and the fact that



(Z 
=1 x

0
()Θ̂()−

0

[ (|x)−  (0|x)]|D

)
= x

(Z 
=1 x

0
()Θ̂()−

0

[ (|x)−  (0|x)]
)


we have

 (w)−  (w)

=

(
1



X
=1

"


Ã
 −

X
=1

x
0
()Θ̂()

!
−  ()

#)
− { (w)− [ ()]}

+
1



X
=1

{ ()− [ ()]}

=
1



X
=1

"
 −

X
=1

x
0
()Θ̂()

#
 () +

1



X
=1

Z 
=1 x

0
()Θ̂()−

0

[1 { ≤ }− 1 { ≤ 0}] 

−
"Z 

=1 x
0
()Θ̂()−

0

[1 { ≤ }− 1 { ≤ 0}]  | D

#
+
1



X
=1

{ ()− [ ()]}

= 1 (w) + 2 (w) + 3 (w) + 4 (w) + 5

where

1 (w) ≡ 1



X
=1

"
 −

X
=1

x
0
()Θ̂()

#
 () 

2 (w) ≡ 1



X
=1

Z 
=1 x

0
()Θ̂()−

0

[1 { ≤ }− 1 { ≤ 0}−  (|x) +  (0|x)] 

3 (w) ≡ 1



X
=1

(Z 
=1 x

0
()Θ̂()−

0

[ (|x)−  (0|x)] 

−x
"Z 

=1 x
0
()Θ̂()−

0

[ (|x)−  (0|x)] 
#)


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4 (w) ≡ 1



X
=1

x

(Z 
=1 x

0
()Θ̂()−

0

[ (|x)−  (0|x)] 

−x
"Z 

=1 x
0
()Θ̂()−

0

[ (|x)−  (0|x)] 
#)

 and

5 ≡ 1



X
=1

{ ()− [ ()]} 

We prove (C.1) by showing that (i) minw∈W  (w) ≥  [ ()] −  (1) ; (ii) supw∈W |1 (w)|
=  (1) ; (iii) supw∈W |2 (w)| =  (1) ; (iv) supw∈W |3 (w)| =  (1) ; (v) supw∈W |4 (w)|
=  (1) ; and (vi) 5 =  (1)  (vi) follows by the weak law of large numbers so we only show (i)-(v)

below.

We first show (i). Let  (w) ≡  −P
=1x

0
()
Θ∗
()

 Then by Knight’s identity, (A.2), Taylor

expansion, Jensen inequality, Assumption A2, and Theorem 3.2

 (w)− [ (+  (w))]

= 

"


Ã
+  (w)−

X
=1

x
0
()

³
Θ̂() −Θ∗()

´!
−  (+  (w)) | D

#

= 

"Z 
=1 x

0
()(Θ̂()−Θ∗())

0

[1 {+  (w) ≤ }− 1 {+  (w) ≤ 0}]  | D

#

= x

"Z 
=1 x

0
()(Θ̂()−Θ∗())

0

[ (−  (w) |x)−  (− (w) |x)] 
#

= x

"Z 
=1 x

0
()(Θ̂()−Θ∗())

0

 (− (w) |x) 
#
+  (1)

=
1

2
x

⎧⎨⎩ (− (w) |x)
"

X
=1

x
0
()

³
Θ̂() −Θ∗()

´#2⎫⎬⎭+  (1)

≤ 1

2
x

(
 (− (w) |x)

X
=1



h
x0()

³
Θ̂() −Θ∗()

´i2)
+  (1)

=
1

2

(
X
=1



³
Θ̂() −Θ∗()

´0

h
 (− (w) |x)x()x0()

i ³
Θ̂() −Θ∗()

´)
+  (1)

≤ ̄

2
max

1≤≤

°°°Θ̂() −Θ∗()°°°2 +  (1) =  (1) 

Let  () ≡  [ (+ )−  ()] where  ∈ R It is well known that  () has a global minimum at

 = 0 This implies that minw∈W  [ (+  (w))] ≥  [ ()]. Consequently, we have

min
w∈W

 (w) = min
w∈W

 [ (+  (w))]−  (1) ≥  [ ()]−  (1) 
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(ii) We decompose 1 (w) as follows

1 (w) =
1



X
=1

"
 −

X
=1

x
0
()Θ

∗
()

#
 ()−

1



X
=1

(
X
=1

x
0
()

h
Θ̂() −Θ∗()

i)
 ()

≡ 11 (w)− 12 (w) 

In view of that  [11 (w)] = 0 and Var(11 (w)) = (̄) we have 11 (w) =  (1) for each

w ∈W. If both and ̄ ≡ max1≤≤  are finite, we argue that one can apply the Glivenko-Cantelli

theorem (e.g., Theorem 2.4.1 in van der Vaart and Wellner (1996)) to conclude supw∈W |11 (w)| =
 (1)  To see this, consider the class of functions

G ≡ { (· ·;w) : w ∈W}

where  (· ·;w) : R × Rx → R is defined by  (x;w) = [ −
P

=1x
0
()
Θ∗
()
] ()  Define

the metric |·|1 on W where

|w− w̄|1 =
X
=1

| − ̄| 

for any w =(1   ) ∈ W and w̄ =(̄1  ̄ ) ∈ W. It is easy to see the -covering number of
W with respect to |·|1 is given by N (W |·|1) = (1−1) By Theorem 2.7.11 in van der Vaart and

Wellner (1996), this, together with the fact that

| (x;w)−  (x; w̄)| =
¯̄̄̄
¯
X
=1

( − ̄)x
0
()Θ

∗
() ()

¯̄̄̄
¯ ≤ Θ |w − w̄|1 max

1≤≤

°°x()°°
where Θ ≡ max1≤≤ ||Θ∗()|| = 

¡
̄12

¢
and that max1≤≤

°°x()°°  ∞ in the case of fi-

nite  and ̄ implies that the -bracketing number of G with respect to the 1 ( )-norm is given by

N[] (G 1 ( )) ≤ −1 for some finite  As a result, one can apply Theorem 2.4.1 in van der Vaart

and Wellner (1996) to conclude that G is Glivenko-Cantelli.
The above argument breaks down when either  →∞ or ̄ →∞ as →∞ To allow for diverging

 or ̄ let  ≡ 1(̄ log) We create grids using regions of the form  =
©
w : |w−w |1 ≤ 

ª


By selecting w = (1   ) to lay on a grid, W can be covered with  = 
¡
1−1

¢
regions  ,

 = 1   Observe that

sup
w∈

|11 (w)− 11 (w)| = sup
w∈

¯̄̄̄
¯
X
=1

( − )
1



X
=1

x0()Θ
∗
() ()

¯̄̄̄
¯

≤ Θ max
1≤≤

1



X
=1

°°x()°° sup
w∈

X
=1

| − |

≤ Θ

³
̄12

´
 =  (1) 

where the result holds uniformly in  Here we have used the fact that

max
1≤≤

1



X
=1

°°x()°° ≤ max
1≤≤

1



X
=1


°°x()°°+ max

1≤≤

¯̄̄̄
¯ 1

X
=1

£°°x()°°−
°°x()°°¤

¯̄̄̄
¯

= 
³
̄12

´
+  (1) = 

³
̄12

´
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by the analogous arguments as used in the study of 11 (w) below. Therefore

sup
w∈W

|11 (w)| = max
1≤≤

sup
w∈

|11 (w)|

≤ max
1≤≤

|11 (w)|+ max
1≤≤

sup
w∈

|11 (w)− 11 (w)|

= max
1≤≤

|11 (w)|+  (1) 

Let  (w) ≡  −
P

=1x
0
()Θ

∗
() and  =

¡
̄2

¢14
 Noting that | (w)| = |

P
=1[

−x0()Θ∗()]| ≤ max1≤≤
¯̄
()

¯̄
where () ≡  − x0()Θ∗() we have for any   0

Pr

µ
max
1≤≤

11 (w) ≥ 2
¶

≤ Pr

Ã
max
1≤≤

1



X
=1

 (w) () ≥ 2
!
≤ Pr

Ã
max

1≤≤
1



X
=1

¯̄
()

¯̄
≥ 2

!

≤ Pr

Ã
max

1≤≤
1



X
=1

¯̄
()

¯̄
· 1©() ≤ 

ª ≥ 

!
+ Pr

Ã
max

1≤≤
1
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()

¯̄
· 1©() ≥ 

ª ≥ 

!
≡ 1 + 2 say.

Noting that Var
£¯̄
()

¯̄
· 1©() ≤ 

ª¤ ≤ 2
¡
2
¢
+ 2[x0

()
Θ∗
()
]2 ≤ ̄̄2 for some ̄2  ∞, by

Boole’s and Bernstein’s inequalities, we have

1 ≤  max
1≤≤

Pr

Ã
1



X
=1

¯̄
()
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· 1©() ≤ 
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¡
̄2
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3
+ log

!
=  (1)

where the last equality follows from Assumption A.3(i) and the condition that 3[̄2(log)4]→∞
as →∞ Similarly, by Boole’s and Markov’s inequalities, Assumption A.1(iii) and Lebesgue dominated

convergence theorem,
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
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¶¸
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It follows that max1≤≤ 11 (w) =  (1) and thus supw∈W |11 (w)| =  (1)  By the triangle

inequality
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33



Consequently supw∈W |12 (w)| =  (1) 

(iii) Observe that 2 (w) = 21 (w) + 22 (w) where
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In view of the fact that |1 { ≤ }− 1 { ≤ 0}−  (|x) +  (0|x)| ≤ 2 we have
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Observing that  [21 (w)] = 0 and Var(21 (w)) = (̄) we have 21 (w) =  ((̄)
12)

for each w ∈W. Analogous to the proof of 11 (w)  we can show that supw∈W |21 (w)| =  (1) 

(iv) Observe that 3 (w) = 31 (w) + 32 (w) where
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

In view of that | (|x)−  (0|x)| ≤ 1 we have

|32 (w)| ≤ 1
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i¯̄̄̄¯
≡ 321 (w) + 322 (w) 

The first term is studied above in (C.2). For the second term, by the triangle and Cauchy-Schwarz
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inequalities, the fact 0 ≤ max ()
0 for any real symmetric matrix , and Theorem 3.2, we have

sup
w∈W

322 (w) ≤ sup
w∈W

1
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=  (1) 

Consequently supw∈W |32 (w) | =  (1)  The proof that supw∈W |31 (w) | =  (1) is analo-

gous to that of supw∈W |11 (w) | =  (1) and thus omitted.

(v) For 4 (w)  noting that | (|x)−  (0|x)| ≤ 1 and by the study of 322 (w) we have

sup
w∈W

4 (w) ≤ sup
w∈W

1



X
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x

¯̄̄̄
¯
X
=1

x
0
()

h
Θ̂() − Θ̂()
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This completes the proof of the theorem. ¥
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Supplementary Material for
“Jackknife Model Averaging for Quantile Regressions”

Xun Lu Liangjun Su
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THIS SUPPLEMENTARY MATERIAL PROVIDES AN INFORMAL DERIVATION OF (3.8) IN THE TEXT

AND SIMULATION RESULTS FOR THE HOMOSKEDASTICITY CASE.

D An Informal Derivation of (3.8)

By Knight’s identity
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≡ 1 (w) +2 (w)  say.

It is straightforward to show that supw∈W  (w)  =  (1) for  = 1 2 which means that  (w)

and  (w) differ only in smaller order terms. To derive the Mallows-type QR information criterion in

(3.6), we have to examine the smaller order terms. By (A.15),
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where s.m. denotes terms of smaller order than the preceding one. Similarly,
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It follows that
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where we conjecture that the difference in the two smaller terms in (D.1) and (D.2) is also of smaller

order in (D.3). The former derivation of such a claim require one to replace the indictor function by a

CDF-type smooth function as in smoothed quantile regressions (see, e.g., Kato and Galvao (2010) and

1



Su and White (2012)). Then

1 (w) = −1
X
=1

X
=1

x
0
() −12

()
0
()

−1
()
x()

h
 − 1

n
 ≤ Θ∗0()x()

oi
 ( +  (w)) + s.m.

=

X
=1



∙
x0() −12

()
0
()

−1
()
x()

¡
 + ()

¢
 ( +  (w))

¸
+ s.m.

Without additional assumptions it is difficult to simplify the dominant term in the last expression.

Note that

2 (w) =

X
=1

X
=1

Z 
=1 x

0
()[Θ̂()−Θ∗()]


=1 x

0
()


Θ̂()−Θ∗()

 [ (− (w) + |x)−  (− (w) |x)] 

+

X
=1

X
=1

Z 
=1 x

0
()[Θ̂()−Θ∗()]


=1 x

0
()


Θ̂()−Θ∗()

  (w ) 

≡ 21 (w) +22 (w)

where  (w ) ≡ 1 { +  (w) ≤ }− 1 { +  (w) ≤ 0}−  (− (w) + |x) +  (− (w) |x)  By
Taylor expansion, Theorem 3.2 and (D.3),

21 (w) =

X
=1

X
=1

Z 
=1 x

0
()[Θ̂()−Θ∗()]


=1 x

0
()


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  (− (w) |x) + s.m.

=

X
=1

X
=1

 (− (w) |x)
⎡⎣( X

=1

x
0
()

h
Θ̂() −Θ∗()

i)2
−
(

X
=1

x
0
()

h
Θ̂() −Θ∗()

i)2⎤⎦
+s.m.

=

X
=1
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=1

 (− (w) |x)
(

X
=1

x
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()

h
Θ̂() − Θ̂()

i)2

+2

X
=1

X
=1

 (− (w) |x)
(

X
=1

x
0
()

h
Θ̂() − Θ̂()

i)( X
=1

x
0
()

h
Θ̂() −Θ∗()

i)
+s.m.

=  (1) 

Let ∆̂() ≡
√
[Θ̂()−Θ∗()] ∆̂() ≡

√
[Θ̂()−Θ∗()] ∆̂ ≡

³
∆̂(1)  ∆̂()

´
 and ∆̂−≡ (∆̂−(1) 

∆̂−()) for  = 1   Let ∆ ≡
¡
∆(1) ∆()

¢
and ∆−≡ (∆−(1)  ∆−()) for  = 1   Define

A (∆∆−1 ∆−;w) ≡
X
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Z −12
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=1 x
0
()∆()

−12



=1 x

0
()

∆()

 (w ) 

Clearly, 22 (w) =
P

=1

P
=1

R −12
=1 x

0
()∆̂()

−12



=1 x

0
()

∆̂()

 (w )  = A

³
∆̂ ∆̂−1  ∆̂−;w

´


Let  be a large fixed constant. Define

S ≡ {(∆∆−1 ∆−) :
°°∆()°° ≤ ̄12

°°∆−()°° ≤ ̄12
°°∆()−∆−()°° ≤ ̄12−12 log

for  = 1    = 1}

2



We can prove supw∈W |22 (w)| =  (1) by showing that

sup
w∈W

sup
(∆∆−1∆−)∈S

|A (∆∆−1 ∆−;w)| =  (1) 

We first show that A (∆∆−1 ∆−;w) =  (1) for each (∆∆−1 ∆−;w), and then show the
above uniform result. By Jensen’s inequality, Taylor expansions, and the fact that

°°∆−() −∆()°° =

¡
̄12−12 log

¢
 we have
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i
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#

+s.m.

= 
³
̄12−12 log

´
=  (1) 

Then A (∆∆−1 ∆−;w) =  (1) for each (∆∆−1 ∆−;w) by the Chebyshev inequality. As
in the proof of Theorems 3.2 and 3.3, we can apply Bernstein’s inequality to show this convergence also

holds uniformly in (∆∆−1 ∆−;w) ∈ S ×W Consequently, we have

 (w) =  (w) +
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 ( +  (w))

¸
+ s.m.

To simplify, we assume that (D.1) and (D.2) continue to hold by taking  =  (say when ̄

is fixed) which implies that 

−12
()

0
()

=   If in addition the approximation bias () =  (1)

for all  = 1  (say when all models under consideration are approximately correct), then by the

dominated convergence theorem we have
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io
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If  and x() are independent for all  = 1 2  , then () = (−1 ())
h
x()x

0
()

i
and

 (w) =  (w) +
 (1− )

(−1 ())

X
=1

 + s.m.
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E Simulation Results for the Homoskedasticity Case

This appendix contains some simulation results for DGPs 1-4 when the error terms are homoskedastic.

The findings from Figures S1-S4 are largely consistent with those for DGPs 1-4 when the error terms

are heteroskedastic. In particular, when  = 005 JMA clearly dominates all other model averaging

estimators for all DGPs under investigation.
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Figure S1: Out-of-sample performance: DGP 1, Homoskedasticity

5



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

1

1.2

1.4

1.6

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=50, M=11, τ=0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.95

1

1.05

1.1

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=100, M=14, τ=0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.98

1

1.02

1.04

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=150, M=16, τ=0.5

 

 

JMA AIC averaging BIC averaging QRIC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=50, M=11, τ=0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=100, M=14, τ=0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.2

1.4

1.6

1.8

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=150, M=16, τ=0.05

Figure S2: Out-of-sample performance: DGP 2, Homoskedasticity

6



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9

0.95

1

1.05

1.1

1.15

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=50, M=20, τ=0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.98

1

1.02

1.04

1.06

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=100, M=20, τ=0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.98

1

1.02

1.04

1.06

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=150, M=20, τ=0.5

 

 

JMA AIC averaging BIC averaging QRIC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5

3

3.5

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=50, M=20, τ=0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=100, M=20, τ=0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

0.9

1

1.1

1.2

1.3

R2

F
in

a
l
P

re
d
ic

ti
o
n

E
rr

o
r

n=150, M=20, τ=0.05

Figure S3: Out-of-sample performance: DGP 3, Homoskedasticity
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Figure S4: Out-of-sample performance: DGP 4, Homoskedasticity
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